
08:24:30 DCA PAD INITIATION - PROJECT HEADER INFORMATION

Project #: C- 36 -687
Center # : l0/24-6-R7526-0AO

Cost share #:
Center shr #:

Rev 1: 0
DCA file #:

06/26/92

Active

Work type : RES
Contract#: F30602-92-C-0092
Prime #:

Subprojects ? : N
Main project #:

Project unit: COMPUTING
Project director(s):

NAVATHE S B COMPUTING

~ponsor/division names: AIR FORCE
Sponsor/division codes: 104

Mod #: Document CONT
Contract entity: GTRC

CFDA:
PE #:

Unit code: 02.010.300

(404)894-3152

I GRIFFISS AFB, NY
I 023

Award period: 920612 to 930611 (performance) 930711 (reports) ·

Sponsor amount
Contract value
Funded

Cost sharing amount

New this change
22,000.00
22,000.00

Does subcontracting plan apply ?: N

Total to date
22,000.00
22,000.00

0.00

Title: MODELI NG OF DATABASE CONSTRAINTS IN ACTIVE DATABASES

PROJECT ADMINISTRATION DATA

DCA contact: Brian J. Lindberg 894-4820

Sponsor technical contact

DR . RAY LUIZZI
(315)000-0000

ROME l ABORATORY
C3CA, UIL DI G 3
GRIFFISS AFB, NY 13441-5700

Security class (U,C,S,TS) : U
Defense priority rating DO-A7
Equipment title vests with: Sponsor X

HOWEVER, NONE PROPOSED OR ANTICIPATED.
Administrative comments

INITIATION OF PROJECT C-36-687.

Sponsor issuing office

MS. JANIS NORELL!
(315)330-2326

ROME LABORATORY
DIRECTORATE OF CONTRACTINGIPKRD
GRIFFISS AFB, NY 13441-5700

ONR resident rep. is ACO (YIN):
GOV'T supplemental sheet

GIT

1 GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

~ --

Closeout Notice Date 07/20/93

Project No. C-36-687 ____________ _ Center No. 10/24-6-R7526-0AO

Project Director NAVATHE S B ______________ _ School/Lab COMPUTING ____ __

Sponsor AIR FORCE/GRIFFISS AFB, NV __________________________________ __

Contract/Grant No. F30602-92-C-0092 ____________ __ Contract Entity GTRC

Prime Contract No.

Title MODELI NG OF DATABASE CONSTRAINTS IN ACTIVE DATABASES __________________ __

Effective Completion Date 930611 (Performance) 930711 (Reports)

Closeout Actions Required:

Final Invoice or Copy of Final Invoice
Final Report of Inventions and/or Subcontracts
Government Property Inventory & Related Certificate
Classified Material Certificate
Release and Assignment
Other

V/N

v
v
v
N
v
N

Date
Submitted

CommentsEFFECTIVE DATE 6-12-92. CONTRACT VALUE $22,000. ____________________ __

Subproject Unde r Main Project No.

Continues Project No.

Distribution Required:

Project Director
Administrative Network Representative
GTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Mana~ment
Re search Security Services
Repor t s Coo rdina tor (OCA)
GTRC
Project File
Other CARL BAXTER-FMD ________________________ _

FRED CAIN-DOD ________________________ __

NOTE: Final Patent Questionnaire sent to PDPI.

v
v
v
v
v
N
v
v
v
v
v

rl

FINAL REPORT

Modelling of Database Constraints in
Active Databases

S.B. Navathe -A.K. Tanaka

Georgia Institute of Technology
College of Computing
sham@cc.gatech.edu

(404) 853 0537

REPORT SUBMITTED TO
ROME LABORATORY

GRIFFISS AFB, NY 13441-5700

May 1993

'7

I

Contents

1 INTRODUCTION 2

2 (ER)2 MODEL 4
2.1 Events and Rules as ER objects . 4

2.1.1 Events . 8
2.1.2 Rules . 12

2.2 Semantics of the Behavior Specification Language 13
2.2.1 Formal Specification of the (ER)2 Model 15
2.2.2 Operational Semantics of Actions . 18

2.3 (ER)2 Diagrams . 21
2.3.1 Meta-schema . 22
2.3.2 Example . 22

2.4 Mapping of (ER)2 Specification into DBMS Constructs 25
2.4.1 Meta-database of the Schema Translation 25
2.4.2 Active DBMS Language Constructs 27
2.4.3 Mapping Process . 29

2.5 Summary . 35

3 CONSTRAINT MODELING AS ACTIVE DATABASE
BEHAVIOR 36
3.1 Integrity Constraints . 36
3.2 Invariant Properties of the Model . 41
3.3 Dynamic Constraints . 46
3.4 Summary · . 48

4 CONCLUSION AND FUTURE DIRECTION 49
4.1 Summary . 49
4.2 Further Research and Development . 50

1

Section 1

INTRODUCTION

This report deals with the problem of specification, modeling, and enforcement of constraints
in databases. The active database area is emerging as a viable alternative for implementa
tion of large scale database applications, particularly those involving data that needs close
monitoring and control due to its dynamic nature. Applications in monitoring of personnel,
equipment, materials etc. need capabilities available in modern database systems. The entire
area. of command and control applications is likely to benefit immensely from the emerging
"active database" technology.

The term "active" has two connotations: first, in contrast to "passive," i~ implies that
the database system has a component that allows it to actively perform changes within the
database , and possibly to the environment consisting of other data., users, and equipment.
The second connotation can be traced to the database actively offering information to the
user whenever information of interest "happens," as opposed to being only "reactive" to a
user's request whenever the user presents one. It is also possible to treat the "active" nature
of a database a.s being equivalent to "dynamic" or changing constantly. This contrasts with
the typical "static" nature of a database where data tends to remain constant unless changed
explicitly by an outside intervention.

The currently available capabilities in database management systems are limited , but
are likely to be expanded in the future very rapidly. One facility is known as triggers which
a.re activated upon the occurrence of certain events, and which automatically cause actions
within the database. For example, systems Hke SYBASE or INTERBASE allow triggers to b~
defined and have a similar style of trigger implementation. But the facility is limited by the
nun1ber of triggers that ca.n be defineC. to go with a relation, or the level of nesting possible.
The so-called knowledge-management extension of INGRES allows rules to be defined and
procedures to be invoked as a result of the firing of rules. The procedures in turn may give rise
to new rule firings. The net result of these rules and triggers shows up in terms of changing
some data values, or sending some control signals to other hardware for process control type
of applications, or sending alerting messages to human decision makers. Both the trigger and
rule fa.cilities are quite powerful and give: rise to the so-called "active" nature of the database
system.

Section 2 of this report presents an enhanced conceptual data model which is based on

2

the popular entity relationship (ER) data model. We have ~nha.nceJ it wlth a capabili~y
of modeling active database behavior at a higher level than the event-condition-actio~ rules
useci. in tne Sentinel systein [Cha.91]. W<t! have also propo~.:::d a diagrammatic coaYentiG:Ll to
go with this model which may need further work in terms of implementing a diagramming
and conceptual schema editing tool based on it. We present a concise, high level specification
language and then show how it can be mapped into the facilities of an active commercial
DBMS such as INGRES.

Databas~ constraints are inherently declarative and can be classified in different ways. In
section 3 of this report we address three different types of constraints: integrity constraints,
the invariant properties of the model as constraints, and dynamic constraints that deal with
a change of state that occurs during update operations. Our contention is that maintenance
of constraints can be accomplished by deriving appropriate "active database behavior" in
the conceptual schema that are translated into executable rules or triggers. These rules or
triggers cause the appropriate "repairing" process that .takes care of "fixing" the database so
that it is consistent with the constraints.

The facility we have described here can be thought of as a part of the design tools that are
needed to exploit the active capabilities in a database management system. The specification
of active behavior in the form of events and rules in the (ER)2 model is a design time activity.
With a mapping tool , these are mapped into the actual functionality of the proposed DBMS:
In future, this whole activity may be considered to be a function of the mediator which is
responsible for enforcing constraints that the user specifies, and translating them to system
executable rules or triggers. The (ER)2 model may be considered as the user's view or
"window" on the underlying active database. The user can continue to manipulate this view
with the help of a possible future tool for (ER)2 schema manipulation and editing. The
mediator will be responsible for "reflecting" these changes in the actual DBMS.

In section 4 of this report we have placed this work in proper context and have pointed
out a large number of possible directions for extending this work.

3

Section 2

(ER)2 MODEL

In this section, we propose an extension to database conceptual modeling using the Entity
Relationship (ER) approach to incorporate active database behavior in the form of events
and rules.

Tb.e ideas presented here have first been delineated in [TNCK90, TNCK91] and further
developed in [Tan92]. As the basis for the proposed extension, we adopt the variant of the ER
model used in the Lawrence Berkeley Laboratory (LBL) tools [SM91, MF91] that includes
generalization/ specialization and full aggregation as relationships involving relationships, thus
requiring directed arcs in the ER diagram to denote inter-object connections. The choice of
a particular variant of the ER model does not disturb the incorporation of active database
behavior in the conceptual schema, because the new dimension is orthogonal to the data
abstractions of the model.

First, we define the concepts of events and rules, and present a syntax for active behavior
specification at the conceptual level in terms of events and rules in section 2.1. Then we
describe the operational semantics of the language in section 2.2. We introduce (ER? dia
grams (ER diagrams with events and rules) in section 2.3. In section 2.4 we show how the
active behavior specified in the (ER)2 model can be algorithmically mapped into language ~
constructs at the relational DBMS level.

2.1 Events and Rules as ER objects

In the ER approach, the basic objects are entities and relationships that, along with their
attributes, model the objects of the real world and their properties. Figure 2.1 shows how
these concepts are viewed in a meta-schema, i.e., a meta-ER-diagra.m of the ER model itself.
In the figure, "ENTITY" and "RELATIONSHIP" are specializations of a generic meta-entity
"ER..OBJECT", to which they are connected by "Is_A" arcs; the meta-entity "ATTRIBUTE"
is identification depend~nt on "ER-OBJECT", so it is connected to "ER-OBJECT" by an
"ID" arc. The meta-relationship "ER-Connection" means the different types of directed a.rcs
that may occur between ER objects. Possible connections are:

• Inter-en'tity conn~ctions: "ls_A", and "ID~ arcs.

4

troaa (M) to(M)

ATTRIBUTE

Figure 2.1: Meta-ER-diagram of the ER Model

• Connections between entities and relationships and inter-relationship connections: as
sociation arcs showing cardinality, participation constraints, and roles of the partic
ipating objects (e.g., in figure 2.1, "from" and "to" are roles of "ER..OBJECT" in
"ER..Connection", while "M" means the cardinality "many" of "ER..OBJECT" in "ER_
Connection").

In our approach, we view the real world as constituted by entities, relationships, events
and rules, all primitive objects of the model. While entities and relationships, along with
their attributes, represent the structural aspects of the information system being modeled,
events and rules represent the active behavior that controls the states of the data objects and
their attributes. We call the resulting model as the Entity-Relationship model with Events
and Rules, or (ER)2 model for short. The abstract construct that extends the ER model has
the following grammatical form 1 :

1 We use a. BNF-like notation for synt.a.x, where non-terminals ue denoted in italic lower case letters, while
words in non-italic lower case a.nd upper case letters denote terminal&. Single-quoted chuacters such a.s ':'
a.re terminal delimiters whereas the rest are meta.-cha.racten. Square brackets [...] a.re used to denote optional
constructs, and the notation [...]• denotes zero or more repetitions o{ the enclosed construct. · 'I' is used to
delimit alternatives and curly braces { ... } denote one from a. number o{ enclosed alternatives.

5

Page intentionally left blank

Figure 2.2: Meta-ER-diagra.m of the (ER)l Model

rules are always bound dynamically (at transaction execution time). For example, the event
"all employees working on project Alpha have been deleted" is an instance of the event class
"EMPLOYEE deleted"; they are bound at the time of the occurrence of the event. Note
also that an event instance does not correspond necessarily to a single object instance; in
general, it refers to a set of object instances (in the example, the set of employees working on
project Alpha). The concept of rule classes/instances relates to that of event classes/instances.
In the same example, a rule that is fired by the event instance "all employees working on
project ALPHA have been deleted" is an instance of a rule class whose firing event class
is "EMPLOYEE deleted"; this rule class may have different instances for different sets of
deleted employees (i.e~, event instances). Classes of events and rules are specified statically,
along with the (ER)2 schema; as we pointed out before, instances are determined dynamically,
at transaction execution time, i.e., at event occurrence time. As with entity and relationship,
sometimes we will be using the terms Pvent and rule ambiguously, either referring to (event
and rule) classes or to (event and rulE': instances. Becaus~ every event instance is a unique
occurrence and so is its associated rule instance, there is no ambiguity. The context deternlines
whether we are referring to classes or instances.

7

2.1.1 Events

We use the concept of event a.s "the actual outcome or final result~ [American Heritage
Dictionary, Second College Edition, page 4 70]. An event is something that happ~ns at a.
point in time, and, theoretically, has no duration [RBP+91]. In fact, instead of unifying
the notion of action/ event as commonly found in the literature, we distinguish between the
occurrence of an event and the action that caused it (i.e., events occur when the associated
actions have been executed by some agent). For example, the action "update balance" causes
the occurrence of the event "balance updated". An action is, in general, denoted by a verb
in imperative form; its execution takes time. However, a.n event, in general, is denoted by a
verb in past participle tense, and its occurrence is just a point in time. This distinction is
fundamental for the approach we propose.

Events may logically precede or follow one another or may be unrelated. There are two
types of ordering of events to be considered: a causal ordering and a temporal ordering.
The first one relates events of different types (e.g. the event "ft.ight X landed" cannot occur
before the event "flight X taken off"). Not all pairs of events bear this relationship. Causally
unrelated events are said to be concurrent and can occur in any order because they have
no effect on each other. The temporal ordering, on the other ha.nd, is based on the linear
ordering of the time of occurrence of the events.

The time of occurrence is an inherent attribute of every event. Every event has a unique
time of occurrence or time stamp associated with it, which is assigned at th~ commit time
of the action that causes it. A time stamp is in fact a unique identifier of an event; it
implies a canonical precedence order among events. It represents the registration or assertion
time of an event, also called transaction time in temporal modeling literature [SA85] . The
granularity with which the time of occurrence of events can be represented is application and
implementation dependent. Usually the time stamp is not implemented as a real clock value
but as a unique serial integer for reasons of simplicity. However, this integer value can easily
be mapped into a real clock value such that a level of indirection is created. As far as the
activation of the behavior is concerned, we consider that the time of detection of an event is
the same as its time of occurrence. This may not be true for actual implemented systems,
but it is not a problem in conceptual modeling as long as the order is preserved.

Some events simply signal that something has occurred (e.g., "machine out of money",
"engine stopped"), while others carry information in the form of event attributes, similar to
the attributes of data objects. For example, in the event "salaries of employees working on
project Alpha ha.ve been updated", the affected employees' names and salaries (and other
attributes of employees) are conveyed through the fired rule (or rules) as attribute values of
the event.

We distinguish events that occur on data objects or attributes stored in the database
(database events) from those events that are external to the database, usually generated
by application programs (external events). Figure 2.3 shows a third classification of events
(system events), which are signals gen~rated by the underlying system such as interrupts and

8

Figure 2.3: Classification of Events

clock events2 •

A database event is the result of a database operation (insertion, deletion, modification,
or retrieval) on entities, relationships, or their attributes. In order to allow more :flexibility
in the specification of rules, we further differentiate an attempted operation from an actually
completed operation. This is done by 8pecifying an event immediately before it occurs, which
enables us to model the ability to reject an operation before actually executing it. This is
essential for modeling the rejection strategy to enforce integrity constraints through active
behavior at the conceptual level. At the logical database level, an attempted operation
translates into the detection of the event at the time of its occurrence. The operation is
suspended until the condition is evaluated; if the condition is satisfied, then the operation that
would ca. use the event is rejected. If the implemented DBMS does not have this capability, the
typical solution is to rollback the operation or the entire transaction in which the operation
was performed.

2 By underlying system we mean the operatjng system a.nd DBMS environment tha.t a.re potential sources
of system ev~nts.

9

External events ar~ signals from the application domain such as "engine stopped" and
"reviewer reminded". At the conceptual level, specification of any kind of signal should
be possible; the conceptual-to logical translation :;tep, either n1anual or aatomatic, :;h.oulJ
consider the implementation issues of signal detection.

We also distinguish a special type of event called temporal event, which may be a time
constrained signal from an application (external event) or may be related to some time
stamped data object or attribute (database event) or may be a clock event generated by the
underlying system (system event). For exa.mple, "time-out" may be the result of finding that
an expiration date stored in the database has been exceeded or simply an event caused by
the system dock. Other examples of temporal events are "every weekday at 5:00 PM", "one
month after the occurrence of event E".

We specify an event using the syntax presented in figure 2.4, in which we consider only
primitive events and conjunction of primitive events. Some research is being done on other
types of composition of events in active DBMSs [Mis91, GJS92], e.g., disjunction, sequence,
and closure, but the complexity of the detection of composite events has prevented the de
velopment of practical implementations. The most useful type of composition, disjunction of
many events, has been implemented in research prototypes {Postgres [SJGP90] and Starburst
[WF90]); it is easily modeled in our approach by specifying as many behavior sentences as the
number of primitive events in the disjunction, each firing the same list of actions. The notion
of conjunction, characterized by the connective "AND" is that of occurrence of events with
out any specific order; simultaneous occurrence of primitive events is not considered because,
by assumption, each event has a unique time of occurrence (and associated detection by the
system), i.e., if two events occur simultaneously, either they are the same event or one event
subsumes the other. Since we are looking at an immediate practical use of the approach,
we leave the incorporation of more complex composition of events in the language for future
extensions, which will be quite straightforward at the conceptual level.

In this definition, evenLid is the unique identification of the event. An obj_name is the
nam.e of an entity set, a relationship set or a role of an entity in a relationship and attr_name
is the name of an attribute of object. Objects, roles, attributes, and values a.re specified in
the underlying language for specification of ER schema.s, as well as the lexical conventions for
"identifier".

Events other than database_et'ent (extemaLet'ent and system_event) are user-defined sig
nals, possibly with parameters, i.e., event attributes. The definition of a signal is implementa
tion dependent; for external events, it will usually consist of a stored procedure invoked from
an application program or directly by the user. The following definition syntax is assumed
and used as the basis for signal calls in the event and action specification:

signal_definition
formal_parm_list

CREATE. SIGNAL signal_name ['(' formal_parm_list ')']
identifier ':' value_set
[',' identifier ':' value_set]•

10

event .. - [BEFORE] evenLid ':' ;;vent_~ype
[AND [BEFORE] event_id ':' event_type J*

even Lid .. - identifier
event_type .. - database_etJent I externaLevent I system_event

database_event .. - [attr_name OF] obj_name MODIFIED
obj_name INSERTED
obj_name DELETED
[attr_name OF] obj_name RETRIEVED

obj_name .. - identifier
attr_name .. - identifier

externaL event .. - signal
system_event .. - signal

signal .. - signaLname ['(' parm_list ')']
signal-name .. - identifier

parm_list .. - value [',' value]*

Figure 2.4: Syntax for Event Specification

where value_set, i.e., the allowed set of values for the identifier, is specified in the underlying
ER schema. As an example, a timeout mechanism can be specified as:

CREATE SIGNAL timeout(deadline : date),

where "deadline" is the event attribute and may refer to an object attribute or a. variable
of type "date".

Every database_event has a. set of pre-defined attributes that it carries to the rules it
fires. The event attributes correspond to the attributes of the affected objects, and the
notation depends on the type of operation that caused the event. The event attributes may
be referenced in the body of the fired rule, i.e., in the specification of conditions and actions.

For an €ntity, all its attributes a.re carried by the event, and the folloWing notation is used,
where attr_no.me is the name of the attribute as specified in the ER schema:

Type of database_event
INSERTED
DELETED
MODIFIED
RETRIEVED

Predefined attributes
NEW attr_name
0 LD attr _name
NEW attr_name, OLD attr_name
attr_name

For a relatioushi}i, besides its own attributes, if any, the "NEW" and/or "OLD" attributes
of the participating objects are inherited by the relationship and also carried by the event.

11

2.1.2 Rules

We have defined a rule as the language construct:

rule

rule_id
description

priority_ level

rule_id (4
(' description 4

)'] (
4
(' priority_level 4

]']
4
:'

[IF condition THEN] action_list
identifier
string
identifier

Like event_id, rule_id is an "identifier", which provides unique identification of the rule;
description is an optional text that meaningfully describes the rule for documentation purpose;
and priority_level is an optional identification of the priorit~, of the rule according to a user-de
fined priority policy. In general, a priority policy defines a number of priority levels: rules with
different priority levels are executed in the precedence order of the levels; and rules within
the same priority level are executed in some order dictated by the rule selection strategy of
the active DBMS. The lower level of priority is the default, and the simplest priority policy
is "no policy", where all rules have the same priority level, and the order of execution of a
set of fired rules is left to the active DBMS.

A condition is a predicate over the state of the database. Its specification in a rule is
optional. A rule without a condition means that the corresponding actions in action_list are
to be unconditionally performed whenever the associated event occurs (is detected). We use a
simple syntax for condition so that more complex, implementation dependent constructs will
need to be defined to completely specify the language. Any computable database predicate
in the implementation data model may be used as the condition part of a rule. In general,
a predicate may comprise a collection of single predicates connected by "AND" and "OR",
possibly negated ("NOT") or quantified by existential quantifiers, and involving aggregate
constructs such as "AVERAGE~, "SUM", and "COUNT". At the minimum, a predicate
must be a single comparison statement between an attribute and a value in the attribute '
value set or between an attribute and another attribute. We follow the syntax in figure 2.5,
where NOT, AND, OR and IN SET_OF connectors are used.

Like objects and attributes, a value is specified in the underlying ER schema language,
while reLoperator depends on the predicates supported by the implementation model (the
usual relational operators are =, >, ~' <, ~' #).

A condition acts as a guard on action_list. If the condition fails, no action will be triggered
and the rule execution will fail. For a given rule, the same condition guards all actions in the
associated action_list.

An action_list is a sequence of commands that can be database actions, i.e., operations
to be performed on data objects. art: their attributes, or external (user defined) actions
such as raising an external event or sending a. message. A special type of action, "RE
JECT _OPERATION", is defined to specify rul~s to prohibit certain operations, possibly re
quiring th~ rollback of the transartion that caused the fiting ev~nt. Another special type of
action, PROPAGATE_QPERATION, allows the specific.ation·of a cascaded propagation of

12

condition

predicate_ list
predicate

.. _
··- predicate_list

[NOT] predicate_list
predicate [{AND I OR} predicate]*
[NEW I OLD) attr_name [OF obj_name]
reLoperator value
[NEW I OLD] attr_name [OF obj_name]
reLoperator [NEW I OLD] attr_name [OF obj_name]
[NEW I OLD) attr_name [OF obj_name]
[NOT) IN SET_OF '(' attr_name [OF obj .. name] ')'

Figure 2.5: Syntax for Condition Specification

the effect of the event up to the adjacent objects; for example, if an entity is deleted, the
deletion is propagated to the relationships which the deleted entity participates in and to the
entities that are associated to the deleted entity by "Is-A" and "ID" connections. The syntax
for action is shown in figure 2.6.

As mentioned before, the syntax for objects and attributes is defined in the underlying
ER schema, and the definition of predicate is given in the syntax for condition. The lexical
conventions for "string" are also defined in the grammar of the ER schema specification
language.

Note that "RAISE" is an action that applies to any kind of events that are raised
by the execution of the rule. For a database_action, a raised event is implicit, so we do
not need to specify the fact that a database_event is to be raised. For instance, the ac
tion "DELETE_RELATIONSHIP Works BETWEEN EMPLOYEE(ssn="123456789") AND
PROJECT", which deletes all occurrences of that employee in the relationship Works, implic
itly raises the database_event "Works DELETED". On the other hand, non-database events
such as "lntermediate_Checkpoint" must be explicitly raised by the ·rule, in the form of a
"RAISE" statement. For an 2.ction of the type "MESSAGE", no event is raised unless ex
plicitly specified. For example, we may want to raise a specific event "Candidate_!nformed"
as a consequence of the action "MESSAGE : 'Inform the candidate that his/her application
has been denied' ".

In section 2.2 we examine the semantics of the language constructs we propose, based on
a semi-formal operational approach.

2.2 Semantics of the Behavior Specification Language

The general semantics of au active database behavior_sentence is straightforward aud has the
following format:

13

action_list
action

database_ action
db_ action

value_list
assignment
reLobj_list

reLobj_pred
extemaLaction

actuaLparm_list
msg

db_evenLlist

Pre-conditions :

action [',' action]*
database_action
externaL action
REJECT _OPERATION
PROPAGATE_OPERATION '(' db_event_list ')'
db_action '(' event_id ')'
INSERT _ENTITY obj_name '(' value_list ')'
INSERT _RELATIONSHIP obj_name ['(' value_list ')']

BETWEEN reLobj_list
DELETE . .ENTITY obj_name '('predicate')'
DELETE-RELATIONSHIP obj_name '('predicate')'
DELETE-RELATIONSHIP obj_name ['('predicate')']

BETWEEN reLobj_list
MODIFY obj_name '('predicate ')'SET '(' value_list ')'
assignment[',' assignment]•
attr_name [OF obj_name] '=' value
reLobj_pred [AND reLobj_preciJ*
obj_name ['(' attr_name '=' value')']
RAISE event_id ':' signaLname

['(' actuaLparm_list ')']
MESSAGE':' msg ['(' evenLid ':' signaLname

['(' actuaLparm_list ')'] ')']
value [',' value]
string
event_id ':' database_event [',' event_id ':' database_event]*

Figure 2.6: Syntax for Action Specification

1. event is detected. If "BEFORE" is specified in event, then the event was detected but
has not actually occurred.

2. condition is true.

Execution :
The actions in action_list are executed.

Post-conditions :

14

The events resulting from the execution of action_list are raised.

Therefore, the semantics of the active da.ta.bas~ l:,ehavior apecification language are d~
rived from the operational semantics of the actions in action_list of the rules. Since actions
are the constructs of the language that produce effects on the state of the database, event
and condition are treated as pre-conditions for the purpose of examining the semantics of a
behavior_sentence.

2.2.1 Formal Specification of the (ER)2 Model

In order to derive an operational semantics for the language, i.e. the semantics of the language
in terms of the execution of its operations in an abstract computing machine, we need to
specify the (ER)2 model in a formal way. We will use the following notation for the model
constructs:

• A : set of attribute names.

• V : set of attribute domains (value sets).

• 0 : set of names of entity types and relationship types.

• E : set of event identifiers.

• D : set of all possible database events, a database event being the name of an object
type in 0, followed by the occurred event (INSERTED, DELETED, MODIFIED, RE
TRIEVED). In the case of MODIFIED, the event may also be preceded by the name
of an attribute in A and the keyword OF.

• S : set of signal names.

• R : set of rule identifiers.

• P : set of identifiers of rule priority levels.

Let domain : A ---+ V be a function that maps attribute names to value sets.
Let evenLname : E ---+ D U S be a function that maps event identifiers into database

events or signal names.
An entity type descriptor is a 7- tuple:

(enLname, enLattr _set, enLkey_attr, enLnotnulLattr,

id_conn, isa_conn, ent_inst)

where

• ent_name E 0 is the name of the entity type;

15

• ent_attr _set C A is the set of attributes of the entity type;

• enLkey_attr ~ ent_attr _set is the set of key attributes of the entity type;

• ent_notnulLattr ~ enLattr _set is the set of attributes that are not allowed to have
NULL values;

• id_conn is a pair of sets (from_set, to_set) where from...set C 0 is the (possibly empty)
set of names of entity types that are ID-dependent on enLname, and to_set C 0 ·is the
(possibly empty) set of names of entity types that are identifying owners of enLname;

• isa_conn is a pair of sets (from...set, to_set) where from_set C 0 is the (possibly empty)
set of names of entity types that are subclasses of enLname, and to_set C 0 is the
(possibly empty) set of names of entity types that are superclasses of ent_narr,e;

• enLinst is the set of all instances that belong to the entity type in a given database
state. Each instance represents one entity and consists of a value for each attribute in
enLattr _set (some of which may be NUL"L) plus a value for a surrogate-key attribute.

It is required that every entity instance and every relationship instance have a unique,
system-generated surrogate-key attribute so that sets of surrogate-key values of any two object
types are disjoint. It is also required that the values of attributes in enLkey_attr be not NULL.

A relationship type descriptor is a 5-tuple:

(reLname, reLattr _set, reLobjJet, reLnotnulLattr, reLinst)

where

• reLname E 0 is the name of the relationship type;

• reLattr _set C A is the (possibly empty) set of attributes of the relationship type;

• reLobj...set is a set of triples (obj_name, part, card) where each obj_name E 0 is the
name of the related object type; part E {"Total", "Partial"} is the participation con
straint of obj_name in reLname; and card E {"1", "M"} is the cardinality constraint of
obj_name in reLname;

• reLnotnulLattr ~ reLattr _set is the (possibly empty) set of attributes that are not
allowed to have NULL values;

• reLinst is the set of all instances that belong to the relationship type in a given database
state. Each instance represents -.e relationship and consists of a value for each attribute
in reLattr _set plus a surrogate-key value for each entity type participating in the re
lationship. If the relationship involves other relationships, the list of surrogate-key
attributes of the participating relationships become~ part of the instance a.s well.

16

An event type descriptor is a 4-tuple:

(event_id, event..attr _set, evenLspec, fired_rule_set)

where

• evenLid E E is the identification of the event type;

• evenLattr _set C A is the (possibly empty) set of attributes carrie~ by the event type;

• evenLspec comprises either a database event in D or the name of the signal (external
or system event) in S;

• fired_rule_set C R is the (possibly empty) set of rules fired by the occurrence of the
event type.

A rv.le type descriptor is a 7-tuple:

(rule_id, rule..attr _set, priority_level, firing...event,

condition..spec, actionJist..spec, raised_evenLset)

where

• rule_id E R is the identification of the rule type;

• rule_attr _set C A is the (possibly empty) set of attributes of the rule type (carried by
its firing event);

• priority_level E P is the identification of the priority level of the rule type, if any;

• firing_evenLset C E is the (at least singleton) set of event types that fire the rule;

• condition..spec is the specification of the condition part of the rule in the active behavior
specification language;

• actionJist..spec is the specification of the actions of the rule in the active behavior
specification language;

• raised_evenLset is the (possibly empty) set of event types raised by the execution of
the rule.

A general constraint of the model i~ that names in 0 and S and identifiers in E and R
be unique throughout the database, as well as names of attributes within (ER)2 object type
descriptors.

An (ER? schema is a 4-tuple (ENTITY, RELATIONSHIP, EVENT, RULE} where EN
TITY is a. set of entity type descrjptors, RELATIONSH!P ie a s~t of relationchip type descrip·
tors, EVENT is a set of event type descriptors, and RULE is a set of rule type descriptors.

17

2.2.2 Operational Semantics of Actions

As presented in section 2.1, the following actions are specified as part of the action_ list.

• RAISE event_id ':' signaLname ('('actuaLparm_iist')']

• MESSAGE':' msg ['('event_id ':' signaLname ('('actuaLparm_list')']')']

• REJECT_OPERATION

• PROPAGATE_QPERATION '(' db_event_list ')'

• database actions: INSERT_ENTITY, INSERT_RELATIONSHIP, DELETE..ENTITY,
DELETE..RELATIONSHIP, and MODIFY.

The operational semantics of each action is defined below in the form of pre-conditions,
execution, and post-conditions. This semantics is nested in the semantics of the behav
ior_sentence in which the action appears, i.e., the latter will be, in general, defined as:

Pre-conditions (firing event detected, condition true)
Execution :

pre-conditions, execution, post-conditions for action 1.
pre-conditions, execution, post-conditions for action 2.

pre-conditions, execution, post-conditions for action N.
Post-conditions (resulting events raised)

It is assumed that the underlying active DBMS in which the actions a.re executed has
the capabilities for suspending, aborting, and rolling back database operations (or the en
tire transaction in which the operation is performed), as well as a.n adequate data struc
ture (a list) for keeping track of the detected events. The interesting actions are the exter
nal actions ("RAISE" and "MESSAGE") and the special types of database actions ("RE
JECT_OPERATION" and "PROPAGATE_OPERATION") introduced in the (ER)2 model.
The primitive database actions have been well defined in the context of manipulation lan
guages for extended ER models [AH85, CERE88] and transaction specification languages for
semantic data models .[NB91]. Their operational semantics is based on the relational imple
mentation of the ER schema, i.e., it is based on the operational semantics of the DBMS's
DDL/DML, which we do not discuss in this report.

RAISE e: s(pJ)

Given event_id e, signaLname s, and actuaLptJrm_list pJ, RAISE adds e to the
list of detected events; s and the values in p_l must conform to the event type
descr-iptor of e.

Pre-conditions:

18

l.eEE

2. s E S, evenLname(e) = s

3. If pJ is specified, let pJ = < a1, a2, ... ,an >
and evenLattr_set of e =< At, A2, ... ,An>. Then each value must be in the
proper domain, i.e.:
ai E domain(Ai), 1 ~ i ~ n

Execution:

Add e to the list of detected events.

Post-conditions:

e is raised.

, MESSAGE : m(e : s(pJ))

Given msg m, event_id e, signaLname s, and actual_parm.list pJ, MESSAGE
outputs m, typically a string of characters. If e : s(pJ) is specified, it behaves
exactly like in RAISE e : .s(p_l).

Pre-conditions:

He : .s(pJ) is specified, same as 1., 2., 3. for RAISE e : s(pJ).
Otherwise no pre-condition.

Execution :

Output m. If e : .s(pJ) is specified, add e to the list of detected events.

Post-conditions :

He : s(pJ) is specified, the!l e is raised.
Otherwise no post-condition.

REJECT _OPERATION

If "BEFORE" was specified with the firing event, then the suspended operation
that would cause the event is aborted; otherwise, the operation is rolled back.

Pre-conditions:

None

Execution:

19

If "BEFORE" was specified, then abort the suspended operatior1. Otherwise, roil
back the operation that caused the event.

Post-'condltions:

If "BEFORE" was specified, no post-condition.
Otherwise the firing event is raised.

PROPAGATE_QPERATION (eJ)

Selectively propagates the operation that caused the firing event to the adjacent
objects listed in (eJ).

Pre-conditions:

1. Let e_l ::;: < e1 : d1, e2 : d2, ... , en : dn >. Then each event_id ei must be a
valid event identifier, i.e.:
ei E E, 1 ~ i ~ n

2. Each database_event di must be a valid database event, i.e.:
diED, 1 ~ i ~ n

3. Each database event must correspond to its event identifier in the event type
descriptor, i.e.:
di = event_ name(ei), 1 ~ i ~ n

4. Let OJ be the name of the object in the firing event,
and oi, 1 ~ i ~ n the name of the object in the database event di. Then

Execution :

• H OJ is an entity type, then each Oi must be either an entity type con
nected to/from OJ by an "ID" or "ls_A" arc, or a relationship type which
OJ participates on, i.e.:
Oi E (id_conn.from_set U id_conn.to_set V isa_conn.from_set U
isa_conn.to_set U reLconn_set).

• If OJ is a relationship type, then each Oi must be an. object type (entity
or relationship) that participates in OJ, i.e.:
o_i = reLobj_sei.obj_narne for some obj_nam,e described in the
rel_obj_set of OJ·

Let o_e be the name of the occurred update operation in the firing event (i.e., the
occurred event on OJ). Then the execution semantics of each propagation follows
the semantics of the corresponding individual operation, i.e.:

• If o_e = "INSERTED" then execute insert operation on (entity or relation
ship) Oi,l ~ i ~ n.

20

• If o_e = "DELETED" then execute delete operation on (entity or relation
ship) Oi, 1 ~ i ~ n.

• If o_e = ~MODIFY,.. then execute modify operation on (entity or relationship)
Oi, 1 ::; i ~ n.

Post-conditions:

The post-conditions of the individual propagated operations hold.

2.3 (ER) 2 Diagrams

The conceptual schema in the (ER)l model comprises the usual ER schema plus the specifica
tion of active behavior in the form of events and rules. For the conceptual-to-logical mapping
step of the database design process, a textual specification of the combined schema in the
appropriate language is all that the translation tools need in order to be able to generate the
database structure and behavior definition statements in the target DBMS.

The diagrammatic representation extensively used during the conceptual design phase is
a graphical tool that helps the database designer in three aspects:

• Communication with the users.

• Automatic generation of the textual specification from the graphical representation.

• Documentation of the design.

We extend these facilities supplied by the ER diagram with a graphical notation for events
and rules, to provide the database· designer with a means of representing active database
behavior along with the structural data constructs.

In an (ER)2 diagram, an event is represented as a circle and a rule as a parallelogram.
Directed edges represent connections between events and rules and between events and data
objects (entities and relationships). Figure 2. 7 shows the representation of a single behavior
in terms of the firing event, the rule, a.nd the events raised. The connections between events
and rules, and between events and the outside objects are also explicitly shown. In an actual
diagram, there is no need to label "Fires" and "Raises" arcs; the connections between events
and rules are implicit: an event "fires" rules and a rule "raises" events. The connections
"Affects" and "Affected_by" are labeled in an (ER)2 diagram with the type of database event
(modification, insertion, deletion, orr..: "C"ieval). Non-database events (signals), are represented
by the events themselves, i.e., they are not connected to data objects.

21

or "Fires. rule

Figure 2. 7: Diagrammatic Representation of an Active Behavior

2.3.1 Meta-schema

As we did with the ER model, we can specify the (ER)2 model in a meta-schema and rep
resent it as an (ER)2 diagram, i.e. a meta-(ER)~-diagram of the (ER)2 model itself. This
is shown in figure 2.8, where the event and rule objects are integrated in the model with
the appropriate notation, and the "ER2_Connection"'s of figure 2.2 are explicitly represented
by the links "Affected_by", "Affects", "Fires", "Raises", and by the relationships "Precedes"
and "Priority". The external environment (system, applications, and users) is also shown as
a potential source and target of events.

This meta-schema is part of the meta-database that stores meta-data about the design
process, i.e., the definition of schemas at different levels and their mappings. The meta
database is a self-documentation of the design process, and is an essential source of information
for further extensions to the database design methodology.

2.3.2 Example

As an illustration, figure 2.9 shows an (ER)2 diagram of a company's EMPLOYEE
DEPARTMENT-PROJECT database with some events and rules attached to the data. ob
jects. The following ER schema is assumed - for simplicity, details such as cardinality ratios
("1", "M"), identification dependencies ("ID"), participation constraints ("Total"), and roles
("manager", "employer") are shown only in the diagram, and attributes are specified only in
the textual schema:

• EMPLOYEE(!m, name, job, address, birth_date, status, salary)

• DEPARTMENT(name, location)

• PROJECT(nanie, budget)

22

Affected_by Fires

Affects Raises

ENTITY

Figure 2.8: Meta-(ER)2-diagram of the (ER)l Model

• DEPENDENT(EMPLOYEE..ssn, ~' birth_date)

• Employed(EMPLOYEE_ssn, DEPARTMENT.name)

• Manages(EMPLOYEE..ssn, DEPARTMENT _name)

• Works(EMPLOYEE..ssn, PROJECT _name, start_date, hours_week)

The following behavioral sentences are specified in terms of the events a.nd rules repre
sented in figure 2.9:

WHEN el : PROJECT MODIFIED

23

PROJECT

r1""'
'@

d: deleted
m: modified

Figure 2.9: (ER)' Diagram of a COMPANY Database

FIRE rl ("Policy for budget reduction") :
IF NEW budget < OLD budget
THEN DELETE-ENTITY EMPLOYEE (ssn =OLD EMPLOYEE..ssn,

status = "temporary") (e2),
RAISE e3 : salary..review.

WHEN e2 : EMPLOYEE DELETED
FIRE r2 ("Restriction to firing engineers") :

IF OLD job = "engineer"
THEN MESSAGE : "Employee is an engineer, deletion rejected",

24

REJECT _OPERATION.

V\"!i:EN e2 : E~IPLOYEE DELETED
FIRE r3 ("Casca.ded deletion of temporary employees") ;

IF OLD status = "temporary"
THEN PROPAGATE_QPERATION (e4 : Employed DELETED,

e5 : Works DELETED, e6 : DEPENDENT DELETED).

WHEN e5: Works DELETED
FIRE r4 ("Warning message to project manager") :

MESSAGE : "Inform change on employee assignment to project manager"
(e7 : manager_warning).

The (ER)2 diagram represents the active database behavior in the form of events and rules
and their interaction with data objects. To avoid cluttering the diagrammatic representation,
we chose to keep the specification of events, conditions~ and actions apart from the diagram,
using textual description. The same user interface design technique is adopted by most of
the current ER diagramming tools, where the attributes are specified in pop-up windows that
are displayed when the corresponding object symbols are clicked. This technique keeps the
diagram simple and easy to read, without loss of information. In addition, the use of different
line styles and colors for structural and behavioral constructs would help making the diagram
more readable.

As shown in the above example, the (ER? model can capture a variety of constraints and
situation/action behaviors, such as a high-level organizational policy (rule rl), a restrictive
prescription (rule r2), the enforcement of an integrity constraint (rule r3), or a database event
alerter (rule r4). Potentially, this framework can represent any application-relevant behavior
that can be managed by an active DBMS. In addition, this representation can be easily
adapted to data abstraction extensions to the ER model such as generalization/specialization
and aggregation. As pointed out before, those extensions do not disturb the (ER)2 framework
because of the orthogonality of the added dimension.

2.4 Mapping of (ER)2 Specification into DBMS Constructs

2.4.1 Meta-database of the Schema Translation

During the traditional schema translation process from conceptual to logical level, the transla
tion tools acquire knowledge about the conceptual schema from the input file, apply the map
ping procedures, and generate the logical schema. in the target DBMS. This meta-information
about the schemas and their mapping is a valuable resource that must be stored in a m€ta
database for further use.

The most visible use of the meta-database is for self-documentation of the design and
possible use as a basis for schema evolutioiL managemeat [MR90]. In a full fledged CASE

25

environment, the meta-database can be combined with additional meta-information about
the process design to form a project database.

The meta-database is also useful for extensions to the query capability of the database
system. For instance, graphical languages for querying the conceptual schema are more con
cise and adequate for naive database users than the query languages provided by the DBMS,
e.g., SQL. The information stored in the meta-database is fundamental for the translation
of queries in the conceptual schema to actual queries in the DBMS language. This idea can
be extended to querying multiple, heterogeneous database systems, in which various meta
databases would be integrated for assisting the different conceptual-to-logical query trans
formations. Some highly specialized database applications., such as scientific applications,
may require a specific query language that must also use the meta-database for translation
[MLM+92].

In our work, we cse the meta-database as t!le central repository of schema. design infor
mation to in.corporate active behavior translation in the database design process. Figure 2.10
shows the types of meta-information needed for this purpose:

(S>r·--<6>--·
hill_ (M) lo_ (M)

Figure 2.10: Meta-database: ER schema, Relational schema, and their Mapping
(LBL tool set)

• ER objects (Entity sets and Relationship sets) a.nd their map pins: into relation schema.s.

26

• ER object connections (arcs in the ER diagram) and their mapping into referential
integrity constructs supported by the DBMS.

• · Object attributes and their mapping into relational attributes, along with information
about key attributes.

• Value sets and their mapping into the domains supported by the target DBMS. Usually
schema translation tools are implemented in such a way that the value sets of attributes
in the ER schema are tailored to the domains in the target DBMS; hence, the value
set-to-domain mapping is a one-to-one mapping. When the tools support more than one
target DBMS, different value set options are available for the specification of attributes.

2.4.2 Active DBMS Language Constructs

Although a standardization effort is being done in the area of data definition and manipulation
languages, there are significant differences between the various commercial DBMSs. In par
ticular, the syntax of the active database constructs varies significantly. Here we consider the
constructs currently present in commercial relational DBMSs; they reflect the development
of research prototypes, from System R to Starburst and Postgres.

Three types of active database constructs have been implemented a.s part of the data
definition language of relational DBMSs: triggers, rules, and exception handlers. The func
tionality of triggers and rules is similar in practice, since both are general mechanisms to
specify active behavior in the form of situation/action rules, database triggers, and event
alerters.

Triggers are present in the proposed standards SQL2 and SQL3 [Mel90] and implemented
-in Sybase [SYB87], Oracle [Kos92], and Interbase [INT90]. The syntax varies from product
to product; the following is the proposed syntax in SQL2/SQL3:

. CREATE TRIGGER trigger_name
{ AFTER I BEFORE }
{ INSERT I DELETE I UPDATE [OF column_list] }

0 N table_ name
[REFERENCING

{ 0 LD [AS] correlation_name
[NEW [AS] correlation_name] } I

{ NEW [AS] correlation_name
[0 LD [AS] correlation7 name] }]

[WHEN search_condition]
triggered..SQ L_statement_list

[FOR EACH { ROW I STATEMENT }]

where trigger_name, table_name and correlation_name are respectively identifiers for the trig
ger, the tables involved in the trigger, and the correlated tables used as aliases for the transi
tion tables containing old and new values of the affected tuples; column_list is a list of attribute

27

identifiers; and search_condition and triggered_SQL_statemer..Llist are predicates and opera
tions specified in the underlying SQL data manipulation language.

R~lies are the basic constructs in Ingres [ING90] and RDB/VAX [DEC89]. Th0 following is
the syntax in the Knowledge Management Extension of Ingres; it combines rules with stored
procedures.

CREATE RULE rule_name
AFTER
{ INSERT INTO I DELETE FROM I

UPDATE ON I UPDATE column_name OF }
table_ name

[REFERENCING [0 LD AS correlation_name]
[NEW AS correlation_name)]

[WHERE qualification)
EXECUTE PROCEDURE procedure_name 4(' procedure_parameters ')'

CREATE PROCEDURE procedure_name '(' parameter_list ')'
AS [declare_section]
BEGIN

statement_list
END

Here also rule_name, column_name, table_name, corTelation_name, and procedure_name
are identifiers; and qualification is a predicate over the affected tables. A procedure is a
mechanism with the full power of a database programming language containing parameters,
a. declare_section for declaration of local variables, and a statemenLlist that includes database
operations, control statements (IF, WHILE, RETURN), assignment statements, MESSAGE
and RAISE ERROR statements.

Although it lacks many desirable features such as detection of events "after" and "be
fore" they occur, priority information, retrieval events, and arbitrary procedures as events to
P-mulate signals, the rule/procedure construct of Ingres has the advantage of modularity. Po··
tentially, this approach could be extended to incorporate all these features and could be used
in an.y SQL extension with stored procedures and rules or triggE:rs, such as in SQL2/SQL3,
Sybase, and Oracle. In the following mapping algorithms, we use this construct as the general
language construct of the target active DBMS.

The last type of construct present in current active DBMSs is the exception handler, a
very limited mechanism to deal with signals. The general construct is of the form:

WHENEVER SQL_signal exception_action,

where SQL_signal can be any of a few error codes originating from embedded SQL statements,
and exception_action is basically a message or a jump f call to an exception handling procedure
written in the host language. Although the functionality is present for a restricted set of

28

system signals, we will not deal with this mechanism because of its limitation (the SQL_signal
basically indicates the occurrence of an error in the execution of SQL commands embedded
in programs written in a host language).

2.4.3 Mapping Process

Recall that the specification of active behavior in the (ER)2 model is a list of behavior_sen
tences, each one defined as:

behavior_sentence
event

rule

WHEN event FIRE rule '.'
evenLid ':' event_type
rule_id ['('description')'] ['[' priority_level'r] ':'

[IF condition THEN] action_li3t

We assume the following syntax for rule definition in the target DBMS, which is more
general than that of Ingres ; the pr.ocedure definition is the same as in Ingres:

CREATE RULE rule_name [description] [priority_level]
[BEFORE I AFTER]
{ signaLname '(' signal_parameters ')' I
{ INSERT INTO I DELETE FROM I

UPDATE ON I UPDATE column_name OF I
RETRIEVE ON I RETRIEVE column_name OF } table_name }

EXECUTE PROCEDURE proeedure_name '(' procedure_parameters ')'

The following meta-database look-up functions are defined for assisting the mapping pro
cess:

get_obj_map(obj_name) returns the table name to which obj_name was mapped.

get_attr_map(attr_name) returns the column name to which attr_name was mapped.

geLconn(obj_name) returns the list of objects t:onnected to obj_name in the ER schema, along
with the type of each connection.

get_attr_list(obj_name) returns the list of attributes of obj_name.

get_attr_Iist..map(obj_name) returns the list of column names to which the list of attributes of
obj_name was mapped. In an actual implementation, this function is performed through
a get_att:r_list(obj_name) followed by a. sequence of get_attr...map(attr_name).

get_value_set..map(value_set) returns the domain name to which value_set was mapped.

Not surprisingly, with the information provided by the meta-database the mapping be
comes straightforward. The mapping process proceeds as follows.

29

1. Input: a list of behavior_sentences.
Each behavior_sentence generates a pair (rule definition, procedure definition), as de
scribed below.

2. Each obj_name referred in the event, condition, or action_list parts of the behav
ior_sentence is mapped into a table_name using get_obj...m~p(obj_name).

3. Each attr_name is mapped into a column_name using get_attr_map(attr_name).

4. Each value referred in the condition or action_list parts of the behavior_sentence is
mapped into a value in the corresponding domain obtained by get_value_set_map
(value_set).

5. Rule definition:

• Output:
CREATE RULE rule_id [description] [priority_level]
{BEFORE I AFTER} event
EXECUTE PROCEDURE procedure_name (procedure_parameters);

• rule_id maps directly into rule_name unless corrections are needed to meet naming
conventions for identifiers.

• description maps into a string of characters for documentation purpose.

• priority_level maps into an implementation-dependent definition of priority (e.g.
an integer sequence number).

• event maps into the corresponding language construct:

- Case database_event:

• attr_name OF obj_name MODIFIED -+ UPDATE column_name OF ta-
ble_name

• obj_name MODIFIED -+ UPDATE ON table_name

• obj_name INSERTED -+ INSERT INTO table_name

• obj_name DELETED ---+ DELETE FROM table_name

• attr_name OF obj_name RETRIEVED -+ RETRIEVE column_name OF
table_ name

• obj_name RETRIEVED -+ RETRIEVE ON table_name

Case externaLevent or system_event:

• The translation in to signal_ name [(signaLparameters)] will depend on
the implementation of signals.

• The translation of procedure_name (procedure_parameters) will depend on the
procedure definition, as explained below.

6. Procedure definition:

30

• Output:
CREATE PROCEDURE procedure_name (parameter_list)
AS declare_section
BEGIN
statement_list
END;

• procedure_name is mapped into proc_rule_id to associate the identification of the
procedure to the rule that calls it.

• parameter_list corresponds to the attributes of event:

- Case database_event : the parameters are the predefined event attributes
(see the table at the end of section 2.1.1) mapped into column_names using
get_attr_map(attr_name). Each column_name is prefixed by "o_" (for old) or
"n_" (for new) if the event was an update event, and followed by the domain
corresponding to the value_set of attr_name. For example, suppose attribute
"DEPARTMENT ..name" of object "Employed" with value_set "varchar" is
mapped into column "dname" of relation "EMPLOYEE" with domain "var
char"; then if the event is "Employed DELETED", the corresponding pro
cedure parameter will be "o_dname varchar"; if the event is "Employed IN
SERTED", it will be "n_dname varchar"; and if the event is "Employed MOD
IFIED", it will be "o_dname varchar, n_dname varchar". Also, in this example,
note that table_name = get_obj..map("Employed") = "EMPLOYEE".

- Case extemal_event or system_event: each parameter is a user-defined pair
"identifier : value_set" mapped into the corresponding "identifier domain" in
parameter_list. Every identifier maps into an identical name unless corrections
are needed to meet naming conventions of the target DBMS.

- In any case, the actual procedure-parameters in the EXECUTE PROCE
DURE statement inside the rule definition will be a list of pairs "for
mal_parameter..name = value", one for each parameter in parameter_list. A
"formal_parameter..name" is as defined above and "value" is either the col
umn_name prefixed by the qualification keywords "new." or "old." for
database events or a user-specified value mapped into the corresponding do
main for non-database events. For example, the actual parameter corre
sponding to the formal parameter "n ... dname varchar" will be "n-dname =
new.dname".

• The declare_section contains declarations of variables that are locally referenced by
the procedure. The followin~ variables will be used in the definition of procedures
invok€d by rules: -

"message string" to keep the text of msg specified with the action "MESSAGE
: msg".

"counter integer" to keep the number of tuples in a table that is used for
checking the existence of tuples satisfying some condition.

31

• The statemenLlist will cor1tair, the statements corresponding to the condition and
action_list parts of the rule.

- For each predicate in condition:
* Case [NEW I OLD] attr_name (OF obj_name] rel_operator value

----+ IF [table_name].[n_ I o_]column_name rel_operator value
where reLoperator and value are mapped into the corresponding operator
and value in the target DBMS language.

* [NEW I OLD J attr_namet [OF obj_namet] reLoperator [NEW I OLD]
attr_name2 [OF obj_name2]
----+ IF [table_namet].[n-1 o_]column_namet rel_operator [table_name2].[n-1
o_]column_name2

* [NEW I OLD] attr_namet [OF obj_namet] [NOT] IN SET _QF
(attr_name2 [OF obj_name2])
----+ IF [table_name1].[n- I o_]column_namel [NOT] IN (SELECT col
umn_name2 FROM table_name2)
If obj_namei is omitted, then table_namei is the same as the table_name
corresponding to the obj_name in the firing event.

- For each action in action_list:

* Case INSERT _ENTITY obj_name (value_list)
----+ INSERT INTO table_name VALUES (column_namei = value;)
for 1 ~ i ~ n, assuming n is the number of columns in table_name.

* Case INSERT _RELATIONSHIP obj_name [(value_list)] BETWEEN
rel_obj_list
----+ INSERT INTO table_name VALUES (column_namei = valuei)
for 1 ~ i ~ n, where column_name; includes the foreign keys of the related
tables mapped from rel_obj_list.

+ Case DELETE_ENTITY obj_name (predicate)
----+ DELETE FROM table_name WHERE predicate
where the mapping of predicate is similar to that in condition above (with
out the IF clause).

+ Case DELETE-RELATIONSHIP obj_name (predicate)
----+ DELETE FROM table_name WHERE predicate
the same as the previous case.

+ Case DELETE-RELATIONSHIP obj_name [(predicate)] BETWEEN
rel_obj_list
----+ DELETE FROM table_name WHERE predicatei
where predicatci includes the equality condition on the foreign keys of the
related tables mapped from reLobj_list.

+ Case MODIFY obj_name (predicate) SET (value_list)
----+ UPDATE table_name SET (column_name; = valv.ei) WHERE pred-

32

icate
for 1 ~ i -~ n, where n is the number of modified attributes of obj_narrie;
predicate is mapped like in condition.

* Case RE.JECT _OPERATION
~ROLLBACK [operation]
where operation is the database operation associated with the firing event;
operation is left optional for the case in which the target DBMS does
not support rollback at operation level. Alternatively, if rollback inside
rules is not supported at all (e.g. in the current version of Ingres), RE
JECT_OPERP.~..TION maps into RAISE ERROR error#: message, where
message is a mandatory warning to the user or application that originated
the firing event.

* Case PROPAGATE_OPERATION (db_event_list)
generates a sequence of operations of the same type as in the firing
event. The propagation is performed on the objects explicitly specified
in db_event_list, that must be adjacent to the firing event object in the ER
schema. As shown before (section 2.2.2), the propagation does not cascade
automatically to other, non-adjacent objects, unless additional rules are
specified that deal with the new propagations. The tool checks the adja
cency by invoking the meta-database function geLconn(obj_name) where
obj_name is the name of the event object. If the specified list is correct,
the propagated operations are generated:
~ INSERT INTO table_name VALUES value_ list
~DELETE FROM table_name WHERE predicate
~ UPDATE table:name SET value_list WHERE predicate, where
table~name is obtained using get_obj..map (adjacenLobj_name), while
value_list and pre~icate are derived from the firing event and the condi
tion part of the rule.

* Case RAISE event_id: signaLname [(actuaLparm_list)]
~ EXECUTE PROCEDURE signaLname[(actuaLparm_list)]
assuming that a signal is implemented as a stored procedure (currently
no commercial DBMS has such functionality, although a few have stored
procedures).

* Case MESSAGE : msg [(evenLid: signaLname [(actuaLparm_list)])]
~ message= msg; MESSAGE : message;
where message is the local variable keeping the text. If evenLid : sig
naLname [(actuaLparm_list)] is specified, a separate procedure containing
the MESSAGE statement is created to emulate the signal.

As an example, the behavior_sentence

WHEN eOl : EMPLOYEE DELETED

33

FIRE rOl : PROPAGATE_OPERATION (e02 ; DEPENDENT DELETED,
e03 : Employed DELETED, e04 : Manages DELETED,
e05 : \Vorks DELETED),

MESSAGE: 'All references to EMPLOYEE being deleted'.

generates the following DBMS procedure/rule definitions:

CREATE PROCEDURE proc_rOl
(o..salary float, o_status varchar, o_birth_date date, o_address varchar,
o_job varchar, o..name varchar, o..ssn char(9), o..DEPARTMENT..name
varchar, o_Employed_DEPART1fENT_name varchar)

AS DECLARE message VARCHAR NOT NULL; counter INTEGER;
BEGIN

END;

SELECT COUNT(*) INTO counter FROM Works
WHERE EMPLOYEE..ssn = :o_ssn;

IF counter > 0
THEN DELETE FROM Works

WHERE EMPLOYEE_ssn = :o_ssn;
END IF;
SELECT COUNT(*) INTO counter FROM DEPENDENT

WHERE EMPLOYEE..ssn = :oo..ssn;
IF counter > 0

THEN DELETE FROM DEPENDENT
WHERE EMPLOYEE..ssn = :o_ssn;

END IF;
message = 'All references to EMPLOYEE being deleted';
MESSAGE :message;

CREATE RULE rOl AFTER DELETE FROM EMPLOYEE
EXECUTE PROCEDURE proc_rOl
(o_salary = old.salary, o_status = old.status, o_birth_date = old.birth_date,
o_address = old.addres3, o_job = old.job, o..narr1~ = old.name,
o..ssn = old.ssn, o..DEPARTMENT _name = old.DEPARTMENT _name,
o..Employed_DEPARTMENT ..na:ne = old.Employed_DEPARTMENT _name);

This example also illustrates the mapping of different objects into the same table (EM
PLOYEE, Employed, Manages into EMPLOYEE), as well as attributes to columns and how
the active behavior mapping process takes advantage of the information on the schema trans
lation to generate the definition of rules and procedures in the target DBMS.

The mapping process described above is direct, i.e., it translates the behavior definition
into the specification of procedures and rules in the target DBMS without attempting to

34

generate the most efficient specification. Like other SQL constructs, rules 3.lld procedures
can be correctly specified in various ways; optimization issues have to be adriressed after th~
translation. with the generated spec.ification as the ~tarting point.

An example of possible further optimization is the evaluation of set-oriented predicates.
The condition part of a rule can be split into two sets of predicates: one referring to the object
affected by the firing event, and the other containing the remaining predicates. The first set
can be sp~cified in the WHERE qualification clause of the rule, outside the _procedure that
evaluates the remaining predicates. This splitting restricts the amount of data passed to the
procedure, making its execution more efficient.

2.5 Summary

In summary, in this section we described the (ER)2 model. First, we introduced events and
rules as objects of the model and presented a syntax for the specification of active database
behavior using events and rules. Then we described the model using the ER formalism and
derived a semantics of the active behavior specificatio_n language based on the operational
semantics of the action part of the rules. We introduced (ER)2 diagrams, in which events
and rules are represented along with entities and relationships, as a graphical tool to help the
database designer in the specification of active beh~vior. Finally we described the mapping
of the active constructs in the (ER)2 schema specification into DBMS rules and stored proce
dures. The mapping algorithms are intended for use by a translation tool that automatically
generates the executable DBMS language statements corresponding to the active behavior
specified in the (ER)2 schema.

35

Section 3

CONSTRAINT MODELING AS ACTIVE DATABASE
BEHAVIOR

When dealing with database constraints within the ER model, the main issue is the mis
match between constraints specification and enforcement: while specification of constraints
has a declarative nature, their enforcement requires procedural language constructs. The
relational model has a few inherent constraints such as the key constraint and referential in
tegrity constraints based on foreign keys. However, there is no such general mechanism like a
constraint enforcement subsystem in a DBMS that automatically enforces semantic integrity
of the database without the need of writing constraint-checking statements in the transac
tions. In section 3.1 we show that the (ER)2 approach combined with the active database
language constructs in the DBMS is also useful for the specification and translation of in
tegrity constraints. This is a typical internal application of the active database paradigm that
benefits the database system services. In particular, we show in section 3.2 that the inherent
and implicit constraints of the model, also known as invariant properties, can be mapped into
(ER)2 schema specification as meta-behaviors, and translated into triggers and event alerters
that will enforce their preservation. In section 3.3, we show that dynamic constraints, which,
require consistency checking of database state transitions as opposed to individual states, are
usually better specified directly in the active behavior specification language.

3.1 Integrity Constraints

Two solutions are used to enforce integrity constraints during update operations on the
database. The first solution is to prevent the execution of constraint-violating operations
(rejection strategy), and the second solution is to permit all correct operations and propagate
them to related objects, if necessary for preserving the integrity of the database (propagation
strategy).

Definition: A constraint is a predicate that must be satisfied at all time during the existence
of the database.

Basically, a constraint is a predicate similar to the type used to specify the condition part
of a rule. We use the following syntax:

36

constraint
constroint_id

constrainLid ':' predicate_list
identifier

where constroint_id is a unique identification of the constraint and predicate_list is the same
as defined for the condition part of a rule.

For example,

cl : salary of EMPLOYEE~ 10,000

is a simple constraint that restricts the valu~s of the salaries of e:nployees in a way that
is not usually representable in the conceptual schema. Potential violating events (i.e., the
operations that cause the events) are the insertion of an employee and the modification of
the salary of an employee. Hence some enforcem~nt action, either a. rejection or a correction,
must be performed when such events are detected and if the outcome is an invalid salary.
This behavior is exactly the active database behavior in the form of events and rules.

As another example,

c2 : salary of EMPLOYEE < salary of manager AND
DEPARTMENT _name of manager= DEPARTMENT ..name of employer AND
EMPLOYEE_ssn of Employed = ssn of EMPLOYEE

is a constraint that restricts the salaries of employees to be less than the salary of the manager
of the department in which they are employed. The potential constraint-violating events in
this case are any modification on salary or insertion of an employee with ~ salary and any
changes on the "Manages" or "Employed" relationship caused by insertion or modification.

The active database behavior derived from the specification of static constraints as in
these examples requires the.Jiillowing information to be completely defined:

• The potential constraint-violating events, each of which will become the event part of
an active behavior.

• The invalid new database state generated by the violating events, which will become
the condition part of the rule.

• The list of constraint-enforcing actions to be performed when each violating event is
detected and if the new database state is invalid. This list will become the action_list
of the rule.

In other words, each potential constraint-violating event will derive an active database
beho.vior with the following general format that can be generated with the help of a translation
tool:

37

WHEN event_id
FIRE rule_ id

violating_event
IF invalid_database_state
THEN enforcing_action_iist

where evenLid and rule_id are tool-generated identifications ~fthe event and the rule.
This derivation is not completely automatable, because the enforcing_action_list depends

on the enforcement strategy adopted for the constraint; also, specification of user-defined
messages n1ay be desirable as part of the action list. Thus a tool to assist the constraint
to- beha.vior mapping process would have an automated step, i.e., the generation of violat
ing_events and the invalid_database_state plus an interactive step in which thP, uGer (database
designer) ~pedfies the enfllrcing_action_list. Figure 3.1 illustrates this process; the figure also
shows another possibly automated step, the translation of active behavior into DML language
constructs in a target DDM:S.

Active Behavior
Template Generator

Active Behavior
Template Editor

To translation tool

.: _.User

Figure 3.1: Interactive Framework for Active Behavior Derivation from Constraints

In this framework, the derivation of an invalicLdatabase_state is straightforward: the
database wiU he in an invalid state if the predicate_list of the constraint is fa.lae. As a conse
quence, the condition pa.tt becomes the negation of the predicate_list

38

invalid_dl!tcbcse_state NOT (predicate_list).

The set of violating_events is derived directly from the syntactic analysis of the constraint.
This issue is thoroughly examined in (CW90] in the context of an SQL-based constraint
language that includes aggregate functions and set operations and rules in the Starburst pro
totype DBMS. In our opinion, there is a trade-off between the expressiveness of the constraint
language and the simplicity of its declarative semantics. The constraint-to-behavior mapping
is useful because behavior is procedural, thus more difficult to understand and program. If
the constraint language becomes as complex as the behavior language, the mapping will not
be useful anymore, because the behavior will have to be specified to enforce the constraints
anyway.

The following mapping rules are used to derive the violating_events from the specification
of a constraint:

1. For each attr_name that appears in a predicate, modification of the corresponding at
tribute and insertion of the owner of the attribute (obj_name) are potential violat
ing_events.

2. For each obj_name that appears in a predicate, modification and insertion of the corre
sponding object are potential violating_events.

In the above first example, constraint "cl" generates the following templates of active
behavior:

WHEN [BEFORE] el-cl: salary OF EMPLOYEE MODIFIED
FIRE rl-cl : IF NOT (salary OF EMPLOYEE ~ 10,000)

THEN enforcing_action_list.

WHEN (BEFORE] e2-cl : EMPLOYEE INSERTED
FIRE r2-cl : IF NOT (salary OF EMPLOYEE~ 10,000)

THEN enforcing~action_list.

The BEFORE option is left open because it depends on what the user wants to specify
in the action list. A rejection strategy will require the event being detected before it occurs,
or, alternatively, the rollback of the operation after the event has occurred. A propagation
strategy will take effect after the event occurs.

In the second example, the templates generated for constraint "c2" are:

WHEN [BEFORE] el-c2 : salary OF EMPLOYEE MODIFIED
FIRE rl-c2: IF NOT (salary of EMPLOYEE< salary of manager AND

39

DEPARTMENT ..name of manager= DEPARTMENT _name of employer AND
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE)

THEN enforcing_action_list.

WHEN [BEFORE] e2-c2 : salary OF manager MODIFIED
FIRE r2-c2 : IF NOT (salary of EMPLOYEE < salary of manager AND

DEPARTMENT _name of manager= DEPARTMENT ..name of employer AND
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE)

THEN enforcing_action_list.

WHEN (BEFORE] e3-c2 : EMPLOYEE INSERTED
FIRE r3-c2 : IF NOT (salary of EMPLOYEE <salary of manager AND

DEPARTMENT ..name of manager= DEPARTMENT _name of employer AND
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE)

THEN enforcing_action_list.

- WHEN (BEFORE] e4-c2: Manages INSERTED
FIRE r4-c2 : IF NOT (salary of EMPLOYEE< salary of manager AND

DEPARTMENT ..name of manager= DEPARTMENT _name of employer AND
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE)

THEN enforcing_action_list.

WHEN (BEFORE] e5-c2: DEPARTMENT..name OF Manages MODIFIED
FIRE r5-c2: IF NOT (salary of EMPLOYEE< salary of manager AND

DEPARTMENT ..name of manager= DEPARTMENT ..name of employer AND
EMPLOYEE....ssn of Employed = ssn of EMPLOYEE)

THEN enforcing_action_list.

WHEN (BEFORE] e6-c2 : DEPARTMENT..name OF Employed MODIFIED
FIRE r6-c2 : IF NOT (salary of EMPLOYEE< salary of manager AND

DEPARTMENT ..name of manager = DEPARTMENT _name of employer AND
EMPLOYEE...ssn of Employed = ssn of EMPLOYEE)

THEN enforcing_action_list.

WHEN (BEFORE] e7-c2 : Employed INSERTED
FIRE r7-c2: IF NOT (salary of EMPLOYEE< salary of manager AND

DEPARTMENT ..name of manager= DEPARTMENT ..name of employer AND
EMPLOYEE...ssn of Employed = - n of EMPLOYEE)

THEN enforcing_action_list.

WHEN [BEFORE] e8-c2 : EMPLOYEE..ssn OF Employed MODIFIED
FIRE r8-c2: IF NOT (salary of EMPLOYEE< salary of manager AND

40

DEPARTMENT ..name of manager= DEPARTMENT ..name of employer AND
EMPLOYEE...ssn of Employed= ssn of EMPLOYEE)

THEN enjoTCing_attion_lisi.

WHEN [BEFORE] e9-c2 : ssn OF EMPLOYEE MODIFIED
FIRE r9-c2: IF NOT (salary of EMPLOYEE< salary of manager AND

DEPARTMENT ..name of manager= DEPARTMENT_name of employer AND
EMPLOYEE...ssn of Employed= ssn of EMPLOYEE)

THEN enforcing_action_list.

The latter illustrates an interesting aspect of the model that was addressed in sec
tion 2.4. Reca.ll that "manager" (respectively "'employer") is the role of "EMPLOYEE"
(respectively "DEPARTMENT") in the relationship "Manages" (respectively "Employed"),
and that "salary" is an attribute of "EMPLOYEE" that is inherited by "Manages" (respec
tively "Employed") and thus by "manager" (respectively "employer"). In addition, "Man
ages" (respectively "Employed") is usually implemented in a relational database as a column
"Manages_DEPARTMENT_name" (respectively "Employed_DEPART11ENT_name") in the
relation "EMPLOYEE", i.e., the semantic links provided by "Manages" and "Employed" in
the ER model are hidden in the relational model in the form of foreign keys. This information
is stored in the meta-database of the schema design and is used for optimizing the deriva
tion of behavior templates (e.g. avoiding redundancy of events like "salary of EMPLOYEE
MODIFIED" and "salary of Manages MODIFIED"). It is also used to translate the behavior
specification into the DBMS triggers or event alerters (e.g. mapping "Employed INSERTED"
to insertion into "EMPLOYEE" relation).

The user (database designer) needs to edit the t~mplates to specify the "BEFORE" clause
of the event, usua.lly necessary with rejection actions, and the enforcing_action_list for each
active behavior. The generation of many templates of active behavior for a single constraint
provides modularity and flexibility for the database designer to specify different actions for
different constraint-violating events. For example, it might be the user intention to specify
the action "REJECT _OPERATION" for rule "rl-cl" and the action "MODIFY EMPLOYEE
SET (salary= 10,000)" for rule "r2-cl", although they are used to enforce the same constraint.

3.2 Invariant Properties of the Model

The ER model has a particular set of static constraints, either inherent to the model or
implicit ia the schema definition, that are implied by the invariant properties of the model.

The enforcement of these constraints can be specified as meta-behavior, i.e., behavior over
the meta-database, and automatically generated by the schema design and translation tool
for each instance of object types or attributes in the meta-database that is affected by the
constraint-violating events. By doing this, the tool relieves the database designer of having to
specify individual active database behavior for each affected object or attribute. Of course,
this specification must be regenerated every time the meta-database changes, i.e., every time
the database schema evolves.

41

In what follows, we introduce an extension to the notation used so far that allows us. to
express specification of meta-behavior in a compact form. We use the pseudo-expression "Fbr
each" to denote iteration of the specitkation through the sets of entity and relationship types
stored in the meta-database. Hence the following meta-events are defined over the ER objects
ENTITY and RELATIONSHIP; each meta-event maps into a set of events in a given actual
database schema:

evl: enLname OF ENTITY INSERTED

ev2: ent_name OF ENTITY MODIFIED

ev3: enLname OF ENTITY DELETED

ev4: reLname OF RELATIONSHIP INSERTED

ev5: reLname OF RELATIONSHIP MODIFIED

ev6: reLname OF RELATIONSHIP DELETED

Also, the following meta-schemas of ENTITY and RELATIONSHIP in figure 2.1 are
assumed.

ENTITY:

ent_name : name of the entity type.

key_attr..name() : key attribute of the entity type.
"key_attr..name" can be composite.

The notation () means that

part..rel*(rel_name, part_type) : set of relationship types which the entity type participates in.
The notation* means that "part..rel" can be multi-valued. Each "part..rel" is composed
by "reLname" (name of the relationship type), and "part_type" of relationship (type of
participation of the entity type in the relationship type, that can be either "Total" or
"Partial").

from_ent_conn"'(ent..name, conn_type) : set of connections from other entity types, composed
of "ent..name" and "conn_type", tha.t ca.n be either "Is_A" (specialization) or "ID"
(identification dependency).

to_ent_conn*(ent_name, conn_type) : set of connections to other entity types, i.e., the recip
rocal of "from_ent_conn".

RELATIONSHIP :

reLname: name of the relationship type.

42

rcLobj*(obj..nakle, key_attr-I1an1e()) : set of object types associated by the reiationship type.
Each reLobj is composed by "obj.Jlame" (name of the relat~d entity or relationship
type)~ and "key ..a.ttr ..narne()" (key attribute of the entity or relationsh.ip type).

part_rel* (reLname, type) : same as in ENTITY. Ret: all th a.t we allow relationships to partic
ipate in relatiol).ships.

The actual implementation of the meta-database may have a different meta-schema; for
example, information on connections between object types a.re usually kept as meta-attributes
of the meta-relationship "ER Connection" (figure 2.2). Here we assume they are stored also
in the meta-objects ENTITY and RELATIONSHIP, in order to facilitate the description of
conditions and actions in the specification of the meta-behaviors that enforce the invariant
properties.

In addition, we use a notation similar to that used in the description of the semantics of
the actions (section 2.2.2) to describe the protocols of the meta-behaviors. "Pre-conditions"
a.nd "Post-conditions" are defined to apply the rejection strategy, and an "implies" expression
is introduced to apply the propagation strategy.

1. Key constraint (each instance of an entity must be unique). This mapping is given for the
sake of completeness: the key constraint is supported declaratively and automatically
by most of the DBMSs. ·

a. INSERTei INTO Ei
Pre-condition : ...,3 ei E Ei

For each ent_name in ENTITY :
WHEN BEFORE evl : ent..name OF ENTITY INSERTED
FIRE rl-kc: IF NEW key_attr_name IN SET_OF (key_attr..name)

THEN REJ.ECT_OPERATION,
MESSAGE : "Key attribute already exists~'.

b. MODIFY ei IN Ei
Post-condition : new key _attribute of ei = old key _attribtite of ei

For each ent..name in ENTITY :
WHEN BEFORE ev2 : ent_name of ENTITY MODIFIED
FIRE r2-kc : IF NEW key_attr_name :f; OLD key_attr_na.me

THEN REJECT_QPERATION,
MESSAGE : "Not allowed to change key attribute".

2. Relati0nship referential integrity ccnstrai~1t (a. rela.tionahlp C(j,Il exist only if the corre
sponding related objects exist).

43

a. INSERT r INTO R where R(E~, ... ,En)
Pre-condition : 3 e 1 E E~, e1 = Et (r) A

•.. 1\

3 en E En, en= En(r)

For each reLname in RELATIONSHIP :
WHEN BEFORE ev4 : reLname OF RELATIONSHIP INSERTED
FIRE rl-ric: IF NEW reLobj.key_a.ttr..name NOT IN SET_OF

(reLobj.key..a.ttr..name)
THEN REJECT_OPERATION,
MESSAGE : "Inexistent related entity".

b. DELETE ei FROM Ei
IMPLIES'Vr E R(ei)DELETErFROM R

For each ent..name in ENTITY :
WHEN ev3 : ent..name OF ENTITY DELETED
FIRE r2-ric : THEN DELETE-RELATIONSHIP part_rel.reLname

(reLobj.key..a.ttr..name =OLD key_a.ttr..na.me) (ev6).

c. DELETEriFROM Ri
IMPLIES'Vr E R(ri)DELETErFROM R

For each reLname in RELATIONSHIP :
WHEN ev6 : reLname OF RELATIONSHIP DELETED
FIRE r3-ric : THEN DELETE-RELATIONSHIP part._rel.reLname

(reLobj.key_attr_name = OLD reLobj.key_attr..name) (ev6).

Note: The latter behavior is necessary because we allow relationship involving rela
tionships. Notice that key_attr..name may be composite; also, notice that part_rel a.nd
reLobj are multi-valued. As a consequence, the mapping from meta-behavior to actual
behavior will require multiple iterations through the sets of attributes and objects for
the complete specification of conditions and actions.

3. Total participation constraint (if the relationship is total on an entity, then the existence
of the related entity requires the existence of this relationship).

a. INSERTei INTO Ei -
Pre-condition : 3 R, participation of Ei in R is total
Post-condition: 't/ R, participation of Ei in R i3 total, ei = Ei(r)

For et'-ch ent:..name in ENTITY :
\VHEN evl : ent_name OF' ENTITY INSERTED

44

FIRE rl-tpc : IF parLrel.parLtype = "Total"
THEN MESSAGE :
"Need to insert mandatory relationship for inserted entity".

4. Identification dependency constraint (if a relationship is weak on an entity, then the
existence of the weak entity requires the existence of the related strong entity).

a. D_ELETEei FROM Ei
IMPLIES 'V ei e Ei, ei is ID on ei, DELETE ei FROM Ei

For each enLname in ENTITY :
WHEN ev3 : enLname OF ENTITY DELETED
FIRE rl-idc : IF from_ent_conn.conn_type = "ID"

THEN DELETE-ENTITY from_ent_conn.ent..name
(key_attr..name OF from_ent_conn.ent..name =
OLD key_attr..name) (ev3).

b. INSERTei INTO Ei
Pre-condition : ei is I Don ei -+ 3 ei e Ei

For each ent..name in ENTITY :
WHEN evl : ent..name of ENTITY INSERTED
FIRE r2-idc : IF to_enLconn.conn_type = "ID" AND

key_attr_name OF to_enLconn.ent..name NOT IN SET_OF
(key_attr...name OF ent..name)
THEN MESSAGE :
"Identification dependency: owner entity does not exist".

5. Aggregation referential integrity constraint (an aggregation can exist only if the corre
sponding components exist).

This property is enforced by the relationship referential integrity constraint (property
2), since we consider a relationship as an aggregation of the participant entities to allow
relationships involving relationships (full aggregation).

6. Superclass completeness constraint. (a specialization is total on a generalization, i.e. the
existence of a specialization requires the existence of its generalization).

a. INSERTei INTO Ei
Pre-condition : Ei is a sub- class of Ej -+ 3 ei E Ei

For each ent_name in ENTITY :
WHEN evl : ent..name OF ENTITY INSERTED

45

FIRE rl-scc : IF to_enLconn.conn_type = "Is_A" AND
key _attr..name OF to_enLconn.ent..name NOT IN SET _OF
(key_attr_name OF e:1t..na.me)
THEN MESSAGE :

"Specialization: generic entity does not exist".

b. DELETE e, FROME,
IMPLIES \I Ei sub- class of E,, DELETE e; FROM Ei

For each ent..name in ENTITY :
WHEN ev3: ent..name of ENTITY DELETED
FIRE r2-scc : IF from_ent_conn.conn_type = "Is..A"

THEN D ELETE_ENTITY from_ent_conn.ent..name
(key ..attr_name OF from_ent_conn.ent..name =
OLD key_attr..name) (ev3).

In the above, we applied both the rejection and the update strategies for deriving meta
behaviors to enforce inherent and implicit constraints of the model. The translation tool can
be tailored to support the generation of other active database behaviors that enforce more
specific invariant properties like superclass completeness, subclass disjointness, or relationship
cardinality constraints. In addition, a more complex constraint-checking behavior can be
generated using aggregate predicates, such as: "When a relationship is deleted, if some entity
type participation is total on it and the deleted relationship is the last one for the related
entity, then send a message to the user, or, alternatively, propagate the deletion to the related
entity." All these meta-behaviors embedded in the translation tool can. be left as optional
so that the user decides at design time which set of invariant properties is desirable to be
considered for a given application and which strategy to apply in order to enforce them.
Figure 3.2 illustrates the meta-behaviors specified in this section as a meta-(ER)2-diagram of
the ER model and its invariant properties.

3.3 Dynamic Constraints

The inherent and implicit constraints implied by the invariant properties of the data model,
as well as the explicit constraints exemplified in section 3.1, are constraints that must hold
in every state of the database. They are called static constraints because they deal with the
consistency of a single database state.

Some explicit constraints deal with the consistency of transitions of database states and are
called dynamic constraints. Their specification usually requires very high level predicates that
are not expressible in declarative constraint languages. Since they occur less frequently than
static constraints, it is easier to specify dynamic constraints procedurally as active database
behaviors, rather than augmenting the constraint specification language to capture multiple
database states.

46

to{M)

ID

ATTRIBUTE

Figure 3.2: Specification of the Invariant Properties as Meta-behaviors

47

As an example, "the salary of an engineer cannot decrease" is a constraint that require~
checking the database states before and afte: an update on "salary of El\tiPLOYEE~' is per
formed. Instead of trying to specify such constraint in a rich constraint specification language
and then translating it into the procedural constructs that will enforce it, the following active
database behavior is easily derived from the semantics of the constrajnt:

WHEN el-dc : salary OF EMPLOYEE MODIFIED
FIRE rl-dc : IF OLD job = "engineer" AND NEW salary < OLD salary

THEN MESSAGE : "Engineers' salaries cannot decrease",
REJECT _OPERATION.

3.4 Summary

As a summary, in this section we have shown the application of the active database behavior
to enforce integrity constraints. The following conclusions are derived :

1. Static constraints

(a) H inherent to the data model or implicit in the conceptual schema, i.e., implied
by the invariant properties of the model,. they can be specified as meta-behaviors.
The schema translation tool will instantiate each meta.-behavior as actual behavior
in the given database and translate them into the language constructs (rules or
triggers) in the target DBMS.

(b) If explicit constraints, i.e., constraints of the application semantics (business rules),
they can derive active database behavior by means of an interactive tool that gen
erates templates of behavior specification and then accepts user intervention to
complete the specification. For very complex application constraints, the con
strair~t definition may require very complicated predicates, and the mapping pro
cess may not be worthwhile, because the constraint-enforcing active behavior must
be specified anyway.

2. Dynamic constraints
These are always explicit, application-oriented constraints. They a.re better specified
directly in the form of the active behavior that will enforce them.

48

Section 4

CONCLUSION AND FUTURE DIRECTION

Our claim is that the lack of modeling constructs for active database capabilities present in
the new generation of relational DBMSs has made it difficult to take full advantage of their
potential benefits. The current database design methodology forces the user to defer critical
modeling decisions concerning the active behavior of the database to late stages of the design
process, where the semantics of the real-world situations are obscured by the intricacies of
the implementation model. Because of the inherent complexity of rule-based programming,
database designers do not exploit adequately the functionalities of rules, triggers and stored
procedures. Furthermore, it is expected that more powerful active capabilities will be added to
the DBMSs by demand of non-conventional database applications, enlarging the gap between
modeling and specification of executable definitions of active behavior.

Our approach to this problem was to extend the well-established methodology based on
the ER model by incorporating active 4atabase behavior in the form of events and rules as
first-class objects of the model.

The following benefits will result from the extended modeling and design methodology:
reduced database design and applica~ion development effort with the automatic generation of
meta-behavior and translation of active behavior into executable DBMS language constructs;
better control of the development of database applications; and better quality of the overall
design. In the present report, we have concentrated on the modeling of the active behavior
and a specification of the constraints. Further details of the design methodology for active
databases can be found in [Ta.n92].

4.1 Summary

We introduced the (ER)2 model as a uniform way to express active database behavior along .
with entities and relationships. We ~'Jar a ted the concepts of a.n event and the action that
causes its occurrence, many times considered as the same fact in other approaches. We also
differentiated events and conditions, because although they both represent predicates and are
so modeled in some dynamic modeling approaches, they have different semantics and timing
of occ,1rreu.ce and · evaluatio.rr. With these distinctions, we were d.ble to d~fin.e both events
and rules as objects of the model, rather than only rules as considered in the literature so

49

far. We identified attributes of events and rules and characterized classes and instances of
eve~ts and rules. We also identified the inter-event and inter-rule connections, as well as
the semantic connections between events and rules, and between events and data objects
or the external environment. Based on these modeling concepts and the ER formalism, a
set-oriented syntax and semantics for active database behavior was defined. We proposed a
diagrammatic representation of active behavior in terms of events and rules, as an extension
to ER diagrams. · We showed that with the provision of a meta-database of the design, the
translation of active database behavior from the (ER)2 model to commercial relational DBMSs
can be easily incorporated into the database design process, relieving the user from the need
to program rules, triggers and procedures for enforcing that behavior.

Next we showed that constraint maintenance can be achieved by specifying constraints
declaratively and deriving appropriate event-condition-action behavior that in effect imple
ment those constructs. This transformation is useful for the types of constraints that, although
enforced procedurally by the DBMS, are easier to specify declaratively. From these, one can
derive a set of procedures and rules to enforce them. Dynamic constraints, which refer to the
consistency of state transitions rather than to a single state, were shown to be more easily
specified directly in terms of an active behavior instead of trying to extend the constraint
language to consider multiple states. A special type of constraint, which is implied by the
invariant properties of the ER model, if not supported declaratively by the DBMS, can be
specified by means of a meta-behavior, i.e., behavior over a.ll entity sets and all relationship
sets a.nd instantiated to appropriate instances of actual active behaviors by the design and
translation tool for a particular populated database.

4.2 Further Research and Development

Supplementary research and development is needed to take full advantage of the benefits
that accrue to databases by the incorporation of active capabilities. Some major research
directions are listed below:

• It is necessary to combine data, control, and process modeling to capture active database
behavior and application transactions in the same model.

• As a consequence, the interaction of rule processing and transaction processing in the
execution model of an active database must be considered to provide the database
designer with a complete analysis model, in which the whole behavior of the database
can be validated.

• A declarative constraint specification language using constraints as predicates at the
conceptual level, for enforcing constraints as active behaviors.

• An architecture of tools has been proposed to incorporate the active database exten
sion into current relational database methodology [NTC93). These tools need to be
implemented.

50

• A graphlcal interface for specification of events and rules, eithrr integrated with an ER
diagramming tool or in a separate editor is needed. Also, a validation tool based on a
high level Petri net editor/simulator, possibly taking advantage of the analysis methods
developed for hierarchical high-1evel Petri nets (Jen91] would be desirable.

Furthermore, the research on active databases is raising new issne~ and discovering new
applications; some of them will also impact modeling and design :

• Deductive databases as a class of active databases: a deductive rule can be seen as an
active behavior, where there is no event (or it is just a retriev~l), and the condition
action pair is a deduction rather than an operation on the database or a message. Since
the active database paradigm subsumes the deductive database paradigm, both could
be present in actual DBMSs, providing a platform for large knowledge bases and expert
systems (SKdM92].

• Rules in 00 DBMSs: the 00 paradigm seems to be a natural way to accommodate
active behavior in the form of events and rules as first-class objects. The availability of
efficient implementations of rules in 00 DBMSs is expected and will impact the way
active database behavior is modeled and designed (DPG91].

• Parallel and distributed active databases: rule processing is usually performed in a
centralized, sequential fashion. Given the hlgh interest in parallel and distributed envi
ronments, it is important for active databases to be adapted to them [CW92].

• Database authorization schema: the active database paradigm is clearly a real alterna
tive for database security, and much work has to be done in this area [Lun92].

• Derived data maintenance: it is widely recognized that the active database paradigm can
be used to automatically maintain derived data such as views. Research on design and
analysis of active behavior for efficiently maintaining derived data is on-going [CW91].

• Schema evolution: automatic propagation of changes in the schE-'ma can be performed
using the active database paradigm, especially by taking advantage of the meta-database
that describes the database and its design process [MR90].

• Reverse engineering of legacy systems: in spite of the wide acceptance of relational
database technology, most of the corporate data is currently stored in large data repos
itories residing in flat files. Reverse engineering of these old systems is a key research
area, and the active database paradigtn can play an important role in the knowledge
discovery of business rules.

51

Bibliography

[AH85] S. Abiteboul and R. Hull. Update propagation in the IFO database model. In
Proceedings of the International Conference on Foundations of Data Organization,
1985.

[CERE88] B. Czejdo, R. Elmasri, M. Rusinkiewcz, and D.W. Embley. Semantics of update
operations for an extended entity-relationship model. In Proceedings of the A CM
Annual Computer Science Conference, 1988.

[Cha91] S. Chakravarthy. Active database management systems: requirements, state-of
the-art, and an evaluation. In H. Kangassalo, editor, Proceedings of the Interna
tional Conference on the Entity Relationship Approach, 1991.

[CW90] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In
Proceedings of the International Conference on Very Large Data Bases, 1990.

[CW91] S. Ceri and J. Widom. Deriving production rules for incremental view mainte
nance. In Proceedings of the International Conference on Very Large Data Bases,
1991.

[CW92] S. Ceri and J. Widon1. Production rules in parallel and distributed database
environments. In Proceedings of the International Conference on Very Large Data
Bases, 1992.

[DEC89] DEC. Vax RDB/VMS SQL Reference Manual, 1989.

[DPG91] 0. Diaz, N. Paton, and P. Gray. Rule management in object o~iented databases: a
uniform approach. In Proceedings of the Inte·mational Conference on Very Large
Data Bases, 1991.

[GJS92] N.H. Gehani, H.V. Jagadish, and 0.: Shmueli. Composite· event spe~i:fication in
active databases: Model and implementation. In Proceedings of the International
Conference on Very Large Data Bases, 1992.

[ING90] INGRES. INGRES/SQL - Reference Manual for the Unix and VMS Operating
Systems, 1990.

52

[INT90]

[Jen91]

[Kos92)

[Lun92]

[Mel90]

[MF91]

[Mis91]

INTERBASE Software Corporation. InterBase DDL Reference Manual- Inter-
base versiiJn 3.0, 1990. .

K. Jensen, editor. High·Level Petri Nets: Theory and Applications. Springer
Verlag, 1991.

E. Kosciuszko. How to implement integrity in Oracle~ Database Programming
and Design, 5(7), July 1992.

T .F. Lunt. Security in database systems: a research perspective. Computers and
Security, 11(1), 1992.

J. Melton. ISO/ANSI Working Draft Database Language SQL2. ISO/ANSI, 1990.

V.M. Markowitz and W. Fang. SDT: A database schema design a.nd transla
tion tool - reference manual. Technjcal Report LBL-27843, Lawrence Berkeley
Laboratory, 1991.

D. Mishra. SNOOP: An event specification language for active databases. Master's
thesis, University of Florida, 1991.

[MLM+92] V.M. Markowitz, S. Lewis, J. McCarthy, F. Olken, and M. Zorn. Data. man
agement for genomic mapping applications: a case study. In Proceedings of the
Conference on Scientific and Statistical Database Management, 1992.

[MR90] L. Mark and N. Roussopoulos. Information interchange between self-describing
databases. Information Systems, 15(4), 1990.

[NB91] S.B. Navathe and A. Balaraman. A transaction architecture for a general purpose
semantic data model. In T .J. Teorey, editor, Proceedings of the International
Conference on the Entity Relationship Approach, 1991.

[NTC93] S.B. Navathe, A.K. Tanaka, and S. Chakravarthy. Active database modeling and
design tools: Issues, approach, and architecture. IEEE Database Engineering,
1993. To appear.

(RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object
Oriented Modeling and Design. Prentice-Hall\ 1991.

[SA85] R. Snodgrass and I. Ahn. A taxonomy of time in databases. In Proceedings of the
International Conference on Management of Data, 1985.

[SJGP90] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures,
caching, and views in data base systems. In Proceedings of the International
Conference on Management of Data, 1990.

53

•

(SKdM92] E. Simon, J. Kiernan, and C de Mandreville. Implementing high-level active rules
on top of relational databases. In Proceedings of the International Conference on
Very Large Data Bases, 1992.

(SM91] E. Szeto and V.M. Markowitz. ERDRAW: A graphical schema specification tool
- reference manual. Technical Report PUB-3084, Lawrence Berkeley Laboratory,
1991.

[SYB87] SYBASE Inc. Transact~SQL User's Guide, 1987.

[Tan92] A.K. Tanaka. On Conceptual Design of Active Databases. PhD thesis, Georgia
Institute of Technology, 1992.

(TNCK90J A.K. Tanaka, S.B. Navathe, S. Chakravarthy, and K. Karlapalem. Toward con
ceptual modeling of active databases. Technical Report TR-90-21, University of
Florida, 1990.

[TNCK91) A.K. Tanaka, S.B. Navathe, S. Chakravarthy~ and K. Karlapalem. ER-R: an
enhanced ER model with situation-action rules to capture application semantics.
In T .J. Teorey, editor, Proceedings of the International Conference on the Entity
Relationship Approach, 1991.

[WF90] J. Widom and S.J. Finkelstein. Set-oriented production rules in relational
database systems. In Proceedings of the International Conference on Manage
ment of Data, 1990.

54

