
What You See Is What I Want:

Experiences With The Virtual X Shared Window System

Ian Smith and Elizabeth Mynatt

The Multimedia Computing Group

Software Research Center

Georgia Tech College of Computing

Atlanta Georgia, 30332-0280

iansmith@cc.gatech.edu

beth@cc.gatech.edu

ABSTRACT

There has been considerable interest in the prob-
lems associated with real-time, multi-user interfaces
for computer supported collaborative work. This pa-
per describes our experiences in designing and imple-
menting Virtual X, a real-time window sharing sys-
tem based on the X network protocol. The Virtual
X environment provides a mechanism for the collabo-
rative use of unmodi�ed X applications, even though
these applications were originally designed to have
only one user. We discuss how our approach pro-
vides a basis for future research into the human fac-
tors of shared window systems. We explore the is-
sues that arise in implenting this system in a het-
erogenous environment. Finally, we explain our sup-
port for collaboration-aware software and the future
of Virtual X.

KEYWORDS

Shared windows, multi-user interfaces, computer sup-
ported collaborative work, real-time groupware

INTRODUCTION

Before we begin to discuss the design and implemen-
tation of the Virtual X shared window system, we
must de�ne the term \shared window system." In-
formally, we will de�ne a shared window system to

0

be a special interface to existing applications which
permits single-user applications to be used by mul-
tiple persons simultaneously. This new interface is
employed without the application being aware of the
collaboration.
A shared window systemmay also have support for

applications that are designed for multi-user interac-
tion so these applications can take advantage of the
existance of this environment. In our shared window
system only one user at a time may provide input to
applications which are being run cooperatively, and
this user is referred to as the user with \the 
oor."
The shared window system determines exactly which
user has the 
oor, and how/when the 
oor should
change to a di�erent user. Speaking broadly, the
shared window system is only the facilitator of the
multi-user interaction; it is generally passive during
user activity.
More formally, a shared window system can be bro-

ken into four components [7]:

� Display Management: A shared window system
must stay informed of the state of all displays
and input devices in the current session. From
this information, the shared window system de-
termines how to display application output and
how to respond to user input.

� Floor Control: The shared window system must
stay aware of who the \active" user is, and en-
force this determination when necessary.

� Participant Management: If users are allowed to
enter and leave the system dynamically, policies
must be in place to deal with these situations;
this is the role of participant management. If
dynamic conferences are not permitted, actions
must be taken to insure that users do not leave
the conference while it is in progress.

� Inter-user Communication: For a shared window
system to be e�ective, somemeans must be avail-



able for users to communicate with each other.
The type of communication system provided by
the shared window system varies from system to
system.

In this paper we will describe the all of the areas of
this model in general terms, and we will be returning
to this model of a shared window system in our dis-
cussion of the design and implementation of Virtual
X.

AN EXAMPLE OF THE USE OF VIRTUAL X

Multi-user interfaces have many uses, and to moti-
vate our discussion of Virtual X, it may be useful
to give an example of Virtual X in use. Three peo-
ple in a research center, Keith, Beth, and Ian, are
putting together a document describing their cen-
ter's latest project. (A snapshot of their session is
shown in Figure 3.) They are using a multi-user
text editor, which allows all of them to write simul-
taneously on their document; this is the only truly
multi-user application that they are running, since it
is the \collaboration-aware" application in this ses-
sion. They are also using two collaboration-unaware
applications, idraw, a WYSIWYG drawing program,
and xterm a terminal emulator. They are using these
programs to draw their �gures for the paper, and to
process their document with the command line inter-
face to their typesetting program, respectively.1

They have decided to use a Floor Control Man-
ager (a program that arbitrates access to the 
oor)
that implements a \I take the 
oor whenever I want
it" policy, since they are connected with a voice con-
nection that allows them to arbitrate access to the

oor easily. The Floor Control Manager is running
on Beth's machine and is communicating with the
Floor Control Clients (FCCs) on each workstation in
the conference. Whenever any particpant wants to
\grab" the 
oor, he or she invokes a function of the
local FCC, which communicates his or her desire to
the FCM. At it changes the 
oor of the session (by
communicatingwith Virtual X), the FCM informs the
inter-user communication system of this change. The
communication system they are using sends the voice
of one person in the session over a local ethernet to
the other members of the conference. This system
wants to keep the \speaker" of the communication
channel the same as the user with the 
oor, and is

1This command line interface,\the shell", runs under the
permissions that correspond to the user who started the shell.

The issues associated with this and similar problems are dis-

cussed fully in [2].

using information provided by the FCM to accom-
plish this.
Each person in this session is running local applica-

tions, Keith is running two and Beth and Ian are run-
ning one each, and these applications are not a�ected
by the conference taking place. Although these ap-
plications are independant of the conference, the use
of shared and non-shared applications can be freely
intermixed. It should be noted that the \selection-
space" (means of selecting an item in one application
and transferring it to another) of Virtual X is nor-
mally separate from the selection-space of non-shared
applications. Thus, \cut-and-paste" operations can
occur in Virtual X independent of and in parallel
with similar operations by any of the unshared ap-
plications. On each user's workstation, there is a
large \virtual root window" which is the background
window for all applications running cooperatively.
Within that root window, \What You See Is What
I See" is enforced on the collaboration-unaware ap-
plications, and the collaboration-aware text editor is
allowed to present any interface it wishes to the users.
The root window however, may be manipulated (as a
whole) in any way the individual user wishes, includ-
ing being moved, resized, or iconi�ed without e�ect
on other conferece sites.

SHARED WINDOWS AND X

The X Window System is a device-independent and
network-based window system originally developed
at MIT. X provides programmers with the mecha-
nisms for the development of many types of user in-
terfaces. The X window system has a client-server ar-
chitechture, in which the X server controls all display-
oriented hardware and resources, and X clients (ap-
plications) communicate with the X server, over a
network, to manipulate any of these resources. This
network transparency provides excellent functional
separation of the client and server. For an complete
overview of the X window system, see [20]. In the fol-
lowing section, we will provide an overview of shared
window systems, and mention speci�c issues that re-
late to window sharing in X.

Display Management

Signi�cant previous work has addressed the techni-
cal issues of real-time window sharing under X and
how to provide multi-user interfaces to existing ap-
plications. These e�orts explored the �rst element of
our model of a shared window system mentioned be-
fore, the display management system. These systems
in general exploit the fact that X at its lowest level



is simply a network protocol, and therefore network
transmissions can be intercepted and then retrans-
mitted as the shared window system sees �t.

Considerable research has focused on the method of
performing the interception and retransmission men-
tioned above. A classical distributed systems problem
is whether the shared window system should have a
replicated or centralized architechture. There have
been several systems based on a centralized archi-
tecture including Rapport[3], XTV[1], Shared X[8],
and Shadows[18]. All of these systems centralize con-
trol of the the shared window system, and allow the
shared window \psuedoserver" to connect to each X
server in the session, and permit one copy of each
collaboration-unaware client to connect to the shared
window system (see �gure 1). By contrast, in the

Workstation 1

X

Server

Shared
Window
System

Client 1

X

Server

Client 1

X

Server

Workstation 3

Workstation 2

Figure 1: Centralized Model

replicated architechtures n copies of the application
are run (one per worksation) and the shared win-
dow system keeps all copies of the program in sim-
ilar states. Two systems of the systems based on this
type of architecture are Dialgo[17] and MMConf[5].

Although these approaches are functionally simi-
lar to the user, they have radically di�erent architec-
tures, implementations, and problems. The central-
ized approach enjoys the bene�t of being in complete
control of the system, and therefore is guaranteed to
know the states of all parts of the system. Further
only one copy of each application is running, so appli-
cations that a�ect their external environment (such
as saving a �le) perform such operations only once
and thus function normally. The replicated architec-
ture distributes the computation over the worksta-
tions, and therefore does not consume network band-

Client 1

X

Server

Client 2

Shared

Window

System

Client 1

X

Server

Workstation 1

Client 2

Shared

Window

System

Client 1

X

Server

Client 2

Shared

Window

System

Workstation 3

Workstation 2

Figure 2: Replicated Model

width transmitting results, provided the each repli-
cant application can be kept in \synch." Disscussion
of the environmental, synchronization, and serializa-
tion problems associatedwith replicated architectures
can be found in [11, 10].

Floor Control

In our system during a cooperative session only one
person can be giving input to applications that are
designed for a single user. (An application written
speci�cally to take advantage of the collaborative sys-
tem may allow all users to provide input simultane-
ously.) Exactly how the 
oor should change during a
session is a policy decision and certainly a matter of
debate.
Previous human factors research has established

that many issues come into play when people work
cooperatively. Some of the factors to consider when
determining a control policy for collaborative work
include (but are not limited to):

� The familiarity of the participants with each
other

� The type of task being worked on collaboratively

� The number of persons in the group

� The bandwidth of any communication channel(s)
between them particpants during the session

We feel that more work is needed in the area of

oor control strategies and therefore Virtual X has
been designed with the purpose of supporting future



research on this topic.2 Several ideas have been im-
plemented by other systems as the basis for 
oor con-
trol policy decisions [7]. Some of these are:

� Ring Passing: The particpant with the 
oor
must explicitly pass it to another person.

� Request: A queue of users requesting the 
oor
is kept, and as one user voluntarily releases the

oor, the next user in the queue is given it.

� Pre-emptive: Anyone may grab the 
oor at any-
time.

� Moderated: One user is designated to arbitrate

oor-control and this user gives (and takes away)
the 
oor in any way he wishes.

� Time slicing: Each user is given a speci�c
amount of time with the 
oor, and is then pre-
empted by another user. To whom the 
oor
is given next is another 
oor control issue, and
therefore this method is usually used in conjunc-
tion with some other approach.

Referring back to our example of the group con-
structing a document, the users in that session were
well acquianted, small in number, and had a voice
channel for communicating their ideas to each other.
They felt a pre-emptive 
oor control management
strategy would be best for them. In contrast, a
teacher instructing 40 students in how to use a new
piece of software might have radically di�erent needs.
In such a situation, a moderated 
oor control strat-
egy might be the easiest way for the the teacher to
control the situation while still permitting students
to experiment with their newly acquired skills.

Particpant Management

Past work has suggested that participant manage-
ment presents di�cult problems, no matter what type
of collaborative system is being employed.[7, 10] The
main goal of participant management is to keep on-
going conferences functioning smoothly as old par-
ticipants leave and new participants join the session.
This usually requires insuring that the new partic-
pant's workstation (or the shared window system
managing it) can be put in a state similar to that of
participants who are already in the conference. Once
this is done, processing can continue in a normal fash-
ion, without regard for the changing make-up of the
conference.

2For an excellent overview of previous work done in perfor-
mance measurements of computer supported cooperative work

based on di�erent types of groups, task, and other variables

see [13].

Shared window systems based on X have an addi-
tional problem in that all \state information" about
resources related to applications is kept inside the
X server. (The \resources" of an X server are data
structures associated with the physical display of out-
put, such as windows, cursors, fonts, etc.) Thus
when client ouput requests are multiplexed to each
server, all resources on all servers must be in consis-
tant states. When a new server is added to a ses-
sion, its resources will not be in a state consistant
with other servers. This presents a problem since
it is unlikely that collaboration-unaware clients will
be capable of recreating all previous states required
to get the new server's resources synchronized with
servers already in the conference. Previous systems
which supported dynamic conferences have depended
on journalling to bring new particpants up to date
by simply replaying all previous interactions in the
session.

Inter-user Communication System

Several types of media have been used in the past
as the basis for interaction between users running
a multi-user interface, including audio, video, text,
telepointers[22], drawing surfaces[4, 12], and combi-
nations of these[3, 16, 23]. The amount of communi-
cation support given by the multi-user interface can
vary greatly, and this support certainly drastically af-
fects how e�ective the system is in practice. However,
the amount of information the communication chan-
nel provides the users with is directly related to the
amount of bandwidth consumed in the transport of
the media. For example, video is an excellent way for
users to communicate large amounts of useful infor-
mation while employing some type of multi-user soft-
ware. However, video also puts a signi�cant load on
the underlying transport agents of a communication
channel and frequently users do not have the band-
width capabilities to support this type of media. In
a system requiring the use of video, special hardware
must be purchased to support the multi-user inter-
action, or the interface must be scrapped. It seems
clear also that the audience of a shared window sys-
tem is somewhat determined by the communication
system of the shared window system, since potential
users may be unable to support the communication
media, or may not wish to use the shared window
system unless it supports certain types of media.

THE DESIGN OF VIRTUAL X

Virtual X was designed along the lines of the formal
model of a shared window systemwe described before.



The Virtual X system proper handles the display and
participant management duties and delegates respon-
sibility for the 
oor control and inter-user communi-
cation to external programs. Referring back to our
example of Keith, Beth, and Ian preparing a docu-
ment, their session as depicted in Figure 3 contains all
the major components of the Virtual X environment:
Virtual X itself, a Floor Control Manager, Floor Con-
trol Clients, an inter-user communication system, and
both types of cooperative applications, collaboration-
aware and collaboration-unaware.

X server

X server

X server

Collaboration
Aware

Application

Floor 
Control 

Client

Floor 
Control 

Client

Floor 
Control 

Client

X Application

X Application

X Application

Virtual X

Floor Control

Manager

Inter−User

Communication

System

X Application

X Application
Shared

X Application

Shared

Keith’s Workstation

Beth’s Workstation

Ian’s Workstation

Figure 3: The Virtual X Environment

The following were considered objectives in the de-
sign of Virtual X:

1. Provide a \virtual workstation" on which un-
modi�ed X applications can be run. This \work-
station" in reality has its display shown on sev-
eral physical workstations, and any of the physi-
cal workstations can provide input to the virtual
workstation.

2. Provide a foundation for human factors research
into multi-user interfaces.

3. Provide support for applications that wish to be
aware of collaboration, and allow these applica-
tions to e�ectively utilize Virtual X's existing fa-
cilities.

4. Allow other collaborative tools and conferencing
systems to coexist with Virtual X and, when pos-
sible, utilize information about the state of Vir-
tual X conferences.

5. Provide all of the above in a heterogenous envi-
ronment of workstations.

The display management system is the �rst design
choice that must be made in designing any shared
window system. We examined both the centralized
and replicated architectures and chose to implement
our system with the centralized approach for three
main reasons:

1. Reliability. We intended Virtual X to be used by
normal X users on an everyday basis. Therefore,
we felt that a more robust system was required
for everyday use.

2. Heterogeneity. Implicit in the replicated ar-
chitechture is the assumption that all users have
a copy of the software and their machine can run
it. In a heterogenous environment, this assump-
tion may not hold.

3. Data Collection. One of the goals of this project
was to support research into the human factors of
multi-user interfaces. A centralized architecture
leads to much easier data collection and analysis.

As we examined the issue of 
oor control, we felt
that since no one 
oor control method is appropri-
ate in all situations, Virtual X should not make any
policy decision on this issue. Virtual X instead des-
ignates a special program, called the \Floor Control
Manager" (FCM), to make this policy decision and
allows the FCM program to make such policy deci-
sions in any way it desires. We assume that the users
in a Virtual X session will select an FCM that is ap-
propriate to the nature of their collaborative work.
This separation also allows the shared window system
to avoid the extra overhead associated with manag-
ing the 
oor and to support other programs related
to 
oor control. Further, by permitting the FCM to
control all access to the 
oor, 
oor control data col-
lection can be easily centralized in the FCM, and ex-
periments can be conducted on di�erent 
oor control
stratagies without modi�cation to Virtual X itself.
The Virtual X system allows users to add and leave

conferences as they wish, provided at least one user
is always in the conference. Above we detailed the
issues associated with this problem, and since we al-
low users to join sessions in progress, we must pro-
vide mechanisms (transparent to the application) for
bringing the new user's workstation \up to date."



Previous shared window systems, in general, have
used some type of journaling to keep all previous
states of collaboration-unaware clients stored inside
the shared window system for later retrieval. We felt
that such solutions were unwieldy, and so we intro-
duce a new method for handling this problem. Our
solution is to provide a means for the new user's work-
station to be brought into the same state as the other
users incrementally. This is done by synchronizing re-
sources on the new server only as they are used by
currently running client applications.

The inter-user communication system for Virtual X
has also been moved outside the shared window sys-
tem itself. We felt that it was not the job of the shared
window system itself to determine what types of com-
munication should be used by collaborating users. We
did feel that it was important, however, for programs
that were providing this communication to have the
capability to determine the status of the conference.
For this reason, the Floor Control Manager Protocol
includes the capability for external programs to query
the FCM to determine status information about the
session, especially regarding the user with the 
oor.

In our document preparation example above, we
mentioned that Keith, Beth, and Ian were using a
multi-user editor. Such an editor would be aware that
it was being run in a collaborative environment, and
would be able to handle input from several sources
simultaneously. It also may present di�erent displays
to di�erent workstations in the conference. Such a
system would obviously require a radically new ap-
proach to the design of its interface and we are at-
tempting to allow Virtual X to support applications
of this type. Our design supports these applications
by permitting them to interact with Virtual X in way
very similar to the way they interact with normal X
servers. The only di�erence being that extra infor-
mation is exchanged so that both Virtual X and the
multi-user application can stay aware of which server
is the source of input and the target of the applica-
tion's graphic displays.

At the present time, it is not clear what types
of 
oor control stratagies are best suited to di�er-
ent types of multi-user interaction. Since the Floor
Control Manager is an excellent place for both the
collection of data about 
oor control policies and ex-
ploring new 
oor control policies, we are designing
experiments to explore the possibilities for di�erent

oor management policies. Some of the questions
that we �nd interesting are: At what number of par-
ticpants are di�erent 
oor control policies e�ective or
disfunctional? Can computer experience, familiarity,
or some other quanti�able variable be used to pre-
dict which types of 
oor control are best for a given

group of users? Can speci�c types of applications be
pinpointed that operate well or poorly under given
types of 
oor control algorithms? Is it possible to
design and implement a 
oor control policy that dy-
namically adapts to the needs of the work group?
In summary, Virtual X provides a support layer

for the use of both single-user and multi-user soft-
ware in a cooperative environment. The Virtual X
system is based around a centralized display manage-
ment system, and allows external programs to con-
trol policies related to 
oor control and inter-user
communication. Virtual X provides mechanisms to
transparently allow users to join or leave sessions in
progress, and does so without the need for expensive
journalling. Virtual X permits external programs to
synchronize to the state of Virtual X conferences by
de�ning a method for Floor Control Mangers to re-
spond to queries about the state of the conference.
This allows inter-user communication systems and
collaboration-aware software, for example, to coor-
dinate their activities with Virtual X. The Virtual X
concept of the Floor Control Manager also provides
an excellent means for conducting experiments into
the human factors of multi-user interfaces.

IMPLEMENTATION ISSUES

The technical issues associated with multiplexing
and demultiplexing X protocol packets to support a
shared window system have been detailed by others
[1, 18]. Since they have addressed these issues, we will
focus our attention on three other areas of interest:

� Heterogeneity: How to support a shared win-
dow system when the workstation hardware of
the collaborating users is di�erent.

� Participant Management: An approach to dy-
namic conferences.

� Collaboration Awareness: Support for clients
that want to use Virtual X as a platform for true
multi-user interfaces.

Heterogeneity

To accomplish the goal of running a heterogenous
shared window system, one must �rst de�ne a display
model for interpreting the sematics of client requests,
then translate the requests based on the model to
the physical hardware present on a user's worksta-
tion. X de�nes certain abstractions of workstation
display hardware called \visual classes" and these in-
form client applications of the type of display hard-
ware present on a given workstation. A visual class



encompasses the physical hardware con�guration of
a workstation's display so that applications running
on di�erent types of display hardware will know what
types of ouput may be rendered on the screen. We
felt that the X visual class abstraction was a suitable
model for our shared window system.

At the time a client connects to a X server (or, in
our case, the shared window system), the client re-
quests the visual class of the workstation. Virtual
X responds to such a request with a visual class of
\Static Gray", which corresponds to a workstation
with monochrome-only display hardware. This in-
forms the client application that only black and white
output is supported by the shared window system.
Choosing to support only monochrome shared appli-
cations has been deemed unacceptable by others [6];
we felt, however, that in supporting our �rst imple-
mentation of a heterogenous shared window system
we should choose an abstraction that could be read-
ily supported by all types of workstation hardware.
In the future we will support applications that utilize
color in a heterogenous environment[21].

In this section, we will address two distinct areas
of heterogeniety support that Virtual X provides. We
will discuss our support for running a conference on
heterogenous output hardware simultaneously. This
allows applications to be run on any combination of
color and monochrome workstations simultaneously.
We will also detail our work to support conferences in
which all the users in the session do not have similar
input hardware. This ability is needed so that appli-
cations, which are statically con�gured, can be used
in the changing input environment of Virtual X.

Depth Faults Let us motivate our discussion of het-
erogeniety with an example of an issue that occurs
when running real applications. A client running un-
der the Virtual X environment, after querying for the
visual class of the \workstation", determines that the
display hardware it is running on is monochrome-
only. At this point, it may allocate resources based on
this fact that will function correctly on a monochrome
server. However, these resources may not be correct
for other types of servers, and these servers may be
part of the Virtual X conference. It is possible for
the client application to manipulate these resources
in a way correct for monochrome servers, that is not
correct for other servers. If the session is to not end
due to errors on non-monochrome servers, Virtual X
must take action to insure that manipulations are car-
ried out in a way that is permissable on all servers in
the conference. To achieve this end, we introduce the
concept of a \depth fault."

Before we discuss depth faults, some background is
necessary on the X abstractions related to this issue.

A property associated with every workstation that
runs X Windows is its \depth." The depth of a work-
station's display corresponds roughly to the number
of bits of color information per pixel of display reso-
lution. (For example, a monochrome workstation has
depth 1.) Some systems allow emulation of depths
other than the one that corresponds to the physical
hardware. However in general we can only assume
that a workstation supports one depth.

Two other relevant X abstractions, the \pixmap"
and the \window" are important to window sharing
heterogeneity. A window is an area of the physical
screen of the workstation. This area has a depth as-
sociated with it, and this depth is usually the same
as the workstation's display hardware. A pixmap is
a region of \o�-screen" memory that can be drawn
into in the same way that an \on-screen" window
can. Pixmaps can also be copied onto windows. This
is usually done frequently, since it allows graphics to
be drawn o�-screen and copied onto the screen as one
unit. There is a depth associated with every pixmap
as well, and here lies a problem. All workstations
running X support at least two depths for pixmaps:
depth 1 and the depth of the workstation's display
hardware. In the case of a monochrome workstation
these are the same. A depth one pixmap is frequently
referred to as a \bitmap."

As we mentioned in our example, clients may ma-
nipulate monochrome resources in a way that is per-
missable on a monochrome server that is not allowed
on other servers. (Generally, the depths of resources
used together in an operation must match, and all re-
sources on a monochromeX server are depth 1.) Such
a manipulation is, for example, copying a bitmap to
a window; this is permitted on a monochrome server
since the resources are the same depth, but it is not
allowed on color servers, since the depths are not
matched. If we blindly multiplex client requests for
the use pixmaps, bitmaps, and windows, fatal errors
will result.

Our solution to this problem is the depth fault,
which is analagous to a page fault in a virtual memory
system. In general terms, a depth fault occurs when
a client attempts to use a pixmap in some operation,
and on di�erent servers currently in the conference
the permissable depth for that pixmap is di�erent.
When a depth fault is generated, Virtual X will syn-
thesize new requests to servers in the session, and
these requests are placed in the request stream at a
point directly in front of the client request causing
the depth fault. Virtual X's requests take corrective
action so that when the client request does arrive at
the server, it will not generate errors.

Event Simulators It is likely in an environment run-



ning X that not all workstations that could be in an
Virtual X session will have the same input hardware.
It is clear that the Virtual X environment should pro-
vide support for collaborative work with applications
that expect hardware that not all workstations in the
session have. For example, some applications depend
the user having a three button mouse, and some users
in a Virtual X session may not have such hardware.
Since the X protocol provides a means for simulating
events for use by other client programs, the Virtual
X environment provides several programs to synthe-
size events that a user's workstation cannot physi-
cally produce. Programs that synthesize these events
transmit them to client applications that are being
run cooperatively, and the synthetic event performs
the same action as the physical event would. Pro-
grams that provide this service are generally referred
to as \event simulators."

Participant Management

Previous work in shared window systems has sug-
gested that journaling and possibly even dependance
analysis of the resource usage of clients is necessary to
dynamically add users to shared sessions [9, 18]. Oth-
ers have suggested that the X protocol be extended
to support the ability to dynamically add users [1].
We feel these approaches are limited, and we propose
a new alternative to dynamic conferences.
To show the correctness of our approach, we need

to introduce four facts about the X protocol that we
are exploiting. (For a complete description version 11
of the X protocol see [19] and [15]. )

1. Since the values of resources are kept by X
servers, X applications have no way to access re-
sources without generating a network request to
a server. This insures that clients will inform
the shared window system of all changes to a re-
source's value.

2. There is no facility in the X protocol for referenc-
ing past values of a single resource. (The value
of a resource may depend on the value of other
resources, however.) This means that the shared
window system need only be concerned with the
current value of a given resource, not its past
states.

3. X resources have no circular or self-referential
dependencies. This insures that there is a simple
ordering on the de�nition of resources.

Given these three facts, we introduce the notion of
the \resource fault", which is a generalization of the
depth fault introduced earlier in this document. A

resource fault is generated when a client application
attempts to use a resource that currently does not
have a de�ned value for a particular server. In a way
similar to the depth fault, when a resource fault is
detected, Virtual X takes corrective action and ini-
tializes the resource to a correct value. This value
may be obtained from Virtual X itself or from an-
other server in the session, depending on the type of
resource.

When a resource fault is generated, Virtual X de-
termines any dependancies for the value of the re-
source and generates resource faults for the depended-
on resources if necessary. This recursive technique ef-
fectively creates a tree-structured dependance graph,
and since the graph cannot have cycles (3), this pro-
cess is guaranteed to terminate. Futher, this process
will always generate correct results since clients must
generate requests to change the display (1), only the
current value of the resource is needed to complete
any request (2), and Virtual X will always have the
current resource value (1).

The resource fault approach does not require exten-
sions to the X protocol and also has several advan-
tages over journalling. First, the overhead of jour-
nalling is avoided, since only the current values of
resources are kept. Second, signi�cant amounts of
recordkeeping are distributed to X servers in the ses-
sion, which have to keep the contents of the resources
anyway. Third, the dynamic nature of resource faults
allows the cost of adding a new user to a session to
be amortized over many requests, rather than forcing
the session to wait signi�cant amounts of time for the
new user's workstation to be brought up to date.

Collaboration Awareness

Throughout this section, we have discussed our at-
tempts to retro�t a multi-user interface onto existing
single-user applications. We will now detail our work
to support true multi-user interfaces, and how our ef-
forts provide a suitable platform for the development
of such software.

In attempting to provide a basis for multi-user in-
terfaces, we faced two major decisions. First, should
collaboration-aware programs use existing protocols
in some new way for transmission of user interface
data, or should new protocols be invented? Sec-
ond, should the multi-user primitives be built into
the shared window system itself, or should it be left
to the client to determine how to e�ectively use a
multi-user interface?

With regards to the �rst question, we felt that
the existing X protocol was a suitable method for
transmitting user interface data. We also felt the



abundance of tools and reference material for the de-
velopment of X applications made this a reasonable
choice, as any new protocol invented would need a
large amount of supporting material to be useful. For
these reasons, we chose to allow client applications to
communicate a slightly \addended" form of the X
protocol with Virtual X to support multi-user inter-
actions.

Virtual X allows clients to send X network packets
to a di�erent network address if these packets con-
tain the additional, multi-user information. This ad-
ditional information consists of simply one integer,
which is the target workstation of the X protocol
packet. (The indexes of each workstation in the con-
ference can be obtained from the Floor Control Man-
ager of the conference.) Upon receipt of this packet,
Virtual X transmits the normal portion of the packet
to the X server speci�ed as the target. This simple
scheme allows clients to \do their own multicasting"
of X protocol requests.

As to the input portion of the X protocol, when Vir-
tual X receives any event from any server in the ses-
sion that is destined for the collaboration-aware pro-
gram, this event is passed on to this program. This
transmission bypasses the 
oor control mechanisms,
as it is assumed that the collaboration aware applica-
tion will enforce its own access policy. Note that this
behavior e�ectively multiplexes several client connec-
tions over one connection between Virtual X and the
collaboration-aware client.

To allow clients to transmit and receive this ad-
dended form of the X protocol requires only simple
modi�cations to the underlying transport layer of the
X client libraries. The results is that programmers do
not have to learn entire new libraries of routines to
develop the interface portion of multi-user software.
However, this decision to remain bound to the X pro-
tocol has a somewhat constraining e�ect on our sec-
ond issue of how to support multi-user primitives in
Virtual X.

Since we have chosen to not create new protocols
for multi-user interactions, we are considerably lim-
ited in how we address the issue of the supporting
multi-user interactions by Virtual X itself. Clients
that have multi-user interfaces will need facilities such
as locking and serialization, [14] but without modi�-
cation to the X protocol, Virtual X cannot provide
these. Therefore, under our system, clients have the
responsibility for the management of the multi-user
interaction. It is hoped that libraries can written to
aid programmers in dealing with the concurrency is-
sues faced by multi-user software.

STATUS

At the present time, the Virtual X system supports
many unmodi�ed X applications, and we are cur-
rently working towards supporting the entire core
X release. Virtual X has been implemented on
Sun Sparcstations running SunOS 4.1, and has been
tested on monochrome and color Suns, color Hewlett-
Packard workstations, and greyscale NeXT comput-
ers. A prototype implentation of Floor Control Man-
agers and Floor Control Clients is complete, and com-
plete implementation is expected soon. The inter-
user communication system is operational, but as yet
has not been coupled to the Floor Control Manager to
provide synchronization with the Virtual X session.
At the time of this writing, work on collaboration-
aware programs and event simulators is just begin-
ning.

CONCLUSIONS AND FUTURE RESEARCH IS-

SUES

We feel that the Virtual X system provides users with
an excellent environment for collaboration and multi-
user software interaction. Further, we state that our
approaches to heterogenous shared window systems
and dynamic conferences are suitable for real-world
computer supported collaborative work. In the fu-
ture, we plan to extend the implementation of Virtual
X to support color applications and would like to ex-
periment with the possibilities of replicating instances
of Virtual X to provide better performance over wide
area networks. We are also designing human factors
experiments that should provide insights into what
types of 
oor control paradigms are appropriate for
groups of di�erent sizes and tasks.

References

[1] H. Abdel-Wahab and M. Feik. Xtv: A frame-
work for sharing x window clients in remote syn-
chronous collaboration. In Proceedings of IEEE

Conference on Communications Software, pages
159{167. IEEE Communications Society, 1991.

[2] H. Abdel-Wahab, S. Guan, and J. Nievergelt.
Shared workspaces for group collaboration: An
experiment using internet and unix interprocess
communications. Technical report, Department
of Computer Science, University of North Car-
olina at Chapel Hill, 1989.

[3] S. Ahuja, R. Ensor, and D. N. Horn. The rapport
multimedia conferencing system. In Proceedings



of Conference on O�ce Information Systems,
pages 1{8, 1988.

[4] S. Bly and S. Minneman. Commune: A shared
drawing surface. In Proceedings of the ACM SIG

for O�ce Information Processing, pages 184{
192. SIGOIP, 1990.

[5] T. Crowley, P. Milazzo, E. Baker, H. Forsdick,
and R. Tomlinson. Mmconf: An infrastruc-
ture for building shared multimedia applications.
Technical report, Bolt Beranek and Newman Inc,
1990.

[6] D. Gar�nkel, P. Gust, M. Lemon, and S. Low-
der. The Shared X Multi-User Interface User's

Guide, Version 2.0. Hewlett Packard Laborato-
ries, 1989.

[7] S. Greenberg. Sharing views and interactions
with single-user applications. In Proceedings of

the ACM SIG for O�ce Information Processing,
pages 227{237. SIGOIP, 1990.

[8] P. Gust. Sharedx: X in a distributed group work
environment. Presentated at the 2nd Annual X
Technical Conference, 1988.

[9] Keith A. Lantz. An expriment in integrate mul-
timedia conferening. In Proceedings of the ACM

SIG for O�ce Information Processing, 1986.

[10] J. Lauwers, T. Joseph, K. Lantz, and A. Ro-
manow. Replicated architechtures for shared
window systems: A critique. In Proceedings of

the ACM SIG for O�ce Information and Pro-

cessing, pages 249{260. SIGOIP, 1990.

[11] J. Lauwers and K. Lantz. Collaboration aware-
ness in support of collaboration transparency:
Requirements for the next generation of shared
window systems. Technical report, Olivetti Re-
search Center, 1990.

[12] J. Lee. Xsketch: a multi-user sketching tool for
x11. In Proceedings of the ACM SIG for O�ce

Information Processing, pages 169{173, 1990.

[13] J. McGrath and A. Hollingshead. Interac-
tion and performance in computer-assisted work
groups. Presentated at the conference on Team
Decision Making in Organizations, 1991.

[14] R. E. Newman-Wolfe, C. L. Ramirez, H. Pe-
limuhandiram, M. Montes, M. Webb, and D. L.
Wilson. A brief overview of the dcs distributed
conferencing system. In Proceedings Summer

1991 Usenix Technical Conference, 1991.

[15] A. Nye, editor. X Protocol Reference Manual,
volume 0. O'Reilly and Associates, 1990.

[16] M. Ohkubo and H. Ishii. Design and implemen-
tation of a shared workspace by integrating in-
dividual workspace. Technical report, NTT Hu-
man Interface Laboratories, 1989.

[17] Olivetti Research Center. User's Guide to Dial-

ogo Shared Window System Release 1.0.

[18] J. Patterson. The good, the bad, and the ugly of
window sharing in x. In Proceedings of the 4th

Annual X Technical Conference, 1990.

[19] R. Schie
er. X window system protocol. MIT X
Consortium Standard, 1988.

[20] R. Schie
er and J. Gettys. The x window system.
Association for Computing Machinery Transac-

tions on Graphics, 1986.

[21] I. Smith. Color and heterogeniety under x11,
1991. In Preparation.

[22] M. Ste�k, G. Foster, D.G. Bobrow, K. Kahn,
S. Lanning, and L. Suchman. Beyond the chalk-
board: Computer support for collaboration and
problem solving in meetings. Communications

of the ACM, 30(1):32{47, 1987.

[23] K. Watabe, S. Sakata, K. Maneo, H. Fukuoka,
and T. Ohmori. Distributed multiparty desktop
conferencing system: Mermaid. In Proceedings

of the Conference on Computer Supported Coop-

erative Work, pages 27{38, 1990.


