
A DYNAMIC MODEL FOR DISCRIMINATION 

BETWEEN INCAPACITATION AND DETERRENCE 

A THESIS 

Presented to 

The Faculty of the Division of Graduate Studies 

By 

Charles J. Malmborg 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Industrial Engineering 

Georgia Institute of Technology 

March, 1978 



jj 
j A DYNAMIC MODEL FOR DISCRIMINATION 
j 
i BETWEEN INCAPACITATION AND DETERRENCE 



1 1 

ACKNOWLEDGEMENTS 

In the course of my graduate studies at the Georgia Institute 

of Technology, I have received encouragement and support from many. 

I would like to express my appreciation to all those who assisted me 

in completing my academic program. 

I am particularly grateful to Dr. Stuart J. Deutsch, chairman 

of my committee, for his patience, guidance and continuous encourage­

ment. In completing this research, we share a mutual accomplishment. 

My sincere appreciation goes to Dr. R. J. Graves and Dr. Jerry Banks, 

who were instrumental in identifying flaws in the research and 

suggesting ways for their correction. 

I also extend thanks to Ms. Amy Sandler for her excellent 

typing, and my lifetime good friend, Candy Bartlett, for her assistance 

in preparing figures and tables. To my family, I extend a very special 

note of thanks for their support and encouragement throughout my 

graduate studies. 

Finally, I would like to express my appreciation to the National 

Institute of Law Enforcement and Criminal Justice for providing 

contractual support for this research. A formal acknowledgement 

follows. 

This work was performed under Grant No. 75 NI-990091, from the 

National Institute of Law Enforcement and Criminal Justice. Points of 

view or opinions stated in this document are those of the author and 



iii 

do not necessarily represent the official position or policies of the 

United States Department of Justice. 



iv 

TABLE OF CONTENTS 

Page 
ACKNOWLEDGEMENTS ii 

LIST OF TABLES viii 

LIST OF ILLUSTRATIONS x 

SUMMARY xii 

Chapter 

I. INTRODUCTION 1 

1.1 Research Objectives 2 

1.2 Overview of the Research 3 

II. LITERATURE SURVEY 6 

2.1 Crime in Society 7 
2.1.1 Measurement of the Crime Rate 8 

2.2 Deterrence . 9 
2.3 Incapacitation 13 
2.4 Basic Methods in Crime Rate Modeling for Static 

Systems 15 
2.4.1 Offender Behavior Modeling 16 
2.4.2 Conviction Probability Modeling . . . . . . . 17 
2.4.3 Aggregate Offense Modeling 20 
2.4.4 Nth x i m e 0 u t Models . . 22 
2.4.5 Current Work in Crime Rate Modeling 22 

2.5 Basic Methods for Nonstationary Systems 25 
2.5.1 Stochastic Empirical Models 28 
2.5.2 Dynamic Modeling of the Criminal Population . 30 
2.5.3 Fluctuations in Criminal Population as a 

Markov Proces 33 

2.6 Summary 34 

III. MODEL DESCRIPTION 35 

3.1 Form of the Model 35 
3.2 Specification of Z 40 
3.3 Specification of K 42 



V 

Chapter Page 

III. 3.3.1 Motivation for Using Time Series Modeling 
of P t 43 

3.3.2 Application of the Blumstein, Nagin and 
Cohen Model 45 

3.3.3 Blumstein 1 s Three-Way Partitioning 45 
3.3.4 Blumstein fs Three-Way Model as a Markov 

Process 47 
3.3.5 Discussion of Flow Variables in the Markov 

Process . 48 
3.3.6 Closed Form Transient Results 50 

3.4 Specification of A 54 
3.5 Specification of D 57 

3.5.1 The Deterrent Formulation 58 

3.5.2 Description of the Policy Space . 59 

3.6 Summary of the Primary Model and Optimization. . . . 60 

3.6.1 Comparison of Models 61 

3.7 Summary 65 

IV. MODEL EXECUTION 66 
4.1 Utilizing the Offenses Modeling Technique of Deutsch 68 
4.2 Executing Blumstein fs Criminal Population Model. . . 69 

4.2.1 Recidivism in Blumstein 1s Criminal Population 
Model 69 

4.2.2 Simulation of the Markov Chain Underlying 
Blumstein 1 s Model 71 
4.2.2.1 The Iterative Procedure for 

Executing the Markov Chain 72 
4.2.2.2 Computation of K t 74 

4.3 Utilization of Nagin 1s Deterrence Formulation. . . . 75 
4.3.1 Solution for Dt 75 
4.3.2 Solution for Prevailing Q and S 76 
4.3.3 The Optimization Procedure 76 

4.3.3.1 Solution for y 0 Values 77 
4.3.3.2 Solution for and Y2 Values. . . . 78 

4.3.4 Formulating the Optimization to Determine 
Q* and S* 79 

4.4 Summary 80 

V. COMPUTATIONAL EXPERIENCE 82 

5.1 Using the Model . 82 
5.1.1 The Structure of d(Q,S) . 83 



vi 

Chapter Page 

V 5.1.2 Motivation for the Necessary Assumptions 
to Solve y± 84 

5.1.3 Determination of yQ 84 
5.1.4 Determination of Yl and Y2* • • ^5 
5.1.5 Solution for the Optimal Policy 87 
5.1.6 Limiting Cases of Q and S 87 

5.1.6.1 The Case of Zero Sanctions . . . . 88 
5.1.6.2 The Case of Infinite Sanctions . . 88 

5.1.7 Sensitivity of the Model to the Necessary 
Assumptions 90 

5.1.8 The Implications of the ft Assumption. . . . 90 
5.1.9 The Implications of the e Assumption. . . . 93 

5.2 Analysis Using Georgia Data 95 
5.2.1 Input Policy Variables for Georgia 96 
5.2.2 Total Reported Offenses in Georgia 96 
5.2.3 Prison Populations in Georgia 98 
5.2.4 Criminal Population Movement in Georgia . . 99 
5.2.5 Behavior of At in Georgia 101 
5.2.6 General Deterrent Effects in Georgia. . . . 102 
5.2.7 Optimization Process for the Georgia 

Data Base 102 
5.2.8 Motivation for Using Constant Input 

Policy Variables 105 
5.2.9 Evaluation of the Impact of Optimization. . 106 
5.2.10 Discussion of Sample Results 107 

5.3 The Effects of Nonstationary and/or Correlated 
Sentencing Practices Ill 
5.3.1 Average Sentence Length Ill 
5.3.2 Probability of Imprisonment Given 

Conviction 113 

5.4 Sensitivity Studies in the Q,S Policy Space. . . . 118 
5.4.1 Design of a Factorial Experiment -120 
5.4.2 Analysis of Experimental Results 123 
5.4.3 Analysis of Linear Results 127 
5.4.4 Experimentation Within Plausible Limits of 

Current Corrections Capacity 134 
5.4.5 Comparison of Results Between Models. . . . 137 

5.4.5.1 An Illustrative Example. 137 
5.4.5.2 Example Discussion 138 

5.4.6 Development of a Q-S Nomogram 139 

5.5 Separating Incapacitation from General Deterrence. 139 
5.5.1 Formulation of the Incapacitative Effect. . 141 
5.5.2 Simulation of the Incapacitative Effect . . 142 
5.5.3 The Effect of Optimization 145 
5.5.4 Comparison Between Models . . . 147 



vii 

Chapter Page 

V 5.6 Introduction to the Comparison Procedure 148 
5.6.1 Input Requirements 148 
5.6.2 Total Offenses for Missouri 149 
5.6.3 Total Reported Offenses in Texas 151 
5.6.4 Missouri Prison Populations . 152 
5.6.5 Texas Prison Populations 153 
5.6.6 Missouri Prison Admissions 157 
5.6.7 Texas Prison Admissions 157 
5.6.8 Average Sentence Lengths in Missouri. . . . 160 
5.6.9 Average Sentence Lengths in Texas 162 
5.6.10 Probability of Imprisonment for Missouri. . 162 
5.6.11 Probability of Imprisonment for Texas . . . 165 
5.6.12 Discussion of Corrections Capacity in Texas 

and Missouri 169 
5.6.13 Results of Model Simulation for the Texas 

and Missouri Data Bases 170 
5.6.13.1 Results of Model Simulation for 

the Texas and Missouri Data Bases 170 
5.6.13.2 Deterrent Effects in Texas and 

Missouri 170 
5.6.13.3 Comparison of the Effect of 

Optimization. 172 
5.6.13.4 Comparison of Savings Through 

Optimization 174 
5.6.13.5 Separating Incapacitation from 

Deterrence. . 175 

VI CONCLUSIONS AND RECOMMENDATIONS 177 

6.1 Conclusions 177 
6.2 Recommendat ions 180 

APPENDIX 182 

BIBLIOGRAPHY 212 



viii 

LIST OF TABLES 

Table Page 

1. Plausible Bounds on Flow Parameters 51 

2. Partial List of Comparative Attributes . 63 

3. Total Reported Offenses for Georgia 97 

4. Total Reported Offenses Forecasted for Seven Periods. . . . 98 

5. Georgia State Institution Inmate Population Totals 99 

6. Illustration of Growth in Georgia State Prison Populations. 100 

7. Criminal and Prison Population Percentages 101 

8. Sample Results for Seven Periods 102 

9. Y . Values for Seven Periods 103 

10. Optimization Results for Georgia 105 

11. Expected Total Offenses in Georgia 108 

12. Average Sentence Lengths in Georgia . 113 

13. Monthly Probability of Imprisonment for Georgia . 114 

14. Optimization Results for the Nine Starting Points 122 

15. Percentage Changes in Q 124 

16. Percentage Changes in S 125 

17. Summary of Responses in ANOVA Format 131 

18. Preliminary ANOVA 131 

19. Final ANOVA 132 

20. Model Comparison Summary 138 



ix 

21. Monthly Georgia State Prison Receptions 144 

22. Percentage of Overall Effect of Sanctions Q and S Due to 
Incapacitation for Policy; Q = .306, S = 1.67 Years . . . . 146 

23. Percentage of Overall Effect of Sanctions Q and S Due to 
Incapacitation for Policy: Q = .4605, S = 1.11 Years. . . . 146 

24. Percentage Savings Due to Incapacitation 148 

25. Total Reported Offenses in Missouri 151 

26. Total Reported Offenses in Texas 152 

27. Missouri Prison Populations 154 

28. Texas Prison Populations 155 

29. Missouri Prison Admissions 158 

31. Average Sentence Lengths for Missouri 161 

32. Average Sentence Lengths for Texas 164 

33. Imprisonment Probabilities in Missouri 166 

34. Imprisonment Probabilities in Texas 167 

35. X For Five Sample Periods 171 

36. C /C +P^ Ratio For Five Sample Periods 171 
t t t 

37. Deterrent Effects For Five Sample Periods 172 

38. Summary of the Optimization Process For Q and S 173 

39. Crime Saving Percentages 174 
40. Distribution of Crime Control Effects . . 176 



X 

LIST OF ILLUSTRATIONS 

Figure Page 

1. The Criminal Justice System 36 

2. Summary of the Logical Relationship 38 

3. Summary of Model Components in Relation to the Three 
Building Blocks 39 

4. Blumstein's Descriptive Model of Society. . . . . . . . . 46 

5. The Macro Flow Diagram. . 67 

6. Transition Matrix Underlying the Markov Chain 70 

7. Procedure for Executing the Markov Process 71 

8. Figurative Summary of the Search Process 73 

9. Flow Diagram Summary of D t Analysis 75 

10. The Behavior Distribution . . . . . . . . 109 

11. Average Sentence Length Time Series of Georgia 112 

12. Probability of Imprisonment Time Series for Georgia . . . 115 

13. Behavior of Forecasted Q Values . . . . . . 117 

14. Starting Points For the Factorial Experiment 121 

15. Percentage Change Plot of Q 126 

16. Percentage Change Plot of S 126 

17. Graphical Test of Linear Assumption in Q 129 

18. Graphical Test of Linear Assumption in S 130 

19. Q* vs. QxS. 136 

20. Q*-S* Nomogram for Incremental Changes in Corrections 
Expenditure 140 



xi 

21. Monthly Prison Receptions Time Series 143 

22. Total Reported Offenses Time Series 150 

23. Prison Populations Time Series. 156 

24. Prison Receptions Time Series 159 

25. Average Sentence Length Time Series 163 

26. Imprisonment Probability Time Series. . . . . 168 



xii 

SUMMARY 

A model is presented which simulates the criminal justice 

system over a 25 year horizon. The simulation is run over discrete 

one month periods incorporating the court, corrections and law 

enforcement systems. The model is used to determine the effect of 

various sentencing strategies involving the certainty and severity 

of punishment. Those sentence policies which correspond to the 

greatest estimated crime control effect are identified as optimal 

solutions. Extensions of the analysis are developed to specify the 

incapacitative and deterrent effects embodied in prevailing and 

optimal solutions. In addition, results of the model are presented 

for data bases originating in different geographical areas and a 

detailed comparison is performed. Finally, methods for the validation 

of the model are presented and validation results are outlined. 
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CHAPTER I 

INTRODUCTION 

The alarming rise in the level of crime experienced by our 

society in the past decade indicates a definite need for re-examining 

the criminal justice system. From 1965 to 1976, the crime rate in the 

United States rose by over 140%. Although the theories explaining this 

increase are varied, most experts will agree that growth of the absolute 

level of deviance in society stems mainly from a breakdown in the 

committment to conformity on an individual level. The impressive 

magnitude of this breakdown has led many researchers to believe that 

the individual's decision to engage in illegal activities is a function 

of his perception of the economic costs and rewards for doing so in 

combination with the criminal's idiosyncratic utility structure. 

In the earliest years of the rapidly growing crime rate, the 

popular strategy for dealing with the problem was to try and modify the 

behaviors and character of the individual during incarceration. This 

trend led to a large increase in expenditures for experimental programs 

such as training and work therapy centers within correctional 

institutions. Perhaps, due to its outwardly rehabilitative appearance, 

this approach for dealing with offenders held great popular appeal for 

many until about 1974. Around that time, a significant body of 

literature appeared which presented evidence showing the failure of 

rehabilitation. Most such studies showed recidivism rates for 
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correctional institutions to be roughly the same whether or not 

rehabilitative programs were present. As a result, the emphasis, at 

least in the research area of criminal justice, changed to more 

objective resource management problems within the system. 

Much of the analytical research from 1975 to the present, in the 

area of resource constrained crime rate modeling, has addressed the 

question of allocation for a fixed resource rather than the absolute 

level of that allocation. In addition, concentration has switched from 

attacking the problem on an individual level to viewing the system in 

the aggregate. Here, judicial policy is seen as the controllable 

variables as opposed to "in-house" corrections policy. Specifically, 

attention has been directed toward determining what judicial policy 

within a stated expenditure level is associated with the lowest 

possible crime rate. A judicial policy consists of some trade-off 

combination of the certainty of imprisonment and the length of 

imprisonment meted out to convicted criminals. 

Most of the research addressing this question up until now has 

been unable to distinguish between the effects of these two variables 

in quantitative terms. This has made it a difficult task to clarify 

the nature of "optimal" solutions. In addition, recent modeling has 

been static in nature and unable to account for changes in either 

indogenous and exogenous variables including time. 

1.1 Research Objectives 

The objective of this research is to extend the approach taken 

in previous research to circumvent some of the shortcomings mentioned 
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in the previous section. In particular, a dynamic model of the criminal 

justice system, integrating the courts, corrections and law enforcement 

bodies, is constructed. The formulation of the model addresses the 

questions of increasing crime rates, limits on corrections expenditures 

and judicial policy simultaneously, in order to account for the global 

impact of manipulating judicial policy. Also, the model maintains the 

flexibility to deal with trends in any variable present in the system 

over time. By this, we are able to forecast the effects of these 

changes into the future, as well as pinpoint optimal policies at any 

given time during the analysis under a given set of hypothetical 

conditions. 

1.2 Overview of the Research 

The literature survey of the previously mentioned research and 

findings is presented in Chapter II. The model by Blumstein and Nagin 

[1976] was of particular interest since its formulation was a 

fundamental building block for explicitly modeling judicial policies. 

The univariate time series modeling of crime rates by Deutsch [1976] 

also received greater attention because it deals with modeling crime 

rates independent of controllable factors. This approach to crime rate 

modeling eventually serves as the driving mechanism of the model through 

time. Finally, the research of Blumstein, Cohen, and Nagin [1975] is 

presented in some detail since their approach to the modeling of the 

behavior of criminal populations also appears in the final model. 

Chapter III primarily discusses the formulation of the analytical 

model. This chapter illustrates how the past research is integrated to 
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arrive at the analytical form and discusses the necessary assumptions 

for interpreting the results of the model. Finally, the third chapter 

presents some closed form analysis possible when using the model, and 

outlines the extensions beyond previous research which are present in 

the model. 

Chapter IV outlines a range of relevant experimentation 

pertaining to the model. In addition, procedures for developing input 

data to the model are discussed, and the technique for resolving the 

model to delineate quantities of theoretical and practical interest are 

presented. Chapter IV provides an item by item description of the input 

and output of the computerized model. Sources for the development of 

data and input parameters are discussed, and output of the computer 

program is outlined and described. In addition, the sequence and flow 

of logic within the computerized model is detailed. 

Chapter V embodies the experimentation and simulation mentioned 

in the proceeding three chapters. In this section, quantitative results 

are presented and analyzed for the state of Georgia in considerable 

detail. As well as providing detailed computational experience for the 

basic model in Georgia, Chapter V presents results for the major 

extensions of the model which are developed, and lays the groundwork 

for conclusions stemming from the analysis. Finally, Chapter V 

illustrates results from the model for the states of Missouri and Texas 

and prepares a detailed comparison. 

Chapter VI is a summary of the conclusions and recommendations 

following from the previous five chapters. It also provides direction 

for extensions of the research and offers a retrospective critique of 



the procedures employed in our research. 
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CHAPTER II 

LITERATURE SURVEY 

The approach taken in the following literature survey is to 

develop the notion of what is meant by the crime rate, what is involved 

in its measurement, and how it can be characterized. This first section 

reflects the views of contemporary students in criminal justice, and 

some traditional ideas. This section is intended to develop the 

motivation for modeling, and illustrate current thinking in the area. 

The next two sections develop the concepts of deterrence and 

incapacitation, respectively. Since these concepts are highly relevant 

to the goals of our research in modeling, understanding of their nature 

is essential. 

The fourth section of the literature survey addresses some works 

in contemporary criminal justice modeling. Each sub-section covers a 

different approach appearing at one time or another in the literature 

on modeling static systems. The final sub-section is of particular 

importance, since it deals with very recent, "state of the art," 

techniques. Overall, the fifth and final section is material of a more 

recent vintage, which develops the need and methodology of dynamic 

modeling. Some very recent and extremely innovative research is 

presented, which is among the most recent literature dealing with 

stochastic modeling. 

The intent of structuring the literature in the above format was 
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to prepare the reader for considering the plausibility of dynamic 

modeling with deterrent and incapacitative effects present. This would 

be the next logically coherent trend in the field, and is consistent 

with the stated goals of our research. 

2.1 Crime in Society 

Durkheim [1964] has proposed the interesting and provocative 

notion that some degree of crime is characteristic to a normal, healthy 

society. Durkheim states that the presence of crime in society is 

natural and emanates from those processes which preserve internal social 

stability. Erickson [1972] explains that the phenomenon of crime 

originates as the cultural integrity of a sub-culture is specified and 

reinforced. In addition, he contends that social reaction to crime 

also contributes to internal cohesion and serves the useful purpose of 

strengthening the essential and defining norms of society. 

These ideas have given rise to the increasingly popular notion 

of some normal or "optimum" level of the crime rate. While the actual 

levels across various social subgroups may vary, Durkheim suggests 

that the approximate level within a specific group will rarely experience 

extreme fluctuation from its normal level. While these ideas may appeal 

to an observer as logically consistent or even plausible, a question 

arises concerning the bounds on our classification of deviant behavior. 

Specifically, a distinction must be made between that categorization of 

acts which include all deviant behaviors, or only those which are reacted 

to by society. 
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2.1.1 Measurement of the Crime Rate 

The fact that the criminal justice system does not react (i.e., 

record, punish, arrest, etc.) to all violation of legal statute, 

enormously complicates the measurement of levels of crime. Clearly, 

the absolute crime rate does not lend itself to rigorous quantification 

and can only be approached through estimation of aggregate costs to 

society as a whole. Further, gross inconsistencies in the recording 

and classification of crimes by authorities and victims confuses the 

notion of a stable crime rate to an even greater extent. This suggests 

that apparent empirical evidence for dynamic stability (Blumstein and 

Cohen, 1973) within the crime rate is actually an indication of chronic 

stability in the level of societies reaction to crime. Consequently, 

stability in the level of punishment delivered by society over the 

latter part of the century, as observed by Durkheim and others, appears 

to bear no direct or obvious implication for the level of deviance 

existing during that period. Rather, the implication is continuous 

reformation and flexibility in the norms of society, which define the 

bounds on acceptable behavior. 

2.1.2 Notion of a Behavior Distribution 

A great deal of the recent literature relating to explanation 

and modeling of the crime rate posits a statistical distribution of 

crime related behavior (Cavan, Wilkins). Structurally, the general 

approach is to use a normal distribution to characterize the diversity 

of behavior in a society. The extremities of this scale include 

behavior that is severely deviant to that which is, "compulsively 

moralistic," (Blumstein, 1973). Although an obvious oversimplification, 
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the behavior distribution has proven to be a useful tool for modelers 

and appears repeatedly in the current literature. Somewhere near the 

criminal tail of the scale, analysts denote a limiting value which 

defines the threshold on behavior deemed as socially acceptable. 

Moreover, the behavior distribution is specified in some general form 

g (x), while the level of punishment delivered by society, a , can be 

described using the general integral form: 

a = s°° f (x) c(x) g (x)dx. 
3 o B 

Where, c(x), is the probability of arrest and conviction of an 

individual who has engaged in behavior x, (Blumstein, Cohen and Nagin, 

1975). 

During social stability, a , remains relatively stable reflecting 

a homeostatic punishment process. Perturbation of the threshold 

parameter, (30)> through less permissive redefinition of social norms 

and subsequent punitive operations to a "lenient" society, might 

generate a short run increase of a . This would be followed by 

adjustment in the behavior distribution (left shifting) due to 

deterrence. This could be demonstrated, for example, by an increase 

in a societies certainty and in some cases, severity of enforcement. 

2.2 Deterrence 

While the purpose of isolating of criminal offenders strictly to 

confine their harm to society is obvious, the purpose of punishment is 

slightly more complex. Punishment of criminal offenders has the dual 

purpose of retribution for a wrongful act, and deterrence for would-be 
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offenders. Many social scientists today argue that not only does our 

correctional system fail to reform, but also fails to deter. Over the 

past few years, several efforts have been made to assess the deterrent 

effects of sentencing. These are mainly non-experimental studies based 

on often inaccurate police reports and diverse comparison of sentencing 

behavior among states, which do not show what happens when one 

deliberately changes sentencing patterns (other things equal). Despite 

this, most studies have produced consistent conclusions and the 

statistical techniques used make results due to chance unlikely. The 

thrust of these studies is revealing. 

Analysis and Summary of most such studies through 1972 is 

provided by Hunt and Antunes, who conclude that "certainty" of 

punishment has a significant deterrent effect on crime rates, while 

"severity" of punishment has a deterrent effect only on murder. 

Certainty is measured by dividing the number of persons sent to prison 

in each state for a given year by the number of reported crimes in the 

preceeding years. The larger the ratio, the greater the certainty of 

punishment. Severity is simply the median sentence length in a given 

year for a given crime. Capital punishment was not considered. This 

would imply that a low conviction rate may lead to a higher crime rate 

and vice versa. An alternate explanation of these results may be that 

high crime rates lead to low conviction rates due to court overcrowding 

or corrections capacity constraints. 

In short, the evidence is suggestive, (though not conclusive) 

that some penalties deter some crimes. Many researchers in criminal 
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justice, often overly concerned about the causes of crime, have 

convinced themselves that the average criminal is radically different 

from an ordinary person. That he or she is a compulsive and totally 

irrational individual, indifferent or (incognizant) of the risks 

involved in committing crimes. Apart from a small sub-class of extreme 

deviants, there is little evidence to support this conclusion in regards 

to the average or would-be criminal. While it may be true that the 

average criminal's utility for risk may differ from that of the average 

middle class citizen, it would not be surprising to find the marginal 

criminal engaging in less crime if the costs were to sharply increase 

relative to the benefits. 

Tullock, Becker, and Erlich have attempted to explain the 

behavior of the crime rate through the use of economic theory. Within 

his model, Becker holds that any violation can be conceived as yielding 

an increase in the offenders pecuinary wealth and/or psychic well being. 

Simultaneously, in violating the law one also risks a decrease in 

wealth and well being, for conviction entails paying a penalty, aquiring 

a record, and other disadvantages. As an alternative one can engage in 

a legal wealth or consumption generating activity. From this, a simple 

economic model of choice between legal and illegal activity is 

formulated. Erlich [1972] states, "the existence of a deterrent effect 

can be inferred from empirical estimates of the absolute and relative 

values of the elasticity of crime rates with respect to the average 

offenders subjective probability of punishment and expected time served.' 

This of course, is extremely difficult to measure because variables that 
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affect deterrence are the same as those that affect incapacitation. 

Wilson has illustrated the notion that the effective application 

of penalties, even modest ones, will deter certain forms of behavior. 

He cites the example, "Everyone who travels to Los Angeles from the 

east coast observes with awe, the extent to which traffic laws are 

obeyed." His explanation is that these laws have been enforced with 

enough vigor to make individuals feel that the risks of breaking them 

are sufficiently great and the costs of obeying them worthwhile. Other 

similar examples include studies where drunken driving in some European 

countries, and passing of bad checks in some states were found to be 

highly correlated to the intensity of enforcement efforts. Although 

these results are interesting, most serious students of crime would be 

reluctant to extend the inference to more extreme forms of crime, since 

these are generally associated with a different class of citizens. 

Differences in social class not withstanding, it is still not 

unreasonable to expect changes in the magnitude of risk to produce some 

affect on the crime rate, even though the studies do not address the 

importance of severe penalties. It is not clear, however, that these 

cases are of direct consequence when one considers that; in any rational 

system of criminal justice some very severe penalties will be necessary 

even if they have no general deterrent effect. This is because the 

extreme deviance of certain offenses precludes societies tolerance of 

small penalties, and there must always be a penalty to impose upon 

those already serving the maximum sentence. For example, the life 

sentence convict who may have "nothing to lose" by murdering another 
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inmate. Finally, the threat of severe penalties can be used as a 

resource for investigators seeking to obtain criminal informers. 

Moderating factors interacting with these arguments include the 

obviously diminishing returns of severity and the relationship between 

the severity of a penalty and its likelihood of imposition. 

2.3 Incapacitation 

As a function of imprisonment, camparitively little is known 

about the effects of incapacitation. While recent research has started 

to produce at least some sound empirical knowledge about deterrent 

effects, quantitative intelligence of the size of incapacitative effects 

is not readily available. For some time, we have understood that 

physical segregation of prisoners preclude their participation in 

criminal activity, however, questions on the quantitative implication 

of this effect have gone unanswered. 

Greenberg [1975] has presented some quantitative estimates of 

the incapacitative effect of imprisonment on the rate at which seven 

F.B.I, index offenses are committed. In developing these estimates, 

Greenberg has provided a new interpretation of parole recidivism data. 

Subject to data base limitations and a number of assumptions employed, 

his model calculations provide order of magnitude estimates of the 

collective incapacitative effect of imprisonment, clear of any deterrent 

effect. These results will be summarized shortly. 

To understand the meaning of incapacitation, it is useful to make 

a distinction between "selective" and "collective" incapacitation. By 

collective incapacitation is meant, crime reduction accomplished through 
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physical restraint regardless of the objective of the confinement. 

Whether the goals of confinement happen to be incapacitative, 

rehabilitative, deterrent or so on, decisions concerning who is to be 

imprisoned need not necessarily relate to predictions as to future 

conduct. For example, the continued incarceration of non-recidivists 

can, in many cases, be termed "collective incapacitation." Collective 

incapacitation is the most apparent dimension of overall incapacitation 

and is referred to by Von Hirsh as, "the visible tip of the iceberg." 

In contrast, selective incapacitation is defined to be, " the prevention 

of crime through the physical restraint of persons selected for 

confinement on the basis of a prediction that they, and not others, will 

engage in forbidden behavior in the absence of confinement," (Goldfarb 

and Singer, 1973). Therefore, selective incapacitation concerns those 

offenders who pose a threat of serious danger to the public. 

Theoretically, the optimum operating policy of our imprisonment system 

would call for incarceration of only this category of deviant. As a 

matter of fact, in October of 1973, the National Council on Crime and 

Delinquency made the recommendation, "For all non-dangerous prisoners, 

who constitute the great majority of offenders, the sentence of choice 

should be one or another of a wide variety on non-institutional 

dispositions," (Board of Directors, 1973). 

Of course, the suggestion for determining which offenders are 

to be institionalized on the basis of their violent or dangerous 

propensities could be arrived at only through prediction of an 

individuals behavior upon release. This issue is addressed in our 
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discussion concerning recent studies in recidivism and the art of its 

prediction, the feasibility of which is still a controversal subject. 

Greenberg 1s findings relating to incapacitative estimates found 

that the amount of index crime prevented by incarceration of the present 

prison population amounted to less than eight percent of the total. 

Further, his estimates suggest that an increase of one year in the 

average length of time served (sentencing) could be expected to raise 

this figure to only 12 percent. In addition, Greenberg concludes that 

the unpredictability of prisoner behavior upon release precludes 

selective incapacitation as an effective direction for improving the 

incapacitative effectiveness of incarceration. While the rate of return 

to prison is high, most returns were not found to be the result of new 

convictions. This implies somewhat of a dilemma, since no method is 

presently known to reduce repeated crime through effective rehabilitation. 

2.4 Basic Methods in Crime Rate Modeling for Static Systems 

In considering the mathematical modeling of the crime rate, the 

analyst must bear in mind that it is not easy to specify an objective 

statement or the permissible means for optimization. Essentially, we 

want to minimize the total social costs of crime. Unfortunately, most 

of the components of this cost cannot be viewed in economic terms, and 

scientific methods don't necessarily guarantee the best balance between 

them. Inherent in any such balance is a weighting policy which is 

dependent upon subjective value judgement. In most cases, the application 

of operations research to criminal justice is not intended to produce 

optimal decisions, but rather to elucidate the implications of various 
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alternatives. Consequently, precise optimization of a deterministic 

objective function is not highly meaningful. 

been deterministic in nature and must be considered as rough 

approximation at best. In addition, a number of assumptions must always 

be made, some of which do not have substantial direct support by data. 

Consider the simple example of calculating the probability that a person 

living in some area will be affected by crime in a given year. First 

suppose that N crimes were committed during a given year in a small area 

with population K. If we impose the assumptions that all members of the 

population are equally likely to become victims and that a single victim 

and criminal are associated with any given crime, then the probability 

of a given person not being affected is: 

Up until the present time, most modeling in criminal justice has 

For very large populations, it is generally assumed that N * aK, 

where a is the average local crime rate. Consequently; 

* e -a (Avi-Itzhak, 1973) 

as K The probability of being affected over a lifetime can 

then be determined from, 

1 - -not e 

where n is the assumed average longevity within the population. 

2.4.1 Offender Behavior Modeling 

Much recent work in criminal justice modeling is oriented to 
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describing the behavior of the individual offender. In his work, 

where F(S) is the distribution function of S^. 

2.4.2 Conviction Probability Modeling 

Another technique,proposed by Avi-Itzhak and others, is criminal 

justice directed toward formulating the probability of an offender 

never being convicted. If we define the number of convictions during a 

complete criminal career to be D (a random variable), the probability 

of a criminal never being convicted can be given by: 

9. = = ; ;°° e S dF c (s) (Shinnar, 1974) 
0 o . i 

oo X N 
P q = P ( D=0) = Z ( r ^ ) X ( l - q o ) X 

x=0 o A +N o 

N (Avi-Itzak, 1973) N+A q 
o o 

Shinnar [1974] assumes that at the outset of his career the new criminal 

commits offenses at a Poisson rate A q . The probability that the 

offender is prosecuted and convicted subsequent to the commission of a 

crime is denoted by q Q. If we assume to be the length of his first 

sentence, we can associate a probability, (9)^, to be associated with 

his return to criminal activity after serving S^. Similarly, S^, 9^, 

A ^ , q^, can be defined following the offender's surviving his or her 
th 

i conviction and sentence. With the additional assumptions that all 

are statistically independent for i = (1,2,3,...), and that the 

length of the criminal career is exponentially distributed, the return 

probabilities can be stated as: 



where N is the inverse of the expected length of the criminal career. 

The probability that a criminal is not convicted, again having survived 
t h 

the i conviction and sentence, is similarly defined as: 

p . - * ^zf- d - q , ) x N i _ N+A. H i ' A.+N x=0 1 1 

N (Avi-Itzhak, 1973) N+A.q. i i 

We can further specify the distribution D in relation to P and G as 

follows: 

P(D > 0) = 1 - P 
o 

p ( d > i(>o)) = n e.(i-p.) p ( d > o) 
j-i 3 J 

= (l-P ) 1 8 . (1-P.) 
3=1 J 

To find the expected value of D (expected number of conviction during 

a career): 

oo n 

e ( d ) = z (i-p ) n e (i-p ) 
n o . t n n n=0 j=l 

Similarly, the expected number of convictions can be stated as: 

\ °° n 
$ = E(D|D > 1) = f ^ r - = E n e (1-P ) (Avi-Itzhak, 1973) — l-r . n n o n=0 j=l 

Under static or "steady state" conditions, where we assume that the 

criminal population is constant, $ can be estimated from the proportion 
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of convictions where the offender has no prior record (virgin). If we 

let Y denote the number of convictions recorded, then: 

P ( Y = 1 ) " Pvirgin " j (Shinnar, 1974) 

In addition, Shinnar has shown that 

P(D _> y|D >_ 1.) P(D ^ y|D ^ 1) 
P ( Y = y ) = E (D 1D > 1) - — * 

P(D >_ l|D >_ 1) 
P(Y=1) = = j-

Still other approaches to estimating cf> can be found in the literature. 

For example, Avi-Itzhak (1973) has estimated cf> through repeat 

probabilities. Letting denote the probability that an offender with 

i convictions will at least once more be convicted, we can write: 

r . = (l-P.)e. i = 1,2,3... 
i i i 

by substituting into the equation, we have: 

oo n 

(j) = l + £ n r . . 
n=l 1=1 1 

If we could assume that prior record had no effect on an offender's 

behavior (e.g., r ^ = r ^ = r ^ = • • • = r ) , 

^ n 1 
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or R = (Belkin, Blumstein, Glass, 1973) 

2.4.3 Aggregate Offense Modeling 

Yet another approach found in the literature toward effective 

modeling is aimed at predicting the number of total offenses which are 

expected to be committed by an individual during his or her criminal 

career. The expected value of this quantity and the size of the 

criminal population are the determinants of the level of crime in a 

society. If we let E(x) determine this expected value, and define a 

set of random variables, y^,y^,y^*•••» where y^ represents the number 

of violations committed by an offender between convictions j and (j+1), 

we can write: 

oo n 

E(x) = E E( E y.|D=n) P(D=n). 
n=0 i=0 1 

Shinnar has shown that 

A.(l-q.) X.(l-q.) 
P(y. = x|D = n > i) = ( - ^ - ^ ( l - - ^ i - ) x - 1,2,3, 

and 
n+a. 

E(u.|D = n > i) = E(u,|D > i) = T T ~~ i i n + a ^ 

substitution to the above in terms of our original variables will yeild: 

E(X) = E E(y |D > n) P(D > n) + E E(y |D=n) P(D=n) 
ri-0 n n=0 n 



21 

where: ( n-1 
U V ° n n .n-Cl-P.) 6. X (1-q ) 

E(PJD = n) P ( D ^ ) fTTT 
n o 

consequently, 

CO \ 00 

E ( x ) = I P(D > °) = J p ( p > °) 
n n+X q 1-P A q n=0 n n n n=0 n 

x n 

where -^j^ can be shown to be the expectation of the number of 
n n q n 

t i l 

offenses committed between the offenders n release and his or her 

next conviction (or termination of the criminal career). 

If it were assumed that the conviction probabilities were equal 

for each time an individual were to commit an offense (i.e., = = 

q^ = ... = q ) , we could rewrite : 
oo 

E(X) = - £ P(D > n) = 
q n=0 q 

which is not an unreasonable result. Using the result, E(D) = (1-P)' 

and 0 <_ P <_ 1, (by the definition of probability), we can make the 

claim that : 

1-P 
( 2 - ) < 0 < * . 

q Y - q 

Imposing the additional assumption that 1-P- < 1-P. for i > 1, we can 
o - l — 

make the additional claim that : 

1-P (j) > (j) - 1 o — 
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thus, bounding the value of E(X) between: 

4-1 
q - - q 

Studies by Sellin, Wolfgang and others have provided evidence that the 

repeat probability (1-P^) tends to increase with the severity of prior 

record of the offender, serving to make our additional assumption 

reasonable. 

2.4.4 N t h Time Out Models 

Some contemporaries in criminal justice modeling used still 

another approach oriented toward a hypothetical, "N*"*1 time out" system. 

In such a system, an offender will experience his first N-l convictions 
th 

without being sentenced to prison. If a criminal is convicted an N 

time, he is assumed to serve a prison sentence infinite in length. If 

we again allow the number of convictions to equal: 

N-l n 
, N = 1 + E E (1-P.) 

n=l i=l 

maintaining the assumption that all q_̂  are equal, we can write the 

expected number of offenses committed during a criminal's lifetime as; 

1-P 
E ( X ) N = - - ^ * N = E(X). 

2.4.5 Current Work in Crime Rate Modeling 

Blumstein and Nagin [1976] develop a model that estimates total 
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crime rate as a function of imprisonment policies, incorporating 

estimated incapacitative and deterrent effects. Formulation is within 

an optimization framework minimizing crime rate and is utilized to 

investigate the implications of alternative incarceration policies. 

Within their model, the historically observed stability of the 

imprisonment rate is incorporated as a constraint in the long term. 

Consequently, they pose an allocation of limited resource problem to 

achieve maximum crime reduction through deterrent and incapacitative 

effects. 

As direct policy variables, Blumstein and Nagin employ the 

probability of imprisonment given conviction (or certainty = Q ) , and 

the average time served by imprisoned offenders (or severity = S). 

Other variables appearing in their model include the probability of 

conviction given a crime (q), total crime rate (C), the rate at which 

free criminals commit crimes (X), the maximum per capita imprisonment 

rate (u), the proportion of time a criminal is free (N), and upperbounds 

on Q and S(Q , S ). The formulation of the crime rate then follows the m m 

logic of multiplying the number of criminals by their rate of crimes 

committed by years free, and dividing this quantity by the total 

population multiplied by the total number of crimes. In terms of our 

variables : 

C = (X N)(P) 

where P represents the criminal portion of the population. Thus, the 

constrained optimization model can be stated as: 
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Min: C = X N(Q,S) P(Q,S) 

Subject to: I = qQSC = qQSXN(Q,S) P(Q,S) 

0 < Q < Q < 1 — — m — 

0 < S < S — m 

Here, P(Q,S) can be viewed as the decision to engage in criminal 

activities and is assumed in the model to be of the mathematical form: 

y(Q,S) 
P(Q,S) = 

1 + ey(Q,s) • 

The behavior of this function is specified by the determination of 

y(Q,S) of the form: 

y (Q,S) = y 0 + y± Q + Y 2 QS n. 

This represents the expected utility for incapacitation (negative), 

E[D(S)], where: 

E[D(S)] = aqQ + dqS n 

- Y XQ + Y 2 S n 

In addition, YQ is included to allow for adjustment in the size 

of the criminal population. 

With the functional form of the criminal population specified, 

Nagin and Blumstein next characterize the proportion of time that 

criminals are free. Because XqQ is the expected imprisonment rate, it 
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follows that the inverse can be viewed as the expected time between 

commitments. Since S is the time served upon imprisonment, then the 

total time a criminal exists is: 

U q Q ) " 1 + S 

and the proportion of time free becomes: 

(AqQ) 1 (AqQ) 1 + S 
-1 

1 + AqQS (Shinnar, 1973) 

The mathematical form of the Nagin, Blumstein optimization model can 

now be restated as: 

M l n : C ^ S > • T T T q Q S • 1 + a„(Q.S) 

Subject to: I(Q,S) - + £ y 

0 < Q < Q < 1 — — m — 

0 < S < S 
— m 

2.5 Basic Methods for Non-Stationary Systems 

The overwhelming evidence of growth in the crime rate over the 

past decade is indicative of the need for dynamic modeling of the crime 

rate. The major difficulty is to quantitatively identify the parameter 

changes contributing to the sudden upswing in recorded crime rates. 

The evidence suggests that the main factors are the increasing size of 
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the criminal population, sentencing, parole policy, and the behavior 

characteristics of criminals. In particular, the dominating factor has 

been cited to be the increasing size of the criminal population and 

specifically, the input rate of new offenders versus the attrition rate 

of old offenders. This can complicate the formulation of crime rate 

models, particularly since the criminal career, in most studies, is 

assumed to start with the first arrest or conviction. In actuality, 

the criminal career starts with the first offense, and it is possible 

that many offenders are never convicted, confusing the notion of the 

size of the criminal population to an even greater extent. 

One technique, based on the belief that non-stationarity in the 

crime rate has resulted from the increasing rate of new offenders, has 

been proposed by Shinnar [1973]. By assuming criminal career lengths 

constant (equaling T ) , uniform intensity of all offenders over time, 

and every criminal career starting at age 18-t, the proportion of the 

general population engaging in criminal acts was identified. If the 

number embarking on a criminal career at some point in time were A , and 

it had been increasing at an average rate, "a," until that time, then 

the number of offenders at that time should number: 

T-l 
„ . , A A , A . a 
0 = ~a 2 ~ T = T " * , , . 1 - 1 

a a (a-l)a 

and the number of offenders under 18 would be: 
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from this, the proportion of offenders below 18 years of age at that time 

can be given by: 

T-t a'" 1 

P = a - T i r • 
a 

If we define, b, as the average rate at which the number embarking on a 

criminal career is increasing, following the year in question, we can 

write the offender population size as: 

F n - (̂ fer F
n

 xfZ-i) A- (shinnar> 1974) 

\ (l-a)a / 

If we were able to assume the number of crimes committed by each 

offender k, we can give: 

E(D) = KTq 

and 

= E(D) = KTq 
* = ^ 0 = 1 - (l-q) K T ' 

Consequently, the expected number of convictions for the base year is 

given by: 

The probability that a criminal will experience his first conviction 

after j years is given by: 

= ( l - q ) K j K ( l - (l-q) K) j = 1,2,...T 
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The expected number of virgin convictions n years following the base 

year can be given by: 

n T-n-1 A3 +1+1 
Z = E A b U ; 3 .... + E — ~ . n . n n-i+1 . _ 1 i=0 i=l a 

Consequently, the probability of a given conviction involving no prior 

record in that (base +n) year can be stated as: 

Z 
P = . virgin G n 

Despite its versatility, models of this type are still deterministic, 

and cannot be utilized in describing changes in the parameters through 

time. 

2.5.1 Stochastic Empirical Models 

More recently, empirical-stochastic models have been advanced by 

Deutsch [1976] and others. In one recent study, Deutsch has 

characterized the arrivals or "occurrences," of crimes as a stochastic 

process, where eight index crimes are viewed in ten major U.S. cities. 

In this article, a three stage procedure in model construction is 

proposed, involving identification of a model form appropriate to the 

particular data base, numerical assignment of tentative model parameters, 

and statistical testing to update model form, for re-identification (as 

well as adequate fit). By utilizing the Box-Jenkins multiplicative 

autoregressive-moving average models, Deutsch has succeeded in developing 

time dependent point forecasts of crime rates, which transmit seasonal 

trend and fluctuation as well as linear trend and non-seasonal 
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fluctuation. In that study, rape and homicide were fit to lead-time 

dependent forecasts of the form: 

Z (£) = Z t(£-1) = Z t - e^a (Deutsch, 1976) 

Where Z f c is the estimated level of reported crime at time t, i is the 
2 

lead time. 0 is a seasonal moving average, and a f c is an NID(0,a ) 

error term. For six other Index crimes studied, a similar but slightly 

more complicated forecast of the form: 

Z t ( £ ) = Z t ( £ - 1 ) + Z t ( £ - 1 2 ) - Z t ( £ - 1 3 ) £ >̂  1 5 (Deutsch, 1 9 7 6 ) 

was developed. These stemmed from functions describing the reported 

level of crime at time t, developed directly from the Box-Jenkins 

model: 

Z t = Z + a - x (Deutsch, 1976) 

for rape and homicide, and 

Z = Z - + Z 1 0 - Z - „ + a - e_a _ - Q^a t t-1 t-12 t-13 t 1 t-1 1 2 t-12 

+ 6 1 2 e i a t - 1 2 (Deutsch, 1976) 

for the other six index crimes studied. Deutsch's forecasting results 

were found to be highly efficient, and behaved in an intuitively 

reasonable manner for estimates far into the future. Overall, each 

step-ahead forecast reflected the previous forecast updated for error 

and trend, and as such, characterized a simple Markov Chain process. 
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In addition, Deutsch's algorithm for model generation precludes "apriori 

bias" of the analyst by structuring the model in direct consequence to 

the individual data base. 

2.5.2 Dynamic Modeling of the Criminal Population 

Of substantial interest to our research objectives, Blumstein, 

Cohen and Nagin [1975] have proposed three way partitioning of the 

total population. Specifically, Blumstein (et. al.) considers the 

prison, free criminal and law abiding populations, and has made an 

attempt to characterize the flow rates between individual segments. 

Such an approach offers strong promise when one considers the 

potential of associating flow rates with their respective heuristic 

interpretations. The approximate form of the model is as follows: 

Prison Population = P(t), 

e ^ C t ) 
(l-6)K 1(t) 

Free Criminals = C(t) Law-abiding Population = L(t) 

K 5(t) 

(Blumstein, et al., 1975) 

Of particular interest is the flow between the law abiding and 

free criminal populations. Within these flows operates the social 

processes of redefinition in criminal behavior, the central theme of 

the homeostatic notion. In other words, the model is constructed such 
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that any purturbation in a flow will be followed by adjustment back 

toward an equilibrium state, in agreement with the observed stability 

in the level of punishment delivered by society. This, of course, is 

an oversimplification of the process. 

The formal description of the model can be expressed as the 

time rate of change (or first derivative) of the respective populations. 

P(t) = K 1(t)P(t) + K 2(t)C(t) 

C(t) = 9K 1(t)P(t) - K 2(t)C(t) - K 4(t)C(t) + K 3(t)L(t) 

L(t) = (l-6)K 1(t) P(t) + K 4(t)C(t) - K 3(t)L(t) + K 5(t)L(t) 

where 

K^(t) = release from prison 

K 2(t) = imprisonment rate of criminals 

K^(t) = rate of which law abiders become criminals 

K.(t) = rate at which criminals become law abiders 

K^(t) = birth rate 

9 = rate at which released prisoners return to criminal 

activity. (Blumstein, et.al., 1975) 

The dynamic character of the model was then explored under the 

assumption that all K_^(t) flow terms are constant. Under this 

assumption, a differential equation governing the behavior of P(t) 

was developed and compared with the dynamics of the actual time series 

for imprisonment rates. It is worthwhile noting at this point that the 

only known values of the system are K.., using the results of Gottfredson 
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[1959] and a number of other follow-up studies on released prisoners. 

Other flow parameters were calculated in the following approximate 

manner: 

K 2 = Prison receptions (known) * C(t) 

= 1 v (average length of the criminal career) 

(guestimated value) 

- 9 K 1 P ( t ) + (K 2+K 4) C(t) 
K 3 T(t) - P(t) - C(t) f 

Statistical testing of results with the actual data have proven to be 

encouraging, and some interpretation of flow rates was provided. 

According to Blumstein, the and flow parameter of the 

model represent the two aspects of severity and certainty of punishment. 

Since increasing severity of punishments (average sentence length) would 

decrease the release rate, k is seen as an inverse measure of severity. 

Alternatively, the more criminals imprisoned, (K^), the greater the 

certainty of punishment in a society will become. Since and 

represent flows between criminals and law abiders, they characterize 

what Durkheim refers to as the "level of conformity" in a society. In 

particular, the magnitude of flow from law abiders to criminals, (K^), 

measures the "commitment to conformity." This is a complex interaction 

between general deterrence, internalization of social norms and other 

elusive factors contributing to the motivations of individual members 

of society. Analogously, the flow from criminals to law abiders, (K^), 

represents what Blumstein has called, the "endurance of the criminal 
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role." This flow consists of a combination of the individual's 

disincentives to remain an offender, and opportunities associated with 

engaging in legitimate behavior. 

2.5.3 Fluctuations in Criminal Population as a Markov Process 

Blumstein's characterization has been extended into a three 

stage Markov process, where flow rates serve as transition probabilities 

and population segments are states of the system. Again, imposing the 

restriction that all K^(t) are constant over time, Blumstein has 

proposed the following transition matrix for his model: 

P(t) 

M = C(t) 

L(t) 

P(t+1) 

1-K X 

K 2 

0 

C(t+1) 

0K. 

1-K 2-K 4 

K, 

L(t+1) 

( 1 - 8 ) ^ 

K 4 

1-K. 

Examination of the matrix will reveal its positive recurrent nature, 

and the subsequent existence of a stationary distribution. This enables 

the analyst to observe system behavior in terms of a steady-state or 

"equilibrium" condition. In fact, this analysis was used to investigate 

the effects of each parameter (see Blumstein, et.al., 1975) in the model, 

The major findings were that relatively little could be done to reduce 

the proportion of criminals, but to the extent that opportunities to 

engage in legitimate activities and deterrence were operating, "more 

reasonable attempts could be made to reduce criminality." 

Although Blumstein's model appears to provide satisfactory 

accounting of observed imprisonment rates, it is severely limited by 
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the assumption of constant flow rates. This precludes the integration 

of adaptive behavior into the model. In addition, the model fails to 

explicitly characterize deterrent effects, and is thus restricted in 

its generality. 

2.6 Summary 

Like many social science applications of operations research, 

criminal justice modeling is plagued by uncertainty in the estimation 

of model parameters and ambiguity in interpretation of results. 

Evidence from the most recent research, however, has tended to 

de-emphasize the importance of the relationship between judicial 

behavior and public safety, in light of the relative magnitude of the 

criminal population and society's capacity for incarceration. Similar 

results have been obtained in the area of feasible limits on law 

enforcement policy. Apparently, the results so far indicate that there 

is little that can be done in the way of implementable policy to control 

crime. Apart from accepting this grim conclusion, we fully recognize 

the limitations and lack of generality characteristic to current 

research in the field, and can only seek to enrich the substance of 

results through further research. 
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CHAPTER III 

MODEL DESCRIPTION 

In this chapter the basic model for relating judicial sanctions 

to levels of crime is developed and summarized. The first section 

presents the components and form of the basic equation. The following 

three sections develop the major building blocks appearing in the 

formulation. The approach taken in these sections is to represent 

results from the literature and illustrate the modification procedures 

necessary for integration of these results into our model. The first 

of these sections develops the underlying driving mechanism behind 

the model. This stems from an application of Box-Jenkins models to 

crime rates first presented by Deutsch [1976]. The second of these 

sections develops the adaption of the three-way model of society 

(first presented by Blumstein, Cohen and Nagin, 1975) to our model. 

The last of the three sections describes the optimization process 

within the model borrowing heavily from the work of Nagin [1976]. The 

final section summarizes the model and provides an in-depth comparison 

of the model to its predecessors. 

3.1 Form of the Model 

In retrospect we have found that state of the art analysis has 

focused primarily on the three basic elements of the criminal justice 

system. These elements are; law enforcement, the corrections system 

and the courts. In addition, it has been shown that leading research 
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for each of these elements is embodied in the models of Deutsch, 

Blumstein, Cohen and Nagin, respectively. 

The overall objective stated for our research was to develop 

a model characterizing the relationship between these basic elements. 

Figure 1 represents an abstraction of the criminal justice system where 

arrows between boxes represent linkages between the various bodies 

within the system. 

Law 
Enforcement 

71V 

^ Courts Corrections 

Figure 1. The Criminal Justice System 

The specific means by which each of the elements is modeled has 

been presented in the previous chapter. To summarize, it was shown 

that law enforcement is modeled frequently in terms of its response 

variable, i.e., the crime rate. Modeling of corrections has primarily 

focused on the flow of individuals through the system which for most 

purposes stem from activities within the courts. From this framework, 

we would like to develop a model which will tie activities from within 

the courts to the crime rate. That is, we want to assess the activities 

in the courts in terms of their impact on the rate of crime. Such an 

analysis should invariably involve the corrections system in a way that 
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will account for the moderating constraints and impacts embodied in 

this element, which are inherent to the system as a whole. That is, 

we cannot facilitate a change in any one element which will not have 

ramifications for the remaining components of the system. 

In addition to the general conditions stated for the models, we 

also need to impart to the formulation characteristics which enhance 

its usefulness. Specifically, the analysis should provide insights for 

improving controllable policies and extrapolating for results into the 

future. This would be done to predict the future behavior of the pre­

vailing system and evaluate the potential results of policy improvements 

which may be suggested. Finally, since the situation suggests an 

integrative model of its predecessors, it should combine their virtues 

and extend their capabilities. In the following section, a formulation 

representative of the criminal justice process is proposed. The model 

features representations of each of the elements embodied in a basic 

equation defining their interrelationship. Although this formulation 

represents only one of numerous possible approaches, state of the art 

research is such that satisfactory means are available for adequately 

modeling each of the individual components. 

Figure 2 represents the logical relationships used to model 

crime and links each to its respective element of the system. This 

representation was developed first by Blumstein and Nagin [1976], who 

employed this logic for static modeling of the criminal justice system. 

With appropriate notation we can rewrite the entries from Figure 2 

using this equation: 
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where, 

= crime rate at time t 

X = average rate at which offenders commit crimes 

D = proportion of the population engaging in crime during t 

proportion of time a criminal is free 

Crimes in 
Period t , 

_ /Offenses Per\ /Proportion of \ /Proportion of the 
I Offender in I / Offenders Free ] [ Population Choosing] 
\ Period t / I to Commit Crime/ 1 to Engage in Crime 
^ y v \in Period t / \During Period t 

Law 
Enforcement Courts 

Figure 2. Summary of the Logical Relationship 

This equation is heretofore referred to as the basic equation of 

the model. In using the basic equation, we will attempt to determine 

the optimal Q and S policy embodied in the component of equation #1, 

optimal in the sense that the specified policy will result in the 

lowest possible level of expected crimes. To recall from the previous 

chapter, Q was the probability of imprisonment given conviction for a 

crime prevailing in the court system of interest, while S was the 

average sentence length meted out in that court system. These, of 

course, are the controllable variables within the system, subject to 

file:///During
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certain feasibility requirements. 

The procedure for using the model will be to characterize the 

prevailing levels of crime using the formulation of Deutsch [1976]. 

Corrections activities for the same periods of interest will be modeled 

simultaneously using a modified version of the dynamic markovian model 

of Blumstein, Nagin and Cohen [1975]. Integration of these two models 

will enable us to specify three of the four components of the basic 

equation modeled for prevailing conditions in the past, present and 

future. The remaining unknown component, D t , is then solved for and 

analyzed in terms of the model of Nagin, Blumstein [1976], incorporating 

controllable variables, Q and S. Finally, analysis is employed to 

determine optimal values of Q and S in terms of minimizing and the 

significance of this change in policy is evaluated. Figure 3 is a 

summary of the components of the model in terms of the three building 

blocks. 

Nagin [1976] 

Figure 3. Summary of Model Components in Relation 
to the Three Building Blocks 

The following sections of this chapter develop the specifics of 

each component of the basic equation, outlining the necessary 

modifications for their implementation and developing the mechanics 

for executing the model. 
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3.2 Specification of t 

W t " \ - Z t - 1 " Z t - 1 2 + Z t - 1 3 

The idea of characterizing crime rates with Box-Jenkins models 

was advanced by Deutsch during 1976. In this section, part of this 

work is represented in a form useful for our modeling purposes. For a 

more in-depth treatment of the subject, (see [11]). 

In our model, the random variable, Z^, represents the occurrence 

of reported index crimes in period t. For the dual purpose of precision 

(in using time series) and meaningful transient analysis, a period 

duration of one month has been chosen. Since monthly data for 

occurrences of index crimes becomes less available with each level of 

aggregation, annual figures for individual states have been transformed 

using monthly index crime occurrences in metropolitan areas. The 

actual data goes form 1966 to 1975, and represents the total number of 

reported offenses for each month. This data was obtained from the 

"Uniform Crime Reports," an annual publication of the FBI. 

Following the work of Deutsch [1976], a multiplicative 

autoregressive moving-average model, originally proposed by Box-Jenkins, 

was utilized to characterize the level of crime. The model is initially 

loaded using the first twelve monthly estimates,and subsequent forecasts 

are developed using the form: 

Z t " Z t - 1 + Z t - 1 2 " Z t - 1 3 + a t " V t - l " 6 1 2 a t - 1 2 + 6 1 2 e i a t - 1 3 

for t > 12, where a is calculated from W using the relation. ^ 
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for t > 12. Finally, 

a t " V l 2 + 9 l a t - l + e i 2 a t - 1 2 + e i 6 1 2 a t - 1 3 

where the values of for t < 12, were defined to be zero, and the 

remainder solved for recursively. 0^ and 0 a r e parmeter estimates 

for the fitted model. The actual past data and forecasted levels of 

crime reveal an alarming growth in the rate of crime experienced by 

society over the past decade. Despite a recent slowdown in the rate 

of growth (possibly related to increasing prison populations and 

corrections activity), the most recent data still exhibit an increase 

in the level of reported offenses. Although some have argued that the 

increases in crime of recent years is partly attributable to 

inconsistencies in reporting practices and increasing willingness of 

the general public to report crimes, these factors alone are not 

sufficient to discount real expansion in the criminalistic faction of 

our society. 

Assuming our time series approach adequately models occurrences 

of crime on a monthly basis, we can forecast to obtain estimates of the 

random variable far into the future. Previous research with this 

procedure suggests that is indeed an adequate representation of past 

data and has proven it highly efficient for short and long range 

forecasting purposes (see [11]). We are now in a position to specify 

values of Z f c in (equation #1). The following section develops our 

adaptation of the Blumstein, Cohen and Nagin model for specification 

of K. 
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3.3 Specification of K 

For a very long duration, it is not extremely difficult to 

estimate the proportion of time that a criminal is free. This is 

because viewing this proportion over a very long period is equivalent 

to assuming it is constant. Such an approach does not account for 

changes in the magnitude and mix of the criminal population and is 

insensitive to whatever prevailing trend may exist in corrections 

activity at a given time. In order to preclude these difficulties, 

we would like to arrive at an estimate of the proportion of time an 

offender is free, based on information that is current. Current in 

the sense that our estimate reflects both the immediate inmate 

population and the prevalence of the criminal role at any instant. 

Through this procedure, we can formulate a dynamic mechanism to 

generate unique estimates for each period of interest. 

If we think of the proportion of time that an offender is free 

as the proportion of offenders that are free over time, we can 

approximate this quantity by the following ratio: 

C / c + P K = t/ t t 

where C^ = the criminal population at time t, 

P = the inmate population at time t. 

With a very few exceptions, this ratio characterizes the 

proportion of potential deviants who have the capacity to violate the 

law outside of prison. 
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At the very heart of the model lies the dynamic process by 

which estimates of and P are produced uniquely for every one month 

time period. In the remainder of this section, we illustrate our 

motivation and procedure for employing the model of Blumstein, Nagin 

and Cohen [1975] in developing monthly estimates of the C and P 

random variables. In doing so, we develop the second of the four 

components in the basic equation. 
P 

3.3.1 Motivation for Using Time Series Modeling of t 

Recent findings in criminal reform suggest that only a small 

fraction of the criminal population is responsible for the majority of 

crimes committed and, therefore, the most effective approach to the 

control of crime is incarceration of this small fraction of extreme 

deviants. This belief has carried over in contemporary judicial 

behavior. 

The results have been severe overcrowding in prison facilities 

and unprecedented pressure on the constraints of the economic resource 

that society is prepared to allocate for corrections. The incidence of 

violent crimes, however, has leveled off somewhat during this time. 

This leveling off is attributable partly to the isolation of highly 

active criminals and partly to the deterrent effect associated with 

increasing prison disposition of criminal cases. The model being 

presented has been designed to provide estimates of this deterrent 

effect. 

For the purpose of modeling the growth of the prison and 

criminal populations, we can postulate a descriptive model anchored by 
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the time series description of the actual growth in the imprisonment 

rate. To do this, an approach to modeling P analogous to that for 

modeling is employed, and provides us with a time series description 

of monthly prison populations for the past, present and future. In 

their model, Blumstein, Nagin and Cohen have shown that such a process 

can be generated by following a first order linear differential equation, 

possibly with time varying coefficients. To illustrate this connection, 

Blumstein, Nagin and Cohen (see [5]) describe the derivative of P by 

its corresponding difference equation using the form: 

The general first order differential equation with constant coefficients 

is: 

P + dP = F t t 

and approximating with the difference equation, we have: 

P t + dP t = <P t - P ^ ) + d P t = F 

Putting this in the form of our original equation, the following 

second order autoregressive function was derived by Blumstein (see [5]): 

Thus, the differential equation #2 is the mathematical characterization 

of a dynamic process that would generate the time series that were 

observed. As it now stands, a process has been developed which could 
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represent any of numerous physical mechanisms. We would like to develop 

a model which will allow the adaptation of this flow process to 

contemporary corrections activity. Development of such a model will 

allow us to estimate the size of the prison or criminal population 

during any time period using the Blumstein model. 

3.3.2 Application of the Blumstein, Nagin and Cohen Model 

In their research, Blumstein, Nagin and Cohen show that for such 

a dynamic description of the imprisonment rate to be useful, a model of 

the social mechanism generating imprisonment rates must be formulated. 

This model must also generate flows which are consistent with the trend 

observed in the actual time series, and be plausible from an intuitive 

standpoint. The basis of their model is the partitioning of the total 

population into subgroups, one of which will be the prison population. 

The rate of exchange between groups is then explored with each group 

defined in terms of its own time rate of change. 

3.3.3 Blumsteins Three-Way Partitioning 

Assuming that each member of society can be classified as either 

a legitimate citizen, criminal or prison inmate, Blumstein postulates 

the description of society presented in Figure 4. 

C represents those individuals whose behavior in total is 

defined by society to be criminally deviant and eligible for 

imprisonment. Conversly, L t represents those individuals whose 

behavior is considered to be socially acceptable, and P are members 

of society at time t who are confined in penal institutions, isolated 

from the remainder of society. The arrows between nodes characterize 



Figure 4. Blumstein's Descriptive Model of Society 

the exchange rate between groups. They are defined by Blumstein to be 

f - The rate at which inmates are released from 

prison in period t. 

f - The rate at which criminal cases are disposed 

of through prison sentences during period t. 

fg - The rate at which juveniles become delinquent, 

and formerly legitimate citizens enter into 

criminal activity. 

. f, - The rate at which criminals cease their 4t 

illegitimate activities and re-enter normal 

society during period t. 

f^ t - The rate of growth in the total population 

during period t. 

y - rate of prisoner recidivism (to be distinguished 

from rehabilitation). 

If we think of the behavior of P as governed by an equation of 
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the form: 

p(t) = - f l t p(t) + f 2 t C(t) 

and for C •* t 

C(t) = Y f 1 P(t) - f 2C(t) - f 4 C(t) + f 3 L(t). 

Blumstein has shown that we can observe the behavior of the 

model under the assumption of constant f^. Specifically, we are 

interested in the accuracy with which the model predicts the behavior 

of P , since our earlier analysis has provided us with apriori 

information regarding this phenomenon. In short, P is considered the 

only known value output by the model and available for diagnosing the 

results predicted by the model. Clearly, the effectiveness of this 

formulation is tied directly to the estimation of flow parameters. 

3.3.4 Blumstein 1s Three-Way Model as a Markov Process 

According to Blumstein, if we consider each of the nodes in 

Figure 4 to be a state of the system, we can represent the figure with 

the following transition matrix. 

M = C 

t 

1-f. Yf-

^ 4 

t 

1-yf. 

f 4 

1-f. 

(Blumstein, et. al.) 

Note the positive recurrent nature of this matrix and the subsequent 
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existence of a stationary distribution. This feature of the M matrix 

permits the use of simulation techniques to examine the transient and 

stationary distribution for different values of f^ and y. Systematic 

adjustment of the f^ can be used to investigate the effect of each 

individual parameter on the equilibrium condition. Parameters which 

are unknowns are then manipulated in order to obtain agreement with 

the mechanism governing the imprisonment rate time series. 

3.3.5 Discussion of Flow Variables in the Markov Process 

At this point, the importance of policy variables should be 

introduced. Within the D formulation of the general model (for the 

total crime rate, not previously discussed), two controllable 

variables appear. They are defined as, Q and S, the certainty and 

severity of punishment, respectively. Certainty of punishment refers 

to the likelihood of a prison sentence, given conviction for a crime. 

Severity is a measure of the average length of sentences meted out. 

Both quantities relate directly to judicial procedure constrained by 

the limits of legal statute. For example, certain offenses are 

subject to minimum and/or maximum sentence lengths within which, 

presiding officials have relatively complete autonomy. The variables 

Q and S relate directly to two of the four flow variables appearing 

in the transition matrix for the process. 

Since S involves the amount of time that individuals remain 

incarcerated, it can be viewed as an inverse measure of the rate at 

which they are released. This is precisely the f^ flow parameter 

appearing in the model. The relationship between f 1 and S can be 
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viewed as follows: 

f 1* 

Consequently, the value of f could theoretically be related to a 

given value of S. It is worth noting, however, that other alternatives 

exist for calculating f independent of S, such as the time rate of 

change in prison populations over a one year period. Similarly, Q is 

a variable regulating the number of convicted criminals entering 

prison. The relationship between a n c ^ Q c a n D e summarized, 

theoretically, by a relationship of the approximate form: 

where c is the proportion of reported crimes punishable by imprisonment, 

and Z is the level of reported offenses. 

process are f^ and f^. These are the flows between the legitimate 

citizen and criminal populations. This probably represents a complex 

product of a number of different contributing factors, among them, 

the level of heterogeneity of society, the degree of internalization 

of social norms, and the deterrent effects associated with penalties. 

These factors all operate on different dimensions of an individual's 

motivation and utility structure. Rather than attempting to 

guesstimate these values outright, we can postulate reasonable bounds 

on their exact values, and simulate to solve for values which force 

agreement with the prison population time series. For example, if we 

CZ t(Q) 

t 
The only remaining parameters to be discussed for the Markov 
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consider f^, the rate at which offenders desist with criminal 

activities, as inversely related to the length of the average 

criminal career, one way to characterize the relationship is as 

follows: 

where T represents the average duration of the criminal career at 

time t. In summary, when using Blumstein's Markovian model, we see 

that the relation between the flow variables is maintained in logical 

order through interrelationships defined by the Markov chain. Table 1 

is a summary of plausible bounds for each of the flow parameters 

presented by Blumstein, Cohen and Nagin (see [5]). 

3.3.6 Closed Form Transient Results 

Once adequate solutions for each of the four flow variables in 

Blumstein's model has been found, we would like to be able to specify 

transient behavior of the system at any instant in time. Closed form, 

transient results would enhance the model's predictive powers not 

restricted to discrete time periods, and facilitate clean analytical 

results of flow variable changes, without taking successive powers of 

the M matrix. These results can be obtained using a simple application 

of geometric transform analysis. 

It is possible to obtain the generating function of matrices 

and vectors by taking the generating function of each entry in a 

given matrix or vector. Consider the general relationship: 

n(n+l) = H(n) M 
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Table 1. Plausible Bounds on Flow Parameters 
(Blumstein, Nagin and Cohen, 1975) 

- Release rate from prison -• .>.2 < f < 1.0. 

f^t - Imprisonment rate = ^ . 0 1 < f^ < .1. 

These bounds encompass the minimum proportion of 

the total population in prison and the maximum 

feasible capacity of the prison system. 

f^ t - Rate of law abiders entering crime >.001 < f^ t < .01. 

These limits similarly reflect the observed minimum 

proportion of the population in prison and maximum 

corrections capacity given the existing values of Q 

and S. 

f.^_ - Rate at which criminals reform = ^ . 2 < f. < 1.0. 4t 4t 

This interval accounts for the upper bound of f^ t and 

the extreme case of total rehabilitation. 
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where n(n) is a vector of state probabilities. By taking the 

generating function of this equation, we obtain: 

Z" 1 [G(Z) - IT(0)] = G(Z) M. 

Rearranging terms yields: 

G(Z) - Z G(Z) M = 11(0) 

G(Z) (I - ZM) = n(0) 

G(Z) = II(0) (I - Z M ) " 1 (equation #3) 

where G(Z) is the generating function of II (n), and I is the identity 

matrix. Equation #3 suggests that the transform of the state 

probability vector is equivalent to the apriori state probability 

vector post-multiplied by (I - ZM) \ where (I - ZM) 1 exists. In 

order to obtain a solution to a transient problem, we can weight the 

rows of (I - ZM) 1 by the initial state probabilities, sum, and then 

take the inverse transform of each element in the result. 

To illustrate this application for our purpose, consider a 

hypothetical two-population flow process described by: 

M = 

where P is the prison population at time t, and G is the general 



population at time t for these parameters, 

( I - ZM) 
-1 

1« 
1* 

1 -

and 

( I - ZM) 
-1 

(l-z)d--^z) 

(l-z)d-^-z) 

(l-zxi-^z) 

(i-z)(i-^z) 

Using partial fraction expansion on an element by element basis, 

we obtain: 

( I - ZM) 
-1 

d-z) D - T ^ z ) d-z) D - T ^ z ) 10 

_4 
9 + 

10 

4 
9 

d - Z ) ( 1 - t t t Z ) d - Z ) a-TfiZ) 10 10 I 

( I - ZM) 
-1 

1 - Z 

4 5. 
9 9 

5 -5 
9 9 

-4 4 
9 9 

Upon taking the inverse of the generating function, we obtain: 

T(n) = 

4 5 
9 9 n 

5 
9 

-5 
9 

-4 
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The usefulness of this approach becomes clear if we consider the 

inverse of the generating function in equation #3, yielding: 

n(n) = 11(0) T(n) 

which becomes the exact analytical description of transient behavior. 
th 

Specifically, the (ij) element of T(n) represents the distribution 

of the population in group j at time n, given that i was the resulting 

equilibrium condition of a previous policy. 

3.4 Specification of X 

X represents the average rate at which offenders commit crimes 

and implies a fixed "level of arrivals" for offenses in any given 

monthly period. One approach to determining a value of A, would be 

to speculate about the number of criminal acts committed by the 

average offender in any given month. Such a procedure would 

inevitably involve some assessment of the motivations behind the 

decision to commit a serious violation of legal statute. Up until 

recently, a large body of criminal justice research for decision 

making has entangled itself in the causes of crime. Given the 

overwhelming evidence for the failure of offender rehabilitation and 

the urgent need for policy reform, contemporary criminal justice 

modeling has focused more objectively on the behavior in aggregate 

measures of social well being. Recent findings suggest that prisons 

with intensive rehabilitation and training programs have (with a few 

exceptions) roughly equivalent recidivism rates as those where idle 

incapacitation of inmates is practiced. Consequently, more energy is 
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now being directed toward improving the mechanism of controlling 

offenders and less to modifying the deviant behaviors of individuals. 

Rather than attempting to estimate the number of offenses 

committed by the average criminal in each month, we can approximate 

this quantity by the appropriate ratios. To do this, the difference 

between the criminal population and deterrent effect must be fully 

understood. The deterrent effect embodies all those individuals who 

in some way, engage in illegal activities during a given period. This 

includes career criminals, marginal criminals, and any person somehow 

connected with violation of legal statute in the period of interest. 

The criminal population consists only of those offenders who remain 

active criminals six months or longer. Typically, this career criminal 

would tend to see his illegal activities as his livelihood and hence, 

have the tendency to view crime in the same light as the typical worker 

would view his occupation. As a result of this, we would not expect 

the average career criminal to commit crime in a seasonal fashion. 

Rather, we would expect there to be a consistent pattern in monthly 

per offender crimes as opposed to the overall crime rate which is 

seasonal in nature. Seasonality, as in the overall level of crime, 

also appears in the deterrent effect, since we believe the proportion 

of the population engaging in criminal acts to be a seasonal 

phenomenon (i.e., more people who are not career criminals shoplift 

during the Christmas shopping season). 

Using this argument, we can approximate X for any period using 

a seasonally corrected rate of crime. That is, X , is equal to the 
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ratio of seasonally corrected offenses in period t, the average 

criminal population prevailing in period t. Symbolically; 

t 

In order to de-seasonalize the crime rate, we employ a conversion 

of the (0,1,1)(011) 1 2 form to (0,1,1). This is done as follows: 

(l-B)(l-B 1 2)Z t = (l-9B)(l-9B 1 2)a t 

or 

n _ 12.Z 
(1-B) U * = (l-eBU 

(l-B)Z' = (l-6B)a t. 

In other words, Z^ reduces to the MA(1) model of the form: 

z t = a t + e a t - r 

In the denominator of the A^ formulation, represents the 12 month 

running average of the criminal population. The motivation for using 

a 12 month running average figure relates to the potential error in 

estimating C^. The error in estimating C over any 12 month period 

will tend to represent errors over and under for individual months 

as the optimization process compensates toward minimizing the deviation 

from the actual prison time series. As a result, any individual 

estimate may represent a larger error in one direction than the 12 month 
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running average of the estimates. In addition, Deutsch [1976] has 

shown the forecasts to be highly efficient, suggesting the error 

embodied within an individual estimate of to be of acceptable 

magnitude. 

3.5 Specification of D 

In this section, the analysis for the D component of the basic 

equation is developed and described. We proceed by viewing D in the 

same perspective as Nagin and Blumstein, and employ their methods of 

analysis. Recall from previous sections that all the remaining 

building blocks from the basic equation were estimated in some way, 

except D. In our analysis, we will solve for a numerical value of D 

in each period using the results described. We then perform analysis 

of D using the model of Nagin and Blumstein to determine the precise 

problem for finding optimal values of Q and S, which would minimize 

the total value of D (and subsequently reduce the level of offenses). 

The remainder of this section outlines the specifics for implementing 

Nagin's formulation within our model. 

In the basic equation, D represents the proportion of the 

general population choosing to engage in illegitimate activities. 

This component is meant to capture the extent to which individuals 

respond to the costs associated with the penalty structure. As such, 

this can be viewed as a general deterrence effect, varying over time 

with the disincentives for remaining a criminal. In the context of 

our model, D is explicitly a function of the certainty and severity 

of punishment, used to explore the implications of alternative 
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incarceration policies. Essentially, the problem becomes one of 

allocating the limited resource of man-years of imprisonment. 

3.5.1 The Deterrent Formulation 

Our model follows directly from the successful work of Warner 

[1962] and more recently Mundell [1976], in modeling individual choice 

behavior in the areas of transportation mode and college choice. Here 

we assume that the choice to engage in criminal activities, similarly, 

follows a logistic function. Under this assumption, D, as a function 

of Q and S, takes the following form adopted from the model of Blumstein 

and Nagin [1976]: 

where g(Q,S) is the disutility function associated with a prison 

sentence. The specification of the function g(Q,S) determines the 

behavior of the logistic function. Nagin has shown the form of 

g(Q,S) to be the following: 

Here the assumption that both Q and S deter criminal activities 

constrains the values of b and c to be negative. This is because 

values of b and c which are non-negative would require that 

D(Q,S) = 
0g(Q,S) e 

1 + e' g(Q,S) 

g(Q,S) = a + bQ + cQS [Blumstein, Nagin, 1976] 

3Q 
> 0 

and 
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a logical contradiction. Also, by constraining the value of, a, to 

be strictly negative, we can accommodate the idea that prison sentences 

are inherently undesirable independent of their duration. The curvature 

of the g(Q,S) function reflects the nature of the individual's distaste 

for incarceration. We can summarize the form of D by the following: 

exp[a + bQ + cQS] 
1 + exp[a + bQ + cQS] 

With the values of D, Q and S known, we can experiment with the 

functional form of D, in order to obtain estimates of, a, b and c. 

Consequently, experimentation with the model could provide insight 

into the aggregate nature of the disutility associated with various 

incarceration policies. 

3.5.2 Description of the Policy Space 

Within the model, we must recognize feasible limits on 

implementable policy. Since is monotonically decreasing with Q 

and S (an intuitively reasonable result), the best possible sanction 

would make Q and S large without bound. This, of course, is not 

possible given the restrictions on the economic resource that society 

is prepared to allocate toward the prevention of crime. We must, 

therefore, impose upper and lower bounds on the values for Q and S. 

The bounds on S are of the form: 0 < S < S , where S is the 
— max max 

maximum average sentence length allowable, given the level of 

permissiveness in our society. Since Q is a probability, its bounds 

are subject to the same restraints that confine the maximum value of 

S, as well as the definitional requirements of a probability. The 
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constraints of Q are of the form: 0 <_ Q <_ 1. Finally, we must impose 

the constraint 

Q*S* <_ QS 

where Q* and S* represent the optimal values of Q and S, respectively. 

This constraint reflects the fixed nature of short run corrections 

expenditure. Since the purpose of this analysis is to address the 

question of allocation for a fixed resource, and not the absolute 

level of that resource, the above form of the prison capacity constraint 

(adapted from Blumstein, Nagin, 1976) was regarded as appropriate. 

3.6 Summary of the Primary Model and Optimization 

We have now developed the comprehensive model for describing 

the overall level of crime, and are prepared to summarize its form as 

follows : 

Z = A • K • D 
t 

substituting, we obtain: 

Z t - 1 + V l 2 " Z t - 1 3 + a t ' e i a t - l " 9 1 2 a t - 1 2 + 9 1 2 S l a t - 1 3 = X • P • ° 

where 

D = 12 C. t + t 

[a + bQ + cQS] 

1 + e [a + bQ + cQS] 

Note that every value of Z f c, C^, P^ and D are unique for each monthly 

estimate of the process. This is due to the empirical stochastic 

mechanism of Z f c, and the underlying dynamic process for generating 
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estimates of C and P . 
t t 

Min: 
Z' 
t 

6 C. C t +
P t 

Once the simulation has produced satisfactory experimental 

estimates of, a, b and c, we can proceed with the constrained 

optimization of Q and S over the decision-theoretic logistic function. 

The optimization will take the following form: 

exp[a + bQ + cQS] 
1 + exp[a + bQ + cQS] 

i=l " 

s. t. Q*S* <_ QS 

0 < Q < 1 
0 < s < s 

— max 

Constraining S to be strictly greater than zero, precludes the logical 

contradiction of a policy where Q is at its maximum value, while 

sentence lengths are held to zero. This function can be optimized for 

the two variables using line search or any number of non-linear 

optimization methods. 

3.6.1 Comparison of Models 

Table 2 compares the formulation developed in this chapter with 

three other closely related models from which this work stems. A number 

of relevant characteristics in the areas of effeciency and 

comprehensiveness are considered. With the possible exception of a 

need for computational experimentation, the model integrates several of 

the important virtues of its predecessors, and hopefully will avert 

some of their shortcomings. The comparison offered in Table 2 reflects 
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Table 2. Partial List of Comparative Attributes 

Dynamic Model - Model 4 is 
time dependent in nature 
and provides analysis for 
changing conditions over 
discrete periods. 

Estimation of Deterrent 
Effects - Model 4 isolates 
the policy variables of 
the model within the de­
terrent formulation. Con­
sequently, the responses 
from perturbing policy 
variables can be analyzed 
in terms of their deter­
rent effects. 

Accounts for Population 
Dynamics - By utilizing 
the descriptive formula­
tion of Model 1 to char­
acterize the fluctuations 
within subgroups of the 
overall population, Model 
4 can relate the flows to 
the overall rate of crime. 

Forecasting Ability -
Following from the 
approach of Model 3, our 
model uses an efficient 
forecasting approach in­
dependent of the right-
hand side formulation. 
These forecasts constrain 
the logistic formulation 
of the crime rate in 
order to obtain fore­
casted behavior of the 
model parameters. 

Blumstein, 
Cohen and 
Nagin [1975] 

(1) 

Blumstein Deutsch 
and Nagin [1976] 

[1976] 

(2) (3) 

Deutsch, 
Malmborg 
[1977] 
(4) 



Table 2 (cont'd) (1) (2) (3) (4) 

Accordance with Observed History - The 
behavior of Model 4 is moderated by both the 
historical notion of a stable imprisonment 
rate and contemporary explosion in the 
growth rate of reported crimes. These ideas 
are incorporated as mathematical constraints 
or are inherent in the formulation of the 
descriptive model. 

/ / 

Provides Insight for Decision-Making -
Model 4 combines the forecasting approach of 
Model 3 with the relative functional struc­
tures in Models 1 and 2, used in sensitivity 
studies. Specifically, the Model 4 can 
forecast overall levels of crime for gross 
resource type planning or illuminate func­
tional relationships useful in resource 
allocation planning. 

/ / / 

Estimation of Incapacitative Effects -
By relating sentence lengths and imprison­
ment flows within a crime rate formulation, 
Model 4 could be used to study this rela­
tionship quantitatively. 

/ 

Provides Transient Analysis - Since Model 
4 describes a markovian process analogous 
to Model 1, discrete transform analysis 
can be employed to obtain closed form 
expressions describing time lag associated 
with a given policy change. This approach 
will also aid in determining the time 
necessary to reach the equilibrium condi­
tion. 

/ / 

Optimization - Analogous to the constrained 
optimization framework for static conditions 
found in Model 2, the structure of Model 4 
will permit static optimization for policy 
variables, as well as an iterative solution 
for an optimal policy in the dynamic case. 

/ / 

Estimation of Criminal Population - By 
associating a unique estimate of the size 
of the criminal population with each short 
run measurement of crime levels, Model 4 
will offer a functional relation between 
crime and number of criminals over time. i 

/ 
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Table 2 (cont'd) (1) (2) (3) (4) 

Makes Extensive Use of Previous Research -
Model 4 is an extension from Models 1, 2 and 
3, with a few minor innovations and re­
arrangement of form. 

/ / / / 

Useful in Short Run Analysis - Similar to 
Model 3, Model 4 is based on month by month 
analysis over a period of several years. 

/ / 

Ability to Adapt Analysis to Smaller Scale -
With each parameter meaningful and available 
on a state or local basis, Model 4 can be 
utilized for analysis of a less aggregate 
nature. 

/ / / 

Mathematical Tractability - As an integrated 
combination of several mathematically trac­
table models, Model 4 will most likely prove 
analytically feasible, although cumbersome. 

/ / / / 
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the integrative nature of our model. In fact, our model contains only 

two totally new approaches. These are, the method for determining A, 
Q 

and the use of the t/C + P ratio, to characterize the amount of 
t t 

time offenders are free to commit crimes. As such, the models 

greatest virtue is that it combines the best research in each of the 

three basic elements of the criminal justice system, and brings 

together a description of the whole, in which every basic element is 

accounted for. 

3.7 Summary 

In formulating our model of the criminal justice system, a 

large body of literature is integrated in an effort to extract the 

advantages of each approach and minimize the shortcomings of the model 

as a whole. In addition, new approaches are taken toward estimating 

parameters, such as Â _ and f^, in order to further enhance the model's 

capability. Perhaps the most significant innovation is the model's 

ability to simulate the system over time and predict behavior far into 

the future. By combining the forecasting efficiency of time series 

analysis and the logical interrelationships of earlier developments, 

our formulation has imparted a dynamic character to formulations which 

previously could be analyzed under static conditions only. Results 

stemming from the model should provide insights into prevailing judicial 

policies, as well as suggest new directions for policy improvement. 
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CHAPTER IV 

MODEL EXECUTION 

The purpose of this chapter is to aquaint the reader with the 

necessary logic for integrating the three major components of the 

model. Namely, the Z^, K, and D formulations. The approach taken in 

this chapter is to illustrate how each of the individual components 

is constructed from the data and to develop the role of each component 

in relation to each of the remaining components. This is done to 

clarify the procedures necessary for simulating the model. The first 

and second section treat the procedure for offenses and prison data, 

respectively. The third section illustrates the procedure for deter­

mining an optimal policy in terms of Q and S, following Nagin"s 

functional characterization of deterrence. The final section is a 

brief summary followed by a concise outline of experimentation 

conducted in the following chapter. 

As seen in Chapter III, the form of the basic model is embodied 

in the basic equation, 

Z = X K D t t t t 

In this chapter, we will discuss how to go about utilizing this form. 

Figure 5 is a macro flow diagram summarizing the procedure for 

executing the basic equation. In this chapter, a step by step 

discussion proceeds through the nodes of this diagram, with possible 
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Input Initial 
Observations 

Generate Z and> 
Z' forecasts 

Input Prisons 
Data 

Search for 
optimal 
markovian 
parameters 

Generate Ĉ  
values 

Generate P 
forecasts 

^Generate t 
... C +P ratios t t 

Solve for de­
terrent values 

Evaluate Q*S* 

STOP 

Exponent Value 
subroutine 

Solution for 
subroutine 

Nonlinear 
Optimization Q*S* 

Figure 5. The Macro Flow Diagram 
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extensions discussed in the final section. 

4.1 Utilizing the Offenses Modeling Technique of Deutsch 

In representing the overall level of crime, a statistic referred 

to as "the total number of reported offenses" is employed. This con-1 

stitutes the component of the basic equation. A discrete period 

duration of one month is appropriate for employing the modeling 

procedure of Deutsch [1976]. Total reported offenses by month have 

been compiled by Deutsch for ten major metropolitan areas. If we were 

to assume that the monthly trends in the occurrence of crime for the 

metropolitan areas were similar to those for the entire state of 

interest, we could transform the mean of the metro data to the state 

total. To do this, the proportion of each monthly figure to the annual 

total, would be calculated. Since annual totals are available for all 

the states in recent years, the proportion of that figure attributable 

to any one given month in the year would be calculated using the 

monthly proportion of the total (in the metropolitan data). In 

analysis provided by Deutsch (see [11]), modeling of total reported 

offenses in metropolitan areas suggested a seasonal component, as well 

as a trend in most such series. This indicated a (011)^ x ( 0 1 1 ) ^ fit. 

The appropriate values of 0 ^ and § ^ a r e calculated using the ESTM 

iterative parameter estimation routine. 

For the purposes of simulating the model, our procedure is to 

take transformed monthly offenses figures for each state from January 

1974 until December 1976. Using these 36 observations, an additional 

265 observations are forecasted and collected in the vector of Z^ 
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realizations for each period of analysis. From these values, the 

deseasonalized values are generated and stored providing one sub­

component of right-hand side values in the basic equation. The next 

section details the procedure for determining the vector of [C^/C^ + P^ ] 

ratios enabling us to solve for the values of D in each monthly period. 

4.2 Executing Blumstein's Criminal Population Model 

In estimating the flow variables of the Markov process governing 

the size of the criminal population, the most severe shortage of data 

exists. To overcome the limited availibility of data in this area, we 

can employ a numerical approach toward generating estimates of the 

size of the criminal population in the short run. To do this, each of 

the unknown flow variables of the transition matrix will be allowed to 

vary within their plausible bounds. Simultaneous variation of ^2t* 

f^ t, and f^ t will be conducted systematically, until the combination 

which is most consistent with the observed behavior in the prison 

population time series is found. This procedure is repeated for every 

six month interval, until the entire series for the prison population 

is described. For future forecasting, transition patterns are calcu­

lated using the same procedure with forecasted levels of the prison 

population, provided by the time series description of the imprisonment 

process. 

4.2.1 Recidivism in Blumstein's Populations Model 

The value of y represents the recidivism rate of released 

prisoners. A reasonable estimate of y is one-third [Blumstein, 1975]. 

Our definition of the criminal population implies that y includes all 
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those releases who commit at least one crime within twelve months of 

their release. In a 1971 study by Robinson and Smith, it was found 

that 51% of released prisoners returned to prison during the three 

years immediately following their release. In another study by 

Gottfredson [1959] it was reported that during a two-year follow-up 

period, 38% of released prisoners returned to prison. Since recidi­

vism rates decline each additional year following release, and not all 

releases who return to criminal activity are apprehended, Blumstein 

claims that a reasonable value of y f ° r this model is one-third 

(see [5]). In addition, Blumstein has provided computational 

experience showing the relative insensitivity of the Markov Chain to 

variations in y (see [5]). To see clearly how y appears in the formu­

lation, Figure 6 represents the transition matrix underlying the 

prisons and criminal populations model of Blumstein. 

C P L t t t 

C t (1-Y)f 1 

t t 

P t 

0 

Where the states are as follows: 

C^ = criminal population at time t 

P = prison population at time t 

L = law abiding population at time t 

Figure 6. Transition Matrix Underlying the Markov Chain 
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In adapting Blumstein's Markov Model to our analysis, we are applying 

his estimate of y, on a national level, to analysis of individual 

states. Since there is no evidence that recidivism is highly variable 

between states (see [3]), this is a reasonable simplification. Further­

more, the relative insensitivity of y (see [5]), discounts the potential 

for error in this procedure. The sections immediately following 

describe the steps involved in simulating Blumstein's Markov formulation. 

4.2.2 Simulation of the Markov Chain Underlying Blumstein's Model 

In this section, the computational procedure for utilizing 

Blumstein's Populations Model is outlined. Essentially, there are two 

basic phenomena which are integrated in order to drive the Markov Chain. 

These are, the time series description of the prisons population and 

the transition matrix description of the social process, presented in 

the previous section. Figure 7 is an illustration of the general 

procedure. 

t 

P t L t 

Time Series 
description P t of P 

t 

C •values 
generated 

Figure 7. Procedure for Executing the Markov Process 
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Computational experience with flow variable values, offered by 

Blumstein, revealed the process to reach a steady state on the average 

in six trasitions. Since the matrix is positive recurrent, we know 

it will always attain a steady state, and in this case, the average 

duration of transient behavior is six transitions. A steady state 

within Blumstein's Process, however, is highly counter intuitive. 

Our procedure for executing the process precludes this difficulty by 

analyzing the system in six period intervals. That is, we evaluate 

the output of the transition matrix for each six period interval, 

using the corresponding six elements of the P time series. After 

this, the procedure is performed again with the next six transitions 

and next six elements of the P time series, and so on. This approach 

is based on the idea that a Markovian description of the flow of 

individuals through the corrections system and society is more appro­

priate for capturing the randomness component of the phenomenon, as 

opposed to a period by period determination of flow variables (see 

Blumstein, Cohen and Nagin, 1975). For this reason, the six month 

procedure is utilized when executing the model. 

4.2.2.1 The Iterative Procedure for Executing the Markov Chain. 

Specific steps involved in the procedure for executing the Markov 

process are vector-matrix arithmetic over six periods, adjustment of 

pattern search for flow variables, and re-evaluation of the current 

solution. Each of these steps is now described. The vector matrix 

operation involves multiplying the initial 3x1 distribution; 

[C^, P , L ], by the underlying transition matrix. Each multiplication 

produces an additional 3x1 vector of the above form. The resulting 
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vector provides our estimate of the components of the [C^/C^+ P ] ratio 

(present in the basic equation) stemming from this intermediate solu­

tion for the f-j_ values. 

Adjustment of the pattern search for flow variables involves 

the point search aspect of the discrete version Hooke and Jeeves 

algorithm. For executing the model, an IBM-16 Double Precision Code 

was adapted to produce and evaluate flow variable solutions. Figure 8 

is a figurative summary, integrating adjustment of pattern search for 

flow variables to the other two steps involved in the execution of 

Blumstein's three-way Markov model. 

Input parameters to generate Markov Chain 

a. Perform transitions; generate 
population estimates 

b. Evaluate sum of squares error 

Input sum of squares error 

a. Pattern search to find improving 
directions 

b. Determine new base point combina­
tion of flow variables 

Figure 8. Figurative Summary of the Search Process 

The re-evaluation of the solution step involves the channeling of data 

to an objective value evaluation subroutine. This final step is the 

direct link between the Markov Process and time series description of 

actual prison populations. That is, the objective subroutine compares 
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the current periods P value from the 3x1 vector solution with the time 

series value of a states prison inmate population, corrected for per 

capita. The per capita correction is performed using estimates of 

total population statistics for the state of analysis (see [28]). At 

that point, the difference is taken and squared. The squared differ­

ence is then accumulated in the summation of the prevailing six periods 

series of squared differences. The optimal solution for flow variables 

corresponds to the square difference summation which is a minimum, thus 

evaluating solutions on the basis of least squares. 
K 

4.2.2.2 Computation of t. Once an optimal flow variable 

solution is found, the values of C and P f c are available for six 

periods. Consequently, the K component of the basic equation is 

obtained for six periods, where; 
C 

K - P + C t t 

We thus have obtained estimates of the proportion of time a 

criminal is expected to be free on a monthly basis, in a given six 

months for which the integrative model is simulated. 

This process is in turn repeated until the analysis runs through 

all six month periods contained in the prison data. The routine is 

then extended for the length of the simulation, substituting forecasted 

values of monthly prison populations. In the following section, the 

procedure for obtaining the D values of the basic equation; 

Z = A • K • D t t t t 
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is outlined, and the necessary extensions for relating policy variables, 

Q and S to D t > are developed. 

4.3 Utilization of Nagin's Deterrence Formulation 

In this section, the procedure for obtaining the value of the 

only component of the basic equation, D^_, for which a value has not 

been derived, is outlined. In addition, this section illustrates the 

procedure for obtaining an optimal Q, S policy, stemming from our 

analysis of D^.. Our discussion of D̂ _ proceeds through each of the 

boxes pictured in the flow diagram. 

Solve for 
in period t 

Equate D- value to 
Nagin, Blumstein 
formulation of 
deterrence 

Solve for Y . coefficients 
1 

in constrained optimization 

Determine optimal Q and S 
values, minimizing D and 
consequently, minimizing Z 

Figure 9. Flow Diagram Summary of D Analysis 

4.3.1 Solution for °t 

Since a procedure to specify each of the components of the 

basic equation has been developed, we can proceed to solve for D from 

the basic equation. Recall, the basic equation was written originally 

as; 
Z = X T • K • D t 
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Rearranging terms, we can specify as follows; 

% -
State prison population in month t 

State prison admissions in month t 

where S t represents the prevailing average sentence length, and; 

State prison admissions in month t 

Average monthly convictions in month t 

where Q represents the prevailing probability of imprisonment given 

conviction. Using estimates of this form, the values of Q and S are 

available in each period. 

4.3.3 The Optimization Procedure 

Once the values of D , Q , and S are obtained, we can proceed 
t x t t * 

to employ Nagin fs characterization of deterrence. This is done by 

equating our value of D to the functional form of deterrence; 

D

t • z t [ x t • V " 1 

for any period t. Using this procedure in every period, we can obtain 

a vector containing the values of monthly deterrent effects for each 

month that the model is simulated. 

4.3.2 Solution for Prevailing Q and S 

To perfrom analysis appropriate for each D^, we must have avail­

able the prevailing Q and S for the state of interest. If we recall 

the values of Q and S^, for each period they were estimated using the 

relations of Nagin [1976], they were; 
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rQ S ! g[ t t] 

C 1 + e ^ 

where the form of g [Q,S] is rewritten as; 

g [Q S ] = y „ + Y-iQ + Y „ Q S B L y t t J r 0 r l v t r 2 y t t 

where the y_^ a r e negative constants reflecting the disutility of a 

prison sentence. To summarize, we obtain a numerical value of d for 

each monthly period and equate it to deterrence as a function of policy 

variables Q and S , giving; 

Co + Y A + Y 2 V t ] 
D = 6 

t . . CO + Y l Q t + Y 2 Q t S t ] 1 + e 

where y. < 0 , for all i. l 

4.3.3.1 Solution for 0 Values. In solving for the y , we have 

the immediate problem of trying to estimate three parameters, Y Q , y , 

Y2> with only one known value. To overcome this, we must estimate y ^ 

by speculating what the value of d would be in the absence of sanctions 

(i.e., Q = S = 0 ) . This can be done by extrapolating from g(Q,S) to 

g ( 0 , 0 ) , assuming an appropriate value of g ( 0 , 0 ) , [Nagin, 1976]. In our 

analysis, we will define a sensitivity parameter, 3, to characterize 

the g ( 0 , 0 ) state (see Chapter V ) . Given that a value of g ( 0 , 0 ) is 

attainable, we can immediately solve for y ^ , since we are left with; 

(1+6 )D 
1 + e 

d. = 
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giving one equation in one unknown. In simulating the model, this 

[ Y0 + Y l Q t + Y 2 Q t S t ] 
D = e 

1 + e 

where the values of d and Y q a ^ e now known, as well as the values of 

Q and S. The problem reduces to solving for Y ^ a n < * Y 2> w ^ e r e the-

value of the expression; 

[ Y l Q t + W t ] 

is known. Clearly, there are an infinite number of possible combina­

tions of Y-j_ a n d Y 2» which could satisfy such a relation. 

In his analysis, Nagin claims that the Y-j^t P o r t-*- o n °^ the. 

above expression represents the stigmatization component of the 

disutility associated with a prison sentence, and tY 2Q tS ] represents 

the disutility of actual time served (see 22). In our analysis, we 

will assume that a proportion, e , of the disutility is attributed to 

Y^Q t»and a proportion, (1-e), is a sensitivity variable (see Chapter V ) . 

Specifying a value of e will enable us to determine specific values of 

procedure is repeated in each monthly period providing the vector of 

Y q values utilized in a later stage of the analysis. 

Y Y 

4.3.3.2 Solution for 1 and 2 Values. When determining the 

values of a n < * Y 2> a n analogous problem exists to that posed in 

determining the value of YQ» That is, we are left with the problem 

of determining two unknowns from only one known value. Up to this 

point, we have developed the relation; 
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y ± and Y 2-

minimize D as follows; 

Min; D = 6 

f 0 + Y 1 Q + Y 2 Q S ] 

fc ^ [̂ 0 + ^ 1 Q + Y 2 Q S ] 1 + e 

where Q and S are the variables. Since YQ> and Y 2 are all negative 

constants the problem is equivalent to; 

Min; [Y Q + y± + Y 2 Q S ] . 

This is also the equivalent to solving the problem; 

Co + T 1 Q + T 2 Q S ] 
Min; Z = \ • K. • — T r-. 

t 1 ' . [ 0 + 1 + Y 2 Q S ] 1 + e 

in terms of the optimal Q, S solution. Thus, by finding the values of 

As a result of the preceeding procedures, we can specify the 

values of Y q » y-^' a n c * y 2 > prevailing in each monthly period of the 

simulation. In the following section, it is seen how these values of 

Y ^ are utilized in formulating the problem to determine the values of 

Q* and S*, which minimize D^, and consequently, will minimize Z^, the 

expected number of total offenses. 

4.3.4 Formulating the Optimization to Determine Q* and S* 

Once this phase of the analysis of D^ is reached, the policy 

variables, and Ŝ _, are now treated as unknown quantities. Up to 

this point, we have specified the values of Y q > a n c * y 2 « We can, 

therefore, state the problem of obtaining the values of Q and S to 
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Q and S to minimize [YQ + Y-^ + Y 2 Q S ] , we have also found the Q, S 

values to minimize Z^. 

In the previous chapter, the following three conditions on 

Q and S were required to maintain feasibility: 

0 < S* < S 
max 

0 < Q* < 1 

Q*S* < Q S 
* — X t 

As a result, the minimization problem can now be restated in its final 

form as; 

Minimize: YQ + Y-̂ Q + Y 2 Q ^ 

Subject to: 0 < S*•< S 
— max 

0 < Q* < 1 

Q * S * <̂  ^t St 

For performing the above nonlinear optimization, the same package 

utilized in executing Blumstein's markovian model is accessed from a 

different subroutine in the coded model. 

4.4 Summary 

In this chapter, the basic steps for executing our model, 

integrating the work of Deutsch, Blumstein and Nagin, have been out­

lined. Essentially, it was shown how to go about computing optimal 

values of Q and S, which will result in a minimum number of expected 

offenses. 
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In the next chapter, applications of the model are documented in 

cases where the actual data is employed from three states. Comparative 

and sensitivity studies are provided, contrasting the three data bases 

of the different states, and comparing behavior within our model to 

predecessor models. In addition, extensions of the analysis, presented 

in this chapter, are outlined, performed and documented. 
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CHAPTER V 

COMPUTATIONAL EXPERIENCE 

This chapter embodies the procedures and considerations 

necessary to simulate the model and provides a detailed example for 

illustration. The first section presents the solution procedure and 

assumptions necessary to obtain the desired output. The second section 

demonstrates the uses of the model through a detailed example using the 

Georgia Data Base. The third section considers the possibilities for 

modeling the input policy parameters and its subsequent implications 

for use of the model. The fourth section is a presentation of sensiti­

vity studies in the Q, S policy space, attacking the problem via a 

series of approaches. The fifth section demonstrates the analysis 

necessary to de-confound the effects of incapacitation and deterrence, 

and provides supporting computational experience. Finally, the sixth 

and last section involves a comparison of judicial policies between 

Georgia, Missouri and Texas, with results of the model for these 

states. 

5.1 Using the Model 

Citing the developments of Chapter Three, the basic equation 

which underlies the model is given below. 
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In simulating this relationship over discrete time intervals of one 

month duration, the main driving mechanism within the model is the 

Z t forecasting mechanism. This controls the behavior of the left-hand 

side throughout the analysis. Imbedded within the right-hand side is 

an independent forecasting model characterizing the behavior of prison 

populations over time. The ^t/^t + Pt r a t i o is derived indirectly from 

these prison population forecasts using a three way Markov process as 

discussed in Chapter Three. The parameter, A F C, is both a function of 

the left-hand side and right-hand side forecasting submodels. If we 

recall from Chapter Three, A is the ratio of seasonally adjusted 

monthly offenses (indirectly a function of Z..), to the six month 

running average of the criminal population (indirectly a function of 

the prison population). 

As the preceeding paragraph would imply, d(Q,S), remains the 

only unknown quantity within the basic equation. As a result of this, 

d(Q,S) is solved for in each period using the relation given below. 

Consequently, each building block of the basic equation can be quanti­

fied and examined separately. The remainder of this section develops 

the important extensions of the basic solution procedure. 

5.1.1 The Structure of d(Q,S) 

The structure of the deterrent formulation was developed and 

presented in Chapter Three. In that section, the deterrent impact of 
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sanctions explicitly incorporated Q and S, the conrollable judicial 

policy variables, into the functional form given below. 

expf^o + ^ + Y 2 Q S ] 
d(Q,S) = 

1 + exp[ Y0 + Y 1 Q + Y 2 Q S ] 

Since it is possible to solve for d(Q,S) numerically, the left-hand 

side of the above relation can be treated as a known quantity. If the 

prevailing judicial policies regarding average sentence length and 

probability of imprisonment given conviction are known, the only 

remaining unknowns are the intercept and coefficients within the expo­

nential. These, of course, are YQ» Y-̂  a n d Y 2« 
Y 

5.1.2 Motivation for the Necessary Assumptions to Solve i 

It is known by definition of the above choice behavior function 

that the Y^ a r ^ a l l negative constants. Unfortunately, only knowing 

the values of Q and S on the right-hand side leaves us in a position 

of trying to estimate three unknowns, YQ» Y-̂ > Y 2» with only two known 

values, (Q,S). As a result of this, some assumptions will be neces­

sary in order to determine the value of the Y^ parameters. These are 

in addition to the more basic assumption that the effect of sanctions 

is to reduce crime. The latter, of course, is supported by the 

argument that by confining offenders, they are unable to inflict 

offenses upon society, thereby reducing crime, at least to the extent 

of the individual's capacity. 
Y 

5.1.3 Determination of 0 
To approach the problem, consider a situation where no sanctions 
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are present, i.e., Q = S = 0. By imposing the assumption that this 

will result in some increase in the proportion of crimes committed 

over the current level, we can estimate YQ« If we call this proportion 

3, where 3 > 0, we can proceed with the following development. 

Under prevailing policy: d(Q,S) = d(Q,S) 

Under zero sanctions: d(0,0) = (1+3) d(Q,S) 

Consequently, we have: 

ex P[ yo + Y l ( 0 ) + Y 2 ( 0 ) ] 
(1+3) d(Q,S) = 

(1+3) d(Q,S) = 

1 + e x p ^ O + Y l ( 0 ) + Y 2 ( 0 ) ] 

exp[Yo] 
1 + exp[ YQ] 

Y Q = log [(1+B) d(Q,S)/(l - (1+3) d(Q,S))] 

where 3 > 0. 

y y 
5.1.4 Determination of '1 and 2 

Finally, to estimate Y-j_ a n d w e m u s t impose an assumption 

regarding the proportion of the disutility associated with imprisonment 

that is attributable to the actual severity of a sentence, and that 

which is attributable to the stigmatization associated with a prison 

sentence. If we let e be that proportion of disutility which is 

associated with the stigmatization of a prison sentence, we can 

proceed to estimate y and y^ through the following developments. 

Taking the log of the deterrent effect, we have: 
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log e[d(Q,S)/(l - d(Q,S))] 

Using a previous result for YQ» we c a n write: 

y±Q + Y 2QS = log e[d(Q,S)/(l - d(Q,S))] - y 0 

thus, 

Y n Q + Y 9QS = log [d(Q,S)/(l - d(Q,S))] 1 L e 

log [(l+ft) d(Q,S)/(l - (1+3) d(Q,S))]. e 

Consequently, 

£(log [d(Q,S)/(l - d(Q,S))] -e 
Yi = 

log e[(l+3) d(Q,S)/(l - (1+3) d(Q,S))] 

and 

Y 2 = 

(l-e)(log [d(Q,S)/(l - d(Q,S))] -
e , 

QS 

log e[(l+3) d(Q,S)/(l - (1+3) d(Q,S))] 

QS 

where, 3 > 0 and 0 < £ < 1. 

It is worth noting that the values of YQ» Y^ A N ( * Y 2
 A R E 
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determined uniquely for each one month period. 

5.1.5 Solution for the Optimal Policy 

Once values for the a r e obtained for each period, the model 

proceeds to solve for those values, Q* and S*, which will result in 

the greatest deterrent impact. This is done by finding a policy which 

is feasible in terms of the corrections capacity constraint and mini­

mizes the proportion of the population which engage in illegal 

activities during period t. Since the corrections capacity constraint 

can be stated for any period t, as: 

Q * S * < Q S H t t - x t t 

the optimization problem can then be stated as: 

Minimize: Y n + Y-, Q + Y 9 QS 
t t t 

subject to: Q * S * < Q S J t t — t t 

and: 0 < Q <_ 1 

and: 0 < S f c <. S 
max 

5.1.6 Limiting Cases of Q and S 

The purpose of this section is to investigate the theoretical 

behavior of the model for limiting cases of Q and S. Namely, the 

zero and infinite sanction level cases. Computationally, this could 

be done by adding a constraint of the form: Q = S = 0, for the zero 
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sanction case or relaxing the S and product constraint to allow 
max 

zt - At ( c + p - 1 d ( Q > s ) 

If we assume the zero sanction situation, the deterrent effect will 

increase by some proportion 0. Consequently, we can rewrite the basic 

equation as: 

C 
zt = At 1 c + P I ( 1 + 3 ) d ( Q ' s ) 

z t - A t ( c - r r ) d ( Q ' s ) 

Thus, Z^ = (1+3)Zfc and, therefore, we could expect the total number of 

offenses to increase by an amount 3Z t under the zero sanction condi­

tion. 

5.1.6.2 The Case of Infinite Sanctions. The effect of the 

infinite sanction case can be seen if we consider the implications 

infinite values of S in the infinite sanction level case. Effectively, 

this would remove convicted felons permanently from the system and 

deter all others. 

5.1.6.1 The Case of Zero Sanctions. As we can see from the 

basic equation, the zero sanction level will inevitably perturb the 

entire system. In fact, it can be shown that to allow the zero 

sanction situation in our model would shift the expected number of 

total offenses in period t, from Z^ to (1+3)Z^. 

To see this, consider the basic equation: 
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of infinite sanction for the deterrent effect and subsequent ramifica­

tions in the basic driving equation of the model. Consider first, the 

limit given by the expression below. 

lim 
Q S >. oo [ Y q + + Y 2 Q S ] = - o o 

Since the are by definition negative constants, if we define a 

variable x, where: 

x = - [ Y 0 + Y-LQ + Y 2 Q S ] 

we can rewrite d(Q,S) in the following form: 

-x 
d(Q,S) = — e 

1 _ i _ ~ x 

1 + e 

Taking the limit of x: 

lim -x rt 

X — , . _ J § £= o, 
1 + e _ X 1 

Substituting into the basic equation at taking limits, we have: 

lim / C 
QS • » [ZJ = A 1 n I p [0] = 0. C + P 

t t 

Thus, we see that the functional form of the model necessarily 

predicts zero reported offenses for the case of infinite sanctions. 

The thrust of this section has been to explore the behavior of the 

model for the limiting cases of judicial policy variables Q and S. 
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Here it was seen that the behavior of the model for the zero sanction 

level reflects our assumption regarding social behavior in the absence 

of sanctions. Similarly, the results illustrated for the case of 

infinite sanctions embody the more general assumption that the presence 

of sanctions tends to decrease crime. 

5.1.7 Sensitivity of the Model to the Necessary Assumptions 

In this section, the potential impact on the results of the 

two basic assumptions necessary to solve for optimal values of Q and 

S is investigated. In a preceeding section, it was shown that state­

ments regarding the zero sanction state and the utility distribution 

between stigmatization and the actual incarceration experience 

(inherent in the perception of a prison sentence) must be made in 

order to develop the parameters. In effect, these statements 

impose the necessary constraints facilitating the solution of YQ> 

and Y 2* 

5.1.8 The Implications of the 3 Assumption 

We first focus on the solution procedure for YQ> since it is 

performed independently of the procedure for Y-^ a n ^ Y 2 * Recall that 

it was necessary to determine a value of 3, representing the increase 

in criminal activity in the absence of sanctions. Clearly, the final 

(Q,S) solution of the optimization problem will not be affected by 

the choice of 3. This can be seen if we consider the effect of 

increasing the expected level of crime anticipated in the absence of 

sanctions above some current level of crime, Ẑ _, by an amount, 3. 

This leads to the following development. 
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increasing Z f c by an amount 3, gives: 

(l +3)Z t = A t (ĉ h;) (1+6) etY° + + Y2QS1 Y± < °V 

3 > 0 

Knowing for this condition that: Q = S = 0 

we have: 

e [ V = (1+3) e [ Y 0 + ^ + ^ S ] ' Y i < ° V 

3 > 0 

At this point, the functional relationship between 3 and YQ becomes 

apparent if we consider the limit: 

B ^ . ( 1 + 6 ) e I v 0 + yjQ + r 2QS] . „ 

as a result, we can express the limit 

1 ± m [y 1 
8 y « e L T 0 J = « . 

Consequently, we can see the effect of increasing 3 is to increase 

YQ, as a result, the objective value of the optimization problem: 

Min: Y 0 + Y^Q + Y 2QS 

s.t. Q * S * < Q S 
x t t — x t t 

• and: 0 < Q < 1 
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and: 0 < S < S t — t max 

will also increase with 3. It then follows that the value of the 

deterrent formulation under optimal condtions: 

e t Y 0 + Y XQ* + Y 2 Q * S * ] / 1 + e t Y 0 + Y XQ* + Y 2Q*S*] 

will appear larger, the larger that we assume the increase in reported 

crimes, 3, will be (if sanctions are eliminated). Moreover, the 

optimal values of the sanction variables (Q*,S*) will not be affected 

by changing the value of 3, since the effect of increasing (or decreas­

ing) the value of the entire expression: 

(1+3)K = Y ( ) + Y 2 Q + Y 2QS 

will not affect the ratio Y ^ / Y 2 » This in turn, will result in an 

optimization procedure for the same linear combination at Q and S, 

regardless of the value of 3. 

The results of the preceding analysis has been to prove that 

our assumption regarding the zero sanction state necessary to solve 

for the value of YQ will not affect the optimal solution for Q and S. 

It will, however, affect what the model predicts the savings in 

reported offenses stemming from optimization will be. In fact, it 

was shown that the effect of assuming too large a value of 3, would 

be to overestimate the effectiveness of (Q,S) sanctions and subsequent­

ly overstate the impact of optimization. Analogously, to assume too 
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small a value of 3, would have the effect of understating the impor­

tance of optimizing judicial sanction variables. In any case, it is 

the significance of optimization, rather than the correctness, which 

is affected by the choice of ^ 

5.1.9 The Implications of the e Assumption 

In addition to deciding on the appropriate value of 3, an 

assumption regarding the disutility associated with a prison sentence 

must be imposed. Essentially, there are two aspects of this disutility. 

One involves the actual time incarcerated in the prison environment, 

which is presumed to be in itself an onerous experience. The other 

aspect of the disutility associated with a sentence is related to the 

stigmatization perceived by an offender, that is, the disutility of 

aquiring a prison record and its associated consequences. 

Since the latter is unrelated to the actual sentence imposed, 

it relates exclusively to the sanction variable Q. On the other hand, 

the disutility of the actual prison sentence relates directly to both 

Q and S. In terms of the deterrent formulation, this implies that 

relates to the stigmatization component and Y 2
 t o t n e sentence compo­

nent. Hence, the relation: 

Y 0 + y±Q + Y 2QS. 

As explained earlier in this section, the approach taken in allocating 

the total disutility to each of the components is to define a parameter, 

e , representing that proportion of the disutility attributable to 

stigmatization. As a result, we define the disutility, ds, as: 
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ds = YjQ + Y 2 Q S 

and that component attributable to stigmatization as: 

eds = YiQ 0 < e < 1 

and that component attributable to the actual sentence as: 

(l-e)ds = Y 2 Q S 0 < e < 1. 

We can see from the above that the effect of overstating e, 

would be to inflate the absolute value of y^ (a negative constant) 

and consequently, favor Q in the optimization process. Alternatively, 

to underestimate e, would discount the importance of Q in the optimiza­

tion process, consequently, favoring the value of S. 

In addition to altering the optimal values of Q and S, the 

choice of e, will also influence the value of the objective function 

within the optimization subproblem. This in turn, will influence the 

results for the importance of the optimization process. To see this, 

consider the deterrent formulation as a function of e. 

d(Q,S) = e 0 [y n + eds + (l-e)ds] 

where eds = Y-iQ 

and (l-£)ds = Y 2 Q S . 

Clearly, the behavior of the optimization process is dependent on 

whether the value of the S exceeds unity and the ratio Y - I / Y o * 
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Specifically, if we have the condition: 

\ 
S > — 

Y 2 

the optimization process will favor the value of S. Alternatively, 

Q will be favored if the opposite is true. In addition, if the value 

of y^ exceeds y^ and S* < y^^2' o v e r s t a t i - n 8 t n e value of z will 

inflate the value of d(Q,S) and overestimate the impact of sanction 

variables, Q and S. It is, therefore, necessary to know the value of 

the individual y^ and y^ parameters in order to assess the affect of 

the e assumption. This question is addressed in sensitivity studies 

later in the chapter. 

5.2 Analysis Using Georgia Data 

The purpose of this section is to illustrate the application of 

the model to a data base from the state of Georgia. In order to 

clarify the use of this example, we impose direct assumptions regard­

ing the values of 3 and e. Specifically, we will assume that the 

crime rate experienced by society in the absence of sanctions will be 

20% greater than otherwise for each period, (i.e., 3 = 0.20). Further­

more, we will assume that 75% of the disutility of a prison sentence 

will, on the average, be attributable to the actual sentence and 25% 

of the disutility will be attributable to stigmatization, (i.e., e = 

.25). Moreover, the choice of these values of 3 and e, will facili­

tate a meaningful comparison of our own results with another model by 

Blumstein and Nagin [1976], who provide limited computational experi­

ence for the same assumptions. 
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5.2.1 Input Policy Variables for Georgia 

Other information which is pertinent to interpreting the 

results contained in this section is that an average sentence length 

of 1.67 years and a probability of imprisonment of .30606 is used 

throughout the analysis in this section. These were found to be the 

mean values for average sentence length and imprisonment probability 

in Georgia courts during the period from January 1974 until December 

1976. We, therefore, will assume that these values will remain 

constant for the duration of the simulation, so as not to obscure the 

behavior of other important parameters in presenting the Georgia 

example. A closer look at the development and ramifications of this 

data is taken in a later section. It must be remembered, however, 

that the values, S = 1 . 6 7 and Q = .30606 represent prevailing policy 

in Georgia, assumed to be unchanged over the 25 year simulation. This 

somewhat unrealistic condition is imposed only to facilitate the 

clear illustration of an exmaple run, and is relaxed somewhat in a 

subsequent section. 

5.2.2 Total Reported Offenses in Georgia 

In order to interpret the behavior of the model over a 25 year 

simulation, an appropriate point of departure is to examine the 

behavior of the Z f c forecasting mechanism, which is the driving force 

behind the model. When the model was simulated from the present to 

the year 1994, a rapid growth in the level of reported offenses was 

predicted. This was due to the nature of the original Z^ time, series 

for the months from January 1976 until December 1976. The data is 

presented in Table 3. 
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Table 3. Total Reported Offenses for Georgia 

Month 1974 1975 1976 

Jan. 15837 15456 16991 
Feb. 14484 15517 17237 
Mar. 14641 15822 17028 
Apr. 14817 15566 17342 
May 15033 16073 17150 
June 15243 16171 17563 
July 15439 16332 17421 
Aug. 15491 16291 17397 

Sept. 15597 16516 17411 
Oct. 15493 16981 18091 
Nov. 15512 16452 17960 
Dec. 15482 16470 18114 

The Georgia total reported offenses data was identified as a 

non-stationary series, appropriately modeled by the (011)(011)^ B ° x ~ 

Jenkins formulation. Iterative estimation of the parameters suggested 

a value of 8 = .2695. As a result, the forecasts were characterized 

by a steady growth over the 25 year simulation. To illustrate, 

Table 4 shows the Z^ values predicted for seven sample periods 

covering the analysis. 

From examining the values in Table 4, we see that the value 

for the left-hand side of the basic equation is increasing with time. 
A 

Just as the value of Z^ increases, the value of Z^, the seasonally 

corrected offense rate, will also increase temporally. As a result, 
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Table 4. Total Reported Offenses Forecasted for Seven Sample Periods 

Period 
2 
t (forecasted) 

March 1975 15823 
September 1979 21721 
January 1983 25905 
May 1987 32652 
July 1990 36216 
November 1994 41228 
December 1997 45098 

we would now expect at least one component on both sides of the basic 

equation to be increasing over time. In order to clarify the effect 

of the increasing on the other parameters of the basic equation, a 

control run, where Z^ is held constant, was also performed. The result 

of this run is referred to continually in the following analysis. 

5.2.3 Prison Populations in Georgia 

Another forecasting submodel appearing in the basic equation is 

the forecasting mechanism for predicting prison populations in the 

state of Georgia over the next 25 years. Like the total reported 

offenses data, the behavior of the state institution inmate population 

totals predicted for Georgia during the simulation, will be related to 

the input data. Table 5 shows the state institution inmate population 

totals in Georgia for the months from January 1974 until December 1976. 

Statistical analysis of this series again suggested the (Oil)(011)^ 

Box-Jenkins forecasting model as appropriate. This time, however, the 
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Table 5. Georgia State Institution Inmate Population Totals 

Month 1974 1975 1976 

Jan, 9832 10891 11421 
Feb. 9904 11072 11613 
Mar. 10171 11323 11453 
Apr. 10392 11172 11548 
May 16262 11341 11481 
June 10780 11360 11587 
July 10955 11459 11537 
Aug. 11050 11305 11521 
Sept. 11128 11326 11469 
Oct. 11045 11513 11756 
Nov. 11061 11422 11423 
Dec. 10985 11389 11350 

parameters were estimated to be: 0 ^ = .6279 and = «2028. 

Unlike the total reported offenses series, the growth predicted 

for the state institution inmate population totals was gradual. 

Table 6 illustrates the behavior of the forecasts for seven periods 

of interest covered in the analysis. This was also true of the 

simulation run for the deterministic Z^ situation, since the two 

submodels are developed independently of each other. 

5.2.4 Criminal Population Movement in Georgia 

The contradictory growth rates of the total reported offenses 

and the prison populations submodels explain a number of key relation­

ships between parameters of the model. For example, the ratio: 
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was found to remain fairly constant over the 25 year simulation for 

both the non-stationary case and the deterministic Ẑ _. In fact, 

the results for this parameter were identical for both cases, since 

the above ratio relates only to the prison populations forecasting 

submodel and the three way markovian search pattern for C^. A sample 

of the results for seven periods of interest, along with their 

corresponding general deterrent effect, is presented in Table 6. 

Table 6. Illustration of the Growth in 
Georgia State Prison Populations 

Prison Population X d c Perio d Prison Population t t t 

March 1975 11321 0.29 1 .32% 1. 15% 
September 1979 11660 0.37 1 38% 1. 16% 
January 1983 11756 0.43 1 42% 1. 16% 
May 1987 12180 0.53 1 43% 1. 17% 
July 1990 12416 0.59 1 39% 1. 19% 
November 1994 12643 0.67 1 41% 1. 18% 
December 1997 12903 0.73 1 .38% 1. 18% 

The data appearing in Table 7, clearly suggests that state 

institutions house between 16% and 17% of the offender population at 

any one time. Although these results are somewhat high in comparison 

to analogous results presented in the Blumstein, Nagin, Cohen [1975] 
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Table 7. Criminal and Prison Population Percentages 

Month C 
t 

P 
t 

C /C +P t t t d t(Q,S) 

March 1975 1.15% 0.2305% 83.3% 1.32% 
September 1979 1.16% 0.2312% 83.4% 1.38% 
January 1983 1.16% 0.2311% 83.4% 1.42% 
May 1987 1.17% 0.2331% 83.4% 1.43% 
July 1990 1.19% 0.2314% 83.8% 1.39% 
November 1994 1.18% 0.2337% 83.5% 1.41% 
December 1997 1.18% 0.2313% 83.7% 1.38% 

model, they are within a reasonable order of magnitude. Their results 

suggest that this percentage averages between 12% and 13% on a national 

level. 

5.2.5 Behavior of ^t in Georgia 

Also apparent from Table 7 is the fact that the absolute magni­

tude of the criminal population in the state of Georgia is predicted 

to rise only slowly over the next 24 years. If we consider the non-

stationary situation, we see that the parameter on the right-hand 

side of the basic equation, which adjusts for the large increases in 

Ẑ . (the left-hand side), is A^, the average number of offenses 

committed by the average criminal in period t. To illustrate, C t 

(criminal population), d t (deterrent effect) and Afc are presented 

in Table 8. Here, the units of A are crimes per offender per month. 

The figures from the table suggest that the average number of crimes 

committed by an individual career criminal will grow from about 3.5 
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Table 8. Sample Results for Seven Periods 

Period Z 
t 

X t 
d 
t 

C 
t 

March 1975 15823 0.29 1.32% 1.15% 
September 1979 21721 0.37 1.38% 1.16% 
January 1983 25905 0.43 1.42% 1.16% 
May 1987 32652 0.53 1.43% 1.17% 
July 1990 36216 0.59 1.39% 1.19% 
November 1994 41228 0.67 1.41% 1.18% 
December 1997 45098 0.73 1.38% 1.18% 

in 1975 to about 8.8 in 1997. This result did not hold for the case 

of deterministic Z^9 where A fluctuated only very narrowly with 

changes in Ĉ .. 

5.2.6 General Deterrent Effects in Georgia 

One other interesting result,which can be observed from Table 8, 

is the relative stability of the general deterrent effect, d(Q,S), over 

the 25 year simulation. This result was true of both deterministic and 

non-deterministic Z forecasting models. A qualitative explanation and 

discussion of this and the previously described behavior in the model 

is offered in a later section. 

5.2.7 Optimization Process for the Georgia Data Base 

Recall that the procedure for obtaining optimal values of Q and 

S was first to determine numerical values for d(Q,S) in each period. 

This done, the values of the coefficients (y) for the objective function 

are obtained, given the necessary assumptions. For example, the values 
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of Y Q , a n < * Y 2> f ° r t n e month of March 1975, would be obtained as 

follows: 

Table 9. i Values for Seven Periods 

Period Deterrent Effect Y 0 Y l Y 2 

March 1975 1.32% -4.129 -.15109 -.2716 
September 1979 1.38% -4.077 -.15127 -.2720 
January 1983 1.42% -4.055 -.15129 -.2718 
May 1987 1.43% -4.045 -.1531 -.2749 
July 1990 1.39% -4.070 -.1516 -.2724 
November 1994 1.41% -4.072 -.15120 -.2718 
December 1997 1.38% -4.081 -.1510 -.2713 

Throughout this simulation, the values of Q and S were held at the 

constant levels of .30606 and 1.67 years, respectively. Once values 

for the Y- a r e obtained for every period, the model proceeds to solve 

Y Q = log {[1.2(.0132068)]/[1 - 1.2(.0132068)]} = -4.129 

Y = .25{log e[.0132068/1 - .0132068] - yQ}/.30606 = -.15109 

Y 2 = .75{log e[.0132078/1 - .0132068] - .Y q}/(1.67)(.30606) = -.2716 

where, .0132068 = d(Q,S) for March 1975. 

In simulation studies covering the months from January 1 9 7 4 to 

December 1998, some typical values obtained for YQ» Y-̂  a n c ^ Y 2 (using 

data for the state of Georgia) appear in Table 9. 
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for those values of Q* and S* which will result in the greatest deter­

rent impact. This is done by finding a policy which is feasible in 

terms of the corrections capacity constraint, and minimizes the per­

centage of the population who engage in illegal activities during 

period t (the deterrent effect). The corrections capacity constraint 

can be stated for any period t as: 

Q* S* < Q S 
x t t — x t t 

The optimization problem for Q and S can then be summarized for 

period t as: 

Min: [y + y Q + y QS] 
t t t 

s.t. Q* S* < Q S 

• t t — x t t 

and 0 < Q £ 1 

and 0 < S < S 
— max 

The procedure was performed for each month from January 1974 

to December 1998. The results for the seven periods mentioned in 

Table 9 are presented in Table 10. It is worth noting that since the 

input values of Q and S were constant, their optimal values over time 

remain constant within four decimanl places. The relatively stable 

behavior in the value of the deterrent effect explains why this is so. 

In addition, the optimization procedure (being a discrete version 

pattern search, developed by Hooke and Jeeves) is only as accurate as 
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Table 10. Optimization Results for Georgia 

Period Q S Q* s* AC; AS 

March 1975 .3016 1.67 .4605 1.11 .15 -.56 
September 1979 .3061 1.67 .4605 1.11 .15 -.56 
January 1983 .3061 1.67 .4605 1.11 .15 -.56 
May 1987 .3061 1.67 .4605 1.11 .15 -.56 
July 1990 .3061 1.67 .4605 1.11 .15 -.56 
November 1994 .3061 1.67 .4605 1.11 .15 -.56 
December 1997 .3061 1.67 .4605 1.11 .15 -.56 

the number of step--size reductions performed. For executing the above 

optimization, the initial step-sizes were: 

AQ = Q/3 

AS = S/2 years 

with eight step-size reductions performed in each optimization. 
—8 

Consequently, the search was accurate to within about 10 units for 

each variable. 

5.2.8 Motivation for Using Constant Input Policy Variables 

The rationale in using values of Q and S, which are held 

constant over time, is that the best model for predicting each is the 

mean of the actual series. This would imply a stationary sentencing 

policy from month to month. (In fact, when the actual series of 

imprisonment probabilities was analyzed, it was found to be non-

stationary. This case is discussed in a subsequent section.) 
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When conditions of static judicial administration were 

simulated over a 24 year period, the gain in policy effectiveness 

stemming from optimization was similarly stable over time. For each 

monthly period, the optimal values of Q and S were identical, since 

the constraint set was unchanged throughout the simulation and the 

objective function coefficients (y^) did not vary significantly. With 

the optimization process in each period a repetition of the process 

in every other period, the percentage gain in effectivenss by switch­

ing to optimal levels of Q and S would be expected to be constant. 

To verify that this was in fact the case, the number of crimes saved 

in each period was measured and its percentage of the total was 

computed. 

5.2.9 Evaluation of the Impact of Optimization 

month by going from prevailing to optimal values of Q and S, the basic 

equation was reconstructed using Q* and S*. The deterrent effect in 

period t, under optimal policy, was obtained by the substitution. 

and the expected number of crimes under optimal policy can then be 

stated as: 

In order to determine how many crimes would be prevented in a 

d*(Q,S) = 
exp[ Y ( ) + Y-^Q* + Y 2Q*S*] 

1 + exp[y 0 + Y XQ* + Y 2Q*S*] 

The expected number of crimes saved during t, is: 
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Z - Z* t t 

and the percentage savings through optimization: 

•ioo[(zt - z*)/zt]. 

The numerical results for seven typical periods over the twenty-four 

year horizon are presented in Table 11. 

Problems with this approach of measuring the impact of optimi­

zation can arise if a new policy was such that its effect were to en­

large or reduce the prison population to a significant degree. Such 

a shift would thereby change the value of the [C t/C t+P ] ratio and 

perturb the system. This, however, was not considered a serious 

problem, since earlier analysis by Blumstein and Cohen [1975] and 

Greene [1974] have shown that prison populations account, at most, for 

about 17% of the criminal population. (In fact, the prison populations 

accounted for about 20% of the criminal population at its maximum level 

in our study.) Furthermore, such shifts in state institution popula­

tions tend to be gradual and moderated by the presence of the uniform 

corrections capacity constraint. Analogous results for the case of 

deterministic Z f c were identical with the exception that the saving in 

numbers of crimes did not change over time. 

5.2.10 Discussion of Sample Results 

The results presented in Table 7 suggests that the proportion 

of society which comprise institutionalized offenders should be 

expected to demonstrate remarkable stability over time. This implica­

tion tends to reinforce the fundamental notion underlying the 
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Table 11. Expected Total Offenses in Georgia 

Period Prevailing Policy Optimal Policy Saving Percentage 

March 1975 15823 
September 1979 21721 
January 1983 25905 
May 1987 32652 
July 1990 36216 
November 1994 41228 
December 1997 45098 

15463 
21226 
25315 
31908 
35391 
20289 
44071 

360 
495 
590 
744 
825 
939 

1927 

2.278% 
2.278% 
2.278% 
2.278% 
2.278% 
2.278% 
2.278% 

Blumstein, Nagin, Cohen model [1975], namely, "the stability of punish­

ment." Blumstein claimed that the punishment process was a homeostatic 

phenomenon, which remained stable over time, regardless of the level of 

deviance present in society. This notion was originally offered by 

Durkheim [1964] in a manuscript entitled, "The Rules of the Sociologi­

cal Method." Durkheim suggested that the presence of crime in society 

is natural and emanates from the same processes which preserve internal 

social stability. 

Blumstein used Durkheim's ideas as a stepping stone in develop­

ing the concept of a behavior distribution. Blumstein believed that 

the level of deviance present in society at any one time appeared to 

bear no direct relation to the level of punishment meted out by the 

society. In other words, if the level of crime were to suddenly 

experience a sharp rise, society would redefine the limits on accept­

able behavior rather than expand the punishment process. This would 
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be interpreted as a shift to the left. Alternatively, if the level of 

crime were to decrease sharply, the society would respond with more 

vigorous enforcement of existing laws as corrections, judicial and 

law enforcement resources became free to press for greater effective­

ness. This would be represented by a shift to the right in Figure 10. 

A classic example of this phenomenon would be the development of legal 

off-track betting in several states which gave legitimacy to the 

behavior of thousands of individuals previously considered as criminals. 

Severely Deviant Compulsively Moralistic 

£ = the current limit on socially acceptable behavior. 

Figure 10. The Behavior Distribution 

Blumstein, Nagin and Cohen used this concept of equilibrium in the 

social order as the basic theme of their 1975 model. Despite the 

modifications within our own model, which uses math programming 

techniques to determine the markovian driving parameters, the implica-



110 

tion of the results is astoundingly similar, that is, punishment is 

a basically homeostatic process. 

Even though stability was present to a large extent in correc­

tions activity, throughout the 25 year simulation, criminal activity 

rose sharply. At least, what we now consider criminal activity 

experienced a significant upward trend. We have previously shown that 

the criminal population is expected to rise only slowly in Georgia. 

Also, the proportion of the overall population which in some capacity 

(not necessarily career criminals) engages in illegal activities 

(deterrent effect) is likewise expected to fluctuate very slowly 

upward in the next 25 years. Consequently, we must turn to other 

causes to explain the alarming rise in total offenses which are 

expected over this period. 

The explanation offerred by the model is a growth in A^, the 

average number of offenses committed by the individual criminal in 

period t. One possible explanation for this phenomenon lies in the 

fact that the growth in prison populations lags far behind the growth 

in the crime rate. As a result, criminals may view the risks involved 

in committing an offense as remaining stable, while the benefits for 

doing so are enhanced. That is, a criminal perceives his probability 

of imprisonment given conviction as increasing only marginally with 

each additional offense. The benefits associated with committing that 

additional offense, however, may increase linearly or exponentially, 

given the risk-amenable utilities thought to be characteristic of many 

criminals. At the same time, the criminal population would only 

account for a very small proportion of the total population, thereby, 
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tending to impart only a marginal shift in the deterrent effect. 

5.3 The Effects of Nonstationary and/or Correlated Sentencing 
Practices 

If we were to re-examine our actual data from which the pre­

vailing policy variables, Q and S, are derived, it would be of con­

siderable interest in any evidence of growth or seasonality were 

present. In fact, any pattern recurring in either series could 

illuminate a trend present in current policy which may have serious 

implications for the effectiveness of the criminal justice system, 

today or in the future. For example, falling sentence lengths over 

time with stationary probabilities of imprisonment would necessarily 

be followed by a period of rising sentence lengths, due to the systems 

relentless tendency toward the equilibrium condition. This is 

underscored by the concept of the behavior distribution underlying 

the formulation of the model. If such a phenomenon were in fact 

observed, it could betray the presence of a pendulum of justice effect 

operating within our system, lending itself to explicit modeling in 

further analysis. 

5.3.1 Average Sentence Length 

Recall that the average sentence length was determined by 

dividing the total prison population in some month by the number of 

prison receptions in that same month. This procedure was undertaken 

for the months between January 1974 and December 1976. Table 12 

presents the figures obtained for these months and Figure 11 shows a 

plot of the time series. Units in the table are years. 



Figure 11. Average Sentence Time Series for Georgia 1974 - 1976 
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Table 12. Average Sentence Lengths for Georgia 

Month 1974 1975 1976 

Jan. 1.58 1.51 1.83 
Feb. ,1.79 1.61 2.00 
Mar. 1.55 1.25 1.59 
Apr. 1.48 1.28 1.74 
May 1.52 1.46 1.76 
June 1.78 1.56 2.09 
July 1.59 1.74 2.02 
Aug. 1.83 1.64 1.76 
Sept. 1.66 1.88 1.83 
Oct. 1.31 1.57 1.61 
Nov. 2.14 2.04 1.63 
Dec. 1.49 1.35 1.75 

Subsequent statistical analysis of the data identified the set as a 

stationary, non-seasonal series. This can be verified qualitatively 

by inspection of Figure 11. Consequently, the mean was used to fore­

cast the series which had a value of 1.67 years. 

5.3.2 Probability of Imprisonment Given Conviction 

The monthly probability of imprisonment given conviction was 

computed by taking the ratio of prison receptions for a given month, 

and the average monthly convictions total. The results calculated for 

the months from January 1974 to December of 1976 are presented in 

Table 13. Also, Figure 12 shows a plot of the time series. 

When the data was analyzed, it was found to be non-seasonal and 
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Table 13. Monthly Probability of Imprisonment for Georgia 

Month 1974 1975 1976 

Jan. .221 .295 .260 
Feb. . 361 .263 .246 
Mar. .365 .304 .326 
Apr. .348 .326 .325 
May .366 .326 .290 
June .366 .277 .276 
July .283 .301 .252 

August .343 .269 .269 
Sept. .373 .299 .237 

Oct. .401 .379 .281 
Nov. .341 .229 .217 
Dec. .348 .329 .326 

non-stationary. Inspection of Figure 12 provides a quick verification 

of this analysis. Diagnosis of the time series through a statistical 

identification routine suggested the (011)(0,0,0) Box-Jenkins forecast­

ing model as appropriate. 

The (001) (000) Box-Jenkins model proceeds using the following 

definitions: 

w t - i t ~ V i 1 = 2 3 6 

a = w + $_a t = 2 36 
t t I t 

Q t = V i " V t - i + a t = 2 3 6 

Q = Q - $,a , t = 37 
x t xt-l 1 t-1 



Figure 12. Probability of Imprisonment Time Series for Georgia 
(1974-1976) 
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•t-1 t = 37... 

where a^ = w^ = 0 

and, $^ is the iteratively estimated growth parameter found to equal 

.7706 for the probability of imprisonment given conviction time series. 

Figure 13 shows a plot of how the forecasted series will behave over 

time. 

When the model was simulated with the Box-Jenkins fit of Q 

imbedded in the simulation, the first 36 periods were characterized by 

constantly changing Q, and consequently, a constantly changing capacity 

constraint. The value of S was constant at 1.67 years. For periods 

beyond December 1976, the value of Q (and subsequently Q*) remains 

constant at .2751. Given our previous sensitivity studies of the 

systems, we would expect the optimization process to lean much more 

strongly toward Q, given the capacity constraint was tightened by 

about 10%. This was, in fact, what was observed as an initital policy 

of (.2751, 1.67 years), led to an optimal policy of (.7575, .61 years). 

Under the initial (.2751, 1.67) policy, about 20% of the savings 

in reported offenses due to sanctions was attributable to incapacita­

tion. When the optimal (.7575, .61) policy was in effect, only about 

7% of the impact of sanctions was due to incapacitation on average. 

Despite this, the (.7575,.61) policy was responsible for about a 7.7% 

rise in the overall impact of sanctions. This result suggested the 

possibility that the optimization of imprisonment policy was even more 

critical at the lower values of the capacity constraint. 



0.48 

Figure 13. Behavior of Forecasted Q Values 
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The main idea stemming from this experiment has been one 

stressing the importance of stability in judicial policy. Specifically, 

if the judicial system tends to oscillate over short periods producing 

a pendulum of justice-type effect, it can expect wide variation in the 

per dollar return of corrections allocations over time. In addition, 

the system should develop a dynamic (Q,S) policy synchronized with its 

schedule of expenditures in order to maintain uniform per dollar 

effectiveness over time. As we have demonstrated, this policy would 

tend to emphasize the imprisonment option with shorter sentences in 

lean years and the reverse in prosperous years. The ethics question 

of such a practice would, of course, be a moderating factor present 

in the system, but has not been treated in our analysis. 

5.4 Sensitivity Studies in the Q,S Policy Space 

In their analysis of the implications of alternative sentencing 

policies, Blumstein and Nagin [1976] emphasize the importance of the 

value of trade-offs implicit in formulating a Q,S policy. They view 

the debate over the volume of imprisonment as destined to be a stand­

off, given the clear demonstration of the existence of a stable im­

prisonment rate. This demonstration brought to light the major issue 

of their thesis, which was the problem of allocating a fixed prison 

resource, rather than deciding on absolute allocation level. 

Similar to Blumstein and Nagin, our model explores the implica­

tions of alternative imprisonment policies. In this section, the 

model estimates the crime-control potential of imprisonment deriving 

from a combination of deterrent and incapacitation effects, while 
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incorporating due process and resource constraints explicitly. In 

much the same manner as Blumstein and Nagin, we consider a homogeneous 

criminal population committing a single aggregate crime type. The 

last part of this section is a comparative analysis between the two 

models. 

In the period between 1960 and the first year analyzed by the 

model, the reported index crime rate in the United States rose by 157%. 

The rise of the reported index crime rate in the state of Georgia 

during this time was 173%. Although the trend in reported offenses 

may to some extent reflect a growth in reporting rates, there is no 

doubt that the actual crime rate has risen sharply. This section 

focuses on different strategies aimed at reversing, or at least 

moderating, this trend through the use of prison. Such an approach 

has attracted considerable attention in the last two or three years, 

given the failure of rehabilitative approaches, despite the fact that 

it is overtly punitive. 

The first step in investigating the impact of various forms of 

imprisonment policy is to identify those variables subject to direct 

manipulation. These, of course, are Q, the probability of imprisonment 

given conviction, and S, the average sentence length. The purpose of 

this analysis is then to evaluate the impact of incremental changes in 

Q and S relative to each other, in order to determine which of these 

is the more effective reducer of crime. This knowledge would enable 

the decision maker to design a policy resulting in the optimal utili­

zation of his scarce resource, namely, available man-years of imprison­

ment. In addition, such an analysis could provide insight for the 
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absolute level of allocation question by bringing to light the impli­

cations for incremental tightening or relaxation of the resource 

constraint. Specifically, we would like to determine if the expected 

rate of offenses behaves linearly or non-linearly with respect to Q 

and/or S, and at what level of the policy space will incremental 

changes in either variable be most effective. 

5.4.1 Design of a Factorial Experiment 

Since d t(Q,S) is monotonically decreasing in Q and S, then the 

crime rate, Z^, is also monotonically decreasing in Q and S, which is 

of course, consistent with the incapacitative and deterrent effects of 

the two sanction variables. As we have shown in the previous section, 

without other constraints, the optimum sanction would make Q and S 

large without bound. By imposing an upper limit on the average 

sentence length, we assume that sanctions beyond S^ are precluded. 

Similarly, constraining Q to be less than unity can reflect limitations 

on universal imprisonment of all convicted persons through practices 

like diversion of first offenders. Despite this, it is the resource 

limit on imprisonment which has proven to be the binding constraint 

for all practical calculations. 

Blumstein and Nagin [1976] have shown the imprisonment resource 

constraint to be operative in the form of a limit on the product of 

policy variables, Q and S. The computational results mentioned thus 

far, would suggest that the state of Georgia might better deter 

criminal activity by more frequent prison disposition of criminal 

cases with somewhat shorter sentences than is the current policy. 
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To explore this hypothesis more explicitly, a factorial 

experiment at three levels of Q and S is proposed. The dual purpose 

of this experiment was to determine the effect of the resource 

constraint and initial values of Q and S on the optimal solution. In 

other words, at what point does the effectiveness of Q tail off in 

favor of increasing S? Is the relation between and the policy, 

linear or nonlinear? And at what levels? 

Figure 14 illustrates the nine starting points at which obser­

vations were taken in the Q,S policy space. 

S 

1 2 3 4 5 6 7 

.1 © © © 

.2 Q = .306 Q = .306 Q = .306 

-} 
S = 1.67 S = 3.35 S = 6.69 

0 0 0 
.4 

rr ® . © © 
. 5 Q = .612 Q = .612 Q = .612 
.6 S = 1.67 S = 3.35 S = 6.69 

0 0 0 -» 
oo © © © 

Q = .918 Q = .918 Q = .918 
. 9 S = 1.67 S = 3.35 S = 6.69 
.0 0 0 0 

Figure 14. Starting Points for the Factorial Experiment 

For each of the points appearing in the figure, Table 14 gives the 

initial values, the optimal values, and the changes in Q and S, as 



122 

Table 14. Optimization Results for the Nine Starting Points 

Solution (Q,S) 

Point Starting Optimal Aq AS % Savings 

A (.306, 1.67) (. 461, 1.11) .155 -.56 2.278% 

B (.306, 3.35) (. 620, 1.65) .314 -1.70 4.579% 

C (.306, 6.69) (. 850, 2.41) .544 -4.28 7.792% 

D (.612, 1.67) (. 620, 1.65) .008 -.02 0.061% 

E (.612, 3.35) (. 850, 2.41) .238 -.94 1.756% 

F (.612, 6.69) (. 997, 4.11) .385 -2.58 2.831% 

G (.918, 1.67) (. 863, 1.78) -.005 .11 0 

H (.918, 3.35) (. 995, 3.09) .077 -.24 0.381% 

I (.918, 6.69) (. 995, 6.17) .077 -.52 0.381% 
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well as the percentage savings due to optimization of sanction levels. 

Although comparison in terms of absolute numbers of crimes is not 

meaningful due to different spending levels, the percentage change 

reflects the benefit from reallocating prison resources given the 

absolute level of resource allocation and political disposition 

implicit in the starting policy. 

5.4.2 Analysis of Experimental Results 

Table 14 would indicate that once a policy provides for a 

probability of imprisonment that equals or exceeds about .918, 

optimization for the given capacity constraint will not result in a 

significant gain unless the average sentence length is below about 

1.67 years. This can be verified if we examine the small percentage 

savings experienced when the initial value of Q is about .918 for 

three levels of S, and the similarly small savings when the starting 

policy is (.612 , 1.67). In addition, when Q is small, about .306, 

the optimization process tends to increase in Q for all three levels 

of S, doing so in a linear fashion in Q and a negative linear fashion 

in S. This suggests that Q is clearly dominating at the lower levels 

of the capacity constraint. Finally, Table 14 suggests an analogous 

result for Q in the range of about .612, although both the increase 

in Q and the decrease in S are found to be less dramatic. Figures 15 

and 16 are plots of the percentage increases in Q and S, suggested by 

the optimization procedure against the capacity constraint for the 

three levels of Q and S. Tables 15 and 16 illustrate the procedure 

from which the plots are derived. 
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Table 15. Percentage Changes in Q 

Low Level of Q = .306 

Prison Capacity Constraint (QS) Percentage Change in Q (A% Q) 

.511 50.6% 
1.02 103.0% 
2.06 178.0% 

Medium Level of Q = .612 

Prison Capacity Constraint (QS) Percentage Change in Q (A% Q) 

1.02 1.3% 
2.05 39.0% 
3.08 63.0% 

High Level of Q = .918 

Prison Capacity Constraint (QS) Percentage Change in Q (A% Q) 

1.53 -6.0% 
3.07 8.4% 
6.14 8.4% 
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Table 16. Percentage Changes in S 

Low Level of S = 1.67 

Prison Capacity Constraint (QS) Percentage Change in S (A% S) 

.511 -33.0% 
1.02 -64.0% 
1.53 6.5% 

Medium Level of S = 3.35 

Prison Capacity Constraint (QS) Percentage Change in S (A% S) 

1.02 -51.0% 
2.05 -28.0% 
3.08 7.1% 

High Level of S = 6.69 

Prison Capacity Constraint (QS) Percentage Change in S (A% S) 

2.05 -64.0% 
4.1 -39.0% 
6.14 -8.4% 



126 

Figure 16. Percentage Change Plot of S 
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The patterns for Q illustrate a dramatic change in the slope 

for the three different levels as we observed previously. The patterns 

for S indicate a bowl shape whose vertex angle decreases as the levels 

of S increase. The percentage change readings for the low, medium 

and high levels of S have a maximum range of about 45% occuring near 

the prisons capacity constraint of 1.53. The maximum range for 

percentage change readings in Q also occurs near the prisons constraint 

reading of 1.53, but is about 190%. This would indicate that the 

optimization process is far more sensitive to Q up to a capacity 

constraint of about 3.0, after which Q is maintained at its maximum 

level and S is monitonically increased. The degree of "sharpness" in 

the bowl of S reflects the relative proportion of its contribution to 

the capacity constraint, which is diverted to Q in the optimal 

solution. Naturally, as S becomes larger, a smaller proportion of S 

is required to establish Q at its optimum level, and thus, the vertex 

angle of the bowl decreases. 

5.4.3 Analysis for a Linear System 

Intuitively, the apparent sensitivity of the optimization 

process to Q,would suggest to the casual observer that the level of 

Q is probably more of an indication of the potential impact of 

optimization on the crime rate, than the level of S. One way to 

ascertain this, would be to perform a complete analysis of variance 

on our experimental data and compare F-ratio values. 

This, of course, would require the assumption of a linear 

system of the (percentage savings through optimization) response in 
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Q and S. Figures 17 and .18 illustrate a graphical test of the linear 

assumption. Off hand, a linear fit does not appear unreasonable in 

Q or S. We, therefore, assume the linear statistical model: 

where k is some unknown constant. At this point, it should be noted 

that this analysis should be viewed with a high degree of skepticism. 

This is mainly due to the fact that the experiment has only nine 

widely scattered observations. Clearly, any strongly nonlinear 

behavior of the response in the region between our observations would 

invalidate the analysis. 

Table 17 is a convenient summary of the experimental data in 

analysis of variance format. 

single observation per cell, 3x3 factorial experiment. The symbol y 

is used to denote the percentage savings through optimization in the 

table. Using this formulation, we can proceed to calculate the 

appropriate sums of squares as follows. 

Q. + S. + (QS). . + E 

Table 18 illustrates the prelimary analysis of variance for the 

SS = [(14.649) 2 + (5.197) 2 + (0.762) 2]/3 - (20.59) 2 

9 

= (71.531 + 9.003 + .1935) - 47.105 = 33.622 

SS g = [(2.88) 2 + (6.716) 2 + (11.004) 2]/3 - (20.59) 2 

9 

= (2.7648 + 15.035 + 40.363) - 47.105 = 11.057 
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Q = 0.306 

percentage 
savings 

7.0 

percentage 
savings 

Q = 0.612 
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Q = 0.918 

7.0 

7.0 

Figure 18. Graphical Test of the Linear Assumption in 
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Table 17. Summary of Responses in ANOVA Format 
for Varying Resource Constraint Values 

Probability of Average Sentence Length (S) 
Imprisonment given 
Conviction (Q) 1.67 3.35 6.69 

0.306 2.278% 4.579% 7.792% 

0.612 0.610% 1.756% 2.831% 

0.918 0.00% 0.381% 0.381% 

Table 18. Preliminary ANOVA 

Source of Variation SS df MS E(MS ) 

(Q) 
3 . 2 

i = i 3 

2 
y- • 2 

M S Q (Q) 
3 . 2 

i = i 3 9 2 
M S Q + 2 

(S) 
3 .2 
y y-3 

2 
y- • 2 

M S S 
2 , Z 6 i 2 

(S) 
S 3 i=l 9 

2 
M S S CT + 2 

Capacity Constraint, QS 
(Interaction) (sub .) 4 M S R e s . 

2 EE(crP) . , 2 

a 1 j 

4 

Total 
2 2 
Z S y 

i=l j=l • 

2_y.. 
3 9 

8 
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S S T = 98.632307 - 47.105 = 51.5273 

In order to test for QS significance, the sum of squares for 

non-additivity is computed as: 

SS, 

3 3 y . A 
£ z y , / y , y , , - y - ( s s n + s s c + 2 _ ) 

= Li=i ,j=i 9(SS Q • SS S) (Tukey, 1961) 

(2040.1158 - 1889.8326) z
 = 

3345.8261 

Consequently, we can estimate the experimental error sum of squares by: 

SS^ = S S n - SS„ = 6.848307 - 6.7502 = .0981 F Residual N 

Table 19 summarizes the final ANOVA results. 
Table 19. Final ANOVA 

Source of Variation SS df MS F o 

Probability of 
Imprisonment 33.622 2 16.811 514.1 

Average 
Sentence Length 11.057 2 5.5285 169.1 

Non-additivity 
(Prison Capacity) 6.7502 1 6.7502 206.4 

Error .0981 3 .0327 

Total 51.5273 8 

SS D . , n = 51.5273 - 33.622 - 11.057 = 6.848307. 
Residual 
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As expected, the resulting analysis for the linear system 

suggests the level of Q as highly significant in determining the 

potential for optimization. Although the level of S is also signifi­

cant, the F-ratio of S is only one-third as large as that for Q. In 

addition, the level of the capacity constraint was also found to be 

significant in the region analyzed, the F-ratio of which was about 

20% greater than the F-ratio of S. 

The indication most apparent from this experiment Is that any 

marginal increase in the prisons capacity constraint for the state of 

Georgia will be reflected exclusively through a rise in Q, if optimal 

policies are pursued. This is certain for any expansion of the 

corrections resource, up to a constraint corresponding to 1.01. The 

current corrections resource in Georgia corresponds a constraint value 

of .511. (This result is apparent from Table 15.) Since it is not 

likely that this state (or any other) is willing to expand its 

corrections resources almost: two-fold in the near future, changes in 

policy should focus exclusively on Q. Indeed, the interval of Q, in 

which the relative benefit in the expected rate of crime is greatest, 

is between 0 and .612 (see Figure 15). This would indicate that the 

greatest hope for controlling crime in our society today, lies in 

the deterrent impact of using the imprisonment option more frequently 

in the cases of convicted offenders. If this is truly the case, it 

would be intuitive to think that Q is responsible for the majority of 

crime prevention due to sanctions already under current policy. In 

fact, we show this to be the case in a later section. 

The most general conclusion stemming from this analysis, is 
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one that is strikingly consistent with most research in the field from 

recent years. That is, it is the certainty of punishment as opposed 

to its severity that most effectively deters offenders from committing 

crimes. Whether this stems from patterns in the average criminal's 

utility structure or the onerous nature of prison life is not the 

issue in this research. The implications, however, for the control of 

social deviance could hardly be more explicit. 

5.4.4 Experimentation Within Plausible Limits of Current Corrections 
Capacity 

Since the results obtained from the previous sections pertained 

to sanction levels which due to their magnitude are mainly of theoret­

ical interest, a series of experimental runs at "affordable" levels of 

corrections expenditure were performed. In this experiment, 50 simula­

tions of the system, each at a different level of the capacity 

constraint, ranging from 0.1002 to .9185, were performed. The current 

level of the corrections capacity constraint in the state of Georgia 

is about .511. Since previous analysis has been suggestive of the 

system being most highly sensitive to Q, sharp rises in the value of 

this variable were anticipated as the capacity constraint was relaxed. 

The approach of this experiment was to fix S at its current 

level of 1.67 years and vary the starting value of Q, from 106 to 155, 

by increments of .01. Figure 19 is a plot of the 50 values of QS and 

Q*, obtained by the experiment. 

It is equivalent to a reverse image (except for scale) of the 

S vs. S* plot, since the only way possible to increase Q in the final 

solution would be to decrease S. As a result, this plot provides a 
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clear picture of the behavior in the system when corrections expendi-

tues are varied in regions of practical interest. 

We can see from Figure 19 that optimal strategy for corrections 

allocation around the current level of expenditure would indeed focus 

primarily on Q as previous analysis has suggested. In fact, the 

situation would not be likely to change until the system were at a 

corrections capacity level of about .75. This means that all increases 

in corrections allocation, up to a level corresponding to 50% more 

spending than the current tab, should be directed toward increasing 

the certainty of imprisonment for convicted offenders, that is, if 

we are to follow a policy associated with maximum "per dollar" crime 

prevention. Specifically, the system would increase Q from .306 to 

.45, with S held constant at 1.67 before any increase in the average 

sentence length would be considered. 

From Figure 19, we can also observe the behavior of the system 

in regions corresponding to extremely depressed spending. Here the 

slope of the plot is significantly steeper again in favor of increasing 

Q. In addition, four significant "break points" in the line corre­

sponding to capacity constraint values of; .125, .210, .75 and .801, 

can be observed. These points are of particular interest, since they 

represent values where the nature of optimization seems to shift its 

emphasis. For example, if S is held constant at 1.67 years and Q is 

between .000 and .075, the optimization appears almost indifferent 

toward Q or S until the value of Q reaches about .08 (S is still held 

constant at 1.67 years). At this time, Q would be extremely dominating. 



136 

0.6 I -

0.45 h 

0.3 h 

0.15 [-

I I i L , 

0-0 0.25 0.50 0.75 1.0 

Figure 19. Q* versus (QS) 
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This situation prevails until Q reaches about .14, where the optimiza­

tion still favors Q at a less extreme rate until it reaches about .45, 

at which time S becomes the dominating variable. The emphasis again 

shifts toward Q at about Q = .49, where the system again appears 

nearly indifferent. Clearly, the system is highly nonlinear through 

most of the observable QS policy space. 

5.4.5 Comparison of Results Between Models 

In order to gain greater insight into the validity of our 

interpretations from the model, it is of interest to compare its 

output with other models designed to perform similar analysis. 

Moreover, we would expect results between analogous models to yield 

like results for like inputs within the same order of magnitude. A 

logical candidate model for this comparison was presented by Blumstein 

and Nagin [1976] in an article entitled, "On the Optimum Use of 

Incarceration for Crime Control." Their formulation provided a 

fundamental building block in the structure of our own model. 

Fortunately, in their thesis, Blumstein and Nagin provide some 

limiting case computational experience, which serves to articulate 

the behavior of their model for stated inputs. The structure of our 

own model is such that the inputs could be identically reproduced and 

outputs compared with minimal modification of their interpretations. 

5.4.5.1 An Illustrative Example. In their modeling of the 

criminal justice system on a national level, Blumstein and Nagin 

estimate X for the year of 1970 to be five crimes per year per 

offender. This estimate corresponds to a X of .4167 crimes per 

month in our own model, which although not available for that year, 
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is reasonably close to X values generated within our model for other 

years. They also estimate the 1970 national (QS) policy at .25, 2.6, 

which is within an order of magnitude of our current estimate of Q,S 

policy for the state of Georgia, which is .306, 1.67. These similari­

ties greatly enhance the possibilities for comparison between the two 

models, at least in terms of input parameters. 

In their subsequent, analysis to determine optimal policy, 

Blumstein and Nagin propose the optimal policies of 1, 2.6 and 1, 1. 

The latter of which was considered feasible and would presumably 

reduce the crime rate by about 25%. The 1, 2.6 policy was anticipated 

to reduce the crime rate by 50%, but was in violation of the prisons 

capacity constraint. 

Our approach to a comparison was then to simulate our own 

model, inputing .25, 2.6 for starting values of Q,S, switching to the 

1, 1 and 1, 2.6 policies, and observing their respective savings in 

percentage of crimes averted. The results are compiled in Table 20. 

Table 20. Model Comparison Summary 

Q.S Policy Percent Savings Via Optimization 

Starting Optimal Blumstein, Nagin Deutsch, Malmborg 

(.25, 2.6) 

(.25, 2.6) (1, 2.6) 

(1, 1) ^ > 25% 

^ 50% 

18.6% 

42.3% 

5.4.5.2 Example Discussion. The results provided in Table 20 
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reveal the strong similarities between the two models and emphasizes 

their common formulation of the deterrent mechansim. Whatever differ­

ence is present relates directly to the different approaches for 

estimating X (as described in previous chapters) and our own model's 

more complex development for estimating the criminal population. 

5.4.6 Development of a Q-S Nomogram 

Figure 20 is a chart for determining optimal levels of sanction 

variables Q and S for incremental percentage changes in corrections 

expenditures. The acceptable range for this chart is from -80% to +80%. 

That is, for aggregate changes in corrections expenditure between -80% 

and +80%, Figure 20 can be used to determine the most efficient QS 

policy. To use the figure, determine what the shift in corrections 

allocation will be, then enter the figure on the curve corresponding 

to this percentage. The point at which the curve intersects another 

curve gives the optimal values of Q and S. For example, if it were 

decided that the state of Georgia would boost its corrections 

allocation by 20%, the optimal levels of Q and S from Figure 20 would 

be .35 and 1.54 years, respectively. 

5.5 Separating Incapacitation from General Deterrence 

One question which the Blumstein, Nagin model did not address 

involved the determination of the relative impacts of incapacitation 

and general deterrence for a given imprisonment policy. This distinc­

tion has potentially important implications for the effectiveness of 

a policy. On the one hand, deterrence tries to reduce crime by posing 

a threat of punishment, thereby discouraging criminality, on the other 
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Figure 20. Q* - S* Nomogram for Incremental Changes in 
Corrections Expenditure 
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hand, incapacitation reduces crime by isolating the criminal from the 

rest of society through imprisonment. 

Deterrence operates to reduce criminality,in those not directly 

imprisoned, by posing a threat of punishment for any crimes they might 

commit. It may operate by reducing the number of new entries into 

criminal activity, or by shortening the careers or lowering the crime 

rates of criminals not yet punished. 

We also know that imprisonment can reduce crime through incapa­

citation. This isolates imprisoned individuals from the remainder of 

society, preventing them from committing crimes. In our model, the 

magnitude of the incapacitative effect is directly related to Â _, the 

rate at which offenders commit crimes while free in period t. In the 

following section, we will use this relation to evaluate the incapaci­

tative effect inherent in the imprisonment policy of the state of 

Georgia over a 24 year period. 

5.5.1 Formulation of the Incapacitative Effect 

Since A is a measure of the free criminal's propensity to 

commit offenses in period t, if we knew the number of periods (n) an 

offender was incarcerated, the product, A^n, would estimate the poten­

tial savings realized by imprisonment of that individual for n periods. 

It follows that if we knew the number of individuals who were incarcer­

ated in each period, r̂ _, we. would estimate the number of crimes averted 

in the future through incapacitation from prevailing policy in period 

k as: 
k+n 
I A. r. . , i l . 

i=k 
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Similarly, the number of crimes in period k which could have occured, 

but were avoided through the incapacitative effect stemming from 

prevailing policy in previous periods, can be determined by recursive­

ly accumulating the portion of the incapacitative effect in those 

previous periods, which was operative in period k. This relation is 

derived as follows: 

k-1 
E X. r. {k = n, n+1, n+2 °°} 

j=k-n J 3 

Obviously, this quantity is not estimable for those periods, k, in 

which k < n, where k-n forms the limit on historical data. 

5.5.2 Simulation of the Incapacitative Effect 

Given the proposed formulation of the previous section, the 

only information not previously input or estimated by the model is 

r t- To determine r we consult the annual publication of the Georgia 

State Office of Offender Rehabilitation. This publication provides 

monthly figures of releases and admissions of inmates to and from 

Georgia state institutions, From this, we were able to obtain prison 

receptions figures for the state from January of 1974 to December of 

1976. These figures are presented in Table 21. Subsequent statisti­

cal analysis of the data determined the appropriate modeling mechanism 

to the series mean. The reader can qualitatively verify this hypothe­

sis by examining Figure 21, which is a plot of the time series. The 

mean of the series was 643.03 prisoners per month. 

The results of the 24 year simulation were entirely consistent 

with other results from the model. That is, they seemed to suggest 





144 

Table 21. Monthly Georgia State Prison Receptions 

Month 1974 1975 1976 

Jan. 589 651 596 
Feb. 526 614 553 
Mar. 608 814 711 
Apr. 652 811 641 
May 650 726 646 
June 553 689 544 
July 621 631 566 
Aug. 537 672 643 
Sept. 597 593 619 

Oct. 757 703 714 
Nov. 457 543 804 
Dec. 657 814 650 

that the incapacitative effect of the current sanction level was 

significant, yet clearly a subordinate effect to general deterrence 

which comprised the residual 100-S 1 percent. Where S 1 is the percent­

age of crimes averted through overall sanctions, Q and S, specifically, 

due to incapacitation. The results of the simulation for seven 

periods of interest are presented in Table 22. Inspection of the 

table will reveal that the March 1975 period has been replaced in the 

tables by September 1975. This is due to the fact that an average 

sentence length of 1.67 years required a recursion of 21 monthly 

periods before the first incapacitative effect could be accumulated. 

Consequently, the first period for which the percentage of crimes due 

to incapacitation could be estimated was September 1975, 21 months 
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following the start of the simulation. 

The figures which appear in Table 22 suggest incapacitation 

to entail about 20% of the effect of sanctions under current policy. 

This result is roughly consistent with the result of our linear 

analysis of variance, which suggested about 25% of the effect of 

sanctions is attributable to incapacitation. This result is 

encouraging, since these analyses drew from completely independent 

sources within the model and subsequently serves to enhance our 

confidence in the model's formulation of the criminal justice system. 

5.5.3 The Effect of Optimization 

Given that previous analysis for our model implied that optimi­

zation of QS policy within the stated resource constraint would tend 

to emphasize the certainty as opposed to the severity of punishment, 

we would expect the incapacitative effect under optimal policy to 

decrease in favor of the deterrent effect. In fact, when the model 

was simulated over a 24 year period under optimal policy, there was 

an average effect due to operating under the more Q intensive policy 

and about a 2.3% savings realized in total expected offenses. Table 

23 presents the results for seven periods of interest. 

Although the results in Table 23 would seem obvious, given we 

shifted from a (.306, 1.67) to a (.4605, 1.11) policy, they do serve 

to illuminate the incremental effect of a shift in Q and S, within 

the resource constraint. In addition, the results provide another 

intuitive validation of the correctness of our simulation of the 

analytical model. 
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Table 22. Percentage of Overall Effect of Sanctions Q and S Due 
to Incapacitation for Policy: Q = .306, S = 1.67 Years 

Period Incapacitative Effect Deterrent Effect X 
t 

d 
t 

September 1974 20.93% 79.07% .2814 1.15% 
September 1979 21.01% 78.99% .3717 1.38% 
January 1983 20.81% 79.19% .4361 1.42% 
May 1987 20.34% 79.66% .5330 1.43% 
July 1990 20.23% 79.77% .5954 1.39% 
November 1994 19.83% 80.17% .6724 1.41% 
December 1997 19.60% 80.40% .7326 1.38% 

Table 23. Percentage of Overall Effect of Sanctions Q and S Due 
to Incapacitation for Policy: Q* = .4605, S* = 1.11 Years 

Period Incapacitative Effect Deterrent Effect \ ^t 

September 1975 15.43% 84.57% .2814 1.15% 
September 1979 13.74% 86.26% .3717 1.38% 
January 1983 13.41% 86.59% .4361 1.42% 
May 1987 13.14% 86.86% .5330 1.43% 
July 1990 13.05% 86.95% .5954 1.39% 
November 1994 12.79% 87.21% .6724 1.41% 
December 1997 12.83% 87.17% .7326 1.38% 
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5.5.4 Comparison Between Models 

Attempting to compare the results of this section with analogous 

results from other models is hampered by a lack of analytical research 

in this area. In their analysis of the effect of the (1, 2.6) policy, 

Blumstein and Nagin state that they believe the switch from (.25, 2.6) 

policy resulted in a savings in reported offenses of about 50%. The 

analogous figure from our analysis was about 42%. Of the 50% of crimes 

averted, Blumstein and Nagin speculated in their thesis that about 30% 

of that savings was due to incapacitation and about 70% due to deter­

rence. 

In fact, we performed the precise determination of this 

percentage. This was done by determining the percentage of crimes 

averted due to incapacitation under the (.25, 2.6) policy and the 

(1, 2.6) policy. For the former, incapacitation was responsible for 

about 31% of the entire savings due to sanctions. For the latter, 

the savings attributable to incapacitation, on average, was about 33%, 

an increase of 2%. Consequently, the proportion of the increase in 

total savings was about 5%. This estimate was in sharp contrast to 

the estimate offered by Blumstein and Nagin, who believed this 

figure would be near 30%. Part of the discrepancy, of course, is 

attributable to the fact that their analysis was on a national level 

and we performed the experiment for the state of Georgia only. Table 

24 presents a sample summary of the results for the experiments. The 

first month for which this result was available was August 1976, 32 

months following the start of the simulation. 
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Table 24. Percent of Savings Due to Incapacitation 

Period Policy (Q = .25, S = 2.6) Policy (Q = 1, S = 2.6) 

August 1976 31.98% 37.69% 
September 1979 31.85% 33.44% 
January 1983 30.88% 35.10% 
May 1987 30.00% 31.96% 
July 1990 30.14% 31.31% 
November 1994 30.12% 31.99% 
December 1997 30.06% 31.17% 

5.6 Introduction to the Comparison Procedure 

The purpose of this section is to demonstrate the application 

of the model to data bases originated in states other than Georgia. 

Specifically, analysis is presented for the states of Missouri and 

Texas, with comparisons offered. Within this section, it is shown 

how judicial policies differ greatly between geographical areas, and 

consequently, the implications for policy improvement may not be the 

same from state to state. The comparison proceeds by first discussing 

the database for each state and ultimately discussing the results 

obtained from the model using each individual data base. 

5.6.1 Input Requirements 

If we recall, the data required to execute the model for any 

individual state consists of 36 monthly estimates of the following 

quantities: 

a. Total reported offenses. 
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b. Total state institution inmate population totals. 

c. Total state institution admissions total. 

d. Average sentence length prevailing in each month. 

e. Probability of imprisonment prevailing in each month. 

Fortunately, we were able to develop complete data bases for Missouri 

and Texas, with the aid of the appropriate law enforcement and correc­

tions agencies of those states. In the following sections, each of 

these data bases is discussed individually and in relation to each 

other. 

5.6.2 Total Offenses for Missouri 

In order to obtain monthly figures of total reported offenses 

in the state of Missouri (for the period from January 1974 until 

December 1976), a procedure analogous to that used in developing 

similar data for the state of Georgia was employed. In this case, 

the monthly behavior of total reported offenses for the city of 

St. Louis was imparted to the state's annual total, in order to 

obtain the monthly state totals. The results of this calculation 

are presented in Table 25. 

From Table 25, it can be seen that the mean value of 19658 for 

the Missouri total offenses time series is significantly larger than 

the mean value of 16449, which is the analogous result in the Georgia 

data. The population totals of Georgia and Missouri are approximately 

4.95 and 4.70 million, respectively, suggesting the per capita rate of 

crime to be greater in Missouri than Georgia. Figure 22 illustrates 

the behavior of the Missouri series. The non-stationary nature of the 
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Table 25. Total Reported Offenses in Missouri 

Month 1974 1975 1976 

Jan. 16079 21038 19658 
Feb, 16952 20155 20285 
Mar. 16689 21396 20403 
Apr. 17026 20145 20370 
May 17293 20228 19987 
June 17997 22171 20356 

July 20697 23881 21557 

Aug, 22336 23575 22951 
Sept. 21330 21883 19675 
Oct. 21973 22467 19697 
Nov. 19444 19185 17735 
Dec. 20908 20972 17940 

offenses series was analyzed as a (0,1,1) ( 0 , 1 , 1 ) ^ empirical stochas­

tic model with iterative estimation of the parameters, resulting in the 

values: 0 ^ = 0.399, Q ^ = 0.694. The model was then run with the 

preceding imbedded as the Z forecasting mechanism. 

5.6.3 Total Reported Offenses in Texas 

In obtaining monthly figures of total reported offenses for 

Texas, the standard procedure was implemented. For the state of Texas, 

monthly crime rates from the city of Dallas, Texas were used to develop 

the total offenses time series for that state. The results of the 

calculations pertaining to the months from January 1974 until December 

1976 appear in Table 26. 

As would be expected, the mean of the above series exceeds the 
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Table 26. Total Reported Offenses in Texas 

Month 1974 1975 1976 

Jan. 43644 54740 61108 
Feb. 40056 46038 53471 
Mar. 44796 51702 55301 
Apr. 44268 51114 55389 
May- 47233 54674 55395 
June 27730 55037 58820 
July 51929 61979 63585 

Aug. 54453 60302 61586 
Sept. 48296 56189 56102 

Oct. 51992 56332 55543 
Nov. 50626 53272 51889 
Dec. 51809 60309 15150 

analogous values for Missouri and Georgia by an order of magnitude. 

This relates to the fact that the population of Texas is considerably 

larger (about 12.7 million) than that of either Missouri or Georgia. 

The Texas series was identified as a (0,1,1) ( 0 , 1 , 1 ) ^ m°del with 

9 1 = .320, 9 1 2 = .288. Figure 22 shows the behavior of the Texas 

series. 

5.6.4 Missouri Prison Populations 

The second requirement in executing the model for the state of 

Missouri was 36 monthly observations of state inmate population totals 

corresponding to the monthly total reported offenses for that state. 

These observations are presented in Table 26. 
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Interestingly, the mean of the series is slightly over one-third of 

the analogous series for the state of Georgia, despite the fact that 

the populations of the two states differ only slightly. This result 

provides considerable insight into the judicial practices of state 

courts as discussed in a subsequent section. 

Statistical analysis of the Missouri prison populations time 

series suggested the process to be appropriately modeled by the 

non-stationary (0,1,0) Box-Jenkins forecasting model. A graphical 

representation of the series is presented in Figure 23, whose forecasts 

are generated by the form: 

\ - zt-i + V 

5.6.5 Texas Prison Populations 

Monthly observations of Texas state inmate population totals, 

utilized to execute the model for that state, are presented in Table 

28. Once again, these values pertain to the months from January 1974 

until December 1976. The ratio of the mean of the Texas prison popu­

lation time series to the state population was found to be intermediate 
I 

with respect to the analogous ratios for Georgia and Missouri. That 

is, the per capita prison population was found to be highest in Georgia 

followed by Texas and Missouri, respectively. The significance of 

this relationship, in terms of the results from the model, is discussed 

in a later section. 

Statistical analysis of the Texas prison time series identified 

the process to be non-stationary and required a second difference of 
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Table 27. Missouri Prison Populations 

Month 1974 1975 1976 

Jan. 3514 3867 4513 
Feb. 3531 3948 4553 
Mar. 3547 4126 4565 
Apr. 3535 4141 4627 
May 3598 4193 4702 
June 3640 4201 4732 
July 3690 3985 4753 
Aug. 3698 4120 4744 
Sept. 3709 4138 4784 
Oct. 3720 4242 4795 
Nov. 3735 4300 4759 
Dec. 3754 4368 4809 
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Table 28. Texas Prison Populations 

Month 1974 1975 1976 

Jan. 171.29 17059 19099 
Feb. 17210 17365 19383 
Mar. 17251 17501 19857 
Apr. 17340 17652 20032 
May 17144 17544 20281 
June 17121 17721 20616 
July 17014 17912 20748 
Aug. 16956 18151 20976 
Sept. 16995 18357 20572 
Oct. 17059 18516 20641 
Nov. 16985 18724 20568 
Dec. 16833 16833 20717 
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the form (0,2,1). Consequently, the process can be written as: 

Z = Z n + a = 9 a n . t t-2 t-1 t-2 

Graphical illustration of the series behavior is presented in 

Figure 23. 

5.6.6 Missouri Prison Admissions 

Monthly observations of prison admissions in Missouri state 

prisons during the period from January 1974 until December 1976 were 

consistent with their corresponding prison population observations. 

Consistent in the sense that Missouri had the lowest per capita rate 

of prison receptions and releases of the three states analyzed, and 

the lowest per capita prison population. The 36 month Missouri 

prison admissions time series is presented in Table 29. Analysis of 

the series was suggestive of the non-stationary (0,1,1) Box-Jenkins 

forecasting model to be imbedded into the model which can be written 

in the form: 

Z t " Z
t - 1 + a t + 9 a t - l 

where the value of 9 was estimated to be 0.7489. The behavior in the 

time series can be observed in Figure 24. The mean of the series was 

found to be, 181, over the thirty-six historical observations. 

5.6.7 Texas Prison Admissions 

The 36 monthly state prison admission series for the state of 

Texas demonstrated the lowest per capita prison reception rate of the 

three states for which the analysis was performed. The series is 
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Table 29. Missouri Prison Admissions 

Month 1974 1975 1976 

Jan. 121 173 196 
Feb. 140 171 187 
Mar. 134 251 254 
Apr. 199 214 188 
May 147 172 200 
June 165 201 247 
July 184 192 176 
Aug. 135 160 177 
Sept. 145 146 151 
Oct. 186 195 201 
Nov. 144 221 177 
Dec. 146 246 175 

similar to the analogous series for the state of Missouri, in that 

it represents a non-stationary (0,1,1) process. The 0 parameter for 

the Texas data, however, was estimated to be 0.6889. The data is 

presented in Table 30 with a graphical illustration presented in 

Figure 24. The per capita state prison admission rate in Texas was 

considerably closer to the same figure for the state of Missouri than 

for Georgia. This means that the monthly prison turnover is much 

higher in Georgia than in either Missouri or Texas, indicating that 

Georgia prisons process more individuals (per capita) in a given time 

period than the other two states. The implication of this for judicial 

policy is considered in a subsequent section. 
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Table 30. Texas Prison Admissions 

Month 1974 1975 1976 

Jan. 621 815 751 
Feb. 624 810 761 
Mar. 608 748 945 
Apr. 679 814 842 
May 605 721 720 
June 506 740 850 
July 579 689 748 
Aug. 647 715 848 
Sept. 614 760 773 
Oct. 697 791 823 
Nov. 670 778 782 
Dec. 520 832 816 

5.6.8 Averaj; ie Sentence Lengths in Missouri 

To obtain the 36 month time series of average sentence length 

observations for the state of Missouri, the procedure is to divide 

the prison population time series by the prison admission time series. 

This was done in order to obtain the time series presented in Table 31. 

Clearly, the average sentence length in the state of Missouri is many 

times greater than the corresponding average sentence length figures 

from the state of Georgia, Specifically, the mean of the Missouri 

series is 23.51 years, as opposed to 1.67 years for the state of 

Georgia. 

This result implies that judicial policy in the state of 

Missouri is oriented largely toward the severity of punishment. As 
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Table 31. Average Sentence Lengths for Missouri 

Month 1974 1975 1976 

Jan. 29.04 22.35 23.03 
Feb. 25.22 23.09 24.35 
Mar. 26.47 16.44 17.97 
Apr. 17.76 19.35 24.61 
May 24.48 24.38 23.51 
June 22.06 20.90 19.16 
July 20.05 20.76 27.01 
Aug. 27.39 25.75 26.80 
Sept. 25.58 28.34 31.68 
Oct. 20.00 21.75 23.86 
Nov. 25.94 19.46 26.89 
Dec. 25.71 17.76 27.48 

a result, we would expect that individuals admitted would remain 

incarcerated for many periods, thus contributing to the extremely 

low turnover which was observed. In fact, later analysis of imprison­

ment probabilities for the state of Missouri will show that judicial 

behavior in that state imposes prison sentences only infrequently, yet 

tends to delegate severe sentences when the imprisonment option is 

exercised. In our analysis for the state of Georgia on the other hand, 

it was found that more frequent prison disposition of criminal cases 

was practiced, yet sentences tended to be of shorter duration. 

The time series appearing in Table 31 was identified as a 

stationary (0,0,0) process, best characterized by its mean values. 

As a result, a constant value of S = 23.51 was used in simulating the 
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model for the Missouri data base. 

5.6.9 Average Sentence Lengths for Texas 

Like Missouri, the time series of average sentence lengths for 

the state of Texas was an order of magnitude larger than the Georgia 

series. The average of the Texas series equalling 25.62 years was 

the largest among the three states considered in the analysis. The 

series was obtained using procedures identical to those used in 

Georgia and Missouri, and is listed in Table 32. In addition, a 

graphical illustration of the 36 historical observations is presented 

in Figure 25. 

As was the case for Missouri, judicial policy in the state of 

Texas is orientated strongly toward the severity of punishment, as 

opposed to its certainty. Indeed we will find this to be the case 

when imprisonment probabilities in the state of Texas are considered. 

This conclusion is reinforced by the low turnover rates observed for 

Texas prisons, suggesting fewer sentences of greater duration. 

Analysis of the Texas average sentence length series suggested 

the stationary (0,0,0) model, leading us to use a constant value of 

S = 25.62 in simulating for the Texas data base. 

5.6.10 Probability of Imprisonment for Missouri 

In determining the second component of judicial policy for the 

state of Missouri, (i.e., Q ) , it was found that the series represented 

a departure from the imprisonment probabilities obtained for Georgia 

in two respects. First, the magnitude of monthly imprisonment 

probabilities for Georgia was nearly ten times the magnitude of those 
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Table 32. Average Sentence Lengths for Texas 

Month 1974 1975 1976 

Jan. 27.58 20.93 25.43 
Feb. 27.58 21.44 25.47 
Mar. 28.43 23.40 21.01 
Apr. 25.54 21.69 23.79 
May 28.34 24.33 28.17 
June 33.84 23.95 24.25 
July 29.39 26.00 27.79 
Aug. 26.21 25.39 24.74 
Sept. 27.68 24.15 26.61 
Oct. 24.47 23.41 25.00 
Nov. 25.35 24.07 26.30 
Dec. 32.27 22.76 25.39 

for Missouri. This result provides convincing evidence that judicial 

behavior can differ greatly from state to state, especially in terms 

of sentencing practices. In fact, these results suggest that the 

character of judicial policy in Missouri has an almost opposite 

emphasis from judicial policy in Georgia. Namely, while the severity 

of punishment is emphasized in Missouri, it is the certainty of pun­

ishment which is predominant in the judicial priorities of Georgia. 

The other respect in which the imprisonment probabilities 

series of Missouri and Georgia differ is the actual generating process 

underlying the time series. While it was shown in section 5.3 that 

the time series for Georgia imprisonment probabilities was a non-
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stationary (0,1,1) process, the analogous series for Missouri was a 

stationary (0,0,0) process, suggesting the mean as a forecasting 

mechanism. Since the mean of the Missouri imprisonment probability 

series presented in Table 33 was .04504, this constant value of Q was 

used in simulating for the Missouri data base. A graphical illustra­

tion of the series is presented in Figure 26. 

One possible interpretation of the stationary imprisonment 

probabilities for the state of Missouri is that judicial policy has 

remained relatively stagnant over the past several years. That is, 

the current policy has remained unchanged from past years, while 

in Georgia a more dynamic judicial process prevails. Alternatively, 

the prisons capacity in that state may be crippled by its obligation 

to fufill numerous sentences of long duration imposed in past years. 

In any case, our analysis could be helpful in evaluating the Missouri 

policies as possibly suggesting ways for improving the situation. 

5.6.11 Probability of Imprisonment in Texas 

The time series of imprisonment probabilities from the state 

of Texas was computed similarly for the months of January 1974 until 

December 1976, and is presented in Table 34. The mean value of these 

36 observations was found to be (0.06855), of the same order of 

magnitude as the series of imprisonment probabilities obtained for the 

state of Missouri. The Texas series was also found to resemble the 

Missouri result, in that the underlying process was a stationary (0,0,0) 

and best forecasted by its mean value. A graphical illustration of 
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Table 33. Imprisonment Probabilities in Missouri 

Month 1974 1975 1976 

Jan. .03763 .04112 .04985 
Feb. .04129 .04242 .04609 
Mar. .04015 .05866 .06225 
Apr. .05844 .05311 .04615 
May .04250 .04252 .05003 
June .04584 .04533 .06067 
July ' .04445 .04020 .04082 
Aug. .03022 .03393 .03856 
Sept. .03399 .03336 .03837 
Oct. .04232 .04340 .05102 
Nov. .03703 .05760 .04490 
Dec. .03491 .05865 .04877 
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Table 34. Imprisonment Probabilities in Texas 

Month 1974 1975 1976 

Jan. .071.14 .07444 .05145 
Feb. .07789 .08797 .07116 
Mar. .06786 .07234 .08544 
Apr. .07669 .07963 .07601 
May .06404 .06594 .06497 
June .05301 .06723 .07225 
July .05575 .05558 .05882 
Aug. .05941 .05928 .06885 
Sept. .06357 .06763 .06889 
Oct. .06703 .07022 .07409 
Nov. .06617 .07302 .07535 
Dec. .05018 .06898 .07535 
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the series is presented in Figure 26. 

Overall, the imprisonment probability results for Texas were 

very similar to the analogous Missouri results. This suggests that 

judicial practices in these states are quite similar and in sharp 

contrast to the situation existing in Georgia. In the next section, 

the ramifications of these results are explored in greater depth by 

simulating the model for the Texas and Missouri data bases. 

5.6.12 Discussion of Corrections Capacity in Texas and Missouri 

At this point, it is worth discussing one counter-intuitive 

condition which exists within the input data of our model. That is, 

if we examine closely, it is apparent that while Georgia may have the 

highest "per capita prison population," it also has the lowest prisons 

capacity constraint, i.e., QS = 0.511, (while QS = 1.05 for Missouri 

and QS = 1.76 for Texas). This is the lowest capacity of the three 

states considered in the analysis. Although this does not appear to 

make sense immediately, it actually reflects the high cost of long 

term incarceration. This stems from the fact that individuals who 

receive very long sentences tend to be severe deviants, requiring 

expensive high security facilities designed strictly for corrections. 

On the other hand, offenders receiving very short sentences tend to 

impose lower security requirements costing far less per unit time of 

incarceration. As a result, it is possible for one state to expend 

less in detaining a large number of low risk offenders, than it is for 

another state to detain a much smaller number of severe deviants. 



170 

5.6.13 Results of Model Simulation for the Texas and Missouri Data 
Bases 

To explore for trends in the analysis for Missouri and Texas, 

similar to those which were predicted by the model to evolve in 

Georgia, analogous results for the aforementioned states were calcula­

ted and examined. Specifically, the average monthly number of offenses 

per criminal, the prison populations and the criminal populations were 

explored for Missouri and Texas over the 25 year horizon. 

5.6.13.1 Results for ^t. In this analysis, it was found that 

the behavior of A in Missouri was expected to behave in a manner 

similar to Â_ for Georgia. On the other hand, A for Texas was found 

to grow only slightly. This result can be explained by the slow 

growth behavior of the prison population forecasting model for Missouri, 

and the near stationary behavior of the prison populations in Georgia. 

This behavior of the prison populations is in contrast to the behavior 

of crime rates which were, predicted to rise sharply in both Georgia 

and Missouri. During this same period, Texas prison populations are 

expected to grow considerably along with the crime rate, thereby, 

moderating the growth of Â _. In all three cases, the proportion of 

the criminal population which remains at large, ^^/^t^t' e x P e c t e c * 

to remain nearly stable. Tables 35 and 36 present sample results for 

A t and ^^/C^+F^, respectively, for each of the three states. 

5.6.13.2 Deterrent Effects in Texas and Missouri. In order to 

illustrate the impact on the prevailing judicial policy in Georgia, 

Missouri and Texas, clear of any factors relating to the size and 

population of the individual states, it is appropriate to examine their 
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Table 35. t For Five Sample Periods 

Period Georgia Missouri Texas 

March .2938 .2568 .2813 
January .4361 .3293 .3063 
May .5330 .3238 .3117 
July .5954 .4231 .3340 
November .6724 .5643 .4062 

Table 36 
C 

. ct + P t
 F o r F l v e Sample Periods 

Period Georgia Missouri Texas 

March .8330 .8231 .8403 
January .8340 .8307 .8486 
May .8340 .8258 .8605 
July .8380 .8283 .8585 
November .8350 .8285 .8486 

deterrent effects. This Is because the deterrent effect represents 

a proportion of the population in each state and as such, is dimension-

less. The deterrent effects for five periods of interest during the 

24 year simulation are presented in Table 37 for each of the three 

states. 

The results in Table 37 suggest that expenditures for corrections 

in Texas, ultimately produces the smallest deterrent effect of the 

three states. The most apparent reason behind this result is that 
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Table 37. Deterrent Effects For Five Sample Periods 

Period Georgia Missouri Texas 

March 1975 1.32% 1.12% 1.09% 
January 1983 1.42% 1.11% 1.07% 
May 1987 1.43% 1.31% 1.16% 
July 1990 1.39% 1.13% 1.19% 
November 1994 1.42% 1.20% 1.13% 

Texas also allocates the largest resource in terms of its corrections 

capacity constraint and therefore, would expect to receive a higher 

return. This reasoning also extends to Missouri, which bankrolls the 

second largest corrections system, followed by Georgia which allocates 

the smallest resource to obtain the smallest deterrent impact. This 

analysis, of course, says nothing about the per dollar efficiency of 

the corrections allocation within each state, which is addressed in a 

subsequent section. 

5.6.13.3 Comparison of the Effect of Optimization. The most 

astounding contrast between the three states existed within the opti­

mization process. Table 38 is a summary of the resulting optimal 

judicial policy for each period for each state. Bear in mind that 

this result is strictly for constant input values of decision variables 

Q and S, and as such, the results apply for every monthly period 

within the 25 year horizon. 

Checking back to section 5.4 will show the results for Texas 

and Missouri to be totally consistent with sensitivity studies 



173 

Table 38. Summary of the Optimization Process 
for Decision Variables Q and S 

Georgia Texas Missouri 

prevailing Q .30606 .0686 .0450 

prevailing S 1.11 yrs. 25.62 yrs. 23.51 yrs. 

Q* .4605 .6753 .6024 

S* 1.67 yrs. 2.60 yrs. 1.76 yrs. 

AO +.15 +.61 +.56 

AS -.56 yrs. -23.02 yrs. -21.75 yrs. 

performed for the Georgia data base. That is, for relaxation of the 

Georgia capacity constraint corresponding roughly to the existing 

Missouri and Texas capacity constraints, the optimal policy is found 

to be very close to the same form. This would lead us to conclude 

that despite differences in the nature of corrections resource alloca­

tion between states, the social mechanisms underlying the deterrent 

effect are essentially the same. Consequently, the prescription for 

judicial policy should also be roughly consistent. Given the present 

magnitude of this allocation, a more efficient strategy for controlling 

crime within existing corrections capacity is to insure a higher level 

of imprisonment probability with shorter sentences, i.e., increase the 

flow rate of individuals within prison system without increasing 

capacity. 
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5.6.13.4 Comparison of Savings Through Optimization. To 

further illustrate the significance of potential improvement through 

policy adjustment, Table 39 illustrates the number of crimes saved in 

each of the states for five sample periods during the simulation, and 

the corresponding percentage savings. Clearly, the potential improve­

ment in crime control for the state of Georgia is the lowest, due to 

the fact that Georgia maintains the lowest corrections capacity of 

the three states. Also, Georgia's prevailing judicial policy is 

closest to the theoretically correct policy, further narrowing the 

margin for improvement. 

Table 39. Crime Saving Percentages 

Period Georgia 
crimes saved% 

Missouri 
crimes saved% 

Texas 
crimes saved% 

March 1975 360...2.28% 4372...43% 11875...33% 
January 1983 590...2.28% 5606...43% 13056...33% 
May 1987 744...2.28% 6152...43% 15123...33% 
July 1990 825...2.28% 7720...43% 16617...33% 
November 1994 939...2.28% 9561...43% 18121...33% 

The most important result from Table 39 is that the states of 

Missouri and Texas stand to realize a substantial improvement in the 

efficiency of their corrections system without allocating additional 

funds. The model suggests that these two states can upgrade their 

crime control effectiveness by redistributing the dollars they are now 

using for long term incarceration and maintenance of high security 
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institutions. Texas and Missouri represent prime examples of the 

predominance of the certainty of punishment as opposed to its severity 

within the feasible region of spending. 

5.6.13.5 Separating Incapacitation from Deterrence. One 

additional result obtained from the model relates to the separation of 

deterrence and incapacitation. Table 40 is a summary of the average 

distribution of the crime control effect stemming from general deter­

rence and incapacitation under current and optimal policies for each 

of the three states involved in the analysis. From the table, it can 

be seen that the redistribution of these measures is far more pro­

nounced in Texas and Missouri than in Georgia. This stems from the 

nature of the shift in policy brought about by the optimization 

process. It is also evidence of the relatively small impact of inca­

pacitation as compared with deterrence under optimal conditions, once 

again emphasizing that it is effectively the threat of punishment, as 

opposed to the actual punishment, which is most correlated with control­

ling crime. As a final note, it should be mentioned that the averages 

appearing in Table 40 represent a much smaller sample under current 

policy for Missouri. This is because the recursive accumulation pro­

cedure for calculating the incapacitative effect in that state required 

a much larger start-up period than for Georgia, due to high average 

sentence lengths under prevailing policy. Consequently, this quantity 

could be determined for only a small number of periods. 

The incapacitative effect in the state of Texas under prevailing 

policy could not be obtained, due to the fact that the average sentence 
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Table 40. Distribution of Crime Control Effect 

Georgia Missouri Texas 
optimal prevailing opt. prev. opt. prev. 
policy policy pol. pol. pol. pol. 

Incapacitation: 13% 24% 8% 93% 6% 98% (est.] 

Gen. Deterrence: 87% 76% 92% 7% 94% 2% (est.] 

length under prevailing policy 26.52 years exceeded the duration of 

the simulation. As a result, the value in Table 40 was estimated by 

assuming the unit percentage relation between incapacitative effect 

and sentence length in Texas was the same for Missouri. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The conclusions reached from this research can be divided into 

three categories; (1) those relating to policy implications within a 

constrained resource situation, (2) those relating to policy variation 

amongst geographical areas, and (3) those relating to sensitivity 

studies investigating assumptions underlying the models execution. 

The following sections treat each category of conclusions individually 

and describes their relationship. 

Section 6.2 presents recommendations for furthering the 

research in this thesis and other related areas of potential interest. 

Recommendations for furthering the resarch embody the areas of 

transient analysis, higher resolution of crime type, forecast revision 

with changing sentencing levels and the potential of integrative model­

ing techniques extended to other areas. 

6.1 Conclusions 

The results in section 5.6 indicate a similarity of results 

that is common to each data base for which analysis was provided. In 

all cases it was the certainty of punishment, as opposed to its 

severity, which exhibited the greatest crime control potential relative 

to the prevailing policy. 

In section 5.4, it was shown that this characteristic endures 



178 

until the system capacity constraint is relaxed to three times its 

presently feasible limit. Since it is not realistic to expect that 

society's allocation for criminal justice will triple anytime soon, 

we can conclude that the evidence stemming from this analysis strongly 

supports the current popular notion favoring the dominance in the 

certainty of punishment. The implication of this for judicial policy 

is that court authorities exercise the imprisonment option for criminal 

offenses with greater frequency and milder sentences. The impact of 

such a generalized policy change will be to increase turnover rates in 

corrections facilities x^ithout affecting population sizes at any given 

instant. Although this would inevitably incur some increase in admini­

strative costs, the results of section 5.4 suggest the resulting 

increases in per dollar crime control effectiveness to be more than 

offsetting. 

In addition to determining the relative importance of the 

certainty of punishment, the model is able to estimate the effective­

ness of a judicial policy in terms of general deterrence and incapaci­

tation. The results stemming from these experiments served to illus­

trate the decreased incapacitative effect and increased general 

deterrent effect characteristic of optimal policies. This notion is 

consistent with the remainder of results, again reinforcing the 

importance of the certainty of punishment as opposed to its severity. 

The results in section 5.6 indicate extreme variation in 

judicial practice between states. Specifically, judicial policies in 

Missouri and Texas were an order of magnitude different from judicial 

policy in Georgia. In addition, it was determined that the state of 
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Georgia spends less money per capita than either Texas or Missouri 

for corrections which have comparable per capita crime control 

potential. 

Further evidence of this is present in state prison turnover 

levels presented for each state in Chapter V. Essentially, these 

results serve to support the conclusions of the preceding section 

and illuminate the inconsistent pattern existing in sentencing 

practices between states. Finally, in states where prevailing 

judicial policy is highly sub-optimal, the potential returns for 

optimization of the current policy are the greatest in terms of 

crime control effectiveness. 

Two assumptions,for which no previous investigation is offered 

in the literature, were involved in specifying the values of beta and 

epsilon. In the analysis offered in section 5.1, the sensitivity of 

our model to the values of beta and epsilon was explored. In choosing 

a value of beta, it was found that the form of the optimal solution 

was not affected. Overstating the value of beta, however, would tend 

to understate the importance of the optimzation. Specifying a value 

of epsilon did tend to alter the form of the optimal solution, as well 

as having an affect on the impact of optimization. In Chapter V, it 

was shown that the impact of epsilon could be explained in terms of 

the prevailing Q and S values. Specifically, it was shown that for 

states characterized by large average sentence lengths, the optimiza­

tion process would tend to favor the value of S more than otherwise. 

The magnitude of this affect was shown to be insufficient to discount 
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the overall dominance of Q when analysis was performed for the states 

of Texas and Missouri. 

6.2 Recommendations 

In developing descriptions of transient behavior for the model, 

closed form results were obtained only within the populations submodel. 

A significant extension of this research would embody the derivation 

of a closed form transient expression for the basic equation. This 

undertaking would involve the development of a time oriented formula­

tion of lambda. This extension would enable the analyst to derive 

results for the model without the aid and expense of computer simula­

tion. 

Besides providing only partial transient analysis, the research 

offers no computational experience for investigating the validity of 

the six month iterative cycle for determining flow variables. A worth­

while effort would be to explore the impact of alternative iterative 

cycle lengths and provide a comparison. In addition, a different 

approach to the determination of flow variables may be suggested. For 

example, a time series description approach for determining flow vari­

able values within Blumstein's Markov Chain description might prove 

more effective than the pattern search approach employed in our 

research. 

Aside from the Criminal Justice System, the integrative 

modeling technique presented in this thesis may be appropriate to 

model building efforts in many unrelated areas. In most situations 

where a system can be separated into distinct subdivisions, the 
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potential for integrative modeling exists. Usually, integrative 

modeling requires only the specification of the logical interrelation 

between each subsystem and the development of the appropriate mathemat­

ical characterization of that relationship. For this reason, the 

technique has considerable potential for extensions in many disciplines. 

One approach frequently taken in other criminal justice modeling 

is to resolve crime rates into specific categories. This has been 

used largely in time series modeling of crime rates. A meaningful 

extension to our analysis would be to adapt the model to a higher 

resolution of crime type. This would circumvent the limiting assump­

tion of a single criminal type committing a single crime type. For 

example, the model might be utilized in modeling only the occurrence 

of burglary or armed robbery and consider the criminal population as 

consisting of only burglars or armed robbers. 

A final extension to the model, and perhaps the most difficult 

to implement, would involve the rebuilding of the forecasting mechanisms 

within the model with each policy change. By this, we mean that each 

time an optimal policy is formulated, the expected number of crimes 

which result under that optimal policy is used as the estimate of 

total offenses in the next: period. This would lead to an optimization 

which is truly unique for each period and dependent exclusively on 

the events of previous periods. This extension would greatly enhance 

the dynamic character of the model and make forecasting the system 

more meaningful. 
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APPENDIX 

The appendix lists the fortran code of the model used to generate 

the results in chapter V and some example output. The input to the pro­

gram is as follows: 

1st card: 36 monthly observations of prevailing imprisonment 
probabilities 

2nd card: 36 monthly observations of total reported offenses 

3rd card: 36 monthly observation of the population of the area 
of interest 

4th card: 36 monthly observations of the state of prison 
population 

5th card: 36 monthly observations of the prevailing average 
sentence length 

A brief description of the routines is as follows: 

1. MAIN. This program is the main-line routine which calls all 
sub sequent sub rout ines. 

2. FRCST. This subroutine forecasts the values of Q, S and the 
prison population which are used throughout the simulation. 

3. SLIP. This subroutine determines the proportion of the crime 
control effect which is attributable to incapacitation. 

4. PLOTTER. This subroutine is the main-line routine which 
calls the subroutines used for plotting total offenses and 
deterrent effect time series. 

5. RANGE. This subroutine compiles the limits of a data set 
which is to be plotted. 

6. INITIAL. This subroutine laods the data into the appropriate 
array for plotting. 

7. SCALE. This subroutine scales the raw data prior to printing 
the plots. 
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8. GRAF. This subroutine orders the data within the plotting 
array. 

9. OUTPUT. This subroutine actually prints the plot of total 
offenses or deterrent effects. 

10. OPT. This subroutine solves for the coefficient values 
given the deterrent effect, and the necessary assumptions. 

11. PTRN. This subroutine executes the pattern search step 
in determining optimal flow and policy variables. 

12. FOBJ. This subroutine evaluates the sum of squares 
objective function corresponding to the current flow 
variable solution. 

13. LIMS. This subroutine determines the feasibility of 
the current flow variable solution. 

14. OBJ. This subroutine evaluates the current Q, S 
solution. 

15. LIMS1. This subroutine determines the feasibility of the 
current Q, S solution. 

16. CONTOU. This subroutine evaluates deterrent effect solu­
tions for a range of Q and S values and is used to plot 
contour lines of objective function values in the Q and S 
policy space. 
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PROGRAM MAIN (INPUT.OUTPUT,TAPE1.T*PE2.TAPE3,TAPE(., 
TAPE5.TAPE6.TAP 

COMMON DGRID(%2,72),IDATA(2,72>•ISCALE(%2)•DET(300)• 
OPTS(300),OPT 

• SSQ(300),PMAT(9),ESTPR(6,50)»ESTCR(6,50), 
PRISC300),GAM0(30 

• 6AMK300 ) t6AM2(300) 
COMMON/BLOCKD/LO 
G0MM0N/BL0CK/STA11,STA22»STA33»NN.QCOUNT»TPOP,LLCON 
COMMON/BLOCKA/TPO(30G),QQQ(30Q),C 
COMMON/BLOCKB/SSS(30 0).DET1(300).XAM(300)»XAMI(300)» 
ZDIF(300) 

COMMON/BLOCKC/INUM.NFOR 
COMMON/BLOCKE/Z(30O)«ZB(300) 
DIMENSION RATC30C)«RATA(300) 
DIMENSION ZP(30O),YRAVG(3DD)«TERMS(30O) 
DIMENSION X(3) »STEP( 3) .Bl ( 3) «B2(3),B3(3),B%(3) 
DIMENSION CAVG(300),CINT(3CO),TER(30 0> 
DIMENSION AC300),W(300),HP(30O> 
DIMENSION DIFS(300).DIFQ(300).DEP(300) 
DIMENSION DETB(3 00).AXX(62).AXY(62) 
DIMENSION FN(60,60).CLEV(7),IBUF(512) 
DIMENSION Tl (300),T2(300).T3(300),T% (300),T5(300). 
T6(300) 

DIMENSION ZPOPT(300) .YRMINK300) .TERMSK300) 
DIMENSION OE (300)»OE1(300)»PERC(300) .PERCK300) 
DIMENSION CAPAC(30D).CAPA1(300) 
INTEGER XNAME«YNAHE 
INUM-36 
IVEARS1973 
KrEAR=IYEAR 
RECEP-6%3 V02778 
REAO(%«f)*(QQQ(I>«I-1«36) 
102 READ(7,*)»(Z(KA),KA=1,INUM) 
READ(8**)«(TPO(I),1=1,36) 
TH1=0,2695 
TH12-0.1530 
A(1)=B,0 
MP(l)-0*0 
M(l)-0«0 
DO 106 I-2«INUM 
M(I) =Z(I)fZ(I«?D 
*P(I)=W(I> 
A (I)=HP(I)+TH1»A(1-1) 
10 6 CONTINUE 
NF0R=252 
Z(INUN*l)=ZCINUM)*ZfINUM*ll)»Z(INUM»12)*THl»A(INUM-l) 
Z(INUM+D=Z(INUM*1)-TH12*A(INUM-12)*TH1*TH12*A(INUN-
12) 

DO 108 J=2,12 
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00 35* Z (INUM+J) = Z (INUM-KI-1) *Z t INUM-KI-12) -Z CINUM+J-13) 
• T H 1 2 » A ( I N U M - 1 2 * J ) 

0 0 3 6 * 10 8 CONTINUE 
0 0 3 7 * I F ( N F 0 R , L E . 1 2 ) G 0 TO 109 
0 0 3 8 * Z C X N U N « 1 3 ) = Z ( I N U M + 1 2 ) + Z ( I N U M + 1 ) * Z ( I N U M ) + 

» TH12*TH1»A(INUM) 
00 39* ];C0UNT=INUM>H4 
0040* OO 110 K = I C O U N T , 3 0 0 
0 0 4 1 * 2'. ik) = Z U - 1 ) * Z ( K - 1 2 ) - Z ( K - 1 3 ) 
0 0 4 2 * 110 CONTINUE 
0 0 4 3 * 109 CONTINUE 
0 0 4 6 * IEXAM=1 
0 0 4 6 * I W O N = I N U M + N F O R 
0 0 4 7 * I F ( I E X A M . E Q . l ) G O TO 112 
0 0 4 8 * PRINT 113 
0 0 4 9 * 113 FORMAT(*THE ORIGINAL Z OATA MAS*) 
0 0 5 D * PRINT 1 1 4 . ( Z ( I J ) . I J = 1 V I N U M ) 
0 0 5 1 * 1 1 4 F O R M A T ( / 4 F 1 0 . 1 ) 
0 0 5 2 * LDUMslNUM*l 
0053* PRINT 115 
0 0 5 4 * 115 FORMAT(*THE SUBSEQUENT F O R E C A S T S ARE*) 
0 0 5 5 * PRINT 116T(Z(JI).JI=LOUM,IWON) 
0 0 5 6 * 116 FOR M A T ( / 4 F 1 0 . 1 ) 
0 0 5 7 * 112 CON T I N U E 
0 0 5 8 * L P R I M = I W 0 N / 1 2 
0 0 5 9 * PRINT 1 1 7 , L P R I M 
0 0 6 0 * 117 FORMATC*THE OATA COVERS.»I4*TYEARS*) 
0 0 6 D * NPRIS-36 
0 0 6 0 * R E A 0 ( 2 T * ) . ( P R I S ( K K K ) . K K K = l . N P R I S ) 
0 0 6 0 * CALL FRCST 
0 0 6 1 * HCOUNT-0 
0 0 6 2 * SUMsf 
0 0 6 3 * OO 118 L=1.LPRIM 
0 0 6 3 * SUM=0 
0 0 6 4 * OO 119 L L = 1 . 1 2 
0 0 6 5 * MASS=Z(MCOUNT«-LL) 
00 6 6 * SJM=SUM+MASS 
0 0 6 7 * I F ( L L « E Q , 1 2 ) Y R M E A N = ( S U M / 1 2 ) 
0 0 6 8 * I F ( L L « E G U 1 2 ) FIRST=Z( MCOUNT) 
0 0 6 9 * IF(LL.EGU12)LAST=Z(NC0UNT«-LL) 
00 7 1 * I F ( L L . E Q . 1 2 ) T E R M = ( ( L A S T - F I R S T ) / 1 2 * 
00 7 2 * 119 CONTINUE 
0 0 7 3 * Y R A V G ( L ) S Y R N E A N 
0 0 7 4 * T E R M S ( L ) S T E R M 
0 0 7 4 * M C 0 U N T * M C 0 U N T * 1 2 
0 0 7 5 * 118 CONTINUE 
0 0 7 6 * NCOUNT=0 
00 81* ZP ( 1 ) « Z C 1 ) 
0 0 8 1 * DO 54321 1 = 2 . 2 8 8 
80 8 1 * Z P ( I ) = Z ( I » 1 ) * M I ) - T M 1 * A ( I « 1 ) 
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54321 continue 
npris=36 
ia=0 
qcount=0 
ntims=(npris*nfor>/6 
staii=.ooi 
sta22=.d1 
STA33=.989 
139 continue 
do 141 nn=1,ntims 
IFfnn.ge.2ista11-estpr(6»nn) 
if(nn«GEo2)sta22=estcr(6.nn) 
sta33=1-sta11-sta22 
NV=3 
STEP(l)=6.045 
STEP(2)=0.0045 
step(3)=0.34 
Xfl) =0.05 
X(2) =0.od5 
X(3)=0.6 
nrd=8 
ipr=0 
llcon=0 
call ptrn(nv.x.step.nrd.ymax.b1.b2.b3.b4.ipr> 
f2=x<1) 
f3=x (2) 
f4=x<3) 
pnat(1)=.5 
phat(2)=(l«/3«)».5 
PHAT(3)=l./3. 
PMAT(4)=f2 
pmat(5)=1*f2*f4 
PHAT(6)=f4 
PHAT(7)=0.0 
PMAT(8)=f3 
pmat C9)=l-f3 
sta1=sta11 
STA2=sta22 
sta3=sta33 
do 142 n0n=1,6 
estpr(n0n,nn)=sta1*pmat(1)*sta2»pmat(4)*sta3»pmatC7) 
Xl=estpr(non*nn) 
x2=sta1*pmat(2)*sta2»pmat(5>*sta3»pmatc8) 
x3=sta1»pmat(3)*sta2»pmat(6)*sta3*pmat(9) 
sta1=x1 
sta2=x2 
sta3=x3 
142 continue 
SSQ(JBB)=ffi.b 
do 143 m0n=1»6 
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SS=(ESTPR(M0N,NN)»TP0(H0N*QC0UNT)-PRIS(M0N*QC0UNT)) 

SSQ(JBB)=SSQ(JBB)+SS 
l«t3 CONTINUE 
STA1=STA11 
STA2=STA22 
STA3=STA33 
OO 1%7 KUP=lt6 
ESTCR(KUP,NN)=STA1»PMAT(2)*STA2»PMAT(51 *STA3*PHAT(8) 
r2=ESTCR<KUP,NN) 
ri=STAl»PMATU)*STA2»PMATU)*STA3»PMAT(7) 
Y3=STA1»PMAT <3)*STA2»PMATC6)*STA3»PMAT<9) 
STA1=Y1 
STA2=Y2 
STA3=Y3 
1*7 CONTINUE 
151 CONTINUE 
QCOUNT=QC0UNT+6 
Iki. CONTINUE 
PRINT 155 
155 FORMAT('THE POPULATION ROUTINE IS COMPLETE*! 
LC-0 
OO 156 JLN-1,NTIMS 
DO 157 LIP=1,6 
RAT(LIP*LC) SESTCR(LIP»JLN)/(ESTCRCLIPtJLN)•ESTPR fLIP» 
JLN)) 

157 CONTINUE 
LC=LC*6 
156 CONTINUE 
NCO=0 
DO 158 LAM=lfNTIMS 
DO 159 JFK=1»6 
CINT (JFK+NCO)-ESTCR(JFKf LAM) 
159 CONTINUE 
NCO=NC0*6 
150 CONTINUE 
00 160 ,IT-1*NTIMS 
DO 161 IB=1,6 
AVER*CINTCIB»IT) 
SOS-SOS-t-AVER 
161 CONTINUE 
TERITIT) =S0S/6 
SOS-0.0 
160 CONTINUE 
10=0 
DO 162 IE=1,NTIMS 
DO 163 IC=1,6 
CAUG (IC+ID)=TER(IE) 
163 CONTINUE 
ID=ID*6 
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162 CONTINUE 
NOR=NPRIS«-NFOR 
OO 165 10=1,NOR 
RATA(I0) = ( (ZP(IO)/CAVG (10))/TPO(IO>) 
DET(I0)=((Z(I0)/TPO(I0))/(RATA(IO)*RAT(IOI)) 
165 CONTINUE 
LETE=Q 
PRINT*,"THE VECTOR OF MONTHLY DETERRENT EFFECTS" 
PRINT*,"FROM JANUARY,1974 UNTIL DECEMBER,1998" 
PRINT*,"IS READ FROM LEFT TO RIGHT" 
PRINT 4011,(DET(I),1=1*288) 
4011 FORMATC///3F20.12) 
PRINT 40189 
49189 FORMATf//////*PLOT OF THE TOTAL OFFENSES TIME 
SERIES*) 

PRINT*,"FROM JANUARY,1974 THROUGH OECEMBER,1976" 
IFILE=1 
00 1133 1=1,36 
1133 OET(I)=DET(I)*1000000. 
INU=36 
DO 175 IQ=1,INU 
IOATA(l,IQ)=Z(IQ) 
175 CONTINUE 
CALL PLOTTER(INU,IFILE) 
PRINT 41089 
41089 FORMAT(//////*PLOT OF DETERRENT EFFECT TIME 
SERIES*) 

PRINT*,"FROM JANUARY,1974 THROUGH OECEMBER,1976" 
00 913 10=1,INU 
I0ATA(1,IQ)=0ET(IQ) 
913 CONTINUE 
CALL PLOTTERfINU,IFILE) 
DO 1134 1=1,36 
1134 DET(I)=DET(I)/1000000* 
CALL OPT(IWON) 
00 1135 J=1,IH0N 
DIFS(J)=OPTS fJ)-SSS(J) 
OIFQ(J) =OPTQ(J)«*QQQ( J) 
1135 CONTINUE 
PRINT 1136 
1136 FORMAT(IX,*ACCORDING TO OUR MODEL,OPTIMIZATION*, 

•* OF POLICY VARIABLES GIVES THE FOLLOWING RESULTS*) 
PRINT 1137 
1137 FORMAT f////IX,*PERIOD PREVAILING AND 
OPTIMAL*, 

•* POLICY VARS. •) 
PRINT 1138 
1138 FORMAT(20X,»Q*,10X,»aSTAR*,10X,»S*,10X,»SSTAR*) 
PRINT 1139 
1139 FORMAT(70(•-*)) 
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NRE=(INUM*NF0R)/12 
LLLC-b 
00 11%3 I-ltNRE 
DO 11VI J-1,12 
T1(J*LLLC)=0PTQ(J*LLLC) 
T2U+LLLC) = SSS(J-*LLLC) 
T3(J*LLLC)=0PTS(J-*LLLC) 
T%(J*LLLC)=DIFQ(J*LLLC) 
T5CJ+LLLC) =DIFS(J«-LLLC) 
T6(JH-LLLC)=QQQ(J+LLLC) 
11%1 CONTINUE 
LLLC=LLLC«-12 
IVEAR=IYEAR*1 
1L%0 CONTINUE 
MONTH=S 
NI2*NRE*12 
00 5002 1=1,NI2 
MONTH=MONTH*l 
IF(MONTH«GT*12)MONTH=l 
J33=I/12-1/20000 
IYEAR=197%*J33 
IF(MONTH*ECU 12)IYEAR=IYEAR»1 
PRINT 5003,MONTH,IYEAR,T6(I),T1(I),T2(I),T3(I) 
50Q3 FORMAT(///IX,12•*/•,1%,2(10X,F5.%),2(5X,F9.2>> 
50C2 CONTINUE 
8007 CONTINUE 
00 11%% 1=1,IKON 
DETB(I) -GAMO (I) +GAM1 (I)*OPTQ (I) «-GAM2 (I)*0<>TQ (I) 
•OPTS(I) 

ZB(I)s(EXP(DETB(I)))/(H»EXP(DETB(I)>) 
DETB(I)=ZB(I) 
ZB(I)=DETB(I)*RATA(I)*RAT(I)*TPO(I) 
11%% CONTINUE 
DO 11%5 I=l,IWON 
ZDIFa)=Z(I)-ZB(I) 
11%5 CONTINUE 
PRINT 11%6 
11*6 FORMAT(1X,*SAVINGS IN REPORTED CRIMES PER 
PERIOD THRU*, 

•* OPTIMIZATION HERE AS FOLLOWS*) 
PRINT 11%7,(ZDIF(J),J=l,IWON) 
11*7 FORMAT(1X,6F10.I) 
DO 8001 1=1*288 
DEP(I)=ZDIF(I)/Z(I) 
8001 CONTINUE 
PRINT*,"THE RATIOS OF THE SAVINGS IN TOTAL OFFENSES 
FORECASTED" 

PRINT*,"t(STEMMING FROM OPTIMISATION),TO THE TOTAL 
OFFENSES" 

PRINT*,"FORECASTED FOR PERIOOS 1/75 ,TO, 12/98 BY 
THE MODEL" 
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PRINT*,"IS REAO ACROSS F R O H LEFT T O RIGHT" 
PRINT 6002,(OEP(I),1=1,300) 
6002 F0RMAT(6F6.5) 
KU=48 
D O 1173 J=l,60 
A X Y ( J ) = J * . 3 
1173 CONTINUE 
D O 1174 IJ=1,20 
A X X ( I J ) = I J * « 0 5 
1174 CONTINUE 
D O 1175 1(1=1,20 
O O 1176 JQ=1,60 
FM(IQ,JQ)=GAM0 ( K U ) *GAM1CKU)*AXX ( I Q ) 
F N ( I Q , J Q ) = F N ( I Q , J Q ) * G A M 2 ( K U ) * A X X ( X Q I * A X Y ( J Q ) 
F N ( I Q , J Q ) = ( E X P ( F N ( I Q , J Q ) ) / ( 1 + E X P ( F N ( I Q , J Q ) ) ) ) 
FN ( I Q , J Q ) =FN ( I Q , J Q ) 'RATA ( K U ) *RAT (ICU) * T P Q ( K U ) 
F N ( I Q , J Q ) = Z O I F ( K U ) / F N ( I Q , J Q ) 
1176 CONTINUE 
11L75 C O N T I N U E 
G O T O 1149 
PFcINT 1178 
11L78 FORMAT(*THE REGION NEAR THE OPTIMUM I S A S 
FOLLOWS FOR*) 

N E W = K U / 1 2 
K K Y R = K Y E A R * N E W 
M O N T = K U « ( 1 2 * N E W ) 
B B 1 = G A M 0 ( K U ) * G A M L ( K U ) * O P T Q ( K U ) 
B B 1 = B B 1 * G A N 2 ( K U ) * 0 P T Q ( K U ) * 0 P T S ( K U ) 
B B 1 = ( E X P ( B B 1 ) / ( 1 * E X P ( B B 1 ) ) ) 
B B 1 = B B 1 * R A T A ( K U ) * R A T ( K U ) * T P O ( K U ) 
A A 1 = ( E X P ( G A H 0 ( K U ) ) / ( 1 * E X P ( G A M 0 ( K U ) ) ) ) 
A A 1 = A A 1 * R A T A ( K U ) * R A T ( K U ) * T P O ( K U ) 
C C 1 = G A M 0 ( K U ) • G A M 1 ( K U ) * 7 * G A N 2 ( K U ) 
C C 1 = ( E X P ( C C 1 ) / ( 1 * E X P ( C C D ) ) 
C C 1 = C C 1 * R A T A ( K U ) * R A T ( K U ) * T P O ( K U ) 
0ELTAl=(BBl-AAl)/4 
0ELTA2=(CCl*>BBl)/4 
PRINT 1180,MONT,KKYR 
118G F0RMAT(1X,I2,*/*,I4///) 
P R I N T 1181,((FN(I,J),I=1,20),J=1,60) 
1161 FORMAT (10F10.6) 
1149 CONTINUE 
CALL PLOTS(IBUF*512,1,0) 
C A L L PLOTMXdOO.) 
NUM=6H H-H 
NCON=7 
CLEV(1)=.D5 
CLEV(2)=«02276 
CLEV(3)=«20 
CLEV(4)=.30 
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CLEV<5)=«*0 
CLEV(6)=.50 
CLEV<7)=.01000 
N)T=2G 
NV*60 
XHAME=6HQQQQQQ 
YMAME-6HSSSSSS 
HT=0.07 
CALL CONTOU(NUH,NCON,CLEV,FN,NX,NY.AXX.AXY,XNAME. 
YMAMETHT) 

CALL PLOT(0,0,999) 
MCOU1=0 
SU ML =0 •0 
00 190 L S1»LPRIM 
SUM1=0.0 
00 191 LL=1,12 
MASS1=Z9(MC0U1+LL) 
SUM1 SSUM1+MASS1 
IF (T_L.EQ.12)YRAVG1=(SUM1/12> 
IF(LL.EQ.12)FIRST1=ZB(MC0U1) 
IF(LL.EQ.12)IAST1=ZB(MC0U1+LL> 
IF(LL,EQ.12)TERM1=CCLAST1-FIRST1>/12> 
191 CONTINUE 
YRMINKL) =YRAVG1 
TERMSKL) STERM1 
MC0U1=MC0U1+12 
19C CONTINUE 
NCOUNSO 
A(1)=0 
ZP0PT(1)=ZB(1> 
00 *30 1=2,300 
A<I>=ZB(I>-ZB(I-1)«TH1»A<I-1> 
ZP0PT(I)=ZB(I-1)*A(I)-TH1»A(I-1> 
*3IJ CONTINUE 
00 195 1=1,288 
XAM(I)=(ZP(I>/CAVG(I)>/TPO(I> 
XAM1CI)=(ZP0PT(I)/CAVG(I1I/TP0(II 
CAPAC(I)=XAM(I)»RECEP 
CAPA1(I)=XAM1(I)»RECEP 
OE«I)S(CAPAC(I)/TPOCI))/CRATA(I)»RAT (I)) 
0E1[I>=(CAPA1(I)/TP0(I))/(RATA(I>»RAT(I>) 
PERC (I)=DE(I)/DET(I) 
PERC1(I)=0E1 (D/DETB (I) 
195 CONTINUE 
00 123*5 1=1,288 
PERC(I)=PERC(I)»100, 
123%5 CONTINUE 
00 1235* 1=1,288 
PERC1(I)=PERC1(I)*100 
1235* CONTINUE 

http://t_L.EQ.12
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0377« k 

0379* 
O400« » 

0401' 
0401« 
0402* 
0402« 
04C3« 
040<»' 1 

1 

04054 1 

D405« 1 

0406' 1 

04074 
040 64 
0409« 1 

0410* 1 

0411« 
041-4 
04174 
04174 
0417* k 

04174 k . 

04174 1 

04184 1 

04194 1 

0420' 1 

04214 k 

0 422« 
0423' 1 

0424* 

04254 
0426' 1 

0426* 1 

04274 
04264 

' 04294 

0430* 
04314 
04324 1 
0 4334 1 
0 434* i 043«.* 1 
0435* 1 

CALL SLIP 
END 
SUBROUTINE FRCST 
COMMON OGRIO (42.72)«IDATA(2,72),ISCALE(42)*OET(300 ) . 

OPTS(300).OPTQ(3C0», 
SSQ(30C),PMAT(9),ESTPR(6,50)«ESTCR(6,56), 
PRIS(300)•GAM0(300), 
GAM1(300)«GAM2(30D) 

COMMON/BLOCKA/TPO(300),QQQ(300),C 
COMMON/BLOCKB/SSS(300),0ET1(3QQ),XAM(30 0)f XAMI(300 ) , 
ZDIF(30Q) 

COMMON/BLOCKC/INUH.NFOR 
DIMENSION A(3M),H(300),WP(30B) 
DO 1 1=1.300 
TPO(I)=4900000*2200*(I) 
1 CONTINUE 
DO 2 1=1*300 
QQQ(I>=.3060 6 
SSS(I> =1.67 
2 CONTINUE 
TM1=.6279 
TM12=.2028 
A(l)=0.0 
H(1)=0.0 
HP(l)=0.O 
DOi 77 I=2»INUM 
W(I)=PRIS(I)-PRIS(I-1) 
WP(I)=W(I) 
A(I)=HP(I)*TH1*A(I»»1) 
77 CONTINUE 
PRIS(INUM+1)=PRIS(INUM)+PRIS(INUM-11)-PRIS(INUM-12)-
TH1»A(INUM-1) 

PRIS(INUM*1)=PRIS(INUM*l)rTH12*A(INUM-12)• 
TH1*TH12*A(INUM-12) 

00 3 1=2*12 
PRIS (INUM-t-I) =PRIS(INUM*I-1) 4-PRIS (INUM+I-12) -
PRIS(INUM*I«13> 

PRIS (INUM*I)=PRIS(INUM*I)»TH12*A(INUMrl2*D* 
TH12*TH1*A(INUM-13*I) 

3 CONTINUE 
IF(NF0R.LE.12)GO TO 66 
PRIS(INUM+13)=PRIS(INUM*12)•PRIS(INUM+1)-PRIS(INUM)• 
TH12*TH1*A(IN 

IFE=INUM*14 
DO 4 I=IFE*30O 
PRIS(I)=PRIS(I-1)*PRIS(I-12)-PRIS(I-13) 
4 CONTINUE 
66 CONTINUE 
GO TO 11 
DO 5 I=2,INUM 
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0*35* TH1 = .7706 
0*36* W(I)=QQQ(I)-QQQ(I-L) 
0*37* A(I)=W(I)«TH1*A(I-1) 
0*38* QQQ(I)*QQ.CHI-1)-TH1*A(I-1)«-A (I) 
0*38* 5 CONTINUE 
0*39* Q4CKINUM+L)=QQQ(INUM)•THL*A(INUM) 
0**0* IJP=INUM*2 
0 ^ 1 * OO 6 I=1JP,3S0 
0 W QQQ(I) =QQQ(I-1) 
0**3* 6 CONTINUE 
0**3* 11 CONTINUE 
0 *%** RETURN 
0**5* END 
0**8* SUBROUTINE SLIP 
0**9* COMMON DGRID(*2.72).IOATA(2,72)*ISCALE(*2)•OET(300)• 
0I.I»9*+ OPTS(300),O»TQ(300)T 
0**9** SSQ(300) *PMAT(9) ,ESTPR(6,50> ,ESTCR(6,5 0) , 
0**9** PRIS(30Q),GAMQ(300)• 
0i*k9** G A M K 3 0 0 ) ,GAM2(300) 
0*50* COMMON/BLOCKB/SSS(30 0) .DETK30 0) ,XAH (30 0) »XAM1 (300) . 

* ZDIFC300) 
0*50* COMMON/8LOCKE/ZC300)TZB(30G) 
0*50* OIMENSION N(300) »SSAVE (300) TSSAVLF30 0) • SSOI (300)« 

• PRS(300) 
0*50* OIMENSION PERCP(300),PER1P(3C0) 
0*50* RECEP=6*3.02778 
0*51* 00 1 1=1.288 
0*52* N«:I)=SSS(I)»12 
0*53* 1 CONTINUE 
0%5%* M=M(1)«-1 
0h55* 00 2 I=M,288 
0*56* AA[)O=0.0 
0*57* NF=N(I) 
0*58* DO 3 J=1,NF 
0*59* AOD=RECEP»XAM(I-J) 
0*60* AA0O=AOO*AAOO 
0*61* 3 CONTINUE 
0*62* SSAVE(I)=AADD 
0*63* 2 CONTINUE 
0*6** DO I» 1-1,288 
0*65* N(I)=0PTS(I)*12 
0*66* * CONTINUE 
0*67* MM=N«1)+1 
0*68* OO 5 I=MM,288 
0*69* AADD=C.0 
0*70* NF=N(I) 
0*71* DO 6 J=1,NF 
0*72* AOD=RECEP*XAML(IRJ) 
0*73* AADO-AOO^AAOO 
0*7** 6 CONTINUE 
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0<T75* S S A V K I ) =AADO 
0476* 5 CONTINUE 
0477* IF(MH*L£*M)KU=M 
0478* IF(M.LT.MM)KU=MM 
0479* DO 7 I=KU,288 
0480* SSDJI (I) =SSAV1(I)-SSAVE(I> 
Ok61* IF(SSOKI) .LE.0.0) GO TO 6 
0482* PRS(I)=SSOI(X)/ZOIF(I) 
0483* GO TO 9 
0484* 8 PRS(I)=0.0 
0485* 9 CONTINUE 
0 486* 7 CONTINUE 
0488* OO 13 I=KU,288 
0489* PERCP(I)=SSAVE(I)/Z(I)*10D. 
0490* PER1P=SSAV1(I)/ZB(I)*100« 
Q<»91* 13 CONTINUE 
0492* PRINT*,"STARTING WITH PERIOO" 
0492* PRINT*,KU 
0492* PRINT*,"AND ENOING WITH PERIOO 268, INCAPACITATION 

* WAS" 
0492* PRINT*,"RESPONSIBLE FOR THE FOLLOWING PERCENTAGES OF 

* CRIMES" 
0492* PRINT 14,(PERCP(I),I=KU,288) 
0492* 14 FORMAT(///6F11.3) 
0494* RETURN 
0495* ENID 
0500* SUBROUTINE PLOTTER(INU,IFILEJ 
0501* COMMON OGRIO(42,72),IOATA(2,72),ISCALE<42),OET(300), 

* OPTS(300),OPT 
0 50L* + SSQ(300),PMAT(9),ESTPR<6,50>,ESTCRF6,50), 

* PRIS(300),GAM0(30 
0501*+ GAM1(300),GAM2(300) 
0502* DATA IMIN/99999/,IMAX/-99999/ 
0704* CALL RANGE(IMIN,IMAX,INU,IFILE) 
0705* CALL INITIAL(INU) 
0706* CALL SCALE(IMIN,IMAX,IINCR,ILIM) 
0707* CALL GRAF(IMIN,INU,IFILE,IINCR) 
0706* CALL OUTPUT(INU,ILIM) 
0 70 9* RETURN 
0710* ENO 
9711* SUBROUTINE RANGE(IMIN,IMAX,INU,IFILE) 
0712* COMMON DGRID(42,72),IOATA(2,72),ISCALE(42),OET(300), 

* OPTS(300),OPT 
0 712*+ SSA(300),PMAT(9),ESTPR(6,50),ESTCR(6,50), 

* PRIS(300),GAM0(3O 
0712*+ GAM1(300),GAM2(300) 
0713* DO 180 1=1,IFILE 
0714* DO 180 J=1,INU 
0715* IF(IOATA(I,J)«LT«IMIN) IMIN=IOATA(I,J) 
0716* I F D D A T A D , J) .GT.IMAX) IMAX=IDATA(I, J) 
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ISO CONTINUE 
RETURN 
END 
SUBROUTINE INITIAL(INU) 
COMMON DGRID(%2,72),IOATA(2,72),ISCALE(V2>,OET(300)• 
QPTS(300),OPT 

• SSQ(300),PMAT(9),ESTPR(6,50),ESTCR(6,50), 
PRIS(300)TGAMO(30 

• GAMI(300)FGAM2(300) 
DO 101 I = L.*F2 
OO LAI j = i , i n u 

O G R I O D . J) =1H 
191 CONTINUE 
RETURN 
END 
SUBROUTINE SCALE(IMIN,IMAX,IINCR.IUM) 
COMMON 0GRID(*2,72),IDATA(2,72) , ISCALE (<»2) « OET (300 ) * 
OPTS(300),0PT 

• SSQ(300),PMAT(9),ESTPR(6,50).ESTCR(6.50)T 
PRIS(300)*GAM0(30 

• GAMK300 ) TGAM2(300) 
IINCR=(IMAX-ININ)/*1«-1 
ILIMS(IMAX-IMIN)/IINCR*2 
ISCALE(1)=IMIN 
00 100 I=2,ILIM 
ISCALE(I)=ISCALE(I-1)«-IINCR 
1.00 CONTINUE 
RETURN 
END 
SUBROUTINE GRAF(IMIN,INU,I FILE,IINCR) 
COMMON OGRID(%2.72).IDATA(2,72),ISCALE(*2),DET(300)• 
0PTS(3Q_)»OPT 

• SSQ(300),PMAT(9),ESTPR(6,50).ESTCR(6.50), 
PRIS(300)«GAM0(30 

• GAM1(300)TGAM2(300) 
DIMENSION 0ALPHA(2) 
DATA DALPHA/1HD.1HR/ 
DO 100 I-LTIFILE 
00 100 J=1,INU 
IPLOT=(IDATA (I,J)-IMIN)/IINCR«-1 
IF((IMIN*IINCR»(IPLOT-L))•LT«IOATA(I,J)) IPLOT=IPLOT* 
1 

IF(OGRID(IPLOTTJ)*NE«1H ) DGRID(IPLOT,J)=1H» 
IF [QGRIODPLOT. J) .EQ.1H ) OGRIODPLOTT J) =0ALPHA (I) 
100 CONTINUE 
RETURN 
END 
SUBROUTINE OUTPUT(INU,ILIM) 
COMMON OGRIO(*2T72),IDATA(2,72),ISCALE(*2).OET(300), 
CIPTS(300) TOPT 
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0752*+ SSQ<300>.PHAT<9>.ESTPR<6,50> .ESTCR<6.50>, 
• PRIS(30D) ,GAM0 (30 

0752*+ G A M K 3 0 0 ) ,GAM2(300) 
0753* DATA DLINE/1H*/ 
0 754* PAUSE 
0755* ISKIP=(42»ILIM)/ILIM 
0 755* PRINT 090 
0 755* 0 90 FORMAT(1 HI) 
0756* 00 130 I=1,ILIM 
0757* PRINT 100, ISCALE(ILIN-I+I),(DGRID(ILIN-I+I,J)•J=I, 

• INU> 
0758* IOC FORMAT (IH ,16,IX,IH*,IX,72A1) 
0759* IF(ISKIP.EQ.O) GO TO 130 
0760* 00 120 J=1,ISKIP 
0 761* PRINT 110 
0762* 110 FORMAT (IH ,7X,1H») 
0 763* 120 CONTINUE 
0 764* 130 CONTINUE 
0765* PRINT 140, (OLINE,1=1,INU) 
0766* 140 FORMAT (IH ,7X,2H**,72A1) 
0 767* RETURN 
0768* END 
0800* SUBROUTINE OPTCIWON) 
0801* COMMON 0GRID(42,72),I0ATA(2,72),ISCALE(42),DET(300)• 

* OPTS(30C),OPT 
0 801*+ SSQ(300),PMAT(9),ESTPR(6,50),ESTCR(6,50), 

* PRIS(300),GAM0(30 
0801*+ GAML(300),GAM2(3D0) 
0801* COMMON/BLOCKA/TPO(30Q),QQQ(300),C 
0801* COMMON/BLOCKB/SSS(30D),OET1(300),XAM (300)•XAML(300)• 

• ZDIF(300) 
0801* COMMON/BLOCKC/INUM,NFOR 
0801* COMMON/BLOCKO/LO 
0801* C0MM0N/BL0CK/STA11,STA22,STA33,NN,QC0UNT,TP0P,LLC0N 
0801* DIMENSION X (3) ,STEP(3) ,B1 (3) ,B2(3) ,B3(3) , B4(3) 
0802* DIMENSION SUBSUM(300) 
0813* DO 1 1=1,208 
0814* GAMO(I)=ALOG((1.2*DET(I))/(L-L.2*0ET(I))) 
0815* SUBSUM(I)=ALOG(DET(I)/(L-DET(I))) 
0 815* SUBSUMD) SSUBSUM(I) »GAMC (I) 
•816* GAM1(I)=(«25*SUBSUH(I))/QQQ(I) 
0817* GAM2(I)=(,75*SUBSUM(X))/(QQQ(I)*SSS(I)) 
0 818* 1 CONTINUE 
0620* DO 5 LO=L,IMON 
0621* NV=2 
0822* STEP(2)=.5 
0823* STEP(1)=.15 
0624* X(2)=.6 
0625* X(L»=.385 
0 626* NRD=6 
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:cpr=i 
LUCONsl 
CALL PTRN(NV»X.STEP»NRO,COST fB1»BZ*B3,B%*IPR> 
C)PTQ(LO) =X(1) 
OPTS(LO)=X(2) 
5 CONTINUE 
OO 10 I=1*IW0N 
OETKI)-GAMO (I I •GAM1 (I> •OPTQ (I >+GAM2 (I) •OPTQ d > 
*OPTS(I) 

0ET1(I)=EXP(DET1(I))/(H-EXP(DET1(I))) 
10 CONTINUE 
RETURN 
END 
SUBROUTINE PTRN(NP,P,STEP*NRD.COST.Bl*B2 tT.S.10) 
COMMON DGRID «.2. 72) . IDATA (2. 72) .ISCALE(<»2>.DET (300 ) . 
OPTSC300)tOPT 

• SSQ(300> .PMAT(9).ESTPR(6.50).ESTCR(6.5Q>, 
PRIS(30D)*GAM0(30 

• GAMK300) .GAM?(300) 
C0MM0N/BL0CK/STAil,STA22,STA33*NN*CtC0UNT*TP0P*LLC0N 
DIMENSION P(3) ,STEP(3) . B K 3 ) ,B2(3) ,T (3) .S(3) 
999 FORMAT("PATTERN SEARCH"//) 
1000 FORMAT(5X"Xl»***tXN*Y=",lP7D15*8/(18X7015.8)) 
1001 FORMAT("ITERATION ",I3.5X*"BASE POINT B AND Y(B) 

ARE") 
1002 FORMAT(" COMMENCE LOCAL EXPLORATION"/) 
100% FORMAT(//2X"Y(MIN)="*1PD15. 8//15f"FUNCTION 
EVALUATIONS RQ 

• ED"//2X"Xl f...tXN=",7015.8/(13X7015*8)) 
1005 FORMAT(35HINITIAL PARAMETERS OUT OF BOUNDS 

) 
1008 F0RMAT(2X"STEP SIZES="*1P7015.3/(15X7015.3)) 
1009 FORMAT(2X"EXTRAPOLATION FAILED* GO BACK TO OLD 
BASE POINT."/ 

li.10 FORMAT (2X"EXTRAP0LATE0 POINT T AND V (T) ARE" / 
5X"X1«***,XN, 

•Y ="*1P7D15*8/(18X7D15«8) ) 
11111 FORMAT (2X"EXTRAP0LATION VIOLATES CONSTRAINTS. 
STAY WITH GIVE 

V A S E POINT.") 
IF(IO«GT«l) HRITE(3*999) 
IF(LLCON.EQ.O)CALL LIMS(P.IOUT) 
IF(LLCON.EQ.l)CALL LIMS1(P.IOUT) 
IF(IOUT.LE.Q>GO TO 7 
HRITE(3«1005) 
6 STOP 
7 ITTER s0 
00 8 I=1.NP 
Bl II)=P(I) 
B2(I)-P(I) 



198 

1036* T(I)=P(I> 
1037* 8 S(I)=STEP(I>*10. 
10 38* IF(LLCON.EQ.I)CALL FOQJ(P.CL) 
1038* IF(LLCON.EQ.L)CALL OBJ(P.CL> 
10 39* L*L 
1040* ICK=2 
10 41* C1B=9999999999999999999999999.0 
1042* .IF(IO.LE.O) GO TO 11 
1043* WRITE(3,1001) ITTER 
1044* WRITE(3,1000>(P(J),J=1,NP>,C1 
1046* 11 00 99 INRD=1,NRD 
1047* 00 12 1=1,NP 
1048* 12 S D ) = S D > / 1 0 . 
1049* IF(IO.GE.2) HRITE(3,1008)(S(J),J=1,NP) 
1050* 20 IFAIL=0 
1052* IF(IO.EQ.3> WRITE(3,1002) 
10 53* 00 3C 1=1,NP 
10 54* IC=0 
10 55* 21. P(I)=T(I)*S(I> 
10 56* IC=IC*1 
1057* IF(LLCON.EQ.0)CALL LIMS(P,IOUT) 
1057* IFCLLCON.EQ.1)CALL LIHS1(P.IOUT) 
1058* IFDOUT.EQ.O )GO TO 215 
10 59* IFDO.LT.3) GO TO 23 
10 60* 02=999999999999999999999999.0 
1061* WRITEC3,1000)(P(J),J=1,NP),C2 
10 62* GO TO 23 
10 63* 215 CONTINUE 
1063* IF(LLCON.EQ.T)CALL FOBJ(P,C2) 
1063* IF(LLCON.EQ«L)CALL 0BJ(P,C2) 
10 64* L*L*1 
1065* II-(IO.LT.3) GO TO 22 
10 66* WRITE(3,1000)(P(J),J=1,NP),C2 
10 67* 22 IF(C1-C2)23,23,25 
1066* 23 IF(IC.GE.2) GO TO 24 
1069* SAI--'S(I) 
1070* GO TO 21 
1071* 24 IFAIL=IFAIL*1 
1072* P(X)=T(I) 
10 73* GO TO 30 
1074* 25 T D ) =P(I) 
10 75* C1=C2 
10 76* 30 CONTINUE 
1077* IF(IFALLOEQ.NP) GO TO 50 
1078* IF(CL.LTOCLB) GO TO 32 
10 79* C1=C1B 
1060* GO TO 60 
1081* 32 DO 351=1,NP 
1062* 35 B2(I)=T(I) 
1063* IF(IO.LT.2) GO TO 40 
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ITTER-ITTER-»-l 
WRITE(3,1001) ITTER 
WRITE(3.1000)(P(J),J=1,NP>,C1 
<»0 ICK=1 
SJ=1.B 
00 %3II=1,1D 
DO kZ I-ltNP 
kZ T(I)=B2(I)*SJMB2(I)«'B1(I)) 
SJ=SJ-.1 
IF(LLCON.EQ.0)CALL LIMS(T*IOUT) 
IF(LLCON.EQ.l)CALL LIMS1(T.IOUT) 
IF(IOUT.LT.l) GO TO *5 
%3 CONTINUE 
IF(I0.GE.2) WRITE(3,1011) 
ICK=2 
DO kk 1=1,NP 
kk T(I)=B2(I) 
GO TO kS 
%5 C1B=C1 
IF(LLCON.EQ.O)CALL F0BJ(T,C1) 
IF(LLCON.EQ.l)CALL 0BJ(T,C1) 
L=L+1 
'•6 00 k7 1=1,NP 
P(I)=T(I) 
kl B1(I)=B2(I) 
J T F ( I 0 , G E . 2 . AND.ICK.EQ.l) WRITE (3*1010) (T(J) , J = 1 , N P ) , 

CI 
GO TO 20 
50 GO TO (55*90)*ICK 
55 C2=C1 
C1-C1B 
IF(C1-C2) 60*61*70 
60 ICK-2 
IF (10.GE.2)WRITE(3,1009) 
DO 65 1=1,NP 
E1(I)=B2(I) 
P(I)=B2(I) 
65 T(I)=B2(I) 
GO TO 20 
70 C1*C2 
DO 75 1=1,NP 
75 B2(I)=T(I) 
I F a 0 . L T . 2 ) G 0 TO *0 
ITTER=ITTER*1 
WRITE(3*1001) ITTER 
WRITE(3,1000) (P(J),J=1,NP),C2 
GO TO tO 
90 DO 91 1=1,NP 
91 T(I)=B2(I) 
99 CONTINUE 
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00 100 I=1*NP 
100 P(I)=T(I) 
C0ST=C1 
IF(IO.LE.O)RETURN 
WRITE(3.1QQ4) C1,L.(P(J>.J=1.NP> 
RETURN 
END 
SUBROUTINE FOBJ(X*Y) 
COMMON DGRID(42.72)*IDATA(2*72),ISCALE(42)•OET(300) , 
OPTS(300).OPT 

• SSQ(300>,PMAT(9),ESTPR(6,50),ESTCR(6,50) , 
PRIS(300),GAMD(30 

• GAMK300) *GAM2(300) 
C0MM0N/BL0CK/STA11.STA22.STA33.NN.QCOUNT.TPOP.LLCON 
COMMON/BLOCKA/TPO(300),QQQ(300),C 
DIMENSION X(3) 
PMAT(1)=.5 
PMAT(2»=(l./3.)».5 
PMAT(3)*l./3. 
PMAT <•») =X<1) 
PMAT(5)=1.0-X(1)-X(3> 
PMAT(6)=X(3) 
PMAT(7)=0.0 
PHAT(8)=X(2) 
PMAT(9)=1.0-X(2) 
DO 142 N0N=1,6 
ESTPR(N0N,NN)=STA11»PMAT(1)*STA22»PMAT(4)4-
STA33»PMAT(7) 

*l=ESTPR(NON,NN) 
X2=STA11»PMAT(2)+STA22»PMAT(5)4-STA33»PMAT(8) 
X3=STA11»PMAT(3)*STA22»PMAT(6)*STA33»PMAT(9) 
STA11=X1 
STA22*X 2 
STA33=X3 
142 CONTINUE 
YY=0«0 
00 143 M0N=1,6 
SS=(ESTPR(HON.NN)»TPO(MON+QCOUNT)-PRIS( MON+QCOUNT) ) 
••2 

YY=YY*SS 
143 CONTINUE 
T=YY 
RETURN 
END 
SUBROUTINE LIMS(X.IOUT) 
COMMON OGRIO(42*72).IOATA(2.72).ISCALE(42).DET(300). 
OPTS(300).OPT 

• SSQ(300).PMAT(9).ESTPR(6.50),ESTCR(6.50), 
PRIS(30C),GAM0(30 

• CAMK300) ,6AM2(300) 
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1201* C0NM0N/BL0CK/STAll«STA22 f STA331 NN» QCOUNT*TPOP*LLCON 
1201* DIMENSION X(3) 
120 2* IOUT=B 
1203* IFCX(1>.LT.0.010)IOUT=l 
120i>* :tF(X (D.GT.0.10) IOUT = l 
1205* :tF(X (2) .LT.0.001)IOUT = 1 
1206* IF(X (2).GT.0.011)IOUT = l 
1207* ;[F(X (3) .LT.0.200 ) IOUT = l 
1208* :CF(X (3) .GT.1.000 )IOUT = l 
120 9* RETURN 
1210* END 
1250* SUBROUTINE OBJ(X.Y) 
1251* COMMON DGRIO(%2*72)*IDATA(2,72),ISCALE(%2)fDET(300), 

* OPTS(300),OPT 
12 51*+ SSQ(300)*PMAT(9)*ESTPR(6*50)*ESTCR(6*50)* 

* PRISC300).GAM0C30 
1251*4- GAMK300) *GAM2(300) 
12 51* COMMON/BLOCK/STAlltSTA22f STA33f NNtQCOUNTtTPOPf LLCON 
1251* COMMON/BLOCKD/LO 
1251* DIMENSION X(3) 
1252* V=GAM0(L0)*GAN1(L0)*X(1)*GAM2(L0)»X(1)*X(2) 
12 53* RETURN 
125%* END 
1270* SUBROUTINE LIMS1(X,IOUT) 
1271* COMMON OGRID (%2.72>,IDATA(2,72>,ISCALE(%2),DET(300>, 

* OPTS(300)tOPT 
1271*+ SSQ(300)tPMAT(9).ESTPR(6.50).ESTCR(6,50), 

* PRIS(30B).GAMO(30 
1271*+ GAM1(300)tGAM2(300) 
1271* C0MM0N/BL0CK/STA11 VSTA22 VSTA33 VNNtQCOUNTtTPOPfLLCON 
1271* COMMON/BLOCKA/TPO(30D).QQQ(3C0>,C 
1271* COMMON/BLOCKB/SSS(300) .OETK300) ,XAM (300) «XAM1 (300) « 

* ZDIF(300) 
1271* COMMON/BLOCKD/LO 
1271* DIMENSION X(3) 
1272* IOUT=0 
1273* IF(X(2).GT.5B)I0UT=1 
127** ]F(X (2).LE.0)IOUT=l 
1275* IF(X (1).GE.1.0)IOUT = 1 
1276* IF(X(1).LE#0.0)IOUT=1 
1277* IF((X(1)*X(2))•GT«((8/7)*SSS(L0)*QdQ(L0)))I0UT-l 
1278* RETURN 
1279* ENO 
1500* SUBROUTINE CONTOU(NUMB*NCON*CLEV*FN* NXt NY*AXX*AXYt 

* XLABELvYLABEL*H 
1501* DIMENSION FN(60 * 60)*CLEV(1)*AXX(11 *AXY(1) 
1502* DIMENSION HP(62)»VP(62)*NSYM(52)»HC(1000)*VC(1000)* 

* NSC(IIOO) 
1503* DIMENSION LST(7) 
150%* INTEGER XLABELvYLABEL 
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D A T A n c h a r s / 6 / 

DATA ( l s t ( i o o o o o ) , 1 0 0 0 0 0 = 1 . 7 ) / I , 0 , 4 , 1 1 , 5 , 2 , 3 / 

n s = n y 

e p s = . 0 0 0 1 

x o r 0 0 0 = 0 . 0 

y o r = q . D 

i m = 1 

i h v s w = 2 

m t r a n s = 1 

z a p * L . o d o o o o o d e + o o 

I L L = 0 

j m = n s 

j x = n x 

i x = n y 

i f u 8 - n c o n ) * n c o n > 7 0 * 7 0 * 1 0 

1 0 i f < ( 6 1 - n y ) » c n v - 3 ) ) 7 0 * 7 0 , 2 0 

2 0 i f u 6 1 - n x ) * ( n x - 3 ) . l e . o ) G O T O 7 0 

GO TO 90 
7 0 W R I T E ( 6 , 8 0 ) N U M B 

S B f o r m a t ( " o e r r o r I N C A L L T O C O N T O U R F O R G R I D " , a 6 ) 

G O T O 1 1 6 0 

9 0 C O N T I N U E 

m r i t e ( 6 , 4 2 2 ) 

4 2 2 F O R M A T ( " 1 " , / / / , " E X A M I N I N G C O L U M N B Y C O L U M N 

P R O D U C E D " , 

• " t h e s e E S T I M A T E O c o n t o u r s " , / / / , " i " , 4 x , " x ( i ) " , 6 x , " j -

1 - * 

• 4 x » " y ( j - 1 ) " , 4 x , " f u , J - L ) j " , 5 x , " Y < j ) " . 7 x , " f ( i , j > " , 

7 x , 

• " y h a t " , 1 0 x , " c l " , / / ) 

i h v s w = 1 

DO 1 5 0 1 = 1 , N X 

Z A P S - z a p 
K P T * c 

DO 1 7 0 N C = L , N C O N 

C I L = c l e v ( n c ) 

a 3 = f n ( i , 1 ) 

y y = - 1 . 

J F < a 3 . g t . c l > Y Y = 1 , 

D O 1 6 0 j = 2 , n y 

a 4 = f n ( i , j > 

XFCCAL » * c l>*YY « g t.T) G O T O 1 8 0 
I F < a 4 . e q . c l > G O T O 1 8 5 

j j = j - 1 

X F ( a b s ( c l - a 3 > . g t . a b s ( c l - a 4 > > j j = j 

I S H = 0 

: [ F ( j j . e q . d i s w = i 

; [ f ( j j . e q . n y ) i s w = - 1 

B 1 = f n ( I , J J - L + i s w ) 

r 2 = f n ( i , j j * 1 s m > 
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b 3 = f n ( i , j j - h - u s h ) 

c 1 = a x y ( j j - 1 * i s w ) 

c 2 = a x y ( j j + i s w ) 

c 3 = a x y ( j j * 1 * i s w ) 

c a l l a p p r ( c l , b 1 , b 2 . b 3 , c 1 , c 2 , c 3 , x 1 * x 2 ) 

X X = x 2 

I F ( X l * G E * A X Y ( J - i > - E P S * A N D * X l * l e * a x y ( j ) * e p s ) x x = x 1 

W R I T E ( 6 0 1 1 1 ) I , A X X ( I ) , J - l , A X Y ( J - i ) , f n ( i , j - l ) . j . a x y ( j ) 

t f n ( i . j ) . x x , 

1 1 1 F O R M A T ( I X , 1 3 , I X , e 1 0 . 3 , I X , 1 3 , 1 X , E 1 0 * 3 , 1 X , E 1 Q . 3 , I X , 
1 3 , I X , 

• e 1 0 . 3 * 1 x * e 1 2 » 4 * 1 x * e 1 2 * 4 * 1 x , e 1 2 . 4 ) 

k p t = k p t « - 1 

h p ( k p t ) = a x x ( i ) 

w p ( k p t ) « x x 

n s y m ( k p t ) = l s t ( n c ) 

a 3 = a 4 

Y Y = i . 
i f ( a 3 * l t * c d y y = - 1 * 

g o t o 1 6 0 

1 8 5 k p t = k p t * 1 

H P ( K P T ) * A X X ( I ) 

V P ( K P T ) = A X Y ( J ) 

N 8 Y M ( K P T ) = L S T ( N C ) 

W R I T E ( 6 , 1 1 2 ) I . A X X ( I ) . J . A X Y ( J ) , F N ( I , J ) , X X , C L 

1 1 L 2 f o r m a t ( / , 1 x , i 3 , 1 x , e 1 0 . 3 , 1 x , 2 6 x » i 3 , 2 x * e 1 0 * 4 * 2 x , 

e i o * 4 * i x » 

+ e 1 2 . 4 * 1 x * e 1 2 * 4 ) 

y y = - y y 

a 2 i = a 4 

g o t o 1 6 0 

1 8 0 a 3 = a 4 

1 6 0 c o n t i n u e 

1 7 0 c o n t i n u e 

i f ( k p t . l e . 4 0 ) g o t o 5 7 0 

p r i n t 5 2 0 . n u m s 

5 2 0 f o r m a t ( " o t o o m a n y p o i n t s i n a r o w o r c o l u m n f o r 

g r i d m * a 6 ) 

d o 5 4 0 i x x x = 1 , k p t 

5 4 0 W R I T E ( 6 * 5 6 B ) K P T • I X X X . H P ( I X X X ) , V P ( I X X X ) , 

N S Y M ( I X X X ) 

5 6 1 9 f o r m a t ( " k p t , i x x x , h p , v r , n s y m ? * 2 i 1 i , 2 e 2 0 * 1 0 , 1 1 0 ) 

5 7 0 c o n t i n u e 

c a l l r e a r ( k p t , h p , v p , n s y m , i h v s w , z a p ) 

c a l l s t o r p ( k p t , x l l , h p , v p , h c * v c , n s c , n s y m ) 

1 5 0 c o n t i n u e 

w r i t e ( 6 , 4 2 3 ) 

4 2 3 F O R M A T ( " 1 " , / / / , " E X A M I N I N G B Y R O W S P R O D U C E S 

T H E S E " , 

e s t i m a t e d c o n t o u r s " , / / , " j " * 4 x , " y ( j ) " , 6 x , " 1 - 1 " , 4 x , 

" x d - l l " , 
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1608**%X»"F(I-l,J)",2X*"I"*5X,-X(I)",7Xt ,*F(I,J)",9X, , ,XHAT", 
1609**9X »"CL".//) 
1610* IHVSW=2 
1611* 00 950 J=1*NY 
1612* zap=-zap 
1613* KPT=C 
161** 00 970 NC-l.NCON 
1615* CL=CLEV(NC) 
1616* A3=FN(1,J) 
1617* YY=- 1, 
1618* IFfA3.GT.CL) YY = 1. 
1619* DO 960 1=2.NX 
1620* A*=FN(I,J) 
1621* IF((A%-CL)*YY.GT.O.) GO TO 980 
1622* JJsX-1 
1623* IF(ABS(CL*A3)*GT«ABS(CL»a*)) JJ=1 
162** IF(A*»EQ«CL) GO TO 985 
1625* ISW=0 
1626* IF(JJ.EQ.l) ISH=1 
1627* IF(JJ.EQ.NY) ISWs-l 
1628* B1=FN<JJ-H-ISW* J) 
1629* B2=FN(JJ+ISH,J) 
1630* 83=FN(JJ+1*ISH«J) 
1631* C1=AXX(JJ-l+ISW) 
1632* C2=AXX<JJ+ISW) 
1633* C3=AXX(JJ*1*ISW) 
163** CALL APPR(CL,B1,B2,83,C1,C2,C3,X1,X2> 
1635* XX=X2 
1636* IF(X1*GE*AXX(I-1)»EPS«AND.X1»LE*AXX(I)*EPS) XX-X1 
1637* HRZTE(6«111) J,AXY<J>,Ifl,AXX<I-1),FN<I-1,J),I,AXX<I> 

* * 
1638*-*- FN( I. J) ,XX,CL 
1639* KPT=KPT*1 
16*0* HP(KPT)=XX 
16*1* VP<KPT)=AXY(J) 
16*2* NSYM(KPT)=LST(NC) 
16*3* A3=A* 
16*** YY=1. 
16*5* IF(A3#LT»CL) YY=*1. 
16*6* GO TO 960 
16*7* 9IJ5 KPT=KPT*1 
16*8* HP(KPT)=AXX(I) 
16*9* VP(KPT)=AXY(J) 
1650* NSYM(KPT)=I.STfNC) 
1651* WRITEC6.112) J,AXY(J),I VAXX(I)*FNCI*J)«XX*CL 
1652* YV=-YY 
1653* A3*A* 
165** GO TO 960 
1655* 980 A3= At. 
1656* 960 CONTINUE 

http://IFfA3.GT.CL
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970 CONTINUE 
IFCKPT.LE.M)) GO TO 30*0 
PRINT 3020.NUMB 
3020 FORMAT("OTOO MANY POINTS IN A ROM OR COLUMN FOR 
GRID ".A6» 

DO 3070 IXXX=1.KPT 
3070 MRITE(6,560) KPT.IXXX.HP(IXXX),VP(IXXX). 
NSYM(IXXX) 
30*6 CONTINUE 
CALL REAR(KPT.HP,VP»NSYM,IHVSM,ZAP> 
CALL STORP(KPT.ILL.HP.VP.HC,VC.NSC.NSYM) 
950 CONTINUE 
IF(ILL.GT.O) GO TO S10 
PRINT 780tNUMB 
780 FORMATC"ONO CONTOURS FOUND OF SPECIFIEO LEVELS 
FOR GRID ".A6> 

GO TO 1160 
610 CONTINUE 
CALL SYMBOL(0..2...21.NUMB.90..6) 
CALL PLOTC1.25..25.-3) 
CALL GRID(0..0..1..1..8.8) 
DELTAX=(AXX(NX)-AXX(l)>/8 
DELTAY=CAXY(NY)*AXY(l))/8 
CALL AXIS(0..0..XLABEL.-6.8..O..AXX(1).DELTAX) 
CALL AXIS(0..0..YLABEL.6.8..90..AXY(1).DELTAY) 
WRITEC6.127) OELTAX.OELTAY 
127 FORMAT(//," SCALE FACTORS FOR FOR X AND Y ARE ", 
2E20.10.//) 

WRITE(6*815) 
815 FORMATC"l",///," SUMMARY OF POINTS PLOTTED".//• 

•liXt"X"tl2X»"Y".9X."PL0T COORDINATES IN INCHES "*2X* 
•"SYM #",//) 
00 1070 I=1.ILL 
XC=(HC(I)-AXX(1))/DELTAX 
IF (XCGT.36) MRITE(6.103> XC.I. HC (I) .OELTAX 
1113 FORMAT(F1D.3.I7.2F10.3." XC. I. HC (I) . OELTAX ") 
YC=(VC(I)-AXVC1)l/OELTAY 
HRITE(6v861) I.HC(I)»VC(I> .XC.YC.NSC(I) 
861 FORMAT(IX . 13 .2X. E12. %. IX . E12 .<•. 3X.E 12. %. IX . E12. %. 
3X.I3) 

IF UXCLTc.0) GO TO 1161 
CALL SYMBOL(XC.YC.HT.NSC(I).0.-1) 
1070 CONTINUE 
1160 RETURN 
1181 PRINT*. - NEGATIVE XC VALUE " 
GO TO 1160 
END 
SUBROUTINE REAR(KPT.HP.VP.NSYM,IHVSH.ZAP) 
DIMENSION HP(1).VP(1).MSYM(l) 
IF( KPT «LE«1) RETURN 
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KPTM1=KPM1 
00 10 I=1,KPTH1 
CHUMP=VP(I) 
IF(IHVSW.GE.2) CHUNP=HP(I) 
KK=I+1 
00 20 K=KK*KPT 
QQ=VP(K) 
IF(IHVSW.GE.2) QQ=HP(K) 
IF<<CHUMP«QQJ»ZAP.LE.O) GO TO 30 
T1=HP(K) 
T2=VP(K) 
„T3=NSYN(K) 
MP(K)=HP(I) 
VP(K)=VP(I) 
NSYM(K)=NSYH(X) 
MPCI>=T1 
VP(I)=T2 
NSYM(I)=IT3 
30 CONTINUE 
20 CONTINUE 
10 CONTINUE 
RETURN 
ENO 
SUBROUTINE STORP(KPT,ILL,HP, VP,HCt V C N S C N S Y M ) 
DIMENSION HP(1),VP(1),HCC1),VC(1),NSC(1),NSYM(1) 
IF(KPT.LT.l) GO TO ID 
DO 20 11=1,KPT 
IF(ILL.GE.IOOO) GO TO 30 
ILL=ILL*1 
HC(ILL)=HP(I1) 
VC (ILL) =VP(I1) 
20 NSC(ILL)=NSYM(I1) 
10 RETURN 
30 WRITE<6,100) 
RETURN 
100 FORMAT(/,"1000 POINTS - LIMITED TO THESE ",/) 
ENO 
SUBROUTINE APPR(CL,B1,B2,B3,Cl»C2»C3»X1,X2> 
B32= (B3-.B2) /(C3-C2) 
B21=(B2»B1)/(C2-C1> 
B321=(B32-B21)/(C3-C1) 
A=B321 
B=B32*B321*(C3*C2) 
C=83-C3»B32*B321»C3*C2-CL 
0IS=B»»2-«,«»A»C 
IF(OIS.LT.O) GO TO 90 
D;[S=SQRT (DIS) 
X1=(-B*DIS)/(2«»A) 
X2=(-B«OIS)/(2.»A) 
RETURN 
911 WRITE (6, 100) 
1110 FORMAT (" ERROR IN APPR, DIS NEGATIVE") 
RETURN 
END 
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1 8 1 3 3 
1 8 . 4 4 * 
1 7 9 5 5 
1 7 3 6 6 ¥ 
1 7 7 7 7 ¥ 
1 7 6 8 8 
1 7 5 9 9 
1 7 5 1 0 * 1 7 ^ 2 1 
1 7 3 3 2 ¥ 
1 7 2 4 3 * 
1 7 1 5 h * 
1 7 ; 6 5 
1 6 9 7 6 
1 6 8 8 7 
1 6 7 9 8 * 
1 6 7 0 9 * 
1 6 6 2 1 
1 6 5 3 1 
1 6 4 4 2 • 
1 6 3 5 3 
1 6 2 6 4 
1 6 1 7 5 • 1 6 1 8 6 
1 5 9 9 7 ¥ 
1 5 9 0 8 ¥ 
1 5 8 1 9 ¥ 
1 5 7 3 0 ¥ 
1 5 6 4 1 ¥ 
1 5 5 5 2 ¥ 
1 5 * * 6 3 ¥ 
1 5 3 7 4 ¥ 
1 5 2 8 5 ¥ 
1 5 1 9 6 '¥ 
1 5 1 G 7 ¥ 
1 5 ; L D * 1 4 9 2 9 ¥ 
1 4 8 4H ¥ 
1 4 7 5 1 ¥ 
1 4 6 6 2 ¥ 
1 4 5 7 3 ¥ 
1 4 4 8 4 ¥ 

D D 
• 

C O D 

0 D 

D 

C D D 

CD 
D 

0 D 
0 O D D 0 
1 0 

0 
W¥¥¥¥ ¥¥¥¥¥¥ ¥¥¥¥¥•¥¥¥¥¥¥¥¥¥ 

P L O T O F T H E T O T A L O F F E N S E S T I M E S E R I E S 
F R O M J A N U A R Y * , 1 9 7 4 T H R O U G H D E C E M B E R , 1 9 7 6 
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. 0 1 8 1 4 5 

. 0 1 7 8 9 5 
.01777L 
. 0 1 7 6 4 5 
. 0 1 7 5 2 U 
. 0 1 7 3 9 5 
. O I 7 2 7 _ > 
. 0 1 7 1 4 5 
O 1 7 0 2 C 
J O L 6 9 9 5 
.01677G 
C 1 6 & 4 5 
.01652C 
. 0 1 6 3 9 5 
.016270 
.016145 
. C L 6 U 2 C 
.©15995 
. 0 1 5 7 7 R . 
. 0 1 5 6 4 5 
. 0 1 5 5 2 0 
. 0 1 5 3 9 5 
. 0 1 5 2 7 0 
. 0 1 5 1 4 5 
.C?15u 2f 
. © 1 4 8 9 5 
X > 1 4 7 7 C 
. 0 1 4 6 4 5 
• O 1 4 5 2 0 
. 0 1 4 3 9 5 
. 0 1 4 2 7 L 
, 0 1 ^ 1 ^ 5 
. O 1 4 G 2 0 
. 0 1 3 3 9 5 
,013770 
. 0 1 3 6 4 5 
. O I 3 5 2 T 
. 0 1 3 3 9 5 
. 0 1 3 2 7 0 
. 6 1 3 1 4 5 
.0132 20 

O O O O O D 
D O D C D O 

O D O O D O O D O D O O 

ooooco 
D O D O O D 

P L O T O F D E T E R R E N T E F F E C T T I M E S F R I E S 
F R O M J A N U A R Y , 1 9 7 4 T H R O U G H D E C E M B E R , 1 9 7 6 
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AUUJKOING TO OUR MOOEL.OPTIMISATION OF © O U C Y V ARIA 6i_ 

GIVES THE FOLLOWING RESULTS 

PERIOD 
PREVAILING ^ O P T I M A L POLICY VARS. 

SSTAR 

1/197% 

2/197% 

3/197% 

%/197% 

5/197<* 

6/197% 

7/197% 
« 
« 

.3,61 

• 3L 61 

. 3C61 

• 3. 61 

.3161 

.3.61 

.3061 
T 

• %60l 

• %6C1 

• %6D1 

• %6C 1 

• %6L1 

• %6C1 

• %601 
* 

1.67 

1.67 

1.67 

1.67 

1.67 

1.67 

1.6 7 

1.11 

1.11 

1.11 

1.11 

1.11 

1.11 

1.11 

9/1997 

18/1997 

11/1997 

12/1997 

• 3061 

• 3061 

.3061 

• 3661 

• %601 

• %601 

• %601 

• %601 

1*67 

1.67 

1.67 

1.67 

1.11 

1.11 

1.11 

1.11 
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STARTING WITH «>ERIGD21 
AND ENDING WITH PERIOD 2?9. 

INCAPACITATION WAS 
RESPONSIBLE FOR THE FOLLOWING PE RCE NTAGFS OF CRIMES 

SAVED 
REAO ACROSS FROM ..EFT TC RIGHT 

22.159 21.541 22.35- 22.4C1 21.772 21.532 

21.869 21.535 21.657 21.402 21.671 21.7<;u 

19.544 19.477 19.595 19.1.96 19.602 19. b5<. 

19.692 19.496 19.567 19.575 

TMF VECTOR OF MONTHLY DETERRENT EFFECTS FROM JANUARY,1974 UNTIL DECEMBER,1998 IS REAO FROM LEFT TO RIGHT 

•013020328152 

,013020 32 6211 

.013020328183 

•0130 20 328216 

•01302C3282C1 

•C1302J32 8219 

•013446379630 

•C13446379621 

013446379651 

.01344637 9615 

.013446379632 

•013446379612 
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THE RATIOS OF THE SAVINGS IN TOTAL OFFENSES FORECASTED tfSTEHMING FROM OPTIMISATION),TC THE TOTAL OFFENSES 
T ? R S 9 S S T I J ? 0 E 2 ? PERIODS 1/75 ,TO, 12/98 BY THE MODEL IS REAO ACROSS FROM LEFT TO RIGHT 

.02271 .02271 .02271 .02271 
.02271 .02271 .02271 .02271 

.02271 .02271 .02271 .02271 
•02271 •C2271 •C2271 •02271 

•02271 •02271 •02271 .02271 
.02271 • 02271 •02271 .02271 

•C2271 •0 2271 .02271 
•02271 •02271 .62271 

.02271 •C2271 .02271 
.C2271 •C2271 •C2271 

•02271 .02271 •02271 
.02271 .02271 .02271 

SAVINGS IN REPORTED CRIMES PEF PERIOD 
THRU OPTIMISATION 

WERE AS FOLLOWS 
360. 351. 351. 371. 385. 396. 423. 430. 455. 1.62. 4 86. 

329. 352. 352. 37J. 391. 395. 427. 430. 459. 1.61. (.91. 

332. 35<.. 359. 375. 387. 395. 423. 430. 455. 462. 486. 

336. 352. 353. 366. 394. 411. 429. 443. 461. 475. 492. 

J41. 352. 365. 374. 389. 408. 425. 440. 457. 4 72. 468. 

346. 352. 367. 37*. 399. 411. 433. 443. 465. 47*.. 496. 

929. 936. 961. 968. 993. 10CO. 1024. 1031. 1056. 10 63. 

93*.. 936. 965. 966, 997. 999. 1328. 1031. 1060. 1062. 

929. 936* 961. 968. 992. 999. 1024. 10 31. 1056. 10 63. 

935. 949. 967. 981. 999. 1013. 1030. 1044. 10 62. 1076. 

931. 946. 963. 978. 995. 1009. 10 26. 1041. 1058. 10 73. 

939. 949. 971. 981. 1003. 1012. 10 34. 1044. 1066. 1076. 
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