
Journal of Intelligent and Robotic Systems manuscript No.

(will be inserted by the editor)

Real-time Implementation and Validation of a New

Hierarchical Path Planning Scheme of UAVs via

Hardware-in-the-Loop Simulation

Dongwon Jung · Jayant Ratti · Panagiotis

Tsiotras

Received: date / Accepted: date

Abstract We develop a hierarchical path planning and control algorithm for a small

fixed-wing UAV. Incorporating the hardware-in-the-loop (HIL) simulation environ-

ment, the hierarchical path planning and control algorithm has been validated through

on-board, real-time implementation on a small autopilot. We present two distinct real-

time software framework for implementation of the overall control algorithms includ-

ing path planning, path smoothing, and path following. We especially emphasize the

use of a real-time kernel, which shows effectiveness and robustness in accomplishing

non-trivial real-time software environment. By a seamless integration of the control

algorithms with a help of real-time kernel, it has been demonstrated that the UAV

equipped with a small autopilot having limited computational resources manages to

autonomously accomplish the mission control objective of reaching the goal while avoid-

ing obstacles without human intervention.

Keywords Path planning and control · Hardware-in-the-loop simulation (HILS)

1 Introduction

Autonomous path planning and control for small UAVs imposes severe restrictions on

control algorithm development, stemming from the limitations imposed by the on-board

hardware and the requirement for real-time implementation. This is especially the case

when a low-cost micro-controller is utilized as an embedded controller for a small UAV.

In order to overcome these limitations, developing a computationally efficient algorithm

is imperative that the vehicle makes use of the on-board computational resources wisely.

Due to the stringent operational requirements and the restrictions imposed on

UAVs, a complete solution to fully automated path planning and control of UAVs is a

Dongwon Jung
E-mail: dongwon.jung@gatech.edu

Jayant Ratti
E-mail: jratti@gatech.edu

Panagiotis Tsiotras
E-mail: tsiotras@gatech.edu
Georgia Institute of Technology, Atlanta, GA, 30332-0150

2

Path Planning Wavelet decomposition
A* Graph Search

Path Smoothing B-splines
Path templates

Path Following Backstepping
Parameter adaptation

Autopilot Estimation filters
Low level controllers

Discrete path sequence

Local smooth path reference

Roll angle command

Aircraft dynamics

Current position
Goal position

Fig. 1 Block diagram for control hierarchy of the proposed path control algorithm.

difficult undertaking. Rather, hierarchical structures have been effectively applied for

many control system, in that an entire control problem can be subdivided into a set of

sub-control tasks, which allows not only straightforward design of control algorithms

for each modular control tasks but also simple, yet effective implementation in practice.

In this paper, a complete solution of the hierarchical path planning and control

algorithm, recently developed by the authors, is experimentally validated. The control

hierarchy consists of path planning, path smoothing, and path following, so that each

stage provides necessary commands to the next control stage in order to accomplish a

mission goal specified at the top level. The execution of the entire control algorithms

is demonstrated through a realistic hardware-in-the-loop simulation environment. The

overall control algorithms are coded in a micro-controller using a real-time kernel, in

order to schedule each tasks effectively by taking full advantage of provided kernel

services. We describe the practical issues associated with the implementation of the

proposed control algorithm, when taking into consideration the actual hardware limi-

tations.

2 Hierarchical Path Planning and Control Algorithms

In this section, we briefly describe a hierarchical path planning and control algorithm,

which has been recently developed by the authors that takes into account the limited

computational resources of the on-board autopilot.

Figure 1 shows the overall control hierarchy. It consists of path planning, path

smoothing, path following, and the low level autopilot. At the top level of the con-

trol hierarchy, the wavelet based path planning algorithm5 is employed to compute an

optimal path from the current position of the vehicle to the goal. The path planning

algorithm utilizes a multiresolution decomposition of the environment, such that a

coarser resolution (initially known) is used far away from the agent, whereas fine reso-

lution is used in the vicinity of the agent using on-board sensor data. The path planning

algorithm computes the path with the highest accuracy at the current location of the

vehicle, where is needed most. In conjunction with the adjacency relationship derived

3

from the direct use of the wavelet coefficients,5 a discrete path sequence is solved by

invoking the A∗ graph search algorithm.

The discrete path sequence is utilized by the on-line path smoothing algorithm6 to

generate a smooth reference path, which incorporates path templates comprised of a

set of B-spline curves. The path templates are obtained from an off-line optimization,

so that the resulting path stays inside a prescribed cell channel. The on-line implemen-

tation of the path smoothing algorithm finds the corresponding path segments over a

finite planning horizon with respect to the current position of the agent, and stitches

them together, while preserving the smoothness of the composite curve.

After a local smooth path reference is obtained, a nonlinear path following control

algorithm4 is applied to asymptotically follow the reference path constructed by the

path smoothing step. Assuming that the air speed and the altitude are constant, a

kinematic model is utilized to design a kinematic control law for heading rate command.

Subsequently, based on this kinematic control law, a roll command of the desired

heading rate is derived by taking into account the inaccurate system time constant.

Finally, an autopilot with on-board sensors that provides feedback control for atti-

tude angles, air speed, and altitude, implements the low-level inner loops for command-

ing each control surface to attain the roll angle steering, while keeping the altitude and

the air speed constant.

As shown in Fig. 1, at each stage of the hierarchy, the corresponding control com-

mands are obtained from the output of the previous stage, given the initial environment

information (e.g., a two dimensional elevation map). With the goal position specified

by the user, the hierarchical path planning and control algorithm allows the agent

to accomplish the mission to reach the goal, while avoiding obstacles without human

intervention.

3 Experimental Test-bed

3.1 Hardware description

A UAV platform based on the airframe of an off-the-shelf R/C model airplane has

been developed, to implement the hierarchical path planning and control algorithms

described above. The development of the hardware and software was done completely

in-house. The on-board autopilot is equipped with a micro-controller, sensors and ac-

tuators, along with communication devices that allow full functionality for autonomous

control. An 8-bit micro-controller (Rabbit RCM-3400 running at 30 MHz with 512 KB

ROM and 512 KB Flash ROM) is chosen as the brain of the autopilot, which shows

very limited computational throughput, as low as 7 [µsec] for floating-point multipli-

cation and 20 [µsec] for square root, as compared to a generic high performance 32 bit

micro-processor. The micro-controller provides data acquisition, processing, and com-

munication with the ground station. It also runs not only the estimation algorithms for

attitude and absolute position, but also the low-level control loops for attitude angles,

air speed, and altitude control. The on-board sensors include angular rate sensors for

three axes, accelerometers along all three axes, a three-axis magnetic compass, a GPS

sensor, and absolute and differential pressure sensor. For detail description about the

UAV platform and the autopilot can be found in Refs. [1, 2].

4

3.2 Hardware-in-the-loop simulation environment

A realistic hardware-in-the-loop simulation (HILS) environment has been developed

to validate the UAV autopilot hardware and software development utilizing Matlabr

and Simulinkr. A full 6-DOF nonlinear aircraft model is used in conjunction with

a linear approximation of the aerodynamic forces and moments, along with Earth

gravitational (WGS-84) and magnetic field models. Detailed models of the sensors and

actuators have been incorporated. Four independent computer systems are used in the

hardware-in-the-loop simulation (HILS) as illustrated in Fig. 2. A 6-DOF simulator,

the flight visualization computer, the autopilot micro-controller, and the ground station

computer console are involved in the simulation. Further details about the HILS set-up

can be found in Ref. [3].

Computer

Wireless RF Modem

HIL Bridge
(RS232)
BinaryStates

Control

autopilot

Visualization
(UDP)

Flight
Dynamics
Simulator

Flight
Dynamics

Visualization
RC to
USB

Adpator

900MHz
Wireless
Binary

Ground
Station

;FlightGear v1.9
;Cockpit view

;Matlab/Simulink
;6DOF nonlinear model
;Real-time simulation
;Remote pilot switching

;Flight control executable
- Inner/Outer loop controller
;Sensor data processing (20Hz)
;Communication to GS ;Ground station GUI

;Communication to autopilot
;Data logging / monitoring
;High-level controller

;RS232 Simulink library
;Real-time Simulink execution
;Bi-directional communication

Fig. 2 High fidelity hardware-in-the-loop simulation (HILS) environment for rapid testing of
the path planning and control algorithm

4 Real-time Software Environment

The software architecture of the on-board autopilot is shown in Fig. 3. It is comprised

of several blocks, so called tasks, allotted throughout different functioning layers such as

the application level, the low level control, the data processing level, and the hardware

level. The tasks in the hardware level, or hardware services, interact with the actual

hardware devices to collect data from sensors, to communicate to the ground station,

and to issue commands to the DC servo motors. The middleware tasks on top of the

hardware services provide the abstraction of the inbound and outbound data, supplying

the processed data on a globally shared data bus or extracting data from the global bus

to the corresponding hardware services. Utilizing the processed data on the globally

shared data bus, the lower level control layer achieves the basic control functions such as

estimation of attitude angles, estimation of the absolute position, and implementation

of the inner loop PID controllers. Finally, three application tasks, which correspond to

path planning, path generation, and path following are incorporated to implement the

hierarchical path planning and control algorithm described in Section 2. It should be

noted that a hierarchical control structure is implied in the application tasks, in the

sense that completion of the upper level task (when an event occurs) is necessary for

enabling the execution of a lower level task (event processed), by red dashed arrows

5

On-board
hardware

Hardware
level

(Services)

Processing
layer

(Middleware)

Low level
Control
layer

Application
level

Sensor Suites GPS receiver Wireless
modem DC Servos

Read
Sensors
(DAQ)

GPS packet
interface
(DAQ)

Analog Async
Serial

UART
interface

Serial w/
handshaking

Servo
drivers

Four PWMs

Signal processing
GPS data parsing

(PROC)
Build/Parse
data packets
(COMM)

Convert
PWMs
(SERVO)

Estimation
filters
(ESTI)

�����������		�
�

��������

Inner
loops
(CNTR)

System
Parameters
(PARAM)

Path
Following
Algorithm
(PFOL)

Path
Generation
Algorithm
(PGEN)

Path Planning
Algorithm
(PPLAN)

Map
data

On/Off
Set gains

On/Off
Set gains

Set zeros
Set trims
Hardiron

On/Off
Set gains

Trigger

: Events handler

Fig. 3 Software architecture of the on-board autopilot system of the fixed-wing UAV.

between each module that represent each event handlers. In Fig. 3, besides exchanging

the data via the global shared data bus, each task is managed from a global management

bus for triggering execution of tasks, initializing/modifying system parameters, etc.

The task management, known as task scheduling, is an important subject to at-

tain a seamless integration of the software, where an application contains multiple

tasks to perform. In practice, a processor can only execute one instruction at a time.

Thus, multitasking scheduling is necessary for embedded control system implementa-

tion where several tasks need to be executed while meeting real-time constraints. In

such an embedded system, more than one task, such as control algorithm implemen-

tation, hardware device interface, and so on, can appear to be executed in parallel.

Hence, the tasks need to be arranged in a timely fashion to meet the real-time criteria

of the specific control application.

4.1 Cooperative scheduling methods: Initial design

For the initial implementation, we developed a real-time control software environment

that is predominately based on cooperative scheduling. Cooperative scheduling is better

explained by a large loop containing small fragments of codes (tasks). Each task is

configured to voluntarily relinquish the execution when it is waiting, allowing other

tasks to execute. This way, one big loop can execute several tasks in parallel, while no

single task is busy waiting.

Like most real-time control problems, we let the big loop begin with waiting for a

trigger signal from a timer, as shown by red arrows in Fig. 4. In accordance with the

software framework of Fig. 3, we classify the tasks into three groups: routine tasks, ap-

plication tasks, and non-periodic tasks. The routine tasks are critical tasks required for

the UAV to perform minimum automatic control, which consists of the tasks of read-

ing analog/GPS sensors (DAQ), signal processing (PROC), estimation (ESTI), inner

loop control (CNTR), and servo driving (SERVO). The sampling period Ts is carefully

chosen not only to ensure the necessary computation time for routine tasks, but also

6

�������
�����
��������

����������

!��"�#�����
�����

$��%�����&�#
�����
�'�(���

����������

)
!
*

+
�
,
-

./�0 -$��

+1,' +2.$

3455
6
789:

+1,'

/

.
�
;
,

)
!
*

+
�
,
-

./�0 -$��

/

.
�
;
,

++'!$ <<=>?

0
)
'
.

0
)

'
.

@ABB
CDEFG

��H�

��H�

��H�

Ts

Tplan

∆T idle
min

Fig. 4 A real-time scheduling method combining cooperative and naive preemptive multi-
tasking.

to allow the minimum sampling period to capture the fastest dynamics of the system.

In order to attain real-time scheduling over all other tasks besides the routine tasks, a

sampling period of Ts = 50 [msec], or a sampling rate of 20 [Hz] was used. On the other

hand, some of the application tasks require substantial computation time/resources,

as they deal with complicated high level computational algorithms such as path plan-

ning (PPLAN), path generation (PGEN), and path following (PFOL). In particular, the

path planning algorithm in Ref. 5 turns out to have a total computation time greater

than the unit sampling period. As a result, in order to meet the real-time constraints,

we have fragmentized the execution of the computationally intensive task, PPLAN, by

several slices of code execution with a finite execution time T plan. The finite execution

time is selected a priori by taking into account both Ts and the (estimated) total ex-

ecution time of routine tasks, such that we want to maximize the use of the CPU to

complete the task PPLAN as soon as possible, while meeting real-time operation. Fi-

nally, non-periodic tasks such as communication (COMM) and user application (USER)

are executed whenever the CPU becomes available, ensuring the minimum idling time

∆T idle
min to allow the CPU to wait for another triggering signals.

Figure 5 shows a pseudo-code implementation of the proposed cooperative and the

preemptive scheduling scheme. Each costate realizes the cooperative scheduling, while

the slice statement realizes the preemptive scheduling in conjunction with the finite

execution window ∆T plan.

4.2 Preemptive scheduling methods: Final design

Given the tasks designed a priori in conjunction with an approximate knowledge of to-

tal execution time, cooperative scheduling using costate blocks was shown an effective

implementation in the previous section. However, it will become difficult for a program-

mer to schedule all tasks seamlessly when an application contains several tasks that are

sometimes unpredictable for their completion time. In contrast, it is possible to design

a cooperative scheduler by using conservative timing estimates for corresponding tasks

in a similar manner discussed in Sec. 4.1, rather resulting in poor performance with

respect to the overall completion time. It can be inferred that with a conservative esti-

7

main() {
while (1) {

costate {
Wait for timer(Ts);
Task DAQ;

Task PROC;

Task ESTI;

if (event(PFOL)) Task CNTR;

Task SERVO;

}
costate {

if (event(PGEN)) Task PFOL;

}
costate {

if (event(PPLAN)) Task PGEN;

}
costate {

Task COMM;

Task PARAM;

Task USER;

}
if (∆T idle > ∆Tplan) {

slice (∆Tplan, Task PPLAN);
}

}
}

Fig. 5 Pseudo-code implementation of the combined cooperative/preemptive scheduling
scheme for the hierarchical path planning and control algorithms.

mate of execution time for routine tasks, the portion of the computationally expensive

tasks remain fixed regardless of the CPU being idle for the rest of the sampling period.

This indicates that the CPU does not make full use of its capacity, hence delaying

the execution of the overall tasks with significant amount of time. The throughput

of the computationally intensive tasks may be improveed by employing a preemptive

multitasking scheduler7, because the kernel will have full access of CPU time and allot

the CPU to the lower level tasks whenver possible. Hence, it effectively minimizes the

CPU idle time and reduces the task completion time. In this section, we present a

new software framework for implementing the hierarchical path planning and control

algorithm shown in Sec. 2 using a preemptive real-time kernel, MicroC/OS-II.

The MicroC/OS-II is known to be a highly portable, low memory required, scalable,

preemptive real-time, multitasking kernel (RTOS) for small microcontrollers. Besides

a preemptive task scheduler which can manage up to 64 tasks, the MicroC/OS-II can

also provide general kernel services such as semaphores including mutual exclusion

semaphores, event flags, message mailboxes, etc. These services are especially help-

ful for a programmer to build a complex real-time software system by integrating

tasks seamlessly, simplifying the software structure using a stateflow diagram. The

MicroC/OS-II is compatible with the micro-controller (Rabbit RCM-3400), while al-

lowing small on-chip code size of the real-time kernel. The code size of the RTOS kernel

is about no more than 5 to 10 kBytes,7 which renders relatively small overhead around

5.26 % to the current total code size of 190 kBytes.

8

Table 1 List of tasks created in the real-time kernel.

Alias Description Priority Used stack
HILS Tx Sending back servo commands to the simulator 11 97
HILS Rx Reading sensor/GPS packets from the simulator 12 153

COMM Rx Uplink for user command from the ground station 13 70
COMM Proc Parsing the user command 14 145

ESTI Atti Attitude estimation task 15 266
ESTI Nav Absolute position estimation task 16 216

CNTR Inner loop control task 17 150
PFOL Nonlinear path following control task 18 464

COMM Tx Downlink to the ground station 19 104
PGEN Path generation task using B-spline templates 20 494
PMAN Control coordination task 21 152
PPLAN Multiresolution path planning task 23 445
STAT Obtaining run-time statistics 22 –

4.2.1 Real-time software architecture

The real-time software programming begins with creating tasks. For this research we

especially emphasize a real-time implementation of the path planning and control algo-

rithms using a hardware-in-the-loop scheme, thus new tasks which deal with additional

HILS communication need to be incorporated. The simulator transmits the emulated

sensor data to the micro-controller via serial communication. Hence, the sensor/GPS

reading task (DAQ) is substituted with the sensor data reading task (HILS Rx), which

continuously checks a serial buffer for incoming communication packets. In a same

token, the servo driving task (SERVO) is replaced by the command writing task

(HILS Tx), which sends back PWM servo commands to the simulator. On the other

hand, the communication task COMM is subdivided into three different tasks according

to respective roles for such as a downlink for data logging (COMM Tx), a uplink for user

command (COMM Rx), and user command parsing task (COMM Proc). In addition, we

create a PMAN task which coordinates the execution of the path planning and control

algorithms, thus directly communicating with PPLAN, PGEN, and PFOL, respectively.

Finally, a task STAT is created in order to obtain run-time statistics of the program

such as CPU usage and the execution time of each task, as a performance measure of

the real-time software. Table 1 itemizes the entire tasks created in the real-time kernel.

The MicroC/OS-II manages up to 64 distinct tasks of which the priority must

be uniquely assigned. Starting from zero, increasing number imposes lower priority

to be assigned to corresponding task. In particular, because the top/bottom ends of

the priority are reserved for internal kernel use, application tasks are required to have

priorities other than a priority level in this protected range. Following an empirical

convention of priority assignment, we assign the critical tasks with high priorities be-

cause they usually involve direct hardware interface. In order to minimize degradation

of the overall performance of the system, the hardware related tasks may need proper

synchronization with the hardware, hence demanding for an immediate attention. It

follows that routine tasks that are required for the UAV to perform minimum auto-

matic control such as ESTI Atti, ESTI Nav, and CNTR are given subsequent priorities.

Finally, application specific tasks such as PFOL, PGEN, and PPLAN are given lower

priorities, which implies that these tasks can be made run whenever the highest priority

tasks relinquish the CPU. Table 1 shows the assigned priorities for each task. Note that

9

the task COMM Tx is assigned with a lower priority, because this task is less critical

to the autonomous operation of the UAV.

Having the required tasks created, we proceed to design a real-time software frame-

work by establishing relationship between tasks using available kernel services: A

semaphore is utilized to control access to a globally shared object, in order to pre-

vent it from being shared indiscriminately by several different tasks. Event flags are

used when a task needs to synchronize with the occurrence of multiple events or rela-

vant tasks. For intertask communication, a mailbox is employed to exchange a message

to convey information between tasks.

Figure 6 illustrates the overall real-time software architecture for the autopilot. In

the diagram two binary semaphores are utilized for two different objects corresponding

to the wireless modem and a reference path curve, respectively. Any task that requires

getting access on those objects needs to be blocked (by semaphore pending) until

the corresponding semaphore is either non-zero or released (by semaphore posting).

Consequently, only one task has an exclusive access on the objects at a time, which

allows data compatibility among different tasks.

The ’flags’ are posted by the triggering tasks and are consumed by the waiting

tasks (arrow heads). All the significant data / flags are posted to the ’Global Data

Storage (White boxes)’ to be used by any task when required. (a) The ’checkered

boxes’ represent all the communication related tasks related to the HILS / Ground

Station control. (b) The ’grey boxes’ are responsible for processing the ’Math and

Controls’ involved in Navigation and Flight Stability. The thick ’white bus arrow’

emanating from the ’Parsing Command’ task constitutes a number of flags that are

posted based on the commands issued from the Ground Station. Also shown are the

’Mailboxes’ which are used to post messages by different tasks. The tasks pending on

the mailboxes are triggered on when an appropriate message is posted. The Ground

Station communicates with the UAV wirelessly as shown and the HILS is conducted

using wired serial ports between a simulator (computer) and the autopilot.

4.2.2 Benefit of using the real-time kernel

Robustness: The Real Time Kernel provides many error handling capabilities during

deadlock situations, we have been able to resolve the deadlocks using the timing features

of the Semaphore-Pend or Flag-Pend operations, wherein which we can factor in the

timing in-coherencies inherent in the resources sharing between tasks.

Flexibility and Ease of maintenance: The entire architecture for the autopilot’s

software has been designed keeping in mind the object oriented requirements of an

applications engineer. The Real Time Kernel has played a big part in achieving this

goal. The Architecture has been designed to keep the code flexible enough to add

Higher level Tasks like the Multi-resolution Wave-let path planning algorithms etc

without engrossing into the system level intricacies of handling and programming a

microcontroller/microprocessor. The Architecture’s flexibility also makes its extremely

efficient to debug faults in low-level / mid-level / high-level tasks without interfering

with the other tasks.

10

HILS_Rx

PPLAN

STAT

CNTR

COMM_Rx

PFOLESTI_Nav

PMAN

COMM_Proc

PGEN

GLOBAL
Data Storage

Global Flags Declaration

U
se

r
C

om
m

an
d

R
e f

. C
u r

ve

P
hi

 R
ef

Mode 0: Loitering
Mode 1: Regular

Goal

Postion to Go

Pa
th

 S
eq

ue
nc

e

S
er

vo
 P

W
M

s

ESTI_Atti

REAL TIME
KERNEL

 Event Flag

LEGEND

Flight
Dynamics
Simulator

HILS_Tx
Wireless RF Modem

900MHz
Wireless
Binary

Ground
Station

COMM_Tx

Wireless RF Modem

Con
tro

l S
ta

tu
s

R
ef

. c
ur

ve
up

da
te

Ref. curve

 Mailbox Post

 Mail box Semaphore

 Data Flow

C
on

tr
ol

co
m

m
an

d

Fig. 6 A entire real-time software architecture for the path planning and control of the on-
board UAV.

5 Hardware-in-the-loop Simulation Results

In this section we present real-time hardware-in-the-loop simulation results of the hi-

erarchical path control algorithm using a small micro-controller. Details of the imple-

mentation are discussed in the sequel.

5.1 Simulation scenario

The environment W is the elevation map of a certain area in US state. The environment

is assumed to be square of dimension 128×128 units, which corresponds to 9.6×9.6

km. Taking into account the available memory of the micro-controller, we choose the

fine resolution level as Jmax = 6 and the coarser resolution level as Jmin = 3. Cells

at the fine resolution have dimensions 150×150 meters, which is slightly larger than

the minimum turning radius of the fixed-wing UAV. The minimum turning radius is

11

A

B

C

D

E

F

G

H

I

p0

pf

pa

pb

Step Task description

A Initially, the UAV is loitering around the initial position with the circle radius Rl

B Calculate the the first path segment from p
0

to pa

C Break away from the loiter circle, start to follow the first path segment

D Calculate the second path segment from pa to pb, and a transient path connecting two paths
E UAV is on the transient path

F Calculate the third path segment, and a transient path
G UAV is approaching the goal position, no path calculated
H The goal is reached, end of the path control, get on the loitering circle

I UAV is loitering around the goal position pf

Fig. 7 Illustration of the real-time implementation of the proposed hierarchical path control
algorithm.

approximately calculated for the UAV flying at the constant speed of VT = 20 [m/sec]

with the bounded roll angle |φ| ≤ 30◦, resulting in Rmin ≈ 70 [meter].

The objective of the UAV is to follow a path from the initial position to the final

position while circumventing the obstacles over a certain elevation threshold. Figure 7

illustrates the detail on-line time implementation of the proposed path planning and

control algorithm. Initially, the UAV is loitering around the initial position p0 until

a local path segment from p0 to pa is computed (Step A,B). Subsequently, the path

following controller is engaged to follow the path (Step C,D). At step D, the UAV

replans to compute a new path from the intermediate location pa to the goal, resulting

in the second local path segments from pa to pb extracted from the path templates that

are derived from off-line optimization.6 The first and second path segments are stitched

by a transient B-spline path assuring the continuity condition at each intersection

points (marked by black squares). This process iterates until the final position pf is

reached (Step H), when the UAV engages to loiter around the goal location.

5.2 Simulation results

Figure 8 shows the simulation results of the hierarchical path control implementation.

Specifically, figures on the right side show the close-up view of the simulation. The

channels are drawn by polygonal lines, and the UAV smoothly follows the reference path

avoiding the possible obstacles outside the channels. Consequently, the UAV reaches

the final destination in a collision free manner, as seen in Fig. 9(f).

12

5.3 Real-time kernel run-time statistics

In order to evaluate and measure the performance of the real-time software framework,

we use different metrics available within the real-time kernel.

The amount of time for which the CPU is utilized by the kernel and tasks execution

can be retrived from the CPU usage metric, which is % duty cycle of the CPU, over

given statistics sampling interval. When high CPU demanding tasks such as PPLAN

and PGEN come into place, higher percentage CPU usage results in much quicker com-

pletion of these tasks. Hence, higher percentage CPU usage imply higher performance

and efficiency. Figure 10(a) shows this metric during the run-time.

6 Conclusions

We implement a hierarchical path planning and control of a small UAV on the actual

hardware platform. Based on the high fidelity hardware-in-the-loop (HIL) simulation

environment, the proposed hierarchical path planning and control algorithm has been

validated through the on-line, real-time implementation on a small autopilot. By a

seamless integration of the control algorithms for path planning, path smoothing, and

path following employing a combined cooperative/preemptive scheduling method, it

has been demonstrated that the UAV equipped with a small autopilot having limited

computational resources manages to accomplish the mission objective to reach the goal

while avoiding obstacles without human intervention. In the final version of the paper,

an implementation issue of employing a real-time OS, which incorporates fully preemp-

tive scheduling, will be dealt with to discuss the merit of using real-time OS such as

flexibility of task management, robustness of code execution, etc. A quantitative metric

will be also provided to show the improvement of using real-time OS, as compared to

the scheduling method described in Section 4.

Acknowledgements Partial support for this work has been provided by NSF award CMS-
0510259

References

1. Jung, D., Levy, E.J., Zhou, D., Fink, R., Moshe, J., Earl, A., Tsiotras, P.: Design and De-
velopment of a Low-Cost Test-Bed for Undergraduate Education in UAVs. In: Proceedings
of the 44th IEEE Conference on Decision and Control, pp. 2739–2744. Seville, Spain (2005)

2. Jung, D., Tsiotras, P.: Inertial Attitude and Position Reference System Development for
a Small UAV. In: AIAA Infotech at Aerospace. Rohnert Park, CA (2007). AIAA Paper
2007-2763

3. Jung, D., Tsiotras, P.: Modelling and Hardware-in-the-loop Simulation for a Small Un-
manned Aerial Vehicle. In: AIAA Infotech at Aerospace. Rohnert Park, CA (2007). AIAA
Paper 2007-2768

4. Jung, D., Tsiotras, P.: Bank-To-Turn Control for a Small UAV using Backstepping and
Parameter Adaptation. In: International Federation of Automatic Control (IFAC) World
Congress. Seoul, Korea (2008)

5. Jung, D., Tsiotras, P.: Multiresolution On-Line Path Planning for Small Unmanned Aerial
Vehicles. In: American Control Conference. Seattle, WA (2008)

6. Jung, D., Tsiotras, P.: On-line Path Generation for Small Unmanned Aerial Vehicles Us-
ing B-Spline Path Templates. In: AIAA Guidance, Navigation and Control Conference.
Honolulu, HI (2008). AIAA Paper 2008-7135

13

7. Labrosse, J.J.: MicroC/OS-II - The Real-Time Kernel, 2 edn. CMPBooks, San Francisco,
CA (2002)

14

0 50 100
0

20

40

60

80

100

120

(a) t = 64.5 [sec]

0 50 100
0

20

40

60

80

100

120

(b) t = 222.0 [sec]

0 50 100
0

20

40

60

80

100

120

(c) t = 333.0 [sec]

Fig. 8 Simulation results of the hierarchical path control implementation. Figures on the right
show the close-up view of the simulation. At each instant the channel is drawn by polygonal
lines, where the smooth path segment from the path templates stays. The actual path followed
by the UAV is drawn on top of the reference path.

15

0 50 100
0

20

40

60

80

100

120

(d) t = 429.0 [sec]

0 50 100
0

20

40

60

80

100

120

(e) t = 492.5 [sec]

0 50 100
0

20

40

60

80

100

120

(f) t = 591.5 [sec]

Fig. 9 Simulation results of the hierarchical path control implementation. (cont’d)

16

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

of samples

C
P

U
 u

sa
ge

 [%
]

CPU Usage

(a) CPU usage

20 40 60 80 100 120 140 160 180 200
60

70

80

90

100

110

120

130

140

150

160

of samples

of

 C
on

te
xt

 s
w

itc
h

Number of context switch per second

(b) Number of context switch per second

Fig. 10 Real-time kernel run-time statistics: CPU usage and number of context switch.

17

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

of samples

C
P

U
 r

at
io

 [%
]

CPU ratio between tasks

2

4

6

8

10

12

(a) CPU usage

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

of samples

A
ve

ra
ge

 T
E

T
 [m

se
c]

Average Task Execution Time

2

4

6

8

10

12

(b) Average tasks execution time

Fig. 11 Real-time kernel run-time statistics: Tasks execution time v/s CPU ratio

	Introduction
	Hierarchical Path Planning and Control Algorithms
	Experimental Test-bed
	Real-time Software Environment
	Hardware-in-the-loop Simulation Results
	Conclusions

