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Section 1 

INTRODUCTION 

This report deals with the problem of specification, modeling, and enforcement of constraints 
in databases. The active database area is emerging as a viable alternative for implementa
tion of large scale database applications, particularly those involving data that needs close 
monitoring and control due to its dynamic nature. Applications in monitoring of personnel, 
equipment, materials etc. need capabilities available in modern database systems. The entire 
area. of command and control applications is likely to benefit immensely from the emerging 
"active database" technology. 

The term "active" has two connotations: first, in contrast to "passive," i~ implies that 
the database system has a component that allows it to actively perform changes within the 
database , and possibly to the environment consisting of other data., users, and equipment. 
The second connotation can be traced to the database actively offering information to the 
user whenever information of interest "happens," as opposed to being only "reactive" to a 
user's request whenever the user presents one. It is also possible to treat the "active" nature 
of a database a.s being equivalent to "dynamic" or changing constantly. This contrasts with 
the typical "static" nature of a database where data tends to remain constant unless changed 
explicitly by an outside intervention. 

The currently available capabilities in database management systems are limited , but 
are likely to be expanded in the future very rapidly. One facility is known as triggers which 
a.re activated upon the occurrence of certain events, and which automatically cause actions 
within the database. For example, systems Hke SYBASE or INTERBASE allow triggers to b~ 
defined and have a similar style of trigger implementation. But the facility is limited by the 
nun1ber of triggers that ca.n be defineC. to go with a relation, or the level of nesting possible. 
The so-called knowledge-management extension of INGRES allows rules to be defined and 
procedures to be invoked as a result of the firing of rules. The procedures in turn may give rise 
to new rule firings. The net result of these rules and triggers shows up in terms of changing 
some data values, or sending some control signals to other hardware for process control type 
of applications, or sending alerting messages to human decision makers. Both the trigger and 
rule fa.cilities are quite powerful and give: rise to the so-called "active" nature of the database 
system. 

Section 2 of this report presents an enhanced conceptual data model which is based on 
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the popular entity relationship (ER) data model. We have ~nha.nceJ it wlth a capabili~y 
of modeling active database behavior at a higher level than the event-condition-actio~ rules 
useci. in tne Sentinel systein [Cha.91]. W<t! have also propo~.:::d a diagrammatic coaYentiG:Ll to 
go with this model which may need further work in terms of implementing a diagramming 
and conceptual schema editing tool based on it. We present a concise, high level specification 
language and then show how it can be mapped into the facilities of an active commercial 
DBMS such as INGRES. 

Databas~ constraints are inherently declarative and can be classified in different ways. In 
section 3 of this report we address three different types of constraints: integrity constraints, 
the invariant properties of the model as constraints, and dynamic constraints that deal with 
a change of state that occurs during update operations. Our contention is that maintenance 
of constraints can be accomplished by deriving appropriate "active database behavior" in 
the conceptual schema that are translated into executable rules or triggers. These rules or 
triggers cause the appropriate "repairing" process that .takes care of "fixing" the database so 
that it is consistent with the constraints. 

The facility we have described here can be thought of as a part of the design tools that are 
needed to exploit the active capabilities in a database management system. The specification 
of active behavior in the form of events and rules in the (ER)2 model is a design time activity. 
With a mapping tool , these are mapped into the actual functionality of the proposed DBMS: 
In future, this whole activity may be considered to be a function of the mediator which is 
responsible for enforcing constraints that the user specifies, and translating them to system 
executable rules or triggers. The (ER)2 model may be considered as the user's view or 
"window" on the underlying active database. The user can continue to manipulate this view 
with the help of a possible future tool for (ER)2 schema manipulation and editing. The 
mediator will be responsible for "reflecting" these changes in the actual DBMS. 

In section 4 of this report we have placed this work in proper context and have pointed 
out a large number of possible directions for extending this work. 
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Section 2 

(ER)2 MODEL 

In this section, we propose an extension to database conceptual modeling using the Entity
Relationship (ER) approach to incorporate active database behavior in the form of events 
and rules. 

Tb.e ideas presented here have first been delineated in [TNCK90, TNCK91] and further 
developed in [Tan92]. As the basis for the proposed extension, we adopt the variant of the ER 
model used in the Lawrence Berkeley Laboratory (LBL) tools [SM91, MF91] that includes 
generalization/ specialization and full aggregation as relationships involving relationships, thus 
requiring directed arcs in the ER diagram to denote inter-object connections. The choice of 
a particular variant of the ER model does not disturb the incorporation of active database 
behavior in the conceptual schema, because the new dimension is orthogonal to the data 
abstractions of the model. 

First, we define the concepts of events and rules, and present a syntax for active behavior 
specification at the conceptual level in terms of events and rules in section 2.1. Then we 
describe the operational semantics of the language in section 2.2. We introduce (ER? dia
grams (ER diagrams with events and rules) in section 2.3. In section 2.4 we show how the 
active behavior specified in the (ER)2 model can be algorithmically mapped into language ~ 
constructs at the relational DBMS level. 

2.1 Events and Rules as ER objects 

In the ER approach, the basic objects are entities and relationships that, along with their 
attributes, model the objects of the real world and their properties. Figure 2.1 shows how 
these concepts are viewed in a meta-schema, i.e., a meta-ER-diagra.m of the ER model itself. 
In the figure, "ENTITY" and "RELATIONSHIP" are specializations of a generic meta-entity 
"ER..OBJECT", to which they are connected by "Is_A" arcs; the meta-entity "ATTRIBUTE" 
is identification depend~nt on "ER-OBJECT", so it is connected to "ER-OBJECT" by an 
"ID" arc. The meta-relationship "ER-Connection" means the different types of directed a.rcs 
that may occur between ER objects. Possible connections are: 

• Inter-en'tity conn~ctions: "ls_A", and "ID~ arcs. 
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troaa (M) to(M) 

ATTRIBUTE 

Figure 2.1: Meta-ER-diagram of the ER Model 

• Connections between entities and relationships and inter-relationship connections: as
sociation arcs showing cardinality, participation constraints, and roles of the partic
ipating objects (e.g., in figure 2.1, "from" and "to" are roles of "ER..OBJECT" in 
"ER..Connection", while "M" means the cardinality "many" of "ER..OBJECT" in "ER_
Connection" ). 

In our approach, we view the real world as constituted by entities, relationships, events 
and rules, all primitive objects of the model. While entities and relationships, along with 
their attributes, represent the structural aspects of the information system being modeled, 
events and rules represent the active behavior that controls the states of the data objects and 
their attributes. We call the resulting model as the Entity-Relationship model with Events 
and Rules, or (ER)2 model for short. The abstract construct that extends the ER model has 
the following grammatical form 1 : 

1 We use a. BNF-like notation for synt.a.x, where non-terminals ue denoted in italic lower case letters, while 
words in non-italic lower case a.nd upper case letters denote terminal&. Single-quoted chuacters such a.s ':' 
a.re terminal delimiters whereas the rest are meta.-cha.racten. Square brackets [ ... ] a.re used to denote optional 
constructs, and the notation [ ... ]• denotes zero or more repetitions o{ the enclosed construct. · 'I' is used to 
delimit alternatives and curly braces { ... } denote one from a. number o{ enclosed alternatives. 
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Figure 2.2: Meta-ER-diagra.m of the (ER)l Model 

rules are always bound dynamically (at transaction execution time). For example, the event 
"all employees working on project Alpha have been deleted" is an instance of the event class 
"EMPLOYEE deleted"; they are bound at the time of the occurrence of the event. Note 
also that an event instance does not correspond necessarily to a single object instance; in 
general, it refers to a set of object instances (in the example, the set of employees working on 
project Alpha). The concept of rule classes/instances relates to that of event classes/instances. 
In the same example, a rule that is fired by the event instance "all employees working on 
project ALPHA have been deleted" is an instance of a rule class whose firing event class 
is "EMPLOYEE deleted"; this rule class may have different instances for different sets of 
deleted employees (i.e~, event instances). Classes of events and rules are specified statically, 
along with the (ER)2 schema; as we pointed out before, instances are determined dynamically, 
at transaction execution time, i.e., at event occurrence time. As with entity and relationship, 
sometimes we will be using the terms Pvent and rule ambiguously, either referring to (event 
and rule) classes or to (event and rulE': instances. Becaus~ every event instance is a unique 
occurrence and so is its associated rule instance, there is no ambiguity. The context deternlines 
whether we are referring to classes or instances. 
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2.1.1 Events 

We use the concept of event a.s "the actual outcome or final result~ [American Heritage 
Dictionary, Second College Edition, page 4 70]. An event is something that happ~ns at a. 
point in time, and, theoretically, has no duration [RBP+91]. In fact, instead of unifying 
the notion of action/ event as commonly found in the literature, we distinguish between the 
occurrence of an event and the action that caused it (i.e., events occur when the associated 
actions have been executed by some agent). For example, the action "update balance" causes 
the occurrence of the event "balance updated". An action is, in general, denoted by a verb 
in imperative form; its execution takes time. However, a.n event, in general, is denoted by a 
verb in past participle tense, and its occurrence is just a point in time. This distinction is 
fundamental for the approach we propose. 

Events may logically precede or follow one another or may be unrelated. There are two 
types of ordering of events to be considered: a causal ordering and a temporal ordering. 
The first one relates events of different types (e.g. the event "ft.ight X landed" cannot occur 
before the event "flight X taken off"). Not all pairs of events bear this relationship. Causally 
unrelated events are said to be concurrent and can occur in any order because they have 
no effect on each other. The temporal ordering, on the other ha.nd, is based on the linear 
ordering of the time of occurrence of the events. 

The time of occurrence is an inherent attribute of every event. Every event has a unique 
time of occurrence or time stamp associated with it, which is assigned at th~ commit time 
of the action that causes it. A time stamp is in fact a unique identifier of an event; it 
implies a canonical precedence order among events. It represents the registration or assertion 
time of an event, also called transaction time in temporal modeling literature [SA85] . The 
granularity with which the time of occurrence of events can be represented is application and 
implementation dependent. Usually the time stamp is not implemented as a real clock value 
but as a unique serial integer for reasons of simplicity. However, this integer value can easily 
be mapped into a real clock value such that a level of indirection is created. As far as the 
activation of the behavior is concerned, we consider that the time of detection of an event is 
the same as its time of occurrence. This may not be true for actual implemented systems, 
but it is not a problem in conceptual modeling as long as the order is preserved. 

Some events simply signal that something has occurred (e.g., "machine out of money", 
"engine stopped"), while others carry information in the form of event attributes, similar to 
the attributes of data objects. For example, in the event "salaries of employees working on 
project Alpha ha.ve been updated", the affected employees' names and salaries (and other 
attributes of employees) are conveyed through the fired rule (or rules) as attribute values of 
the event. 

We distinguish events that occur on data objects or attributes stored in the database 
(database events) from those events that are external to the database, usually generated 
by application programs (external events). Figure 2.3 shows a third classification of events 
(system events), which are signals gen~rated by the underlying system such as interrupts and 
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Figure 2.3: Classification of Events 

clock events2 • 

A database event is the result of a database operation (insertion, deletion, modification, 
or retrieval) on entities, relationships, or their attributes. In order to allow more :flexibility 
in the specification of rules, we further differentiate an attempted operation from an actually 
completed operation. This is done by 8pecifying an event immediately before it occurs, which 
enables us to model the ability to reject an operation before actually executing it. This is 
essential for modeling the rejection strategy to enforce integrity constraints through active 
behavior at the conceptual level. At the logical database level, an attempted operation 
translates into the detection of the event at the time of its occurrence. The operation is 
suspended until the condition is evaluated; if the condition is satisfied, then the operation that 
would ca. use the event is rejected. If the implemented DBMS does not have this capability, the 
typical solution is to rollback the operation or the entire transaction in which the operation 
was performed. 

2 By underlying system we mean the operatjng system a.nd DBMS environment tha.t a.re potential sources 
of system ev~nts. 
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External events ar~ signals from the application domain such as "engine stopped" and 
"reviewer reminded". At the conceptual level, specification of any kind of signal should 
be possible; the conceptual-to logical translation :;tep, either n1anual or aatomatic, :;h.oulJ 
consider the implementation issues of signal detection. 

We also distinguish a special type of event called temporal event, which may be a time
constrained signal from an application (external event) or may be related to some time
stamped data object or attribute (database event) or may be a clock event generated by the 
underlying system (system event). For exa.mple, "time-out" may be the result of finding that 
an expiration date stored in the database has been exceeded or simply an event caused by 
the system dock. Other examples of temporal events are "every weekday at 5:00 PM", "one 
month after the occurrence of event E". 

We specify an event using the syntax presented in figure 2.4, in which we consider only 
primitive events and conjunction of primitive events. Some research is being done on other 
types of composition of events in active DBMSs [Mis91, GJS92], e.g., disjunction, sequence, 
and closure, but the complexity of the detection of composite events has prevented the de
velopment of practical implementations. The most useful type of composition, disjunction of 
many events, has been implemented in research prototypes {Postgres [SJGP90] and Starburst 
[WF90] ); it is easily modeled in our approach by specifying as many behavior sentences as the 
number of primitive events in the disjunction, each firing the same list of actions. The notion 
of conjunction, characterized by the connective "AND" is that of occurrence of events with
out any specific order; simultaneous occurrence of primitive events is not considered because, 
by assumption, each event has a unique time of occurrence (and associated detection by the 
system), i.e., if two events occur simultaneously, either they are the same event or one event 
subsumes the other. Since we are looking at an immediate practical use of the approach, 
we leave the incorporation of more complex composition of events in the language for future 
extensions, which will be quite straightforward at the conceptual level. 

In this definition, evenLid is the unique identification of the event. An obj_name is the 
nam.e of an entity set, a relationship set or a role of an entity in a relationship and attr_name 
is the name of an attribute of object. Objects, roles, attributes, and values a.re specified in 
the underlying language for specification of ER schema.s, as well as the lexical conventions for 
"identifier". 

Events other than database_et'ent ( extemaLet'ent and system_event) are user-defined sig
nals, possibly with parameters, i.e., event attributes. The definition of a signal is implementa
tion dependent; for external events, it will usually consist of a stored procedure invoked from 
an application program or directly by the user. The following definition syntax is assumed 
and used as the basis for signal calls in the event and action specification: 

signal_definition 
formal_parm_list 

CREATE. SIGNAL signal_name [ '(' formal_parm_list ')'] 
identifier ':' value_set 
[ ',' identifier ':' value_set ]• 
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event .. - [ BEFORE] evenLid ':' ;;vent_~ype 
[AND [BEFORE] event_id ':' event_type J* 

even Lid .. - identifier 
event_type .. - database_etJent I externaLevent I system_event 

database_event .. - [attr_name OF] obj_name MODIFIED 
obj_name INSERTED 
obj_name DELETED 
[attr_name OF] obj_name RETRIEVED 

obj_name .. - identifier 
attr_name .. - identifier 

externaL event .. - signal 
system_event .. - signal 

signal .. - signaLname [ '(' parm_list ')'] 
signal-name .. - identifier 

parm_list .. - value [ ',' value ]* 

Figure 2.4: Syntax for Event Specification 

where value_set, i.e., the allowed set of values for the identifier, is specified in the underlying 
ER schema. As an example, a timeout mechanism can be specified as: 

CREATE SIGNAL timeout(deadline : date), 

where "deadline" is the event attribute and may refer to an object attribute or a. variable 
of type "date". 

Every database_event has a. set of pre-defined attributes that it carries to the rules it 
fires. The event attributes correspond to the attributes of the affected objects, and the 
notation depends on the type of operation that caused the event. The event attributes may 
be referenced in the body of the fired rule, i.e., in the specification of conditions and actions. 

For an €ntity, all its attributes a.re carried by the event, and the folloWing notation is used, 
where attr_no.me is the name of the attribute as specified in the ER schema: 

Type of database_event 
INSERTED 
DELETED 
MODIFIED 
RETRIEVED 

Predefined attributes 
NEW attr_name 
0 LD attr _name 
NEW attr_name, OLD attr_name 
attr_name 

For a relatioushi}i, besides its own attributes, if any, the "NEW" and/or "OLD" attributes 
of the participating objects are inherited by the relationship and also carried by the event. 
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2.1.2 Rules 

We have defined a rule as the language construct: 

rule 

rule_id 
description 

priority_ level 

rule_id (4
(' description 4

)'] ( 
4
(' priority_level 4

]'] 
4
:' 

[IF condition THEN] action_list 
identifier 
string 
identifier 

Like event_id, rule_id is an "identifier", which provides unique identification of the rule; 
description is an optional text that meaningfully describes the rule for documentation purpose; 
and priority_level is an optional identification of the priorit~, of the rule according to a user-de
fined priority policy. In general, a priority policy defines a number of priority levels: rules with 
different priority levels are executed in the precedence order of the levels; and rules within 
the same priority level are executed in some order dictated by the rule selection strategy of 
the active DBMS. The lower level of priority is the default, and the simplest priority policy 
is "no policy", where all rules have the same priority level, and the order of execution of a 
set of fired rules is left to the active DBMS. 

A condition is a predicate over the state of the database. Its specification in a rule is 
optional. A rule without a condition means that the corresponding actions in action_list are 
to be unconditionally performed whenever the associated event occurs (is detected). We use a 
simple syntax for condition so that more complex, implementation dependent constructs will 
need to be defined to completely specify the language. Any computable database predicate 
in the implementation data model may be used as the condition part of a rule. In general, 
a predicate may comprise a collection of single predicates connected by "AND" and "OR", 
possibly negated ("NOT") or quantified by existential quantifiers, and involving aggregate 
constructs such as "AVERAGE~, "SUM", and "COUNT". At the minimum, a predicate 
must be a single comparison statement between an attribute and a value in the attribute ' 
value set or between an attribute and another attribute. We follow the syntax in figure 2.5, 
where NOT, AND, OR and IN SET_OF connectors are used. 

Like objects and attributes, a value is specified in the underlying ER schema language, 
while reLoperator depends on the predicates supported by the implementation model (the 
usual relational operators are =, >, ~' <, ~' #). 

A condition acts as a guard on action_list. If the condition fails, no action will be triggered 
and the rule execution will fail. For a given rule, the same condition guards all actions in the 
associated action_list. 

An action_list is a sequence of commands that can be database actions, i.e., operations 
to be performed on data objects. art: their attributes, or external (user defined) actions 
such as raising an external event or sending a. message. A special type of action, "RE
JECT _OPERATION", is defined to specify rul~s to prohibit certain operations, possibly re
quiring th~ rollback of the transartion that caused the fiting ev~nt. Another special type of 
action, PROPAGATE_QPERATION, allows the specific.ation·of a cascaded propagation of 
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condition 

predicate_ list 
predicate 

.. _ 
··- predicate_list 

[ NOT ] predicate_list 
predicate [ {AND I OR} predicate]* 
[ NEW I OLD ) attr_name [OF obj_name] 
reLoperator value 
[ NEW I OLD ] attr_name [OF obj_name] 
reLoperator [NEW I OLD] attr_name [OF obj_name] 
[NEW I OLD) attr_name [OF obj_name] 
[NOT) IN SET_OF '(' attr_name [OF obj .. name] ')' 

Figure 2.5: Syntax for Condition Specification 

the effect of the event up to the adjacent objects; for example, if an entity is deleted, the 
deletion is propagated to the relationships which the deleted entity participates in and to the 
entities that are associated to the deleted entity by "Is-A" and "ID" connections. The syntax 
for action is shown in figure 2.6. 

As mentioned before, the syntax for objects and attributes is defined in the underlying 
ER schema, and the definition of predicate is given in the syntax for condition. The lexical 
conventions for "string" are also defined in the grammar of the ER schema specification 
language. 

Note that "RAISE" is an action that applies to any kind of events that are raised 
by the execution of the rule. For a database_action, a raised event is implicit, so we do 
not need to specify the fact that a database_event is to be raised. For instance, the ac
tion "DELETE_RELATIONSHIP Works BETWEEN EMPLOYEE(ssn="123456789") AND 
PROJECT", which deletes all occurrences of that employee in the relationship Works, implic
itly raises the database_event "Works DELETED". On the other hand, non-database events 
such as "lntermediate_Checkpoint" must be explicitly raised by the ·rule, in the form of a 
"RAISE" statement. For an 2.ction of the type "MESSAGE", no event is raised unless ex
plicitly specified. For example, we may want to raise a specific event "Candidate_!nformed" 
as a consequence of the action "MESSAGE : 'Inform the candidate that his/her application 
has been denied' ". 

In section 2.2 we examine the semantics of the language constructs we propose, based on 
a semi-formal operational approach. 

2.2 Semantics of the Behavior Specification Language 

The general semantics of au active database behavior_sentence is straightforward aud has the 
following format: 
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action_list 
action 

database_ action 
db_ action 

value_list 
assignment 
reLobj_list 

reLobj_pred 
extemaLaction 

actuaLparm_list 
msg 

db_evenLlist 

Pre-conditions : 

action [',' action]* 
database_action 
externaL action 
REJECT _OPERATION 
PROPAGATE_OPERATION '(' db_event_list ')' 
db_action '(' event_id ')' 
INSERT _ENTITY obj_name '(' value_list ')' 
INSERT _RELATIONSHIP obj_name ['(' value_list ')'] 

BETWEEN reLobj_list 
DELETE . .ENTITY obj_name '('predicate')' 
DELETE-RELATIONSHIP obj_name '('predicate')' 
DELETE-RELATIONSHIP obj_name ['('predicate')'] 

BETWEEN reLobj_list 
MODIFY obj_name '('predicate ')'SET '(' value_list ')' 
assignment[',' assignment]• 
attr_name [OF obj_name] '=' value 
reLobj_pred [AND reLobj_preciJ* 
obj_name ['(' attr_name '=' value')'] 
RAISE event_id ':' signaLname 

[ '(' actuaLparm_list ')' ] 
MESSAGE':' msg [ '(' evenLid ':' signaLname 

[ '(' actuaLparm_list ')' ] ')' ] 
value [ ',' value ] 
string 
event_id ':' database_event [',' event_id ':' database_event]* 

Figure 2.6: Syntax for Action Specification 

1. event is detected. If "BEFORE" is specified in event, then the event was detected but 
has not actually occurred. 

2. condition is true. 

Execution : 
The actions in action_list are executed. 

Post-conditions : 
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The events resulting from the execution of action_list are raised. 

Therefore, the semantics of the active da.ta.bas~ l:,ehavior apecification language are d~
rived from the operational semantics of the actions in action_list of the rules. Since actions 
are the constructs of the language that produce effects on the state of the database, event 
and condition are treated as pre-conditions for the purpose of examining the semantics of a 
behavior_sentence. 

2.2.1 Formal Specification of the (ER)2 Model 

In order to derive an operational semantics for the language, i.e. the semantics of the language 
in terms of the execution of its operations in an abstract computing machine, we need to 
specify the (ER)2 model in a formal way. We will use the following notation for the model 
constructs: 

• A : set of attribute names. 

• V : set of attribute domains (value sets). 

• 0 : set of names of entity types and relationship types. 

• E : set of event identifiers. 

• D : set of all possible database events, a database event being the name of an object 
type in 0, followed by the occurred event (INSERTED, DELETED, MODIFIED, RE
TRIEVED). In the case of MODIFIED, the event may also be preceded by the name 
of an attribute in A and the keyword OF. 

• S : set of signal names. 

• R : set of rule identifiers. 

• P : set of identifiers of rule priority levels. 

Let domain : A ---+ V be a function that maps attribute names to value sets. 
Let evenLname : E ---+ D U S be a function that maps event identifiers into database 

events or signal names. 
An entity type descriptor is a 7- tuple: 

( enLname, enLattr _set, enLkey_attr, enLnotnulLattr, 

id_conn, isa_conn, ent_inst) 

where 

• ent_name E 0 is the name of the entity type; 
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• ent_attr _set C A is the set of attributes of the entity type; 

• enLkey_attr ~ ent_attr _set is the set of key attributes of the entity type; 

• ent_notnulLattr ~ enLattr _set is the set of attributes that are not allowed to have 
NULL values; 

• id_conn is a pair of sets (from_set, to_set) where from...set C 0 is the (possibly empty) 
set of names of entity types that are ID-dependent on enLname, and to_set C 0 ·is the 
(possibly empty) set of names of entity types that are identifying owners of enLname; 

• isa_conn is a pair of sets (from...set, to_set) where from_set C 0 is the (possibly empty) 
set of names of entity types that are subclasses of enLname, and to_set C 0 is the 
(possibly empty) set of names of entity types that are superclasses of ent_narr,e; 

• enLinst is the set of all instances that belong to the entity type in a given database 
state. Each instance represents one entity and consists of a value for each attribute in 
enLattr _set (some of which may be NUL"L) plus a value for a surrogate-key attribute. 

It is required that every entity instance and every relationship instance have a unique, 
system-generated surrogate-key attribute so that sets of surrogate-key values of any two object 
types are disjoint. It is also required that the values of attributes in enLkey_attr be not NULL. 

A relationship type descriptor is a 5-tuple: 

( reLname, reLattr _set, reLobjJet, reLnotnulLattr, reLinst) 

where 

• reLname E 0 is the name of the relationship type; 

• reLattr _set C A is the (possibly empty) set of attributes of the relationship type; 

• reLobj...set is a set of triples ( obj_name, part, card) where each obj_name E 0 is the 
name of the related object type; part E {"Total", "Partial"} is the participation con
straint of obj_name in reLname; and card E {"1", "M"} is the cardinality constraint of 
obj_name in reLname; 

• reLnotnulLattr ~ reLattr _set is the (possibly empty) set of attributes that are not 
allowed to have NULL values; 

• reLinst is the set of all instances that belong to the relationship type in a given database 
state. Each instance represents .... -.e relationship and consists of a value for each attribute 
in reLattr _set plus a surrogate-key value for each entity type participating in the re
lationship. If the relationship involves other relationships, the list of surrogate-key 
attributes of the participating relationships become~ part of the instance a.s well. 
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An event type descriptor is a 4-tuple: 

( event_id, event..attr _set, evenLspec, fired_rule_set) 

where 

• evenLid E E is the identification of the event type; 

• evenLattr _set C A is the (possibly empty) set of attributes carrie~ by the event type; 

• evenLspec comprises either a database event in D or the name of the signal (external 
or system event) in S; 

• fired_rule_set C R is the (possibly empty) set of rules fired by the occurrence of the 
event type. 

A rv.le type descriptor is a 7-tuple: 

( rule_id, rule..attr _set, priority_level, firing...event, 

condition..spec, actionJist..spec, raised_evenLset) 

where 

• rule_id E R is the identification of the rule type; 

• rule_attr _set C A is the (possibly empty) set of attributes of the rule type (carried by 
its firing event); 

• priority_level E P is the identification of the priority level of the rule type, if any; 

• firing_evenLset C E is the (at least singleton) set of event types that fire the rule; 

• condition..spec is the specification of the condition part of the rule in the active behavior 
specification language; 

• actionJist..spec is the specification of the actions of the rule in the active behavior 
specification language; 

• raised_evenLset is the (possibly empty) set of event types raised by the execution of 
the rule. 

A general constraint of the model i~ that names in 0 and S and identifiers in E and R 
be unique throughout the database, as well as names of attributes within (ER)2 object type 
descriptors. 

An (ER? schema is a 4-tuple (ENTITY, RELATIONSHIP, EVENT, RULE} where EN
TITY is a. set of entity type descrjptors, RELATIONSH!P ie a s~t of relationchip type descrip· 
tors, EVENT is a set of event type descriptors, and RULE is a set of rule type descriptors. 
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2.2.2 Operational Semantics of Actions 

As presented in section 2.1, the following actions are specified as part of the action_ list. 

• RAISE event_id ':' signaLname ( '('actuaLparm_iist')'] 

• MESSAGE':' msg [ '('event_id ':' signaLname ( '('actuaLparm_list')' ]')'] 

• REJECT_OPERATION 

• PROPAGATE_QPERATION '(' db_event_list ')' 

• database actions: INSERT_ENTITY, INSERT_RELATIONSHIP, DELETE..ENTITY, 
DELETE..RELATIONSHIP, and MODIFY. 

The operational semantics of each action is defined below in the form of pre-conditions, 
execution, and post-conditions. This semantics is nested in the semantics of the behav
ior_sentence in which the action appears, i.e., the latter will be, in general, defined as: 

Pre-conditions (firing event detected, condition true) 
Execution : 

pre-conditions, execution, post-conditions for action 1. 
pre-conditions, execution, post-conditions for action 2. 

pre-conditions, execution, post-conditions for action N. 
Post-conditions (resulting events raised) 

It is assumed that the underlying active DBMS in which the actions a.re executed has 
the capabilities for suspending, aborting, and rolling back database operations (or the en
tire transaction in which the operation is performed), as well as a.n adequate data struc
ture (a list) for keeping track of the detected events. The interesting actions are the exter
nal actions ("RAISE" and "MESSAGE") and the special types of database actions ("RE
JECT_OPERATION" and "PROPAGATE_OPERATION") introduced in the (ER)2 model. 
The primitive database actions have been well defined in the context of manipulation lan
guages for extended ER models [ AH85, CERE88] and transaction specification languages for 
semantic data models .[NB91]. Their operational semantics is based on the relational imple
mentation of the ER schema, i.e., it is based on the operational semantics of the DBMS's 
DDL/DML, which we do not discuss in this report. 

RAISE e: s(pJ) 

Given event_id e, signaLname s, and actuaLptJrm_list pJ, RAISE adds e to the 
list of detected events; s and the values in p_l must conform to the event type 
descr-iptor of e. 

Pre-conditions: 
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l.eEE 

2. s E S, evenLname(e) = s 

3. If pJ is specified, let pJ = < a1, a2, ... ,an > 
and evenLattr_set of e =< At, A2, ... ,An>. Then each value must be in the 
proper domain, i.e.: 
ai E domain(Ai), 1 ~ i ~ n 

Execution: 

Add e to the list of detected events. 

Post-conditions: 

e is raised. 

, MESSAGE : m( e : s(pJ)) 

Given msg m, event_id e, signaLname s, and actual_parm.list pJ, MESSAGE 
outputs m, typically a string of characters. If e : s(pJ) is specified, it behaves 
exactly like in RAISE e : .s(p_l). 

Pre-conditions: 

He : .s(pJ) is specified, same as 1., 2., 3. for RAISE e : s(pJ). 
Otherwise no pre-condition. 

Execution : 

Output m. If e : .s(pJ) is specified, add e to the list of detected events. 

Post-conditions : 

He : s(pJ) is specified, the!l e is raised. 
Otherwise no post-condition. 

REJECT _OPERATION 

If "BEFORE" was specified with the firing event, then the suspended operation 
that would cause the event is aborted; otherwise, the operation is rolled back. 

Pre-conditions: 

None 

Execution: 
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If "BEFORE" was specified, then abort the suspended operatior1. Otherwise, roil 
back the operation that caused the event. 

Post-'condltions: 

If "BEFORE" was specified, no post-condition. 
Otherwise the firing event is raised. 

PROPAGATE_QPERATION (eJ) 

Selectively propagates the operation that caused the firing event to the adjacent 
objects listed in ( eJ). 

Pre-conditions: 

1. Let e_l ::;: < e1 : d1, e2 : d2, ... , en : dn >. Then each event_id ei must be a 
valid event identifier, i.e.: 
ei E E, 1 ~ i ~ n 

2. Each database_event di must be a valid database event, i.e.: 
diED, 1 ~ i ~ n 

3. Each database event must correspond to its event identifier in the event type 
descriptor, i.e.: 
di = event_ name( ei), 1 ~ i ~ n 

4. Let OJ be the name of the object in the firing event, 
and oi, 1 ~ i ~ n the name of the object in the database event di. Then 

Execution : 

• H OJ is an entity type, then each Oi must be either an entity type con
nected to/from OJ by an "ID" or "ls_A" arc, or a relationship type which 
OJ participates on, i.e.: 
Oi E ( id_conn.from_set U id_conn.to_set V isa_conn.from_set U 
isa_conn.to_set U reLconn_set). 

• If OJ is a relationship type, then each Oi must be an. object type (entity 
or relationship) that participates in OJ, i.e.: 
o_i = reLobj_sei.obj_narne for some obj_nam,e described in the 
rel_obj_set of OJ· 

Let o_e be the name of the occurred update operation in the firing event (i.e., the 
occurred event on OJ). Then the execution semantics of each propagation follows 
the semantics of the corresponding individual operation, i.e.: 

• If o_e = "INSERTED" then execute insert operation on (entity or relation
ship) Oi,l ~ i ~ n. 
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• If o_e = "DELETED" then execute delete operation on (entity or relation
ship) Oi, 1 ~ i ~ n. 

• If o_e = ~MODIFY,.. then execute modify operation on (entity or relationship) 
Oi, 1 ::; i ~ n. 

Post-conditions: 

The post-conditions of the individual propagated operations hold. 

2.3 (ER) 2 Diagrams 

The conceptual schema in the (ER)l model comprises the usual ER schema plus the specifica
tion of active behavior in the form of events and rules. For the conceptual-to-logical mapping 
step of the database design process, a textual specification of the combined schema in the 
appropriate language is all that the translation tools need in order to be able to generate the 
database structure and behavior definition statements in the target DBMS. 

The diagrammatic representation extensively used during the conceptual design phase is 
a graphical tool that helps the database designer in three aspects: 

• Communication with the users. 

• Automatic generation of the textual specification from the graphical representation. 

• Documentation of the design. 

We extend these facilities supplied by the ER diagram with a graphical notation for events 
and rules, to provide the database· designer with a means of representing active database 
behavior along with the structural data constructs. 

In an (ER)2 diagram, an event is represented as a circle and a rule as a parallelogram. 
Directed edges represent connections between events and rules and between events and data 
objects (entities and relationships). Figure 2. 7 shows the representation of a single behavior 
in terms of the firing event, the rule, a.nd the events raised. The connections between events 
and rules, and between events and the outside objects are also explicitly shown. In an actual 
diagram, there is no need to label "Fires" and "Raises" arcs; the connections between events 
and rules are implicit: an event "fires" rules and a rule "raises" events. The connections 
"Affects" and "Affected_by" are labeled in an (ER)2 diagram with the type of database event 
(modification, insertion, deletion, orr..: "C"ieval). Non-database events (signals), are represented 
by the events themselves, i.e., they are not connected to data objects. 
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or "Fires. rule 

Figure 2. 7: Diagrammatic Representation of an Active Behavior 

2.3.1 Meta-schema 

As we did with the ER model, we can specify the (ER)2 model in a meta-schema and rep
resent it as an (ER)2 diagram, i.e. a meta-(ER)~-diagram of the (ER)2 model itself. This 
is shown in figure 2.8, where the event and rule objects are integrated in the model with 
the appropriate notation, and the "ER2_Connection"'s of figure 2.2 are explicitly represented 
by the links "Affected_by", "Affects", "Fires", "Raises", and by the relationships "Precedes" 
and "Priority". The external environment (system, applications, and users) is also shown as 
a potential source and target of events. 

This meta-schema is part of the meta-database that stores meta-data about the design 
process, i.e., the definition of schemas at different levels and their mappings. The meta
database is a self-documentation of the design process, and is an essential source of information 
for further extensions to the database design methodology. 

2.3.2 Example 

As an illustration, figure 2.9 shows an (ER)2 diagram of a company's EMPLOYEE
DEPARTMENT-PROJECT database with some events and rules attached to the data. ob
jects. The following ER schema is assumed - for simplicity, details such as cardinality ratios 
( "1", "M"), identification dependencies ( "ID" ), participation constraints ("Total"), and roles 
("manager", "employer") are shown only in the diagram, and attributes are specified only in 
the textual schema: 

• EMPLOYEE(!m, name, job, address, birth_date, status, salary) 

• DEPARTMENT(name, location) 

• PROJECT( nanie, budget) 
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Affected_by Fires 

Affects Raises 

ENTITY 

Figure 2.8: Meta-(ER)2-diagram of the (ER)l Model 

• DEPENDENT(EMPLOYEE..ssn, ~' birth_date) 

• Employed(EMPLOYEE_ssn, DEPARTMENT.name) 

• Manages( EMPLOYEE..ssn, DEPARTMENT _name) 

• Works(EMPLOYEE..ssn, PROJECT _name, start_date, hours_week) 

The following behavioral sentences are specified in terms of the events a.nd rules repre
sented in figure 2.9: 

WHEN el : PROJECT MODIFIED 
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PROJECT 

r1""' 
'@ 

d: deleted 
m: modified 

Figure 2.9: (ER)' Diagram of a COMPANY Database 

FIRE rl ("Policy for budget reduction") : 
IF NEW budget < OLD budget 
THEN DELETE-ENTITY EMPLOYEE (ssn =OLD EMPLOYEE..ssn, 

status = "temporary") (e2), 
RAISE e3 : salary..review. 

WHEN e2 : EMPLOYEE DELETED 
FIRE r2 ("Restriction to firing engineers") : 

IF OLD job = "engineer" 
THEN MESSAGE : "Employee is an engineer, deletion rejected", 
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REJECT _OPERATION. 

V\"!i:EN e2 : E~IPLOYEE DELETED 
FIRE r3 ( "Casca.ded deletion of temporary employees") ; 

IF OLD status = "temporary" 
THEN PROPAGATE_QPERATION ( e4 : Employed DELETED, 

e5 : Works DELETED, e6 : DEPENDENT DELETED). 

WHEN e5: Works DELETED 
FIRE r4 ("Warning message to project manager") : 

MESSAGE : "Inform change on employee assignment to project manager" 
(e7 : manager_warning). 

The (ER)2 diagram represents the active database behavior in the form of events and rules 
and their interaction with data objects. To avoid cluttering the diagrammatic representation, 
we chose to keep the specification of events, conditions~ and actions apart from the diagram, 
using textual description. The same user interface design technique is adopted by most of 
the current ER diagramming tools, where the attributes are specified in pop-up windows that 
are displayed when the corresponding object symbols are clicked. This technique keeps the 
diagram simple and easy to read, without loss of information. In addition, the use of different 
line styles and colors for structural and behavioral constructs would help making the diagram 
more readable. 

As shown in the above example, the (ER? model can capture a variety of constraints and 
situation/action behaviors, such as a high-level organizational policy (rule rl), a restrictive 
prescription (rule r2), the enforcement of an integrity constraint (rule r3), or a database event 
alerter (rule r4). Potentially, this framework can represent any application-relevant behavior 
that can be managed by an active DBMS. In addition, this representation can be easily 
adapted to data abstraction extensions to the ER model such as generalization/specialization 
and aggregation. As pointed out before, those extensions do not disturb the (ER)2 framework 
because of the orthogonality of the added dimension. 

2.4 Mapping of (ER)2 Specification into DBMS Constructs 

2.4.1 Meta-database of the Schema Translation 

During the traditional schema translation process from conceptual to logical level, the transla
tion tools acquire knowledge about the conceptual schema from the input file, apply the map
ping procedures, and generate the logical schema. in the target DBMS. This meta-information 
about the schemas and their mapping is a valuable resource that must be stored in a m€ta
database for further use. 

The most visible use of the meta-database is for self-documentation of the design and 
possible use as a basis for schema evolutioiL managemeat [MR90]. In a full fledged CASE 
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environment, the meta-database can be combined with additional meta-information about 
the process design to form a project database. 

The meta-database is also useful for extensions to the query capability of the database 
system. For instance, graphical languages for querying the conceptual schema are more con
cise and adequate for naive database users than the query languages provided by the DBMS, 
e.g., SQL. The information stored in the meta-database is fundamental for the translation 
of queries in the conceptual schema to actual queries in the DBMS language. This idea can 
be extended to querying multiple, heterogeneous database systems, in which various meta
databases would be integrated for assisting the different conceptual-to-logical query trans
formations. Some highly specialized database applications., such as scientific applications, 
may require a specific query language that must also use the meta-database for translation 
[MLM+92]. 

In our work, we cse the meta-database as t!le central repository of schema. design infor
mation to in.corporate active behavior translation in the database design process. Figure 2.10 
shows the types of meta-information needed for this purpose: 

(S>r·--<6>--· 
hill_ (M) lo_ (M) 

Figure 2.10: Meta-database: ER schema, Relational schema, and their Mapping 
(LBL tool set) 

• ER objects (Entity sets and Relationship sets) a.nd their map pins: into relation schema.s. 
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• ER object connections (arcs in the ER diagram) and their mapping into referential 
integrity constructs supported by the DBMS. 

• · Object attributes and their mapping into relational attributes, along with information 
about key attributes. 

• Value sets and their mapping into the domains supported by the target DBMS. Usually 
schema translation tools are implemented in such a way that the value sets of attributes 
in the ER schema are tailored to the domains in the target DBMS; hence, the value 
set-to-domain mapping is a one-to-one mapping. When the tools support more than one 
target DBMS, different value set options are available for the specification of attributes. 

2.4.2 Active DBMS Language Constructs 

Although a standardization effort is being done in the area of data definition and manipulation 
languages, there are significant differences between the various commercial DBMSs. In par
ticular, the syntax of the active database constructs varies significantly. Here we consider the 
constructs currently present in commercial relational DBMSs; they reflect the development 
of research prototypes, from System R to Starburst and Postgres. 

Three types of active database constructs have been implemented a.s part of the data 
definition language of relational DBMSs: triggers, rules, and exception handlers. The func
tionality of triggers and rules is similar in practice, since both are general mechanisms to 
specify active behavior in the form of situation/action rules, database triggers, and event 
alerters. 

Triggers are present in the proposed standards SQL2 and SQL3 [Mel90] and implemented 
-in Sybase [SYB87], Oracle [Kos92], and Interbase [INT90]. The syntax varies from product 
to product; the following is the proposed syntax in SQL2/SQL3: 

. CREATE TRIGGER trigger_name 
{ AFTER I BEFORE } 
{ INSERT I DELETE I UPDATE [OF column_list] } 

0 N table_ name 
[REFERENCING 

{ 0 LD [ AS ] correlation_name 
[NEW [AS] correlation_name] } I 

{ NEW [AS] correlation_name 
[ 0 LD [ AS ] correlation7 name ] } ] 

[ WHEN search_condition ] 
triggered..SQ L_statement_list 

[ FOR EACH { ROW I STATEMENT } ] 

where trigger_name, table_name and correlation_name are respectively identifiers for the trig
ger, the tables involved in the trigger, and the correlated tables used as aliases for the transi
tion tables containing old and new values of the affected tuples; column_list is a list of attribute 
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identifiers; and search_condition and triggered_SQL_statemer..Llist are predicates and opera
tions specified in the underlying SQL data manipulation language. 

R~lies are the basic constructs in Ingres [ING90] and RDB/VAX [DEC89]. Th0 following is 
the syntax in the Knowledge Management Extension of Ingres; it combines rules with stored 
procedures. 

CREATE RULE rule_name 
AFTER 
{ INSERT INTO I DELETE FROM I 

UPDATE ON I UPDATE column_name OF } 
table_ name 

[ REFERENCING [ 0 LD AS correlation_name ] 
[NEW AS correlation_name)] 

[ WHERE qualification ) 
EXECUTE PROCEDURE procedure_name 4(' procedure_parameters ')' 

CREATE PROCEDURE procedure_name '(' parameter_list ')' 
AS [ declare_section ] 
BEGIN 

statement_list 
END 

Here also rule_name, column_name, table_name, corTelation_name, and procedure_name 
are identifiers; and qualification is a predicate over the affected tables. A procedure is a 
mechanism with the full power of a database programming language containing parameters, 
a. declare_section for declaration of local variables, and a statemenLlist that includes database 
operations, control statements (IF, WHILE, RETURN), assignment statements, MESSAGE 
and RAISE ERROR statements. 

Although it lacks many desirable features such as detection of events "after" and "be
fore" they occur, priority information, retrieval events, and arbitrary procedures as events to 
P-mulate signals, the rule/procedure construct of Ingres has the advantage of modularity. Po·· 
tentially, this approach could be extended to incorporate all these features and could be used 
in an.y SQL extension with stored procedures and rules or triggE:rs, such as in SQL2/SQL3, 
Sybase, and Oracle. In the following mapping algorithms, we use this construct as the general 
language construct of the target active DBMS. 

The last type of construct present in current active DBMSs is the exception handler, a 
very limited mechanism to deal with signals. The general construct is of the form: 

WHENEVER SQL_signal exception_action, 

where SQL_signal can be any of a few error codes originating from embedded SQL statements, 
and exception_action is basically a message or a jump f call to an exception handling procedure 
written in the host language. Although the functionality is present for a restricted set of 
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system signals, we will not deal with this mechanism because of its limitation (the SQL_signal 
basically indicates the occurrence of an error in the execution of SQL commands embedded 
in programs written in a host language). 

2.4.3 Mapping Process 

Recall that the specification of active behavior in the (ER)2 model is a list of behavior_sen
tences, each one defined as: 

behavior_sentence 
event 

rule 

WHEN event FIRE rule '.' 
evenLid ':' event_type 
rule_id ['('description')'] [ '[' priority_level'r] ':' 

[IF condition THEN] action_li3t 

We assume the following syntax for rule definition in the target DBMS, which is more 
general than that of Ingres ; the pr.ocedure definition is the same as in Ingres: 

CREATE RULE rule_name [ description] [ priority_level] 
[ BEFORE I AFTER ] 
{ signaLname '(' signal_parameters ')' I 
{ INSERT INTO I DELETE FROM I 

UPDATE ON I UPDATE column_name OF I 
RETRIEVE ON I RETRIEVE column_name OF } table_name } 

EXECUTE PROCEDURE proeedure_name '(' procedure_parameters ')' 

The following meta-database look-up functions are defined for assisting the mapping pro
cess: 

get_obj_map( obj_name) returns the table name to which obj_name was mapped. 

get_attr_map(attr_name) returns the column name to which attr_name was mapped. 

geLconn( obj_name) returns the list of objects t:onnected to obj_name in the ER schema, along 
with the type of each connection. 

get_attr_list( obj_name) returns the list of attributes of obj_name. 

get_attr_Iist..map( obj_name) returns the list of column names to which the list of attributes of 
obj_name was mapped. In an actual implementation, this function is performed through 
a get_att:r_list( obj_name) followed by a. sequence of get_attr...map( attr_name). 

get_value_set..map( value_set) returns the domain name to which value_set was mapped. 

Not surprisingly, with the information provided by the meta-database the mapping be
comes straightforward. The mapping process proceeds as follows. 

29 



1. Input: a list of behavior_sentences. 
Each behavior_sentence generates a pair (rule definition, procedure definition), as de
scribed below. 

2. Each obj_name referred in the event, condition, or action_list parts of the behav
ior_sentence is mapped into a table_name using get_obj...m~p( obj_name). 

3. Each attr_name is mapped into a column_name using get_attr_map( attr_name). 

4. Each value referred in the condition or action_list parts of the behavior_sentence is 
mapped into a value in the corresponding domain obtained by get_value_set_map 
( value_set). 

5. Rule definition: 

• Output: 
CREATE RULE rule_id [ description ] [ priority_level] 
{BEFORE I AFTER} event 
EXECUTE PROCEDURE procedure_name ( procedure_parameters ); 

• rule_id maps directly into rule_name unless corrections are needed to meet naming 
conventions for identifiers. 

• description maps into a string of characters for documentation purpose. 

• priority_level maps into an implementation-dependent definition of priority (e.g. 
an integer sequence number). 

• event maps into the corresponding language construct: 

- Case database_event: 

• attr_name OF obj_name MODIFIED -+ UPDATE column_name OF ta-
ble_name 

• obj_name MODIFIED -+ UPDATE ON table_name 

• obj_name INSERTED -+ INSERT INTO table_name 

• obj_name DELETED ---+ DELETE FROM table_name 

• attr_name OF obj_name RETRIEVED -+ RETRIEVE column_name OF 
table_ name 

• obj_name RETRIEVED -+ RETRIEVE ON table_name 

Case externaLevent or system_event: 

• The translation in to signal_ name [ ( signaLparameters ) ] will depend on 
the implementation of signals. 

• The translation of procedure_name ( procedure_parameters ) will depend on the 
procedure definition, as explained below. 

6. Procedure definition: 
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• Output: 
CREATE PROCEDURE procedure_name ( parameter_list ) 
AS declare_section 
BEGIN 
statement_list 
END; 

• procedure_name is mapped into proc_rule_id to associate the identification of the 
procedure to the rule that calls it. 

• parameter_list corresponds to the attributes of event: 

- Case database_event : the parameters are the predefined event attributes 
(see the table at the end of section 2.1.1) mapped into column_names using 
get_attr_map( attr_name). Each column_name is prefixed by "o_" (for old) or 
"n_" (for new) if the event was an update event, and followed by the domain 
corresponding to the value_set of attr_name. For example, suppose attribute 
"DEPARTMENT ..name" of object "Employed" with value_set "varchar" is 
mapped into column "dname" of relation "EMPLOYEE" with domain "var
char"; then if the event is "Employed DELETED", the corresponding pro
cedure parameter will be "o_dname varchar"; if the event is "Employed IN
SERTED", it will be "n_dname varchar"; and if the event is "Employed MOD
IFIED", it will be "o_dname varchar, n_dname varchar". Also, in this example, 
note that table_name = get_obj..map("Employed") = "EMPLOYEE". 

- Case extemal_event or system_event: each parameter is a user-defined pair 
"identifier : value_set" mapped into the corresponding "identifier domain" in 
parameter_list. Every identifier maps into an identical name unless corrections 
are needed to meet naming conventions of the target DBMS. 

- In any case, the actual procedure-parameters in the EXECUTE PROCE
DURE statement inside the rule definition will be a list of pairs "for
mal_parameter..name = value", one for each parameter in parameter_list. A 
"formal_parameter..name" is as defined above and "value" is either the col
umn_name prefixed by the qualification keywords "new." or "old." for 
database events or a user-specified value mapped into the corresponding do
main for non-database events. For example, the actual parameter corre
sponding to the formal parameter "n ... dname varchar" will be "n-dname = 
new.dname". 

• The declare_section contains declarations of variables that are locally referenced by 
the procedure. The followin~ variables will be used in the definition of procedures 
invok€d by rules: -

"message string" to keep the text of msg specified with the action "MESSAGE 
: msg". 

"counter integer" to keep the number of tuples in a table that is used for 
checking the existence of tuples satisfying some condition. 
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• The statemenLlist will cor1tair, the statements corresponding to the condition and 
action_list parts of the rule. 

- For each predicate in condition: 
* Case [ NEW I OLD ] attr_name (OF obj_name] rel_operator value 

----+ IF [table_name].[n_ I o_]column_name rel_operator value 
where reLoperator and value are mapped into the corresponding operator 
and value in the target DBMS language. 

* [ NEW I OLD J attr_namet [OF obj_namet] reLoperator [ NEW I OLD ] 
attr_name2 [OF obj_name2] 
----+ IF [table_namet].[n-1 o_]column_namet rel_operator [table_name2].[n-1 
o_]column_name2 

* [ NEW I OLD ] attr_namet [OF obj_namet] [NOT] IN SET _QF 
( attr_name2 [OF obj_name2] ) 
----+ IF [table_name1].[n- I o_]column_namel [ NOT ] IN ( SELECT col
umn_name2 FROM table_name2 ) 
If obj_namei is omitted, then table_namei is the same as the table_name 
corresponding to the obj_name in the firing event. 

- For each action in action_list: 

* Case INSERT _ENTITY obj_name ( value_list ) 
----+ INSERT INTO table_name VALUES ( column_namei = value;) 
for 1 ~ i ~ n, assuming n is the number of columns in table_name. 

* Case INSERT _RELATIONSHIP obj_name [ ( value_list ) ] BETWEEN 
rel_obj_list 
----+ INSERT INTO table_name VALUES ( column_namei = valuei) 
for 1 ~ i ~ n, where column_name; includes the foreign keys of the related 
tables mapped from rel_obj_list. 

+ Case DELETE_ENTITY obj_name ( predicate ) 
----+ DELETE FROM table_name WHERE predicate 
where the mapping of predicate is similar to that in condition above (with
out the IF clause). 

+ Case DELETE-RELATIONSHIP obj_name (predicate) 
----+ DELETE FROM table_name WHERE predicate 
the same as the previous case. 

+ Case DELETE-RELATIONSHIP obj_name [ ( predicate ) ] BETWEEN 
rel_obj_list 
----+ DELETE FROM table_name WHERE predicatei 
where predicatci includes the equality condition on the foreign keys of the 
related tables mapped from reLobj_list. 

+ Case MODIFY obj_name ( predicate ) SET ( value_list ) 
----+ UPDATE table_name SET ( column_name; = valv.ei ) WHERE pred-
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icate 
for 1 ~ i -~ n, where n is the number of modified attributes of obj_narrie; 
predicate is mapped like in condition. 

* Case RE.JECT _OPERATION 
~ROLLBACK [operation] 
where operation is the database operation associated with the firing event; 
operation is left optional for the case in which the target DBMS does 
not support rollback at operation level. Alternatively, if rollback inside 
rules is not supported at all (e.g. in the current version of Ingres ), RE
JECT_OPERP.~..TION maps into RAISE ERROR error#: message, where 
message is a mandatory warning to the user or application that originated 
the firing event. 

* Case PROPAGATE_OPERATION ( db_event_list) 
generates a sequence of operations of the same type as in the firing 
event. The propagation is performed on the objects explicitly specified 
in db_event_list, that must be adjacent to the firing event object in the ER 
schema. As shown before (section 2.2.2), the propagation does not cascade 
automatically to other, non-adjacent objects, unless additional rules are 
specified that deal with the new propagations. The tool checks the adja
cency by invoking the meta-database function geLconn( obj_name) where 
obj_name is the name of the event object. If the specified list is correct, 
the propagated operations are generated: 
~ INSERT INTO table_name VALUES value_ list 
~DELETE FROM table_name WHERE predicate 
~ UPDATE table:name SET value_list WHERE predicate, where 
table~name is obtained using get_obj..map ( adjacenLobj_name), while 
value_list and pre~icate are derived from the firing event and the condi
tion part of the rule. 

* Case RAISE event_id: signaLname [ ( actuaLparm_list ) ] 
~ EXECUTE PROCEDURE signaLname[ ( actuaLparm_list ) ] 
assuming that a signal is implemented as a stored procedure (currently 
no commercial DBMS has such functionality, although a few have stored 
procedures). 

* Case MESSAGE : msg [ ( evenLid: signaLname [ ( actuaLparm_list)] ) ] 
~ message= msg; MESSAGE : message; 
where message is the local variable keeping the text. If evenLid : sig
naLname [( actuaLparm_list)] is specified, a separate procedure containing 
the MESSAGE statement is created to emulate the signal. 

As an example, the behavior_sentence 

WHEN eOl : EMPLOYEE DELETED 
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FIRE rOl : PROPAGATE_OPERATION ( e02 ; DEPENDENT DELETED, 
e03 : Employed DELETED, e04 : Manages DELETED, 
e05 : \Vorks DELETED ), 

MESSAGE: 'All references to EMPLOYEE being deleted'. 

generates the following DBMS procedure/rule definitions: 

CREATE PROCEDURE proc_rOl 
( o..salary float, o_status varchar, o_birth_date date, o_address varchar, 
o_job varchar, o..name varchar, o..ssn char(9), o..DEPARTMENT..name 
varchar, o_Employed_DEPART1fENT_name varchar) 

AS DECLARE message VARCHAR NOT NULL; counter INTEGER; 
BEGIN 

END; 

SELECT COUNT(*) INTO counter FROM Works 
WHERE EMPLOYEE..ssn = :o_ssn; 

IF counter > 0 
THEN DELETE FROM Works 

WHERE EMPLOYEE_ssn = :o_ssn; 
END IF; 
SELECT COUNT(*) INTO counter FROM DEPENDENT 

WHERE EMPLOYEE..ssn = :oo..ssn; 
IF counter > 0 

THEN DELETE FROM DEPENDENT 
WHERE EMPLOYEE..ssn = :o_ssn; 

END IF; 
message = 'All references to EMPLOYEE being deleted'; 
MESSAGE :message; 

CREATE RULE rOl AFTER DELETE FROM EMPLOYEE 
EXECUTE PROCEDURE proc_rOl 
(o_salary = old.salary, o_status = old.status, o_birth_date = old.birth_date, 
o_address = old.addres3, o_job = old.job, o..narr1~ = old.name, 
o..ssn = old.ssn, o..DEPARTMENT _name = old.DEPARTMENT _name, 
o..Employed_DEPARTMENT ..na:ne = old.Employed_DEPARTMENT _name); 

This example also illustrates the mapping of different objects into the same table (EM
PLOYEE, Employed, Manages into EMPLOYEE), as well as attributes to columns and how 
the active behavior mapping process takes advantage of the information on the schema trans
lation to generate the definition of rules and procedures in the target DBMS. 

The mapping process described above is direct, i.e., it translates the behavior definition 
into the specification of procedures and rules in the target DBMS without attempting to 
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generate the most efficient specification. Like other SQL constructs, rules 3.lld procedures 
can be correctly specified in various ways; optimization issues have to be adriressed after th~ 
translation. with the generated spec.ification as the ~tarting point. 

An example of possible further optimization is the evaluation of set-oriented predicates. 
The condition part of a rule can be split into two sets of predicates: one referring to the object 
affected by the firing event, and the other containing the remaining predicates. The first set 
can be sp~cified in the WHERE qualification clause of the rule, outside the _procedure that 
evaluates the remaining predicates. This splitting restricts the amount of data passed to the 
procedure, making its execution more efficient. 

2.5 Summary 

In summary, in this section we described the (ER)2 model. First, we introduced events and 
rules as objects of the model and presented a syntax for the specification of active database 
behavior using events and rules. Then we described the model using the ER formalism and 
derived a semantics of the active behavior specificatio_n language based on the operational 
semantics of the action part of the rules. We introduced (ER)2 diagrams, in which events 
and rules are represented along with entities and relationships, as a graphical tool to help the 
database designer in the specification of active beh~vior. Finally we described the mapping 
of the active constructs in the (ER)2 schema specification into DBMS rules and stored proce
dures. The mapping algorithms are intended for use by a translation tool that automatically 
generates the executable DBMS language statements corresponding to the active behavior 
specified in the (ER)2 schema. 
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Section 3 

CONSTRAINT MODELING AS ACTIVE DATABASE 
BEHAVIOR 

When dealing with database constraints within the ER model, the main issue is the mis
match between constraints specification and enforcement: while specification of constraints 
has a declarative nature, their enforcement requires procedural language constructs. The 
relational model has a few inherent constraints such as the key constraint and referential in
tegrity constraints based on foreign keys. However, there is no such general mechanism like a 
constraint enforcement subsystem in a DBMS that automatically enforces semantic integrity 
of the database without the need of writing constraint-checking statements in the transac
tions. In section 3.1 we show that the (ER)2 approach combined with the active database 
language constructs in the DBMS is also useful for the specification and translation of in
tegrity constraints. This is a typical internal application of the active database paradigm that 
benefits the database system services. In particular, we show in section 3.2 that the inherent 
and implicit constraints of the model, also known as invariant properties, can be mapped into 
(ER)2 schema specification as meta-behaviors, and translated into triggers and event alerters 
that will enforce their preservation. In section 3.3, we show that dynamic constraints, which, 
require consistency checking of database state transitions as opposed to individual states, are 
usually better specified directly in the active behavior specification language. 

3.1 Integrity Constraints 

Two solutions are used to enforce integrity constraints during update operations on the 
database. The first solution is to prevent the execution of constraint-violating operations 
(rejection strategy), and the second solution is to permit all correct operations and propagate 
them to related objects, if necessary for preserving the integrity of the database (propagation 
strategy). 

Definition: A constraint is a predicate that must be satisfied at all time during the existence 
of the database. 

Basically, a constraint is a predicate similar to the type used to specify the condition part 
of a rule. We use the following syntax: 

36 



constraint 
constroint_id 

constrainLid ':' predicate_list 
identifier 

where constroint_id is a unique identification of the constraint and predicate_list is the same 
as defined for the condition part of a rule. 

For example, 

cl : salary of EMPLOYEE~ 10,000 

is a simple constraint that restricts the valu~s of the salaries of e:nployees in a way that 
is not usually representable in the conceptual schema. Potential violating events (i.e., the 
operations that cause the events) are the insertion of an employee and the modification of 
the salary of an employee. Hence some enforcem~nt action, either a. rejection or a correction, 
must be performed when such events are detected and if the outcome is an invalid salary. 
This behavior is exactly the active database behavior in the form of events and rules. 

As another example, 

c2 : salary of EMPLOYEE < salary of manager AND 
DEPARTMENT _name of manager= DEPARTMENT ..name of employer AND 
EMPLOYEE_ssn of Employed = ssn of EMPLOYEE 

is a constraint that restricts the salaries of employees to be less than the salary of the manager 
of the department in which they are employed. The potential constraint-violating events in 
this case are any modification on salary or insertion of an employee with ~ salary and any 
changes on the "Manages" or "Employed" relationship caused by insertion or modification. 

The active database behavior derived from the specification of static constraints as in 
these examples requires the.Jiillowing information to be completely defined: 

• The potential constraint-violating events, each of which will become the event part of 
an active behavior. 

• The invalid new database state generated by the violating events, which will become 
the condition part of the rule. 

• The list of constraint-enforcing actions to be performed when each violating event is 
detected and if the new database state is invalid. This list will become the action_list 
of the rule. 

In other words, each potential constraint-violating event will derive an active database 
beho.vior with the following general format that can be generated with the help of a translation 
tool: 
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WHEN event_id 
FIRE rule_ id 

violating_event 
IF invalid_database_state 
THEN enforcing_action_iist 

where evenLid and rule_id are tool-generated identifications ~fthe event and the rule. 
This derivation is not completely automatable, because the enforcing_action_list depends 

on the enforcement strategy adopted for the constraint; also, specification of user-defined 
messages n1ay be desirable as part of the action list. Thus a tool to assist the constraint
to- beha.vior mapping process would have an automated step, i.e., the generation of violat
ing_events and the invalid_database_state plus an interactive step in which thP, uGer (database 
designer) ~pedfies the enfllrcing_action_list. Figure 3.1 illustrates this process; the figure also 
shows another possibly automated step, the translation of active behavior into DML language 
constructs in a target DDM:S. 

Active Behavior 
Template Generator 

Active Behavior 
Template Editor 

To translation tool 

.: _.User 

Figure 3.1: Interactive Framework for Active Behavior Derivation from Constraints 

In this framework, the derivation of an invalicLdatabase_state is straightforward: the 
database wiU he in an invalid state if the predicate_list of the constraint is fa.lae. As a conse
quence, the condition pa.tt becomes the negation of the predicate_list 
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invalid_dl!tcbcse_state NOT ( predicate_list ). 

The set of violating_events is derived directly from the syntactic analysis of the constraint. 
This issue is thoroughly examined in (CW90] in the context of an SQL-based constraint 
language that includes aggregate functions and set operations and rules in the Starburst pro
totype DBMS. In our opinion, there is a trade-off between the expressiveness of the constraint 
language and the simplicity of its declarative semantics. The constraint-to-behavior mapping 
is useful because behavior is procedural, thus more difficult to understand and program. If 
the constraint language becomes as complex as the behavior language, the mapping will not 
be useful anymore, because the behavior will have to be specified to enforce the constraints 
anyway. 

The following mapping rules are used to derive the violating_events from the specification 
of a constraint: 

1. For each attr_name that appears in a predicate, modification of the corresponding at
tribute and insertion of the owner of the attribute ( obj_name) are potential violat
ing_events. 

2. For each obj_name that appears in a predicate, modification and insertion of the corre
sponding object are potential violating_events. 

In the above first example, constraint "cl" generates the following templates of active 
behavior: 

WHEN [BEFORE] el-cl: salary OF EMPLOYEE MODIFIED 
FIRE rl-cl : IF NOT (salary OF EMPLOYEE ~ 10,000) 

THEN enforcing_action_list. 

WHEN (BEFORE] e2-cl : EMPLOYEE INSERTED 
FIRE r2-cl : IF NOT (salary OF EMPLOYEE~ 10,000) 

THEN enforcing~action_list. 

The BEFORE option is left open because it depends on what the user wants to specify 
in the action list. A rejection strategy will require the event being detected before it occurs, 
or, alternatively, the rollback of the operation after the event has occurred. A propagation 
strategy will take effect after the event occurs. 

In the second example, the templates generated for constraint "c2" are: 

WHEN [BEFORE] el-c2 : salary OF EMPLOYEE MODIFIED 
FIRE rl-c2: IF NOT (salary of EMPLOYEE< salary of manager AND 
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DEPARTMENT ..name of manager= DEPARTMENT _name of employer AND 
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE) 

THEN enforcing_action_list. 

WHEN [BEFORE] e2-c2 : salary OF manager MODIFIED 
FIRE r2-c2 : IF NOT (salary of EMPLOYEE < salary of manager AND 

DEPARTMENT _name of manager= DEPARTMENT ..name of employer AND 
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE) 

THEN enforcing_action_list. 

WHEN (BEFORE] e3-c2 : EMPLOYEE INSERTED 
FIRE r3-c2 : IF NOT (salary of EMPLOYEE <salary of manager AND 

DEPARTMENT ..name of manager= DEPARTMENT _name of employer AND 
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE) 

THEN enforcing_action_list. 

- WHEN (BEFORE] e4-c2: Manages INSERTED 
FIRE r4-c2 : IF NOT (salary of EMPLOYEE< salary of manager AND 

DEPARTMENT ..name of manager= DEPARTMENT _name of employer AND 
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE) 

THEN enforcing_action_list. 

WHEN (BEFORE] e5-c2: DEPARTMENT..name OF Manages MODIFIED 
FIRE r5-c2: IF NOT (salary of EMPLOYEE< salary of manager AND 

DEPARTMENT ..name of manager= DEPARTMENT ..name of employer AND 
EMPLOYEE....ssn of Employed = ssn of EMPLOYEE) 

THEN enforcing_action_list. 

WHEN (BEFORE] e6-c2 : DEPARTMENT..name OF Employed MODIFIED 
FIRE r6-c2 : IF NOT (salary of EMPLOYEE< salary of manager AND 

DEPARTMENT ..name of manager = DEPARTMENT _name of employer AND 
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE) 

THEN enforcing_action_list. 

WHEN (BEFORE] e7-c2 : Employed INSERTED 
FIRE r7-c2: IF NOT (salary of EMPLOYEE< salary of manager AND 

DEPARTMENT ..name of manager= DEPARTMENT ..name of employer AND 
EMPLOYEE...ssn of Employed = - n of EMPLOYEE) 

THEN enforcing_action_list. 

WHEN [BEFORE] e8-c2 : EMPLOYEE..ssn OF Employed MODIFIED 
FIRE r8-c2: IF NOT (salary of EMPLOYEE< salary of manager AND 

40 



DEPARTMENT ..name of manager= DEPARTMENT ..name of employer AND 
EMPLOYEE...ssn of Employed= ssn of EMPLOYEE) 

THEN enjoTCing_attion_lisi. 

WHEN [BEFORE] e9-c2 : ssn OF EMPLOYEE MODIFIED 
FIRE r9-c2: IF NOT (salary of EMPLOYEE< salary of manager AND 

DEPARTMENT ..name of manager= DEPARTMENT_name of employer AND 
EMPLOYEE...ssn of Employed= ssn of EMPLOYEE) 

THEN enforcing_action_list. 

The latter illustrates an interesting aspect of the model that was addressed in sec
tion 2.4. Reca.ll that "manager" (respectively "'employer") is the role of "EMPLOYEE" 
(respectively "DEPARTMENT") in the relationship "Manages" (respectively "Employed"), 
and that "salary" is an attribute of "EMPLOYEE" that is inherited by "Manages" (respec
tively "Employed") and thus by "manager" (respectively "employer"). In addition, "Man
ages" (respectively "Employed") is usually implemented in a relational database as a column 
"Manages_DEPARTMENT_name" (respectively "Employed_DEPART11ENT_name") in the 
relation "EMPLOYEE", i.e., the semantic links provided by "Manages" and "Employed" in 
the ER model are hidden in the relational model in the form of foreign keys. This information 
is stored in the meta-database of the schema design and is used for optimizing the deriva
tion of behavior templates (e.g. avoiding redundancy of events like "salary of EMPLOYEE 
MODIFIED" and "salary of Manages MODIFIED"). It is also used to translate the behavior 
specification into the DBMS triggers or event alerters (e.g. mapping "Employed INSERTED" 
to insertion into "EMPLOYEE" relation). 

The user (database designer) needs to edit the t~mplates to specify the "BEFORE" clause 
of the event, usua.lly necessary with rejection actions, and the enforcing_action_list for each 
active behavior. The generation of many templates of active behavior for a single constraint 
provides modularity and flexibility for the database designer to specify different actions for 
different constraint-violating events. For example, it might be the user intention to specify 
the action "REJECT _OPERATION" for rule "rl-cl" and the action "MODIFY EMPLOYEE 
SET (salary= 10,000)" for rule "r2-cl", although they are used to enforce the same constraint. 

3.2 Invariant Properties of the Model 

The ER model has a particular set of static constraints, either inherent to the model or 
implicit ia the schema definition, that are implied by the invariant properties of the model. 

The enforcement of these constraints can be specified as meta-behavior, i.e., behavior over 
the meta-database, and automatically generated by the schema design and translation tool 
for each instance of object types or attributes in the meta-database that is affected by the 
constraint-violating events. By doing this, the tool relieves the database designer of having to 
specify individual active database behavior for each affected object or attribute. Of course, 
this specification must be regenerated every time the meta-database changes, i.e., every time 
the database schema evolves. 
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In what follows, we introduce an extension to the notation used so far that allows us. to 
express specification of meta-behavior in a compact form. We use the pseudo-expression "Fbr 
each" to denote iteration of the specitkation through the sets of entity and relationship types 
stored in the meta-database. Hence the following meta-events are defined over the ER objects 
ENTITY and RELATIONSHIP; each meta-event maps into a set of events in a given actual 
database schema: 

evl: enLname OF ENTITY INSERTED 

ev2: ent_name OF ENTITY MODIFIED 

ev3: enLname OF ENTITY DELETED 

ev4: reLname OF RELATIONSHIP INSERTED 

ev5: reLname OF RELATIONSHIP MODIFIED 

ev6: reLname OF RELATIONSHIP DELETED 

Also, the following meta-schemas of ENTITY and RELATIONSHIP in figure 2.1 are 
assumed. 

ENTITY: 

ent_name : name of the entity type. 

key_attr..name() : key attribute of the entity type. 
"key_attr..name" can be composite. 

The notation () means that 

part..rel*(rel_name, part_type) : set of relationship types which the entity type participates in. 
The notation* means that "part..rel" can be multi-valued. Each "part..rel" is composed 
by "reLname" (name of the relationship type), and "part_type" of relationship (type of 
participation of the entity type in the relationship type, that can be either "Total" or 
"Partial"). 

from_ent_conn"'(ent..name, conn_type) : set of connections from other entity types, composed 
of "ent..name" and "conn_type", tha.t ca.n be either "Is_A" (specialization) or "ID" 
(identification dependency). 

to_ent_conn*(ent_name, conn_type) : set of connections to other entity types, i.e., the recip
rocal of "from_ent_conn". 

RELATIONSHIP : 

reLname: name of the relationship type. 
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rcLobj*(obj..nakle, key_attr-I1an1e()) : set of object types associated by the reiationship type. 
Each reLobj is composed by "obj.Jlame" (name of the relat~d entity or relationship 
type)~ and "key ..a.ttr ..narne()" (key attribute of the entity or relationsh.ip type). 

part_rel* ( reLname, type) : same as in ENTITY. Ret: all th a.t we allow relationships to partic
ipate in relatiol).ships. 

The actual implementation of the meta-database may have a different meta-schema; for 
example, information on connections between object types a.re usually kept as meta-attributes 
of the meta-relationship "ER Connection" (figure 2.2). Here we assume they are stored also 
in the meta-objects ENTITY and RELATIONSHIP, in order to facilitate the description of 
conditions and actions in the specification of the meta-behaviors that enforce the invariant 
properties. 

In addition, we use a notation similar to that used in the description of the semantics of 
the actions (section 2.2.2) to describe the protocols of the meta-behaviors. "Pre-conditions" 
a.nd "Post-conditions" are defined to apply the rejection strategy, and an "implies" expression 
is introduced to apply the propagation strategy. 

1. Key constraint (each instance of an entity must be unique). This mapping is given for the 
sake of completeness: the key constraint is supported declaratively and automatically 
by most of the DBMSs. · 

a. INSERTei INTO Ei 
Pre-condition : ...,3 ei E Ei 

For each ent_name in ENTITY : 
WHEN BEFORE evl : ent..name OF ENTITY INSERTED 
FIRE rl-kc: IF NEW key_attr_name IN SET_OF (key_attr..name) 

THEN REJ.ECT_OPERATION, 
MESSAGE : "Key attribute already exists~'. 

b. MODIFY ei IN Ei 
Post-condition : new key _attribute of ei = old key _attribtite of ei 

For each ent..name in ENTITY : 
WHEN BEFORE ev2 : ent_name of ENTITY MODIFIED 
FIRE r2-kc : IF NEW key_attr_name :f; OLD key_attr_na.me 

THEN REJECT_QPERATION, 
MESSAGE : "Not allowed to change key attribute". 

2. Relati0nship referential integrity ccnstrai~1t (a. rela.tionahlp C(j,Il exist only if the corre
sponding related objects exist). 
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a. INSERT r INTO R where R(E~, ... ,En) 
Pre-condition : 3 e 1 E E~, e1 = Et ( r) A 

•.. 1\ 

3 en E En, en= En(r) 

For each reLname in RELATIONSHIP : 
WHEN BEFORE ev4 : reLname OF RELATIONSHIP INSERTED 
FIRE rl-ric: IF NEW reLobj.key_a.ttr..name NOT IN SET_OF 

(reLobj.key..a.ttr..name) 
THEN REJECT_OPERATION, 
MESSAGE : "Inexistent related entity". 

b. DELETE ei FROM Ei 
IMPLIES'Vr E R(ei)DELETErFROM R 

For each ent..name in ENTITY : 
WHEN ev3 : ent..name OF ENTITY DELETED 
FIRE r2-ric : THEN DELETE-RELATIONSHIP part_rel.reLname 

(reLobj.key..a.ttr..name =OLD key_a.ttr..na.me) (ev6). 

c. DELETEriFROM Ri 
IMPLIES'Vr E R(ri)DELETErFROM R 

For each reLname in RELATIONSHIP : 
WHEN ev6 : reLname OF RELATIONSHIP DELETED 
FIRE r3-ric : THEN DELETE-RELATIONSHIP part._rel.reLname 

(reLobj.key_attr_name = OLD reLobj.key_attr..name) (ev6). 

Note: The latter behavior is necessary because we allow relationship involving rela
tionships. Notice that key_attr..name may be composite; also, notice that part_rel a.nd 
reLobj are multi-valued. As a consequence, the mapping from meta-behavior to actual 
behavior will require multiple iterations through the sets of attributes and objects for 
the complete specification of conditions and actions. 

3. Total participation constraint (if the relationship is total on an entity, then the existence 
of the related entity requires the existence of this relationship). 

a. INSERTei INTO Ei -
Pre-condition : 3 R, participation of Ei in R is total 
Post-condition: 't/ R, participation of Ei in R i3 total, ei = Ei(r) 

For et'-ch ent:..name in ENTITY : 
\VHEN evl : ent_name OF' ENTITY INSERTED 
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FIRE rl-tpc : IF parLrel.parLtype = "Total" 
THEN MESSAGE : 
"Need to insert mandatory relationship for inserted entity". 

4. Identification dependency constraint (if a relationship is weak on an entity, then the 
existence of the weak entity requires the existence of the related strong entity). 

a. D_ELETEei FROM Ei 
IMPLIES 'V ei e Ei, ei is ID on ei, DELETE ei FROM Ei 

For each enLname in ENTITY : 
WHEN ev3 : enLname OF ENTITY DELETED 
FIRE rl-idc : IF from_ent_conn.conn_type = "ID" 

THEN DELETE-ENTITY from_ent_conn.ent..name 
(key_attr..name OF from_ent_conn.ent..name = 
OLD key_attr..name) (ev3). 

b. INSERTei INTO Ei 
Pre-condition : ei is I Don ei -+ 3 ei e Ei 

For each ent..name in ENTITY : 
WHEN evl : ent..name of ENTITY INSERTED 
FIRE r2-idc : IF to_enLconn.conn_type = "ID" AND 

key_attr_name OF to_enLconn.ent..name NOT IN SET_OF 
(key_attr...name OF ent..name) 
THEN MESSAGE : 
"Identification dependency: owner entity does not exist". 

5. Aggregation referential integrity constraint (an aggregation can exist only if the corre
sponding components exist). 

This property is enforced by the relationship referential integrity constraint (property 
2), since we consider a relationship as an aggregation of the participant entities to allow 
relationships involving relationships (full aggregation). 

6. Superclass completeness constraint. (a specialization is total on a generalization, i.e. the 
existence of a specialization requires the existence of its generalization). 

a. INSERTei INTO Ei 
Pre-condition : Ei is a sub- class of Ej -+ 3 ei E Ei 

For each ent_name in ENTITY : 
WHEN evl : ent..name OF ENTITY INSERTED 
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FIRE rl-scc : IF to_enLconn.conn_type = "Is_A" AND 
key _attr..name OF to_enLconn.ent..name NOT IN SET _OF 
(key_attr_name OF e:1t..na.me) 
THEN MESSAGE : 

"Specialization: generic entity does not exist". 

b. DELETE e, FROME, 
IMPLIES \I Ei sub- class of E,, DELETE e; FROM Ei 

For each ent..name in ENTITY : 
WHEN ev3: ent..name of ENTITY DELETED 
FIRE r2-scc : IF from_ent_conn.conn_type = "Is..A" 

THEN D ELETE_ENTITY from_ent_conn.ent..name 
(key ..attr_name OF from_ent_conn.ent..name = 
OLD key_attr..name) (ev3). 

In the above, we applied both the rejection and the update strategies for deriving meta
behaviors to enforce inherent and implicit constraints of the model. The translation tool can 
be tailored to support the generation of other active database behaviors that enforce more 
specific invariant properties like superclass completeness, subclass disjointness, or relationship 
cardinality constraints. In addition, a more complex constraint-checking behavior can be 
generated using aggregate predicates, such as: "When a relationship is deleted, if some entity 
type participation is total on it and the deleted relationship is the last one for the related 
entity, then send a message to the user, or, alternatively, propagate the deletion to the related 
entity." All these meta-behaviors embedded in the translation tool can. be left as optional 
so that the user decides at design time which set of invariant properties is desirable to be 
considered for a given application and which strategy to apply in order to enforce them. 
Figure 3.2 illustrates the meta-behaviors specified in this section as a meta-(ER)2-diagram of 
the ER model and its invariant properties. 

3.3 Dynamic Constraints 

The inherent and implicit constraints implied by the invariant properties of the data model, 
as well as the explicit constraints exemplified in section 3.1, are constraints that must hold 
in every state of the database. They are called static constraints because they deal with the 
consistency of a single database state. 

Some explicit constraints deal with the consistency of transitions of database states and are 
called dynamic constraints. Their specification usually requires very high level predicates that 
are not expressible in declarative constraint languages. Since they occur less frequently than 
static constraints, it is easier to specify dynamic constraints procedurally as active database 
behaviors, rather than augmenting the constraint specification language to capture multiple 
database states. 
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Figure 3.2: Specification of the Invariant Properties as Meta-behaviors 
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As an example, "the salary of an engineer cannot decrease" is a constraint that require~ 
checking the database states before and afte: an update on "salary of El\tiPLOYEE~' is per
formed. Instead of trying to specify such constraint in a rich constraint specification language 
and then translating it into the procedural constructs that will enforce it, the following active 
database behavior is easily derived from the semantics of the constrajnt: 

WHEN el-dc : salary OF EMPLOYEE MODIFIED 
FIRE rl-dc : IF OLD job = "engineer" AND NEW salary < OLD salary 

THEN MESSAGE : "Engineers' salaries cannot decrease", 
REJECT _OPERATION. 

3.4 Summary 

As a summary, in this section we have shown the application of the active database behavior 
to enforce integrity constraints. The following conclusions are derived : 

1. Static constraints 

(a) H inherent to the data model or implicit in the conceptual schema, i.e., implied 
by the invariant properties of the model,. they can be specified as meta-behaviors. 
The schema translation tool will instantiate each meta.-behavior as actual behavior 
in the given database and translate them into the language constructs (rules or 
triggers) in the target DBMS. 

(b) If explicit constraints, i.e., constraints of the application semantics (business rules), 
they can derive active database behavior by means of an interactive tool that gen
erates templates of behavior specification and then accepts user intervention to 
complete the specification. For very complex application constraints, the con
strair~t definition may require very complicated predicates, and the mapping pro
cess may not be worthwhile, because the constraint-enforcing active behavior must 
be specified anyway. 

2. Dynamic constraints 
These are always explicit, application-oriented constraints. They a.re better specified 
directly in the form of the active behavior that will enforce them. 
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Section 4 

CONCLUSION AND FUTURE DIRECTION 

Our claim is that the lack of modeling constructs for active database capabilities present in 
the new generation of relational DBMSs has made it difficult to take full advantage of their 
potential benefits. The current database design methodology forces the user to defer critical 
modeling decisions concerning the active behavior of the database to late stages of the design 
process, where the semantics of the real-world situations are obscured by the intricacies of 
the implementation model. Because of the inherent complexity of rule-based programming, 
database designers do not exploit adequately the functionalities of rules, triggers and stored 
procedures. Furthermore, it is expected that more powerful active capabilities will be added to 
the DBMSs by demand of non-conventional database applications, enlarging the gap between 
modeling and specification of executable definitions of active behavior. 

Our approach to this problem was to extend the well-established methodology based on 
the ER model by incorporating active 4atabase behavior in the form of events and rules as 
first-class objects of the model. 

The following benefits will result from the extended modeling and design methodology: 
reduced database design and applica~ion development effort with the automatic generation of 
meta-behavior and translation of active behavior into executable DBMS language constructs; 
better control of the development of database applications; and better quality of the overall 
design. In the present report, we have concentrated on the modeling of the active behavior 
and a specification of the constraints. Further details of the design methodology for active 
databases can be found in [Ta.n92]. 

4.1 Summary 

We introduced the (ER)2 model as a uniform way to express active database behavior along . 
with entities and relationships. We ~'Jar a ted the concepts of a.n event and the action that 
causes its occurrence, many times considered as the same fact in other approaches. We also 
differentiated events and conditions, because although they both represent predicates and are 
so modeled in some dynamic modeling approaches, they have different semantics and timing 
of occ,1rreu.ce and · evaluatio.rr. With these distinctions, we were d.ble to d~fin.e both events 
and rules as objects of the model, rather than only rules as considered in the literature so 
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far. We identified attributes of events and rules and characterized classes and instances of 
eve~ts and rules. We also identified the inter-event and inter-rule connections, as well as 
the semantic connections between events and rules, and between events and data objects 
or the external environment. Based on these modeling concepts and the ER formalism, a 
set-oriented syntax and semantics for active database behavior was defined. We proposed a 
diagrammatic representation of active behavior in terms of events and rules, as an extension 
to ER diagrams. · We showed that with the provision of a meta-database of the design, the 
translation of active database behavior from the (ER)2 model to commercial relational DBMSs 
can be easily incorporated into the database design process, relieving the user from the need 
to program rules, triggers and procedures for enforcing that behavior. 

Next we showed that constraint maintenance can be achieved by specifying constraints 
declaratively and deriving appropriate event-condition-action behavior that in effect imple
ment those constructs. This transformation is useful for the types of constraints that, although 
enforced procedurally by the DBMS, are easier to specify declaratively. From these, one can 
derive a set of procedures and rules to enforce them. Dynamic constraints, which refer to the 
consistency of state transitions rather than to a single state, were shown to be more easily 
specified directly in terms of an active behavior instead of trying to extend the constraint 
language to consider multiple states. A special type of constraint, which is implied by the 
invariant properties of the ER model, if not supported declaratively by the DBMS, can be 
specified by means of a meta-behavior, i.e., behavior over a.ll entity sets and all relationship 
sets a.nd instantiated to appropriate instances of actual active behaviors by the design and 
translation tool for a particular populated database. 

4.2 Further Research and Development 

Supplementary research and development is needed to take full advantage of the benefits 
that accrue to databases by the incorporation of active capabilities. Some major research 
directions are listed below: 

• It is necessary to combine data, control, and process modeling to capture active database 
behavior and application transactions in the same model. 

• As a consequence, the interaction of rule processing and transaction processing in the 
execution model of an active database must be considered to provide the database 
designer with a complete analysis model, in which the whole behavior of the database 
can be validated. 

• A declarative constraint specification language using constraints as predicates at the 
conceptual level, for enforcing constraints as active behaviors. 

• An architecture of tools has been proposed to incorporate the active database exten
sion into current relational database methodology [NTC93). These tools need to be 
implemented. 
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• A graphlcal interface for specification of events and rules, eithrr integrated with an ER 
diagramming tool or in a separate editor is needed. Also, a validation tool based on a 
high level Petri net editor/simulator, possibly taking advantage of the analysis methods 
developed for hierarchical high-1evel Petri nets (Jen91] would be desirable. 

Furthermore, the research on active databases is raising new issne~ and discovering new 
applications; some of them will also impact modeling and design : 

• Deductive databases as a class of active databases: a deductive rule can be seen as an 
active behavior, where there is no event (or it is just a retriev~l), and the condition
action pair is a deduction rather than an operation on the database or a message. Since 
the active database paradigm subsumes the deductive database paradigm, both could 
be present in actual DBMSs, providing a platform for large knowledge bases and expert 
systems (SKdM92]. 

• Rules in 00 DBMSs: the 00 paradigm seems to be a natural way to accommodate 
active behavior in the form of events and rules as first-class objects. The availability of 
efficient implementations of rules in 00 DBMSs is expected and will impact the way 
active database behavior is modeled and designed (DPG91]. 

• Parallel and distributed active databases: rule processing is usually performed in a 
centralized, sequential fashion. Given the hlgh interest in parallel and distributed envi
ronments, it is important for active databases to be adapted to them [CW92]. 

• Database authorization schema: the active database paradigm is clearly a real alterna
tive for database security, and much work has to be done in this area [Lun92]. 

• Derived data maintenance: it is widely recognized that the active database paradigm can 
be used to automatically maintain derived data such as views. Research on design and 
analysis of active behavior for efficiently maintaining derived data is on-going [CW91]. 

• Schema evolution: automatic propagation of changes in the schE-'ma can be performed 
using the active database paradigm, especially by taking advantage of the meta-database 
that describes the database and its design process [MR90]. 

• Reverse engineering of legacy systems: in spite of the wide acceptance of relational 
database technology, most of the corporate data is currently stored in large data repos
itories residing in flat files. Reverse engineering of these old systems is a key research 
area, and the active database paradigtn can play an important role in the knowledge 
discovery of business rules. 
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