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Blunt-body entry vehicles display complex flow phenomena that results in dynamic instabili-
ties in the low supersonic to transonic flight regime. Dynamic stability coefficients are typically
calculated through parameter identification and trajectory regression techniques using both
physical test data and Computational Fluid Dynamics (CFD) simulations. This methodology
can generate dynamic stability coefficients, but the resulting data points are limited, and have
high degrees of uncertainty due to the nature of data reduction methods. With increased
computational capabilities, new methods for dynamic stability quantification have been explored
that seek to leverage the high-dimensional aerodynamic data produced from CFD simulations to
compute dynamic stability behavior and address the limitations of linearized aerodynamics. The
objective of this work is to advance the quantification of dynamic stability behavior of blunt-body
entry vehicles by leveraging high-fidelity CFD data through Reduced Order Modeling (ROM).
ROMs are capable of leveraging high-fidelity aerodynamic data in a cost effective manner by
finding a low-dimensional representation of the Full Order Model (FOM). ROMs based on
Proper Orthogonal Decomposition (POD) have shown success in recreating CFD analyses of
parametric ROM applications and time-varying ROM applications. Results of this research
demonstrated success in constructing two ROMs of a notional blunt-body entry vehicle to
recreate heatshield and backshell pressure distributions from forced oscillation trajectories.
The ROM was more successful at reconstructing the heatshield pressure distribution, with
challenges arising in predicting the chaotic response of backshell latent coordinates.

I. Nomenclature

𝐴 = Amplitude of the forcing function
𝐴𝑖 = Batch set of the snapshot matrix
𝐶𝐹𝑥

= Force Coefficient in the x-direction
𝐶𝐹𝑦

= Force Coefficient in the y-direction
𝐶𝐹𝑧

= Force Coefficient in the z-direction
𝐶𝑀𝑥

= Moment Coefficient in the x-direction
𝐶𝑀𝑦

= Moment Coefficient in the y-direction
𝐶𝑀𝑧

= Moment Coefficient in the z-direction
𝐶𝑃 = Coefficient of Pressure
𝑑 = ROM dimension
𝑓 = Generic function operator
𝑓 ∗ = Dimensional frequency of forcing function
ff = Forget Factor of Streaming Singular Value Decomposition
g = Regression function operator
i, j = Generic indices
𝑘 = preserved left singular vectors
𝑀∞ = Mach number
𝑚 = Number of snapshots
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𝑛 = Degrees of Freedom of samples
p = Vector of design variables
𝑟 = Covariance matrix rank
S = Data Covariance Matrix
𝑡∗ = Dimensional time
𝑣 = Number of validation snapshots
X = Matrix of snapshots
x = Single snapshot
Z = Matrix of latent coordinates
z = Single latent coordinate
𝛼 = Angle of Attack
¤𝛼 = Rate of Change of Angle of Attack
𝛿 = Desired information content
` = Average of the Input Snapshot Matrix
𝜎 = Singular value
Φ = POD Mode Matrix
𝜙 = POD mode
ANN = Artificial Neural Network
ASDL = Aerospace Systems Design Laboratory
CFD = Computational Fluid Dynamics
DOF = Degrees-of-Freedom
DR = Dimensionality Reduction
EDL = Entry, Descent, and Landing
FF-CFD = Free-Flight Computational Fluid Dynamics
FOM = Full-Order Model
FUN3D = Fully-Unstructured Navier-Stokes 3D
MAE = Mean Absolute Error
PCA = Principal Component Analysis
POD = Proper Orthogonal Decomposition
RBD = Rigid Body Dynamics
RBF = Radial Basis Function
RIC = Relative Information Content
SIAD = Supersonic Inflatable Aerodynamic Decelerator
SVD = Singular Value Decomposition

II. Introduction

Entry, descent, and landing (EDL) is critical to successful planetary missions. EDL vehicles must be able to
withstand the stresses of entry, sufficiently slow down, and preserve the integrity of the landed payload. For decades,

the solution has been the blunt-body entry vehicle, which is capable of generating the large amounts of drag necessary
for atmospheric entry, and dissipating the heat of entry over a large area. The heatshield shape is selected based on
heating and stability constraints [1], whereas the backshell shape is selected based on packaging and mass requirements
of the vehicle payload.

Blunt-body entry vehicles can be dynamically unstable in the supersonic to transonic flight regimes, becoming
more unstable as the vehicle decelerates [1]. This is a well-documented, and undesired behavior resulting from
unsteady recirculating wake combined with deceleration and oscillations of the vehicle [2]. Understanding the physical
phenomena that drives blunt-body dynamic instability is a major research effort [3–6]. Physical tests, the accepted
way to quantify dynamic stability of blunt-body entry vehicles, range from forced oscillation tests, free-oscillation
tests, free-flight wind tunnel tests, and ballistic range tests [1, 7–10]. In addition to flight testing, Computational
Fluid Dynamics (CFD) simulations are a growing area of research in dynamic stability quantification, often used to
supplement dynamic stability data [4, 7, 11–17]. Deciphering dynamic stability coefficients from testing methods is a
complex task. Linear and quasi-static assumptions are made, and a functional form is utilized to determine dynamic
stability coefficients via trajectory-fitting techniques [1]. Assuming the dynamic behavior of the capsule is linear and
quasi-static may be flawed, as literature has noted the nonlinear dynamic nature of these vehicles [7]. Therefore, there is
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a need to develop new methodologies to quantify the dynamic behavior of entry capsules.
Research efforts in dynamic stability quantification have been focused on finding innovative ways to quantify

blunt-body dynamic stability, moving away from traditional, linearized functional forms. McKown et al. (2022) used
1-degree-of-freedom (1DOF) Free-Flight CFD (FF-CFD) to generate vehicle trajectories of the Genesis entry capsule
to investigate the use of non-linear pitch damping coefficient curves [18]. Results showed improved performance
on predicting vehicle dynamic stability coefficients using inverse estimation methods [18]. Ernst et al. (2023) used
feed-forward and time-delay neural networks to predict dynamic stability coefficients of a Supersonic Inflatable
Aerodynamic Decelerator (SIAD) using data generated by a CFD-rigid body dynamics (RBD) modeling framework [13].
The neural networks outperformed the traditional limit cycle analysis outlined in [1] when used to predict aerodynamic
coefficients [13], indicating the benefit of a lack of functional form.

Analytical functional forms limit model accuracy and expressiveness by assuming the vehicle response can be
isolated to a coefficient response from a data fit surrogate model. It is possible that the dynamic response of entry
capsules cannot be isolated to coefficients; thus, developing advanced functional forms won’t be enough. Existing data
reduction techniques omit the rich data that can be obtained from CFD simulations. This aerodynamic information
could be critical to discovering new methods for dynamic stability quantification. To avoid traditional data fit methods
and discover new methods for expressing the dynamic response of entry capsules, the rich data produced from CFD
simulations should be leveraged.

Reduced Order Modeling (ROM) is a form of surrogate modeling with the ability to leverage high-fidelity aerodynamic
data in a computational efficient manner [19–25]. In a single model, a ROM can produce a field of responses, mimicking
the results produced by CFD simulations [25]. ROMs handle the size and complexity of aerodynamic data by finding a
low-dimensional representation of the data called the latent space that captures fundamental features of the original
high-dimensional data [19, 26]. This latent space can be leveraged to make predictions of the high-dimensional field at
unseen parameter points [19]. In general, ROMs are classified in one of two ways: intrusive, and non-intrusive [19, 27].
Intrusive ROMs are provided the governing equations used to generate the Full Order Model (FOM), often requiring
modifications to source code to enable their use [28–31]. Non-intrusive ROMs are a data-driven method that only
require the input and output data for training, a favorable characteristic in aerospace applications that often leverage
"black box" analysis codes [19, 32].

ROMs have been applied to numerous applications similar to the blunt-body entry vehicle problem, including
vortex shedding behind a rotating cylinder [33], turbulent flows [34], axisymmetric turbulent wake behind a disk [35],
parametric applications in compressible flow [20], and unsteady aerodynamics [36]. ROM literature primarily focuses
on modeling two types of fluid flows: parametrically varying fluid flows, and time-varying fluid flows. Parametrically
varying ROMs focus on the parametric prediction of steady flow fields, most commonly varying Mach and angle of attack
(𝛼) [27]. Examples of Parametric ROMs include airfoils at different Mach and 𝛼 configurations [19, 20, 22, 37–40],
hypersonic aerodynamics [23] and rotorcraft aerodynamics [41]. Time-varying ROMs focus on decomposing unsteady
fluid flows, focusing on modal decomposition and identifying dominant structures in the flow. Examples of time-varying
ROMs include cylinder wakes [33, 42–44], aeroelastic analysis [45], and wind turbine analysis [46, 47]. Literature
combining parametric and time-varying ROMs, a critical capability when developing a entry vehicle ROM to predict the
dynamic response of the vehicle at different vehicle states, is an emerging area of research. Constructing a parametric
and time-varying ROM of an entry capsule will enable the dynamic prediction of aerodynamic fields, providing
time-accurate predictions of the vehicle response in a computationally efficient manner. Applications of parametric
ROMs and time-varying ROMs have leveraged Principal Component Analysis (PCA), also called Proper Orthogonal
Decomposition (POD). POD is a linear Dimensionality Reduction (DR) technique that uses eigenvalue decomposition
to determine the dominant features present in the data [48]. POD is capable of deciphering spatial structures present
in the FOM when leveraged in parametric ROMs, and is capable of deciphering temporal structures of a FOM when
applied in time-varying ROMs [44].

The objective of this research is to advance the ability to quantify dynamic stability of blunt-body entry vehicles
by leveraging high-fidelity CFD data using a parametrically time-varying POD ROM. The remainder of this paper is
organized into six sections. The third section outlines more specifics on the ROM methodology begin applied in this
research. The fourth section describes the application being tested to demonstrate this methodology. The fifth section
shows the results of the research. The sixth section summarizes the conclusion and lists future work in this research area.
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III. Reduced Order Modeling Methodology
This section outlines the ROM methodology and necessary mathematical formulations of developing a parametrically

time-varying POD ROM of an entry capsule. A ROM can be divided into 4 main parts: training data generation,
DR, interpolation or regression, and back-mapping. Each part of the ROM will be summarized below, outlining any
necessary mathematical formulations for implementation.

A. Training Data Generation
The first step is to identify the input state space to be represented by the ROM. CFD simulation enables the sampling

of pressure and shear distributions across the vehicle as a result of the flow field. Previous studies have demonstrated
ROM’s abilities to capture and predict flow features in blunt-body wakes [20, 33–35, 49]. The off-body flow features
contain complex structures, including shocks and expansions in the supersonic flow regime, that can be difficult for ROMs
to capture and may require significantly more training samples to resolve the underlying behavior to an appropriate level
of accuracy [19]. The outer flow field (e.g. wake, and far-wake flow field) leaves a footprint of the complex interactions
on the vehicle surface, impacting the resulting surface pressure and shear distributions. These distributions ultimately
produce the forces and moments that drive the vehicle dynamics. Therefore, if the pressure and shear distributions on
the vehicle’s surface can be generated by the ROM, then the time-accurate vehicle dynamics can be predicted. Initially,
this research will focus on developing a ROM capable of predicting surface pressure distributions for an entry capsule.
The synthesized methodology will be equally applicable for reconstructing surface shear distributions in future work.

Next, the parameters of the vehicle input state space need to be identified, establishing the upper and lower bounds
that need to be sampled. This research will focus on an entry capsule input space with a constant Mach number, varying
in angle of attack, 𝛼, and rate of change of angle of attack, ¤𝛼. This input space will be generated by sampling forced
oscillation CFD simulations. Forced oscillation is a dynamic testing technique where the vehicle is "forced" through
prescribed oscillatory motions, most commonly by simulated sinusoidal motion [1, 50]. The forced oscillation motion
will be simulated using Fully Unstructured Navier-Stokes 3D (FUN3D), a CFD solver developed by NASA Langley
Research Center [51]. In FUN3D, the vehicle motion in forced oscillation is controlled by:

𝛼(𝑡) = 𝐴 sin(2𝜋 𝑓 ∗𝑡∗) (1)

the resulting ¤𝛼 is given by integrating Equation 1:

¤𝛼(𝑡) = 2𝜋 𝑓 ∗𝐴 cos(2𝜋 𝑓 ∗𝑡∗) (2)

where 𝐴 is the amplitude of oscillation, 𝑓 ∗ is the dimensional frequency of oscillation, and 𝑡∗ is the dimensional time.
Through combinations of 𝐴 and 𝑓 ∗, a series of trajectories can be simulated spanning an [𝛼, ¤𝛼] state space of the entry
vehicle. Each sampled time step in a CFD simulation provides a single snapshot for the input matrix of the ROM.
Therefore, a single forced oscillation trajectory can provide thousands of parametrically time-varying snapshots for the
ROM to train with.

B. Dimensionality Reduction
After generating the training set of data, a DR technique must be selected to construct the low-dimensional space of

the ROM. DR is a form of unsupervised machine learning where high-dimensional data is projected into the latent
space that preserves some quality of the original data [19]. POD, also referred to as Principal Component Analysis
(PCA) or Karhunen-Loève Decomposition, is the most commonly applied DR technique in literature [48]. POD was
first introduced as a mathematical technique to extract structures present in turbulent fluid flows [48]. An objective
algorithm in POD decomposes the FOM into a minimal number of modes, or basis functions, that capture the highest
amount of energy of the FOM [48]. This research will implement a non-intrusive, or data-driven, variant of POD called
snapshot POD. The original derivation of POD by Berkooz et al. can be found in [34].

From the sampled forced oscillation simulations, an input snapshot matrix X is generated with 𝑚 snapshots and 𝑛

degrees of freedom of the response variable of interest. In this entry vehicle ROM, 𝑚 represents the number of samples
of the CFD simulation, and 𝑛 represents the number of degrees of freedom of the pressure data. For this application, the
pressure data is being calculated at discretized points associated with the CFD grid. Depending on the sampled CFD
solver, the CFD grid can produce pressure data associated with grid cells or grid nodes. The 𝑛 dimension of the input
snapshot matrix quickly becomes large in entry vehicle applications due to CFD grid sizes. FUN3D is a node-based
CFD solver [51]; therefore in this application, 𝑛 represents the number of nodes on the vehicle surface, with each node
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producing a 𝐶𝑃 value to be predicted by the ROM. The result of the CFD simulations is X = [x1, ..., x𝑚] ∈ R𝑛𝑥𝑚.
Before applying POD, X is mean centered, resulting in [19]:

x̄ =
1
𝑚

𝑚∑︁
𝑗

x 𝑗 = 0 (3)

POD projects the high-dimensional snapshot matrix X into the low-dimensional latent space spanned by orthonormal
basis vectors called modes [19]. The columns of the mode matrix, 𝚽, consist of a set of orthonormal modes,
𝚽 = [𝝓1, ..., 𝝓𝑑] ∈ R𝑛𝑥𝑑 , where 𝑑 defines the dimension of the latent space and number of preserved modes [19]. By
optimizing the Rayleigh quotient [52]:

𝑚𝑎𝑥𝝓 𝒋

𝝓𝑻𝒋 𝑺𝝓 𝒋

𝝓𝑻𝒋 𝝓 𝒋
(4)

the number of preserved POD modes can be determined, where 𝑺 = 1
𝑚
𝑿𝑿𝑻 is a sample data covariance matrix [19].

The mode matrix 𝚽 is calculated by performing Singular Value Decomposition (SVD) on the input snapshot matrix 𝑿
[19]:

𝑿 = 𝑼𝚺𝑽𝑻 (5)

where 𝑼 ∈ R𝑛𝑥𝑛, 𝑽 ∈ R𝑚𝑥𝑚, and 𝚺 = 𝑑𝑖𝑎𝑔(𝜎1, ..., 𝜎𝑟 ) ∈ R𝑛𝑥𝑚 such that 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑟 ≥ 0 and 𝑟 = 𝑚𝑖𝑛(𝑛, 𝑚)
[19, 31]. The eigenvectors of 1

𝑚
𝑿𝑻 𝑿 are the columns of 𝑽, and the eigenvectors of 1

𝑚
𝑿𝑿𝑻 are the columns 𝑼, with

corresponding eigenvalues defined by 𝜎2
1 , ..., 𝜎

2
𝑝 [19].

The main challenge in POD is that SVD can be computationally expensive with large matrices. Traditional SVD
methods result in computation scaling with 𝑂 (𝑛𝑚2), requiring 𝑂 (𝑛𝑚) of memory [53]. Recall in this entry capsule
problem, 𝑛 represents the number of nodes on the surface of the vehicle, and 𝑚 represents the number of snapshots or
CFD samples. To improve the computationally efficiency of the SVD component in POD, a streaming SVD algorithm
developed by Maulik and Mengaldo (2021) [53] was implemented. Instead of performing SVD on the full input matrix
X, a QR-decomposition is applied to a batch set of data, 𝐴𝑖 , and then SVD is applied to the resulting upper triangle
matrix, 𝑅 [53]. Additionally, the user specifies a value 𝑘 to define the amount of preserved left singular vectors or largest
coherent structures to preserve, and a forget factor, 𝑓 𝑓 ∈ [0, 1], to control the effect of older batches on the final result
of the streaming SVD [53]. For specifics on the streaming SVD algorithm, see references [53, 54]. In this application,
𝑓 𝑓 = 1.0 so that the SVD utilizes all the batches equally [53]. Due to the significant number of unsteady time steps
being sampled to construct this ROM, a value 𝑘 is selected where 𝑘 << 𝑚 and 𝑘 > 𝑑 to preserve as much variance as
possible in each batch before optimizing the number of preserved POD modes. The streaming SVD method reduces the
computation cost of SVD to 𝑂 (𝑛𝑚𝑘) operations and 𝑂 (𝑛𝑘) of memory, enabling the rapid eigenvalue decomposition of
the entry capsule input snapshot matrix [53].

The columns of𝑼 represent the POD modes, 𝝓 𝑗 [19]. A low-rank matrix𝑼′ ∈ R𝑛𝑥𝑑 can be obtained by determining
a rank 𝑑 where 𝑑 < 𝑟 [52]. This is achieved by arranging the 𝚺 and the corresponding columns of 𝑼 in descending
order, then preserving the first 𝑑 columns of 𝑼 that correspond to the largest singular values in 𝚺 [19]. The Relative
Information Content (RIC) of including 𝑑 basis vectors in a reduced rank model is defined as [19, 52]:

𝑅𝐼𝐶 (𝑑) =
∑𝑑

𝑖=1 𝜎
2
𝑖∑𝑟

𝑗=1 𝜎
2
𝑗

(6)

The number of basis vectors 𝑑 to be preserved in a POD approximation must be specified by the user [19]. The desired
information content 𝛿 ∈ [0, 1] is selected, resulting in the preservation of 𝑑 basis vectors that achieve 𝑅𝐼𝐶 (𝑑) ≥ 𝛿

[19, 31]. In literature, values of 𝛿 ≥ 0.99 are commonly seen [19, 40]. After selecting the number of preserved modes,
the latent space coordinates can be calculated by 𝒁 = 𝚽𝑻 𝑿, where the matrix 𝒁 = [𝒛1, ..., 𝒛𝑚] ∈ R𝑑𝑥𝑚 [19]. The latent
space matrix 𝒁 can become increasingly large as thousands of 𝑚 snapshots are provided by forced oscillation CFD
simulations, regardless of the amount of POD modes identified by DR.

C. Interpolation or Regression
After the latent space matrix 𝒁 is generated, a parametric mapping is generated that can be used to predict unsampled

latent space coordinates [19]. Interpolation or regression functions, 𝑔𝑖 , are trained using input state space variables, 𝒑
to predict coordinates in the latent space 𝒛𝒊 , resulting in 𝑔𝑖 : 𝒑 ↦→ 𝒛𝒊 [19]. With this research, the input state space, 𝒑, is
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composed of 𝛼 and ¤𝛼 pairings. These pairings are mapped to the generated latent space coordinates, allowing for the
parametric prediction of unsampled latent space coordinates. A variety of interpolation and regression models have
been used in ROM literature, including cubic splines [20], Radial Basis Functions (RBFs) [23, 40], Kriging [19], and
Artificial Neural Networks (ANNs) [55]. In this research, a Kriging regressor with a Mátern 3/2 kernel optimized with a
maximum log-likelihood criterion was leveraged to predict unseen latent coordinates [56].

D. Back-mapping
Leveraging the regression to predict an unsampled design point, 𝒑∗, the predicted latent space coordinates can be

transformed into the FOM through back-mapping techniques. By implementing POD as the DR technique, back-mapping
is achieved by the linear projection 𝒙( 𝒑∗) = 𝚽𝒛( 𝒑∗) [19]. This relationship makes POD a favorable DR method, as
there is a direct linear relationship between the latent coordinates and the full order space [19]. The resulting ROM
from the established mathematical formulations is of the form shown in Equation 7. This equation summarizes the
linear relationship between POD modes and the overall response of the ROM.

𝒇 (𝒙; 𝒑) = 𝝁(𝒙) +
𝑑∑︁
𝑖=1

𝑧𝑖 ( 𝒑)𝝓𝑖 (𝒙) = 𝝁 +𝚽𝒛 (7)

E. Evaluating the ROM Performance
To evaluate the accuracy of the ROM, a validation forced oscillation trajectory is generated, resulting in 𝑣 validation

points. The predictive accuracy of the ROM is evaluated across the the validation trajectory using a series of quantitative
and qualitative metrics. The total Mean Absolute Error (MAE) is used to assess the accuracy of the ROM at predicting
the entire field and is calculated using:

𝑀𝐴𝐸𝑡𝑜𝑡𝑎𝑙 =

∑𝑣
𝑗=1 |𝒙 𝒋 ( 𝒑

∗) − 𝒙∗𝒋 |
𝑣

(8)

where 𝒙 𝑗 ( 𝒑∗) is the predicted field at the unsampled vehicle state, and 𝒙 𝑗 is the actual field at the unsampled point. The
main sources of error in the ROM can be decomposed into two main sources: compression error and regression error.
The compression error measures the error that is incurred when a FOM solution is projected into the ROM subspace,
which can be computed using:

𝑀𝐴𝐸𝑐𝑜𝑚𝑝 =

∑𝑣
𝑗=1 |𝚽𝚽𝑻 𝒙∗𝒋 − 𝒙 𝒋 |

𝑣
(9)

where 𝚽𝚽𝑇𝒙∗
𝑗

is the reconstructed field using the POD modes, and 𝒙 𝑗 is the original field from the FOM. The
regression error measures the accuracy with which the regression is able to predict the latent space coordinates at unseen
points, and is generated using:

𝑀𝐴𝐸𝑟𝑒𝑔 =

∑𝑣
𝑗=1 |𝒛 𝒋 ( 𝒑∗) − 𝒛 𝒋 |

𝑣
(10)

where 𝒛 𝑗 ( 𝒑∗) is the predicted latent coordinates an unsampled vehicle state, and 𝒛 𝑗 is the actual latent coordinates of
the unsampled vehicle state. By splitting up the error between compression and regression, the ROM can be evaluated
in a modular manner to assess the accuracy of each process.

Additionally, aerodynamic coefficients 𝐶𝐹𝑥
, 𝐶𝐹𝑦

, 𝐶𝐹𝑧
, 𝐶𝑀𝑥

, 𝐶𝑀𝑦
, and 𝐶𝑀𝑧

can be calculated by integrating the
predicted ROM pressure field and comparing the results to the aerodynamic coefficients generated by FUN3D. Due
to the forced pitching motion of the entry capsule, only 𝐶𝐹𝑥

, 𝐶𝐹𝑧
, and 𝐶𝑀𝑦

will result in coherent trends. The other
coefficients will only be a function of the chaotic nature of the wake; therefore, they will not be reported. Additionally,
the predicted flow field and actual flow fields can be compared visually and analytically to demonstrate the effectiveness
of the ROM to generate the unsampled flow field.

IV. Application: Genesis Sample Return Capsule (SRC)
To achieve the objective of this research of advancing the ability to quantify dynamic stability of blunt-body entry

vehicle, an application or test case needs to be identified. This research will use the Genesis Sample Return Capsule
(SRC) to construct a ROM using the methodology outlined in the previous section. Figure 1 shows a breakdown of the
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Genesis SRC. Ballistic range testing identified dynamic instabilities, including a tumbling risk of the vehicle during
longer flights [57]. Using the Genesis SRC as a test case for the ROM allows the results to be compared to ballistic
range results, and compared to other ongoing studies on the Genesis SRC.

Fig. 1 Genesis Entry Vehicle [58]

Fig. 2 Genesis Quarter Grid [59]

The CFD data for this ROM was generated by Willier et al. using an outer mold line provided by the NASA Langley
Research Center [59]. The CFD grid totaled 53.8 million tetrahedral nodes [59]. More details about grid refinement and
grid structure can be found in [59]. This grid results in 103,856 nodes on the vehicle surface used to track pressure data.
Figure 3 shows the forced oscillation input state space sampled in this research. Table 1 summarizes the amplitude
and frequencies used to generate the input space. Each forced oscillation CFD simulation was simulated at 𝑀∞ = 1.5
and run for 20,000 time steps with Δ𝑡∗ = 582.9 𝑛𝑠 between each snapshot, resulting in 4 periods of oscillation. The
first 5,000 time steps, 1 period of oscillation, of each sampled trajectory were removed from the data set to eliminate
transients present in the CFD solution. A grand total of 240,000 snapshots of surface pressure data were generated from
the forced oscillation CFD simulations.

Fig. 3 Input State Space of Sampled forced oscillation CFD Simulations

Two ROMs were generated: a heatshield ROM, and a backshell ROM. Splitting the data aids in reducing the
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Table 1 Summary of forced oscillation CFD Simulation Settings

Frequency, 𝑓 ∗ (Hz) Amplitude, 𝐴 (deg) Classification
343.11 5 Training

6 Training
7 Training
8 Training
9 Training
10 Validation
11 Training
12 Training
13 Training
14 Training
15 Training

686.22 5 Training
7.5 Training
10 Training

12.5 Training
15 Training

dimensionality of each ROM, and isolates the contribution of the heatshield and backshell pressure fields on the overall
vehicle aerodynamic response. The same ROM methodology was applied to the heatshield and the backshell, the only
difference being the 𝑅𝐼𝐶 used for each ROM. Each input snapshot matrix was composed of CFD data from every 10𝑡ℎ
CFD time step. The data provided by the 𝐴 = 10◦, 𝑓 ∗ = 343.11𝐻𝑧 forced oscillation trajectory was used as a validation
data set, and was not included in the input snapshot matrices. The resulting snapshot matrix dimensions are summarized
in Table 2.

Table 2 ROM Snapshot Matrix Dimensions

Component Grid Nodes (𝑛) Snapshots (𝑚)
Heatshield 39,988 22,500
Backshell 63,868 22,500

V. Results
Figure 4 shows the RIC plot for the constructed POD ROMs of the Genesis SRC heatshield and backshell. This plot

indicates the variance is stored in each mode, and the necessary number of modes to achieve the specified 𝑅𝐼𝐶. Figure
4(a) shows that 10 modes are required to achieve an 𝑅𝐼𝐶 ≥ 0.999. Figure 4(b) shows that 46 modes are required to
achieve an 𝑅𝐼𝐶 ≥ 0.99. A lower 𝑅𝐼𝐶 was selected for the backshell ROM to minimize the computational requirements
of training the regression on the backshell latent space. A significant amount of compression can be achieved using
POD with streaming SVD. The MAE for the compression step was calculated using Equation 9. The true mean across
all the heatshield nodes is 0.7535, with the MAE at each node ±0.0018 𝐶𝑃 units. The true mean across all the backshell
nodes is −0.3064, with the MAE at each node ±0.0012 𝐶𝑃 units. These metrics are summarized in Table 3.

Figure 5 show a visualization of the first three POD modes on the heatshield of the vehicle. In total, there are 10
modes being utilized to reconstruct the FOM of the heatshield. The modes are linearly combined through inverse
transformation relationships to build the FOM. POD modes are orthogonal allowing a ranking to be obtained by the
modes according to how much variance is capture in each mode. Therefore, the first three modes shown below are the
modes displaying the highest amount of variance in the model. Visualizing the POD modes provides an understanding
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(a) Heatshield, 𝑅𝐼𝐶 ≥ 0.999 (b) Backshell, 𝑅𝐼𝐶 ≥ 0.99

Fig. 4 RIC Plot for Pressure ROM

of what behaviors the ROM is capturing in the data set. Figure 6 show a visualization of the first three POD modes on
the backshell of the vehicle. In total, 46 modes are linearly combined to reconstruct the backshell pressure fields POD
modes represent the dominate structures in the data that were recovered through DR. While literature notes that POD
modes can represent non-physical features [44], these modes could provide insight into the root-cause of the dynamic
response of entry capsules.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Fig. 5 First 3 POD Modes for Heatshield ROM

(a) Mode 1 (b) Mode 2 (c) Mode 3

Fig. 6 First 3 POD Modes for Backshell ROM
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Figure 7 shows the first three latent coordinates for the heatshield ROM. Latent coordinates are generated by the dot
product of the POD modes and the input snapshot matrix. Latent coordinates are organized in the order of maximum
information content stored; therefore, latent coordinate 1 contains the most energy of the system, and the subsequent
latent coordinates contribute less energy. The first three latent coordinates display noticeable functional behaviors, a
strong indicator a regression can be fit successfully to these coordinates.

(a) Latent Coordinate 1 (b) Latent Coordinate 2 (c) Latent Coordinate 3

Fig. 7 First 3 Latent Coordinates for Heatshield ROM

Figure 8 shows the first three latent coordinates for the backshell ROM. The backshell latent coordinates display
a more chaotic response in all of the latent coordinates, compared to the functional response seen in the first three
heatshield latent coordinates. This is a direct result of the nature of vortex shedding and subsonic recirculation occurring
on the backshell. The chaotic behavior of the backshell latent coordinates will impact the regression stage of the
ROM and the ability to predict unseen latent coordinate values. The characteristics displayed in the latent space of
the heatshield and backshell align with literature about the chaotic aerodynamic interactions on entry capsules. In
supersonic flow, the bow shock at the front of the vehicle streamlines flow along the heatshield [7], making it easy to
isolate the oscillation the vehicle in the latent space. On the backshell, a low pressure region forms behind the shoulder
generating a recirculation region [7], resulting in a more chaotic response being picked up by the latent coordinates.

(a) Latent Coordinate 1 (b) Latent Coordinate 2 (c) Latent Coordinate 3

Fig. 8 First 3 Latent Coordinates for Backshell ROM

A Kriging regression was applied to the ROM to predict the unseen motion of a forced oscillation trajectory where
𝐴 = 10◦, 𝑓 ∗ = 343.11𝐻𝑧, resulting in 1,500 [𝛼 ¤𝛼] pairings to predict the full trajectory. The previously calculated POD
modes were applied to the CFD-generated pressure field data from FUN3D, generating the actual latent space of the
unseen motion. The Kriging regression was used to predict the unseen latent coordinates at each [𝛼 ¤𝛼] pair. Figure 9
shows the predicted vs actual plots of the first three latent coordinates of the heatshield ROM. As was hypothesized, the
Kriging regression could more easily recover the functional form of the first three latent coordinates. The MAE of the
regression is calculated using Equation 10. For the heatshield, the MAE is ±0.2031 latent coordinate units. Given the
scale of the latent coordinates shown in Figure 9, this value is well within acceptable bounds. This MAE is summarized
in Table 3.

Figure 10 shows the predicted vs actual plots of the first three latent coordinates of the backshell ROM. The Kriging
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(a) Latent Coordinate 1 (b) Latent Coordinate 2 (c) Latent Coordinate 3

Fig. 9 Predicted vs Actual of First 3 Latent Coordinates for Heatshield ROM

regression has a much harder time predicting the chaotic response of the backshell latent coordinates. This will
impact the ability to reconstruct an accurate pressure field using the backshell ROM. The MAE of the regression is
calculated using Equation 10. For the backshell, the MAE is ±0.1913 latent coordinate units. Given the magnitude of
the backshell latent coordinates shown in Figure 10, this MAE is more significant indicating a poor prediction by the
Kriging regression on the backshell. This MAE is summarized in Table 3.

(a) Latent Coordinate 1 (b) Latent Coordinate 2 (c) Latent Coordinate 3

Fig. 10 Predicted vs Actual of First 3 Latent Coordinates for Backshell ROM

Using linear transformations, the FOM can be reconstructed from the predicted latent coordinates. For each [𝛼, ¤𝛼]
pair in the 1,500 steps that make up the full trajectory, a pressure distribution is reconstructed. A percent difference
between the predicted pressure field and actual pressure field at each step is calculated, and then every step is averaged
together to condense the ROM accuracy into a single plot. Figure 11 shows the resulting percent difference of the
heatshield and backshell ROMs across all 1,500 snapshots in the predicted trajectory. Figure 11(a) shows that the
percent difference between the actual and predicted heatshield pressure fields is around 0-10%. The largest errors
appear at the shoulder of the vehicle. These discrepancies could be the result of complex aerodynamic interactions like
expansion waves that the ROM has challenges accurately predicting. The difference in the shoulder region could be a
result of the loss of fidelity as a result of DR, causing the low frequency modes contributing to the results of this region
to be discarded. It is also possible that the CFD grid leveraged in this research needs further refinement in the shoulder
region to improve the predictive capabilities of the ROM at the shoulder. The MAE of the total field was calculated
using Equation 8, with the mean of the heatshield field equal to 0.7539 and the MAE at each node equal to ±0.0034.
This is summarized in Table 3.

Figure 11(b) shows much larger discrepancies in the percent difference between the predicted vs actual pressure
distributions on the backshell. The percent difference range is lower than on the heatshield; however, there is more
significant regions of inaccuracies on the backshell. The first three latent coordinate predictions for the backshell
(shown in Figure 10) showed that the predicted latent coordinates are much different then the actual latent coordinates.
Therefore, the resulting predicted pressure fields will be different from the actual pressure fields. The mean of the total
backshell field is equal to −0.2952, with the MAE at each node equal to ±0.0103. This is summarized in Table 3.
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(a) Heatshield (b) Backshell

Fig. 11 Average Percent Difference Across 1,500 snapshots

Table 3 MAE Summary

Component Compression Error Interpolation Error Total Error
Heatshield 0.7535 ± 0.0018 0.0 ± 0.2031 0.7539 ± 0.0034
Backshell −0.3064 ± 0.0012 0.0 ± 0.1913 −0.2952 ± 0.0103

The predicted pressure field from the ROM can be integrated into resulting aerodynamic coefficients to explore the
accuracy of the predictive capabilities of the ROM. Additionally, it is critical that the ROM is capable of parametric
and time-varying prediction of aerodynamic coefficients to explore the dynamic response of the vehicle. Figure 12
shows the aerodynamic coefficient in the x-direction across the sampled trajectory. Figure 12(a) indicates that the
this aerodynamic coefficient can be accurately predicted for the heatshield across a validation trajectory, with subtle
discrepancies occurring at the peaks of the oscillation cycle. This is likely a result of discrepancies occurring in the
predicted latent space, specifically in the second latent coordinate where the predicted field around ¤𝛼 = 0 is noticeably
different than the actual latent coordinates (see Figure 9(b)). As expected, challenges in predicting the latent space
of the backshell propagate through the predicted pressure field, resulting in discrepancies in the predicted 𝐶𝐹𝑥

values
across the sampled trajectory for the backshell (shown in Figure 12(b)). However, the resulting aerodynamic coefficients
on the backshell are of a similar magnitude, indicating the ROM is doing a decent job in its predictions.

Figure 13 shows the aerodynamic coefficient in the z-direction across the sampled trajectory. As was seen with 𝐶𝐹𝑥
,

the heatshield coefficient (Figure 13(a)) was accurately predicted across the validation trajectory, with slight differences
occurring at peak oscillation amplitudes. The backshell coefficient (Figure 13(b)) was harder to accurately predict;
however, the magnitude of the response is still captured by the ROM.

Figure 14 shows the actual vs predicted aerodynamic moment coefficient in the y-direction for the heatshield and
backshell. Similar trends can be seen in 𝐶𝑀𝑦

, where the heatshield coefficients line up almost exactly, and the backshell
coefficients are of the same magnitude, but do not align as precisely as the heatshield. Only 𝐶𝐹𝑥

, 𝐶𝐹𝑧
, and 𝐶𝑀𝑦

are explored in this research because the data set was produced from purely pitching motion. The other resulting
aerodynamic coefficients display noisy behavior at significantly small magnitudes.

VI. Conclusion
The results of this research showed promise in using a POD ROM to quantify the dynamic aerodynamics of

blunt-body entry vehicles. POD leveraging streaming SVD increased computationally efficiency by reducing the large
input snapshot matrices of the heatshield and backshell into usable data. Kriging regression was used to predict unseen
latent coordinates, accurately predicting heatshield surface pressure distributions, but having more challenges predicting
backshell surface pressure distributions. The ROM was capable of accurately predicting pressure distributions on the
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(a) Heatshield (b) Backshell

Fig. 12 Actual vs Predicted 𝐶𝐹𝑥
Across the Validation Trajectory

(a) Heatshield (b) Backshell

Fig. 13 Actual vs Predicted 𝐶𝐹𝑧
Across the Validation Trajectory

(a) Heatshield (b) Backshell

Fig. 14 Actual vs Predicted 𝐶𝑀𝑦
Across the Validation Trajectory

heatshield for unsampled trajectories. The predicted pressure distributions on the backshell were less accurate, but
the magnitude of the aerodynamic response was captured. While the focus of this work was to predict the dynamic
response of an entry capsule, this methodology can also provide insight into the root cause of dynamic instabilities of
entry capsules. The latent space identified in DR isolated chaotic trends in the backshell data set, emphasizing the
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unsteadiness that contributes to the dynamic response of the vehicle. Additionally, while it is important to note that
POD modes are data driven and can sometimes represent non-physical phenomena, the POD modes could indicate
surface pressure field characteristics that are driving dynamic instabilities of blunt-body entry vehicles. The extracted
POD modes isolate high energy dimensions in the original data field, which might isolate dominate features leading to
dynamic instabilities, particularly on the backshell of the entry vehicle.

This research has many avenues of future work to improve and advance these capabilities. The first step is improving
the regression stage of the ROM. A Kriging regression has known computational limits, with the computational expense
scaling with 𝑂 (𝑚3) [56]. While a Kriging regression was implemented on this large data set, the amount of training
points is only expected to increase, increasing the burden on the regression. There is literature available that attempts
to approximate and scale Gaussian-process regressions [60–62], which can be implemented and leveraged in this
problem. Due to the chaotic nature of the backshell latent space, it is possible that additional information (e.g. flow field
information, input space parameters, sampled trajectories, higher RIC) would help improve the predictions. All these
avenues are being explored in future research. Additionally, this work was constructed on forced oscillation data, which
can produce an unrealistic vehicle behavior because the vehicle is being "forced" to move in a sinusoid behavior. Future
work in this research will apply this methodology to free-flight CFD data, progressing this methodology to represent
more physically consistent entry capsule behavior.
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