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SUMMARY

This dissertation focuses on democratizing security analysis of AI systems by improving
how people interpret attacks, quantify vulnerabilities, and protect AI from harm. Through
developing a foundational security framework for AI, our work accelerates research innova-
tions and increases education effectiveness by lowering the barriers to entry for people to
learn, design, develop, and test AI security techniques. Our interactive visualization systems
have significantly expanded the intuitive understanding of AI vulnerabilities. Our research
has produced novel defenses that have been tech-transferred to industry. Our scalable AI
security framework and research tools, becoming available to thousands of students, is
transforming AI security education at scale.

AI is now increasingly powering high-stakes applications, such as self-driving vehicles,
financial credit risk scoring and healthcare, which directly impact the safety, security and
well-being of humans. However, an expanding body of adversarial ML research has revealed
that AI models are highly vulnerable to malicious inputs, raising serious concerns about
deploying AI in such critical applications. Nevertheless, most adversarial ML techniques
often lack methods for interpretation which severely impairs people’s understanding of AI
vulnerabilities. Furthermore, adversarial ML research is still developing theoretically, with
a dearth of strong, practical solutions to defend real-world AI cyber-systems. Additionally,
the firehose of rapidly emerging adversarial ML research is creating huge barriers to entry
for newcomers, practitioners and researchers in this field.

This thesis addresses these fundamental challenges through creating holistic interpreta-
tion techniques for better understanding of attacks and defenses, developing effective and
principled defenses for protecting AI across input modalities, and building tools that enable
scalable interactive experimentation with AI security and adversarial ML research. This
thesis has a vision of enhancing trust in AI by making AI security more accessible and
adversarial ML education more equitable, while focusing on three complementary research
thrusts:

1. Exposing AI Vulnerabilities through Visualization & Interpretable Representations.
We develop intuitive interpretation techniques for deciphering adversarial attacks.

2. Mitigating Adversarial Examples Across Modalities & Tasks. We develop robust
defenses which are generalizable across diverse AI tasks and input modalities.

3. Democratizing AI Security Research & Pedagogy with Scalable Interactive Exper-
imentation. We enable researchers, practitioners and students to perform in-depth
security testing of AI models through interactive experimentation.

xxii



CHAPTER 1
INTRODUCTION

In our modern-day society, Artificial Intelligence (AI) powered by Machine Learning (ML)
is rapidly permeating multiple facets of our daily lives. We now have AI-powered assistants
in the palm of our hands, AI controlling and moving our stock markets, and even most of
our modern cars are now equipped with some form of AI-assistive technologies. As we
steadily move towards the AI-powered utopia that could only be imagined in lofty fiction in
the recent past, a formidable threat is emerging that endangers such an acute capitalization
of AI in everyday life.

A growing body of adversarial ML research has revealed that Deep Neural Networks
(DNNs) — the workhorse of modern AI applications — are extremely vulnerable to
adversarial examples. Adversarial examples are malicious inputs crafted by an attacker by
adding small perturbations to benign inputs. These minuscule perturbations are impercepti-
ble to humans; but they can completely confuse DNNs into making incorrect predictions.
For example, an attacker can place a small adversarial sticker on a “Stop” sign on the
roadside which may be ignored by human drivers, but it can make a self-driving car think
there is a “Speed Limit” sign instead! Such revelations from adversarial ML research raise
very serious concerns about the increasing use of AI for safety-critical applications.

A majority of people, those who use AI in their lives and even those who study ML,
consider AI and DNN models to be “black-boxes”. Hence, for people to have completely
restored faith in using AI applications, there is not only an urgent need to develop effective
mitigation techniques to defend real-world AI cyber-systems; there is also an equally
pressing necessity to enable people to interpret AI vulnerabilities and understand how
and why the attacks and defenses work. As these solutions emerge from academia, it is
extremely important that they are not walled off to be decoded only by expert researchers.
After all, AI impacts people from all walks of life. Therefore, it is also critical that the
technologies for AI security be brought to the masses, and AI security research be as
accessible and as pervasive as AI itself.

This thesis aims to address these substantial challenges by developing new tools, tech-
niques and paradigms that enhance people’s understanding of AI vulnerabilities, mitigate
the threat of adversarial examples, and democratize AI security by making it accessible and
available to everyone — researchers and non-researchers alike.

1



Figure 1.1: My research mission is to enable everyone to understand and fortify AI security.

1.1 THESIS VISION AND GOALS

The fundamental challenge of overcoming the threat posed by adversarial ML and enhancing
people’s trust in AI calls for (1) intuitive interpretation methods that expose AI vulnerabilities
for everyone to understand; (2) effective attack mitigation techniques that restore a sense of
safety and security; and (3) scalable, useable systems for in-depth AI security analysis that
allows anyone to stress-test the AI applications used by people in their everyday lives.

In order to accomplish my vision of developing robust solutions that span the above
three practical aspects of understanding, fortifying and democratizing AI security, I have
identified three complementary research thrusts that I present in this dissertation. I refer to
these research thrusts summarily as “Understand”, “Fortify” and “Enable” (Figure 1.1).
Further, these research thrusts map onto my larger research goals for this thesis:

I Understand : Exposing AI Vulnerabilities through Visualization & Interpretable
Representations. My goal is to extricate meaningful, interpretable, semantic repre-
sentations that can explain AI vulnerabilities, and develop visualization techniques
that leverage these semantic representations for gaining a deeper understanding of how
an adversarial attack is able to hijack the predictions made by ML models.

II Fortify : Mitigating Adversarial Examples Across Modalities & Tasks. Based on
the understanding of vulnerabilities using semantic representations, my goal is to
identify fundamentally unifying factors that can effectively mitigate the harm from
adversarial attacks across a diverse range of AI tasks and input modalities.

III Enable : Democratizing AI Security Research & Pedagogy with Scalable Inter-
active Experimentation. My ultimate goal is to take AI security research to the
masses in an interactive form factor, thus enabling students, practitioners and re-
searchers to easily learn about adversarial ML techniques.
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Table 1.1: The publications presented in this dissertation mapped to the thesis outline. Clicking on
the  PDF button will open a published PDF of the corresponding work. ∗ = equal contribution.

Part I: Understand
Exposing AI Vulnerabilities through Visualization & Interpretable Representations

[Chapter 2] GOGGLES: Automatic Image Labeling with Affinity Coding. Nilaksh Das, Sanya Chaba, Renzhi
Wu, Sakshi Gandhi, Polo Chau, Xu Chu. Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, 2020.  PDF

[Chapter 3] Bluff: Interactively Deciphering Adversarial Attacks on Deep Neural Networks. Nilaksh Das∗,
Haekyu Park∗, Zijie J. Wang, Fred Hohman, Robert Firstman, Emily Rogers, Polo Chau. IEEE Visualization
Conference, 2020.  PDF

Part II: Fortify
Mitigating Adversarial Examples Across Modalities & Tasks

[Chapter 4] SHIELD: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression.
Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen, Michael E. Kounavis,
Polo Chau. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2018.  PDF

[Chapter 5] SkeleVision: Towards Adversarial Resiliency of Person Tracking with Multi-Task Learning.
Nilaksh Das, Sheng-Yun Peng, Polo Chau. Under peer review, 2022.  PDF

[Chapter 6] Hear No Evil: Towards Adversarial Robustness of Automatic Speech Recognition via Multi-Task
Learning. Nilaksh Das, Polo Chau. Under peer review, 2022.  PDF

Part III: Enable
Democratizing AI Security Research & Pedagogy with Scalable Interactive Experimentation

[Chapter 7] ADAGIO: Interactive Experimentation with Adversarial Attack and Defense for Audio. Nilaksh
Das, Madhuri Shanbhogue, Shang-Tse Chen, Li Chen, Michael E. Kounavis, Polo Chau. Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, 2018.  PDF

[Chapter 8] MLsploit: A Framework for Interactive Experimentation with Adversarial Machine Learning
Research. Nilaksh Das, Siwei Li, Chanil Jeon, Jinho Jung∗, Shang-Tse Chen∗, Carter Yagemann∗, Evan
Downing∗, Haekyu Park, Evan Yang, Li Chen, Michael Kounavis, Ravi Sahita, David Durham, Scott Buck,
Polo Chau, Taesoo Kim, Wenke Lee. Project Showcase at the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019.  PDF

1.2 THESIS OVERVIEW

This thesis focuses on three related research thrusts which are outlined in Table 1.1 along
with the corresponding publications presented in this dissertation. While I am the principal
author of these publications, this research would not have been possible without the support
of my PhD advisor, Dr. Duen Horng (Polo) Chau, as well as the collaboration with several
other mentors, colleagues and researchers. Hence, I would hereon refer to the first-person
pronouns in plural (e.g., “we” instead of “I”) to reflect everyone’s contributions. In this
overview section, we will briefly discuss the works included in this dissertation.
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Figure 1.2: GOGGLES’ novel affinity coding paradigm outperforms the state-of-the-art data pro-
gramming technique Snuba by 23% and is only 7% away from the supervised learning benchmark.

1.2.1 Part I: Exposing AI Vulnerabilities (Understand)

DNNs are incredibly complex and are often thought of as black-box systems. For humans
to confidently deploy secure AI systems, there is an urgent need to enable people to truly
understand the vulnerabilities of the underlying DNN models and how the adversarial attacks
and defenses work the way they do. A powerful notion in this context comes from the
deep learning visualization and interpretability domain — humans can understand and trust
systems more when they can dig deeper and intuitively visualize and interpret why and how
things are working. In this first part of the thesis, we focus on developing new tools and
techniques to help people understand the underlying vulnerabilities of ML models that are
exploited by adversarial examples, expanding the body of visualization and interpretability
research to the adversarial ML domain.

GOGGLES: Extracting & Leveraging Interpretable Semantic Prototypes (Chapter 2).
The first step of our research plan is to extract interpretable units from within an ML model,
so that we can leverage them as an explanation basis for the model’s decisions. In this chapter
on GOGGLES (Figure 1.2), we propose an innovative technique to extract such interpretable
“semantic prototypes” from a pre-trained deep neural network. Through developing a novel
data programming paradigm for assigning probabilistic labels to unannotated training data,
we show that our extracted prototypes are semantic representations that possess significant
predictive capacity that can explain how the model operates internally. GOGGLES achieves
labeling accuracies ranging from a minimum of 71% to a maximum of 98% without requiring
any extensive human annotation.

BLUFF: Understanding and Visualizing AI Vulnerabilities (Chapter 3). It is challeng-
ing to decipher an ML model’s vulnerabilities since a model typically consist of millions of
parameters. In order to understand these vulnerabilities, we need to summarize the model’s
internals in a meaningful way such that it exposes the parts exploited by the attacks. The next
step of our research is to build upon the notion of interpretable prototypes from GOGGLES,
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Figure 1.3: BLUFF reveals that adversarial attacks leverage confounding features (shown in red).

leveraging them to compute a deep neural network’s “attribution graph” (Figure 1.3). The
attribution graph constitutes a summary of how the activation values “flow” through the
network from input to output. Putting it all together, we develop a scalable visualization tool,
BLUFF, that allows researchers to interactively explore this attribution graph of a network
under attack in order to discover its vulnerabilities. BLUFF reveals that adversarial attacks
leverage “non-robust” and confounding intermediate features to confuse the model.

1.2.2 Part II: Mitigating Adversarial Examples (Fortify)

It is not enough to only expand our understanding of AI vulnerabilities. To truly overcome
the threat posed by adversarial ML, we need to leverage this understanding and investigate
unifying methods that can effectively mitigate adversarial examples across AI tasks. We do
this by first focusing on the input stage of the model, leveraging practical pre-processing
techniques to remove adversarial perturbations. Next, capitalizing on the AI security insights
afforded by our interpretation and visualization techniques, we move on to the intermediate
feature space of the model so as to regularize the model into learning “robust” features.
Robust features can be thought of as intermediate representations that can be semantically
meaningful to humans. Across a diverse range of AI tasks and input modalities, we uncover
that the fundamental technique of Multi-Task Learning (MTL) is highly effective in
mitigating adversarial examples. MTL stimulates ML models to learn a robust intermediate
feature space by jointly training a shared backbone network on different tasks.
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Figure 1.4: SHIELD eliminates up to 98% of gray-box attacks delivered by strong adversarial
techniques such as Carlini-Wagner’s L2 attack and DeepFool.

SHIELD: Fast, Generalizable, Stochastic Defense (Chapter 4). As a first step towards
creating operational defenses for real-world AI systems, we develop the SHIELD framework,
through which we explore the idea of compression as a fast, practical defense for image
classification models. We expand upon the widely used JPEG compression algorithm and
propose a novel pre-processing technique that incorporates randomization with compression
to develop a multifaceted defense (Figure 1.4). We discover that input compression is
powerful in removing imperceptible, high-frequency adversarial perturbations from images,
which are introduced by non-adaptive adversarial attacks.

SkeleVision: Adversarially Robust Video Tracking with MTL (Chapter 5). Right at
the heels of releasing our SHIELD research, adversarial ML had quickly evolved to propose
a new generation of more sophisticated, adaptive attacks, that also estimate gradients with
respect to the input pre-processing stage. Following this, it is no longer enough to compress
away high-frequency perturbations for evading adversarial attacks. Hence, we shift our
focus to fortifying the model internals directly by influencing the learning stage of ML
models. Our experiments with MTL reveal that it is one such fundamental deep learning
approach that has the potential to fortify ML models across AI tasks. As MTL forces a
shared backbone network to simultaneously support multiple end-goals, our hypothesis is
that the backbone ends up learning more robust features within the intermediate feature
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Figure 1.5: (a) A physically realizable attack is able to confuse the tracker trained with single-task
learning (STL) to lock onto the adversarial patch. (b) The tracker trained with multi-task learning
(MTL) is consistently able to track the target as it moves across the adaptive adversarial patch.

space. We first demonstrate this ability of MTL to induce a robust feature space in the
video domain through the task of person tracking. In our SkeleVision research, we combine
semantically analogous tasks of person tracking and human keypoint detection, both of
which tasks necessitate some robust form of semantic understanding of the human anatomy.
Our experiments reveal that MTL models are consistently more resistant to powerful,
adaptive, physically realizable attacks across a high number of attack iterations (Figure 1.5).

Hear No Evil: Adversarially Robust Speech Recognition with MTL (Chapter 6). Fol-
lowing the observations from our SkeleVision research, we shift our attention to an entirely
different input modality in order to study the efficacy of MTL robustness across AI tasks.
We next experiment with the robustness of automatic speech recognition (ASR) models in
the audio domain when trained jointly with MTL (Figure 1.6). We explore semantically
equivalent (e.g., CTC and attention) as well as semantically diverse tasks (e.g., ASR with
accent classification) for performing MTL. We find that a combination of both types of tasks
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Figure 1.6: Overview of an MTL framework for ASR with accent classification. A shared encoder
feeds into multiple task heads with corresponding losses that are jointly optimized.

is necessary to most effectively thwart powerful, adaptive adversarial attacks. Our MTL
approach shows considerable absolute improvements in adversarially targeted word error
rate. These observations along with our SkeleVision research establishes multi-task learning
as a fundamentally unifying deep learning approach across AI tasks and input modalities,
which induces models to learn robust features that are resistant to adversarial attacks.

1.2.3 Part III: Democratizing AI Security Research & Pedagogy (Enable)

So far we have explored how we can deeply understand AI vulnerabilities and fortify AI
models. However in the coming future, with the radical infusion of AI in everyday life, AI
security will not only be restricted to the fancies of expert researchers. While visualization
tools and intuitive vulnerability interpretation go a long way in enabling people to understand
AI security more deeply, it still requires some level of expertise in the adversarial ML domain
to successfully decipher these concepts. In this part of the thesis, we go that last mile to
bring AI security research to the masses. Through developing interactive experimentation
tools, we democratize AI security for new researchers, practitioners and students, and make
adversarial ML research more accessible and more equitable for everyone.

ADAGIO: Interactive Experimentation with Attack and Defense for ASR (Chapter 7).
We take the first step towards this goal by developing ADAGIO, a web-based tool that allows
real-time interactive experimentation with attacks and defenses on an automatic speech
recognition (ASR) model. Through developing ADAGIO, and following the observations
from our SHIELD research, we discover that the idea of input compression as a practical
defense carries over to the audio domain as well. We see that applying audio compression
techniques such as MP3 and AMR compression are very effective in thwarting targeted
non-adaptive adversarial attacks.
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Figure 1.7: Using MLsploit’s interactive web interface, users can upload their own samples, apply
research functions to them, and compare the results with previous experiments.

MLsploit: AI Security Experimentation at Scale (Chapter 8). Working on ADAGIO gave
us the key insight that interactive experimentation on the web is an immensely powerful
medium for research dissemination. We build upon this notion by developing MLsploit
(Figure 1.7), the first open-source, scalable, web-based interactive system that allows
seamless experimentation with adversarial ML research. A culmination of the other research
directions (Parts I & II), MLsploit provides a modular repository of attacks and defenses,
enabling practitioners to interactively study their AI applications under various threat models.
Becoming available to thousands of students, MLsploit is already transforming AI security
education at scale.

1.3 THESIS STATEMENT

To overcome the significant threat of adversarial attacks on ML models and

enhance people’s trust in using AI systems by enabling everyone to:

(1) understand AI vulnerabilities through intuitive interpretation;

(2) fortify AI applications with robust mitigation of adversarial examples; and

(3) easily test AI security techniques with interactive experimentation.
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1.4 RESEARCH CONTRIBUTIONS

This thesis makes research contributions through multiple major fronts.

• Novel, principled, interpretable approaches for semantic class inference.
Our research contributes novel, theoretically principled approaches to extract in-
terpretable semantic prototypes for data programming (Chapter 2). Our weakly-
supervised GOGGLES framework is only 7% away from a fully-supervised baseline.

• Novel visualization technique for deciphering attacks.
Our work significantly expands the understanding of model vulnerabilities, which were
earlier considered as “black boxes”, by proposing attribution graph mining for model
activation (Chapter 3). Our novel visualization technique helps in identifying the
vulnerable neurons in a DNN that are non-performant and lead to misclassifications
under attack.

• Faster, generalizable, practical defenses.
This dissertation identifies the need for AI defenses with low computational overhead
and develops fast, robust defenses based on input compression that generalize across
input modalities. Our SHIELD defense (Chapter 4) is up to 22x faster than other pre-
processing defenses, and the ADAGIO defense (Chapter 7) removes all non-adaptive
targeted adversarial attacks.

• Fundamentally unifying approach for training robust models across AI tasks.
Our in-depth study of Multi-Task Learning (Chapters 5 and 6) establishes it as a
fundamentally unifying deep learning approach that induces ML models to learn
robust features that are resistant to adversarial attacks across AI tasks and input
modalities.

• First scalable system for interactive experimentation with AI security research.
This thesis introduces MLsploit (Chapter 8), the first open-source interactive system
that allows in-depth security testing of AI models, and lowers barriers to entry for
everyone — researchers, practitioners and students — to engage in adversarial ML
research. MLsploit offers modules of state-of-the-art attacks and defenses.
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1.5 IMPACT

Beyond the contributions to the research community, our work has also made a significant
impact to broader society and industry.

• Early-stage startups have picked up our GOGGLES framework for it’s efficacy in
generating training data with low overhead, and even extended the affinity functions
to include natural language processing tasks.

• The SHIELD defense framework won the Audience Appreciation Award, runner-up
at KDD 2018, being in the top 3 among 107 accepted papers, from 983 submissions.
SHIELD was also tech-transferred to Intel Labs and multiple business units within
Intel for integration and testing. The SHIELD tech transfer to Intel also incited a
positive shift at the highest levels within the company towards developing hardware
accelerators for AI defense.

• Research ideas presented in this dissertation formed a core component of an awarded
multi-million dollar DARPA GARD (Guaranteeing AI Robustness against Deception)
grant for developing next-generation defenses against physically realizable adversarial
attacks.

• MLsploit is already transforming adversarial ML education. It is currently being
integrated into multiple security and data analytics courses at Georgia Tech, becoming
available to thousands of students. MLsploit is already being used by graduate
students in Dr. Wenke Lee’s “CS 8803 O11: Information Security Lab - System
and Network Defenses” class and was also made available to students of Dr. Polo
Chau’s “CSE 6242: Data and Visual Analytics” class at Georgia Tech. MLsploit
won the Institute for Information Security and Privacy’s Cybersecurity Demo Day
Finale held at Georgia Tech in 2019. MLsploit modules also formed the foundation
for the DARPA GARD research proposal.
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Part I

Exposing AI Vulnerabilities through
Visualization & Interpretable

Representations
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OVERVIEW

For humans to confidently deploy secure AI systems, there is an urgent need to enable
people to truly understand the vulnerabilities of the underlying DNN models and how the
adversarial attacks and defenses work the way they do. In this first part of the thesis, we
focus on developing new tools and techniques to help people understand the underlying
vulnerabilities of ML models that are exploited by adversarial examples, expanding the body
of visualization and interpretability research to the adversarial ML domain.

The first step of our research plan is to extract interpretable units from within an ML model,
so that we can leverage them as an explanation basis for the model’s decisions. In Chapter 2,
we present the GOGGLES framework. Here, we propose an innovative technique to extract
such interpretable “semantic prototypes” from a pre-trained deep neural network. We show
that our extracted prototypes are semantic representations that possess significant predictive
capacity that can explain how the model operates internally. This chapter is adapted from
our published work [1] that appeared at SIGMOD 2020.

GOGGLES: Automatic Image Labeling with Affinity Coding. Nilaksh Das, Sanya Chaba,
Renzhi Wu, Sakshi Gandhi, Polo Chau, Xu Chu. Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020.  PDF

The next step of our research is to build upon the notion of interpretable prototypes from
GOGGLES, leveraging them to compute a deep neural network’s “attribution graph”. The
attribution graph constitutes a summary of how the activation values “flow” through the
network from input to output. In Chapter 3, we develop a scalable visualization tool, BLUFF,
that allows researchers to interactively explore this attribution graph of a network under
attack in order to discover its vulnerabilities. BLUFF reveals that adversarial attacks leverage
“non-robust” and confounding intermediate features to confuse the model. This chapter is
adapted from our published work [2] that appeared at IEEE VIS 2020.

Bluff: Interactively Deciphering Adversarial Attacks on Deep Neural Networks. Nilaksh Das∗,
Haekyu Park∗, Zijie J. Wang, Fred Hohman, Robert Firstman, Emily Rogers, Polo Chau. IEEE
Visualization Conference, 2020.  PDF
∗authors contributed equally
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CHAPTER 2
GOGGLES: AUTOMATIC IMAGE LABELING WITH AFFINITY CODING

Generating large labeled training data is becoming the biggest bottleneck in building and
deploying supervised machine learning models. Recently, the data programming paradigm
has been proposed to reduce the human cost in labeling training data. However, data
programming relies on designing labeling functions which still requires significant domain
expertise. Also, it is prohibitively difficult to write labeling functions for image datasets as
it is hard to express domain knowledge using raw features for images (pixels).

We propose affinity coding, a new domain-agnostic paradigm for automated training
data labeling. The core premise of affinity coding is that the affinity scores of instance pairs
belonging to the same class on average should be higher than those of pairs belonging to
different classes, according to some affinity functions. We build the GOGGLES system that
implements affinity coding for labeling image datasets by designing a novel set of reusable
affinity functions for images, and propose a novel hierarchical generative model for class
inference using a small development set.

We compare GOGGLES with existing data programming systems on 5 image labeling
tasks from diverse domains. GOGGLES achieves labeling accuracies ranging from a
minimum of 71% to a maximum of 98% without requiring any extensive human annotation.
In terms of end-to-end performance, GOGGLES outperforms the state-of-the-art data
programming system Snuba by 21% and a state-of-the-art few-shot learning technique by
5%, and is only 7% away from the fully supervised upper bound.

2.1 INTRODUCTION

Machine learning (ML) is being increasingly used by organizations to gain insights from
data and to solve a diverse set of important problems, such as fraud detection on structured
tabular data, identifying product defects on images, and sentiment analysis on texts. A
fundamental necessity for the success of ML algorithms is the existence of sufficient high-
quality labeled training data. For example, the current ConvNet revolution would not be
possible without big labeled datasets such as the 1M labeled images from ImageNet [3].
Modern deep learning methods often need tens of thousands to millions of training examples
to reach peak predictive performance [4]. However, for many real-world applications, large
hand-labeled training datasets either do not exist, or is extremely expensive to create as
manually labeling data usually requires domain experts [5].
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Figure 2.1: Example LFs in data programming [14].

Existing Work. We are not the first to recognize the need for addressing the challenges
arising from the lack of sufficient training data. The ML community has made significant
progress in designing different model training paradigms to cope with limited labeled
examples, such as semi-supervised learning techniques [6], transfer learning techniques [7]
and few-shot learning techniques [8, 9, 10, 11]. In particular, the most related learning
paradigm that shares a similar setup to us, few-shot learning techniques, usually require users
to preselect a source dataset or pre-trained model that is in the same domain of the target
classification task to achieve best performance. In contrast, our proposal can incorporate as
many available sources of information as affinity functions.

Only recently, the data programming paradigm [12] and the Snorkel [13] and Snuba
system [14] that implement the paradigm were proposed in the data management commu-
nity. Data programming focuses on reducing the human effort in training data labeling,
particularly in unstructured data classification tasks (images, text). Instead of asking humans
to label each instance, data programming ingests domain knowledge in the form of labeling
functions (LFs). Each LF takes an unlabeled instance as input and outputs a label with
better-than-random accuracy (or abstain). Based on the agreements and disagreements of
labels provided by a set of LFs, Snorkel/Snuba then infer the accuracy of different LFs
as well as the final probabilistic label for every instance. The primary difference between
Snorkel and Snuba is that while Snorkel requires human experts to write LFs, Snuba learns
a set of LFs using a small set of labeled examples.

While data programming alleviates human efforts significantly, it still requires the
construction of a new set of LFs for every new labeling task. In addition, we find that
it is extremely challenging to design LFs for image labeling tasks primarily because raw
pixels values are not informative enough for expressing LFs using either Snorkel or Snuba.
After consulting with data programming authors, we confirmed that Snorkel/Snuba require
images to have associated metadata, which are either text annotations (e.g., medical notes
associated with X-Ray images) or primitives (e.g., bounding boxes for X-Ray images).
These associated text annotations or primitives are usually difficult to come by in practice.
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Figure 2.2: Affinity score distributions. Blue and yellow denote the affinity scores of instance pairs
from the same class and different classes, respectively.

Example 1 Figure 2.1 shows two example labeling functions for labeling an X-Ray image

as either benign or malignant [14]. As we can see, these two functions rely on the bounding

box primitive for each image and use the two properties (area and perimeter) of the primitive

for labeling. We observe that these domain-specific primitives are difficult to obtain. Indeed,

[14] states, in this particular example, radiologists have pre-extracted these bounding boxes

for all images.

Our Proposal. We propose affinity coding, a new domain-agnostic paradigm for automated
training data labeling without requiring any domain specific functions. The core premise of
the proposed affinity coding paradigm is that the affinity scores of instance pairs belonging

to the same class on average should be higher than those of instance pairs belonging to

different classes, according to some affinity functions. Note that this is quite a natural
assumption — if two instances belong to the same class, then by definition, they should be
similar to each other in some sense.

Example 2 Figure 2.2 shows the affinity score distributions of a real dataset we use in our

experiments (CUB) using three of the 50 affinity functions discussed in Section 2.3. In this

particular case, affinity function f1 is able to distinguish pairs in the same class from pairs

in different classes very well; affinity function f2 also has limited power in separating the

two cases; and affinity function f3 is not useful at all in separating the classes.

We build the GOGGLES system that implements the affinity coding paradigm for
labeling image datasets (Figure 2.3). First, GOGGLES includes a novel set of affinity
functions that can capture various kinds of image affinities. Given a new unlabeled dataset
and the set of affinity functions, we construct an affinity matrix. Second, using a very small
set of labeled examples (development set), we can assign classes to unlabeled images based
on the affinity score distributions we can learn from the affinity matrix. Compared with the
state-of-the-art data programming systems, our affinity coding system GOGGLES has the
following distinctive features.
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Figure 2.3: Overview of the GOGGLES framework.

• Data programming systems need some kinds of metadata (text annotations or domain-
specific primitives) associated with each image to express LFs, while GOGGLES makes
no such assumptions.

• Assuming the existence of metadata, data programming still requires a new set of LFs for
every new dataset. In contrast, GOGGLES is a domain-agnostic system that leverages
affinity functions, which are populated once and can be reused for any new dataset.

• Both Snorkel/Snuba and GOGGLES can be seen as systems that leverage many sources of
weak supervision to infer labels. Intuitively, the more weak supervision sources a system
has, the better labeling accuracy a system can potentially achieve. In data programming,
the number of sources is the number of LFs. In contrast, affinity coding uses affinity
scores between instance pairs under many affinity functions. Therefore, the number of
sources GOGGLES has is essentially the number of instances multiplied by the number
of affinity functions, a significantly bigger set of weak supervision sources.

Challenges. We address the following major challenges with GOGGLES:

• The success of affinity coding depends on a set of affinity functions that can capture
similarities of images in the same class. However, without knowing which classes and
labeling task we may have in the future, we do not even know what are the potential
distinctive features for each class. Even if we have the knowledge of the particular
distinctive features, they might be spatially located in different regions of images in the
same class, which makes it more difficult to design domain-agnostic affinity functions.

• Given an affinity matrix constructed using the set of affinity functions, we need to design a
robust class inference module that can infer class membership for all unlabeled instances.
This is quite challenging for multiple reasons. First, some of the affinity functions
are indicative for the current labeling, while many others are just noise, as shown in
Example 2. Our class inference module needs to identify which affinity functions are
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useful given a labeling task. Second, the affinity matrix is high-dimensional with the
number of dimension equals to the number of instances multiplied by the number of
affinity functions. In this high-dimensional space, distance between any two rows in the
affinity matrix becomes extremely small, and thus making it even more challenging to
infer class assignments. Third, while we can infer from the affinity matrix which instances
belong to the same class by essentially performing clustering, we still need to figure out
which cluster corresponds to which class, relying only on a small development set.

Contributions. We make the following contributions:

• The affinity coding paradigm. We propose affinity coding, a new domain-agnostic
paradigm for automatic generation of training data. Affinity coding paradigms consists
of two main components: a set of affinity functions and a class inference algorithm. To
the best of our knowledge, we are the first to propose a domain-agnostic approach for
automated training data labeling.

• Designing affinity functions. GOGGLES features a novel approach that defines affinity
functions based on a pre-trained VGG-16 model [15]. VGG-16 is a commonly used
network for representation learning. Our intuition is that different layers of the VGG-16
network capture different high-level semantic concepts. Each layer may show different
activation patterns depending on where a high-level concept is located in an image. We
thus leverage all 5 max-pooling layers of the network, extracting 10 affinity functions per
layer, for a total of 50 affinity functions.

• Class inference using hierarchical generative model. GOGGLES proposes a novel hi-
erarchical model to identify instances of the same class by maximizing the data likelihood
under the generative model. The hierarchical generative model consists of two layers:
the base layer consists of multiple Gaussian Mixture Models (GMMs), each modeling
an affinity function; and the ensemble layer takes the predictions from each GMM and
uses another generative model based on multivariate Bernoulli distribution to obtain the
final labels. We show that our hierarchical generative model addresses both the curse of
dimensionality problem and the affinity function selection problem. We also give theo-
retical justifications on the size of development set needed to get correct cluster-to-class
assignment.

GOGGLES achieves labeling accuracy ranging from a minimum of 71% to a maximum
of 98%. In terms of end-to-end performance, GOGGLES outperforms the state-of-the-art
data programming system Snuba by 21% and a state-of-the-art few-shot learning technique
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by 5%, and is only 7% away from the fully supervised upper bound. We also make our
implementation of GOGGLES open-source at https://github.com/chu-data-lab/GOGGLES.

2.2 PRELIMINARY

We formally state the problem of automatic training data labeling in Section 2.2.1. We then
introduce affinity coding, a new paradigm for addressing the problem in Section 2.2.2.

2.2.1 Problem Setup

In traditional supervised classification applications, the goal is to learn a classifier hθ based
on a labeled training set (xi, yi), where xi ∈ Xtrain and yi ∈ Ytrain. The classifier is then
used to make predictions on a test set.

In our setting, we only have Xtrain and no Ytrain. Let n denote the total number of
unlabeled data points, and let y∗i denote the unknown true label for xi. Our goal is to assign
a probabilistic label ỹki for every xi ∈ Xtrain, where ỹki = Pr

(
[y∗i = k]

)
∈ [0, 1], where

k ∈
{

1, 2, . . . , K
}

with K being the number of classes in the labeling task, and
∑

k ỹ
k
i = 1.

These probabilistic labels can then be used to train downstream ML models. For example,
we can generate a discrete label according to the highest ỹqi for every instance xi. Another
more principled approach is to use the probabilistic labels directly in the loss function
l(hθ(xi), y), i.e., the expected loss with respect to ỹ: θ̂ = argminθ

∑n
i=1Ey∼ỹi [l(hθ(xi), y)].

It has been shown that as the amount of unlabeled data increases, the generalization error
of the model trained with probabilistic labels will decrease at the same asymptotic rate as
supervised models do with additional labeled data [12].

2.2.2 The Affinity Coding Paradigm

We propose affinity coding, a domain-agnostic paradigm for automatic labeling of training
data. Figure 2.3 depicts an overview of GOGGLES, an implementation of the paradigm.

Step 1: Affinity Matrix Construction. An affinity function takes two instances and
output a real value representing their similarity. Given a library of α affinity functions
F = {f0, f1, . . . , fα−1}, a set of n unlabeled instances {x0, . . . , xn−1}, and a small m
labeled examples {(xn, yn), . . . , (xn+m−1, yn+m−1)} as the development set, we construct
an affinity matrix A ∈ R(n+m)×α(n+m) that encodes all affinity scores between all pairs of
instances under all affinity functions. Specifically, the ith row of A corresponds to instance
xi and every jth column of A corresponds to the affinity function fj/(n+m) and the instance
xj%(n+m), namely, A[i, j] = fj/(n+m)(xi, xj%(n+m)).
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Step 2: Class Inference. Given A, we would like to infer the class membership for
all unlabeled instances. For every unlabeled instance xi, i ∈ [0, n − 1], we associate a
hidden variable ỹi representing its unknown class. We aim to maximize the data likelihood
Pr
(
A, ỹ|Φ

)
, where Φ denotes the parameters of the generative model used to generate A.

Discussion. The affinity coding paradigm offers a domain-agnostic paradigm for training
data labeling. Our assumption is that, for a new dataset, there exists one or multiple affinity
functions in our library F that can capture some kinds of similarities between instances
in the same class. We verify that our assumption holds on all five datasets we tested. It
is particularly worth noting that, out of the five datasets, three of them are in completely
different domains than the ImageNet dataset the VGG-16 model is trained on. This suggests
that our current F is quite comprehensive. We acknowledge that there certainly exists
potential new labeling tasks that our current set of affinity functions F would fail.

2.3 DESIGNING AFFINITY FUNCTIONS

Our affinity coding paradigm is based on the proposition that examples belonging to the
same class should have certain similarities. For image datasets, this proposition translates to
images from the same class would share certain visually discriminative high-level semantic

features. However, it is nontrivial to design affinity functions that capture these high-level
semantic features due to two challenges: (1) without knowing which classes and labeling
task we may have in the future, we do not even know what those features are. and (2) even
assuming we know the particular features that are useful for a given class, they might be
spatially located in different regions of images in the same class.

To address these challenges, GOGGLES leverages pre-trained convolutional neural
networks (VGG-16 network [15] in our current implementation) to transplant the data repre-
sentation from the raw pixel space to semantic space. It has been shown that intermediate
layers of a trained neural network are able to encode different levels of semantic features,
such as edges and corners in initial layers; and textures, objects and complex patterns in
final layers [16].

Algorithm 1 gives the overall procedure of leveraging the VGG-16 network for coding
multiple affinity functions. Specifically, to address the issue of not knowing which high-level
features might be needed in the future, we use different layers of the VGG-16 network to
capture different high-level features that might be useful for different future labeling tasks
(Line 1). We call each such high-level feature a prototype (Line 2). As not all prototypes
are actually informative features, we keep the top-Z most “activated” prototypes, which we
treat as informative high-level semantic features (Line 3). For every one of the informative
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prototype vkj extracted from an image xj , we need to design an affinity function that checks
whether another image xi has a similar prototype (Line 5). Since these prototypes might be
located in different regions, our affinity function is defined to be the maximum similarity
between all prototypes of xi and vkj (Line 6).

We discuss prototype extraction and selection in Section 2.3.1, and the computation of
affinity functions based on prototypes in Section 2.3.2.

Algorithm 1 Coding affinity functions f0, f1, . . . fα−1 based on the pre-trained VGG model
Input: Two unlabeled images xi and xj
Output: Affinity scores between xi and xj under f0, f1, . . . fα−1.

1: for all each max-pooling layer L in VGG-16 do
2: For image xj , extract all of its prototypes ρj =

{
v
(1,1)
j , v

(1,2)
j , . . . , vH×Wj

}
by passing

it through the pre-trained VGG until layer L to obtain a filter map of size C×H×W ,
where C, H and W are the number of channels, height and width of the filter map
respectively and each prototype is vector of length C.

3: Selecting Z most activated prototypes of xj , denoted as
{
v1j , v

2
j , . . . , v

Z
j

}
4: Similarly, for image xi, extract all of its prototypes ρi =

{
v
(1,1)
i , v

(1,2)
i , . . . , vH×Wi

}
5: for all vkj ∈

{
v1j , v

2
j , . . . , v

Z
j

}
, where z ∈ [1, Z] do

6: f zL(xi, xj)← maxh,w sim(vZj , v
(h,w)
i )

7: end for
8: end for

2.3.1 Extracting Prototypes

In this subsection, we discuss (1) how to extract all prototypes from a given image xi using
a particular layer L of the VGG-16 network; and (2) how to select top Z most informative
prototypes amongst all the extracted ones.

Extracting all prototypes. To begin, we pass an image xi through a series of layers
until reaching a max-pooling layer L of a CNN to obtain the Fi = L(xi), known as a
filter map. We choose max-pooling layers as they condense the previous convolutional
operations to provide compact feature representations. The filter map Fi has dimensions
C ×H ×W , where C, H and W are the number of channels, height and width of the filter
map respectively. Let us also denote indexes over the height and width dimensions of Fi
with h and w respectively. Each vector v(h,w)i ∈ RC (spanning the channel axis) in the filter
map Fi can be backtracked to a rectangular patch in the input image xi, formally known
as the receptive field of v(h,w)i . The location of the corresponding patch of a vector v(h,w)i

can be determined via gradient computation. Since any change in this patch will induce a
change in the vector v(h,w)i , we say that v(h,w)i encodes the semantic concept present in the
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Figure 2.4: Extracting all prototypes in a layer of the VGG-16 network. Each prototype corresponds
to a patch in the input image’s raw pixel space.

patch. Formally, all prototypes we extract for xi are as follows:

ρi = {v(1,1)i , v
(1,2)
i , . . . , v

(H,W )
i }

Example 3 Figure 2.4 shows the representation of an image patch in semantic space using

a tiger image. An image xi is passed through VGG-16 until a max-pooling layer to obtain

the filter map Fi that has dimensions C ×H ×W . In this particular example, the yellow

rectangular patch highlighted in the image is the receptive field of the orange prototype

v
(h,w)
i , which as we can see, captures the “tiger’s head” concept.

Selecting top Z informative prototypes. In an image xi, obviously not every patch and
the corresponding prototype v(h,w)i is a good signal. In fact, many patches in an image
correspond to background noise that are uninformative for determining its class. Therefore,
we need a way to intelligently select the top Z most informative semantic prototypes from
all the H ×W possible ones.

In this regard, we first select top-Z channels that have the highest magnitudes of ac-
tivation. Note that each channel is a matrix RH×W , and the activation of a channel is
defined to be the maximum value of its matrix (typically known as the 2D Global Max
Pooling operation in CNNs). We denote the indexes of these top-Z channels as cz, where
z ∈ {1, . . . , Z}. Based on the top-Z channels, we can thus define the top-Z prototypes as
follow:

vzi = v
(h,w)
i ,where h,w = argmax

h,w
Fi[cz;h;w]. (2.1)
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The top-Z prototypes we extract for image xi are:

ρi = {v1i , v2i , . . . , vZi }

The pair (h,w) may not be unique across the channels, yielding the same concept prototypes.
Hence, we drop the duplicate v(h,w)i ’s and only keep the unique prototypes.

Example 4 We illustrate our approach for selecting top-Z prototypes by an example. Sup-

pose we would like to select top-2 prototypes in a layer that produces the following filter

map of dimension C ×H ×W = 3× 2× 2. The three channels are:

C1 =

[
1 0.5

0.3 0.6

]
C2 =

[
0.1 0.7

0.4 0.3

]
C3 =

[
0.2 0.9

0.5 0.1

]

First, we sort the three channels by the maximum activation in descent order i.e. the

maximum element in the matrix: C1, C3, C2. Then, we select the first Z=2 channels: C1, C3.

Next, for each of the selected channels we identify the index of its maximum element on the

H and W axis: (h1, w1) = (0, 0), (h2, w2) = (0, 1). Finally, we obtain the Z=2 prototypes

by stacking the values over all channels that share the same H and W axis index identified

in the last step:

v1 = {C1[h1, w1], C2[h1, w1], C3[h1, w1]} = {1, 0.1, 0.2}, and

v2 = {C1[h2, w2], C2[h2, w2], C3[h2, w2]} = {0.5, 0.7, 0.9}.

2.3.2 Computing Affinity

Having extracted prototypes for each image, we are ready to define affinity functions and
compute affinity scores for a pair of images (xi, xj). Affinity functions are supposed to
capture various types of similarity between a pair of images. Intuitively, two images are
similar if they share some high-level semantic concepts that are captured by our extracted
prototypes. Based on this observation, we define multiple affinity functions, each corre-
sponding to a particular type of semantic concept (prototype). Therefore, the number of
affinity functions we can define is equal to the number of max-pooling layers (5) of the
VGG-16 network multiplied by the number of top-Z prototypes extracted per layer.

Let us consider a particular prototype vzj , that is, the zth most informative prototype of
xj extracted from layer L, we define an affinity function as follows:

f zL(xi, xj) = max
h,w

sim(vzj , v
(h,w)
i ) (2.2)
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Figure 2.5: An affinity matrix visualized as a heatmap.

As we can see, we calculate the similarity between a prototype vzj of xj and the vector
v
(h,w)
i ∀(h,w) ∈

{
(1, 1), . . . , (H,W )

}
contained in Fi = f(xi) using a similarity function

sim(·), and pick the highest value as the affinity score. In other words, our approach tries to
find the “most similar patch" in each image xi with respect to a given patch corresponding to
one of the top-Z prototypes of image xj . We use the cosine similarity metric as the similarity
function sim(·) defined over two vectors a and b as follows:

sim(a, b) =
aT b

‖a‖2‖b‖2
. (2.3)

Example 5 Figure 2.5 shows an example affinity matrix A for the CUB dataset we use

in the experiments. It only shows three of the 50 affinity functions, which we also used in

Example 2. The rows and columns are sorted by class only for visual intuition. As we can

see, some affinity functions are more informative than others in this labeling task.

Discussion. We use all 5 max-pooling layers from the VGG-16. For each max-pooling layer,
we use the top-10 prototypes, which we empirically find to be sufficient. Note that while
we choose VGG-16 to define affinity functions in the current GOGGLES implementation,
GOGGLES can be easily extended to use any other representation learning techniques.

In summary, our approach automatically identifies semantically meaningful prototypes
from the dataset, and leverages these prototypes for defining affinity functions to produce an
affinity matrix.

2.4 CLASS INFERENCE

In this section, we describe GOGGLES’ class inference module: given the affinity matrix
A ∈ RN×αN constructed on N = n + m examples using s affinity functions, where n is
the number of unlabeled examples and m is a very small development set (e.g., 10 labeled
examples), we would like to assign a class label for every examples xi,∀i ∈ [1, n]. In other
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words, our goal is to predict P (yi = k|si), where si denote the feature vector for xi, namely,
the ith row in A, and yi = k ∈ {1, 2 . . . , K} is a hidden variable representing the class
assignment of xi.

Generative Modelling of the Inference Problem. Recall that our main assumption of
affinity coding is that the affinity scores of instance pairs belonging to the same class should
be different than affinity scores of instance pairs belonging to different classes. In other
words, the feature vector si of one class should look different than that of another class. This
suggests a generative approach to model how si is generated according to different classes.
Generative models obtain P (yi = k|si) by invoking the Bayes rules:

P (yi = k|si) =
P (yi = k)P (si|yi = k)

P (si)
=

πk × P (si|yi = k)∑K
k′=1 πk′ × P (si|yi = k′)

(2.4)

where πk = P (yi = k) is known as the prior probability with
∑K

k′=1 πk′ = 1, which is
the probability that a randomly chosen instance is in class k, and P (yi = k|si) is known
as the posterior probability. To use Equation (2.4) for labeling, we need to learn πk and
P (si|yi = k) for every class k. P (si|yi = k) is commonly assumed to follow a known
distribution family parameterized by θk, and is written as P (si|θk). Therefore, the entire set
of parameter we need to have to compute Equation (2.4) is Θ = {π1, . . . , πK , θ1, . . . , θK}.

A common way to estimate Θ is by maximizing the log likelihood function:

L(A, Y |Θ) = log

N∏
i=1

P (si, yi|Θ) =

N∑
i=1

log
(
P (yi|Θ)P (si|Θ, yi)

)
=

N∑
i=1

K∑
k=1

1yi=k log
(
πkP (si|θk)

)
(2.5)

where 1. is the identity function that evaluates to 1 if the condition is true and 0 otherwise.
Therefore, the main questions we need to address include (i) what are the generative

models to use, namely, the paramterized distributions P (si|θk); and (ii) how do we maximize
Equation (2.5).

Limitations of Existing Models. A commonly used distribution is multi-variate Gaussian
distribution, where θk = {µk,Σk}, where µk is the mean vector and Σk is the covariance
matrix, and P (si|θk) is the Gaussian PDF:

P (si|yi = k) = P (si|θk) =
exp{−1

2(si − µk)TΣ−1k (si − µk)}
(2π)sn/2det(Σk)1/2

(2.6)
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This yields the popular Gaussian Mixture Model (GMM), and there are known algorithm
for maximizing the likelihood function under GMM. However, a naive invocation of GMM
on our affinity matrix A is problematic:

• High dimensionality. The number of feature in the affinity matrix A is αN . In the
naive GMM, the mean vectors and covariance matrices for all classes (components) have
K(
(
αN
2

)
+αN) number of parameters, which is much larger than the number of examples

N . It is widely known that the eigenstructure in the estimated covariance matrix Σj will
be significantly and systematically distorted when the number of features exceeds the
number of examples [17, 18].

• Affinity function selection. Not all affinity functions are useful, as shown in Figure 2.5.
If the number of noisy functions is small, GMM naturally handles feature selection as the
components will not be well separated by noisy functions and will be well separated by
“good” functions. However, under such high dimensionality, there could exist too many
noisy features that could form false correlations among them and eventually undermine
the accuracy of GMM or other generic clustering methods.

2.4.1 A Hierarchical Generative Model

A fundamental reason for the above two challenges when using GMM is that GMM needs to
model correlations between all pairs of columns, which creates a huge number of parameters
and makes it difficult for GMM to determine which affinity functions are more informative.
In light of this observation, we propose a hierarchical generative model which consists of a
set of base models and an ensemble model, as shown in Figure 2.6. Each base model captures
the correlations of a subset of columns in A that originate from the same affinity function
f , and we denote this “subset” matrix as Af ∈ RN×N . The output of each base model is
a label prediction matrix LPf ∈ RN×K , where the ith row stores the probabilistic class
assignments of xi using affinity function f . All label prediction matrices are concatenated
together to form the concatenated label prediction matrix LP ∈ RN×αK . The ensemble
model takes LP and models the correlations of all affinity functions, and produces the final
probabilistic labels for each unlabeled instance.

The Base Models. Given the part of the affinity matrix Af ∈ RN×N generated by a
particular affinity function f , the base model aims to predict P (yi = k|sfi ), where sfi denotes
the subset of the feature vector si corresponding to f .

We design a base generative model for computing P (yi = k|sfi ). As discussed before, a
generative model requires specifying the class generative distributions P (sfi |θk), parame-
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Figure 2.6: The hierarchical generative model.

terized by θk. We use the popular GMM for this purpose with an important modification.
Instead of using the full covariance matrix Σk that models the correlations between all pairs
of columns in Af , we use the diagonal covariance matrix, which reduces the number of
parameters significantly from

(
N
2

)
to N . Note that this simplification is only possible under

the base generative model, as each column of Af corresponds to an independent example.
The output of the base model for affinity function f is a label prediction matrix LPf ∈

RN×K , where LPf [i, k] = P (yi = k|sfi ), namely, the probability that affinity function f
believes example xi is in class k.

The Ensemble Model. We concatenate α label prediction matrices LPf0 , . . . , LPfα−1 from
α base models to obtain the concatenated label prediction matrix LP ∈ RN×αK . Let s′i
denote the new feature vector of the ith row in LP . The goal of the ensemble model is to
predict P (yi = k|s′i).

We again design a generative model for performing the final prediction. As before, we
need to decide on a class generative distribution P (s′i|θ′k) parameterized by θ′k. The Gaussian
distribution used for the base models is not appropriate for the ensemble mode. This is
because the values in the concatenated label prediction matrix LP are very close to either
0 or 1. Indeed, in an ideal scenario when all base models work perfectly, all values in LP
will be 0 or 1 that correspond to the ground truth. This kind of discrete or close to discrete
data is problematic for Gaussian distribution which is designed for continuous data. Fitting
a Gaussian distribution on this kind of data typically incurs the singularity problem and
provides poor predictions [19]. In light of this observation, we convert LP to a one-hot
encoded matrix by converting the highest class prediction to 1 and the rest predictions to 0
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for each instance and each affinity function, and we propose to use a categorical distribution
to model LP .

After converting LP into a true discrete matrix, Multivariate Bernoulli distribution is a
natural fit for modeling P (s′i|θ′k), which is parameterized by θ′k = {bk,1, . . . , bk,αK}:

P (s′i|θ′k) =
αK∏
l=1

b
s′i[l]
k,l (1− bk,l)1−s′i[l] (2.7)

where s′i[l] is the lth dimension of the binary vector s′i, and we have a total of αK dimensions.
The output of the ensemble model is the final label predictions L ∈ RN×K , where L[i, k] =

P (yi = k|s′i), namely, the probability that the ensemble model f believes example xi is in
class k.

Hierarchical Model Address the Two Challenges. First, the total number of parameters
in the hierarchical model is 2αKN + αK, much smaller than the number of parameters in
the naive GMM K(

(
αN
2

)
+ αN), effectively addressing the high-dimensionality problem.

Second, by consolidating the affinity scores produced by each affinity function to produce
a binary LP , the ensemble model can only need to model the accuracy of the α affinity
functions better instead of the original αN features, and thus can better distinguish the good
affinity functions from the bad ones.

2.4.2 Parameter Learning

We need to learn the parameters of the base models and the ensemble model under their
respective generative distributions. Expectation-maximization algorithm is the canonical
algorithm for maximizing the log likelihood function in the presence of hidden variables [20].
We first show the EM algorithm for maximizing the general data log likelihood function
in Equation (2.5), and then discuss how it needs to modified to learn the base models and
the ensemble model.

EM for Maximizing Equation (2.5) Each iteration of the EM algorithm consists of two
steps: an Expectation (E)-step and a Maximization (M)-step. Intuitively, the E-step deter-
mines what is the (soft) class assignment yi for every instance xi based on the parameter
estimates from last iteration Θt−1. In other words, E-step computes the posterior prob-
ability. The M-step takes the new class assignments and re-estimates all parameters Θt

by maximizing Equation (2.5). More precisely, the M-step maximizes the expected value
of Equation (2.5), since the E-step produces soft assignments.

1. E Step. Given the parameter estimates from the previous iteration Θt−1, compute the
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posterior probabilities:

γi,k = P (yi = k|si) =
πk × P (si|θk)∑K

k′=1 πk′ × P (si|θk′)
(2.8)

2. M Step. Given the new class assignments as defined by γi,k, re-estimate Θt by maximiz-
ing the following expected log likelihood function:

E{L(A, Y |Θ)} =
N∑
i=1

K∑
k=1

γi,k log
(
πkp(si|θk)

)
(2.9)

EM for Maximizing the Base Model. For each base model associated with affinity function
f , P (si|θk) in the EM algorithm is replaced with P (sfi |θ

f
k), which is a multivariate Gaussian

distribution as shown in Equation (2.6), but with a diagonal covariance matrix. The entire
set of parameters is Θ = {πfk , µ

f
k , Σf

k}, where k = 0, . . . , K − 1, which update in each
M-step as follows:

Nk =
N∑
i=1

γi,k;π
f
k = Nk/N ;µfk =

1

Nk

N∑
i=1

γi,ksfi

Σf
k =

1

Nk

N∑
i=1

γk,i(sfi − µ
f
k)(sfi − µ

f
k)T

(2.10)

EM for Maximizing the Ensemble Model. For the ensemble model, P (si|θk) in the EM
algorithm is replaced with P (s′i|θ′k), which is a multivariate Bernoulli distribution, as shown
in Equation (2.7). The entire set of parameters is {πk, bk,1,
. . . , bk,αK}, where k = 0, . . . , K − 1, which we update in each M-step as follows:

Nk =

N∑
i=1

γi,k;πk = Nk/N

bk,l =
1

Nk

N∑
i=1

γi,ks′i[l], where l ∈ {1, 2, . . . , αK}

(2.11)

2.4.3 Exploiting Development Set

Consider a scenario without any labeled development set, in this case, the hierarchical
model essentially clusters all unlabeled examples into K clusters without knowing which
cluster corresponds to which class. Following the data programming system [14], we
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assume we have access to a small development set that is typically too small to train any
machine learning models, but is powerful enough to determine the correct “cluster-to-class”
assignment. Note that the theory developed here can also be used to provide theoretical
guarantees on the mapping feasibility in the “cluster-then-label” category of semi-supervised
learning approaches [6, 21].

Let LSk′ denote the set of labeled examples for class k′. To make our analysis easier, we
assume the size of LSk′ is the same for all classes. Intuitively, we want to map cluster k to
class k′ if most examples from LSk′ are in cluster k. However, this simple cluster-to-class
mapping strategy may create conflicting assignments, namely, the same cluster is mapping
to multiple classes. We propose a more principled way to obtain the one-to-one mapping
g : k 7→ k′. We first define the "goodness" of the mapping Lg as:

Lg =
K∑
k=1

∑
l∈LSg(k)

γl,k (2.12)

To see why Lg can represent the "goodness" of a mapping. We represent development sets
with a one-hot encoded ground truth matrix T where each element ti,k′ is obtained by:

ti,k′ =

1, if i ∈ LSk′

0, otherwise
i = 1, . . . , N ; k′ = 1, . . . , K (2.13)

Lg is essentially the summation of the element-wise multiplication between the ground
truth matrix T and label prediction matrix LP under a column mapping defined by g on
the development set. Therefore, Lg is expected to be maximized when a mapping g makes
the two matrices the most similar under cosine distance. Given Lg, the final mapping g is
obtained by:

g = arg max
g
{Lg}, and g is a one-to-one mapping (2.14)

In other words, the final mapping is a one-to-one mappings that maximizes Lg. When
K = 2, Equation (2.14) becomes

g(k) =

k, if
∑

l∈LS1
γl,1 ≥

∑
l∈LS0

γl,1

1− k, otherwise
(2.15)

Algorithm for Solving Equation (2.14). Instead of enumerating all possible mappings
with a complexity of O(K!) (which is actually feasible for a small K), we convert it
to the assignment problem which can be solved in O(K3). Let wk,k′ denote wk,k′ =
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Figure 2.7: Size of the Development Set Needed.

∑
l ∈ LSk′γl,k, then Equation (2.12) becomes:

Lg =
K∑
k=1

wk,g(k) (2.16)

Finding a g that maximizing Equation (2.16) is essentially the Assignment problem, and
there are known algorithms [22] that solve it with a worst case time complexity of O(K3).

This “cluster-to-class” mapping is performed after obtaining base model predictions
and the ensemble model predictions. After the mapping is obtained, we rearrange the the
columns in the label prediction matrix LPf produced by each base model, and the final label
matrix L produced by the ensemble according to the mapping g, so that the true classes are
aligned with the clusters.

2.4.4 The Size of Development Set Needed

In this section, we give an analysis about the size of the development set needed for
GOGGLES to produce the correct “cluster-to-class” mapping, where the correct mapping is
defined to be the mapping that achieves the highest labeling accuracy, which we denote as η.
Intuitively, the higher η is, the less size we need. Consider an extreme scenario with K = 2

classes and our hierarchical generative model produces two clusters that perfectly separate
the two classes. In this case, we only need one labeled example to determine which cluster
corresponds to which class with 100% confidence. Figure 2.7 shows the size of development
set required when K = 2 based on our theory to be discussed in the following, we can see
when η = 0.8, only about 20 examples are required to produces the correct cluster-class
mapping with a probability close to 1. However, as we will shown in the experiment section,
the number of required development set size is actually much smaller in practice. This
is because the theoretical lower-bound we will provide is a rather loose one, for ease of
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derivation.

A Theory on the Size of the Development Set. let us first assume the mapping of each
class is independent, so the probability of a completely correct mapping is Pind =

∏K
k′=1 Pk′ ,

where Pk′ denote the probability that class k′ is correctly mapped to its corresponding
cluster.

To simplify derivation, we further assume "hard" assignment of classes labels: an
example is only assigned to one cluster, in other words, γ only contains 0 and 1. This
is a natural assumption because values in γ will be converted to be binary anyway when
evaluating the accuracy of the algorithm. In the development set, we have a labeled set LSk′

with a size of d = m/K for every class k′. Let dk′,j, j = 1, . . . K, denote the number of
examples in the development set LSk′ that are in the jth cluster, so

∑K
j=1 dk′,j = d. Under

the independence assumption, Equation (2.14) becomes

g−1(k′) = arg max
1≤j≤K

∑
i∈LSk′

γi,j (2.17)

where g−1 denote the inverse mapping of g, that is k′ 7→ k. Equation (2.17) means that each
each class is mapped to the cluster in which its majority lies, so class k′ is mapped to its
correct cluster only when the majority of LSk′ are in that cluster. Assume the kth cluster is
the correct cluster for class k′, so the probability of the k′ class mapped correctly is:

Pk′ > Plk′ =
d∑

dk′,k=0

P (dk′,k > max
1≤j≤K,j 6=k

dk′,j)

=
∑

d1,...,dK

P (dk′,1, . . . , dk′,K) s.t. dk′,k > max
1≤j≤K,j 6=k

dk′,j

(2.18)

The first > sign is because on the right side we don’t consider the situations with ties in
majority vote (the second > sign), where we break the ties randomly and a correct mapping
is also possible. The Pind is then lower bounded by:

Pind >

K∏
k′=1

Plk′ (2.19)

Suppose the accuracy of our algorithm η is known, so the probability of an example
being predicted to be its true label equals to η. An example in the development set LSk′ is
predicted to be its true label by the algorithm only when it is in the correct cluster, so the
probability of it being in the correct cluster equals to η. In case of incorrect assignment,
we assume the probability of assigning to every possible incorrect classes is equal, being
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ρ = η
K−1 . dk′,1, . . . , dk′,K follow a multinomial distribution:

P (dk′1, . . . , dk′,K) =
d!∏K

j=1 dk′,j !
ηdk′,1ρdk′,2ρdk′,3 . . . ρdk′,K

=
d!∏K

j=1 dk′,j !
ηdk′,kρd−dk′,k

(2.20)

The correct mapping under independent assumption requires the mapping of every class to
be correct on their own. This is a rather strict assumption. Without assuming independence,
Equation (2.14) is able to produce a completely correct mapping when some classes would
otherwise fail to be mapped correctly on their own. In other words, the probability of a
completely correct mapping is:

Pcorrect ≥ Pind (2.21)

Combining Equation (2.21) and Equation (2.19), we get the following theorem.

Theorem 6 The probability that Equation (2.14) gives the optimal mapping is lower

bounded by Pcorrect >
∏K

k′=1 Plk′ , where Plk′ is obtained by Equation (2.18).
Therefore, the size of development set m∗ that produces an optimal mapping with a

probability of as least p is given by m∗ = Kd∗, where d∗ is the smallest value of d that

makes
∏K

k′=1 Plk′ ≥ p.

The time complexity of solving the right hand side in Equation (2.18) by a brute-force
iteration over all combinations of dj is O(d!), but it can be solved in O(Kd2) using a
dynamic programming based approach.

For ease of of notation, we assume the 1st cluster is the correct cluster for class k′. Let
S(j,Dj) denote the following:

S(j,Dj) =
∑

dk′,j ,...,dk′,K

P (dk′,1, ..., dk′,K)

s.t. max
j≤l≤K,l 6=k

dk′,l < dk′,1 and
K∑
l=j

dk′,l = Dj

(2.22)

so Plk′ = S(1, d), and for each j:

S(j,Dj) =
d∑

dk′,j=0

S(j + 1, Dj − dj) (2.23)

The time complexity of obtaining Plk by dynamic programming using Equation (2.23) is
O(Kd2).
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2.5 EXPERIMENTS

We conduct extensive experiments to evaluate the accuracy of labels generated by GOG-
GLES. Specifically, we focus on the following three dimensions:

• Feasibility and Performance of GOGGLES (Section 2.5.2). Is it possible to automatically
label image datasets using a domain-agnostic approach? How does GOGGLES compare
with existing data programming systems?

• Ablation Study (Section 2.5.3). How do the two primary innovations in GOGGLES
(namely, affinity matrix construction and class inference) compare against other tech-
niques?

• Sensitivity Analysis (Section 2.5.4). Is GOGGLES sensitive to the set of affinity functions?
What is the size of the development set needed for GOGGLES to correctly determine the
correct “cluster-to-class” mapping?

2.5.1 Setup

Datasets

We consider real-world image datasets with varying domains to evaluate the versatility and
robustness of GOGGLES. Since our approach internally uses a pre-trained VGG-16 model
for defining affinity functions, we select datasets which have minimal or no overlap with
classes of images from the ImageNet dataset [3], on which the VGG-16 model was originally
trained. Robust performance across these datasets show that GOGGLES is domain-agnostic
with respect to the underlying pre-trained model. We perform our experiments on the
following datasets, which are roughly ordered by domain overlap with ImageNet:

• CUB: The Caltech-UCSD Birds-200-2011 dataset [23] comprises of 11,788 images of
200 bird species. The dataset also provides 312 binary image-level attribute annotations
that help explain the visual characteristics of the bird in the image, e.g., white head, grey
wing etc. We use this metadata information for designing binary labeling functions which
are used by a data programming system. To evaluate the task of generating binary labels,
we randomly sample 10 class-pairs from the 200 classes in the dataset and report the
average performance across these 10 pairs for each experiment. These sampled class-pairs
are not present in the ImageNet dataset. However, since ImageNet and CUB contain
common images of other bird species, this dataset may have a higher degree of domain
overlap with the images that VGG-16 was trained on.
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• GTSRB: The German Traffic Sign Recognition Benchmark dataset [24] contains 51,839
images for 43 classes of traffic signs. Again, for testing the performance of binary label
generation, we sample 10 random class-pairs from the dataset and use them for all the
experiments. Although this dataset contains images labeled by specific traffic signs,
ImageNet contains a generic “street sign” class, and hence this dataset may also have
some degree of domain overlap.

• Surface: The surface finish dataset [25] contains 1280 images of industrial metallic parts
which are classified as having “good” (smooth) or “bad” (rough) metallic surface finish.
This is a more challenging dataset since the metallic components look very similar to the
untrained eye, and has minimal degree of domain overlap with ImageNet.

• TB-Xray: The Shenzhen Hospital X-ray set [26] has 662 images belonging to 2 classes,
normal lung X-ray and abnormal X-ray showing various manifestations of tuberculosis.
These images are of the medical imaging domain and have absolutely no domain overlap
with ImageNet.

• PN-Xray: The pneumonia chest X-ray dataset [27] consists of 5,856 chest X-ray images
classified by trained radiologists as being normal or showing different types of pneumonia.
These images are also of the medical imaging domain and have no domain overlap with
ImageNet.

Development Set. GOGGLES uses a small development set to determine the optimal class
mapping for a given label assignment, the same assumption in Snuba [14]. By default, we
use only 5 label annotations arbitrarily chosen from each class for this. Hence, for the task
of generating binary labels, we use a development set having a size of 10 images for all the
experiments. We report the performance of GOGGLES on the remaining images from each
dataset.

Data Programming Systems

We compare GOGGLES with existing systems: Snorkel [13] and Snuba [14].

Snorkel is the first system that implements the data programming paradigm [12]. Snorkel
requires humans to design several labeling functions that output a noisy label (or abstain) for
each instance in the dataset. Snorkel then models the high-level interdependencies between
the possibly conflicting labeling functions to produce probabilistic labels, which are then
used to train an end model. For image datasets, these labeling functions typically work on
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metadata or extraneous annotations rather than image-based features since it is very hard to
hand design functions based on these features.

Since CUB is the only dataset having such metadata available, we report the mean
performance of Snorkel on the 10 class-pairs sampled from the dataset by using the attribute
annotations as labeling functions. More specifically, we combine CUB’s image-level
attribute annotations (which describe visual characteristics present in an image, such as
white head, grey wing etc.) with the class-level attribute information provided (e.g., class A
has white head, class B has grey wing etc.) in order to design labeling functions. Hence, each
attribute annotation in the union of the class-specific attributes acts as a labeling function
which outputs a binary label corresponding to the class that the attribute belongs to. If an
attribute belongs to both classes from the class-pair, the labeling function abstains. We used
the open-source implementation provided by the authors with our labeling functions for
generating the probabilistic labels for the CUB dataset.

Snuba extends Snorkel by further reducing human efforts in writing labeling functions.
However, Snuba requires users to provide per-instance primitives for a dataset (c.f. Exam-
ple 1), and the system automatically generates a set of labeling functions using a labeled
small development set.

Since all 6 datasets do not come with user-provided primitives, to ensure a fair compar-
ison with Snuba, we consulted with Snuba’s authors multiple times. They suggested that
we use a rich feature representation extracted from images as their primitives, which would
allow Snuba to learn labeling functions. As such, we use the logits layer of the pre-trained
VGG-16 model for this purpose, as it has been well documented in the domain of computer
vision that such feature representations encode meaningful higher order semantics for im-
ages [28, 29]. For the VGG-16 model trained on ImageNet, this yields us feature vectors
having 1000 dimensions for each image. To obtain densely rich primitives which are more
tractable for Snuba, we project the logits output onto a feature space of the top-10 principal
components of the entire data determined using principal component analysis [30]. We use
these projected features having 10 dimensions as primitives for Snuba. Empirical testing
revealed that providing more components does not change the results significantly. We also
use the same development set size for Snuba and GOGGLES. We used the open-source
implementation provided by the authors for learning labeling functions with automatically
extracted primitives and for generating the final probabilistic labels.
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Few-shot Learning (FSL)

Our affinity coding setup which uses 5 development set labels from each class is comparable
to the 2-way 5-shot setup for few-shot learning from the computer vision domain. Hence,
we compare GOGGLES’s end-to-end performance with a recent FSL approach [11] that
achieves state-of-the-art performance on domain adaptation. We use the same development
set used by GOGGLES as the few-shot labeled examples for training the FSL model.

The original FSL Baseline implementation uses a model trained on mini-ImageNet for
domain adaptation to the CUB dataset, and achieves better performance than other state-of-
the-art FSL methods. For a more comparable analysis, we use a VGG-16 model trained on
ImageNet, which is the same pre-trained model GOGGLES uses for affinity coding. Note
that our adaptation of the FSL Baseline method achieved a much better performance for
domain adaptation on CUB than the original results reported in [11]. The FSL models as
well as all end models are trained with the Adam optimizer with a learning rate of 10−3,
same as in [11].

Empirical upper-bound (supervised approach).

We also would like to compare GOGGLES’ performance with an empirical upper-bound,
which is obtained via a typical supervised transfer learning approach for image classification.
Specifically, we freeze the convolutional layers of the VGG-16 model and only update
the weights of the fully connected layers in the VGG-16 architecture while training. We
also modify the last fully connected “logits” layer of the architecture to our corresponding
number of classes.

Ablation Study: Other image representation techniques for computing affinity

GOGGLES computes affinity scores by extracting prototype representations from intermedi-
ate layers of a pre-trained model. We compare the efficacy of this representation technique
with two other typical methods of image representation used in the computer vision domain.
We compare the predictive capacity of each representation technique by constructing an
affinity matrix from each candidate feature representation using pair-wise cosine similarity,
and then using our class inference approach for labeling.

HOG. We compare with the histogram of oriented gradients HOG descriptor, which is a very
popular feature representation technique used for recognition tasks in classical computer
vision literature [31, 32]. The HOG descriptor [33] represents an image by counting the
number of occurrences of gradient orientation in localized portions of the image.
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Logits. We also compare with a modern deep learning-based approach, leveraged by recent
works in computer vision [34, 35], that uses an intermediate output from a convolutional
neural network as an image’s feature representation. We use the logits layer from the trained
VGG-16 model in our comparison, which is the output of the last fully connected layer,
before it is fed to the softmax operation.

Ablation Study: Baseline methods for class inference

The class inference method in GOGGLES consists of a clustering step followed by class
mapping. We compare our proposed hierarchical model for clustering with other baseline
methods, including K-means clustering, Gaussian mixture modeling with expectation
maximization (GMM) and spectral co-clustering (Spectral). Since these clustering methods
are incognizant of the structural semantics of our affinity-based features which are derived
from multiple affinity functions, we simply concatenate all affinity functions to create the
feature set for each dataset, and then feed these features to the baseline methods. As we
would like to see the absolute best performance of the baseline clustering approaches, we
use the optimal “cluster-class” mapping for all baselines.

Evaluation Metrics.

We use the train/test split as originally defined in each dataset. We report the labeling

accuracy on the training set for comparing different data labeling systems, Snorkel, Snuba,
and GOGGLES. We follow the same approach used in [13, 14] to train an end discriminative
model by using the probabilistic labels generated from each data labeling system as training
data and report the end-to-end accuracy as the end model’s performance on the held-out test
set. For labeling tasks, all experiments, including baselines, are conducted 10 times, and we
report the average.

2.5.2 Feasibility and Performance

Table 2.1 shows the end-to-end system labeling accuracy for GOGGLES, Snorkel, Snuba,
and a supervised approach that serves as an upper bound reference for comparison. (1)
GOGGLES achieves labeling accuracies ranging from a minimum of 71% to a maximum
of 98%. GOGGLES shows an average of 21% improvement over the state-of-the-art data
programming system Snuba. (2) To ensure a fair comparison, we consulted with authors of
Snuba and took their suggested approach of automatically extracting the required primitives.
As we can see, the performances of Snuba on all datasets are just slightly better than random
guessing. This is primarily because Snuba is really designed to operate on human annotated
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Table 2.1: Evaluation of GOGGLES labeling accuracy on training set. The ‘-’ symbol represents
cases where evaluation was not possible. GOGGLES shows on average an improvement of 23% over
the state-of-the-art data programming system Snuba.

Dataset
GOGGLES Data Programming Representation Class Inference Baselines
(our results) Snorkel Snuba HoG Logits K-Means GMM Spectral

CUB 97.83 89.17 58.83 62.93 96.35 98.67 97.62 72.08
GTSRB 70.51 - 62.74 75.48 64.77 70.74 69.64 62.40
Surface 89.18 - 57.86 85.82 54.08 69.08 69.14 60.82
TB-Xray 76.89 - 59.47 69.13 67.16 76.33 76.70 75.00
PN-Xray 74.39 - 55.50 53.11 71.18 50.66 68.66 75.90

Average 81.76 - 58.88 69.30 70.71 73.09 76.35 69.24

primitives (c.f. Example 1). Furthermore, Snuba’s performance degrades if the size of the
development set is not sufficiently high. Our experiments showed that indeed, if we increase
the development set size for Snuba from 10 to 100 (10x increase) for the PN-Xray dataset,
the performance jumps from 55.50% to 67.84%. In comparison, GOGGLES still performs
better with a development set size of only 10 images. (3) We can only use Snorkel on CUB,
as CUB is the only dataset that comes with annotations that we can leverage as labeling
functions. These labeling functions may be considered perfect in terms of coverage and
accuracy since they are essentially human annotations. GOGGLES uses minimal human
supervision and still outperforms Snorkel on CUB.

2.5.3 Ablation Study

We conduct a series of experiments to understand the goodness of different components
in GOGGLES, including the proposed affinity functions and the proposed class inference
method. Results are shown in Table 2.1.

Goodness of Proposed Affinity Functions. We compare GOGGLES affinity functions
with the two common methods of obtaining the distance between two images: HOG and
Logits. We use the two baseline methods to generate affinity matrices and run GOGGLES’
inference module on them. GOGGLES’ affinity functions outperform the other two on
almost all datasets. This is because GOGGLES’s affinity functions covers features at
different scales and locations.

Goodness of Proposed Class Inference. We compare GOGGLES’ inference module with
three representative clustering methods: K-means, GMM, and Spectral co-clustering. All
methods use the GOGGLES affinity matrix as input data. Note that the three clustering
methods are not able to map the clusters to the classes automatically. As we would like
to see the absolute best performance of the baseline clustering approaches, we use the
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Figure 2.8: Accuracy w.r.t. development set size.

optimal “cluster-class” mapping for all baselines. GOGGLES’s inference module has the
best average performance. The primary reason for our improvement over generic clustering
methods is that our generative model adapts to the design of our affinity matrix. Specifically,
our generative model is better at (1) handling the high-dimensionality through using the
hierarchical structure and reducing the parameters in the base model by using diagonal
covariance matrices; and (2) selecting affinity functions through the ensemble model (c.f.
Section 2.4.1).

In terms of running time, without parallelization, our generative model is α (the number
of base models) slower than the GMM model (the best baseline method). However, in
practice (and in our experiments), we can parallelize all of the base models using different
slices of the affinity matrix.

2.5.4 Sensitivity Analysis

Varying Size of the Development Set. We vary the size of the development set from 0
to 40 to understand how it affects performance (Figure 2.8). As the development set size
increases, the accuracy increases initially, but finally converges. This is expected as when
the development set is small, the mapping obtained by Equation (2.14) has a low probability
being the optimal as predicted in Figure 2.7. When the development set size is large enough,
the mapping given by Equation (2.14) converges to the optimal mapping, so the accuracy
converges. Another observation is that datasets with higher accuracy converge at a smaller
development set size. For example, the CUB dataset has an accuracy of 97.63% and its
accuracy converges at a development set size of 2, while the GTSRB dataset requires a
development set size of 8 to converge as it achieves an lower accuracy of 70.75%. Finally,
the empirical size of the development set required to converge is much smaller than the
theory predicted in Figure 2.7. A development set with 5 examples per class enough for all
datasets.

Varying Number of Affinity Functions. We vary the number of affinity functions to study
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Figure 2.9: Accuracy w.r.t. varying number of affinity functions.

its effects on the results (Figure 2.9). Accuracy increases as the number of affinity functions
increases for all datasets. This is understandable as more affinity functions brings more
information that the inference module can exploit.

2.5.5 End-to-End Performance Comparison.

We also use the probabilistic labels generated by Snorkel, Snuba and GOGGLES to train
downstream discriminative models following the similar approach taken in [13, 14]. Specifi-
cally, we use the VGG-16 as the downstream ML model architecture, and tune the weights
of the last fully connected layers using cross-entropy loss. For training the FSL model, we
use the same development set used by Snuba and GOGGLES for labeling. For training the
upper bound model, we use the entire training set labels. The performance of each approach
on hold-out test sets is reported in Table 2.2.

First, GOGGLES outperforms Snuba by an average of 21%, a similar number to the
labeling performance improvement of 23% GOGGLES has over Snuba (c.f. Table 2.1), and
the end model performance of Snuba is worse than FSL. This is because the labels generated
by Snuba (59%) are only slightly better than random guessing, and having many extremely

Table 2.2: Comparison of end model accuracy on held-out test set. GOGGLES uses only 5 labeled
instances per class but is only 7% away from the supervised upper bound (in gray) which uses the
ground-truth labels of the training set.

Dataset FSL Snorkel Snuba GOGGLES
Upper
Bound

CUB 84.74 87.85 56.32 95.30 98.44
GTSRB 90.72 - 70.11 91.54 98.94
Surface 76.00 - 51.67 83.33 92.00
TB-Xray 66.42 - 62.71 70.90 82.09
PN-Xray 68.28 - 62.19 69.06 74.22

Average 77.23 - 60.60 82.03 89.14
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noisy labels can be more harmful than having fewer labels in training an end model. Second,
GOGGLES outperforms the fine-tuned state-of-the-art FSL method (c.f. Section 2.5.1) by
an average of 5%, which is significant considering GOGGLES is only 7% away from the
upper bound. Third, not surprisingly, the more accurate the generated labels are, the more
performance gain GOGGLES has over FSL (e.g., the improvements are more significant on
CUB and Surface, which have higher labeling accuracies compared with other datasets).

This experiment demonstrates the advantage GOGGLES has over FSL and data pro-
gramming systems — GOGGLES has the exact same inputs compared with FSL (both
only have access to the pre-trained VGG-16 and the development set), and does not require
dataset-specific labeling functions needed by data programming systems.

2.6 RELATED WORK

ML Model Training with Insufficient Data. Semi supervised learning techniques [6]
combine labeled examples and unlabeled examples for model training; and active learning
techniques aim at involving human labelers in a judicious way to minimize labeling cost [36].
Though semi-supervised learning and active learning can reduce the number of labeled
examples required to obtain a competent model, they still need many labeled examples
to start. Transfer learning [7] and few-shot learning techniques [8, 9, 10, 11] often use
models trained on source tasks with many labeled examples to help with training models
on new target tasks with limited labeled examples. Not surprisingly, these techniques often
require users to select a source dataset or pre-trained model that is in a similar domain as
the target task to achieve the best performance. In contrast, our proposal can incorporate
several sources of information as affinity functions.

Data Programming. Data programming [12], and Snuba [14] and Snorkel [13] systems
that implement the paradigm were recently proposed in the data management community.
Data programming focuses on reducing the human effort in training data labeling, and is the
most relevant work to ours. Data programming ingests domain knowledge in the form of
labeling functions. Each labeling function takes an unlabeled instance as input and outputs a
label with better-than-random accuracy (or abstain). As we show in this work, using data
programming for image labeling tasks is particularly challenging, as it requires images to
have associated metadata (e.g., text annotations or primitives), and a different set of labeling
functions is required for every new dataset. In contrast, affinity coding and GOGGLES offer
a domain-agnostic and automated approach for image labeling.

Other Related Work in Database Community. Many problems in database community
share similar challenges to our work. In particular, data fusion/truth discovery [37, 38],
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crowdsourcing [39], and data cleaning [40], in one form or another, all need to reconcile
information from multiple sources to reach one answer. While the information sources are
assumed as input in these problems, labeling training data faces the challenge of lacking
enough information sources. In fact, one primary contribution of GOGGLES is the affinity
coding paradigm, where each unlabeled instance becomes an information source.

2.7 CONCLUSION

We proposed affinity coding, a new paradigm that offers a domain-agnostic way of automated
training data labeling. Affinity coding is based on the proposition that affinity scores of
instance pairs belonging to the same class on average should be higher than those of instance
pairs belonging to different classes, according to some affinity functions. We build the
GOGGLES system that implements the affinity coding paradigm for labeling image datasets.
GOGGLES includes a novel set of affinity functions defined using the VGG-16 network,
and a hierarchical generative model for class inference. GOGGLES is able to label images
with high accuracy without any domain-specific input from users, except a very small
development set, which is economical to obtain.
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CHAPTER 3
BLUFF: INTERACTIVELY DECIPHERING ADVERSARIAL ATTACKS ON

DEEP NEURAL NETWORKS

Deep neural networks (DNNs) are now commonly used in many domains. However, they
are vulnerable to adversarial attacks: carefully-crafted perturbations on data inputs that
can easily fool a model into making incorrect predictions. Despite significant research on
developing DNN attack and defense techniques, people still lack an understanding of how
such attacks penetrate a model’s internals. For example, which neurons are exploited by
an attack to fool a model into misclassifying an ambulance as a street sign? Is a stronger
attack harming the same neurons as a weaker attack, or are they completely different?
We present BLUFF, an interactive system for visualizing, characterizing, and deciphering
adversarial attacks on vision-based neural networks. BLUFF allows people to flexibly
visualize and compare the activation pathways for benign and attacked images, revealing
specific mechanisms that adversarial attacks employ to inflict harm on a model. We present
neural network exploration scenarios where BLUFF helps us discover multiple surprising
insights into the vulnerability of a prevalent, large-scale image classifier, such as how
atypical neuron activation pathways are exploited by attacks, and how class similarity
correlates with exploitation intensity. Our findings help inform future research on designing
models that are more robust against attacks. BLUFF is open-sourced and runs in modern
web browsers.

3.1 INTRODUCTION

Deep neural networks (DNNs) have been a major driving force behind recent technological
breakthroughs in a wide spectrum of applications [41, 42, 43, 44, 45, 46]. However, they
have been found to be highly vulnerable to adversarial attacks: typically small, human-
imperceptible noise injected into inputs can easily fool DNNs into arriving at incorrect
predictions [47, 48, 49, 50]. This jeopardizes many DNN-based technologies, especially
in security and safety-critical applications such as autonomous driving and data-driven
healthcare. To make deep learning more robust against such attacks, it is essential to
understand how the attacks permeate DNN models [51, 52].

Interpreting and ultimately defending against adversarial attacks remain fundamental
research challenges. Due to DNNs’ complex model architectures and their huge number
of parameters, they are often considered to be “unintelligible.” When such a model is
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Figure 3.1: With BLUFF, users interactively visualize and interpret how adversarial attacks penetrate
a deep neural network (DNN) to induce incorrect outcomes. Here, a user inspects why INCEPTIONV1
misclassifies adversarial giant panda images, crafted by the Projected Gradient Descent (PGD)
attack, as armadillo. BLUFF reveals that PGD has successfully perturbed pixels to induce the “brown
bird” feature, an appearance more likely shared by an armadillo (small, roundish, brown body) than
a panda. Such a feature helps activate more features in subsequent layers that contribute to the
(mis)classification of armadillo (e.g., “scales,” “bumps,” “mesh”). Altogether, these neurons and their
connections form adversarial pathways that overwhelm the benign panda pathways, leading to the
ultimate incorrect prediction. (A) Control Sidebar allows users to specify what data to be included,
filtered, and highlighted. (B) Graph Summary View visualizes pathways most activated or changed
by an attack as a graph, where nodes are neurons and edges are their connections. When hovering
over a neuron, (C) Detail View displays its feature visualization, representative dataset examples,
and activation patterns over attack strengths.
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attacked, it is difficult to pinpoint the parts of the model that the attack is exploiting, let
alone to understand how such exploitations lead to incorrect outcomes [53]. Also, there
is a lack of research in understanding how varying attack “strengths” influence neurons’
activation patterns, despite attack strength being a user-specified hyperparameter [54]. For
example, does a stronger attack activate the same neurons as a weaker attack, or are these
sets completely different?

To address the above challenges, we develop BLUFF, an interactive visualization tool for
discovering and interpreting how adversarial attacks mislead DNNs into making incorrect
decisions. Our main idea is to visualize activation pathways within a DNN traversed by the
signals of benign and adversarial inputs. More technically, an activation pathway consists
of neurons (i.e., channels or features) that are highly activated or changed by the input
images, and the connections among the neurons. BLUFF finds and visualizes where a model
is exploited by an attack, how they are used, and what impact the exploitation has on the
final prediction, across multiple attack strengths. As demonstrated in Figure 3.1, BLUFF

visualizes the activation pathways commonly taken by 911 adversarial panda images
(from ImageNet ILSVRC 2012 [3]) as they pass through INCEPTIONV1, a prevalent, large-
scale image classifier. Crafted by the Projected Gradient Descent (PGD) attack [54], such
images contain human-imperceptible pixel perturbations that would cause INCEPTIONV1
to confidently misclassify them as armadillos. BLUFF reveals that the perturbation has
successfully induced the “brown bird” feature, an appearance more likely to be shared by an
armadillo (small, roundish, brown body) than a panda. Such a feature in turn help activate
more features in subsequent layers that contribute to the (mis)classification of armadillo
(e.g., “scales,” “bumps,” “mesh”). Altogether, these neurons and their connections form
adversarial pathways that overwhelm the benign panda pathways, leading to the ultimate
incorrect prediction.

Contributions. In this work, we contribute:

• BLUFF, an interactive system for summarization and interpretation of how adversar-
ial perturbations penetrate DNNs to induce incorrect outcomes in INCEPTIONV1 [55],
a large-scale, prevalent image-classification model. BLUFF interactively visualizes and
compares the activation pathways of benign and attacked inputs in a graph representation
(Section 3.7.2), which allows users to freely track, explore, and interpret the pathways
exploited by an attack.

• Visual characterization of activation pathway dynamics. Adversarial perturbations
stimulate changes in the activation pathways typically used for benign inputs. For example,
an attack can inhibit neurons detecting important features for the benign class to suppress
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Figure 3.2: Adversarial attacks confuse DNNs to make incorrect predictions, e.g., attacking benign
panda images so they are misclassified as armadillo. We aim to understand where such attacks occur
inside the model and what features are used.

activation signals from traversing the network. Such changes can induce cascading neuron
exploitations that ripple through the whole network. BLUFF visualizes and highlights
activation pathways exploited by an attack (Figure 3.2) and shows how they mutate and
transmit throughout a network (Section 3.7.2).

• Interactive comparison of attack escalation. BLUFF allows users to understand how
activation pathways would morph over increasing attack strengths (Section 3.7.2). With
BLUFF’s interactive comparison over different attack strengths, users can understand
the essence of an attack (e.g., common trends of an attack across all strengths) and its
multi-faceted characteristics (e.g., various strategies that different strengths may employ).

• An open-source, web based implementation. BLUFF is open-sourced to broaden peo-
ple’s access to interpretability of adversarial attacks on deep neural networks. The demo
and code is available at the public link: https://poloclub.github.io/bluff.

• Discovery usage scenarios. Using BLUFF, we investigate how BLUFF can help discover
multiple surprising insights into the vulnerability of deep neural networks, such as how
unusual activation pathways may be exploited by attacks, and how class similarity and
attack exploitation intensity may be correlated. Our findings help inform future research
on designing models that are more robust against attacks (Section 3.8).
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3.2 BACKGROUND: ADVERSARIAL ATTACKS ON DNNS

Adversarial attacks aim to confuse a given DNN model into making incorrect predictions by
adding carefully crafted, but seemingly imperceptible perturbations to the input. One of the
first gradient-based attacks proposed was the Fast Gradient Sign Method (FGSM) [48], which
perturbs the input by adding the product of a small constant and the direction of the gradient
of the output with respect to the input. DeepFool [56] computes the minimal perturbation
required to flip the classification label by assuming the DNN decision boundary to be hyper-
planar. Carlini-Wagner’s L2 attack [57] was another highly effective optimization-based
attack that introduced a relaxation term to the perturbation minimization problem based on
a differentiable surrogate of the model.

In this work, we focus on targeted adversarial attacks, since they pose a more severe
threat to practical applications of deep learning [47]. A targeted adversarial attack tries to
induce a model into making a prediction of the attacker’s choosing. More specifically, given
a benign input instance x, a targeted adversarial attack aims to find a small perturbation δ
that changes the prediction of modelM to a target class t different from the true class y,
i.e.,M(x+ δ) = t, where t 6= y, ||δ|| ≤ ε. We call ε the perturbation strength with respect
to a specific norm || · ||.

Projected Gradient Descent (PGD) [54] is one of the strongest first-order targeted attacks
in adversarial machine learning literature [58]. Hence, in this work, we examine the PGD
attack for our visualizations. PGD iteratively minimizes a loss function L(x, t), such as
cross-entropy, which computes the distance between the softmax of the logit layer and the
one-hot representation of the target class t. Let us denote the logit layer of modelM as
f(x,M). In each iteration i, PGD computes the direction of perturbation by taking the sign
of the gradient of loss function L with respect to the current perturbed instance xi. It then
performs a projection step back to the feasible set, i.e., within ε hypersphere of the original
instance, while remaining a valid image:

xi+1 = Proj
(
xi − α · sign(∇xiL(xi, t))

)
3.3 RELATED WORKS: NEURAL NETWORK INTERPRETABILITY

Deep neural networks have often been used as “black boxes” due to their complex and
“unintelligible” internal structure. This is problematic when a model is attacked, or when it
makes incorrect predictions, since people lack the understanding to correct and protect them.
For example, DNNs are known to be highly vulnerable to human-imperceptible adversarial
perturbations on input data [48, 54, 59]. To make models robust against attacks, it is critical
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to understand how the models are affected, so as to inform the development of effective
defenses. While there has been increasing demands for interpretability for DNNs [60],
less work has focused on interpreting and characterizing and adversarial attacks on DNNs.
Below, we provide an overview of existing methods for interpreting DNNs and adversarial
attacks.

3.3.1 Neural Network Interpretability

A natural approach to understand how neural networks represent data inside their internal
structure is to study a network’s constituent neurons and their activations. Neurons, some-
times referred to as channels in convolutional neural networks, are known to selectively
activate in response to particular learned features. To glean insight into what concepts a
neuron is detecting, the popular approach called feature visualization [61, 62, 63, 64] algo-
rithmically generates visualizations that maximize a particular neuron. Inspecting multiple
feature visualizations helps provide evidence for what concepts a model has learned more
generally [65]. Beyond qualitative interpretations for neuron activations, several recent
techniques have been proposed to quantitatively understand neurons and their features. For
example, TCAV [66] quantifies the degree to which a concept (e.g., striped pattern) would be
important for a class (e.g., zebra) by measuring how sensitive the prediction for the class can
be to the concept based on neuron activations. Network Dissection [67] and Net2Vec [68]
propose to quantify interpretability by measuring alignment between the neuron activations
and concept features.

Motivated by the fact that neural networks build up increasingly complex features
through their multiple layers and connections among neurons, several approaches [69, 65]
propose visualization techniques to interpret the connections between neurons. Circuits [65]
visually explains how the connections between neurons can be extracted by model weights
and how higher-level concepts can be constructed and calculated through these connections.
Summit [69] visualizes what a model has learned for a class using a graph representation,
where nodes are neurons and edges connect neurons based on their influence. Inspired by
previous work, we also leverage feature visualization, and expand on previous graph-based
approaches to interpretability by allowing users to summarize and interactively compare
both benign and attack inputs across varying strengths.

3.3.2 Interpretability for Adversarial Attacks

Research on machine learning security and adversarial attacks has received great attention
over recent years [47, 70, 54, 48, 59]. In response, there has been a growing need for un-
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derstanding how adversarial attacks permeate neural networks to protect them. Goodfellow
et al. [48] ascribe the primary cause of neural network vulnerability to adversarial attacks
to the linear behavior of DNN models in high-dimensional space. They discovered that
adversarial perturbations strongly align with the model’s weight vectors. Papernot et al.
[71] propose a distillation approach to reduce the explanation space of DNNs by training a
surrogate model on top of the primary model to evade attacks.

Recent work has developed interactive visualization tools to help interpret how adversar-
ial attacks affect models [53, 72, 73]. AEVis [53] and its extension [72] propose to extract
critical neurons and their connections, coined as a data path, for benign and adversarial
examples. They formulate the extraction problem as a subset selection optimization problem,
and demonstrate the method on small sets of images; it is unclear how the approach may
scale to larger datasets that BLUFF operate on (e.g., 900+ adversarial images for a single
class). BLUFF also provides new techniques for discovering, summarizing, visualizing, and
comparing activation pathways, enabling novel analysis (e.g., based on neuron inhibition and
excitation) and discoveries (e.g., correlation between class similarity and neuron exploitation
intensity).

3.4 DESIGN CHALLENGES FOR DECIPHERING ATTACKS

Our goal is to build an interactive visualization tool to help users discover and interpret
how adversarial attacks penetrate the internals of DNNs to induce incorrect predictions. To
develop BLUFF, we identified the following four key challenges:

C1 Entangled activation pathways. Due to the complex structure of DNNs (e.g., numer-
ous layers, neurons, and connections), benign activation pathways could significantly
overlap with adversarial pathways, as some neurons are “multi-purpose” (also referred
to as polysemantic [65]), i.e., they detect multiple concepts at the same time [67]. In
addition, two classes with strong resemblance (e.g., diamondback snake and vine snake)
could share similar pathways too. Effective visualization of these entangled pathways
calls for new strategies different from those designed for explaining single inputs [53]
(e.g., a single image) or inputs of the same kind [69] (e.g., all images from the same
class).

C2 Comparing multiple activation pathways. Comparison is core to detecting and de-
fending against adversarial attacks [48, 59, 54]. Beyond a single activation pathway, how
do we visualize and interpret what multiple pathways detect? Can visualization explain
the differences and similarities between how benign and attacked inputs are represented
within neural networks? Interactive systems should visualize high-level overviews of
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activation pathways while supporting drilling-down into specific subpaths to identify
what they detect and how they contribute to the prediction. Interactive comparison for
activation pathways across benign and attacked inputs can help people understand how
adversarial attacks permeate within DNNs, shedding light on how specific groups of
neurons are exploited to inflict harm on a model.

C3 Summarizing attack characteristics. Existing work for interpreting adversarial at-
tacks on deep neural networks often focus on visualizing the activation patterns for
a single adversarial input [63, 73]. While this can be useful, it can be difficulty to
generalize to help understand how attacks behave on other inputs (e.g., images within
the same class or different classes). To better understand the characteristics of an attack,
it is necessary to observe the behavior of attacks over multiple inputs, classes, and attack
hyperparameters. Specifically, adversarial attacks typically have a specified strength
hyperparameter. Visualizing how an attack changes the activation pathway as we vary
the attack strength provides stronger insight into how the attack works generally.

C4 Barrier of entry for interpreting and deciphering adversarial attacks. The visual-
ization community is contributing a variety of methods and tools to help people more
easily interpret different kinds of DNNs [67, 53, 69, 63, 61, 74, 60]. Efforts that aim
to support deciphering adversarial attacks, however, are relatively nascent [67, 53, 73].
Can we make interpreting adversarial attacks more accessible to everyone, perhaps by
following the footsteps of prior success from the community?

3.5 DESIGN GOALS

Based on the identified design challenges, we distill the following main design goals for
BLUFF, an interactive visualization tool for deciphering adversarial attacks on deep neural
networks.

G1. Visualization of exploited activation pathways. We aim to design and develop an
interactive interface to support users to freely explore and interpret activation pathways,
helping decipher how adversarial attacks permeate models. Identifying both excited
and inhibited neurons that response differently between benign and attacked inputs,
helps discover where and how a model is exploited by an attack to induce incorrect
predictions (Item C1). To better understand what each neuron detects, we pair every
neuron with its feature visualization (synthetic examples that maximize a particular
neuron), and dataset examples that together provide strong evidence for what particular
neurons and their connections are detecting.
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G2. Interactive comparison and drill-down for multiple activation pathways. To un-
ravel complex activation pathways of benign and attacked inputs, BLUFF provides an
overview that visualizes multiple activation pathways simultaneously, giving users a
quick sense of the similarity between the internal representations of different inputs.
BLUFF’s interactivity enables users to highlight, filter, and drill-down on multiple
activation pathways. These complementary views let people compare how attacks
deviate from benign inputs and pinpoint specific branching layers within a network
(Item C2).

G3. Understanding attacks with varying strengths. Understanding model vulnerability
under different attack strategies helps inform how to create more general and robust
defenses [70, 71, 56]. To achieve this, BLUFF provides a comparison mode that helps
people summarize and visualize the differing attack strategies under varying strengths
(Item C3). For example, each neuron may be visually encoded based on which attack
strengths they correspond to, characterizing the neuron’s overall vulnerability.

G4. Cross-platform deployment with standard web technologies. BLUFF uses standard
web technologies so that it is broadly accessible to people without specialized com-
putational resources. To support reproducible research, BLUFF is also open-sourced
(Item C4).

3.6 UNIFYING MULTIPLE GRAPH SUMMARIES

BLUFF builds upon the attribution graph concept introduced in [69]. The original attribution
graph visualizes the neurons and their connections within a DNN that respond strongly to
images from a single class. We adapt this idea to scalably aggregate influential activation

pathways across multiple contexts. Specifically, BLUFF identifies the activation pathways
with the most “important” neurons for:

1. All benign images belonging to the original class, on which the targeted attacks are
performed.

2. All benign images belonging to the target class, which the attacks try to flip the label to.

3. All successfully attacked images; further, this set of images can be different for different
attack strengths, as we compute the activation pathways for multiple attack strengths.

In this section, we define what “important” neurons constitute influential activation pathways
in a DNN, and how we compute them. We also provide insights regarding the various
computational and conceptual decisions we make when designing BLUFF.
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3.6.1 Dataset and Model

In this work, we demonstrate the effect of adversarial attacks for images from the training
split of the ILSVRC2012 dataset [3], also known as ImageNet. The dataset consists
of over 1.2 millions images across 1000 classes. BLUFF visualizes the internals of the
InceptionV1 model [55], a prevalent, large-scale convolutional neural network that achieves
top-5 accuracy of 89.5% on ImageNet. InceptionV1 is composed of multiple inception
modules which are distinct groups of parallel convolutional layers. The output of each
inception module is labeled as “mixed{number}{letter},” where the {number} and {letter}
denote the hierarchical location of the corresponding layer in the network; for example,
mixed3a (the first inception module) or mixed5b (the last inception module). In InceptionV1,
there are 9 such layers: mixed3{a,b}, mixed4{a,b,c,d,e}, and mixed5{a,b}. Similar to [69],
and following existing interpretability literature [61, 75], we consider the 9 mixed layers
for our visualization. In our implementation, we use the InceptionV1 model provided by
Tensorflow Lucid1, which has also been used in several other neural network interpretability
works [76, 63, 77].

3.6.2 Adversarial Attack

To understand the effects of an adversarial attack on a DNN, BLUFF aims to provide a
holistic summarization of an attack across different levels of perturbation budget provided
to an attacker. We do this by visualizing the impact of an attack across varying attack
strengths. BLUFF visualizes the influence of the PGD attack [54], one of the strongest and
most effective first-order attacks from the adversarial ML literature [58]. The PGD attack
computes adversarial perturbations which are bound by a given lp norm, thus allowing
us to modulate the attack strength. We use the l2 norm attack for our visualization, and
vary the attack strength from 0.0 (no attack) to 0.5 (strong attack) in increments of 0.05 in
the normalized color space. This corresponds to a maximum change of approximately 64
units in the pixel space, which ranges from 0 to 255. We leverage the CleverHans2 python
library, a popular adversarial ML toolkit, for performing the adversarial attacks. Since there
are multiple attacks that need to be performed for various attack strengths, we efficiently
parallelize all of the attacks using Apache Airflow3, a library for performing distributed
computing.

Even though we discuss specific choices for the dataset, model and attack, the methods
presented hereon developed for BLUFF are easily extensible to other scenarios with minor

1Tensorflow Lucid: https://github.com/tensorflow/lucid
2CleverHans: https://github.com/tensorflow/cleverhans
3Apache Airflow: https://airflow.apache.org/
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changes in the implementation.

3.6.3 Computing Neuron Importance

It has been shown that neurons at successive layers of a DNN learn to detect semantic
concepts with increasing levels of complexity [61]. Our aim with BLUFF is to not only
identify the most “interesting” neurons that are essential for distinguishing the original
class of images, but also compare and contrast them in relation to the neurons that are
correspondingly important for a target class. Finally, we also want to identify the neurons
at each layer that are exploited by an adversarial attack that flip the final prediction from
the original to the target class. To do so, we follow a similar approach to [69], but adapt our
implementation to scale to the multiple sets of images.

To begin, we consider the DNN modelM (InceptionV1 in our case), having Q layers,
where Lq is the q’th layer ofM. Let Zq ∈ RHq ,Wq ,Dq be the output tensor of layer Lq, where
Hq,Wq andDq are the height, width and depth dimensions respectively. This implies that the
layer has Dq neurons. We further denote the d’th neuron and corresponding output channel
in the layer as N d

q and Cdq respectively, where d ∈ {1, ..., Dq} and Cdq ∈ RHq ,Wq . Also, we
index the values in the channel Cdq as Cdq [h,w], where h ∈ {1, ..., Hq} and w ∈ {1, ...,Wq}.

Now, given an image xi that is passed through the model for inference, we find the
maximum activation of each neuron induced by the image using the global max-pooling
operation:

adq [i] = max
h,w
Cdq [h,w]

This represents the relative induced magnitude by which the d’th neuron in the q’th layer
maximally detects the corresponding semantic feature for image xi. This technique of
extracting maximal activation as a proxy for semantic features has also demonstrated
tremendous predictive power in the data programming domain [1]. Finally, we pass all
images from each of original, target and attacked datasets, where the attacked datasets
are further differentiated by the value of attack strengths. For each set, we aggregate adq [i]
values for all images and quantify the “importance” of each neuron according to each set of
images, by the median value of induced maximal activation values, and rank the neurons by
this median-of-max activation values. In BLUFF, we filter the neurons by top-k based on
these values, as we will outline in Section 3.6.5.

Since this step involves performing the same operations multiple times for different
sets of images (original, target and attacked for different attack strengths), we efficiently
parallelize these steps using the Apache Airflow distributed computing library.
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3.6.4 Computing Propagation of Influence

The neuron importances characterize the semantics detected at a local level for each layer.
We further want to characterize how these semantic features propagate through the network,
leading up to the final class label. In BLUFF, we visualize the influence of important neurons
for different sets of images in a single view. We follow similar steps as [69] to compute
the influence from each neuron in a given layer to each neuron in a successive layer. At a
high-level, the influence of each neuron-neuron connection is proportional to the maximum
convolution value of the channel activation corresponding to the source neuron, multiplied
with its learned kernel tensor. We refer the reader to [69] for a more in-depth treatment of
this approach.

Our implementation deviates from [69] in the last step, when aggregating influence
values across several images. Instead of counting how many images have a given neuron-
neuron connection in the top-k influences, we characterize the connection by taking the
median influence across all images from a given set. We take this approach since we want
to summarize the influence characteristics across multiple datasets (original, target and
attacked for different attack strengths), and each dataset may have a different size. Simple
counting may skew the results towards a particular dataset while the median value provides
a characteristic aggregation of the influence scores.

3.6.5 Summarizing Pathways across Multiple Contexts

The InceptionV1 model consists of ∼ 5, 500 neurons (nodes) and ∼ 3.1 million connections
(edges) across all inception modules, which is beyond the realm of human cognition to
comprehend concurrently. However, a significantly smaller number of them play a pivotal
role in the final inference [69]. Hence, BLUFF summarizes these neurons and their connec-
tions as a graph, where the nodes are neurons and the edges are connections among them,
inspired by the attribution graph proposed in [69]. A crucial distinction between [69] and
this work is that the former only visualizes the model for a single class, whereas BLUFF

analyzes multiple contexts. Now we discuss how BLUFF tackles the compounded task of
summarizing the attribution graph across original, target and attacked contexts, including
summarization of multiple attack strengths in a unified view.

BLUFF screens neurons that are important for both benign (original and target classes)
or adversarial (attacked across all strengths) cases. For the benign case, we filter the top 10
neurons at each layer by neuron importance induced by the benign original and target class
images. We show the union set of these neurons. We visualize the neurons only important

for the original class as green nodes, and the neurons only important for the target class
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as blue nodes. Neurons which are important in both classes are shown as orange nodes.
Correspondingly for the benign case, there could be a maximum of 20 green, blue, or orange

nodes (all important neurons for original and target classes are separate), and a minimum of
10 such nodes (all important neurons are the same), for each layer in the BLUFF’s Graph
Summary View.

For the adversarial case, we consider 10 attack strengths in total, as outlined in Sec-
tion 3.6.2. Since there are several attack strengths to summarize, for each attack strength,
we filter the top 5 neurons from every layer that are only important for the successfully
attacked images, and visualize the union set of these neurons as red nodes. Consequently,
there can be a maximum of 50 red nodes (all 5 important neurons are different across all 10
attack strengths), and a minimum of 5 red nodes (all important neurons are same across all
attack strengths), for each layer in the BLUFF Graph Summary View.

BLUFF allows users to further filter the attribution graph nodes and edges to their liking,
which is further discussed in Section 3.7. We also engineered our implementation of
summarizing the activation pathways in a modular fashion, such that it easily facilitates
further tweaking of our design parameters for generating more complex views.

3.7 USER INTERFACE

From our design goals (Section 3.5), we present BLUFF, an interactive visualization system
for deciphering adversarial attacks on deep neural networks. Figure 3.1 shows BLUFF’s
interface, consisting of the main views: the Control Sidebar, the Graph Summary View,
and the Detail View. The following sections detail each view’s features and how the views
tightly interact with one another.

3.7.1 Control Sidebar

Included within the header and the control sidebar (Figure 3.1A) are user-specified controls
for selecting which data are included, filtered, highlighted, and compared in the Graph
Summary View.

Specifying a Benign-Attacked Class Pair

In the header (Figure 3.1, top), users can select a pair of the original and target class. BLUFF

then generates the main visualization in the Graph Summary View for how neural networks
misclassify original class images into the target class when attacked, by displaying the
activation pathways of adversarial inputs.
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Specifying an Attack

Figure 3.3: Specifying an attack.

The attack control panel allows users to manipulate the input images of the selected
classes. Users can first select the adversarial attack method with a drop-down menu and
then select the strength of the attack with a slider. This is shown in Figure 3.3.

Highlighting Activation Pathways

Figure 3.4: Highlighting activation pathways.

The highlight control panel allows users to select which type of activation pathways to
visualize: pathways that are most activated, most changed, most inhibited, or most excited

by an attack. Users can also control how many neurons and connections of the pathways will
be highlighted by two sliders. The first slider controls how many neurons will be highlighted.
This is shown in Figure 3.4. For example, if a user selects “35%” in the neuron slider and
“the most activated pathways” option, BLUFF highlights 35% of most activated neurons in
each layer from all neuron groups: neurons of the original class, the target class, both classes,
and those exploited by the attack—these groups are further described in Section 3.7.2. The
second slider controls how many connections will be highlighted. For example, if a user
selects “30%” in the connection slider and “the most activated pathways” option, BLUFF

highlights 30% of the most activated connections out of all positive connections among the
highlighted neurons between two adjacent layers. We select a certain percentage of neurons
and edges from each layer because activation levels can vary in magnitude by layers. For
example, in the INCEPTIONV1 model, neurons and their connections in the lower layers
generally activate significantly more strongly than, and thus not directly comparable to,
those in the higher layers.
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Filtering Activation Pathways

Figure 3.5: Filtering activation pathways.

Sometimes there may be too many neurons and edges to visualize at once. To avoid over-
plotting and visual complexity, the filter control panel allows users to filter the activation
pathways. BLUFF supports three filtering options: show the full graph, show only user-
pinned neurons, and show only highlighted neurons. This is shown in Figure 3.5. Pinning a
neuron displays its neuron number on its top edge.

Selecting Multiple Adversarial Attacks

Figure 3.6: Selecting multiple adversarial attacks

The comparison control panel allows user to select two different attack strengths for
comparison. After toggling on the comparison mode, the range slider controls two attack
strengths: the left knob for the weaker attack, and the right knob for the stronger attack.
Users can also select which edges to visualize: those inhibited by the weaker or stronger
attack. This is shown in Figure 3.6.

3.7.2 Graph Summary View

The Graph Summary View is the main view of BLUFF (Figure 3.1B). It summarizes and
visualizes activation pathways: the pathways of signal from input to output layer passing
through highly activated neurons (i.e., channels) and their connections. We represent the
pathways as a graph, where nodes are neurons and edges are their connections.
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Spatially Grouping Neurons by Their Roles

Existing works [69, 61] have found that neurons are selectively activated to particular
features and classes. Since we aim to understand why a DNN model misclassifies, we
seek to group neurons spatially according to which class they are typically important to
(i.e., highly activated). There are four groups of neuron in the BLUFF user interface (see
Figure 3.1B): neurons that are highly activated by only the original class, by only the
target class, by both classes, or those highly activated when only adversarial images are
given, meaning that they are exploited by attack. We visually differentiate the groups with
colors: the original class is green, the target class is blue, both classes are orange, and those
exploited by attack are red.

Visualizing Activation Pathways

In the Graph Summary View, activation pathways are visualized in a zoomable and panable
canvas. Neurons are positioned horizontally according to which groups they belong to, in
the order of original, both, target, and exploited by attack, from left to right. Vertically,
they are positioned based on the layers of the neural network. The topmost row corresponds
to the last mixed network layer (i.e., mixed5b) which is closest to the output layer, whereas
the bottom layer corresponds to the first mixed network layer (i.e., mixed3a) which is closest
to the input layer. Each neuron is visualized as a rounded rectangle and colored by its
corresponding group. Each connection between two neurons is visualized as a curved line,
where the width is linearly scaled by the influence values computed as in Section 3.6.4.

Highlighted
neuron and
connection

Not
highlighted

Figure 3.7: Neurons and their connections highlighted by BLUFF.

Out of all neurons, BLUFF highlights those that are most activated or changed based
on the user-specified settings from the highlight control panel. BLUFF highlights neurons
by coloring them darker and connections by making others invisible. This highlighting
approach naturally visualizes the pathways of activation signal passing through neurons and
their connections, while preserving the context of all potentially relevant neurons nearby.
This approach can also help compare the neurons that are highly activated by benign against
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Figure 3.8: BLUFF visualizes neurons and connections that are most activated given adversarial
panda images misclassified as armadillo. These activation pathways can be more interpretable with
visual explanations such as dataset examples, patches of images that highly activate the corresponding
neurons. For example, we can understand that the attack exploits a neuron detecting cup rim to fire
baseball stitch neuron, so that the activation can keep flow towards the armadillo outcome.

adversarial images. All neurons displayed in BLUFF are already the most activated neurons
in benign images, regardless of whether they are highlighted or not. On top of the neurons
that are important for benign images, BLUFF highlights neurons that are highly activated by
adversarial images. This helps distinguish neurons that are activated by benign as well as
adversarial images, as compared to neurons only activated by benign images.

Activation Pathway Interpretability

To help users more easily interpret the concepts that a neuron is detecting, alongside each
neuron, BLUFF shows (1) a feature visualization, an algorithmically generated image that
maximizes the neuron’s activation, and (2) dataset examples, cropped from real images
in the dataset, that also highly activate the neuron [61]. Hovering on a neuron shows the
corresponding feature visualization and dataset examples as seen in Figure 3.1C. These
visual explanations help translate abstract activation pathways into the composition and
flow of learned concepts—this is a primary mechanism that BLUFF uses to identify how a
particular class is misclassified. For example, in Figure 3.8, BLUFF visualizes the activation
pathways of adversarial panda images misclassified as armadillo. The adversarial images
induce the model to detect a “cup rim” feature, which successively fires the “baseball stitch”
neuron and “bumpy surface” neuron, both of which are typically important to armadillo.
This explains how the model misrecognizes features for armadillo, ultimately predicting
the adversarial panda images as armadillos. In the intermediate layer, the “fox face” neuron
slightly fires a “baseball stitch” neuron, causing armadillo to be detected.
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Pathways inhibited by adversarial Giant Panda

4d-259

4c-471

4e-246

Giant Panda

Armadillo

Figure 3.9: Neurons and connections most inhibited by an attack to fool a model into misclassifying
panda as armadillo. These vulnerable neurons that detect typically important features for panda
such as “pug face,” “panda face,” and “cat face” become less detected, preventing the model finding
panda-ness from the inputs.

Investigating Vulnerable Activation Pathways

An adversarial input is often a slightly perturbed version of a benign input. Thus, the
activation pathways of an benign image and those of that image’s corresponding attacked
version would be very similar at the input layer [53]. However, the two pathways at the
output layer are decidedly different — the benign pathways lead to the prediction of the
original class, and the adversarial pathways lead to the prediction of the target class. Given
the similar starting points but different outcomes, the adversarial activation pathways must
have veered off the benign pathways somewhere inside the model. Which neurons and
connections are the most vulnerable and contributing to such deviations? And how do we
interpret the meaning of such vulnerable pathways?

To answer these research questions, we focus on detecting and characterizing the changes
in the activation pathways between benign and attacked data, which could help us better
understand the attributing factors for the resulting (mis)classification. In BLUFF, users can
highlight the neurons and connections they are changed the most by an attack, by using
the highlight control panel. There are two main types of pathway changes: inhibition and
excitation. If a pathway for the original class is inhibited by an attack, this means the
pathway’s constituent neurons (features) are activated much less than they are supposed
to (i.e., fewer original features). Figure 3.9 shows such as an example, where adversarial
panda images inhibits neurons that detect “black fur,” “panda face,” and “cat face,” and
also their connections across the DNN. Conversely, if a pathway of the target class is excited
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Figure 3.10: Neurons of different attack strengths in the comparison mode.

by an attack, this means the constituent neurons are activated much more than expected (i.e.,
more target features). Figure 3.1 shows such an example, where features and connections
important for the prediction of armadillo, such as “scales,” “bumps,” “mesh,” and “brown

bird” (thanks to its similarity to armadillos’ roundish, brown body).
The amount of changes in the activation of neurons and connections, whether inhibited

or excited, is computed by comparing the activations of benign and adversarial inputs. Let
zbenign be a neuron’s activation for some given benign images, and zattacked be that for some
attacked images, as described in Section 3.6.3. Then, the activation inhibition of the neuron is
computed as zbenign−zattacked, and the activation excitation is computed as zattacked−zbenign.
BLUFF also computes the absolute activation difference |zattacked − zbenign|, to help users
quickly identify both inhibited and excited neurons at the same time (we collectively call
these vulnerable neurons). The changes in neuron connections are computed similarly. Let
ibenign be a connection’s influence for some given benign images, and iattacked be that for
some given attacked images, as described in Section 3.6.4. Then, the amount of the activation
inhibition is computed as ibenign − iattacked, the activation excitation as iattacked − ibenign,
and the difference as |iattacked − ibenign|.

Comparing Adversarial Attacks of Different Strengths

Beyond a single attack, does a stronger or weaker attack have the same or different impact on
a neuron? BLUFF offers the comparison mode, to help visualize and compare the changes in
the resulting pathways of a weaker attack and those of a stronger attack. We visually encode
the neurons based on which attack strengths they corresponded to, drawing inspiration from
Alper et al [78]. Each neuron consists of an inner and an outer rectangle: the inner rectangle
is colored when the neuron is in the activation pathways of the weaker attack; whereas the
outer rectangle is colored when the neuron is in the activation pathways of stronger attack.
Thus, our design can visually encode all four possible neuron responses — a neuron is
activated by: (1) weaker attacks only; (2) stronger attacks only; (3) both attack strengths;
and (4) neither attack strengths. This is shown in Figure 3.10.

62



Pinning User-specified Neurons and Connections

When exploring the activation pathways, users can freely pin neurons that are interested in
by simply clicking them. When pinned, the neuron number will be displayed on the top of
the neuron. Clicking a pinned neuron again unpins it. Users can filter the graph to show
only the pinned neurons and their connections using the “Show pinned only” option in the
filter control panel.

3.7.3 Detail View

When hovering on each neuron, a detail view pops up to provide more information about
the neuron (as seen in Figure 3.1C), display the feature visualization for the neuron and four
example image patches to represent the detected concept the neuron detects (as described in
Section 3.7.2). The detail view also presents a line plot that displays the median activation

values for: (1) images of the original class (green); (2) images of the target class (blue);
and (3) adversarial images (gray). The horizontal axis represents the attack strength. Thus,
each data point in the line plot represents a median activation value at a particular attack
strength.

3.7.4 System Design

BLUFF uses the standard HTML/CSS/JavaScript stacks, and D3.js4 for SVGs rendering. We
ran all the backend code that computes neuron importance (Section 3.6.3) and connection
scores (Section 3.6.4) on an NVIDIA DGX-1 workstation equipped with 8 GPUs (each with
32GB memory), 80 CPU cores, and 504GB RAM. It takes about 30 minutes to generate the
full backing graph summary for one class pair (about 2500 images in total) for each attack
strength; a majority of that time is spent on running the attack algorithm. All our source
code is available at https://github.com/poloclub/bluff.

3.8 DISCOVERY USAGE SCENARIOS

We provide four example usage scenarios for BLUFF, demonstrating how it can enhance
the understanding of adversarial attacks, and support discoveries that reveal the attacks’
strategies to confuse a DNN model.

63

https://github.com/poloclub/bluff


mixed5b

mixed5a

mixed4e

mixed4d

Panda
Pathways

Armadillo
Pathways

Blue
bird

181

Blue
bird

754

Blue
object

92

136

121 2

758

603

408 512

57

An attack activates and exploits
alternative pathways detecting blue objects
to reach target pathways detecting green colors.

Misclassification of
diamondback snake as vine snake

Figure 3.11: BLUFF helps users understand how an attack infiltrates a model, by visualizing activation
pathways that are additionally exploited by the attack. In this example, BLUFF highlights the neurons
and connections that PGD attack exploits (red) to make InceptionV1 model would get confused
adversarial diamondback snake images with vine snake.

3.8.1 Understanding How Attacks Penetrate DNNs

The lack of interpretation techniques for adversarial attacks on DNNs severely hinders
machine learning experts from defending their models from malicious actors. This difficulty
in explaining the model’s behaviour under attack is further exacerbated by the complicated
structure of DNNs. BLUFF addresses these challenges by visualizing how adversarial
attacks penetrate the DNN’s internals, pinpointing the neurons and their connections that
are exploited by the attacks.

Consider a DNN classifier designed for identifying multiple types of snakes. Diamond-

back snake is one of the deadliest venomous snakes, and vine snake is a green slender snake
with moderately potent venom that only causes mild swelling. Misclassifying diamondback
snakes as vine snakes can be disastrous. Understanding how an adversarial attack exploits
the model’s internals — whether intentional or not — helps prevent such critical failures. In
Figure 3.11, BLUFF reveals the activation pathways (neurons and their connections) that
are most activated (exploited) by adversarial diamondback images attacked by PGD. While
exploring the Graph Summary View, we noticed that there are several exploited neurons
that look for “blue color” (e.g., “blue birds"), as shown in Figure 3.11. This is surprising

4D3.js: https://d3js.org/
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because the vine snake (the attack’s target class) have a green body, not blue. What we can
infer from this finding is that PGD exploits the pathway for “blue color” as a bypassing
alternative route to reach the pathways for vine snake, which look for “green leaves” and

“green bumpy skin” (mixed5a-603 and mixed5b-408, blue in Figure 3.11). We also noticed
that PGD leverages “snake-like” pathways that are typically important for both classes
(Figure 3.11, orange neurons), which seems reasonable, given that both the original and
target classes are snakes. PGD also uses a neuron for diamondback that detects “striped

snake” (mixed5a-57, green in Figure 3.11), to fire “green bumps” and “snake” neurons.
Finding such alternative routes exploited by an attack can give us a fundamental insight that
could inform future defenses.

3.8.2 Correlating Class Similarity with Exploitation Intensity

An adversarial attack changes a data instance’s predictions from its original class to a target
class of the attacker’s choosing. However, some class changes may be “easier” (e.g., from
one type of dog to another), and some “harder” (e.g., from an animal to a vehicle). How
does class similarity correlate with the magnitude of changes that an attack needs to induce
inside a model?

Dissimilar class pairs −→ strong neuron inhibition. While attacks generally inhibit fea-
tures from the original class (further explored in Section 3.8.4), so that features of the target
adversarial class are relatively detected more, we found that the magnitude of neuron inhi-
bition is much higher when the original and target classes are very different. For example,
Figure 3.12-left shows that adversarial ambulance images need to strongly inhibit car-related
neurons (i.e., big drop in their activation) to misclassify such images as street signs due to
strong class dissimilarities. Conversely, as shown in Figure 3.12-right, adversarial brown

bear images only need to mildly inhibit brown-fur neurons to induce misclassification of
black bear due to close class resemblance. We made similar observations for other dissimilar
(e.g., giant panda vs. armadillo), and similar class pairs (e.g., vine snake vs. green snake).

Dissimilar classes −→more neurons exploited. BLUFF helps reveal unusual pathways that
an attack exploits to induce incorrect predictions. Such unusual pathways (colored red
in Graph Summary View) typically consist of neurons and connections that are neither

commonly traversed by benign original images, nor benign target images; rather they are
exploited unexpectedly by the adversarial images. We found that these unusual pathways
are more heavily used — and they consist of more neurons and connections — when the
original and target classes are dissimilar (e.g., ambulance vs. street sign; giant panda vs.
armadillo). The unusual pathway for the ambulance class pair contains 136 neurons, and the
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Figure 3.12: The most inhibited neurons for the dissimilar class pair (ambulance, street sign), and a
similar class pair (brown bear, black bear). Left: adversarial ambulance images need to strongly
inhibit car-related neurons (i.e., big drop in their activation) to misclassify such images as street signs
due to strong class dissimilarities. Right: adversarial brown bear images only need to mildly inhibit
brown-fur neurons to induce misclassification of black bear due to close resemblances.

giant panda pair contains 85, across all attack strengths. For similar class pairs (e.g., brown

bear vs. black bear; vine snake vs. green snake, both with green bodies), their unusual
pathways are dramatically more compact, 28 neurons for the bears, and 16 for the snake for
all attack strengths.

3.8.3 Shifting Crosshairs across Attack Strengths

As an adversary can perform an attack on the model at various levels of attack strengths
— starting from imperceptible noise, all the way up to high intensity perturbation — we
wonder whether an attack’s strategy evolves as the attack strength escalates, or remains the
same. BLUFF enables such a comparative analysis through its “Compare Attacks” mode.
Consider the example of attacking the diamondback images to induce the misclassification
of vine snake. Setting the weaker and stronger attack strength to 0.1 and 0.5 respectively in
the Control Sidebar, BLUFF visualizes their differing attack strategies (Figure 3.13).

“Death by a thousand cuts” from weaker attacks. Figure 3.13-right reveals the surprising
finding that the weaker attack targets mostly red neurons — neurons that are activated by
the weaker attack, and are associated with neither snake class. This is represented by the
large number of red neurons (28 in total) which only have their inner parts colored (see
Figure 3.13-right). Just 9 red neurons are activated only for the stronger attack, and only
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Figure 3.13: Using BLUFF’s unified comparison view, we examine the attack’s strategy for mis-
classifying diamondback images into vine snake class for 2 attack strengths (0.1 vs 0.5). Left:
stronger attack generally targets green, blue and orange neurons, i.e., it is more precise in attacking
semantically meaningful neurons. Right: weaker attack generally targets red neurons, i.e., it requires
perturbing several disassociated neurons to successfully confuse the model.

one neuron activated for both attack strengths. On further examining the example image
patches for these neurons, we noticed the images consist an assortment of semantic features
such as spider legs, blue bird and car hood, seemingly unrelated to snakes. This leads us
to believe that a weak attack relies on leveraging a large number of disassociated semantic
features to induce misclassification, i.e., “death by a thousand cuts”.

Surgical strike from stronger attacks. Through BLUFF’s visualization, we also observed
that stronger attacks target neurons that are commonly associated with the original class,
the target class, or both classes (Figure 3.13-left). This is represented by the relatively large
number (28 in total) of neurons from these three groups that only have the outer borders
colored (see Figure 3.13-left). 34 neurons are activated by both classes, and just 9 neurons
are activated only for the weaker attack. As we discussed in Section 3.8.1, the green, blue
and orange neurons are likely induced by input features that have high semantic correlation
with the original diamondback and the target vine snake classes. This lends to the notion that
a stronger attack mainly targets semantically-relevant neurons with a precision much higher
than a weaker attack would, and causes minimal collateral damage to other non-relevant
neurons.
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Figure 3.14: Neurons whose activation is most increased (excited) or decreased (inhibited) by
adversarial attack. Here, we highlight the most excited/inhibited neurons using BLUFF’s view
filtering feature. The attack tries to misclassify giant panda images into armadillo class with attack
strength of 0.5. We also show example images from data for all neurons which are consistently
excited/inhibited across multiple attack strengths. Left: generally, green neurons are most inhibited
by the attack, implying that the attack suppresses features associated with giant panda class. Right:
generally, blue neurons are most excited by the attack, suggesting that the attack increasingly induces
armadillo class features.
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3.8.4 Multi-pronged Attack Strategy

Besides revealing the scope of attack (e.g., number of neurons and connections), as described
in the previous scenario in Section 3.8.3, BLUFF can also enable research exploration of
exciting research questions currently not adaquately supported by existing tools, such as
whether the relative activation changes in an attacked neurons would align with semantic
adjustments within the model, or are these changes seemingly arbitrary. Such discovery
sheds light on the possible vectors that an adversarial attack could utilize to confuse a model.
Consider the example of misclassifying adversarial giant panda images as armadillo.
Figure 3.14 shows the top 20% neurons that are most inhibited (left) or most excited (right)
for the strong attack strength of 0.5. In the figure, we also show data examples for the
neurons that are consistently inhibited or excited across multiple attack strengths. Enabled by
BLUFF, such focused examination on neuron inhibition and excitation allow us to discover
and study a highly intriguing, multi-pronged approach employed by adversarial attacks,
which we will describe below.

Attack depletes the original semantic features. Figure 3.14 (left) shows that the most in-
hibited neurons are generally green neurons, suggesting that the adversarial attack precisely
targets the original class neurons and inhibits their activation to, in this case, decrease the
“panda-ness” of the image. Moreso, many such neurons are consistently inhibited across
multiple attack strengths. We observe several features semantically-relevant to a panda are
inhibited, such as “panda body” (mixed4d-259, mixed4d-261), “dog face with black/white

patches” (mixed4e-382), “black/white bird” (mixed5a-125) and “black/white soccer balls”
(mixed5a-363). This summarization from BLUFF provides strong support for our hypothesis
that an adversarial attack would diminish features that are semantically correlated with the
original class.

Attack imbues the target semantic features. Figure 3.14 (right) reveals that the neurons
most consistently excited by an attack across multiple strengths are generally blue or
red neurons. This reinforces the belief that adversarial perturbation attempts to increase
the “armadillo-ness.” The Detail View provides further support, showing that the median
neuron activation increases monotonically (i.e., increasingly excited) across attack strengths.
Correspondingly, we also observe several features that would be considered semantically
relevant for armadillo, such as “grid pattern” (mixed4c-241), “dotted pattern” (mixed4c-
105), “rugged surface” (mixed4d-496), “dotted mic” (mixed4e-516) and “armadillo body”
(mixed4e-135, mixed5a-128, mixed5b-662). Thus, BLUFF enables us to substantiate that
an adversarial attack would inject features that are semantically associated with the target
class.
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3.9 LIMITATIONS AND FUTURE WORK

Interactive neuron editing for model robustness. BLUFF currently visualizes neurons
that are highly excited or inhibited by an adversarial attack under varying attack strengths.
This is an important first step to identifying vulnerable pathways of a network; however,
the ultimate goal is to use BLUFF to inform and construct robust defenses against such
attacks. One approach is to use interactive experimentation techniques to allow real-time
neuron editing, e.g., deletion. Here, a user could actively identify vulnerable neurons using
BLUFF and interactively remove them from the network to observe the effect on the resulting
pathway and prediction in real-time. Masking the activations of a particular neuron could
potentially prevent targeted attacks to propagate deeper into the network. For example, a
user could preemptively edit a DNN to enhance its robustness by deleting neurons that only
feed into exploited pathways, preventing adversarially activated neurons from affecting
subsequent layers.

Visualizing activation pathways in adversarially trained models. In the adversarial
machine learning literature, one common technique to improve the robustness of deep
learning models is to train them with an augmented dataset that additionally includes
adversarially attacked inputs [48, 59, 54]. The motivation is that during training models
will learn to ignore the noise from the attacks and instead focus on the common signal
between both benign and attacked inputs. However, it is still not understood how the internal
representations of these adversarially trained robust models can be compared to standard
networks. Using our summarization techniques and activation pathways could provide a
mechanism to compare standard and robust models beyond simple summary statistics, such
as accuracy, but enable inspection of specific subpaths and neurons.

Comparing activation pathways across other model architectures. In Section 3.6.1
we justify our data and model selection, but another natural next step for future work is
generating and comparing activation pathways across different model architectures. Recent
work [65] has provided evidence that different types of neural network architectures learn
similar concepts (e.g., curve detectors and high-low frequency detectors) for vision tasks.
Our approach using activation pathways could be adopted for comparing what features
multiple networks have learned and how their vulnerability could be different.

Mining activation pathways for motifs. Since activation pathways are extracted from
neural networks, we can leverage data mining and graph analysis methods to find the most
common motifs across all pathways. For example, perhaps all snake classes share one
specific vulnerable subpath that is always attacked, or maybe all bird classes share multiple
subpaths that are never effected, even from strong attacks. Extracting these smaller subpath
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motifs could give further insight into how neural networks arrange and prioritize hierarchical
concepts.

3.10 CONCLUSION

As deep neural networks (DNNs) become increasingly used in many domains, it is important
for us to understand their vulnerabilities. In this work, we present BLUFF, an interactive
system for visualizing, characterizing, and deciphering adversarial attacks on vision-based
neural networks. The BLUFF visualization runs in modern web browsers and is open-sourced.
We believe our visualization, summarization, and comparison approaches will help promote
user understanding of adversarial attacks, and support discoveries that reveal the mechanisms
that attacks employ to inflict harm on models. Ultimately, we hope our findings will help
inform future research on designing models that are more robust against attacks.
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Part II

Mitigating Adversarial Examples Across
Modalities & Tasks
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OVERVIEW

While we develop methods to enhance our intuitive interpretation of attacks in Part I, it
is not enough to only expand our understanding of AI vulnerabilities. To truly overcome
the threat posed by adversarial ML, we need to leverage this understanding and investigate
unifying methods that can effectively mitigate adversarial examples across AI tasks.

We do this by first focusing on the input stage of the model, leveraging practical pre-
processing techniques to remove adversarial perturbations. In Chapter 4, we present the
SHIELD framework, through which we explore the idea of compression as a fast, practical
defense for image classification models. We expand upon the widely used JPEG compression
algorithm and propose a novel pre-processing technique that incorporates randomization
with compression to develop a multifaceted defense. This chapter is adapted from our
published work [70] that appeared at KDD 2018.

SHIELD: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression.
Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen, Michael
E. Kounavis, Polo Chau. Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018.  PDF

Right at the heels of releasing our SHIELD research, adversarial ML had quickly evolved
to propose a new generation of more sophisticated, adaptive attacks. Following this, it is
no longer enough to compress away high-frequency perturbations for evading adversarial
attacks. Hence, we capitalize on the AI security insights afforded by our interpretation and
visualization techniques, and shift our focus to fortifying the model internals directly by
influencing the learning stage of ML models. Our experiments with Multi-Task Learning
(MTL) reveal that it is one such fundamental deep learning approach that has the potential
to fortify ML models across AI tasks.

We first demonstrate this ability of MTL to induce a robust feature space in the video
domain through the task of person tracking. In Chapter 5, we present our SkeleVision
research, where we combine semantically analogous tasks of person tracking and human
keypoint detection. Our experiments reveal that MTL models are consistently more resistant
to powerful, adaptive, physically realizable attacks across a high number of attack iterations.
The work from this chapter is submitted for peer review.

SkeleVision: Towards Adversarial Resiliency of Person Tracking with Multi-Task Learning.
Nilaksh Das, Sheng-Yun Peng, Polo Chau. Under peer review, 2022.  PDF
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Following the observations from SkeleVision, we shift our attention to an entirely different
input modality in order to study the efficacy of MTL robustness across AI tasks. We next
experiment with the robustness of automatic speech recognition (ASR) models in the audio
domain when trained jointly with MTL in Chapter 6. We explore semantically equivalent as
well as semantically diverse tasks for performing MTL. We find that a combination of both
types of tasks is necessary to most effectively thwart powerful, adaptive adversarial attacks.
Our MTL approach shows considerable absolute improvements in adversarially targeted
word error rate. The work from this chapter is submitted for peer review.

Hear No Evil: Towards Adversarial Robustness of Automatic Speech Recognition via Multi-
Task Learning. Nilaksh Das, Polo Chau. Under peer review, 2022.  PDF

Our in-depth research in Chapters 5 and 6 establishes multi-task learning as a fundamentally
unifying deep learning approach across AI tasks (e.g., person tracking and ASR) and input
modalities (e.g., video and audio), which induces models to learn robust features that are
resistant to adversarial attacks.
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CHAPTER 4
SHIELD: FAST, PRACTICAL DEFENSE AND VACCINATION FOR DEEP

LEARNING USING JPEG COMPRESSION

The rapidly growing body of research in adversarial machine learning has demonstrated that
deep neural networks (DNNs) are highly vulnerable to adversarially generated images. This
underscores the urgent need for practical defense techniques that can be readily deployed
to combat attacks in real-time. Observing that many attack strategies aim to perturb image
pixels in ways that are visually imperceptible, we place JPEG compression at the core of
our proposed SHIELD defense framework, utilizing its capability to effectively “compress
away” such pixel manipulation. To immunize a DNN model from artifacts introduced by
compression, SHIELD “vaccinates” the model by retraining it with compressed images,
where different compression levels are applied to generate multiple vaccinated models
that are ultimately used together in an ensemble defense. On top of that, SHIELD adds
an additional layer of protection by employing randomization at test time that compresses
different regions of an image using random compression levels, making it harder for an
adversary to estimate the transformation performed. This novel combination of vaccination,
ensembling, and randomization makes SHIELD a fortified multi-pronged defense. We
conducted extensive, large-scale experiments using the ImageNet dataset, and show that
our approaches eliminate up to 98% of gray-box attacks delivered by strong adversarial
techniques such as Carlini-Wagner’s L2 attack and DeepFool. Our approaches are fast and
work without requiring knowledge about the model.

4.1 INTRODUCTION

Deep neural networks (DNNs), while enjoying tremendous success in recent years, suffer
from serious vulnerabilities to adversarial attacks [79]. For example, in computer vision
applications, an attacker can add visually imperceptible perturbations to an image and
mislead a DNN model into making arbitrary predictions. When the attacker has complete
knowledge of a DNN model, these perturbations can be computed by using the gradient
information of the model, which guides the adversary in discovering vulnerable regions of
the input space that would most drastically affect the model output [48, 80]. But even in a
black-box scenario, where the attacker does not know the exact network architecture, one
can use a substitute model to craft adversarial perturbations that are transferable to the target
model [81]. To make this even more troubling, it is possible to print out physical 2D or 3D

75



"Chain Mail"
(Attacked)

Real-time
Compression
Preprocessing

Vaccinated
Deep Neural

Network EnsembleLabrador
Retriever

Correctly
Classified

Correctly
Classified

SHIELD
Secure Heterogeneous Image

Ensemble with Localized Denoising

Figure 4.1: SHIELD Framework Overview. SHIELD combats adversarial images (in red) by removing
perturbation in real-time using Stochastic Local Quantization (SLQ) and an ensemble of vaccinated
models which are robust to the compression transformation. Our approach eliminates up to 98% of
gray-box attacks delivered by strong adversarial techniques such as Carlini-Wagner’s L2 attack and
DeepFool.

objects to fool recognition systems in realistic settings [82, 83].
The threat of adversarial attack casts a shadow over deploying DNNs in security and

safety-critical applications like self-driving cars. To better understand and fix the vulnerabil-
ities, there is a growing body of research on defending against various attacks and making
DNN models more robust [71, 84, 85]. However, the progress of defense research has
been lagging behind the attack side so far. Moreover, research on defense rarely focuses
on practicality and scalability, both essential for real-world deployment. For example, total
variation denoising and image quilting are image preprocessing techniques that have poten-
tial in mitigating adversarial perturbations to some extent [86], but they incur significant
computational overhead, calling into question how feasibly they can be used in practical
applications, which often require fast, real-time defense [87, 88].

4.1.1 Our Contributions and Impact

1. Compression as Fast, Practical, Effective Defense. We leverage the idea that com-

pression — a central concept that underpins numerous successful data mining techniques
— can offer powerful, scalable, and practical protection for deep learning models against
adversarial image perturbations in real-time. Motivated by the observation that many attack
strategies aim to perturb images in ways that are visually imperceptible to the naked eye, we
show that systematic adaptation of the widely available JPEG compression technique can
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effectively compress away such pixel “noise”, especially since JPEG is particularly designed
to reducing image details that are imperceptible to humans. (Section 4.3.1)

2. SHIELD: Multifaceted Defense Framework. Building on our principal idea of com-
pression, we contribute the novel SHIELD defense framework that combines randomization,
vaccination and ensembling into a fortified multi-pronged defense:

1. We exploit JPEG’s flexibility in supporting varying compression levels to develop strong
ensemble models that span the spectrum of compression levels;

2. We show that a model can be “vaccinated” by training on compressed images, increasing
its robustness towards compression transformation for both adversarial and benign
images;

3. SHIELD employs stochastic quantization that compresses different regions of an image
using randomly sampled compression levels, making it harder for the adversary to
estimate the transformation performed.

SHIELD does not require any change in the model architecture, and can recovers significant
amount of model accuracy lost to adversarial instances, with little effect on the accuracy
for benign instances. SHIELD stands for Secure Heterogeneous Image Ensemble with
Localized Denoising. (Sections 4.3.2 and 4.3.3)

3. Extensive Evaluation Against Major Attacks. We perform extensive experiments using
the full ImageNet benchmark dataset with 50K images, demonstrating that our approach
is fast, effective and scalable. Our approaches eliminate up to 98% of gray-box attacks
delivered by some of the most recent, strongest attacks, such as Carlini-Wagner’s L2 attack
[57] and DeepFool [56]. (Section 4.4)

4. Impact to Intel and Beyond. This work is making multiple positive impacts on Intel’s
research and product development plans. Introduced with the Sandy Bridge CPU microar-
chitecture, Intel’s Quick Sync Video (QSV) technology dedicates a hardware core for
high-speed video processing, performs JPEG compression up to 24X faster than TensorFlow
implementations, paving the way for real-time defense in safety-critical applications, such
as autonomous vehicles. This research has sparked insightful discussion among research
and development teams at Intel, on the priority of secure deep learning that necessitates
tight integration of practical defense strategies, software platforms and hardware accel-
erators. We believe our work will accelerate the industry’s emphasis on this important
topic. To ensure reproducibility of our results, we have open-sourced our code on GitHub
(https://github.com/poloclub/jpeg-defense). (Section 4.5)
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4.2 BACKGROUND: ADVERSARIAL ATTACKS

Our work focuses on defending against adversarial attacks on deep learning models. This
section provides background information for readers new to the adversarial attack literature.

Given a trained classifier C and an instance x ∈ X , the objective of an adversarial
untargeted attack is to compute a perturbed instance x′ such that C(x′) 6= C(x) and
d(x, x′) ≤ ρ for some distance function d(·, ·) and ρ ≥ 0. Popular choices of d(·, ·) are
Euclidean distance d(x, x′) = ‖x− x′‖2, and Chebychev distance d(x, x′) = ‖x− x′‖∞. A
targeted attack is similar, but is required to induce a classification for a specific target class
t, i.e., C(x′) = t. In both cases, depending on whether the attacker has full knowledge of C
or not, the attack can be further categorized into white-box attack and black-box attack. The
latter is obviously harder for the attacker since less information is known about the model,
but has been shown to be possible in practice by relying on the property of transferability
from a substitute model to the target model when both of them are DNNs trained using
gradient backpropagation [79, 81].

The seminal work by Szegedy et al. [79] proposed the first effective adversarial attack
on DNN image classifiers by solving a box-constrained L-BFGS optimization problem
and showed that the computed perturbations to the images were indistinguishable to the
human eye — a rather troublesome property for people trying to identify adversarial images.
This discovery has gained tremendous interest, and many new attack algorithms have been
invented [48, 56, 89, 80] and applied to other domains such as malware detection [90, 91],
sentiment analysis [92], and reinforcement learning [93, 94]. Below, we describe the major,
well-studied attacks in the literature, against which we will evaluate our approach.

Carlini-Wagner’s L2 (CW-L2) [57] is an optimization-based attack that adds a relaxation
term to the perturbation minimization problem based on a differentiable surrogate of the
model. They pose the optimization as minimizing:

‖x− x′‖2 + λmax
(
− κ, Z(x′)k −max{Z(x′)k′ : k′ 6= k}

)
(4.1)

where κ controls the confidence with which an image is misclassified by the DNN, and
Z(·) is the output from the logit layer (last layer before the softmax function is applied for
prediction) of C.

DeepFool (DF) [56] constructs an adversarial instance under an L2 constraint by assuming
the decision boundary to be hyperplanar. The authors leverage this simplification to compute
a minimal adversarial perturbation that results in a sample that is close to the original
instance but orthogonally cuts across the nearest decision boundary. In this respect, DF is
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an untargeted attack. Since the underlying assumption about the decision boundary being
completely linear in higher dimensions is an oversimplification of the actual case, DF keeps
reiterating until a true adversarial instance is found. The resulting perturbations are harder
for humans to detect compared to perturbations introduced by other attacks.

Iterative Fast Gradient Sign Method (I-FGSM) [49] is the iterative version of the Fast
Gradient Sign Method (FGSM) [48], which is a fast algorithm that computes perturbations
subject to an L∞ constraint. FGSM simply takes the sign of the gradient of loss function J
w.r.t. the input x,

x′ = x+ ε · sign(∇Jx(θ, x, y)) (4.2)

where θ is the set of parameters of the model and y is the true label of the instance. The
parameter ε controls the magnitude of per-pixel perturbation. I-FGSM iteratively applies
FGSM in each iteration i after clipping the values appropriately at each step:

x(i) = x(i−1) + ε · sign(∇Jx(i−1)(θ, x(i−1), y)) (4.3)

4.3 PROPOSED METHOD: COMPRESSION AS DEFENSE

In this section, we present our compression-based approach for combating adversarial attacks.
In Section 4.3.1, we begin by describing the technical reasons why compression can remove
perturbation. As compression would modify the distribution of the input space by introducing
some artifacts, in Section 4.3.2, we propose to “vaccinate” the model by training it with
compressed images, which increases its robustness towards compression transformation for
both adversarial and benign images. Finally, in Section 4.3.3, we present our multifaceted
SHIELD defense framework that combines random quantization, vaccination and ensembling
into a fortified multi-pronged defense, which, to the best of our knowledge, has yet been
challenged.

4.3.1 Preprocessing Images using Compression

Our main idea on rectifying the prediction of a trained model C, with respect to a perturbed
input x′, is to apply a preprocessing operation g(·) that brings back x′ closer to the original
benign instance x, which implicitly aims to make C(g(x′)) = C(x). Constructing such a
g(·) is application dependent. For the image classification problem, we show that JPEG
compression is a powerful preprocessing defense technique. JPEG compression mainly
consists of the following steps:
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1. Convert the given image from RGB to Y CbCr (chrominance + luminance) color space.

2. Perform spatial subsampling of the chrominance channels, since the human eye is less
susceptible to these changes and relies more on the luminance information.

3. Transform 8× 8 blocks of the Y CbCr channels to a frequency domain representation
using Discrete Cosine Transform (DCT).

4. Perform quantization of the blocks in the frequency domain representation according
to a quantization table which corresponds to a user-defined quality factor for the
image.

The last step is where the JPEG algorithm achieves the majority of compression at
the expense of image quality. This step suppresses higher frequencies more since these
coefficients contribute less to the human perception of the image. As adversarial attacks
do not optimize for maintaining the spectral signature of the image, they tend to introduce
more high frequency components which can be removed at this step. This step also renders
the preprocessing stage non-differentiable, which makes it non-trivial for an adversary to
optimize against, allowing only estimations to be made of the transformation [95]. We show
in our evaluation (Section 4.4.2) that JPEG compression effectively removes adversarial
perturbation across a wide range of compression levels.

4.3.2 Vaccinating Models with Compressed Images

As DNNs are typically trained on high quality images (with little or compression), they
are often invariant to the artifacts introduced by the preprocessing of JPEG at high-quality
settings. This is especially useful in an adversarial setting as our pilot study has shown
that applying even mild compression removes the perturbations introduced by some attacks
[96]. However, applying too much compression could reduce the model accuracy on benign
images.

We propose to “vaccinate” the model by training it with compressed images, especially
those at lower JPEG qualities, which increases the model’s robustness towards compression
transformation for both adversarial and benign images. With vaccination, we can apply
more aggressive compression to remove more adversarial perturbation. In our evaluation
(Section 4.4.3), we show the significant advantage that our vaccination strategy provides,
recovering more than 7 absolute percentage points in model accuracy for high-perturbation
attacks.
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Figure 4.2: SHIELD uses Stochastic Local Quantization (SLQ) to remove adversarial perturbations
from input images. SLQ divides an image into 8× 8 blocks and applies a randomly selected JPEG
compression quality (20, 40, 60 or 80) to each block to mitigate the attack.

4.3.3 SHIELD: Multifaceted Defense Framework

To leverage the effectiveness of JPEG compression as a preprocessing technique along with
the benefit of vaccinating with JPEG images, we propose a stochastic variant of the JPEG
algorithm that introduces randomization to the quantization step, making it harder for the
adversaries to estimate the preprocessing transformation.

Figure 4.2 illustrates our proposed strategy, where we vary the quantization table for
each 8× 8 block in the frequency domain to correspond to a random quality factor from a
provided set of qualities, such that the compression level does not remain uniform across the
image. This is equivalent to breaking up the image into disjoint 8× 8 blocks, compressing
each block with a random quality factor, and putting the blocks together to re-create the
final image. We call this method Stochastic Local Quantization (SLQ). As the adversary
is free to craft images with varying amounts of perturbation, our defense should offer
protection across a wide spectrum. Thus, we selected the set of qualities {20, 40, 60, 80} as
our randomization candidates, uniformly spanning the range of JPEG qualities from 1 (most
compressed) to 100 (least compressed).

Comparing our stochastic approach to taking a simple average over JPEG compressed
images, our method allows for maintaining the original semantics of the image in the
blocks compressed to higher qualities, while performing more localized denoising in the
blocks compressed to lower qualities. In the case of simple average, all perturbations may
not be removed at higher qualities and they might simply dominate the other components
participating in the average, still posing to be adversarial. Introducing localized stochasticity
reduces this expectation.

In our evaluation (Section 4.4.3), we will show that by using the spectrum of JPEG
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compression levels with our stochastic approach, our model can simultaneously attain a high
accuracy on benign images, while being more robust to adversarial perturbations — a strong
benefit that using a single JPEG quality cannot provide. Our method is further fortified by
using an ensemble of vaccinated models individually trained on the set of qualities picked
for randomization. We show in Section 4.4.3 how our method can achieve high model
accuracies, comparable to those of much larger ensembles, but is significantly faster.

4.4 EVALUATION

In this section, we show that our approach is scalable, effective and practical in removing
adversarial image perturbations. For our experiments, we consider the following scenarios:

• The adversary has access to the full model, including its architecture and parameters.
(Section 4.4.2)

• The adversary has access to the model architecture, but not the exact parameters.
(Section 4.4.3)

• The adversary does not have access to the model architecture. (Section 4.4.4)

4.4.1 Experiment Setup

We performed experiments on the full validation set of the ImageNet benchmark image
classification dataset [97], which consists of 1,000 classes, totaling 50,000 images. We show
the performance of each defense on the ResNet-v2 50 model obtained from the TF-Slim

module in TensorFlow. We construct the attacks using the popular CleverHans package1,
which contains implementations from the authors of the attacks.

• For Carlini-Wagner-L2 (CW-L2), we set its parameter κ = 0, a common value used in
studies [86], as larger values (higher confidence) incur prohibitively high computation
cost.

• DeepFool (DF) is a non-parametric attack that optimizes the amount of perturbation
required to misclassify an image.

• For FGSM and I-FGSM, we vary ε from 0 to 8 in steps of 2.

We compare JPEG compression and SHIELD with two popular denoising techniques that
have potential in defending against adversarial attacks [98, 86]. Median filter (MF) collapses

1https://github.com/tensorflow/cleverhans
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Figure 4.3: Carlini-Wagner-L2 (CW-L2) and DeepFool, two recent strong attacks, introduce pertur-
bations that lowers model accuracy to around 10% (∅). JPEG compression recovers up to 98% of
the original accuracy (with DeepFool), while SHIELD achieves similar performance, recovering up
to 95% of the original accuracy (with DeepFool).

a small window of pixels into a single value, and may drop some of the adversarial pixels in
the process. Total variation denoising (TVD) aims to reduce the total variation in an image,
and may undo the artificial noise injected by the attacks. We vary the parameters of each
method to evaluate how their values affect defense performance.

• For JPEG compression, we vary the compression level from quality 100 (least com-
pressed) to 20 (greatly compressed), in decrements of 10.

• For median filter (MF), we use window sizes of 3 (smallest possible) and 5. We tested
larger window sizes (e.g., 7), which led to extremely poor model accuracies, thus
were ruled out as parameter candidates.

• For total variation denoising (TVD), we vary its weight parameter from 10 through
40, in increments of 10. Reducing the weight of TVD further (e.g., 0.3) produces
blurry images that lead to poor model accuracy.

4.4.2 Defending Gray-Box Attacks with Image Preprocessing

In this section, we investigate the setting where an adversary gains access to all parameters
and weights of a model that is trained on benign images, but is unaware of the defense
strategy. This constitutes a gray-box attack on the overall classification pipeline.

We show the results of applying JPEG compression at various qualities on images
attacked with Carlini-Wagner-L2 (CW-L2) and DeepFool (DF) in Figure 4.3, and on images
attacked with I-FGSM and FGSM in Figure 4.4.
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Figure 4.4: SHIELD recovers the accuracy of the model when attacked with I-FGSM (left) and
FGSM (right). Both charts show the accuracy of the model when undefended (gray dotted curve).
Applying varying JPEG compression qualities (purple curves) helps recover accuracy significantly,
and SHIELD (orange curve) is able to recover more than any single JPEG-defended model.

Combating Carlini-Wagner-L2 (CW-L2) & DeepFool (DF). Although CW-L2 and DF,
both considered strong attacks, are highly effective at lowering model accuracies, Figure 4.3
shows that even applying mild JPEG compression (i.e., using higher JPEG qualities) can
recover much of the lost accuracy. Since both methods optimize for a lower perturbation to
fool the model, the noise introduced by these attacks is imperceptible to the human eye and
lies in the high frequency spectrum, which is destroyed in the quantization step of the JPEG
algorithm. SHIELD performs well, and comparably, for both attacks. We do not arbitrarily
scale the perturbation magnitude of either attack as in [86], as doing so would violate the
attacks’ optimization criteria.

Combating I-FSGM & FGSM. As shown in Figure 4.4, JPEG compression also achieves
success in countering I-FGSM and FGSM attacks, which introduce higher magnitudes of
perturbation.

As the amount of perturbation increases, the accuracies of models without any protection
(gray dotted curves in Figure 4.4) rapidly falls beneath 19%. JPEG recovers significant por-
tions of the lost accuracies (purple curves); its effectiveness also gradually and expectantly
declines as perturbation becomes severe. Applying more compression generally recovers
more accuracy (e.g., dark purple curve, for JPEG quality 20), but at the cost of losing some
accuracy for benign images. SHIELD (orange curve) offers a desirable trade-off, achieving
good performance under severe perturbation while retaining accuracies comparable to the
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Figure 4.5: Runtime comparison for three defenses: (1) total variation denoising (TVD), (2) median
filter (MF), and (3) JPEG compression, timed using the full 50k ImageNet validation images, averaged
over 3 runs. JPEG is at least 22x faster than TVD, and 14x faster than MF.

original models. Applying less compression (light purple curves) performs well with benign
images but is not as effective when perturbation increases.

Effectiveness and Runtime Comparison against Median Filter (MF) and Total Varia-
tion Denoising (TVD). We compare JPEG compression and SHIELD with MF and TVD,
two popular denoising techniques, because they too have potential in defending against
adversarial attacks [98, 86]. Like JPEG, both MF and TVD are parameterized. Table 4.1
summarizes the performance of all the image preprocessing techniques under consideration.
While all techniques are able to recover accuracies from CW-L2 and DF, both strongly
optimized attacks with lower perturbation strength, the best performing settings are from
JPEG (bold font in Table 4.1). When faced with large amount of perturbation generated by
the I-FGSM and FSGM attacks, SHIELD benefits from the combination of Stochastic Local
Quantization, vaccination, and ensembling, outperforming all other techniques.

As developing practical defense is our primary goal, effectiveness, while important, is
only one part of our desirable solution. Another critical requirement is that our solution be
fast and scalable. Thus, we also compare the runtimes of the image processing techniques.
Our comparison focuses on the most computationally intensive parts of each technique,
ignoring irrelevant overheads (e.g., disk I/O) common to all techniques. All runtimes
are averaged over 3 runs, using the full 50k ImageNet validation images, on a dedicated
desktop computer equipped with an Intel i7-4770K quad-core CPU clocked at 3.50GHz,
4x8GB RAM, 1TB SSD of Samsung 840 EVO-Series and 2x3TB WD 7200RPM hard disk,
running Ubuntu 14.04.5 LTS and Python 2.7. We used the fastest, most popular Python
implementations of the image processing techniques. We used JPEG and MF from Pillow
5.0, and TVD from scikit-image.
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Table 4.1: Summary of model accuracies (in %) for all defenses: SHIELD, JPEG, median filter
(MF), and total variation denoising (TVD); v/s all attacks: Carlini-Wagner L2 (CW-L2), DeepFool
(DF), I-FGSM and FGSM. While all techniques are able to recover accuracies from CW-L2 and DF,
both strongly optimized attacks with lower perturbation strength, the best performing settings are
from JPEG (in bold font). SHIELD benefits from the combination of Stochastic Local Quantization,
vaccination and ensembling, outperforming all other techniques when facing high perturbation
delivered by I-FGSM and FGSM.

No Attack CW-L2 DF I-FGSM FGSM
Defense (κ = 0) (ε = 4) (ε = 4)

No Defense 75.59 10.29 9.78 7.49 18.40

SHIELD [20, 40, 60, 80] 72.11 71.85 71.88 65.63 59.29

JPEG [quality=100] 74.95 74.37 74.41 52.52 44.00
JPEG [quality=90] 74.83 74.43 74.36 55.18 45.12
JPEG [quality=80] 74.23 73.92 73.88 57.86 46.66
JPEG [quality=70] 73.61 73.11 73.17 59.53 47.96
JPEG [quality=60] 72.97 72.46 72.52 60.74 49.33
JPEG [quality=50] 72.32 71.86 71.91 61.47 50.53
JPEG [quality=40] 71.48 71.03 71.05 62.14 51.81
JPEG [quality=30] 70.08 69.63 69.67 62.52 53.51
JPEG [quality=20] 67.72 67.32 67.34 62.43 55.81

MF [window=3] 71.05 70.44 70.42 60.09 51.06
MF [window=5] 58.48 58.19 58.06 53.59 49.71

TVD [weight=10] 69.14 68.69 68.74 62.40 53.56
TVD [weight=20] 71.87 71.44 71.45 61.90 50.26
TVD [weight=30] 72.82 72.34 72.37 60.70 48.18
TVD [weight=40] 73.31 72.90 72.91 59.60 47.07
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Figure 4.6: Vaccinating a model by retraining it with compressed images helps recover its accuracy.
Each plot shows the model accuracies when preprocessing with different JPEG qualities with the
FGSM attack. Each curve in the plot corresponds to a different model. The gray dotted curve
corresponds to the original unvaccinated ResNet-v2 50 model. The orange and purple curves
correspond to the models retrained on JPEG qualities 80 and 20 respectively. Retraining on JPEG
compressed images and applying JPEG preprocessing helps recover accuracy in a gray-box attack.

As shown in Figure 4.5, JPEG is the fastest, spending no more than 107 seconds to
compress 50k images (at JPEG quality 80). It is at least 22x faster than TVD, and 14x faster
than median filter. We tested the speed of the TensorFlow implementation of SHIELD, which
also compresses all images at high speed, taking only 150s.

4.4.3 Black-Box Attack with Vaccination and Ensembling

We now turn our attention to the setting where an adversary has knowledge of the model
being used but does not have access to the model parameters or weights. More concretely,
we vaccinate the ResNet-v2 50 model by retraining on the ImageNet training set and
preprocessing the images with JPEG compression while training. This setup constitutes a
black-box attack, as the attacker only has access to the original model but not the vaccinated
model being used.

We denote the original ResNet-v2 50 model as M, which the adversary has access
to. By retraining on images of a particular JPEG compression quality q, we transform
M toMq, e.g., for JPEG-20 Vaccination, we retrainM on JPEG-compressed images at
quality 20 and obtainM20. When retraining the ResNet-v2 50 models, we used stochastic
gradient descent (SGD) with a learning rate of 5× 10−3, with a decay of 94% over 25× 104

iterations. We conducted the retraining on a GPU cluster with 12 NVIDIA Tesla K80 GPUs.
In this manner, we obtain 8 models from quality 20 through quality 90 in increments of 10
(M20,M30,M40...M90), to cover a wide spectrum of JPEG qualities. Figure 4.6 shows
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Table 4.2: Comparison of two ensemble schemes with SHIELD, when defending against FGSM.
Mq×q corresponds to each modelMq voting on each JPEG quality q from q ∈ {20, 30, 40, ..., 90}.
InMq−q, each modelMq votes only on q, the JPEG quality it was trained on. SHIELD offers a
favorable trade-off, providing at least 2x speed-up as compared to larger ensembles, while delivering
comparable accuracies.

Ensemble Cost ε = 0 ε = 2 ε = 4 ε = 6 ε = 8

Mq×q 64 73.90 67.72 60.13 54.44 49.84
Mq−q 8 73.54 67.06 59.86 53.91 49.40
SHIELD 4 72.11 66.30 59.29 53.60 48.63

the results of model vaccination against FGSM attacks, whose parameter ε ranges from 0
(no perturbation) to 8 (severe perturbation), in steps of 2. The plots show that retraining
the model helps recover even more model accuracy than using JPEG preprocessing alone
(compare the unvaccinated gray dotted curve vs. the vaccinated orange and purple curves
in Figure 4.6). We found that a given modelMq performed best when tested with JPEG-
compressed images of the same quality q, which was expected.

We test these models in an ensemble with two different voting schemes. The first
ensemble scheme, denoted asMq×q, corresponds to each modelMq casting a vote on every
JPEG quality q from q ∈ {20, 30, 40, ..., 90}. This has a total cost of 64 votes, from which
we derive the majority vote. In the second scheme, denoted byMq−q, each modelMq votes
only on q, the JPEG quality it was trained on. This incurs a cost of 8 votes.

Table 4.2 compares the accuracies (against FGSM) and computation costs of these two
schemes with those of SHIELD, which also utilizes an ensemble (M20,M40,M60,M80)
with a total of 4 votes. SHIELD achieves very similar performance as compared to the
vaccinated models, at half the cost when compared to Mq−q. Hence, SHIELD offers a
favorable trade-off in terms of scalability with minimal effect on accuracy.

4.4.4 Transferability in Black-Box Setting

In this setup, we evaluate the transferability of attacked images generated using ResNet-
v2 50 on ResNet-v2 101 and Inception-v4. The attacked images are preprocessed using
JPEG compression and Stochastic Local Quantization. In Table 4.3, we show that JPEG
compression as a defense does not significantly reduce model accuracies on low perturbation
attacks like DF and CW-L2. For higher-perturbation attacks, the accuracy of Inception-v4
lowers by a maximum of 10%.
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Inc-v4 (80.2%) RN-v2 101 (77.0%)
Attack Defense Accuracy (Qual.) Accuracy (Qual.)

None JPEG 79.05 (100) 76.48 (100)
SLQ 75.90 - 73.70 -

CW-L2 JPEG 79.00 (100) 76.20 (100)
SLQ 75.80 - 73.60 -

DF JPEG 78.91 (100) 76.19 (100)
SLQ 76.29 - 73.70 -

I-FGSM JPEG 74.84 (100) 70.06 (70)
SLQ 73.20 - 69.40 -

FGSM JPEG 71.00 (100) 64.18 (40)
SLQ 70.01 - 64.64 -

Table 4.3: JPEG compression as defense does not reduce model accuracy significantly on transferred
attacks with low perturbation. Adversarial images crafted using the ResNet-v2 50 model are protected
using JPEG alone and Stochastic Local Quantization (SLQ), before being fed into two other models:
Inception-v4 (Inc-v4) and ResNet-v2 101 (RN-v2 101).

4.4.5 NIPS 2017 Competition Results

In addition to the experiment results shown above, we also participated in the NIPS 2017
competition on Defense Against Adversarial Attack using a version of our approach that
included JPEG compression and vaccination to defend against attacks “in the wild.” With
only an ensemble of three JPEG compression qualities (90, 80, 70), our entry received a
silver badge in the competition, ranking 16th out of more than 100 submissions.

4.5 SIGNIFICANCE AND IMPACT

This work has been making multiple positive impacts on Intel’s research and product
development plans. In this section, we describe such impacts in detail, and also describe
how they may more broadly influence deep learning and cybersecurity. We then discuss our
work’s scope, limitations, and additional practical considerations.

4.5.1 Software and Hardware Integration Milestones

As seen in Section 4.4, JPEG compression is much faster than other popular preprocessing
techniques; even commodity implementations from Pillow are fast. However, in order to
be deployed into a real defense pipeline, we need to evaluate its computational efficiency
with tighter software and hardware integration. Fortunately, JPEG compression is a widely-
used and mature technique that can be be easily deployed in various platforms, and due
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to its widespread usage, we can use off-the-shelf optimized software and hardware for
such testing. One promising milestone we reached, utilized Intel’s hardware Quick Sync
Video (QSV) technology: a hardware core dedicated and optimized for video encoding and
decoding. It was introduced with Sandy Bridge CPU microarchitecture and exists currently
in various Intel platforms. From our experiments, JPEG compression by Intel QSV is up
to 24 times faster than the Pillow and TensorFlow implementations when evaluated on the
same ImageNet validation set of 50,000 images. This computational efficiency is desirable
for applications that need real-time defense, such as autonomous vehicles. In the future, we
plan to explore the feasibility of our approach on more hardware platforms, such as the Intel
Movidius Compute Stick, which is a low power USB-based deep learning inference kit.

4.5.2 New Computational Paradigm: Secure Deep Learning

This research has sparked insightful discussion with teams of Intel QSV, Intel Deep Learning
SDK, and Intel Movidius Compute Stick. This work not only educates industry regarding
concepts and defenses of adversarial machine learning, but also provides opportunities to ad-
vance deep learning software and hardware development to incorporate adversarial machine
learning defenses. For example, almost all defenses incur certain levels of computational
overhead. This may be due to image preprocessing techniques [86, 99], using multiple
models for model ensembles [100], the introduction of adversarial perturbation detectors [85,
98], or the increase in training time for adversarial training [48]. However, while hardware
and system improvement for fast deep learning training and inference remains an active area
of research, secure machine learning workloads still receive relatively less attention, sug-
gesting room for improvement. We believe this will accelerate the positive shift of thinking
in the industry in the near future, from addressing problems like “How do we build deep

learning accelerators?” to problems such as “How do we build deep learning accelerators

that are not only fast but also secure?”. Understanding such hardware implications are
important for microprocessor manufacturers, equipment vendors and companies offering
cloud computing services.

4.5.3 Scope and Limitations

In this work, we focus on systematically studying the benefit of compression on its own.
As myriads of newer and stronger attack strategies are continuously discovered, limitations
in existing, single defenses are revealed. Our approach is not a panacea to defend all
possible (future) attacks, and we do not expect or intend for it to be used in isolation of other
techniques. Rather, our methods should be used together with other defense techniques, to
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potentially develop an even stronger defense. Using multi-layered protection is a proven,
long-standing defense strategy that has been pervasive in security research and in practice
[101, 102]. Fortunately, since our approach primarily involves preprocessing, it is easy to
integrate it into many other defense techniques such as adversarial retraining.

4.6 RELATED WORK

Due to intriguing theoretical properties and practical importance, there has been a surge in the
number of papers in the past few years attempting to find countermeasures against adversarial
attacks. These include detecting adversarial examples before performing classification [85,
103], modifying network architecture and the underlying primitives used [104, 105, 106],
modifying the training process [48, 71], and using preprocessing techniques to remove
adversarial perturbations [107, 84, 99, 86]. The preprocessing approach is most relevant
to our work. Below, we describe two methods in this category—median filter and total
variation denoising, which we compared against in Section 4.4. We then discuss some recent
attacks that claim to break preprocessing defenses.

4.6.1 Image Preprocessing as Defense

Median Filter. This method uses a sliding window over the image and replaces each pixel
with the median value of its neighboring pixels to spatially smooth the image. The size of
the the sliding window controls the smoothness, for example, a larger window size produces
blurrier images. This technique has been used in multiple prior defense works [86, 98].

Total Variation Denoising. The method is based on the principle that images with higher
levels of (adversarial) noise tend to have larger total variations: the sum of the absolute
difference between adjacent pixel values. Denoising is performed by reducing the total
variation while keeping the denoised image close to the original one. A weighting parameter
is used as a trade-off between the level of total variation and the distance from the original
image. Compared with median filter, this method is more effective at removing adversarial
noise while preserving image details [86].

4.6.2 Attacks against Preprocessing Techniques

One of the reasons why adding preprocessing steps increases attack difficulty is that many
preprocessing operations are non-differentiable, thus restricting the feasibility of gradient-
based attacks. In JPEG compression, the quantization in the frequency domain is a non-
differentiable operation.
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Shin and Song [95] propose a method that approximates the quantization in JPEG with
a differentiable function. They also optimize the perturbation over multiple compression
qualities to ensure an adversarial image is robust at test time. However, the paper only
reports preliminary results on 1000 images. It is also unclear whether their attack is effective
against our more advanced SHIELD method, which introduces more randomization to
combat against adversarial noise.

Backward Pass Differentiable Approximation [108] is another potential approach to
bypass non-differentiable preprocessing techniques. To attack JPEG preprocessing, it
performs forward propagation through the preprocessing and DNN combination but in the
backward pass, the method differentiates with respect to the JPEG compressed image. This
is based on the intuition that the compressed image should look similar to the original one,
so the operation can be approximated by the identity function. However, we believe this
assumption only holds for higher compression qualities. Since the work did not report the
compression quality used in the experiments, the conclusion remains open for debate.

4.7 CONCLUSION

In this work, we highlighted the urgent need for practical defense for deep learning models
that can be readily deployed. We drew inspiration from JPEG image compression, a well-
known and ubiquitous image processing technique, and placed it at the core of our new deep
learning model defense framework: SHIELD. Since many attack strategies aim to perturb
image pixels in ways that are visually imperceptible, the SHIELD defense framework utilizes
JPEG compression to effectively “compress away” such pixel manipulation. SHIELD immu-
nizes DNN models from being confused by compression artifacts by “vaccinating” a model:
re-training it with compressed images, where different compression levels are applied to gen-
erate multiple vaccinated models that are ultimately used together in an ensemble defense.
Furthermore, SHIELD adds an additional layer of protection by employing randomization at
test time by compressing different regions of an image using random compression levels,
making it harder for an adversary to estimate the transformation performed. This novel
combination of vaccination, ensembling and randomization makes SHIELD a fortified multi-
pronged defense, while remaining fast and successful without requiring knowledge about
the model. We conducted extensive, large-scale experiments using the ImageNet dataset,
and showed that our approaches eliminate up to 98% of gray-box attacks delivered by the
recent, strongest attacks. To ensure reproducibility of our results, we have open-sourced our
code on GitHub (https://github.com/poloclub/jpeg-defense).
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CHAPTER 5
SKELEVISION: TOWARDS ADVERSARIAL RESILIENCY OF PERSON

TRACKING WITH MULTI-TASK LEARNING

Person tracking using computer vision techniques has wide ranging applications such as
autonomous driving, home security and sports analytics. However, the growing threat of
adversarial attacks raises serious concerns regarding the security and reliability of such
techniques. In this work, we study the impact of multi-task learning (MTL) on the adver-
sarial robustness of the widely used SiamRPN tracker, in the context of person tracking.
Specifically, we investigate the effect of jointly learning with semantically analogous tasks of
person tracking and human keypoint detection. We conduct extensive experiments with more
powerful adversarial attacks that can be physically realizable, demonstrating the practical
value of our approach. Our empirical study with simulated as well as real-world datasets
reveals that training with MTL consistently makes it harder to attack the SiamRPN tracker,
compared to typically training only on the single task of person tracking.

5.1 INTRODUCTION

Person tracking is extensively used in various real-world use cases such as autonomous driv-
ing [109, 110, 111], intelligent video surveillance [112, 113, 114] and sports analytics [115,
116, 117]. However, vulnerabilities in the underlying techniques revealed by a growing body
of adversarial ML research [79, 48, 54, 47, 118, 119, 120, 121, 122] seriously calls into
question the trustworthiness of these techniques in critical use cases. While several methods
have been proposed to mitigate threats from adversarial attacks in general [123, 54, 59, 124,
125], defense research in the tracking domain remains sparse [126]. This is especially true
for the new generation of physically realizable attacks [47, 118, 119] that pose a greater
threat to real-world applications.

In this work, we aim to investigate the robustness characteristics of the SiamRPN
tracker [127], which is widely used in the tracking community. Specifically, our goal is to
improve the tracking robustness to a physically realizable patch attack [119]. Such attacks
are unbounded in the perceptual space and can be deployed in realistic scenarios, making
them more harmful than imperceptible digital perturbation attacks. Figure 5.1 shows an
example of such a physically realizable patch attack that blends in the background.

Multi-task learning (MTL) has recently been touted to improve adversarial robustness
to imperceptible digital perturbation attacks for certain computer vision tasks [128, 129].
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Figure 5.1: Example of a physically realizable patch attack. The dashed blue box shows the ground-
truth bounding box and the solid red box shows the bounding box predicted by SiamRPN. In the
benign case (left), the tracker is able to correctly track the person whereas in the adversarial case
(right) the tracker is fooled by the adversarial patch.

However, it is unclear if these proposed methods translate to physically realizable attacks.
Moreover, these methods have primarily been studied in the context of a single backbone
branch with one-shot inference, whereas the Siamese architecture of the SiamRPN tracker
involves multiple branched stages, posing interesting design considerations. In this work,
we aim to address these research gaps by focusing on improving single-person tracking
robustness.

As physically realizable attacks are unbounded in the perceptual space, they can create
easily perceptible, but inconspicuous perturbations that fools a deep neural network into
making incorrect predictions. However humans can ignore such perturbations by processing
semantic knowledge of the real world. This calls for implicitly incorporating some inductive
biases that supervise the neural network to learn semantic constraints that humans so
instinctively interpret. To this effect, in this work we study the impact of MTL on robustness
of person tracking with a semantically analogous task such as human keypoint detection.

Contributions
• First Study of Tracking Robustness with MTL. To the best of our knowledge, our work

is the first to uncover the robustness gains from MTL in the context of person tracking for
physically realizable attacks. Our code is made available at:
https://github.com/nilakshdas/SkeleVision.

• Novel MTL Formulation for Tracking. We augment the SiamRPN tracker for MTL by
attaching a keypoint detection head to the template branch of the shared backbone while
jointly training.

• Extensive Evaluation. We conduct extensive experiments to empirically evaluate the
effectiveness of our MTL approach by varying attack parameters, network architecture,
and MTL hyperparameters.

94

https://github.com/nilakshdas/SkeleVision


• Discovery. Our experiments with simulated and real-world datasets reveal that training
with MTL consistently makes it harder to attack the SiamRPN tracker as compared to
training only on the single task of person tracking.

5.2 RELATED WORK

Since its inception with SiamFC [130], the Siamese architecture has been leveraged by mul-
tiple real-time object trackers including DSiam [131], SiamRPN [127], DaSiamRPN [132],
SiamRPN++ [133], SiamAttn [134] and SiamMOT [135]. In this work, we experiment
with SiamRPN as the target tracker since many other trackers share a similar network
architecture as SiamRPN, and the properties of SiamRPN can be generalized to other such
state-of-the-art trackers.

5.2.1 Multi-task Learning

MTL aims to learn multiple related tasks jointly to improve the generalization performance
of all the tasks [136]. It has been applied to various computer vision tasks including image
classification [137], image segmentation [128], depth estimation [138], and human keypoint
detection [139].

MTL has also been introduced for the video object tracking task [140, 141, 142]. Zhang
et al. [143, 144, 145] formulate the particle filter tracking as a structured MTL problem,
where learning the representation of each particle is treated as as an individual task. Wang
et al. [146] show that joint training of natural language processing and object tracking can
link the local and global search together, and lead to a better tracking accuracy. Multi-modal
RGB-depth and RGB-infrared tracking also demonstrate that including the depth or infrared
information in the tracking training process can improve the overall performances [147, 148,
149, 150].

5.2.2 Adversarial Attacks

Machine learning model are easily fooled by adversarial attacks [151]. Adversarial attacks
can be classified as digital perturbation attacks [79, 48, 54] and physically realizable
attacks [47, 118, 119, 121]. In the tracking community, multiple attacks have been proposed
to fool the object tracker [120, 122]. Fast attack network [152] attacks the Siamese network
based trackers using a drift loss and embedded features. The attack proposed by Jia et

al. [153] degrades the tracking accuracy through an IoU attack, which sequentially generates
perturbations based on the predicted IoU scores. The attack requires ground-truth when
performing the attack. Wiyatno and Xu [119] propose a method to generate an adversarial
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Figure 5.2: Overview of the SiamRPN architecture for tracking. For multi-task learning, the output
of the template branch is passed to a keypoint head for keypoint detection.

texture. The texture can lock the GOTURN tracker [154] when a tracking target moves in
front of it.

5.2.3 Adversarial Defenses in Tracking

General defense methods for computer vision tasks include adversarial training [59], increas-
ing labeled and unlabeled training data [124], decreasing the input dimensionality [125], and
robust optimization procedures [155, 156]. However, not many defense methods have been
proposed to improve the tracking robustness under attack. Jia et al. [126] attempt to elimi-
nate the effect of the adversarial perturbations via learning the patterns from the attacked
images. Recently, MTL has been shown to improve the overall network robustness [129],
especially in image segmentation [128] and text classification [157]. Our work is the first
that studies MTL for person tracking with a physically realizable attack.

5.3 PRELIMINARIES

The input to the tracker can be denoted as {x, z, ȳx, ȳz}, where x is the detection frame
in which the subject is to be tracked, z is the template frame containing an exemplar
representation of the subject, and respectively, ȳx and ȳz are the ground-truth bounding box
coordinates within the corresponding frames.

5.3.1 Tracking with SiamRPN

In this work, we focus on the Siamese-RPN model (SiamRPN) [127], which is a widely
used tracking framework based on the Siamese architecture. An overview of the SiamRPN
architecture is shown in Figure 5.2. SiamRPN consists of a Siamese network for extracting
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features and a region proposal network (RPN), also referred to as the RPN head, for
predicting bounding boxes.

The Siamese network has two branches: (1) the template branch which receives a
template patch z′ = Γ(z, ȳz, sz) as input; and (2) the detection branch which receives a
detection patch x′ = Γ(x, ȳx, sx) as input. Here, Γ(·) is simply a crop operation that ensures
only a limited context of size s centered on the bounding box y is passed to the network [127].
The corresponding sizes sz and sx are shown in Figure 5.2. For notational convenience, we
use z for z′ and x for x′ hereon. The two branches of the Siamese network use a shared
backbone model such that inputs to both branches undergo the same transformation ϕ(·).
Hence, we can denote the output feature maps of the Siamese network as ϕ(z) and ϕ(x) for
the template and detection branches, respectively. In this work, we use the SiamRPN model
with AlexNet backbone [97].

The RPN head can also be separated into two branches as shown in Figure 5.2. Consid-
ering m anchors distributed across the detection frame, the classification branch predicts
whether each respective anchor is a background or foreground anchor. Hence, the classifi-
cation branch has 2m output channels corresponding to m anchors. The regression branch
on the other hand predicts 4 box coordinate regression deltas [158] for each anchor, and
therefore has 4m output channels.

While training, the classification and regression branches of the RPN head yield Lcls and
Lreg respectively, where Lcls is the cross-entropy loss and Lreg is a smooth L1 loss [127].
Finally, the total weighted loss optimized for is as follows:

LTRK(x, z, ȳx) = λCLcls(x, z, ȳx) + λRLreg(x, z, ȳx) (5.1)

During inference, the network acts as a single-shot detector. Typically, a sequence of
frames x = {x1, . . . xn} is provided with the ground-truth bounding box coordinates ȳx1
of the first frame as input. Hence, the first frame x1 becomes the template frame z used to
compute the feature map ϕ(z) once, which can be considered as detector parameters for
predicting bounding box coordinates for input frames from the same sequence. We denote
the predicted bounding box for an input frame as ŷx. As mentioned previously, SiamRPN
crops the context centered on the ground-truth bounding box. For inference, the context
region is determined by the predicted bounding box of the previous frame. Finally, the
tracking performance is evaluated using a mean intersection-over-union (mIoU) metric of
the predicted and ground-truth bounding boxes across all frames from all input sequences.
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5.3.2 Multi-task Learning with Shared Backbone

To provide semantic regularization for tracking, we perform joint multi-task training by
attaching a fully convolutional keypoint prediction head to the template branch of SiamRPN.
Our hypothesis is that joint training with an additional task head attached to the shared
backbone would encourage the backbone to learn more robust features [159] for facilitating
multiple tasks. Since the shared backbone is also used during tracking inference, the learned
robust features can make it harder for adversarial perturbations to fool the model. We select
the task of human keypoint prediction for this purpose as it is more semantically analogous
to the task of person tracking.

The keypoint head is attached to the template branch as it has a more focused con-
text [127]. Therefore, the keypoint head receives ϕ(z) as input. The keypoint head network
consists of convolutional blocks followed by a transpose convolution operation that “up-
samples” the intermediate feature map to an expanded size with number of output channels
equaling the number of keypoints being predicted. Finally, bilinear interpolation is per-
formed to match the size of the input frame. The resulting feature volume has a shape of
H×W×K, whereH andW are the height and width of the input frame respectively, andK
is the number of keypoints. Hence, each position in the K-channel dimension corresponds
to a keypoint logit score. Given the ground-truth keypoints k̄z, the binary cross-entropy
loss is computed with respect to each position in the channel dimension. We denote this as
LKPT . For multi-task training, the total loss is a weighted sum:

LMTL(x, z, ȳx, k̄z) = LTRK(x, z, ȳx) + λKLKPT (z, k̄z) (5.2)

The ground-truth keypoint annotation also consists of a visibility flag that allows us to
suppress spurious loss from being backpropagated for keypoints that are occluded or not
annotated.

5.3.3 Adversarial Attacks

Adversarial attacks introduce malicious perturbations to the input samples in order to
confuse the tracker into making incorrect predictions. In this work, we use white-box
untargeted attacks that aim to reduce the tracking performance by minimizing the mIoU
metric. Adversarial attacks target a task loss, whereby the objective is to increase the loss by
performing gradient ascent. Given the predicted and ground-truth bounding boxes ŷx and ȳx
respectively, we use the L1-loss as the task loss as proposed in [119] for attacking an object
tracker:
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LADV (ŷx, ȳx) = ‖ŷx − ȳx‖1 (5.3)

Based on means of application of the adversarial perturbation and additional constraints
placed on the perturbation strength, attacks can be further classified into two distinct types:

Digital Perturbation Attacks. These attacks introduce fine-grained pixel perturbations that
are imperceptible to humans [79, 48, 54]. Digital perturbation attacks can manipulate any
pixel of the input, but place imperceptibility constraints such that the adversarial output
xadv is within an lp-ball of the benign input xben, i.e., ‖xadv − xben‖p ≤ ε. Such attacks,
although having high efficacy, are considered to be physically non-realizable. This is due to
the spatially unbounded granular pixel manipulation of the attack as well as the fact that a
different perturbation is typically applied to each frame of a video sequence.

Physically Realizable Attacks. These attacks place constraints on the input space that can
be manipulated by the attack [47, 118, 119, 121]. In doing so, the adversarial perturbations
can be contained within realistic objects in the physical world, such as a printed traffic
sign [47] or a T-shirt [121]. As an attacker can completely control the form of the physical
adversarial artifact, physically realizable attacks are unbounded in the perceptual space and
place no constraints on the perturbation strength. In this work, we consider a physically
realizable attack based on [119] that produces a background patch perturbation to fool an
object tracker (Figure 5.1). It is an iterative attack that follows gradient ascent for the task
loss described in Equation (5.3) by adding a perturbation to the input that is a product of the
input gradient and a step size δ:

x(i) = x(i−1) + δ∇x(i−1)LADV (5.4)

5.4 EXPERIMENT SETUP

We perform extensive experiments and demonstrate that models trained with MTL are
more resilient to adversarial attacks. The multi-task setting consists of jointly training a
shared backbone for semantically related tasks such as person tracking and human keypoint
detection (Section 5.4.1). We evaluate the tracking robustness on a state-of-the-art physically
realizable adversarial attack for object trackers. We test our models on a photo-realistic
simulated dataset as well as a real-world video dataset for person tracking (Section 5.4.4).
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5.4.1 Architecture

For tracking, we leverage a SiamRPN model (Figure 5.2) with an AlexNet backbone and an
RPN head as described in [127]. The inputs to the model are a template frame (127× 127)
and a detection frame (255× 255), fed to the backbone network. Finally, the RPN head of
the model produces classification and localization artifacts corresponding to m = 5 anchors
for each spatial position. The anchors have aspect ratios of {0.33, 0.5, 1, 2, 3} respectively.

A keypoint head is also attached to the template branch of the network, i.e., the keypoint
head receives the activation map with dimensions 6 × 6 × 256 as input. We attach the
keypoint head to the template branch as the template frame has a more focused context, and
typically has only one subject in the frame, leading to more stable keypoint training. The
base keypoint head has 2 convolutional blocks with {128, 64} channels respectively. We
also perform ablation experiments by increasing the depth of the keypoint head to 4 blocks
with {128, 128, 64, 64} channels respectively (Section 5.5.2). The convolutional blocks
are followed by a transpose convolution block with 17 output channels, which is the same
as the number of human keypoints represented in the MS COCO format [160]. Bilinear
interpolation is performed on the output of the transpose convolution block to expand the
spatial output dimensions, yielding an output with dimensions 127× 127× 17. Hence each
of the 17 channels correspond to spatial logit scores for the 17 keypoints.

5.4.2 Training Data

We found that there is a dearth of publicly available tracking datasets that support ad-hoc
tasks for enabling multi-task learning. Hence, for our MTL training, we create a hybrid
dataset that enables jointly training with person tracking and human keypoint detection.
For human keypoint annotations, we leverage the MS COCO dataset [160] which contains
more than 200k images and 250k person instances, each labeled with 17 human keypoints.
The MS COCO dataset also annotates person bounding boxes that we use for the tracking
scenario. As the MS COCO dataset consists of single images, there is no notion of temporal
sequences in the input. Hence, for person tracking, we leverage data augmentation to
differentiate the template and detection frames for the person instance annotation from the
same image. Therefore, the MS COCO dataset allows us to train both the RPN head and
keypoint head jointly for person tracking and human keypoint detection. We use the defined
train and val splits for training and validation. Additionally, we merge this data with the
Large-scale Single Object Tracking (LaSOT) dataset [161]. Specifically, we extract all
videos for the “person” class for training the person tracking network. This gives us 20
video sequences, of which we use the first 800 frames from each sequence for training and
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Figure 5.3: Annotated training examples from the MS COCO (left) and LaSOT (right) datasets for
person tracking. MS COCO has additional human keypoint annotations.

the subsequent 100 frames for the validation set. Hence, the combined hybrid dataset from
MS COCO and LaSOT enables our multi-task training. Figure 5.3 shows 2 example frames
from MS COCO and LaSOT datasets.

5.4.3 Multi-Task Training

For the multi-task training, we fine-tune a generally pre-trained SiamRPN object tracker
jointly for the tasks of person tracking and human keypoint detection. As we are specifically
interested in the impact of multi-task training, we use the same loss weights λC and λR as
proposed in [127] for the tracking loss LTRK . We perform an extensive sweep of the MTL
loss weight λK associated with the keypoint loss LKPT (Section 5.5.1). For the baseline,
we perform single-task learning (STL) for person tracking by dropping the keypoint head
and only fine-tuning the RPN head with the backbone, i.e., the STL baseline has λK = 0.
All STL and MTL models are trained with a learning rate of 8× 10−4 that yields the best
baseline tracking results as verified using a separate validation set. We also study the impact
of pre-training the keypoint head separately before performing MTL (Section 5.5.3). For
pre-training the keypoint head, we drop the RPN head and freeze the parameters of the
backbone network. This ensures that the RPN head parameters are still compatible with
the backbone after pre-training the keypoint head. The keypoint head is pre-trained with
a learning rate of 10−3. We train all models for 50 epochs and select the models with best
validation performance over the epochs.

5.4.4 Evaluation

We evaluate our trained STL and MTL models for the tracking scenario using the mIoU
metric between ground-truth and predicted bounding boxes, which is first averaged over all
frames for a sequence, and finally averaged over all sequences.
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Figure 5.4: Example video frames from the ARMORY-CARLA dataset showing static adversarial
patches for (a) STL and (b) MTL for an attack with δ = 0.1 and 10 steps. The patch is able to lock
onto the STL tracker prediction (top), whereas the MTL tracker is consistently able to track the target
(bottom).

For testing the adversarial robustness of person tracking in a practical scenario, we
leverage a state-of-the-art physically realizable adversarial attack for object trackers [119].
The attack adds a static adversarial background patch to a given video sequence that targets
the tracking task loss LADV . At each iteration of the attack, gradient ascent is performed
on the task loss as per Equation (5.4) with a step size δ. In order to observe the effect
of varying the step size and attack iterations, we experiment with multiple values and
report results for δ = {0.1, 0.2}, which we found to have stronger adversarial effect on the
tracking performance. The attack proposed in [119] has no imperceptibility constraints and
is unbounded in the perceptual space, and can thus be considered an extremely effective
adversarial attack. As the attack relies on the gradients of the task loss, we implement an
end-to-end differentiable inference pipeline for the SiamRPN network using the Adversarial
Robustness Toolbox (ART) framework [162].
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Figure 5.5: Example video frames and the corresponding adversarial IoU charts for the video from
the OTB2015-Person dataset showing the constructed static adversarial patches for STL (red) and
MTL (orange) for an attack with δ = 0.1 and 10 steps. The dashed blue box shows the ground-truth
target. The attack misleads the STL tracker early, but struggles to mislead the MTL tracker until
much later. The unperturbed gray regions in the patch are locations which are never predicted by the
tracker.

We evaluate the adversarial robustness of STL and MTL models on 2 datasets:

ARMORY-CARLA. This is a simulated photo-realistic person tracking dataset created
using the CARLA simulator [163], provided by the ARMORY test bed [164] for adversarial
ML research. We use the “dev” dataset split. The dataset consists of 20 videos of separate
human sprites walking across the scene with various background locations. Each video
has an allocated patch in the background that can be adversarially perturbed to mimic
a physically realizable attack for person tracking. The dataset also provides semantic
segmentation annotations to ensure that only the patch pixels in the background are perturbed
when a human sprite passes in front of the patch. Figure 5.4 shows example video frames
from the dataset where this can be seen. We find that the SiamRPN person tracker, having
been trained on real-world datasets, has a reasonably high mIoU for tracking the human
sprites when there is no attack performed; thus qualifying the photo-realism of the simulated
scenario.
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Figure 5.6: A unified visualization of the adversarial mIoU results from Table 5.1 for the ARMORY-
CARLA dataset with δ = 0.1 (left) and δ = 0.2 (right). The orange dots represent the MTL mIoU’s
and the gray flat lines represent the STL baseline mIoU’s. We see that the hollow orange dots
(λK = 0.2) are consistently above the STL baseline.

OTB2015-Person. We use the Object Tracking Benchmark (OTB2015) [165] to test the
robustness of MTL for person tracking on a real-world dataset. We extract all videos
that correspond to the task of person tracking, which yields 38 videos that we call the
OTB2015-Person split. As the dataset is intended for real-world tracking and is not readily
amenable to implement physically realizable attacks, we digitally modify the videos for our
attack to work. For each video, we overlay a static background patch that has a margin of
10% from each edge, covering 64% of the total area that can be perturbed by the attack.
Finally, for each frame of a video, we only uncover the region annotated by the ground-truth
bounding box with a padding of 25 pixels on each side. Hence, the annotated subject
is always completely visible to the tracker with a digitally perturbed adversarial patch
boundary. Figure 5.5 shows example video frames with the static patch attack as described
here. To ensure that the tracker gets a clean ground-truth template, we do not perturb the
first frame. Since this implements an unbounded digital attack on inputs from the real-world
perceptual space, the attack is much stronger than real-world physically realizable attacks.
For computational tractability, we only attack the first 100 frames.

5.5 RESULTS

Our experiments reveal that models trained with MTL consistently make it harder for an
adversarial attack to succeed by making the shared backbone network learn robust MTL
features. Given an iterative attack, higher number of iterations corresponds to increased
attack difficulty and higher attacker cost. We report the mIoU for increasing attack steps
from {10, 20, 50, 100, 200, 500, 1000} for the ARMORY-CARLA dataset in Table 5.1. We
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Table 5.1: Adversarial mIoU results for ARMORY-CARLA dataset (↑ is better). Values highlighted
in orange show the cases in which MTL is more robust than STL. MTL model with λK = 0.2 is
consistently harder to attack than the STL model, and most often has the best performance. This
table is also visualized in Figure 5.6 for clarity.

STL MTL
Steps λK = 0.0 λK = 0.2 λK = 0.4 λK = 0.6 λK = 0.8 λK = 1.0

benign 0 69.45 69.59 69.46 69.70 72.20 72.08

δ = 0.1

10 48.25 51.88 51.44 49.74 50.24 49.50
20 40.70 41.44 41.22 43.63 45.05 44.47
50 32.07 33.04 37.54 34.63 33.49 34.49
100 26.57 28.16 30.56 29.33 29.91 30.62
200 24.72 25.19 22.73 25.70 21.73 22.12
500 21.47 24.38 20.81 23.61 18.15 18.04

1000 20.54 21.05 17.90 19.64 17.30 18.37

δ = 0.2

10 41.03 45.62 48.13 48.63 44.68 49.50
20 37.04 39.78 39.57 40.00 37.72 39.81
50 27.32 31.32 30.33 29.31 28.55 30.86
100 25.24 26.76 26.89 24.95 26.03 25.21
200 22.95 25.29 22.54 20.41 19.27 22.16
500 19.71 23.13 21.23 17.11 17.18 18.63

1000 18.04 19.02 18.16 16.77 18.04 18.97
orange = MTL > STL; gray = MTL ≤ STL; bold = highest in row

also visually summarize these gains from the MTL approach for the ARMORY-CARLA
dataset in Figure 5.6. For λK = 1.0, which is the base MTL setting, the MTL model
improves upon the benign mIoU from 69.45 to 72.08. Additionally, the MTL model is more
robust than the STL baseline up to 100 attack steps for δ = 0.1 and 50 attack steps for
δ = 0.2. This implies the attack cost is higher for attacking an MTL model compared to
its STL counterpart. The mIoU for increasing attack steps for the OTB2015-Person dataset
are shown in Table 5.2. We observe a degradation in the benign MTL performance in this
case, which may partly be attributed to the resolution mismatch between the high resolution
training examples [160, 161] from MS COCO and LaSOT datasets, compared to lower
resolution evaluation videos samples from the OTB2015 dataset. In the adversarial case,
the base MTL model is more robust than STL baseline for up to 200 steps for δ = 0.1.
For δ = 0.2, the base MTL model fails to show robustness for 20 steps, and slightly better
robustness for other attack steps. We see further improvements in the adversarial resiliency
for varying λK , discussed in Section 5.5.1.
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Table 5.2: Adversarial mIoU results for OTB2015-Person dataset (↑ is better). In most cases, MTL
models are harder to attack compared to STL model, with λK = 0.2 being most robust to the attack
across several attack steps and step sizes.

STL MTL
Steps λK = 0.0 λK = 0.2 λK = 0.4 λK = 0.6 λK = 0.8 λK = 1.0

benign 0 69.42 68.62 67.84 67.89 65.97 68.50

δ = 0.1

10 54.29 57.29 57.78 57.95 57.09 56.24
20 52.62 55.45 55.68 55.56 53.01 52.68
50 48.54 52.84 52.33 50.54 50.94 50.67
100 44.92 52.45 48.54 48.63 48.77 48.25
200 45.40 47.73 49.18 47.26 46.50 47.34

δ = 0.2

10 53.93 57.65 56.60 55.70 56.46 54.34
20 53.57 55.21 56.16 56.08 54.46 52.86
50 49.15 52.81 51.12 49.48 50.71 49.65
100 47.27 52.72 49.74 48.13 49.87 47.81
200 46.19 51.05 48.83 47.24 48.26 47.04

orange = MTL > STL; gray = MTL ≤ STL; bold = highest in row

5.5.1 Varying MTL Weight

We study the effect of varying the MTL weight λK , which controls the amount of key-
point loss LKPT that is backpropagated. We train separate models by enumerating λK =

{0.2, 0.4, 0.6, 0.8, 1.0}, and perform adversarial patch attack on each model for multiple
adversarial settings. The results for ARMORY-CARLA and OTB2015-Person are shown
in Table 5.1 and Table 5.2 respectively. We find that for the given shallow keypoint head
architecture ({128, 64} channels), a lower value of λK is more optimal under adversarial
attack. For both datasets, the MTL model with λK = 0.2 is consistently harder to attack than
the STL model, and most often has the best performance for the corresponding adversarial
setting. Since a shallow keypoint head has relatively lower learning capacity, a higher
λK value will force the shared backbone to focus excessively on the keypoint detection
task, causing deterioration in the robust MTL features learned for the tracking task. From
Table 5.1, although we observe better generalization for the MTL model with λK = 1.0

in the benign case (mIoU = 72.08), the adversarial robustness quickly gives away (at 100
steps for δ = 0.2). Conversely, a lower value of λK = 0.2 offers the best trade-off for
generalization and robustness.

5.5.2 Increasing Depth of Keypoint Head

Following the observations with a shallow keypoint head architecture, we also experiment
with increasing the depth of the keypoint head from {128, 64} channels to {128, 128, 64, 64}
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Table 5.3: Ablation study with the ARMORY-CARLA dataset for attack step size δ = 0.1. We report
the adversarial mIoU results (↑ is better).

λK = 0.0 λK = 0.2 λK = 1.0
not pre-trained pre-trained not pre-trained pre-trained

Steps (STL) shallow deep shallow deep shallow deep shallow deep

0 69.45 69.59 66.85 69.62 69.36 72.08 67.28 64.14 69.40

10 48.25 51.88 45.28 47.05 48.70 49.50 55.46 49.91 49.77
20 40.70 41.44 38.54 39.94 40.47 44.47 47.44 43.10 42.55
50 32.07 33.04 31.71 34.11 35.28 34.49 36.52 36.31 32.96
100 26.57 28.16 27.21 31.33 32.04 30.62 30.07 32.14 31.60
200 24.72 25.19 24.15 25.67 25.34 22.12 26.53 25.16 24.77

orange = MTL > STL; gray = MTL ≤ STL; bold = highest in row

channels, doubling the parameters of the keypoint head network. Table 5.3 shows the ablation
results for the shallow and deep keypoint heads with the ARMORY-CARLA dataset for
λK = {0.2, 1.0} and δ = 0.1. In this section we will focus on the “not pre-trained" results.
The robustness of the MTL model degrades for λK = 0.2 when the model depth is increased,
and is easier to attack compared to the STL model. However, the MTL model with deeper
keypoint head has the best adversarial robustness for a higher λK = 1.0, even outperforming
the MTL model with shallow keypoint head for λK = 0.2. As the deeper keypoint head has
a relatively higher learning capacity, it can learn to detect keypoints with smaller changes to
the feature space of the backbone network. Hence, a higher λK is required to adequately
supervise the backbone in learning robust MTL features. Although we see a decline in the
benign mIoU for increasing depth, the deep MTL model with λK = 1.0 has overall best
robustness. On the other hand, the shallow MTL model with λK = 0.2 has better adversarial
robustness than the STL model as well as better benign performance.

5.5.3 Pre-training the Keypoint Head

As we start with a pre-trained SiamRPN model and an untrained keypoint head, we also study
the impact of pre-training the keypoint head before performing MTL fine-tuning. Table 5.3
shows the results of this ablation study. We report the MTL performance with and without
pre-training the keypoint head with the ARMORY-CARLA dataset for λK = {0.2, 1.0} and
δ = 0.1. For the shallow keypoint head architecture, we see minor improvements in the
MTL performance for a higher value of λK = 1.0, especially at higher number of attack
steps. However, there is a sharp decrease in the benign performance (benign mIoU = 64.14).
On the other hand, the deep keypoint head architecture shows relative improvement with
pre-training for a lower value of λK = 0.2 (benign mIoU = 69.36). Overall, there is no
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significant advantage observed from pre-training the keypoint head. A pre-trained keypoint
head would have lower potential to significantly modify the learned feature space of the
shared backbone as it is already near the optima for the keypoint loss space.

5.6 CONCLUSION

We perform an extensive set of experiments with adversarial attacks for the task of person
tracking to study the impact of multi-task learning. Our experiments on simulated and
real-world datasets reveal that models trained with multi-task learning for the semantically
analogous tasks of person tracking and human keypoint detection are more resilient to
physically realizable adversarial attacks. Our work is the first to uncover the robustness
gains from multi-task learning in the context of person tracking for physically realizable
attacks. As the tracking use case has widely ranging real-world applications, the threat of
adversarial attacks has equally severe implications. We hope our work triggers new research
in this direction to further secure tracking models from adversarial attacks.
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CHAPTER 6
HEAR NO EVIL: TOWARDS ADVERSARIAL ROBUSTNESS OF AUTOMATIC

SPEECH RECOGNITION VIA MULTI-TASK LEARNING

As automatic speech recognition (ASR) systems are now being widely deployed in the
wild, the increasing threat of adversarial attacks raises serious questions about the security
and reliability of using such systems. On the other hand, multi-task learning (MTL) has
shown success in training models that can resist adversarial attacks in the computer vision
domain. In this work, we investigate the impact of performing such multi-task learning
on the adversarial robustness of ASR models in the speech domain. We conduct extensive
MTL experimentation by combining semantically diverse tasks such as accent classification
and ASR, and evaluate a wide range of adversarial settings. Our thorough analysis reveals
that performing MTL with semantically diverse tasks consistently makes it harder for an
adversarial attack to succeed. We also discuss in detail the serious pitfalls and their related
remedies that have a significant impact on the robustness of MTL models. Our proposed
MTL approach shows considerable absolute improvements in adversarially targeted WER
ranging from 17.25 up to 59.90 compared to single-task learning baselines (attention decoder
and CTC respectively). Ours is the first in-depth study that uncovers adversarial robustness
gains from multi-task learning for ASR.

6.1 INTRODUCTION

Automatic speech recognition (ASR) systems have penetrated our daily lives with real-
world applications such as digital voice assistants, IVR and news transcription. These
are increasingly relying on deep learning methods for their superior performance. At the
same time, a mature body of adversarial machine learning research has exposed serious
vulnerabilities in these underlying methods [166, 167, 168, 169, 170, 171, 172], raising
grave concerns regarding the trustworthiness of ASR applications. There is an urgent need
to address these vulnerabilities for restoring faith in using ASR for safety-critical functions.
Our study aims to push the envelope in this direction with a meticulous approach.

An adversarial attack on an ASR model allows the attacker to introduce faint noise to
a speech sample that can influence the model into making an exact transcription of the
attacker’s choosing. Since this targeted adversarial scenario is considered more threatening
for an ASR system as compared to adding noise that leads to some arbitrary prediction [168,
171], we focus on studying the characteristics of ASR models that can thwart targeted
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adversarial attacks. Research has shown that adversarial examples are manifestations of
non-robust features learned by a deep learning model [159]. Hence, our objective is to
regularize the ASR model training paradigm so as to learn robust features that can resist
such attacks.

Multi-task learning (MTL) is one such approach that has shown some success in
this aspect for computer vision tasks by making the underlying models more resilient to
adversarial attacks [128, 129]. However, it is unclear whether such robustness would transfer
to the audio modality. Moreover, hybrid ASR models are often trained with semantically
equivalent tasks like CTC and attention decoding [173]. This raises interesting questions
about their inherent adversarial robustness. In this work, we aim to study the impact of
MTL on the adversarial robustness of ASR models, and compare it to robustness of single-
task learning (STL). Here, we consider MTL as jointly training a shared feature encoder
with multiple losses from diverse task heads. Our expectation is that MTL would induce
the encoder to learn a robust feature space that is harder to attack [159]. We consider
semantically equivalent as well as semantically diverse tasks for performing MTL. We find
that a combination of both types of tasks is necessary to most effectively thwart adversarial
attacks. We also discuss serious pitfalls related to inference for MTL models that have
an adverse impact on robustness. Finally, we demonstrate remedies for such pitfalls that
significantly make it harder for an attacker to succeed.

Contributions
• First MTL Study of Adversarial Robustness for ASR. To the best of our knowledge,

this is the first work to uncover adversarial robustness gains from MTL for ASR models.
• Extensive Evaluation. We perform extensive experimentation with one of the most

powerful adversarial attacks, and evaluate models trained with semantically equivalent as
well as semantically diverse tasks across a wide range of training hyperparameters and
strong adversarial settings.
• Robustness of Hybrid ASR Inference. Our study exposes the extreme vulnerability of

using CTC head for inference in hybrid CTC/attention models; while showing that MTL
training with CTC and attention loss improves resiliency to adversarial attacks if CTC
head is dropped during inference.
• Robust ASR with Semantically Diverse Tasks. Our thorough analysis reveals that

performing MTL with semantically diverse tasks such as combining ASR with accent
classification makes it most difficult for an attacker to induce a maliciously targeted pre-
diction. Our MTL approach shows considerable absolute improvements in adversarially
targeted WER ranging from 17.25 up to 59.90 compared to STL baselines (attention
decoder and CTC respectively).
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Figure 6.1: Overview of an MTL framework for ASR with accent classification. A shared encoder
feeds into multiple task heads with corresponding losses that are jointly optimized.

6.2 RELATED WORKS

Several adversarial attacks have been proposed for maliciously influencing ASR models
by leveraging model gradients to optimize a faint perturbation to the input speech [166,
167, 169, 170, 172]. Many such gradient-based adversarial techniques can be formulated
as variations to the projected gradient descent (PGD) method [54], which is one of the
strongest digital perturbation attacks proposed in the adversarial ML literature. In this work,
we experiment with the targeted PGD attack, as this attack scenario is considered more
threatening for ASR systems [168, 171].

Defenses proposed to evade adversarial attacks on ASR models mostly employ input pre-
processing [174, 175, 176, 177] that places an undue burden on inference-time computation.
Adversarial training has also shown some success in improving adversarial robustness [54,
178]. However, these methods are extremely computationally expensive. MTL with a shared
backbone has the potential to provide a reasonable middle ground as it is much less compu-
tationally expensive than adversarial training, and does not introduce any inference-time
load. Many studies have indeed looked at MTL in the context of ASR robustness [173, 179,
180, 181, 182, 183]. However, the bulk of such works focus mostly on improvement in
benign performance (when no attack is performed) or robustness to arbitrary background
noise. Ours is the first work to study the impact of MTL on ASR models specifically in the
context of adversarial attacks.

6.3 APPROACH

In this work, we study the impact of MTL on adversarial robustness of ASR models by
jointly training a shared feature encoder φ. The encoder takes a speech sample x as input, and
outputs φ(x), which can be considered as a latent sequence embedding in a shared feature
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space. The feature embedding is then passed to various task heads with corresponding
losses. This approach is depicted in Figure 6.1. In Section 6.3.1, we will discuss this MTL
setup in more detail. We will then outline the adversarial setting evaluated in this work in
Section 6.3.2.

6.3.1 ASR with Multi-Task Learning

We consider semantically diverse tasks in addition to semantically equivalent tasks for
performing MTL. The semantically equivalent task heads for ASR are: (1) CTC and (2)
attention decoder. We also jointly train a discriminator for a semantically diverse task such
as accent classification.

For the ASR task, we denote the ground-truth transcription as ȳ, and the CTC loss [184]
and decoder attention loss [185] as LCTC and LDEC respectively. We compute the loss for
ASR as:

LASR(x, ȳ) = λ
(t)
C LCTC(x, ȳ) + (1− λ(t)C )LDEC(x, ȳ) (6.1)

Consequently, for performing joint ASR inference, we denote the CTC and decoder
scoring functions [173] as fCTC and fDEC respectively. Finally, we determine the predicted
output transcription ŷ as follows:

ŷ = λ
(i)
C fCTC

(
φ(x)

)
+ (1− λ(i)C )fDEC

(
φ(x)

)
(6.2)

Note here that λ(t)C and λ(i)C are training and inference weights respectively. Generally,
we follow that λ(i)C = λ

(t)
C in our experiments while performing inference, unless otherwise

specified. Correspondingly, setting λ(i)C =1.0 allows us to use only the trained CTC head for
inference, and vice-versa for the trained decoder head by setting λ(i)C =0.0.

For accent classification, we are given an accent label z̄ that is to be predicted for a speech
sample x. Besides being semantically diverse, accent classification is also functionally
distinct as it is a sequence-to-label task, compared to the sequence-to-sequence task for
ASR. Hence, denoting the cross-entropy loss for the discriminator head as LDIS, we compute
the full MTL loss for jointly training the model as:

LMTL(x, ȳ, z̄) = λ
(t)
A LASR(x, ȳ) + (1− λ(t)A )LDIS(x, z̄) (6.3)

From Equations (6.1) and (6.3), we can see that modulating the λ(t)A and λ(t)C weights
allows us to independently modulate the effect of various heads during training, e.g., setting
λ
(t)
A =1.0 and λ(t)C =1.0 allows us to train using only the CTC head. Conversely, we can train
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only the decoder head by setting λ(t)A =1.0 and λ(t)C =0.0. These can also be considered as
the single-task learning (STL) baselines. With λ(t)A < 1.0, we can train the model with the
discriminator head included. We perform extensive experiments across a range of these
hyperparameters to study the impact of MTL on ASR robustness to attacks.

6.3.2 Adversarial Attack on ASR with PGD

An adversarial attack on ASR introduces an inconspicuous and negligible perturbation δ
to a speech sample that confuses the ASR model into making an incorrect prediction. In
this work, we focus on the projected gradient descent (PGD) attack [54]. Specifically, we
consider the targeted PGD attack, as it is considered more malicious and threatening for
ASR systems [168, 171]. Given, a target transcription ỹ, the targeted attack aims to minimize
the following inference loss function so as to force the ASR model into making a prediction
of the attacker’s choosing:

LADV(x, ỹ) = λ
(i)
C LCTC(x, ỹ) + (1− λ(i)C )LDEC(x, ỹ) (6.4)

The PGD attack is an iterative attack that consists of two main stages. The first stage
is the perturbation stage, wherein a small perturbation of step size α is computed in the
direction of the gradient of LADV with respect to the sample from the previous iteration.
This perturbation having a magnitude of α is added to the sample. The second stage is
the projection stage that ensures that the perturbed sample remains within an ε-ball of the
original input. This is also called the L2 threat model, as it uses the L2 norm for limiting
the perturbation. Hence, the targeted PGD attack optimizes the perturbation δ as:

xADV = argmin
δ
LADV(x+ δ, ỹ), s.t. ‖δ‖2 ≤ ε (6.5)

The perturbation and projection stages are performed iteratively, and the computational
cost to the attacker increases with increasing number of iterations. In order to isolate and
study the impact of our MTL training on adversarial robustness, we perform greedy ASR
inference while implementing the attack. Since the adversarial objective is to induce a
maliciously targeted prediction as opposed to untargeted arbitrary predictions, we analyze
the MTL robustness to specifically evade such targeted attacks. Hence, we examine the
adversarially targeted word error rate (abbreviated as AdvTWER hereon) in this work,
which reports the word error rate of the prediction ŷ with respect to the adversarial target
transcription ỹ, i.e., a higher AdvTWER implies that the model is more robust in evading
the attack. Conversely, a lower AdvTWER means that the attack was more successful.
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We report the adversarially targeted word error rate as we find it to be more compelling
in studying the MTL robustness. Correspondingly, we also observe equivalent robustness
trends with respect to the benign word error rate.

6.4 EXPERIMENT SETUP

6.4.1 Data

We use annotated speech data from Mozilla’s Common Voice dataset [186] for our experi-
ments. Common Voice consists of naturally spoken human speech in a variety of languages.
The dataset also includes demographic metadata like age, sex and accent that is self-reported
by speakers, and the speech is validated by annotators. Specifically, we use the English
language speech and extract accent-labeled speech samples for US and Indian accents,
which are among the most abundantly available accented speech in the dataset. Using the
splits as defined by the dataset, we get ∼260K samples for training and ∼1.2K samples for
validation. Finally, we report the performance metrics on ∼1K samples obtained from the
test split.

6.4.2 Model Architecture and Training

We leverage a pre-trained hybrid CTC-attention model that is publicly available [187],
and fine-tune it using multi-task learning. The model consists of a conformer-based en-
coder [188] that is shared by multiple task heads. The encoder has 12 conformer blocks,
each with 8 attention heads and a hidden unit size of 2048. The output size of the encoder is
512, which is consequently the size of the sequence embeddings from the shared feature
space. The MTL model employs a CTC head and a decoder head for ASR. The decoder
has 6 transformer blocks, with 8 attention heads and a hidden unit size of 2048. The ASR
heads output scores for 5000 subword units. For accent classification, we use a dense feed-
forward discriminator that passes the mean sequence embedding through 5 fully connected
layers, and finally outputs class labels corresponding to the accents. The MTL models are
implemented using the ESPnet2 toolkit [189]. We train several MTL models by extensively
modulating the λ(t)A and λ(t)C weights. Each MTL model is trained with a learning rate of
10−3 for 30 epochs, and we pick the model with the lowest validation loss from all the
epochs.
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6.4.3 Adversarial Setting

For the targeted PGD attack, we generate a fixed set of adversarial transcriptions having
varying lengths. For each sample, the target transcription ỹ is chosen in a deterministic
manner by finding the adversarial transcription from the fixed set having the closest length
to the original transcription ȳ. To ensure there is minimal word overlap between the
original transcriptions and the adversarial transcriptions, we use a lorem-ipsum generator for
generating the adversarial transcriptions. We leverage the targeted PGD attack implemented
using the Adversarial Robustness Toolbox [162] for our experiments. While attacking the
ASR model, we focus solely on the MTL robustness by performing greedy inference for
determining the gradients, and no additional LMs are used. The targeted PGD attack is
performed using an L2 threat model in a white-box attack for inference. We use an extremely
strong perturbation limit of ε=2.0, beyond which we observed that the perturbed samples
would no longer remain within natural constraints. As the attack’s computational cost
increases with increasing number of steps, we report the AdvTWER metric for performing
multiple attack steps, up to as high as 2000 steps. We use a step size α=0.05, allowing the
attack to make fine-grained perturbations at each step.

6.5 RESULTS

Our extensive experimentation reveals that increasing the proportion of multi-task learning
(MTL) while training significantly improves the model’s resiliency to adversarial attacks.
Before analysing the adversarial performance of the models, we first briefly discuss the
benign performance, i.e., when no attack is performed. On the test set, the single-task
learning (STL) baselines have a benign word error rate (WER) of 20.85 and 16.62 for the
CTC and the decoder heads respectively. As has been documented by previous studies [179,
190, 181], models trained with MTL also show better benign performance compared to STL.
For example, we find that training an MTL model with a decoder and discriminator (λ(t)A =0.8;
λ
(t)
C =0.0) yields a benign WER of 15.86 on the test set. For the accent classification task

as well, we observe a reasonable bening accuracy of ∼90% for the MTL models with
λ
(t)
A < 1.0.

We now shift our focus to the adversarial performance of ASR. First, we discuss the
adversarial robustness of MTL models with semantically equivalent tasks (CTC and decoder
heads) in Section 6.5.1. Next, we study the combination of semantically diverse tasks
for MTL in Section 6.5.2. An overview of the MTL robustness trends is also depicted in
Figure 6.2, comparing different MTL combinations with STL baselines. We see that training
with MTL makes it consistently harder for an attacker to succeed.
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Figure 6.2: Adversarial performance for various MTL combinations. MTL outperforms STL
baselines when CTC is dropped for inference.

6.5.1 MTL with CTC and Attention Decoder

We first study the adversarial performance of the semantically equivalent task heads by
training jointly using the CTC and decoder heads. We train multiple models by setting
λ
(t)
A =1.0 and modulating λ(t)C from values {0.0, 0.3, 0.5, 0.7, 1.0}. We perform the PGD

attack on each of these models as decribed in Section 6.4.3. For performing the attack,
we follow two inference modes: (1) using the CTC head with same inference weights as
training, i.e., λ(i)C = λ

(t)
C ; and (2) drop the CTC head for inference, i.e., λ(i)C =0.0. It will

become clear in the following discussion why we follow this. The adversarial performance
for these inference modes is reported in Table 6.1 using the AdvTWER metric for various
attack steps.

When the trained CTC head is included for inference, i.e., λ(i)C = λ
(t)
C , we see from

Table 6.1 that performing MTL with a combination of CTC and decoder heads has no
robustness benefit compared to the STL decoder baseline. In fact, the STL CTC baseline
itself is significantly more vulnerable to the adversarial attacks. Performing MTL moderately
improves the robustness compared to the STL CTC baseline but it is still not better than
the STL decoder baseline. This implies that the attacker is able to easily influence the
CTC head into hijacking the overall joint prediction. This can be seen in Figure 6.2 with
the clear gap between the gray STL baselines and the MTL model with CTC included
in inference (λ(t)A =1.0; λ(t)C =λ

(i)
C =0.5). Decreasing λ

(t)
C from 0.7 to 0.3 clearly shows

worsening robustness in Table 6.1. This means that attacking a less trained CTC head
(with lower λ(t)C ) having a lower impact on the overall prediction (due to correspondingly
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Table 6.1: AdvTWER (↑ is more robust) with λ(t)A =1.0. Training with CTC and dropping CTC for
inference (λ(i)C =0.0) is more robust.

λ
(i)
C = λ

(t)
C λ

(i)
C = 0.0

STL
(Decoder)

MTL with joint inference←−−−−−−−−−−−−−−−−−→ STL
(CTC)

MTL
with Decoder inference

λ
(t)
C −→ 0.0 0.3 0.5 0.7 1.0 0.3 0.5 0.7

PGD-500 93.35 59.87 61.55 76.64 37.53 96.80 99.95 97.06
PGD-1000 72.31 35.21 37.49 53.91 15.19 79.36 81.29 82.45
PGD-1500 57.57 23.94 26.09 42.44 8.99 67.16 68.45 69.57
PGD-2000 49.79 19.22 20.40 36.99 7.14 60.15 63.29 60.56
gray = STL; highlighted = MTL > STL; bold = highest in row

lower λ(i)C ) is still able to overpower the more trained decoder head scores. This evident
vulnerability of the CTC head may be attributed to the well studied peaky behavior of the
CTC loss [191, 192] that would allow the attacker to induce overconfident prediction scores
through the CTC head.

Next we study the effect of performing MTL by training the CTC head, but dropping
the CTC head during inference, i.e., λ(i)C =0.0. This means that the attacker can no longer
manipulate the CTC head during inference, but the shared encoder is still jointly trained
using the CTC loss. Immediately, we see the adversarial performance of the MTL models
beat both the STL baselines in Table 6.1. It is consistently harder for the attacker to attack
the MTL models across many attack steps. This is also visualized in Figure 6.2 for λ(t)A =1.0,
λ
(t)
C =0.5 and λ(i)C =0.0.

6.5.2 Robust ASR with Semantically Diverse Tasks

We now study the impact of performing MTL with semantically diverse tasks. As we
saw in Section 6.5.1 that the CTC head is extremely vulnerable to adversarial attacks, we
first examine MTL with the decoder and discriminator combination, i.e., we set λ(t)C =0.0.
Table 6.2 shows the adversarial performance for training the decoder and discriminator
heads by modulating λ(t)A from values {1.0, 0.9, 0.8, 0.7, 0.6, 0.5}. We see that AdvTWER
for λ(t)A =0.8, 0.7, 0.6 consistently outperforms the STL decoder baseline. This implies
that the λ(t)A should not be too high (less MTL) or too low (less ASR training) for optimal
MTL robustness. We can also see this robustness in Figure 6.2 by comparing the STL
decoder baseline with the MTL model for λ(t)A =0.7 and λ(t)C =λ

(i)
C =0.0. However, we see

that decoder/discriminator MTL is still not able to beat CTC/decoder MTL when the CTC
head is dropped for inference.
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Table 6.2: AdvTWER (↑ is more robust) with λ(t)C =0.0. Training the decoder with a discriminator
shows better robustness.

λ
(t)
A −→ 1.0 0.9 0.8 0.7 0.6 0.5

PGD-500 93.35 89.60 95.48 97.60 97.04 90.94
PGD-1000 72.31 68.67 73.02 78.07 78.57 70.25
PGD-1500 57.57 54.88 60.88 65.24 63.15 57.88
PGD-2000 49.79 47.28 51.23 57.75 55.61 50.43
gray = STL (Decoder); highlighted = MTL > STL; bold = highest in row

Table 6.3: AdvTWER (↑ is more robust) with λ(t)A =0.7, λ(i)C =0.0. Training all heads combined
shows most superior robustness.

λ
(t)
C −→ 0.0 0.3 0.5 0.7

PGD-500 97.60 97.02 100.65 101.04
PGD-1000 78.07 76.83 85.06 83.69
PGD-1500 65.24 62.75 73.70 70.67
PGD-2000 57.75 56.57 67.04 65.79
gray = Baseline; highlighted = MTL > Baseline; bold = highest in row

Therefore, we next study the combination of all three heads (CTC, decoder and dis-
criminator) for performing MTL while dropping the CTC head during inference (λ(i)C =0.0).
For these experiments, we first set λ(t)A =0.7 which shows superior adversarial robustness
in Table 6.2. We then modulate λ(t)C from values {0.0, 0.3, 0.5, 0.7}. Table 6.3 shows the
adversarial performance results for this setting. Similar to Table 6.1, we can see that increas-
ing MTL training weight for the CTC head but dropping the CTC head during inference
improves the overall robustness, with λ(t)C =0.5 showing the best robustness of all MTL
models. Hence, combining all three heads and performing MTL with semantically diverse
tasks makes the model most resilient to the adversarial attacks consistently across multiple
attack steps. This can also be clearly seen in Figure 6.2 where the MTL model corresponding
to λ(t)A =0.7, λ(t)C =0.5 and λ(i)C =0.0 outperforms all other MTL combinations and baselines.

6.6 CONCLUSION

In this work, we study the impact of multi-task learning (MTL) on the adversarial robustness
of ASR models. We perform extensive experimentation with multiple training and inference
hyperparameters as well as wide-ranging adversarial settings. Our thorough empirical
testing reveals that performing MTL with semantically diverse tasks consistently makes it
harder for an attacker to succeed across several attack steps. We also expose the extreme
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vulnerability of the CTC loss, and discuss related pitfalls and remedies for using the CTC
head during training with MTL. In future work, we aim to investigate regularization methods
that can reduce the peaky behavior of CTC so as to induce more adversarially robust hybrid
inference.
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Democratizing AI Security Research &
Pedagogy with Scalable Interactive
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OVERVIEW

So far we have explored how we can deeply understand AI vulnerabilities and fortify AI
models. However in the coming future, with the radical infusion of AI in everyday life, AI
security will not only be restricted to the fancies of expert researchers. While visualization
tools and intuitive vulnerability interpretation go a long way in enabling people to understand
AI security more deeply, it still requires some level of expertise in the adversarial ML domain
to successfully decipher these concepts. In this part of the thesis, we go that last mile to
bring AI security research to the masses.

In Chapter 7, we take the first step towards this goal by developing ADAGIO, a web-based
tool that allows real-time interactive experimentation with attacks and defenses on an
automatic speech recognition (ASR) model. Through developing ADAGIO, and following
the observations from our SHIELD research, we discover that the idea of input compression
as a practical defense carries over to the audio domain as well. This chapter is adapted from
our published work [174] that appeared at ECML PKDD 2018.

ADAGIO: Interactive Experimentation with Adversarial Attack and Defense for Audio. Nilaksh
Das, Madhuri Shanbhogue, Shang-Tse Chen, Li Chen, Michael E. Kounavis, Polo Chau. Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, 2018.
 PDF

Working on ADAGIO gave us the key insight that interactive experimentation on the web is
an immensely powerful medium for research dissemination. In Chapter 8, we build upon
this notion by developing MLsploit, the first open-source, scalable, web-based interactive
system that allows seamless experimentation with adversarial ML research. MLsploit
provides a modular repository of attacks and defenses, enabling practitioners to interactively
study their AI applications under various threat models. Becoming available to thousands of
students, MLsploit is already transforming AI security education at scale. This chapter is
adapted from our project [193] that was presented at the KDD 2019 Project Showcase.

MLsploit: A Framework for Interactive Experimentation with Adversarial Machine Learn-
ing Research. Nilaksh Das, Siwei Li, Chanil Jeon, Jinho Jung∗, Shang-Tse Chen∗, Carter
Yagemann∗, Evan Downing∗, Haekyu Park, Evan Yang, Li Chen, Michael Kounavis, Ravi
Sahita, David Durham, Scott Buck, Polo Chau, Taesoo Kim, Wenke Lee. Project Showcase at
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019.  PDF
∗authors contributed equally

Through developing such interactive experimentation tools, we democratize AI security
for new researchers, practitioners and students, and make adversarial ML research more
accessible and more equitable for everyone.
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CHAPTER 7
ADAGIO: INTERACTIVE EXPERIMENTATION WITH ADVERSARIAL

ATTACK AND DEFENSE FOR AUDIO

Adversarial machine learning research has recently demonstrated the feasibility to confuse
automatic speech recognition (ASR) models by introducing acoustically imperceptible per-
turbations to audio samples. To help researchers and practitioners gain better understanding
of the impact of such attacks, and to provide them with tools to help them more easily
evaluate and craft strong defenses for their models, we present ADAGIO, the first tool de-
signed to allow interactive experimentation with adversarial attacks and defenses on an ASR
model in real time, both visually and aurally. ADAGIO incorporates AMR and MP3 audio
compression techniques as defenses, which users can interactively apply to attacked audio
samples. We show that these techniques, which are based on psychoacoustic principles,
effectively eliminate targeted attacks, reducing the attack success rate from 92.5% to 0%.

7.1 INTRODUCTION

Deep neural networks (DNNs) are highly vulnerable to adversarial instances in the image
domain [48]. Such instances are crafted by adding small imperceptible perturbations to
benign instances to confuse the model into making wrong predictions. Recent work has
shown that this vulnerability extends to the audio domain [169], undermining the robustness
of state-of-the-art models that leverage DNNs for the task of automatic speech recognition
(ASR). The attack manipulates an audio sample by carefully introducing faint “noise” in
the background that humans easily dismiss. Such perturbation causes the ASR model
to transcribe the manipulated audio sample as a target phrase of the attacker’s choosing.
Through this research demonstration, we make two major contributions:

1. Interactive exploration of audio attack and defense. We present ADAGIO, the first tool
designed to enable researchers and practitioners to interactively experiment with adversarial
attack and defenses on an ASR model in real time1. ADAGIO incorporates AMR and MP3
audio compression techniques as defenses for mitigating perturbations introduced by the
attack. Figure 7.1 presents a brief usage scenario showing how users can experiment with
their own audio samples. ADAGIO stands for Adversarial Defense for Audio in a Gadget
with Interactive Operations.

1see demo: https://youtu.be/0W2BKMwSfVQ
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Figure 7.1: ADAGIO usage scenario. (1) Jane uploads an audio file that is transcribed by Deep-
Speech [194]; then she performs an adversarial attack on the audio in real time by entering a target
transcription after selecting the attack option from the dropdown menu, e.g., the state-of-the-art
Carlini-Wagner Audio Attack [169]. (2) Jane decides to perturb the audio to change the last word of
the sentence from “joanna” to “marissa”; she can listen to the original audio and see the transcription
by clicking on the “Original” badge. (3) Jane applies MP3 compression to recover the original,
correct transcription from the manipulated audio; clicking on a waveform plays back the audio from
the selected position. (4) Jane can experiment with multiple audio samples by adding more cards.
For presentation, operations 1, 2 and 3 are shown as separate cards.

2. Compression as an effective defense. We demonstrate that non-adaptive adversarial
perturbations are extremely fragile, and can be eliminated to a large extent by using audio
processing techniques like Adaptive Multi-Rate (AMR) encoding and MP3 compression. We
assume a non-adaptive threat model since an adaptive version of the attack is prohibitively
slow and often does not converge.

7.2 ADAGIO: EXPERIMENTING WITH AUDIO ATTACK & DEFENSE

We first provide a system overview of ADAGIO, then we describe its primary building
blocks and functionality. ADAGIO consists of four major components: (1) an interactive
UI (Figure 7.1); (2) a speech recognition module; (3) a targeted attack generator module;
and (4) an audio preprocessing (defense) module. The three latter components reside on
a back-end server that performs the computation. The UI communicates the user intent
with the back-end modules through a websocket messaging service, and uses HTTP to
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upload/download audio files for processing. When the messaging service receives an action
to be performed from the front-end, it leverages a custom redis-based job queue to activate
the correct back-end module. When the back-end module finishes its job, the server pings
back the UI through the websocket messaging service to update the UI with the latest results.
Below, we describe the other three components in ADAGIO.

7.2.1 Speech Recognition

In speech recognition, state-of-the-art systems leverage Recurrent Neural Networks (RNNs)
to model audio input. The audio sample is broken up into frames {x(1), ..., x(T )} and fed
sequentially to the RNN function f(·) which outputs another sequence {y(1), ..., y(T ′)},
where each y(t) is a probability distribution over a set of characters. The RNN maintains
a hidden state h(t) which is used to characterize the sequence up until the current input
x(t), such that, (y(t), h(t)) = f(x(t−1), h(t−1)). The most likely sequence based on the
output probability distributions then becomes the transcription for the audio input. The
performance of speech-to-text models is commonly measured in Word Error Rate (WER),
which corresponds to the minimum number of word edits required to change the transcription
to the ground truth phrase.

ADAGIO uses Mozilla’s implementation [195] of DeepSpeech [194], a state-of-the-art
speech-to-text DNN model, to transcribe the audio in real time.

7.2.2 Targeted Audio Adversarial Attacks

Given a model function m(·) that transcribes an audio input x as a sequence of characters y,
i.e., m(x) = y, the objective of the targeted adversarial attack is to introduce a perturbation
δ such that the transcription is now a specific sequence of characters y′ of the attacker’s
choosing, i.e., m(x+ δ) = y′. The attack is only considered successful if there is no error in
the transcription.

ADAGIO allows users to compute adversarial samples using a state-of-the-art iterative
attack [169]. After uploading an audio sample to ADAGIO, the user can click the attack
button and enter the target transcription for the audio (see Figure 7.1.1). The system then
runs 100 iterations of the attack and updates the transcription displayed on the screen at
each step to show progress of the attack.

7.2.3 Compression as Defense

In the image domain, compression techniques based on psychovisual theory have been
shown to mitigate adversarial perturbations of small magnitude [96]. We extend that
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Table 7.1: Word Error Rate (WER) and the targeted attack success rate on the DeepSpeech model
(lower is better for both). AMR and MP3 eliminate all targeted attacks, significantly improving
WER.

Defense WER (no attack) WER (with attack) Targeted attack success rate

None 0.369 1.287 92.45%
AMR 0.488 0.666 0.00%
MP3 0.400 0.780 0.00%

hypothesis to the audio domain and let users experiment with AMR encoding and MP3
compression on adversarially manipulated audio samples. Since these techniques are based
on psychoacoustic principles (AMR was specially developed to encode speech), we posit
that these techniques could effectively remove the adversarial components from the audio
which are imperceptible to humans, but would confuse the model.

To determine the efficacy of these compression techniques in defending the ASR model,
we created targeted adversarial instances from the first 100 test samples of the Mozilla’s
Common Voice dataset [186] using the attack as described in [169]. We constructed five
adversarial audio instances for every sample, each transcribing to a phrase randomly picked
from the dataset, yielding a total of 500 adversarial samples. We then preprocessed these
samples before feeding it to the DeepSpeech model. Table 7.1 shows the results from this
experiment. We see that the preprocessing defenses are able to completely eliminate the
targeted success rate of the attack.

7.3 CONCLUSION

We present ADAGIO, an interactive tool that empowers users to experiment with adversarial
audio attacks and defenses. We demonstrate and highlight ADAGIO’s features using a usage
scenario on the Mozilla Common Voice dataset. Using ADAGIO, users can also discover
how MP3 and AMR compression can effectively resist targeted adversarial attacks.
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CHAPTER 8
MLSPLOIT: A FRAMEWORK FOR INTERACTIVE EXPERIMENTATION

WITH ADVERSARIAL MACHINE LEARNING RESEARCH

We present MLsploit, the first user-friendly, cloud-based system that enables researchers
and practitioners to rapidly evaluate and compare state-of-the-art adversarial attacks and
defenses for machine learning (ML) models. As recent advances in adversarial ML have
revealed that many ML techniques are highly vulnerable to adversarial attacks, MLsploit
meets the urgent need for practical tools that facilitate interactive security testing of ML
models. MLsploit is jointly developed by researchers at Georgia Tech and Intel, and is
open-source (https://mlsploit.github.io). Designed for extensibility, MLsploit accelerates
the study and development of secure ML systems for safety-critical applications. In this
work, we highlight the versatility of MLsploit in performing fast-paced experimentation
with adversarial ML research that spans a diverse set of modalities, such as bypassing
Android and Linux malware, or attacking and defending deep learning models for image
classification. MLsploit enables users to perform experiments interactively in real time by
varying different parameters of the experiments or using their own samples, and finally
compare and evaluate the effects of such changes on the performance of the ML models
through an intuitive user interface, all without writing any code.

8.1 INTRODUCTION

As AI is increasingly being used in safety-critical applications, it is crucial to extensively
evaluate the security of these systems before deployment. However, current adversarial
ML research efforts are often disparate and fragmented, with different works reporting
evaluation results on different models, parameters and datasets, making it hard to directly
compare these approaches, and thus weakening overall security analysis. Although many
upcoming works [162, 164] attempt to address this issue by providing a unified software
interface for performing attacks and defense on a variety of ML models, these solutions
lack any interactivity and require the end-users to have deep knowledge of the software
package itself in order to effectively use it. Often, users are only interested in knowing
the high-level security risks of using off-the-shelf ML models without having to get into
the minutiae of implementing the attack and defense infrastructure (an analogy can be
drawn with ready-to-use anti-virus/anti-malware solutions). Several solutions [196, 2, 174]
also exist that support interactive experimentation to explore vulnerabilities and understand
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the internals of ML models, but they are often limited to models that can only fit in the
web browser memory, or don’t allow for users to experiment with their own samples, or
these solutions don’t readily scale to a large number of users in real-time — such tools are
primarily built for academic demonstration.

To address these challenges of making adversarial ML more accessible to researchers,
practitioners and students, we developed MLsploit — the first user-friendly, cloud-based
system that enables researchers and practitioners to rapidly evaluate and compare state-of-
the-art adversarial attacks and defenses for ML models. MLsploit is a machine learning
evaluation and fortification framework designed for education and research of adversarial
ML. It is the first cloud-based tool that allows real-time interactive experimentation with
adversarial ML research through an intuitive web-based interface. Designed for extensibility,
MLsploit accelerates the study and development of secure ML systems.

Through MLsploit, we highlight the following contributions to the research community:
• Interactive experimentation with adversarial ML research. MLsploit enables ML

researchers and practitioners to perform experiments on their own data interactively,
without writing any code. This is done by combining plug-able components and services
that implement various ML and security-related functions.
• Enabling comparison of attacks and defenses across modalities. MLsploit currently

integrates adversarial ML research modules that include bypassing the detection of
Android, Linux and Windows malware, and attacks and defenses on image classification
models. Users can compare the effect of varying different parameters for these techniques
seamlessly through MLsploit.
• Facilitating easy integration of novel research. The modularity of the MLsploit frame-

work allows researchers to easily integrate their own research modules into the toolchain.
We have also developed a python library1 that abstracts away the orchestration of the input
files and experiment parameters from the web backend, and provides a simple API to the
researcher for accessing these artifacts in their own python module. Hence, it becomes
very easy to write and integrate new research functions for MLsploit, and keep the tool
updated with state-of-the-art techniques.
To enable more and more people to try out MLsploit, develop research modules to be

integrated into MLsploit, and host MLsploit on their own infrastructure, the entire MLsploit
framework is open-sourced on GitHub2. Here, we also provide a one-click deployment
solution to the Microsoft Azure cloud, making MLsploit a limitlessly scalable application
by allowing anyone to easily and independently host MLsploit.

1https://github.com/mlsploit/mlsploit-py
2https://github.com/mlsploit/mlsploit-system
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Figure 8.1: Top: Overview of MLsploit. Using MLsploit’s interactive web interface, users can upload
their own samples (e.g., APK files, images etc.), apply research functions to them (e.g., modifying
APK files to bypass malware detection), and compare the results with previous experiments. Bottom:
MLsploit system architecture. The front-end web portal gets data from a back-end REST API.
The experiments are run on separate instances by the job scheduler. The research modules are
independently developed and deployed using Docker containerization.
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Figure 8.2: The MLsploit UI. The Research Modules view (on the left) enlists different adversarial
ML research modules that have been developed independently by researchers. The user can construct
research pipelines using research functions provided by the research modules. The Research Pipelines
view (on the right) shows 3 such research pipelines. The user uploads an image of a street sign and
runs it through: (1) the “Classify” function (bottom) from the Foolbox module that classifies the
image as a “street sign”, (2) the “FGSM” attack function (middle) from the Foolbox module that
leads to a misclassification of the image as a “barn”, and (3) a combination (top) of the “FGSM”
attack function from the Foolbox module and “SLQ” defense function from the SHIELD module
that recovers the correct classification of “street sign”.

8.2 SYSTEM DESIGN

The MLsploit system has a service-oriented architecture that includes a web portal for users
to interact with, and a RESTful API to further automate experiments. An overview of the
system design is shown in Figure 8.1. The research functions integrated in MLsploit can
be thought of as modular components which can be combined in different arrangements
to create the desired experiment pipeline using an intuitive interface. Since MLsploit
leverages Docker containerization in the backend, each component can be implemented in
any language and on any platform, and MLsploit glues everything together through well-
defined APIs. This flexible component design is agnostic to the underlying implementation
of the ML function, and hence allows quick development for module developers as well.

Figure 8.2 shows the MLsploit user interface along with an example usage scenario.
MLsploit consists of (1) a Research Modules view that displays adversarial ML modules
developed by researchers; and (2) a Research Pipelines view that shows all the research
functions executed by the end-user. A demo of the MLsploit workflow can also be seen at
https://youtu.be/U3rTnagWXFQ.
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8.2.1 Adversarial ML Modules

MLsploit supports a host of adversarial ML modules spanning a diverse set of modalities:

• AVPass: leak and bypass Android malware detection [197].
• Barnum: defend models for document malware detection [198].
• ELF: bypass Linux malware detection with API perturbation.
• PE: create and attack models for Windows PE malware detection.
• Foolbox & SHIELD: attack and defend state-of-the-art image classifiers [199, 70].

8.2.2 One-click Cloud Deployment

From our extensive experience in hosting MLsploit to enable new researchers to learn
about AI security through classes at Georgia Tech, we identified certain bottlenecks in the
pedagogy involving adversarial ML research. The main bottleneck arises from the limited
computational resources available to modest academic research labs and most teaching staff,
restricting the number of students that can be concurrently served by a self-hosted MLsploit
system. Moreover, since the MLsploit software is a highly sophisticated confluence of
several sub-services (Figure 8.1), the one-time end-to-end infrastructure setup itself can
be very daunting and a gargantuan task for researchers and practitioners who want to self-
host MLsploit. To address these issues, we developed a solution for one-click end-to-end
deployment of MLsploit to cloud infrastructure3, including integration with the Microsoft
Azure cloud. MLsploit can now, all at the click of a few buttons, connect and authenticate
with the user’s cloud provider, automatically orchestrate the computational infrastructure for
running the system, and finally, setup and configure all MLsploit sub-services end-to-end so
that it is ready to go. This will enable researchers and practitioners to swiftly setup their own
MLsploit service and scale the infrastructure according to their own requirements, without
having to execute a single line of setup code manually.

Additionally, cloud providers such as Microsoft Azure also provide education credits to
educators, specifically targeted to allow students to get hands-on experience with their cloud
services. Thus, a one-click end-to-end deployment solution for MLsploit integrated with
such cloud services opens up new avenues for AI security pedagogy. Now, educators can
leverage these education credits so that each student can setup their own MLsploit service
on the cloud without any overhead, thus reducing a huge burden from the teaching staff to
setup and maintain a monolithic computational infrastructure.

3https://github.com/mlsploit/mlsploit-system#quickstart-deploying-mlsploit-one-click-setup
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8.3 IMPACT

MLsploit is already transforming AI security education at scale. Touted as the capstone
project coming out of the $1.5 million collaboration between Intel Corporation and Geor-
gia Tech through the Intel Science & Technology Center for Adversary-Resilient Security
Analytics (ISTC-ARSA) program, MLsploit has actively been used at Georgia Tech in
Dr. Wenke Lee’s “CS 8803 O11: Information Security Lab - System and Network Defenses”
class to teach hundreds of students cumulatively over the semesters on how to train and de-
fend deep neural networks for malware detection using system call sequence data. MLsploit
was also made available to >1,000 students of Dr. Polo Chau’s “CSE 6242: Data and Visual
Analytics” class across its campus and online sections at Georgia Tech in Spring 2021,
enabling them to experiment with adversarial attacks and defenses for image classification
models. For such potential in transforming AI security education and experimentation, ML-
sploit was also declared the winner4 of the Institute for Information Security and Privacy’s
Cybersecurity Demo Day Finale (Commercialization Track) held at Georgia Tech in 2019.

8.4 CONCLUSION

We present MLsploit, a one-stop shop for AI security research and pedagogy. MLsploit
is a machine learning evaluation and fortification framework designed for education and
research of adversarial ML. It is the first open-source interactive system that allows in-depth
security testing of AI models, and lowers barriers to entry for everyone — researchers,
practitioners and students — to engage in adversarial ML research. MLsploit provides
everyone a simple user interface for interactively studying new AI security techniques, and
our hope is that researchers would continue to leverage our framework for disseminating
their state-of-the-art adversarial ML research.

4https://www.cc.gatech.edu/news/621227/demo-day-shows-future-cybersecurity-machine-learning
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CHAPTER 9
CONCLUSION AND FUTURE DIRECTIONS

This dissertation takes a step forward in expanding people’s understanding of AI vulner-
abilities through extracting and intuitively visualizing an ML model’s internal semantic
representations. Our interpretation research reveals that adversarial attacks leverage seman-
tically non-robust features to confuse a deep neural network. Based on this understanding,
this dissertation proposes fundamentally unifying approaches such as multi-task learning,
for making ML models more resilient to adversarial attacks across AI tasks and input
modalities. Finally, this dissertation develops a scalable framework for enabling everyone to
interactively experiment with AI security research in order to stress-test the AI applications
used in everyday life.

9.1 RESEARCH CONTRIBUTIONS

This thesis makes research contributions through multiple major fronts.

• Novel, principled, interpretable approaches for semantic class inference.
Our research contributes novel, theoretically principled approaches to extract in-
terpretable semantic prototypes for data programming (Chapter 2). Our weakly-
supervised GOGGLES framework is only 7% away from a fully-supervised baseline.

• Novel visualization technique for deciphering attacks.
Our work significantly expands the understanding of model vulnerabilities, which were
earlier considered as “black boxes”, by proposing attribution graph mining for model
activation (Chapter 3). Our novel visualization technique helps in identifying the
vulnerable neurons in a DNN that are non-performant and lead to misclassifications
under attack.

• Faster, generalizable, practical defenses.
This dissertation identifies the need for AI defenses with low computational overhead
and develops fast, robust defenses based on input compression that generalize across
input modalities. Our SHIELD defense (Chapter 4) is up to 22x faster than other pre-
processing defenses, and the ADAGIO defense (Chapter 7) removes all non-adaptive
targeted adversarial attacks.
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• Fundamentally unifying approach for training robust models across AI tasks.
Our in-depth study of Multi-Task Learning (Chapters 5 and 6) establishes it as a
fundamentally unifying deep learning approach that induces ML models to learn
robust features that are resistant to adversarial attacks across AI tasks and input
modalities.

• First scalable system for interactive experimentation with AI security research.
This thesis introduces MLsploit (Chapter 8), the first open-source interactive system
that allows in-depth security testing of AI models, and lowers barriers to entry for
everyone — researchers, practitioners and students — to engage in adversarial ML
research. MLsploit offers modules of state-of-the-art attacks and defenses.

9.2 IMPACT

Beyond the contributions to the research community, our work has also made a significant
impact to broader society and industry.

• Early-stage startups have picked up our GOGGLES framework for it’s efficacy in
generating training data with low overhead, and even extended the affinity functions
to include natural language processing tasks.

• The SHIELD defense framework won the Audience Appreciation Award, runner-up
at KDD 2018, being in the top 3 among 107 accepted papers, from 983 submissions.
SHIELD was also tech-transferred to Intel Labs and multiple business units within
Intel for integration and testing. The SHIELD tech transfer to Intel also incited a
positive shift at the highest levels within the company towards developing hardware
accelerators for AI defense.

• Research ideas presented in this dissertation formed a core component of an awarded
multi-million dollar DARPA GARD (Guaranteeing AI Robustness against Deception)
grant for developing next-generation defenses against physically realizable adversarial
attacks.

• MLsploit is already transforming adversarial ML education. It is currently being
integrated into multiple security and data analytics courses at Georgia Tech, becoming
available to thousands of students. MLsploit is already being used by graduate
students in Dr. Wenke Lee’s “CS 8803 O11: Information Security Lab - System
and Network Defenses” class and was also made available to students of Dr. Polo
Chau’s “CSE 6242: Data and Visual Analytics” class at Georgia Tech. MLsploit
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won the Institute for Information Security and Privacy’s Cybersecurity Demo Day
Finale held at Georgia Tech in 2019. MLsploit modules also formed the foundation
for the DARPA GARD research proposal.

9.3 FUTURE DIRECTIONS

While this dissertation expands people’s understanding of AI vulnerabilities and how they
can be mitigated, it also unlocks new research directions for the data programming, visual-
ization and adversarial ML research communities.

Affinity coding for diverse range of AI tasks.

In Chapter 2, we propose the affinity coding paradigm and develop the GOGGLES frame-
work for the task of image labeling. The affinity coding paradigm can be extended to cover
more AI tasks such as accent classification from the speech domain or sentiment analysis
from the natural language processing (NLP) domain. Several strong modeling techniques
exist in these respective domains that can be leveraged for forming interpretable prototypes.
Doing so will extend our understanding of how different input modalities are semantically
represented in the intermediate feature space of deep neural networks. This would allow us
to conceive of attack mitigation techniques that can leverage semantically robust features.

Comparing activation pathways across other model architectures.

In Chapter 3, the BLUFF tool exposes vulnerable activation pathways from the INCEPTIONV1
model. A natural next step is generating and comparing such activation pathways across
different model architectures. Recent work [65] has provided evidence that different types
of neural network architectures learn similar concepts (e.g., curve detectors and high-
low frequency detectors) for vision tasks. Our approach using activation pathways could
be adopted for comparing what features multiple networks have learned and how their
vulnerability could be unified or differentiated.

Mining activation pathways for motifs.

As BLUFF extracts activation pathways, we can leverage data mining and graph analysis
methods to aggregate such pathways for different classes and find the most common motifs
across all pathways. Extracting these smaller subpath motifs could give further insight into
how neural networks arrange and prioritize hierarchical semantic concepts.

Enforcing semantic constraints with Multi-Task Learning.

In Chapters 5 and 6, we study multi-task learning (MTL) to perform adversarially robust
inference for person tracking and automatic speech recognition respectively. The MTL
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models are supplemented with human keypoint detection and accent classification tasks
respectively during training. However, these secondary task heads are discarded during
inference. The computational cost for an adaptive attacker can be significantly increased by
performing joint inference while enforcing semantic constraints. For example, in person
tracking, the keypoint detection head can be jointly used to ensure that all detected keypoints
are indeed within the predicted bounding box. Performing such explicitly constrained joint
inference would force an adaptive attacker to consider gradients from the keypoint head,
and additionally ensure that the adversarial perturbation satisfies the semantic constraints.

Multi-task auditing for single-task inference.

Following in the footsteps of the previous proposed research direction, the secondary task
heads obtained from performing multi-task learning can also be used for post-hoc auditing
of suspected model failures. As these secondary task heads are not exposed to the inference
pipeline, an adaptive attacker may not optimize the adversarial perturbations to produce a
reasonable output for these ad-hoc tasks. As the secondary task heads were trained jointly,
they are compatible with the shared backbone network, and can be used to determine if
commonsense semantic constraints are not preserved while privately auditing the model
failures for certain inputs at a later time. For example, in the case of person tracking, if we
are given a suspected adversarial video, we can use the jointly trained keypoint detection
head separately using visualization tools [200] to determine if the video was attacked or not.
This may not prevent adversarial attacks in real-time, but can be used to investigate model
failures at a later time.

Interactive neuron editing for model robustness.

In Chapter 8, we present an interactive experimentation framework, MLsploit, that allows
security testing of AI models. At the same time, our BLUFF tool (Chapter 3) currently
supports visualizing neurons that are highly excited or inhibited by an adversarial attack.
Combining these two technologies could lead to a new defense paradigm. Using our
interactive experimentation framework, we can enable real-time neuron editing. A user
could actively identify vulnerable neurons using BLUFF and interactively remove them
from the network to observe the effect on the resulting pathway and prediction in real-time.
Masking the activations of a particular neuron could potentially prevent targeted attacks to
propagate deeper into the network. For example, a user could preemptively edit a model to
enhance its robustness by deleting neurons that only feed into exploited pathways, preventing
adversarially activated neurons from affecting subsequent layers.
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9.4 CONCLUSION

Through my extensive research work in the domain of adversarial ML and countless inter-
actions with students, practitioners and new researchers in AI, I have discovered that mass
adoption of AI in safety-critical applications would be possible only when people trust in
the security of ML models through a broad understanding of the underlying vulnerabilities.
Thus, my continued research mission is to enable everyone to understand and fortify AI se-
curity. Just like AI has real-world applications, AI security needs real-world solutions. This
dissertation takes an initial step towards addressing this challenge by developing practical
solutions for AI security that everyone can understand and use.
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