
VARIATIONAL AND ACTIVE SURFACE

TECHNIQUES FOR ACOUSTIC AND

ELECTROMAGNETIC IMAGING

A Dissertation
Presented to

The Academic Faculty

By

Daniel A. Cook

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2015

Copyright c© 2015 by Daniel A. Cook



VARIATIONAL AND ACTIVE SURFACE

TECHNIQUES FOR ACOUSTIC AND

ELECTROMAGNETIC IMAGING

Approved by:

Dr. Francesco Fedele, Advisor
School of Civil and
Environmental Engineering
Georgia Institute of Technology

Dr. Anthony Yezzi, Co-advisor
School of Electrical and
Computer Engineering
Georgia Institute of Technology

Dr. Jennifer Michaels
School of Electrical and
Computer Engineering
Georgia Institute of Technology

Dr. Patricio Vela
School of Electrical and
Computer Engineering
Georgia Institute of Technology

Dr. Karim Sabra
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Alessio Medda
Aerospace, Transportation, and
Advanced Systems Laboratory
Georgia Tech Research Institute

Date Approved: March 23, 2015



I have seen flowers come in stony places

And kind things done by men with ugly faces,

And the gold cup won by the worst horse at the races,

So I trust, too.

–John Masefield, “An Epilogue”



To my parents and grandparents.
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SUMMARY

This research seeks to expand the role of variational and adjoint processing meth-

ods into segments of the sonar, radar, and nondestructive testing communities where

they have not yet been widely introduced. First, synthetic aperture reconstruction

is expressed in terms of the adjoint operator. Many, if not all, practical imaging

modalities can be traced back to this general result, as the adjoint is the foundation

for backprojection-type algorithms.

Next, active surfaces are developed in the context of the Helmholtz equation for

the cases of opaque scatterers (i.e., with no interior field) embedded in free space, and

penetrable scatterers embedded in a volume which may be bounded. The latter are

demonstrated numerically using closed-form solutions based on spherical harmonics.

The former case was chosen as the basis for a laboratory experiment using Lamb waves

in an aluminum plate. Lamb wave propagation in plates is accurately described by the

Helmholtz equation, where the field quantity is the displacement potential. However,

the boundary conditions associated with the displacement potential formulation of

Lamb waves are incompatible with the shape gradient derived for the Helmholtz

equation, except for very long or very short wavelengths.

Lastly, optical flow is used to solve a new and unique problem in the field of

synthetic aperture sonar. Areas of acoustic focusing and dilution attributable to

refraction can sometimes resemble the natural bathymetry of the ocean floor. The

difference is often visually indistinguishable, so it is desirable to have a means of de-

tecting these transient refractive effects without having to repeat the survey. Optical

flow proved to be effective for this purpose, and it is shown that the parameters used

to control the algorithm can be linked to known properties of the data collection and

scattering physics.

xi



CHAPTER 1

INTRODUCTION

Historically, the majority of signal and image processing methods are based on the

notion of linearity and time invariance (LTI). These conditions open the door to

powerful tools based on the Fourier transform such as the equivalence between con-

volution in the signal domain and multiplication in the frequency domain. When

applications stray from being LTI, these techniques can be applied piecewise to sub-

sets of the signal for which LTI is assumed to hold. Meanwhile, recent years have

witnessed the maturity of a different class of processing techniques based on partial

differential equations (PDEs). Its strength is found in the inherent ability of PDEs to

respond to very localized signal conditions. The notion of short-time, or windowed,

LTI processing is unnecessary.

PDE-based processing schemes are often derived using the calculus of variations

which is aimed at finding an extremal function that satisfies a given optimality con-

dition. The optimality condition is stated in integral form and can incorporate a

rich set of constraints. Two common types are (1) smoothness constraints, and (2)

fidelity constraints which impose a certain governing model on the underlying signal.

The former are akin to least-squares in that their purpose is to discourage unrealistic

departures from the expected model and/or to mitigate the effect of measurement

errors. The latter type of constraint is extremely powerful, as it allows the user to

introduce the actual physical model governing the measured signal or to introduce

artificial models whose purpose is to elicit the desired response from the data.

The resulting PDEs do not typically permit closed-form solutions, and signal

processing using PDE techniques inevitably requires some level of familiarity with

numerical solution schemes such as finite differences, finite elements, or boundary

elements. The process of finding the extremal function sometimes exposes an operator
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known as the adjoint which, while purely a mathematical construct, is often associated

with projecting measurements backward through the system that generated them

from the source. This notion of backprojection, or backpropagation, is extremely

powerful and appears throughout the inverse problem literature as well as other fields

of study.

The research contained in this dissertation is motivated by a desire to expand

the role of variational and adjoint processing methods into segments of the sensing

and imaging communities where they have not yet been widely introduced. This is

accomplished through the following contributions:

1. The connections among several imaging modes are explored. Discussing dis-

parate applications in a common framework helps to lower the barriers to ex-

changing ideas across disciplines.

2. Adjoint active surfaces are developed for physical inverse problems governed by

the Helmholtz equation. This approach is then applied to experimental data

using ultrasonic elastic waves to locate damage in a thin plate.

3. Optical flow techniques are applied to synthetic aperture sonar imagery to detect

the presence of internal wave-like boluses of dense water moving over the sea

floor. To date, this is the most successful method for detecting these refractive

anomalies without resorting to repeat-pass imaging.

Several publications have been written in the pursuit of these objectives:

• T. M. Benson, D. P. Campbell, D. A. Cook, “Gigapixel spotlight synthetic aper-

ture radar backprojection using clusters of GPUs and CUDA,” in Proceedings

of the 2012 IEEE Radar Conference, pp. 853-858.

• D. A. Cook, “Chapter 7: Spotlight Mode SAR,” in W. M. Melvin and J. A.

Scheer, eds., Principles of Modern Radar: Vol. II Advanced Techniques. SciTech

Publishing, Inc., 2013.
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• D. Cook, D. Brown, and Z. Lowe, “Synthetic aperture sonar contrast (Invited

Paper),” in 1st International Conference and Exhibition on Underwater Acous-

tics, June, 2013, pp. 143–150.

• R. E. Hansen, A. P. Lyons, T. Sæbø, H. J. Callow, and D. A. Cook, “The effect

of internal wave-related features on synthetic aperture sonar,” IEEE Journal of

Oceanic Engineering (Accepted for publication and in press), 2014.

• D. A. Cook, “Connections among synthetic aperture imaging techniques,” In-

vited Paper, 10th European Conference on Synthetic Aperture Radar (EUSAR

2014).

• D. C. Brown, D. A. Cook, and A. P Lyons, “Spatial coherence theory and

its application to synthetic aperture systems,” in Proceedings of the Interna-

tional Conference on Synthetic Aperture Sonar and Synthetic Aperture Radar

(ICSASSAR), Institute of Acoustics, 2014.

• D. A. Cook, R. E. Hansen, A. P. Lyons, and A. J. Yezzi, “Motion tracking of

transient refractive effects in SAS imagery using optical flow,” in Proceedings of

the International Conference on Synthetic Aperture Sonar and Synthetic Aper-

ture Radar (ICSASSAR), Institute of Acoustics, 2014.

• D. A. Cook, M. Mueller, F. Fedele, and A. J. Yezzi, “Adjoint active surfaces for

localization and imaging,” IEEE Transactions on Image Processing, pp. 316–

331, vol. 24, no. 1, 2015.

1.1 Motivation

Traditional imaging techniques use a set of measurements, generally of scattered or

absorbed radiation, to estimate a desired property within a volume. The property

3



being mapped (density, reflectivity, absorption, etc.) conveys, either directly or in-

directly, useful information about the volume being interrogated. For example, syn-

thetic aperture radar [1, 2, 3] and sonar [4, 5, 6] are used to create reflectivity maps

of the terrain illuminated by the sensor. Seismic oceanography uses low frequency

(1–200 Hz) sound that is emitted from air guns, reflected from oceanic structures, and

received on a towed array of hydrophones to image the water column. Seismic imaging

is also used for subsoil mechanical characterization, an important issue in many fields

of both Earth sciences and geotechnical engineering [7, 8, 9]. Surface wave methods

utilize the dispersive nature of seismic waves in a heterogeneous medium to obtain

shear velocities and infer the lateral variations of subsurface layers [10, 11]. In the

field of medical imaging, X-ray tomography maps the absorption characteristics of

tissue within the body [12, 13, 14]. Physicians are able to diagnose conditions accom-

panied by changes in absorption relative to what would be observed under normal

healthy circumstances. Similar problems are encountered in nondestructive testing

and evaluation and structural health monitoring, where the goal is often to assess the

integrity of a structure using few measurements that may be located far away from

the region of interest.

Variational methods for image processing and computer vision have provided suc-

cessful advancements for a number of applications. Interestingly, these advances have

not diffused uniformly across disciplines. For example, variational methods were

embraced early on by the medical imaging community. The precise segmentations

offered by level sets and active contours are useful for obtaining the quantitative

measurements which are vital to effective diagnosis and treatment. Meanwhile, other

disciplines have had scant contact with variational methods. Synthetic aperture radar

and sonar are good examples of this. On one hand, there is little need for significant

changes to current image reconstruction techniques and processing architectures be-

cause they work well for a large fraction of the situations that are of practical interest.
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On the other, the remaining cases tend to be very challenging and are in need of real

innovation. Several applications illustrate this point, and a subset of these is the

focus of this research.

1.2 Variational Methods for Sonar and Radar Imaging

Traditional SAR and SAS image reconstruction is based on the following set of as-

sumptions [15]:

1. The scene can be modeled as a continuum of infinitesimally small point scatter-

ers whose reflections do not affect one another. This is known in mathematical

physics as the Born approximation [16]. In other words, it is assumed that the

there is no multiple scattering and that the principle of superposition applies

to the reflected signals. This linearity of the signals is one reason it is possible

to reconstruct accurate imagery without prior knowledge of the scene content.

2. The incident radiation does not penetrate the reflecting surface. Consequently,

the scene can be modeled as a sheet which is not necessarily flat, but is in-

finitesimally thin. It is this model that gives meaning to the interferometric

applications of SAR (SAS) used for deriving topographic (bathymetric) infor-

mation from image pairs. When the scene deviates vertically from a plane, the

resulting image has a phase component which can be used to infer the terrain

height [17].

3. The medium is assumed to be infinite in extent, so there are no boundaries

to consider. This permits the use of the free-space Green’s function for the

reconstruction. The presence of boundaries can give rise to multipath effects

resulting in multiple reflections, or ghosts, in imagery. This effect is particularly

evident in SAR imagery of urban areas and SAS imagery collected in shallow

water.
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4. The scene content does not move during the data collection interval. The rel-

ative motion between sensor and scene is the phenomenon used to resolve and

place scene content in the cross-range dimension. An object moving against the

static background may not appear in the imagery at the correct location. A

classic example often cited is the phenomenon of imaging a moving train. If the

train’s velocity vector has any component along the radar’s line of sight, the

cars will appear displaced in cross-range. It is possible to get rather disconcert-

ing SAR imagery showing a well-focused train that appears to be riding off its

track.

These assumptions are somewhat predictable, representing a commonsense approach

to modeling a simplified environment. They also have deeper mathematical signifi-

cance, enabling the development of simple solutions to the wave equation governing

the propagation of electromagnetic and acoustic waves. In particular, restrictions (1)

and (3) give rise to the term e−ikR/4πR, which is ubiquitous in the radar and sonar

disciplines. This is the Green’s function representing the solution to the free space

wave equation [18].

1.2.1 Radar and Sonar Imaging in the Presence of Multipath

The first problem illustrating the need for advancement beyond the standard ap-

proaches is that of visualizing the interior structure of buildings using radio waves.

This is known in the literature as through-the-wall-imaging (TWI). The task is made

difficult by the fact that the electromagnetic properties of the walls are unknown and

multiple reflections within the structure tend to corrupt the imagery. Broadly speak-

ing, the TWI literature falls into two categories. The first approaches the problem by

expanding, or amending, classical beamforming and reconstruction algorithms in an

attempt to produce an image product with fewer artifacts [19, 20]. For example, [20]

6



proposes the use of Snell’s law to compensate for the RF propagation through a sin-

gle homogeneous wall. The wall imparts an additional delay relative to that required

for free-space beamforming that tends to defocus the imagery unless it is accounted

for. While improving focus, this technique does not address the problem of multipath

returns that would be present in many structures [21]. Another common approach to

TWI is to remove image artifacts by using autofocus, deconvolution, and postprocess-

ing techniques inspired by the SAR, geophysics, and radio astronomy communities.

In particular, [22] and [23] make use of the CLEAN algorithm [24] which has enjoyed

success in many applications where there is the need to recover an impulse response

that has been corrupted by nonideal behavior in the acquisition system.

Another application in which traditional processing methods fail is shallow-water

acoustic imaging using synthetic aperture sonar. In deep water, the sonar transmits

acoustic signals (or pings) and measures the reflection from the sea floor alone. In

shallow water, energy that radiates upward can reflect directly from the sea surface,

or it can bounce between the bottom and surface before being received. The result

is a corrupted image of the sea floor. Imaging in a shallow water multipath environ-

ment is arguably more difficult than the TWI problem because the sea surface moves

during the data acquisition. The traditional method of mitigating this problem is

to control the transmit and receive beam patterns of the sensor so as to place as

little gain as possible in the direction of the surface. Adaptive beamforming methods

have also been considered [25]. It seems possible that variational methods could be

applied under certain conditions. This begs the broader question of the nature of

the connections between traditional adaptive beamforming methods [26] and possible

variational approaches.

1.2.2 Interferometric Phase Unwrapping

When synthetic aperture images are collected along parallel paths, with a slight dif-

ference in grazing angle, the resulting image pair can be used to estimate the terrain

7



(a) SAR image intensity. (b) Corresponding interferogram.

Figure 1.1: SAR amplitude image and wrapped interferogram of Kilauea, collected
by the C/X-Band Spaceborne Imaging Radar (SIR-C/X) SAR. Images courtesy
NASA/JPL-Caltech.

height [3, 27, 17]. The complex-valued images are first co-registered and the phases

are then compared on a pointwise basis. The phase difference is related to the terrain

height. Since typical imaging radar and sonar wavelengths range between approxi-

mately 1–30 cm, it is nearly always the case that the terrain height variations within

the scene span multiple wavelengths. This situation creates ambiguities that must

be resolved through a suitable two-dimensional phase unwrapping procedure. An

example of a wrapped SAR interferogram is shown in Figure 1.1.

Phase unwrapping is one of two problems in the fields of SAR and SAS that

have experienced significant contribution from variational processing techniques. This

work was described in a series of papers by Ghiglia and culminated in a chapter in a

1998 book devoted to two-dimensional phase unwrapping [28]. Unfortunately, there

does not appear to have been much research in this area since. The variational

approach to phase unwrapping is outlined below.
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The object is to find the 2D phase function φ(x, y) that minimizes the cost func-

tional

J =
∫ ∫

f(φx, φy, x, y) dx dy, (1.1)

where f = |φx − ψx|p + |φy − ψy|p, and ψ(x, y) is the wrapped phase function derived

from the co-registered interferometric image pair. The resulting Euler-Lagrange equa-

tion is
∂

∂x

(
∂f

∂φx

)
+ ∂

∂y

(
∂f

∂φy

)
= 0. (1.2)

Substituting the partial derivatives of f with respect to φx and φy gives the following

differential equation for φ:

∂

∂x
[U(x, y)(φx − ψx)] + ∂

∂y
[V (x, y)(φy − ψy)] = 0, (1.3)

where

U(x, y) = |φx − ψx|p−2

V (x, y) = |φy − ψy|p−2. (1.4)

The functions U and V can be thought of as generalized data-dependent weighting

functions on the phase derivatives. These should not be confused with optional exter-

nal weights which might be supplied to incorporate prior knowledge of the spatially-

varying data quality. When p = 2, U and V are both equal to one, giving Poisson’s

equation

φxx + φyy = ψxx + ψyy, (1.5)

or simply ∇2φ = ρ, where ρ = ψxx+ψyy captures the measured data. The unweighted

least squares 2D phase unwrapping problem is thus reduced to Poisson’s equation,

and it may be solved using any of a number of efficient numerical schemes. If the

weights U and V are independent of φ, the result is a weighted least squares problem

that can be solved using a different set of numerical approaches. This latter case is

the most typical, as it is common in practice to assign weights of zero to portions of
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the data known to be of poor quality. Such would be the case in regions of shadow,

where the SNR is very low.

1.2.3 Synthetic Aperture Autofocus

The creation of synthetic aperture imagery is highly dependent on having a well-

sampled spatial aperture. For radio astronomy the difficulty is collecting a data

set with adequate support in the Fourier domain. When the support is irregular

or incomplete, the resulting imagery is likely to contain strong artifacts [29]. The

standard method for removing these artifacts is based on the CLEAN algorithm [24].

For SAR and SAS imaging, the problem is not that of achieving complete support

in the Fourier domain. Rather, the challenge is collecting data along a known path.

While radio telescopes use the Earth’s steady rotation for aperture synthesis, SAR

and SAS sensors are carried by aircraft and submersibles that move through fluid

media. It is difficult to travel along an ideal straight-line trajectory, yet deviations

larger than λ/8 can cause unwanted image artifacts. Effective motion measurement

and compensation, rather than corrective postprocessing, is generally the preferred

solution [5].

Autofocus methods were developed to remove residual motion and hardware-

induced errors from the imagery without relying on other sensor measurements. There

are a number of successful techniques that have become standard for spotlight-mode

SAR [2, 3]. For various reasons, SAS autofocus is a more difficult problem, and the

state of the art remains somewhat in flux.

There is a family of SAR and SAS autofocus techniques that resembles variational

methods [30, 31, 32], although the term ‘variational’ does not seem to have been used

in the literature. These begin by choosing a scalar-valued metric, such as contrast or

sharpness [33], to represent the quality of the entire image. The gradient of this metric

is then taken with respect to an unknown one-dimensional error function φ(x), and a

gradient descent optimization is performed to find the particular φ(x) that maximizes
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the image quality according to the chosen metric. It is important to point out that

there does not exist a universally-good image quality metric, as image quality is

inherently subjective and dependent on the scene content.

These variational autofocus techniques must operate on a form of the raw sensor

data, while the objective metric is computed from the resulting image. This means

that some level of processing is required at each iteration of the algorithm to transform

to the image domain. Unfortunately, synthetic aperture image reconstruction can be

quite expensive. This problem is bypassed and computational efficiency achieved by

assuming that the magnitude of the function φ(x) is bounded by the range resolution

of the sensor. This restriction permits the user to operate on a data set that is closer

to the state of the final image, thus reducing the computational cost of each iteration.

While autofocus is not part of this research, the topic appears to be ripe for a me-

thodical treatment in the literature using a variational framework. Additionally, given

the computing power that is commonly available today, the restrictions placed on φ(x)

should be revisited. For example, the prevalence of extremely powerful commodity

GPUs is enabling the use of simple, robust, brute force reconstruction techniques,

obviating the need for many of the efficient, but approximate, methods developed by

the SAR and SAS communities through the beginning of the 21st century [34].

1.2.4 Speckle Reduction

Speckle is a characteristic phenomenon of coherent imaging systems, be they optical,

microwave, or acoustic. Although often referred to colloquially as ‘speckle noise,’

it is not a form of noise in the true sense of the word. Speckle arises when the

surface being imaged is rough compared to the wavelength of the incident energy.

Under these conditions, the signal observed within any given resolution cell is the

phasor sum of many randomly distributed scattering centers. It has been shown that

the probability density function of speckle intensity, I, is described by the negative

exponential distribution [35]. An important property of this distribution is that the
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standard deviation is equal to the mean. Furthermore, that the intensity fluctuation

is comparable to its mean value is evidence of the fact that speckle can be visually

distracting and can mask details within the imagery. The average image contrast K

in speckle-dominated regions is equal to unity when it is defined as K = σI/µI .

Within the fields of synthetic aperture sonar and radar, speckle reduction has prob-

ably received the most attention from researchers wishing to apply variational and

PDE-based image processing techniques. The motivation is strong because speckle is

ubiquitous and can affect image interpretation. Furthermore, the traditional method

of speckle reduction, known as multilooking, mitigates speckle at the cost of image

resolution, which is a precious commodity indeed. PDE-based methods are attrac-

tive because they possess localized behavior driven by the scene content [36, 37].

This property results in an ability to preserve edges. Consequently, anisotropic diffu-

sion techniques have been applied to the problem of locating linear features, namely

pipelines and undersea cables, in SAS imagery [38, 39].

1.2.5 Anomalous Refraction in Synthetic Aperture Imagery

Traveling boluses induced by breaking internal waves have recently been observed in

synthetic aperture sonar imagery, where their appearance resembles natural seabed

ripple patterns [40]. These boluses cause a lensing effect that concentrates the acoustic

energy in a manner resulting in regions of increased intensity followed downrange by

reduced intensity. These were discovered because the same area was surveyed twice,

and the apparent sand ripples shifted in a manner that was inconsistent with known

sediment transport behavior in the area. A similar effect is well-known in the SAR

community, where certain atmospheric conditions can produce ‘moving sand dunes’

in the imagery [41].

Example SAS imagery showing the refractive effect of these boluses is given in

Figure 1.2. Detection is a difficult prospect and is of limited utility if repeat surveys

are required. This provides motivation for finding detection methods that can be used
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Figure 1.2: SAS images of the same scene were collected on three different passes on
the same day, at times 07:19 (left), 08:18 (center), and 12:05 (right). The scene size
is 80 m x 100 m and shows a pipeline with anchors on the seabed. The data were
collected by FFI’s HUGIN AUV carrying an interferometric SAS during the ARISE12
trials onboard the NATO research vessel Alliance, outside Elba island, Italy.

on single-pass imagery. Some approaches are suggested in [42], and one of them is

pursued in this research. Specifically, the use of optical flow for detecting the presence

of these effects is suggested. Conventional speckle-tracking techniques (such as are

used for interferometric image registration) are not suited to this problem because

the individual image frames will have different speckle realizations.

1.3 Nondestructive Testing and Evaluation

Certain types of nondestructive testing bear a strong resemblance to sonar and radar

array sensing applications, including synthetic aperture. This occurs in situations

where the measurement locations are constrained to be relatively far removed from

the area being interrogated and where fine resolution is desired. This is most obvi-

ously true for SAFT (synthetic aperture focusing technique) [43, 44]. A good deal of

success has been realized by applying radar and sonar array processing techniques to

NDE problems. In particular, the use of linearly-swept frequency modulated (LFM,
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or chirp) waveforms has enabled the rapid acquisition of broadband signals [45]. Fur-

thermore, space-time adaptive processing (STAP) techniques have recently shown

their potential utility [46].

In spite of these similarities and examples of successful cross-discipline technology

transfer, the typical NDE problem is, generally speaking, fundamentally more com-

plicated than typical radar or sonar applications. The reason for this is simple: As

previously discussed, radar and sonar usually assume free-space wave propagation,

very nearly allowing the user to ‘forget about the physics’ in a great number of im-

portant applications. Meanwhile, ultrasonic NDE applications often involve one or

more types of elastic wave propagation which are usually dispersive in nature [47].

Furthermore, these modes of propagation can couple into one another when waves

interact with damage or the external boundaries of the solid [48].

Variational methods have been applied to NDE problems [49], but the applications

are primarily for electromagnetic sensing modes, not ultrasonic. While the literature

contains a number of theoretical treatments, there is a relative dearth of experimental

results. One goal of the present research is to remedy this situation by applying

adjoint image reconstruction techniques to a set of ultrasonic wave measurements

collected in a laboratory.

1.4 Adjoint Active Surfaces for Imaging

In typical image processing applications active contours (surfaces) evolve in response

to image pixel (voxel) intensity to find the boundary of a region of interest. A

distinct advantage may be realized when the underlying measurements, or raw data,

are available. The physical laws governing the wave propagation and the observed

measurements are incorporated into the image reconstruction using the adjoint of

the forward model. It is thus applicable whenever a suitable physical model can be

identified and scattered or absorbed radiation can be observed. This differs from the
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general trends in the imaging literature in at least two key respects. First, it is aimed

at directly representing the geometry of the objects and boundaries of interest, as

opposed to making a 2D or 3D map of reflectivity or absorption. A similar approach

has been applied in the areas of medical optical tomography and RF underground

imaging [50, 51, 52] with promising results. Secondly, the boundaries are included in

the differential equations that govern the wave propagation. The technique should

therefore be capable of good performance even in multipath environments.
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CHAPTER 2

CONNECTIONS AMONG SYNTHETIC APERTURE
IMAGING TECHNIQUES

It is common knowledge that the disciplines of synthetic aperture radar and sonar

have exchanged technological advances for decades. Furthermore, both have benefited

from developments in the seismic imaging community. Such advances have occurred

only sporadically as researchers have become aware of cross-discipline similarities that

are not always obvious. This chapter surveys several key synthetic aperture imaging

fields and discusses fundamental commonalities among them. In particular, synthetic

aperture radar and sonar, X-ray computed tomography, seismic imaging, and radio

astronomy are considered.

Interestingly, synthetic aperture radar and sonar belong to a rather distinguished

family of Fourier imaging techniques that has garnered several Nobel Prizes:

• X-ray crystallography (Max von Laue, 1914, Physics)

• Holography (Dennis Gabor, 1971, Physics)

• Radio astronomy (Sir Martin Ryle and Antony Hewish, 1974, Physics)

• X-ray tomography (Allan Cormack and Godfrey Hounsfeld, 1979, Physiology

or Medicine)

• Magnetic resonance imaging (Paul Lauterbur and Peter Mansfeld, 2003, Phys-

iology or Medicine)

Synthetic aperture imaging practitioners have long recognized the existence of similar-

ities between these disciplines and their own, and with the abundance of researchers,

literature, and commercial products, it would seem as though ideas could flow freely
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among related technological specialties. The barrier to information exchange is, how-

ever, quite high in practice for three reasons. First, researchers tend to spend their

entire career specializing in a single field. Second, the scientific literature is permeated

by domain-specific jargon that is difficult for the uninitiated to negotiate. Thirdly,

the governing physics differ for each application. What might be a fundamental lim-

itation for one imaging mode could be a trivial concern for another. This chapter

begins to address the second and last of these concerns in hopes of creating an interest

in deliberately working across disciplines to advance the collective state of the art.

2.1 Survey of Imaging Modalities

The previously-stated goal is approached by summarizing the key technical challenges

associated with several imaging techniques.

2.1.1 Synthetic Aperture Radar

It is difficult to succinctly characterize the variety of SAR instruments and appli-

cations in existence. Broadly speaking, SAR operates at ranges on the order of

1–1000 km, and typical frequencies used for imaging range between 4 and 35 GHz (C

band to Ka band). Image sizes are on the order of 1–10 km, and fine resolution is

generally understood to be around 0.3 m or better.

SAR collections fall into two categories, stripmap and spotlight [1, 2, 3]. Stripmap

mode provides high area coverage rates, but it exhibits relatively coarse cross-range

resolution because the integration angle is limited to the antenna beamwidth. This

problem is overcome by spotlight mode imaging, in which the beam is continually

slewed to point toward a fixed location on the ground during the collection. The

integration angle may then be much larger than the beamwidth. The beamwidth

therefore limits the scene size of a spotlight image, as opposed to its resolution.

Since its inception in the 1950s by Carl Wiley, SAR technology has had to over-

come a number of technological obstacles. Notable examples are the transition from
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film recording and optical reconstruction to digital systems and the use of stretch re-

ceivers to overcome sampling rate limitations when employing large RF bandwidths.

Today, there are no significant challenges to achieving the aforementioned fine resolu-

tion criteria of 0.3 m. Substantially improving upon this is a difficult task, however.

For a given fractional bandwidth, increasing the transmitted RF bandwidth can be

done by employing a higher center frequency. However, at high frequencies it becomes

difficult to manufacture antennas and RF components capable of withstanding the

power levels necessary for achieving good SNR.

2.1.2 Synthetic Aperture Sonar

Imaging underwater over any appreciable distance can only be achieved using sound

waves, for light and radio waves attenuate far too quickly. Even high-frequency sound

waves do not propagate very far. Fine resolution real-beam imaging sonars have

limited ranges for this reason, and synthetic aperture sonar is the preferred choice for

creating very detailed images of the sea floor. SAS typically operates somewhere in

the band of 20–300 kHz. Typical range resolution is on the order of 3 cm, which is

easy to achieve given current transducer technology and the fact that this resolution

translates into only 25 kHz of transmitted bandwidth.

Two key innovations have made SAS a viable technology. The first is the use of

the Vernier array, in which multiple receivers are used to increase the area coverage

rate by allowing the sonar to extend its reception time [53, 54]. The increase in

coverage rate is proportional to the number of receivers used. The second enabling

technology is the use of redundant phase centers, in which a subset of the Vernier

array is overlapped between successive pings [55]. The signals from the overlapping

channels are cross-correlated, and the measured delay is used to infer the platform

trajectory.

The most challenging problems for SAS come from operating in the extremes of

ocean depth. Perhaps surprisingly, imaging in shallow water is very difficult. The
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environment is not free space, as the sea surface acts as a constantly-moving mirror

to produce multipath reflections that corrupt the data. Furthermore, shallow water

may exhibit dramatic salinity and temperature gradients that cause refraction of the

sound, whereas most reconstruction algorithms assume straight-line propagation. At

the opposite end of the scale, it is difficult to manufacture vehicles and sensors that

can travel to the deepest parts of the ocean. In addition to withstanding the extreme

pressure, the unmanned vehicles that carry SAS must have enough on-board power

to make the trip to and from the ocean floor while also having enough survey time to

make the journey worthwhile. Acoustically speaking, however, operating in the deep

ocean is relatively easy. The environment is free of surface reflections and the water

is generally homogeneous, meaning that the actual propagation very closely matches

the simple theoretical model used to derive reconstruction algorithms.

2.1.3 X-Ray Computed Tomography

X-ray CT is widely used for imaging the human body. It differs from SAR and SAS

in that it measures transmitted, rather than reflected, energy. Regardless, the under-

lying mathematics of image reconstruction are remarkably similar to spotlight mode

SAR [56, 57]. Many of the challenges of creating a good CT image involve trade-offs

associated with improving the data quality at the expense of exposing the patient to

an increased dosage of radiation [58]. Current medical CT scanners offer a resolution

limit on the order of less than 1 mm. Manufacturing smaller detectors would improve

image resolution, but would also be more susceptible to noise, necessitating a higher

source intensity and increased risk to the patient. Facets of this balance between

source flux and image quality shape many areas of research and vendor intellectual

property.

Apart from the hardware itself, another key component of successful CT imaging is

the ability to calibrate the data. Within the industry, this process is known as physical

correction and is quite complicated because of the sophistication and sensitivity of
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the equipment. In fact, the physical correction constitutes a significant fraction of

the intellectual property associated with a commercial CT scanner.

Unwanted motion is another difficulty for CT reconstruction. Unlike SAR and

SAS, the motion of the CT scanner is controlled and well-understood as it rotates

around the patient. However, the motion of the body through breathing and heartbeat

can easily corrupt the image. Tracking and correcting for this motion is an active

area of research in the medical imaging community. Another serious problem for

CT imaging is the presence of metal in the body, such as dental fillings and titanium

replacement joints. These objects absorb the incident X-rays, effectively creating holes

in the data that result in visual artifacts. Current research efforts are investigating

methods of mitigating these artifacts and interpolating through the regions of missing

data.

2.1.4 Seismic Imaging

Of all disciplines using synthetic aperture techniques, seismic imaging is probably

the most mathematically sophisticated as well as the most difficult for outsiders to

understand. The sophistication comes from the fact that the Earth’s interior is a

complex environment and is difficult to model, much less reconstruct from measure-

ments. The steep learning curve results from the somewhat unusual circumstance

that seismic imaging straddles pure science as well as heavy industry. The literature

therefore combines deep concepts from physics and mathematics with a century’s

worth of petroleum field engineering jargon [59].

While other fields emphasize increasingly higher image fidelity with respect to the

true scene properties (for example reflectivity or attenuation coefficient), the geophys-

ical community is primarily interested in identifying the structure of reflecting layers

within the earth. It is less concerned with solving for the exact physical properties

that cause the reflections. Furthermore, certain environments may favor certain re-

construction techniques. In contrast, other disciplines have a clearer path toward a
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single approach that will render the best possible image.

Some of the reconstruction methods used by the geophysics community overlap

with other fields. In particular, what the SAR and SAS communities refer to as time-

domain reconstruction, or backprojection, is known as Kirchhoff migration to geo-

physicists. Perhaps more significant is the ω-k algorithm developed by Stolt [60, 61].

It was a revolutionary step in that it achieves a mathematically exact reconstruc-

tion while employing the efficiency of the fast Fourier transform (FFT). It assumes

a constant wave propagation speed, which is usually not a good fit to the subter-

ranean environment. It is, however, an excellent model in the majority of radar and

sonar applications. The ω-k algorithm is therefore a significant gift from the seismic

community.

2.1.5 Radio Astronomy

Aperture synthesis for radio astronomy is an impressive technology, if for no other

reasons than the sheer scales involved and the sensitivity of the equipment used to

receive signals from deep space. While the aforementioned collection methods involve

forming a synthetic aperture using a moving aircraft or a rotating X-ray detector,

radio astronomy forms apertures using the Earth’s rotation [29]. Of the techniques

discussed here, radio astronomy is the only one that is passive. Images are formed on

the principle that signals from pairs of antennas, called baselines, can be correlated

and the degree of coherence measured as the Earth rotates. The rotation of the

baseline separation vectors determines the loci of the sampled data, resulting in a

two-dimensional coherence, or visibility, map.

The Van Cittert–Zernike theorem from statistical optics states that the visibility

is related to the image intensity through the Fourier transform. Radio astronomy

image reconstruction therefore strongly resembles that of spotlight SAR via the polar

formatting algorithm. In both cases, the measured data can be treated as samples

within the frequency domain representation of the image sought. The sampling is
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usually nonlinear, so reconstruction involves interpolating the available data onto a

rectangular grid of samples that is amenable to inversion via the FFT.

Radio astronomy spectra are also usually poorly sampled in some respect. This

situation resulted in algorithms, such as CLEAN [24], that are used to improve the

impulse response of the image. Some of these have migrated to the SAR and SAS

communities. Geophysicists also use similar techniques for mitigating the effect of

multiple reflections inside the earth.

2.2 Image Reconstruction

This section illustrates how reconstruction algorithms for the technologies listed above

can all be traced back to a core set of mathematical principles, namely the adjoint

and the pseudoinverse. Borrowing the notion of ‘exploding reflectors’ from the seismic

literature, the scene is represented as a continuum of sources all radiating simultane-

ously, combining the reflectivity and transmitted signal into a single function f(x, t).

Reflection data can then be treated as though the signals originate at the reflectors,

but travel with half of the actual propagation speed. This general model allows one

to ignore the reflection/transmission nature of the specific problem. A linear opera-

tor T is next introduced that maps the virtual source field f(x, t) into measurements

s(xm, t) made at the set of observation points {xm}. The mapping T is usually taken

to be the convolution of f(x, t) with the free space Green’s function. The frequency

domain version (usually associated with the Helmholtz equation) will be preferred for

the derivations to follow:

s(xm, ω) = Tf(x′, ω) =
∫
X

e−i2kR

4πR f(x′, ω)dx′, (2.1)

where R = |x′ − xm| and k = ω/c.

The adjoint operator T ? associated with T is defined by the relationship 〈T ?s, f〉 =

〈s, Tf〉, where the angle brackets denote the inner product (also see section 3.1). The

adjoint can be found by substituting the forward mapping into this definition and
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rearranging the result:

〈s, Tf〉 =
∫

Ω
s∗(xm, ω)

∫
X
f(x′, ω)e

−i2kR

4πR dx′dω

=
∫
X
f(x′, ω)

∫
Ω
s∗(xm, ω)e

−i2kR

4πR dωdx′

=
∫
X
f(x′, ω)

∫
Ω

{
s(xm, ω)e

i2kR

4πR

}∗
dωdx′

= 〈T ?s, f〉 , (2.2)

where the adjoint operator, applied to s(xm, ω), is seen to be

T ?s(xm, ω) =
∫

Ω

ei2kR

4πR s(xm, ω)dω. (2.3)

The operator T ? is identified as the backprojection operator since it maps points s in

the measurement space back into the space of the scene. The corresponding recon-

struction algorithm pseudocode is as follows:

Initialize the output image

for Each point x in the reconstructed image do

for Each measured signal in the set {s(xm, ω)} do

· Backproject all frequencies ω from xm to x using the adjoint operator T ?s(xm, ω);

· Accumulate the resulting scalar value into the output image at location x;

end for

end for

While the adjoint operator (3.43) backprojects the measured data as desired, it does

not compensate for effects such as spherical spreading. In fact, it introduces an-

other spreading term. A filtered backprojection solution based on the pseudoin-

verse performs the desired compensation and also serves as the least squares solution

when the measurements are subject to noise. The least squares solution is given by

f = (T ?T )+T ?s, where the superscript + denotes the pseudoinverse. This solution
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backprojects and then filters, while most practical implementations reverse this or-

der. The operators T and T ? can be expanded as sets of orthonormal basis functions,

allowing the solution to be rearranged to obtain f = T ?(TT ?)+s [62]. This is the

desired outcome, applying filtering before backprojection. For the forward model

given by (2.1) and noiseless data s, the term (TT ?)+ reduces to (4πR)2, providing

the necessary compensation for the spreading associated with T and T ?.

The preceding result matches backprojection as commonly performed for SAS,

SAR, and also basic seismic reconstruction. Furthermore, the well-known Stolt, or

ω–k, algorithm can be derived from (2.1) [60]. An important branch of reconstruc-

tions can be developed when the imaged scene is interrogated by plane waves or

parallel rays. This provides the desired connection to X-ray CT, radio astronomy,

and spotlight mode SAR.

For spotlight SAR, the far-field assumption means that the signal reflected from

a given range is proportional to the ground reflectivity integrated over a plane, at

that range, normal to the radar’s line of sight [3]. The recorded signal is called

a range profile. The X-ray CT problem is one of transmission, not reflection, and

scanners operate on the principle that detectors measure the amount of radiation

passing through the patient along straight-line rays from the source. The set of

measurements provided at a single time by the detector array is called a projection,

or view. According to the projection slice theorem, the 1D Fourier transform of a

spotlight range profile or a CT view represents a single slice through the 2D spectrum

of the desired image. The connection to radio astronomy is made at this point, because

radio interferometry arrays directly measure the 2D Fourier transform of the intensity

of the portion of sky being imaged. Reconstruction techniques for all three imaging

modalities involve algorithms for taking the Fourier transform of irregular or non-

equispaced sampled spectra. This often means interpolating the frequency-domain

samples onto a regular sampling grid, suitable for applying the FFT.
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CHAPTER 3

ADJOINT ACTIVE SURFACES FOR LOCALIZATION
AND IMAGING

This chapter addresses the problem of localizing and segmenting regions embedded

within a surrounding medium by characterizing their boundaries, as opposed to imag-

ing the entirety of the volume. Active surfaces are used to directly reconstruct the

shape of the region of interest. The optimal surface is computed iteratively via gradi-

ent descent that exploits the sensitivity of an error minimization functional to changes

of the evolving active surface. The adjoint model is used to compute the sensitivity,

and in this respect the method shares common ground with certain other disciplines

such as optimal control.

The active surface technique is developed and illustrated in the framework of

wave propagation governed by the scalar Helmholtz equation. Two derivations are

presented: The first is concerned with finding voids in an infinite medium. The sec-

ond permits wavefields to exist inside the unknown surfaces and can be used when the

surrounding medium is bounded. The former is good for illustrating the approach to

deriving active surfaces, while the latter is more general. Both models are relevant to

a variety of problems of practical interest. Potential applications include electromag-

netics, acoustics, geophysics, nondestructive testing, and medical imaging. Simulated

experiments are presented for both models, and experimental results are described in

the next chapter.

Since a primary goal of this dissertation is to present adjoint-based active surface

reconstruction to the broader signal processing community, the scalar wave equation

is chosen as the governing physical model because of its simplicity and ubiquity.

The discussion begins by reviewing the adjoint operator, the Green’s function, and

their application in the context of inverse problems to determine the sensitivity of
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an objective function relative to a desired set of inputs. This general concept is used

in many disciplines, sometimes explicitly, sometimes not. The forward problem of

wave scattering by multiple objects embedded within a homogeneous medium is then

introduced, followed by the associated inverse problem formulated by deriving the

shape gradient using variational calculus to determine the geometry that minimizes

the mismatch between the measured and predicted scattering.

The technique is demonstrated using numerical simulations of circular and spher-

ical regions embedded within a homogeneous medium. Using these shapes permits

the use of simple closed-form solutions for the forward and adjoint models based on

harmonic expansions. The procedure for dealing with more complicated geometries

is the same, although numerical methods such as the boundary element method [63],

finite element method [64], or the method of fundamental solutions [65] would be

necessary for computing the shape gradient.

3.1 The Adjoint Operator

The adjoint operator is well known in several fields of study as being useful for de-

termining the sensitivity of a measured quantity to changes in some aspect of the

governing physics. Notable examples are atmospheric and ocean circulation, optimal

control, and geophysics [66, 67, 68, 69]. Fields dominated by traditional Fourier-based

signal processing ideas, such as radar and sonar, do not seem to widely exploit the

full potential of adjoint analysis for solving their problems. The reason for this is

uncertain, although one explanation may be that the traditional approaches, often

based on linear time-invariant systems, have worked well for the radar and sonar

applications that have been of primary interest since World War II. The adjoint is

sometimes found in signal processing applications, but not always explicitly. For

example, synthetic aperture backprojection can be formulated in an adjoint context

[70, 62] as described in Chapter 2. Looking ahead, emerging problems are proving
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too difficult for conventional methods.

Discussions of adjoint operators in the literature take a number of viewpoints.

Most of these are somewhat opaque to the reader who is less interested in operator

theory and instead simply wants to know what is the practical use of the adjoint.

Marchuk [71] and Estep [72] develop the adjoint problem in a rather approachable

way: Starting with a differential operator L acting on a function u, form the inner

product by multiplying by an arbitrary test function v and integrating over the domain

of interest. Next, use integration by parts to move all derivatives off of u and onto

v. The resulting operator on v is the adjoint, which is denoted as L?. Instead of

motivating this procedure at the outset, the discussion below simply follows it and

then explores its usefulness.

Consider a linear differential operator L operating on a scalar field u(x, t), defined

over a spatial domain Ω, with source term f(x, t):

Lu = f. (3.1)

This operator is accompanied by given boundary conditions Bu = 0 on the boundary

of Ω, denoted as ∂Ω. Possible boundary conditions include prescribing the value of

u, its derivative, or a weighted combination of the two. These are known classically

as Dirichlet, Neumann, and Robin boundary conditions, respectively.

The scalar wave equation provides a concrete example, for which L = ∇2 −

c−2∂/∂t2 in the time domain. The temporal Fourier transform gives the Helmholtz

operator L = ∇2 + k2 which is the wave equation for a single frequency ω, where

ω is embedded in the wavenumber k = ω/c. The differential operator is always

accompanied by appropriate boundary conditions. For the wave equation in an infinite

domain Ω, the Sommerfeld radiation condition [73, 74] is used in conjunction with

whatever local boundary conditions occur at any scattering surfaces.

The inner product is now formed between (3.1) and a test function v, which is

allowed to be arbitrary at this point. The inner product is denoted using angled
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brackets:

〈Lu, v〉 =
∫

Ω
vLu dx, (3.2)

where the integral is taken over the domain Ω of u and v. Integrating by parts as many

times as needed (twice for the Helmholtz operator) and applying the given boundary

conditions to shift all the derivatives from u and onto v provides a new operator

on v [71, 18]. This operator is the adjoint (that is, the operator adjoint to L) and

is denoted by L?, together with the associated boundary conditions B?v = 0. The

function v is often also called the adjoint, with the distinction between the adjoint

operator L? and the adjoint function v usually being clear from context.

The process of integrating by parts results in definite integrals evaluated at the

boundary of the domain Ω. Where necessary, the values of v are chosen such that

these terms are forced to be zero, leaving the following equality

〈Lu, v〉 = 〈u,L?v〉 , (3.3)

which is known as Lagrange’s identity [71]. The requirements imposed on v to obtain

(3.3) give the boundary conditions B?v = 0 that must accompany the adjoint operator

L?. The adjoint problem is permitted to be inhomogeneous, just as is (3.1)

L?v = g, (3.4)

where the presence and meaning of g is explained in the next section.

In summary, there are two related problems: the main (3.1) and its adjoint (3.4).

The main problem is the original physical phenomenon of interest. The second,

adjoint, problem is obtained from the steps required to satisfy Lagrange’s identity

(3.3). The adjoint problem involves the two functions v and g that are soon to be

specified. The meaning assigned to these is based on the desire to obtain either the

solution of (3.1) or some other particular insight into this problem. It may occur that

L? = L and B? = B for certain applications. This is true when (3.1) is a general

Helmholtz-type differential operator. Such operators L are said to be self-adjoint [18].
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3.2 The Green’s Function

Suppose that the field u may be measured using a process that can be represented as

the inner product of u and some measurement function. If so, then this measurement

function will be identified with g in (3.4), allowing the properties of the adjoint oper-

ator to be exploited. The desired measurement functional is denoted as Jg = 〈u, g〉,

where the subscript indicates that g is the process being used to measure u. Observe

that Jg equals the right-hand side of (3.3). In general applications the function g rep-

resents the characteristics of an instrument or experiment used to measure u. From

(3.1), (3.3), and (3.4) it can be seen that the same measurement may be represented

using any of several expressions:

Jg = 〈u, g〉 = 〈u,L?v〉 = 〈Lu, v〉 = 〈f, v〉 . (3.5)

The best choice among these options depends on the particular objectives and the

available data [71].

The present concern is the special case for which u is measured at exactly one

point, x0. This leads to the Dirac delta function as the choice for g: g = δ(x − x0).

Acknowledging, but skipping over, the mathematical importance of treating the delta

function as a limit of a distribution (3.5) becomes:

Jg(x0) = 〈u(x), δ(x− x0)〉

= u(x0).
(3.6)

As desired, (3.4) becomes the special relationship

L?v(x) = δ(x− x0), (3.7)

with B?v = 0 on ∂Ω, whose solution v is known as the Green’s function and is given

the special symbol G(x, x0).

Assuming that the function G(x, x0) is known that is transformed into a delta

function when operated upon by L?, the original problem (3.1) can be solved using
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(3.5). That is, the value of the field u at any desired location x0 can be evaluated by

computing the inner product of the source term f and the Green’s function:

u(x0) = 〈f(x), G(x, x0)〉

=
∫

Ω
f(x)G(x, x0) dx.

(3.8)

Because it weights the contribution of the source term f(x) as it is perceived at the

point x0, the Green’s function is sometimes called the influence function. It is also

known as the impulse response because u is equal to G(x, x0) when the source term

f is taken to be a delta function (or impulse). The motivation for this terminology

becomes even clearer when self-adjoint operators are being studied.

The integral (3.8) is used in electromagnetics where f(x) represents the current

distribution on an antenna and u(x) represents the radiated electric field. In the

field of acoustics it is known as the Rayleigh integral and is used to predict the sound

created by a vibrating source where f(x) represents the velocity of the moving surface

[75]. The next section outlines the use of adjoint operators and the associated Green’s

functions in the solution of inverse problems.

3.3 Adjoint Methods for Inverse Problems

The theory above is now applied to a toy problem to introduce the main idea of the

adjoint method. Constraints will be introduced later. For the rigorous formulation

of the theory see Marchuk, [71] and [76]. Consider the boundary value problem for u

defined on a domain Ω

Lpu = S, (3.9)

with Dirichlet boundary conditions, u = 0 on ∂Ω. Assume that the differential

operator Lp = ∇2 + k2(p) is of the Helmholtz type and the wavenumber k is function

of the unknown parameter vector p = [p1, p2, . . . pN ] that is to be estimated fromM
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measurements ûm at the locations xm, m = 1, . . . ,M . To do so, the energy functional

E(u, û) =
M∑
m=1

1
2(u(xm)− ûm)2 (3.10)

representing the mismatch between measurements and the predicted values um =

u(xm) via (3.9), can be minimized with respect to the vector of parameters p. The

factor of 1/2 is included for convenience, as it cancels the factor of 2 that comes from

differentiating the energy.

An artificial time dependence p(t) is introduced to denote the convergence of the

parameter estimation. Since the Helmholtz equation is expressed in the frequency

domain, this additional usage of the variable t should introduce no confusion. An

evolution equation for p can be derived as follows. The time variation of the energy

E is given by
dE

dt
=

M∑
m=1

(u(xm)− ûm)∇pu(xm) · dp
dt
, (3.11)

which depends upon the gradient ∇pu(xm), where ∇p ≡ [∂/∂p1 ∂/∂p2 . . . ∂/∂pN ].

The term ∇pu(xm) is the sensitivity of the function u at the location x = xm due to

variations δp in the parameter vector p. It is seen from (3.11) that, in order to reduce

E by the maximum possible amount, the parameter p should change in time as

dp

dt
= −(u(xm)− ûm)∇pu(xm) (3.12)

for each of the M measurements. The key element in such equations is the gradient

∇pu(xm), which can be computed as follows. If the nth parameter pn changes as

pn+δpn then u varies as u+δu according to (3.9) because the solution u+δu satisfies

(3.9) with pn replaced by pn + δpn. After neglecting higher order terms since δpn is

infinitesimal, δu satisfies

Lpδu = −2k ∂k
∂pn

δpnu n = 1 . . . N, (3.13)

with the condition δu = 0 imposed on the boundary ∂Ω. Dividing both sides by δpn
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and taking the limit as δpn → 0 gives

Lp
∂u

∂pn
= −2k ∂k

∂pn
u n = 1 . . . N, (3.14)

with the boundary condition that ∂u/∂pn = 0 on the boundary ∂Ω. The solution of

this boundary value problem gives the variation in u due to the variation in the nth

parameter. The limitation of this approach is that (3.14) has to be solved for each of

the N parameters. Thus, in order to compute the MN sensitivities ∇pu(xm), (3.14)

needs to be solved N times. This is computationally efficient for well-posed problems

since N � M . However, if N � M the computation of these sensitivities becomes

slow and cumbersome via (3.14). This is typical of ill-posed inverse problems where

the number of parameters N to be estimated is much larger than the number M of

available measurements.

The adjoint method accelerates the computation of the sensitivities for the case of

N �M [77, 78, 67]. The basic idea behind this method is the concept of the Green’s

function G(x, xm) of the differential operator Lp, introduced in the previous section,

which satisfies L?pG = δ(x − xm) and G = 0 on ∂Ω. The function G(x, xm) can be

interpreted as the response of the physical system described by (3.9) to a Dirac delta

function located at x = xm. Thus, (3.13) can be solved in terms of G(x, xm) as

∇pu(xm) = −2k∇pk
∫

Ω
G(x, xm) u(x)dΩ. (3.15)

This is the key equation in any adjoint formulation that speeds up the computation of

the gradient ∇pu(xm) or, equivalently, the variations δu(xm). For ill-posed problems

(N � M) the adjoint method is more efficient than the standard method based on

the direct solution of the sensitivities through (3.14). Indeed, the adjoint technique

requires only M solutions of the boundary value problem (3.9) in order to obtain the

Green’s function for different adjoint source locations xm. The computation of u then

reduces to a simple integration any time one chooses the N×1 vector of parameters p.

32



The following discussion introduces the problem of wave scattering by multiple

objects within a homogeneous medium (forward problem) and the associated inverse

problem of finding the shape of the heterogeneities given measurements of the scat-

tered field. An evolution equation for the object boundary depending on the param-

eter vector p in (3.12) is derived from the shape gradient. This is the sensitivity of

the wave field to changes in the shape of the objects, which is derived using a La-

grange multiplier approach to enforce a differential constraint, similar to (3.9), leading

naturally to the adjoint equations.

3.4 Shape Gradient for Opaque Scatterers in an Unbounded
Domain

Consider, as shown in Figure 3.1, the unbounded domain Ω partitioned into an outer

domain Ω0 and some number of subdomains Ωj. The notation for the domains is

Ω = Ω0 ∪ Ωj, where the internal boundaries of the j subdomains are denoted Γj

and the outer boundary of Ω0 as Γ. Thus, the outer domain (the one containing the

subdomains, or unknown objects) is denoted as Ω0, its outer boundary is Γ, and its

complete boundary is Γ0 = Γ ∪ Γj. In this example, the domain is unbounded, so

the boundary Γ can be thought of as being infinitely far away. Wave propagation

within Ω0 is governed by the Helmholtz equation, and each inclusion Ωj is a void, on

whose surface the field variable u is assumed to be zero. Another common boundary

condition is ∂u/∂N = 0. The domain is unbounded, so u is also taken to be zero on

an imaginary surface Γ located very far away. The operator and boundary conditions

are summarized as:

Lu = S, x ∈ Ω0 (3.16a)

u = 0, x ∈ Γ0, (3.16b)

where Lu = ∇2u+ k2u.

Since measurements are generally subject to noise, the problem is framed in the
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Figure 3.1: Source illuminating an inclusion embedded in a domain Ω0 containing
several measurement locations. Only a single source and inclusion are shown for
clarity.

least squares sense by choosing the surface(s) Γj to minimize the following energy

term representing the summed squared error between the measurements ûm and the

predicted value um at each of the points xm:

EM =
M∑
m=1

1
2
(
u(xm)− ûm

)2
. (3.17)

Furthermore, the forward model Lu = S is satisfied exactly as a strong constraint by

defining the new energy

ĒM =
M∑
m=1

1
2
(
u(xm)− ûm

)2
+
∫

Ω
v(Lu− S) dx

=
M∑
m=1

1
2
(
u(xm)− ûm

)2
+
∫

Ω
v(∇2u+ k2u− S) dx

(3.18)

The following derivation uses this energy functional to develop a gradient descent

algorithm to find the desired Γj.
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To begin, integration by parts is used to remove the higher-order derivatives of u

in (3.18):

ĒM =
M∑
m=1

1
2
(
u(xm)−ûm

)2
+

J∑
j=1

∫
Γj
v∇u·N 0 ds+

∫
Ω0

(−∇v·∇u+k2vu−Sv) dx. (3.19)

The integration by parts results in integrals over the surfaces bounding Ω0. The outer

boundary is assumed to be far away, such that the Sommerfeld radiation condition

can be used to treat its contribution as zero. This leaves the integrals over the

interior surfaces as shown above. These surface integrals need to be eliminated by

an appropriate choice of boundary conditions on either u or v. The condition u = 0

has been previously specified by the governing physics, so v = 0 on Γj is the obvious

choice. This type of boundary condition corresponds, for example, to acoustic waves

interacting with a free surface [79]. (In certain other applications, such as acoustic

reflection from rigid boundaries, the normal derivative of u would equal zero, providing

a different condition that could remove this term.) Imposing v = 0 on the interior

boundaries Γj leaves

ĒM =
M∑
m=1

1
2 (um − ûm)2 +

∫
Ω0

(−∇v · ∇u+ k2vu− Sv) dx. (3.20)

The next step is to introduce the artificial time parameter, as in (3.11), and take the

derivative with respect to it

dĒM

dt
=

M∑
m=1

(um − ûm)ut,m +
J∑
j=1

∫
Γj

(−∇v · ∇u+ k2vu− Sv)(Γt · N 0) ds

+
∫

Ω0
(−∇vt · ∇u−∇v · ∇ut + k2vtu+ k2vut − Svt) dx.

(3.21)

The surface integral above can be simplified by reusing the condition v = 0 on Γj and

noting that the same is true for the source term, so long as the evolving surface is not

allowed to reach the location of the source. Making this adjustment and integrating
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by parts within the volume integral to remove the gradients from vt and ut gives:

dĒM

dt
=

M∑
m=1

(um − ûm)ut,m +
J∑
j=1

∫
Γj

(−∇v · ∇u)(Γt · N 0) ds

+
∫

Ω0
(k2vtu+ k2vut − Svt + vt∇2u+ ut∇2v) dx

−
J∑
j=1

∫
Γj

(vt∇u+ ut∇v) · N 0 ds

(3.22)

The volume integral and summation over the measurement error terms can be elimi-

nated by recalling that ∇2u+k2u−S = 0 and by imposing as the governing equation

for the adjoint, ∇2v+k2v+∑M
m=1(um− ûm

)
= 0. One of the newly-introduced surface

integral terms can also be eliminated reusing v = 0 on Γj. The result is:

dĒM

dt
=

J∑
j=1

∫
Γj

(−∇v · ∇u)(Γt · N 0) ds−
J∑
j=1

∫
Γj

(ut∇v) · N 0 ds. (3.23)

The second term may be eliminated since u = 0, and therefore ut = 0, on the surface

Γj. The unit normal vector N 0 points outward from Ω0, so it is convenient to replace

it with −N j, giving

dĒM

dt
=

J∑
j=1

∫
Γj

(∇v · ∇u)(Γt · N j) ds. (3.24)

The derivative dĒM/dt is maximized when Γt · N J = ∇v · ∇u. Since the goal is to

minimize this quantity, the desired shape gradient is

Γt = −(∇v · ∇u)N j. (3.25)

Recall that one of the first steps in the derivation is to choose conditions to

eliminate terms that do not contribute to the shape gradient. These conditions are

either (1) dictated by the governing physics of the forward model, or (2) imposed on

the adjoint function. Whichever approach is taken, a complementary condition will

be required later in the derivation. These options are summarized in Table 3.1 for the

problem above. It can be seen that a certain symmetry arises from the mathematics in

that the physics governing the forward problem are mirrored in the adjoint problem.
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Table 3.1: Choices for boundary conditions on the interior surfaces Γj used to obtain
the shape gradient.

Condition to chosen eliminate surface
integral in Equation (3.19)

Condition required to eliminate
surface integral in Equation (3.23)

v = 0 u = 0, or constant
∂u
∂N = 0 ∂v

∂N = 0

3.5 Shape Gradient for Complex Scatterers in a Bounded
Domain

This section expands on the result above by (1) deriving the shape gradient for a

bounded domain, (2) allowing wave propagation within the scattering regions Ωj, and

(3) generalizing the Helmholtz operator to allow for diffusive media. The approach

to deriving the shape gradient is the same, but the algebra is considerably more

complicated.

The problem shown in Figure 3.2 is similar to the one shown in Figure 3.1, except

that the domain Ω is bounded on its exterior in addition to being partitioned into

subdomains Ωj. As before, the notation for the domains is Ω = Ω0 ∪ Ωj, where the

internal boundaries of the j subdomains are denoted Γj and the outer boundary as Γ.

Thus, the outer domain is denoted as Ω0, its outer boundary is Γ, and its complete

boundary is Γ0 = Γ ∪ Γj.

Within the outer domain and the jth subdomain, the material properties are

homogeneous and characterized by the pairs (d0, µ0) and (dj, µj) respectively. The

variables d and µ represent diffusion and propagation constants for the Helmholtz

equation. The propagation constant was previously represented as k2, but adher-

ing to this more traditional notation would introduce unwanted superscripts in the

present context, so µ = k2 is used instead. The present application is restricted to

finding the unknown boundaries, but the material properties could be incorporated
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Figure 3.2: Source illuminating an inclusion embedded in a (possibly bounded) do-
main Ω0 containing several measurement locations. Only a single source and inclusion
are shown for clarity.

into the solution by including them in the vector of unknowns p used previously in

the discussion of adjoint solution methods.

The information of ultimate interest is an estimate of the boundaries Γj, which

could represent the interior structure of a building, objects buried in the sea floor or

the Earth, or even tumors within the body. The objective of finding the boundaries

is reached somewhat indirectly by meeting a secondary goal of reconstructing the

function u over the domain Ω given known excitation source(s) S as well as a set of

M measurements ûm = u(xm) + ηm at different points xm ∈ Γ, m = 1, . . . ,M , along

the boundary. The ηm terms are random samples from a zero-mean measurement

noise process η. The function u represents the total incident and scattered field of

the type of radiation appropriate to the problem. It is assumed that u is governed by
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the following PDE and Robin boundary condition

Lu = S, x ∈ Ω (3.26a)
∂u

∂N
+Bu = 0, x ∈ Γ. (3.26b)

The operator L depends upon the partitioning Ωj, j = 0, . . . , J of the domain Ω

resulting from the unknown interior surfaces Γj, j = 1, . . . , J . It is defined as follows

(Lu)(x) = (Ljuj)(x), x ∈ Ωj (3.27a)

with

Lj .= −dj∇2 + µj, (j = 0, . . . , J), (3.27b)

where uj denotes the restriction of u to Ωj, with the following matching boundary

conditions:

u0 = uj (3.27c)

and

d0 ∂u
0

∂N 0 = −dj ∂u
j

∂N j
, (3.27d)

for x ∈ Γj, (j = 1, . . . , J) imposed across the internal contours Γj. These indicate the

continuity of u and its normal derivative across each of the subdomain boundaries.

The operator (3.27) describes the propagation of single-frequency waves. The

wavenumber k may be complex-valued and is determined by the relationship k = √µ .

In typical applications where there is no diffusion d equals −1, and Equation (3.27b)

becomes the ordinary Helmholtz equation. If one wishes to account for attenuation

due to absorption, then the wavenumber is complex-valued, with the imaginary part

representing the absorption term. An excellent discussion of the physical significance

of real and complex-valued wavenumbers can be found in Gumerov [80]. In the event

that the constant B in (3.26a) equals zero, the Robin boundary condition collapses

to a Dirichlet condition. The Robin boundary condition can be used to impose the

Sommerfeld radiation condition on the outer domain [73].
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For the sake of convenience, let d = (d0, d1, . . . , dJ) and µ = (µ0, µ1, . . . , µJ) denote

the full set of dj and µj coefficients respectively. No similar notation will be used for

the set of interior boundaries Γj since the symbol Γ is already reserved for the exterior

boundary of the complete domain Ω. However, the full set of Γjs can still be denoted

compactly by noting that Γ1 ∪ . . .∪ΓJ = Γ0 \Γ. A condensed summary, therefore, is

that the operator L in the forward model (3.26a) is defined by (3.27) once d, µ, and

Γ0 \ Γ are given.

The inverse problem may now be stated as that of determining the unknown in-

terior partition surfaces Γ0 \Γ which produce an operator L, via (3.27), that yields a

function u whose values at each xm match the known measurements ûm once the cor-

responding forward model (3.26a) has been solved. It is assumed that the coefficients

d and µ are known.

As before, the desired matching problem is posed in the least squares sense by

choosing the surface Γ0 \ Γ to minimize the energy term representing the summed

squared error between the measurements ûm and the true value u at each of the points

xm:

EM =
M∑
m=1

1
2
(
u(xm)− ûm

)2
. (3.28)

This equation corresponds to (3.10), and the goal is to derive a gradient descent based

on the idea of changing the unknown boundary Γ0 \ Γ until EM is minimized. The

sifting property of the delta function is used to write the energy EM in integral form

as

EM =
∫

Γ
g
(
u(x), x

)
ds, (3.29)

where

g(u, x) =
M∑
m=1

1
2
(
u− ûm

)2
δ(x− xm). (3.30)

Furthermore, equation (3.26a) (the forward model Lu = S) is satisfied exactly as a
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strong constraint by defining the new energy

ĒM =
∫

Γ
g ds+

∫
Ω
v(Lu− S) dx. (3.31)

The function v is a Lagrange multiplier and will be shown to be the adjoint of u. The

method of constraint (3.31) contrasts with a weaker form in which a penalty function

combined with a user-defined constant would be appended to (3.29).

To carry out the variational calculations necessary to obtain the shape gradient,

Equation (3.31) is rewritten for ĒM more directly in terms of the unknown parame-

ters, integration by parts is performed, and then the internal and external boundary

integrals are separated resulting in (3.32),

ĒM =
∫

Γ
g ds+

J∑
j=0

∫
Ωj
vj(−dj∇2uj + µjuj − S) dx

=
∫

Γ
(g + d0Bv0u0) ds+

J∑
j=1

∫
Γj
dj(v0 − vj)∇uj · N j ds

+
J∑
j=0

∫
Ωj

(dj∇vj · ∇uj + µjvjuj − vjS) dx. (3.32)

The boundary conditions (3.26b) for u were used to simplify the exterior Γ-integral,

and the flux conditions (3.27d) for L were used to simplify the interior Γj-integrals.

The interior boundary integrals can then be eliminated by imposing the same

continuity condition (3.27c) for the test function v:

v0 = vj, x ∈ Γj, (3.33)

leaving

ĒM =
∫

Γ
(g + d0Bv0u0) ds

+
J∑
j=0

∫
Ωj

(dj∇vj · ∇uj + µjvjuj − vjS) dx;
(3.34)

a simplified expression for ĒM which is used to develop the shape gradient. As

discussed in Section 3.1, the process of integrating by parts and imposing boundary

conditions on v provides the adjoint problem.
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Assuming knowledge of d and µ and an initial guess for the unknown surface Γ0\Γ,

the variation of ĒM is determined given a perturbation of the jth interior boundary

Γj. This is accomplished by introducing the artificial time variable t and by letting

Γj be time dependent. As a result, the operator L also becomes time dependent

and therefore so does u since conditions (3.26a) continue to be imposed, which are

determined by Γ. Maintaining this constraint allows the time derivatives of EM to

be equated with ĒM which is related to the perturbation Γjt = ∂Γj/∂t of the surface

Γj (non-integer variables as subscripts denote partial derivatives with respect to the

corresponding variable). Finally, the unknown test function v is made to be time

dependent, while continuing to impose the continuity constraint (3.33). The time

derivative of the matching energy (3.34) can now be computed, which is shown in

(3.35),

dĒM

dt
=
∫

Γ

(
guu

0
t + d0B(v0

t u
0 + v0u0

t )
)
ds

+
J∑
j=0

∫
Γj

(dj∇vj · ∇uj + µjvjuj − vjS)(Γjt · N j) ds

+
J∑
j=0

∫
Ωj

(
(dj∇vjt · ∇uj + µjvjtu

j − vjtS) + (dj∇vj · ∇ujt + µjvjujt)
)
dx.

(3.35)

It is not possible to directly compute the minimizing boundary surfaces. Instead a

gradient descent procedure is devised in which the change in ĒM is related to changes

in the surface Γ0 \Γ. This is accomplished using the artificial time dependence ĒM(t)

and carrying out a series of computations to arrive at an expression for dĒM/dt. It

is important to remember that the time dependence used here is unrelated to any

interpretation of time found in the governing physics. Recall that the Helmholtz

equation does not depend on time: It represents harmonic oscillation at a single

frequency that depends only on the boundary conditions.

The artificial time dependence is imposed on the underlying functions u and v

and therefore carries through to Γj and ĒM so that solving dĒM/dt = 0 means that
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the optimal estimate of the boundaries has been found. Each step of the gradient

descent requires knowledge of ∂Γj/∂t, which is termed the shape gradient.

The process of deriving dĒM/dt allows the sought-after ∂Γj/∂t to be isolated

and expressed in terms of the known quantities u and v. These may be computed

because each is the solution to a well-posed problem consisting of a governing PDE

and appropriate boundary conditions. In general u and v would be found numerically,

but the special case of a spherical inhomogeneity has a closed-form solution expressed

in terms of spherical harmonics [81].

After first applying integration by parts to the volume integrals in (3.35), the

result may be simplified by noting that Ljuj = 0 and by imposing the following

condition on the adjoint function v:

Ljvj = −dj∇2vj + µjvj = 0, x ∈ Ωj, (3.36)

thereby eliminating the volume integral terms. The surface Γ0 is then expanded into

its constituent terms, permitting the elimination of the exterior boundary integral

(along Γ) by noting the Robin boundary conditions (3.26ab) for u and by choosing

the following boundary conditions for v,

d0
(
Bv + ∂v

∂N

)
= −gu, x ∈ Γ. (3.37)

The term gu is the partial derivative of (3.30) with respect to u. Imposing (3.37), re-

placing u0 and v0 with uj and vj respectively (since they must match at the boundary

Γj), as well as substituing N 0 = −N j yields (3.38) from (3.35),

dĒM

dt
=

J∑
j=1

∫
Γj

(
(dj∇vj · ∇uj − d0∇v0 · ∇u0) + (µj − µ0)vjuj

)
(Γjt · N j) ds

+
J∑
j=1

∫
Γj

(
d0
(
v0
t

∂u0

∂N 0 + ∂v0

∂N 0u
0
t

)
+ dj

(
vjt
∂uj

∂N j
+ ∂vj

∂N j
ujt

))
ds. (3.38)

Continuing the calculation requires the relationship between u0
t and ujt along the

moving boundary Γj(t), which is obtained by differentiating the continuity conditions
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(3.27b) for u and (3.33) for v, as shown in (3.39),

d

dt

[
u0
(
Γj(t), t

)
= uj

(
Γj(t), t

)]
−→

u0
t = ujt + (∇uj −∇u0) · Γjt

= ujt +
(
∂uj

∂N j
− ∂u0

∂N j

)
(Γjt · N j) (3.39)

Substituting these derivatives into (3.38) gives an expression that can be further

simplified by utilizing the flux condition (3.27d) for u and by imposing the same

condition as the final constraint on v,

d0 ∂v
0

∂N 0 = −dj ∂v
j

∂N j
, x ∈ Γj, (3.40)

finally obtaining (3.41).

dĒM

dt
=

J∑
j=1

∫
Γj

(
(dj∇vj · ∇uj − d0∇v0 · ∇u0) + (µj − µ0)vjuj

)
(Γjt · N j) ds

+
J∑
j=1

∫
Γj

(
−
(
∂vj

∂N j
+ ∂v0

∂N 0

)
dj
∂uj

∂N j
+
(
∂uj

∂N j
+ ∂u0

∂N 0

)
d0 ∂v

0

∂N 0

)
(Γjt · N j) ds

(3.41)

The shape sensitivity calculation is now completed by recognizing that (3.41) is

in the form of a directional derivative: It provides the the rate of change of ĒM in

terms of the rate of change of the surface Γj. The quantity dĒM/dt is maximized if

Γjt is set equal to the remaining terms on the right-hand side of (3.41). The energy

is minimized by moving Γj in the opposite direction. The the shape gradient for an

arbitrary 3D surface boundary Γj is therefore given by (3.42).

∂Γj
∂t

=
[(

∂vj

∂N j
+ ∂v0

∂N 0

)
dj
∂uj

∂N j
−
(
∂uj

∂N j
+ ∂u0

∂N 0

)
d0 ∂v

0

∂N 0

+ (d0∇v0 · ∇u0 − dj∇vj · ∇uj) + (µ0 − µj)vjuj
]
N j. (3.42)

The constraints (3.33) and (3.40) on v along the internal contours Γj, j = 1, . . . , J

are identical to the constraints associated with the forward model operator L, and

44



the local operators Lj applied to vj over each region Ωj in the PDE constraint (3.36)

are also identical to those used by L. As a result, the overall composite operator used

on v is the same composite operator L defined in (3.27) for u. Thus, together with

the boundary conditions (3.37), the constraints (3.33), (3.36), and (3.40) constitute

a well-posed problem for v, allowing a unique solution to be computed. The model

for v may be stated compactly as

Lv = 0, x ∈ Ω

d0
(
∂v

∂N
+Bv

)
+

M∑
m=1

(u− ûm) δ(x− xm) = 0, x ∈ Γ.
(3.43)

The Lagrange multiplier v is the adjoint of u which arises naturally from the La-

grangian constrained minimization of (3.31). Further, it is seen that the operator

for v is the same as that of the forward problem. Therefore, L and its boundary

conditions constitute a self-adjoint operator.

The terms involving normal derivatives within the square brackets of (3.42) can

be simplified further. First substitute −N j for the inward normal N 0, and then use

the fact that the normal derivative is equal to the inner product of the gradient and

the unit normal vector. For example,(
∂vj

∂N j
− ∂v0

∂N j

)
∂uj

∂N j
=
(
∂vj

∂N j
− ∂v0

∂N j

)
N j · ∇uj. (3.44)

The terms enclosed by parentheses contain only normal derivatives. However, the

boundary conditions require that vj = v0, so it follows that the components of the

gradient in the plane tangent to the surface Γj are equal as well. This allows (3.44)

to be rewritten as(
∂vj

∂N j
− ∂v0

∂N j

)
N j · ∇uj

=
[(

∂vj

∂N j
− ∂v0

∂N j

)
N j +

(
∂vj

∂T j
− ∂v0

∂T j

)
T j
]
· ∇uj

=
(
∇vj −∇v0

)
· ∇uj.

(3.45)
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The additional terms expressing the components of the gradient in the plane tangent

to Γj sum to zero, but they allow for a more compact notation. The same argument

can be applied to the other term in parentheses in (3.42) to arrive at the following

form of the shape gradient:

∂Γj
∂t

=
[(
d0 − dj

)
∇uj · ∇v0 +

(
µ0 − µj

)
vjuj

]
N j. (3.46)

The shape gradient is a function of both u and v. The forward model provides

knowledge of u, where u is computed using the current estimate of the scattering

environment. The mathematics in this section show that v is the solution to the

operator and boundary conditions adjoint to those associated with u. The source

terms for v are the differences between the measured and predicted fields at the

locations xm, given by (3.30). Because the operators (3.27) and (3.43) are the same,

the adjoint field v can be computed using the same method used to solve the forward

model. There is no requirement for explicitly inverting the forward model, thus

demonstrating one of the significant strengths of adjoint-based approaches.
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CHAPTER 4

NUMERICAL EXPERIMENTS FOR ADJOINT ACTIVE
SURFACES

The derivation of the shape gradient applies to any surface in the presence of wave

propagation governed by the Helmholtz equation. For the purpose of illustration

the results of Section 3.5 are applied to the problem of locating the position and

radius of a spherical inclusion embedded in free space. This approach should also

work well in situations where the object can be approximated as a sphere. This is

the case whenever the characteristic dimension a of the target is much smaller than

the wavelength used to interrogate the volume (ka � 1). The material properties

of the medium and the inclusion are known. Measurements of single-frequency (i.e.,

monochromatic) scattered waves are made in a region surrounding the location of the

inclusion.

4.1 Closed-Form Solution for Forward and Adjoint Problems

Chapter 16 of Jackson [81] gives the following classical eigenfunction expansion for

the solution of the forward (3.27) and adjoint (3.43) problems when concerned with

scattering from a sphere:

u0(r, φ, θ) = G0(R) +
∞∑
n=0

n∑
m=−n

Y m
n (φ, θ)

[
Amnh

(1)
n (k0r) +Bmnh

(2)
n (k0r)

]
uj(r, φ, θ) =

∞∑
n=0

n∑
m=−n

CmnY
m
n (φ, θ)jn(kjr), (4.1)

where k0 and kj are the usual wavenumbers expressing spatial frequency. The terms

h(1)
n (k0r) and h(2)

n (k0r) are the spherical Hankel functions, and jn(kjr) is the spherical

Bessel function of the first kind. These are generated by combining the Bessel func-

tions of the first and second kinds as shown in Table 4.1. The symbol G0 represents

the free-space Green’s function exp(ik0R)/4πR, Y n
m are the spherical harmonics, and

Amn, Bmn, and Cmn are the Fourier coefficients of the expansion which are found
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Table 4.1: Spherical Hankel functions defined in terms of ordinary Bessel functions
of the first and second kinds.

Bessel function of the first kind: Jn(x)

Bessel function of the second kind: Nn(x)

Spherical Bessel function of the first kind: jn(x) = 1√
x

Jn+ 1
2
(x)

Spherical Bessel function of the second kind: nn(x) = 1√
x

Nn+ 1
2
(x)

Spherical Hankel function of the first kind: h
(1)
n (x) = jn(x) + inn(x)

Spherical Hankel function of the second kind: h
(2)
n (x) = jn(x)− inn(x)

using the boundary conditions. While spherical harmonic expansions are generally

little-used by the signal processing community, they are relatively simple to work

with, being analogous to more common Fourier series expansions in terms of sines

and cosines. The first few spherical harmonics are shown in Figure 4.1.

The pair of Hankel functions represents outward (+) and inward (−) propagating

waves in a way that is directly analogous to the more familiar representation of har-

monic free space spherical waves, G(R) = exp(±ikR)/4πR. The spherical harmonic

terms Y m
n (φ, θ) are given by:

Y m
n (φ, θ) =

√√√√(2m+ 1)(n−m)!
4π(n+m)! eimφPm

n (θ), (4.2)

where Pm
n (θ) are the Legendre functions of degree n and order m.

The free-space Green’s function G0(R) appearing in (4.1) is a function of R, the

distance between the source and the point of observation. The remaining terms in

(4.1) depend on r, φ and θ, which are the spherical coordinates representing radius

from the origin, azimuth angle, and colatitude (or zenith angle). The origin is located

at the center of the scattering sphere, and the colatitude is referenced to the line

connecting the source and the scattering sphere.

It is useful to eliminate the dependence on R by expanding G0(R) in terms of

these variables using the spherical Bessel functions and Legendre polymonials (i.e.,
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Figure 4.1: Spherical harmonics of degree n and order m. The harmonics (n, 0)
are axisymmetric about the z-axis and are known as zonal harmonics, as they have
no zero crossings along lines of constant latitude. Those corresponding to (n, n) are
called sectoral harmonics and have no zero crossings along lines of constant longitude.
The remaining harmonics (n,m) for m 6= 0 and m < n have zero crossings in both
directions and are called tesseral harmonics [80].

the Legendre functions Pm
n (θ) for which m = 0),

G0(R) = S

4πd0
eik0R

R

= iSk0

4πd0

∞∑
n=0

(2n+ 1)jn(k0r)h(1)
n (k0ρ)Pn(θ).

(4.3)

This expansion replaces the dependence on R with dependence on r,ρ, and θ, thus

matching quantities used in the other terms in (4.1). The variable ρ is new, but

known: It represents the distance from the source S to the origin, which is located

at the center of the inclusion illustrated in Figure 4.2.
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Figure 4.2: Coordinates used for the spherical harmonic expansion of u and v. The
distance from the source to a point on the surface of Γj is R, while ρ is the distance
from center of Γj to the source, and θ is the colatitude, or zenith angle. The latitude,
or azimuth angle, is not shown but is measured about the axis labeled ρ.

For this example the outer domain is assumed to be free space, so Γ is consid-

ered to be infinitely far away from the source S. In this case, the solution u satis-

fies the Sommerfeld radiation condition. According to this radiation condition, the

unbounded outer domain precludes the propagation of any inward-travelling waves.

Consequently, the coefficients Bmn are all equal to zero since only the outward prop-

agating solution is allowed. Furthermore, the scalar field u and its normal derivative

must be continuous at the surface of the spherical inclusion:

u0 = uj, and d0 ∂u
0

∂N 0 = −dj ∂u
j

∂N j
on Γ. (4.4)

Since Γj is a sphere, the outward normal derivative is simply the radial derivative

∂/∂N j = ∂/∂r. The resulting configuration is also axisymmetric, causing the depen-

dence on the azimuth angle φ to vanish. The axis of symmetry is the line of length ρ

connecting the source to the center of the spherical object in Figure 4.2.

Simplifying the expansions above and substituting them into the matching bound-

ary conditions (4.4) gives, for each term in the expansion:

ik0S

d0

√
2n+ 1

4π jn(k0r
j)h(1)

n (k0ρ) + Anh
(1)
n (k0r

j) = Cnjn(kjrj)

ik2
0S

√
2n+ 1

4π j′n(k0r
j)h(1)

n (k0ρ) + And
0k0h

′(1)
n (k0r

j) = Cnd
jkjj

′
n(kjrj). (4.5)

Due to axisymmetry the only nonzero values of the expansion coefficients correspond
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to the index m = 0 since the exponential function and Legendre function within the

spherical harmonics (4.2) are constant for all azimuth angles only when m = 0. The

m index is suppressed for notational simplicity: For example, A0n is written as An in

(4.5).

Equations (4.5) can be arranged into a 2 × 2 system of linear equations which

can be easily solved explicitly for the coefficients [An Cn]T for a single term in the

expansion. Given the source strength and position, along with the position and radius

of the sphere Ωj, the scattered field is given in closed form by summing over the terms

in the harmonic expansion.

Computing the value of Γjt for a spherical flaw embedded in free space requires

knowledge of the fields u and v both inside and outside the sphere. Equations (4.5)

are used to compute u0 and uj. They also serve as a prototype for computing the

adjoint field v, in which the measurement errors Sm = u(xm)− ûm(xm) act as source

terms replacing S in (4.5) and where the spherical Hankel function of the second kind

replaces h(1)
n (z).

The forward and adjoint fields generally have different axes of symmetry since the

vectors from the center of Ωj to the respective sources and measurement locations are

different. It is therefore necessary to transform from the local spherical coordinates

into a common frame of reference when computing the required scalar fields and

their gradients. This is conveniently done using the axis-angle representation for a

rotation matrix, where the entries of the rotation matrix are computed directly from

the components of the unit vector defining the axis of rotation and the angle through

which to rotate.
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Figure 4.3: Left: The energy landscape constructed by computing the energy ĒM over
a region of the (x, y) plane where x ∈ [−10, 10] and y ∈ [−10, 10]. The plot is shown
in terms of decibels relative to the peak value of ĒM within the computed region.
The measurement locations are indicated by the white markers. Center and Right:
Descent path and corresponding radius as the gradient descent algorithm reduces the
energy ĒM. The plots compare results obtained using a fixed step size of 0.01 units
(dashed blue curves) with an adaptive scheme (solid red curves) in which a larger
step size grows (or shrinks) in response to whether ĒM decreased (or increased) in
the previous step.

4.2 Closed-Form Solution for Spherical Objects

The example shown in Figure 4.3 consists of a single source and a ring of six mea-

surement positions. The source is at a distance of 1,000 units from the ring of mea-

surements, which is centered on the origin with radius of 10 units. Generic units of

length are used for the purpose of illustration. The length scales would be normalized

by the wavelength to translate these results into a specific application.

The coefficient d is dimensionless, while µ has dimension of inverse length squared.

The material properties used for this example are d0 = −1, dj = −1× 109, µ0 = 0.1,

and µi = 1. Since k = 2π/λ the wavelength for this example is approximately 62.8

units.

For this example the true sphere has unit radius and is located at the origin.

Experiments also showed that the method worked well when the true sphere location

was offset from the origin. An energy landscape can be visualized by marching the

current guess of the sphere’s position over a rectangular grid spanning the region of
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interest, as in Figure 4.3a. The summed squared difference between the measured and

predicted scattered field is plotted for each point. As expected, the minimum energy

occurs at the origin. Although it is not depicted, performing this same computation

using the incorrect radius can cause the minimum to shift away from the true position

of the object. Such effects must be considered when devising the gradient descent

scheme to be implemented.

The unknown boundary of the sphere embedded in free space is found iteratively

via gradient descent based on (3.46). The current estimate of the boundary at each

step is used to model the scattered field, which is compared with the observed mea-

surements. This mismatch provides the source terms used in the adjoint formulation

which backpropagates the adjoint field to the surface of the current guess Γj. The

forward-modeled and adjoint fields are used to find the change in the summed squared

error that would result from a given perturbation of the flaw position and radius, as

previously described. The general algorithm is as follows:

Make an initial guess for the object boundaries Γj. From this, compute the initial

values of u and v;

while Stopping condition is not satisfied do

Compute Γjt based on current values of Γj, v, and u;

Update Γj;

Compute updated v and u based on new Γj;

end while

The stopping condition is reached when the norm of Γjt falls below some specified

threshold or when a maximum number of iterations have occurred.

Since the object is constrained to be a sphere, the shape gradient Γjt can be

expressed in terms of position by integrating Γjt · en over the sphere, where en is the
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unit vector in the x, y, or z direction. Similiarly, the radial shape gradient is found

by integrating Γjt · N j over the sphere. The sphere was discretized for the numerical

computations, so the integrals were replaced by summations. The fact that very long

wavelengths can be used to accurately locate the sphere indicates that the use of

prior information has a regularizing effect on the solution. Similar ideas are applied

by Nain et al. to the use of active contours for segmenting medical imagery in [82].

Figures 4.3b and 4.3c show a gradient descent path for which the initial guess

position is (x, y) = (4, 3) units, and for which the radius is initially guessed to be 10

times too small (r = 0.1 units). The solution converges, making several pauses along

the way as the radius updates. This is an artifact of the specific gradient descent

procedure used.

To investigate the effects of noisy data, white Gaussian noise was added to each

measurement to achieve average signal to noise ratio (SNR) values of 20, 30 and 40

dB relative to the measured signal power, and the results are shown in Figure 4.4. As

in Figure 4.3a, the energy landscapes plotted in this figure used the correct value for

the radius of the sphere. The actual sphere location is shown by the solid line, while

the dashed line shows the location implied by the minimum of the energy landscape.

One concludes from Figure 4.4 that noise can profoundly affect the accuracy of the

localization. In an attempt to mitigate the degraded performance, using the 20 dB

case as an example, the number of measurement locations was increased from 12 to

24 as shown in Figure 4.5. As expected, adding more measurement locations tends

to average out the noise and restore the global minimum located at the origin. In

all of these results, only a single measurement was used at each observation point.

Time averaging is normally used in practice to improve the SNR at each location.

The effects of noise on similar reconstructions are reported by Dorn et al. [51] and

He et al. [83].

Another means of mitigating the impact of noise is to repeat the experiment over
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30 dB, and (c) 40 dB. The true sphere location is shown as a solid line and the
location implied by the minimum of the energy landscape as a dashed line. Note that
the dynamic ranges are significantly smaller than that used in Figure 4.3a.
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a band of frequencies. In this case, one would solve the forward and adjoint problem

at each of a discrete set of frequencies and then sum the results. This approach is

also how one would handle a transient signal since the temporal Fourier transform

provides the contribution of each frequency present. One interesting approach found

in the literature [84, 85] begins with a long-wavelength radiation for the initial re-

construction and then moves to increasingly shorter wavelengths to refine the details.

This ‘frequency hopping’ approach serves as a kind of time-dependent regularization

for the reconstruction that relaxes as the solution converges. Such frequency diversity

could be used either in lieu of or in conjunction with any prior information regarding

the target domain.

Reassuringly, the variational adjoint method appears to follow the same sampling

principles as traditional array processing in that the wavefield needs to be sampled

at intervals equal to or smaller than one-half of the wavelength. Local minima begin

to appear if the distance between measurement locations is increased. These are

presumably analogous to the ambiguities that occur in a traditional array when it is

spatially undersampled.

The preceding discussion employed isotropic sources and measurements. If direc-

tivity, or beampattern, effects were considered these would limit the spatial frequen-

cies visible to the sensors and the measurements could perhaps be separated by more

than λ/2 [26]. These observations are based on numerical experiments. The precise

relationship between variational techniques and traditional sampling requirements

remains to be explored in the literature.
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CHAPTER 5

ADJOINT ACTIVE SURFACES FOR SCATTERING OF
ULTRASONIC LAMB WAVES

This chapter applies the principles of adjoint active surface imaging to the scattering

of ultrasonic Lamb waves traveling in a thin plate. The shape gradient developed in

Section 3.4 for the Helmholtz equation may be applied to reconstruct the surface of

an unknown hole in the plate, but there are strict limitations on the range of ka values

for which this simplified model holds. It is valid for both very large and very small

values of ka, and other reconstruction techniques must be used for values between

these extremes. Alternatively, the shape gradient could be re-derived by replacing

either the governing equations or the boundary conditions with far more complicated

expressions. Numerical experiments were used to estimate the ka values for which

the solution is valid and to demonstrate the reconstruction.

A laboratory experiment was conducted to provide a data set for reconstruction.

The experiment was conducted in Georgia Tech’s Quantitative Ultrasonic Evalua-

tion, Sensing and Testing (QUEST) Laboratory. A laser vibrometer was used to

collect a set of measurements densely sampled in the vicinity of the scattering hole.

This abundance of measurements was intended to support the study of the effects

of source/receiver diversity (and the lack thereof). The laser vibrometer is capable

of measuring very small displacements normal to the surface of the object under

test. The in-plane shear wave components could therefore not be directly observed,

although such waves are known to be present even when the incident wave has no

shear component. The measured wavefield agrees well with the theory describing the

propagation and scattering of elastic waves in thin plates. While the experimental

date are of very high quality, the ka values necessary for the shape reconstruction did

not match those for which significant energy was transmitted into the plate.
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5.1 Elastic Wave Propagation in Plates

The elastodynamic equations of motion in an isotropic medium, in Cartesian coordi-

nates, are

µ∇2ux + (λ+ µ)
(
∂2ux
∂x2 + ∂2uy

∂x∂y
+ ∂2uz
∂x∂z

)
= ρ

∂2ux
∂t2

µ∇2uy + (λ+ µ)
(
∂2ux
∂y∂x

+ ∂2uy
∂y2 + ∂2uz

∂y∂z

)
= ρ

∂2uy
∂t2

µ∇2uz + (λ+ µ)
(
∂2ux
∂z∂x

+ ∂2uy
∂z∂y

+ ∂2uz
∂z2

)
= ρ

∂2uz
∂t2

(5.1)

where [ux uy uz]T = u is the displacement vector, λ = 2µν/(1 − 2ν) is the Lamé

constant, ν is Poisson’s ratio, and µ is the shear modulus. This system of three

equations can be written more generally and compactly in vector form,

µ∇2u+ (λ+ µ)∇∇ · u = ρü, (5.2)

or using summation notation

µui,jj + (λ+ µ)uj,ji = ρüi. (5.3)

Compared to propagation in fluids, elastic wave propagation is exceptionally compli-

cated, even in cases where the solid medium is isotropic and the geometry apparently

simple.

When the medium is infinite in extent, the traveling waves are known as bulk,

or body, waves. Body waves exist as either compressional (longitudinal) or shear

(transverse) waves, and the respective propagation speeds cL and cT are independent

of frequency, being purely functions of the material properties of the medium,

c2
L = λ+ 2µ

ρ
(5.4a)

c2
T = µ

ρ
, (5.4b)

where ρ is the density of the medium.
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The presence of boundaries greatly influences the nature of the propagation, and

under these conditions the term ‘guided waves’ is used. Solids having one free surface

(that is, infinite half-spaces) support surface, or Rayleigh, waves whose amplitude

decays exponentially with depth. These waves are of broad interest because they

spread cylindrically, not spherically, and therefore carry energy over long distances.

Like body waves, Rayleigh waves are nondispersive and their propagation speed [86]

is expressed approximately as

cR ≈ cT
0.87 + 1.12ν

1 + ν
. (5.5)

Surface waves are often the most destructive component of earthquakes, and they can

travel around the earth multiple times before extinguishing.

The presence of both upper and lower boundaries, resulting in an infinite plate

geometry, gives rise to Lamb waves. Lamb wave propagation is far more complicated

than either body or Rayleigh waves. The plate behaves as a waveguide supporting

an infinite number of modes. With the exception of the zero-order modes each has a

particular cutoff frequency. The compressional and shear waves interact in a manner

that produces two kinds of modes, symmetric (S) and antisymmetric (A). As implied

by their names, the particle displacement field for S modes is symmetric about the

midplane of the plate, while that of the A modes is antisymmetric. The S0 mode is a

special case, being similar to a purely extensional wave when the wavelength is much

larger than the plate thickness.

The propagation speeds for these dispersive S and A Lamb wave modes are de-

scribed by the Rayleigh-Lamb frequency equations:

tan(ph)
tan qh = − 4k2pq

(q2 − k2)2 for symmetric modes (5.6a)

tan(qh)
tan ph = −(q2 − k2)2

4k2pq
for antisymmetric modes, (5.6b)
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where

p2 = ω2

cL
− k2 and q2 = ω2

cT
− k2

and h is the half-thickness of the plate. These equations were used to design a

guided wave experiment such that only the first of each kind of mode, A0 and S0,

are supported over the range of frequencies excited by a set of ultrasonic transducers

attached to the plate.

Since the measured quantity in elastic wave experiments is often the normal dis-

placement uz, Equations 5.1 can be manipulated to eliminate ux and uy. The result

is a sixth-order partial differential equation, which would be extremely difficult to

use for deriving the shape gradient. Fortunately, a convenient alternative exists. The

displacements can be written in terms of derivatives of potential functions, which in

turn satisfy uncoupled wave equations [87]. Suppose that the displacement vector

can be written as the following decomposition

u = ∇φ+∇× ψ (5.7)

where φ and ψ are scalar and vector potentials. The vector ψ has two components,

the horizontal and vertical shear potentials ψh and ψv. Substituting this equation

into 5.1 and noting that ∇ · ∇φ = ∇2φ and ∇ · ∇ × ψ = 0 gives

∇
[
(λ+ 2µ)∇2φ− ρφ̈

]
+∇×

[
µ∇2ψ − ρψ̈

]
= 0. (5.8)

This equation is satisfied if the following hold

∇2φ = 1
c2

L
φ̈

∇2ψ = 1
c2

T
ψ̈. (5.9)

These uncoupled potential wave equations are much simpler to work with, and mean

that the shape gradient developed in Chapter 3 may carry over to the elastody-

namic problem. However, it is important to remember that coupling and high-order
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derivatives remain embedded in the boundary conditions. Thus the ability to employ

the shape gradient of Section 3.4 depends on finding conditions under which simple

boundary conditions apply to the potential itself. While this is not possible in gen-

eral, the high- and low-frequency regimes permit suitable approximations to be made.

This is discussed further below.

5.2 Elastic Wave Scattering in Plates

The experiment conducted for this research is specifically concerned with waves in

plates. There exist a number of plate-specific theories that vary in their complexity

and regimes of validity. Plate theories employ a variety of approximations to reduce

the equations of motion from three to two dimensions. The use of these is largely mo-

tivated by problems in which the plate is finite in extent [87], although in the present

case the experiment was contrived such that the influence of the plate boundaries was

minimized.

A useful model for wave propagation and scattering from circular inclusions can

be found in Chapter 3 of Mow and Pao [48]. That model is developed for plane

strain conditions in an infinite medium, but it can be converted to plane stress by

an appropriate transformation of the constant coefficients in the governing equations.

Plane stress conditions require the principal stress σzz normal to the plate to be zero.

For elastodynamic waves, a plate satisfies conditions of plane stress (and is said to be

thin) when its thickness is small relative to the propagating wavelength. The plane

strain solution is exact for an infinite medium. However, the conversion to plane

stress and application to thin plates is an approximation, akin to Poisson plate the-

ory [87], where the waves being modeled are purely extensional (or longitudinal). The

experiment was designed to satisfy thin-plate conditions. The model based on Mow

and Pao used for this research cannot account for dispersion since it is a rescaling of
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a model describing bulk wave in an infinite medium, which is necessarily nondisper-

sive (see Equations (5.4)). However, appropriate wave speeds can be found from the

equations described in the previous section. A similar reasoning was used by Grahn

to model S0 and A0 scattering [88].

The incident wave is assumed to be a compressional wave. For this experiment,

the S0 mode approximates a purely compressional wave when the wavelength is larger

than the plate’s thickness. A detailed analysis of the displacement profile across the

plate thickness can be found in Chapter 8 of Rose [47]. The boundary conditions at

the surface of the inclusion permit coupling such that the scattered field comprises

both compressional and horizontal shear waves. There is no vertical shear component

in the plate when the incident wave is compressional.

The compressional and horizontal shear displacement potentials, φ and ψ, are used

in a Fourier expansion to find the total field. The origin for the cylindrical coordinates

(r, θ) is placed at the center of the scattering hole. The incident compressional wave is

often modeled as being planar, but a cylindrical wave source is a better representation

of the experimental conditions, where the source was in relatively close proximity to

the scatterer. The incident potential can be expressed using the following expansion

in cylindrical harmonics:

φi = φ0

∞∑
n=0

ΛnJ
(1)
n (αr) cos(nθ)e−iωt, (5.10)

where

εn =


1 if n = 0

2 if n ≥ 1,
(5.11)

and α is the compressional wavenumber. The coefficient Λn equals εnin if the incident

wave is planar, and Λn = εn(−1)nH(1)
n (αr0) if the incident wave is cylindrical. In the

latter case, r0 is the distance from the center of the scattering hole to the source.
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The scattered compressional and horizontal shear wave potentials are:

φs =
∞∑
n=0

AnH
(1)
n (αr) cos(nθ)e−iωt (5.12)

ψs
h =

∞∑
n=0

BnH
(1)
n (βr) sin(nθ)e−iωt, (5.13)

where An and Bn are the unknown Fourier expansion coefficients. The scattered

compressional waves are even in θ, while the scattered shear waves are odd. The two

unknown Fourier coefficients are found by imposing a pair of boundary conditions at

the surface of the hole. Since the hole represents a free surface, both σrr and σrθ must

be zero. These stress components are expressed in terms of the potentials as

σrr = λ∇2φ+ 2µ
[
∂2φ

∂r2 + ∂

∂r

(
1
r

∂φ

∂θ

)]
(5.14)

σrθ = µ

{
2
[

1
r

∂2φ

∂θ∂r
− 1
r2
∂φ

∂θ

]
+
[

1
r2
∂2ψh

∂θ2 − r
∂

∂r

(
1
r

∂ψh

∂r

)]}
. (5.15)

Substituting the frequency-domain version of (5.9) gives the following system of equa-

tions for the Fourier coefficientsε
(3)
11 ε

(3)
12

ε
(3)
41 ε

(3)
42


An
Bn

 =

−φ0Λnε
(1)
11

−φ0Λnε
(1)
41


∣∣∣∣∣∣∣∣
r=a

(5.16)

The coefficient Λn is defined above, and the terms ε(p)
mn are given in the Chapter 3

Appendix of [48]. The latter represent the contributions of the potentials to a given

stress component. The principal stresses can be computed everywhere on the plate

according to:

σrr = 2µ
r2

∞∑
n=0

[
φ0Λnε

(1)
11 + Anε

(3)
11 +Bnε

(3)
12

]
cos(nθ)e−iωt (5.17)

σθθ = 2µ
r2

∞∑
n=0

[
φ0Λnε

(1)
21 + Anε

(3)
21 +Bnε

(3)
22

]
cos(nθ)e−iωt. (5.18)

Hooke’s law is then used to find the principal strain εzz normal to the plate’s midplane

εzz = 1
E

[σzz − ν(σrr + σθθ)] , (5.19)
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where E = µ(3λ + 2µ)/(λ + µ) is the elastic (or Young’s) modulus. From this, the

surface displacement that would be measured is given by hεzz where h is the half-

thickness of the plate.

The plate is assumed to be in a state of plane stress, so only σrr and σθθ are nonzero

in (5.19). This fact permits the circumvention of an otherwise significant complica-

tion. While the displacement potentials allow for easy modeling of wave propagation,

they are generally not linked to measurable quantities via simple expressions. The

shape gradient framework of Section 3.4 cannot be used when higher-order derivatives

are needed to relate the potential to measurements. Fortunately, it can be shown that

the potential φ is proportional to the vertical displacement in the present context.

The principal stress σrr appears in (5.14), and the stress σθθ is given by:

σθθ = λ∇2φ+ 2µ
[

1
r

(
∂φ

∂r
+ 1
r

∂2φ

∂θ2

)
+ 1
r

(
1
r

∂ψh

∂θ
− ∂2ψh

∂r∂θ

)]
. (5.20)

Adding these together and using the definition of the Laplacian operator ∇2 in cylin-

drical coordinates results in

(σrr + σθθ) = −2k2(λ+ µ)φ. (5.21)

Combining this result with Hooke’s law, the measured displacement normal to the

plate’s midplane is

uz = 2hνk2

E
(λ+ µ)φ, (5.22)

therefore establishing proportionality between the measured quantity uz and the po-

tential function φ.

There is one additional consideration that must be addressed to determine if the

shape gradient based on the Helmholtz equation can be applied to the potential

function. Table 3.1 shows the boundary conditions that may be imposed on the

forward model to obtain the shape gradient. If one of these does not hold, then the

derivation likely cannot be carried out without reformulating the problem completely.

64



It was stated previously that the conditions on the boundary of the scattering hole

are coupled and expressed in terms of stresses, not the potential function. Therefore,

the shape gradient of Section 3.4 can only be applied if there are circumstances under

which it can be said that the boundary conditions of Table 3.1 apply to the potential

function itself. This is indeed the case if the incident wavelength is either very long

or very short (ka� 1 or ka� 1, respectively).

Recall that the normal stress σrr is equal to zero at the face of the hole. From (5.21)

it can be seen that the potential φ is proportional to the principal stress σθθ on this

boundary

φ|r=a = − σθθ
2k2(λ+ µ) . (5.23)

Pao [89] describes the long- and short-wavelength limits for scattering from a circular

hole in terms of σθθ. For very low ka the conditions at the hole approach that of

static loading:

σθθ|r=a ∝ (k2 − 1− 2 cos(2θ)), (5.24)

while for very high ka, the short waves effectively encounter a stress-free surface such

that

σθθ ≈ 0. (5.25)

From (3.23) the condition needed is that the derivative of φ with respect to the

gradient descent time is zero, or φt = 0. This is satisfied by both of the limiting

cases. For very small ka, the value of φ at r = a isn’t a function of the hole radius

or position, so it doesn’t change during the gradient descent. For very large ka, φ

simply approaches zero.

5.3 Experimental Setup and Signal Processing

The experimental measurements were made using a square aluminum 6061-T6 plate [90]

that was 1,219 mm (48 in.) on a side and whose thickness was 2.286 mm (0.090 in.).

Six piezoelectric ultrasonic transducers were bonded to the plate in an approximate
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Table 5.1: Positions of the six piezoelectric transducers bonded to the experimental
plate. The origin is located at the center of the plate.

Sensor No. x (mm) y (mm)

1 232 74

2 53 238

3 -177 168

4 -228 -68

5 -62 -236

6 167 -164

ring configuration. These were 7 mm diameter Steiner &Martins model SMD07T05R411,

whose resonant frequency is 300 kHz. The positions are given in Table 5.1. An exact

ring distribution was avoided to break up the symmetry of the source/measurement

locations. The radius of the transducer ring was chosen such that scattering from

a hole near the center of the plate could be recorded by any transmit/receive pair

before reflections arrived from the plate edges. This placement of the sensors allows

the edge reflections to be time gated and the plate treated as being infinite in extent.

However, for the experiment described below the piezoelectric transducers were used

only as sources, and a Polytec OFV-525/-5000-S scanning laser vibrometer provided

a set of measurements on a dense grid near the center of the plate.

A 5 mm hole was drilled above and to the right of the plate’s center by 20 mm in

each direction. This hole serves as the unknown target whose position and radius is to

be reconstructed. The experimental plate configuration is shown in Figure 5.1. The

serrated regions at the edges indicate the placement of damping material used to sup-

press edge reflections and shorten the time required for the plate to ring down between

measurements. This material was Skandia AeroDamp SK-8240PSA damping sheet

whose primary commercial application is noise suppression in aircraft cabins. While
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(a) Drawing of experimental plate setup. (b) Photo of the actual plate.

Figure 5.1: The drawing at left shows the components used in the plate experiment.
The six sources are numbered 1-6, and their positions are indicated by the diamonds.
The photo at right shows the plate as it was constructed. Also visible in the photo
are the cables attached to the source transducers.

optimized for audible frequencies, this material worked well for its intended purpose

in the experiment. The square in the center of the drawing is the 240 mm × 240 mm

region of support for the laser vibrometer measurements. Measurements were made

in 2 mm steps, yielding a 121 × 121 grid of spatial samples. The small circle above

and to the right of the plate center is the 5 mm circular hole used as the target. The

drawing is to scale except for this hole, which is shown four times larger so that it

can be easily seen.

The transducers were excited independently using a linearly-swept frequency-

modulated (LFM), or chirp, signal. The LFM is the most commonly used waveform

in radar and sonar applications because it can provide both fine range resolution

and good SNR [91, 92] without having to transmit large amounts of instantaneous

power. The advantage of this waveform for nondestructive testing purposes is that

any of the frequencies can be isolated in postprocessing, thus obviating the need for

making separate measurements for each desired frequency [45]. The chirp used swept
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Figure 5.2: Phase and group velocities and the corresponding wavelengths for S0 (red)
and A0 (blue) Lamb wave modes.

from 50–600 kHz over a pulse length of 180 µs. The pulse repetition interval (PRI)

was 2 ms. This PRI, combined with the damping material, provided sufficient time

between transmissions for the waves in the plate to diminish to negligible levels.

The combination of frequencies and hole radius was chosen to provide ka values

both less than and greater than one. Furthermore, the frequencies and plate thickness

were chosen so as to permit only the propagation of the S0 and A0 Lamb wave modes.

These are the lowest-order symmetric and antisymmetric modes, respectively [93, 47],

and they correspond approximately to ideal compressional and flexural waves. The

phase and group velocities and wavelengths are shown in Figure 5.2 for the plate

thickness and range of frequencies used in this experiment. Because the propagation

speeds for S0 and A0 waves are substantially different, the measured wavefield can

be filtered spatially to retain only the mode of interest. In this case the S0 mode

was chosen because it travels faster, thus arriving in the measured scene before any

other waves. Retaining only the S0 wave also ensures that the experimental incident

wave closely matches the idealized theory. For reference, values of the wavelength at

several frequencies spanning the transmitted band are collected in Table 5.2.

The scanner stepped a raster over the 240 mm square box shown in Figure 5.1
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Table 5.2: Phase speed and wavelength for the S0 and A0 modes at several transmitted
frequencies. Also shown is the value of ka for a = 2.5 mm.

f (kHz) cS0 (m/s) λS0 (mm) kaS0 cA0 (m/s) λA0 (mm) kaA0

50 5360 107 0.15 1012 20 0.78

100 5357 54 0.29 1376 14 1.1

150 5352 36 0.44 1625 11 1.5

200 5345 27 0.59 1812 9 1.7

250 5336 21 0.74 1959 8 2.0

300 5324 18 0.89 2079 7 2.3

350 5309 15 1.0 2179 6 2.5

400 5291 13 1.2 2262 6 2.8

450 5269 12 1.3 2333 5 3.0

500 5243 10 1.5 2394 5 3.3

550 5211 9 1.7 2446 4 3.5

600 5173 9 1.8 2492 4 3.8

in 2 mm increments. At each position (xm, yn), a single source was excited and the

plate displacement was recorded until the waves were effectively extinguished. This

procedure was repeated for sources 1, 3, and 5. The resulting collection of all time

series Smn(xm, yn, t) is known in the radar literature as a data cube. The data cubes

can be filtered in any dimension to obtain a desired set of information. Since the

propagation is linear, the data cubes may be added together to study the effect of

using multiple sources simultaneously. The signal processing steps applied to the

collected data are:

1. Deconvolve the transmitted FM chirp (also known as matched filtering).

2. Apply a narrowband temporal filter to isolate a single frequency from the trans-

mitted band.
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Figure 5.3: Relative power spectral density for S0 and A0 modes.

3. Although the data now have a single temporal frequency, ω, there may be

multiple spatial frequencies k = ω/c because the modes travel with different

speeds, as shown in Figure 5.2. A two-dimensional spatial bandpass filter is

applied to reject all but the desired mode [94].

4. The spatial envelope of the wavefield is obtained from the filtered data cube by

taking the maximum value of the magnitude of the time series at each measure-

ment location.

Figures 5.3 and 5.4 give an idea of the relative strengths of the S0 and A0 modes

over the transmitted bandwidth. Figure 5.3 shows the temporal spectrum of both

modes. The A0 mode is strong over a wide span of frequencies, with notable dropouts

around 250 kHz and 435 kHz. Meanwhile, the S0 mode only has appreciable energy

between approximately 250 kHz and 625 kHz. This discrepancy between S0 and A0

excitation using bonded piezoelectric wafer transducers is known in the literature as
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mode selectivity. For example Nieuwenhuis et al. discuss this effect and compare

finite-element predictions with laboratory measurements [95].

The relative strengths of these modes is visualized in Figure 5.4. The location

of Source 1 is (x, y) = (232, 74) mm, and the time series signal at each location was

filtered to exclude all but a 5-cycle tone burst at the center frequency indicated for

each subplot. The S0 mode is relatively weak for frequencies up to 200 kHz. The

S0 mode is stronger above this frequency, and scattering from the hole located at

(x, y) = (20, 20) mm becomes visible. Meanwhile, the A0 mode is strong at all of the

frequencies shown, in keeping with Figure 5.3.

5.4 Model-Data Comparison

Several aspects of the wavefield observed in the plate were compared to the theoret-

ical predictions. The first of these is the dispersion of the S0 and A0 modes. This

comparison was made by extracting a slice of the data cube corresponding to the

radial line starting at the location of Source 1 and passing through the center of the

scan area. The data were obtained by interpolating the wavefield at any given time

onto the red line shown in Figure 5.5. The resulting signal is denoted as S(r, t), where

r is radial distance along the slice. These measurements were made before the hole

was drilled into the plate, so no scattering is observed.

Taking the two-dimensional Fourier transform of S(t, r) gives S(f, k), providing

access to a domain in which the S0 and A0 modes can be clearly distinguished.

The modes were separated by masking out regions of the (f, k) support that do not

correspond to the desired mode. These masked spectra are shown in Figure 5.6. The

theoretical dispersion curves are plotted for each mode, and were computed using

Equations (5.6). The measured and predicted dispersion in the spectral domain are

in near perfect agreement.

The filtered spectra were transformed back to the (t, r) domain and are plotted in
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Figure 5.4: Measured wavefields at six different frequencies within the transmitted
bandwidth. The time index of each image was chosen such that the faster traveling
S0 wave packet had just passed the center of the measurement area. The axes are
labeled in units of mm.
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Figure 5.5: A slice through the wavefield was extracted along a radial line originating
at Source 1 and passing through the center of the scan area. The red segment shows
the domain of the slice, and the cyan extension reaches to the location of Source 1.
The wavefield shown in the figure corresponds to t = 150 µsec.

Figure 5.7. The theoretical phase and group velocities were used to overlay charac-

teristic curves that can be compared to the observed wavefronts. The characteristics

are plotted for frequencies ranging from 50 kHz to 600 kHz in 50 kHz steps (12 total).

The characteristics are delayed according to the distance to the source (outside the

scan area) and according to the time at which each frequency occurred in the trans-

mitted chirp signal. For example, the 50 kHz characteristic begins at t = 0 s, and

the 600 kHz line does not leave the source until t = 180 µs. The S0 characteristics

are parallel to the paths of the traveling wavefront providing further evidence of the

good agreement between theory and measurement. This comparison is made easier

by the fact that the S0 phase and group velocities are very similar. Interpretation of

the A0 data is little more complicated because the phase and group velocities differ

significantly, and the amount of this difference varies with frequency. The A0 por-

tion of the transmitted chirp has a well-developed leading edge wave packet traveling

with the 50 kHz group velocity. Close examination of the plot shows that the phase

velocity of the wavefronts within the packet travel at the 50 kHz phase velocity (the

red characteristic with the shallowest slope).
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Figure 5.6: The two-dimensional spectrum of the data extracted from the slice shown
in Figure 5.5 was filtered to extract only the desired mode of propagation. The red
curves indicate the theoretical dispersion curves computed from the Rayleigh-Lamb
equations.
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(b) Measured A0 radial propagation.

Figure 5.7: S0 and A0 mode propagation along the radial line shown in Figure 5.5.
The red and cyan lines indicate the characteristic curves associated with the phase
and group velocities, respectively.
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(b) Measured S0 wavefield, 300 kHz.
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(c) Modeled S0 wavefield, 550 kHz.
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(d) Measured S0 wavefield, 550 kHz.

Figure 5.8: Comparison between the wavefield predicted using the Fourier expansion
(left) and the experimentally measured wavefield (right). Both wavefields have been
spatially filtered to retain only the S0 mode.

Next, the harmonic expansion scattering model described in Section 5.2 was used

to predict the total S0 wavefield on the plate within the region measured by the laser

vibrometer. The results are shown in Figures 5.8 and 5.9 for frequencies of 300 kHz

and 550 kHz. The phenomenon visible in these figures is the vertical displacement

component of the near-field interference pattern due to the scattered waves interacting

with the incident wave. As described earlier, the S0 mode was isolated by spatially

76



  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

(a) 300 kHz S0 wavefield.
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(b) 550 kHz S0 wavefield.

Figure 5.9: Comparison between the wavefield predicted using the Fourier expansion
(red) and the experimentally-measured wavefield (black). The curves represent an
azimuthal cut through the wavefields shown in Figure 5.8. The cuts are centered on
the scattering hole with a radius of 64 mm.

filtering the wavefield for each time sample. Results below 250 kHz were unreliable

because of the low amount of S0 energy present.

Although the wave propagation model is approximate, it exhibits good agreement

with the measurements. At higher frequencies, the model should break down as the

z-dependence of the stress field becomes significant. At very low frequencies, the

model remains valid but becomes difficult to compare to measurements since little

S0 energy was transmitted below 250 kHz. Furthermore, The scattering for low ka

values is weak, and thus can be difficult to observe due to measurement noise and

any slight levels of reverberation in the plate from earlier source triggers. Regardless

of ka, this reverberation may be partially responsible for the lack of null depth in the

azimuth cuts shown in Figure 5.9.
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5.5 Shape Recovery via Active Surfaces

For suitable values of ka the location and boundary of the hole may be reconstructed

using the shape gradient developed in Section 3.4 coupled with the model of Sec-

tion 5.2. The properties of the reconstruction can be examined by visualizing the

behavior of the cost function (or energy landscape) over the region of observation,

as was done in Chapter 4. The reconstruction is performed using knowledge of the

source(s), measurements made over a region known to surround the target, and a

reasonably accurate model for wave propagation and scattering. The algorithm is

iterative: At each step the mismatch between the measured and predicted scattering

is used to refine an estimate of the target properties. Further details are given in

Section 4.2 and in Cook et al. [96].

For the present experiment, any of the points in the scan area can be used for

reconstruction. This permits the investigation of the effect of measurement density

and geometry. The results presented here employ a ring of measurements similar to

that used to derive the plots in Figure 5.9. The spacing of the points around the ring

is λ/8, where λ is the wavelength of the S0 mode at any given frequency. Sources 1,

3, and 5 were active, and Sources 2, 4, and 6 were not.

The frequency diversity of the experiment allows the performance of the algorithm

to be examined as a function of ka. The available bandwidth can also be used to

resolve ambiguities that might otherwise trap the reconstruction in a local minimum.

This is a well-grounded approach, and is similar to multi-frequency techniques used

to resolve ambiguities in certain radar signal processing applications.

It was shown earlier that the shape gradient derived from the potential function

has a simple form and is easy to work with, but it also imposes rather strict conditions

on the range of ka for which it is suitable. The experiment conducted for this research

does not correspond to this range of ka, so the shape gradient does not behave as well

as desired. Numerical simulations of the active surface reconstruction were performed
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at 10 kHz, 25 kHz, 50 kHz, 75 kHz, and 100 kHz since these are the frequencies at

the end of the band closest to ka values for which the shape gradient is expected to

be valid. Results are summarized in Figures 5.10–5.14.

The cost surface was computed using only the scattering model from Section 5.2,

which was previously shown to agree well with the measured wavefield. At higher

frequencies these cost surfaces contain a strong global minimum at the true location

of the hole, as well as some weaker local minima. The local minima appear to fall

approximately on half-wavelength radial intervals centered on the true location of the

hole. If this is the case, then a practical implementation of the reconstruction should

employ the dispersion relationship to determine a set of wavelengths (and therefore

frequencies) for which the local minima of the cost functions do not coincide. This

information could also be used to establish the order of a frequency-hopping approach

to finding the global minimum.

The bottom rows of Figures 5.10–5.14 contain vector fields indicating the direction

of the gradient of the cost function computed two ways. The left-hand vector field

is the result of computing the gradient by finite-differencing the cost function itself.

Therefore, this gradient depends only on the forward scattering model, which was

shown to agree closely with the measurements. The right-hand gradient field results

from the shape gradient given by Equation (3.25), and it depends on the accuracy of

the approximate boundary conditions imposed on the displacement potential. Ideally,

these two vector fields would be in close agreement, but they diverge for ka exceeding

approximately 0.1. This fact, combined with the lack of low-frequency S0 energy,

means that the particular shape gradient derived for the reconstruction is not well-

matched to the usable frequency regime of the experiment.

Despite this result, there may be applications for which the existing shape gradient

is a good approximation. Unfortunately, deriving the exact shape gradient for this

experiment is likely to be very difficult, if not impossible because of the high-order
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(b) Close-up of red inset of energy landscape.
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(c) Finite-difference gradient of inset area.
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(d) Shape gradient for inset area.

Figure 5.10: A numerical simulation of shape gradient reconstruction was conducted
for S0 waves at 10 kHz with 12 measurement points forming a ring about the origin of
the scan area. Sources 1, 3, and 5 were included in the simulation, but are not shown.
The top row shows the energy landscape (cost function) and a close-up of the region
around the true hole location at (x, y) = (20, 20) mm. The red markers indicate the
measurement locations. The bottom row shows the finite difference gradient field of
the cost function and that computed from the shape gradient. The vectors all have
unit magnitude and are intended to show direction only. The red circle indicates the
outline of the 5 mm hole in the plate.
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(b) Close-up of red inset of energy landscape.
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(c) Finite-difference gradient of inset area.
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Figure 5.11: A numerical simulation of shape gradient reconstruction was conducted
for S0 waves at 25 kHz with 24 measurement points forming a ring about the origin
of the scan area. Sources 1, 3, and 5 were included in the simulation, but are not
shown. The top row shows the energy landscape (cost function) and a close-up of
the region around the true hole location at (x, y) = (20, 20) mm. The red markers
indicate the measurement locations, and the cyan ring is located one half wavelength
from the center of the hole. The bottom row shows the finite difference gradient field
of the cost function and that computed from the shape gradient. The vectors all have
unit magnitude and are intended to show direction only. The red circle indicates the
outline of the 5 mm hole in the plate.
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(b) Close-up of red inset of energy landscape.
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(c) Finite-difference gradient of inset area.
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Figure 5.12: A numerical simulation of shape gradient reconstruction was conducted
for S0 waves at 50 kHz with 48 measurement points forming a ring about the origin of
the scan area. Sources 1, 3, and 5 were included in the simulation, but are not shown.
The top row shows the energy landscape (cost function) and a close-up of the region
around the true hole location at (x, y) = (20, 20) mm. The red markers indicate the
measurement locations, and the cyan rings are spaced at half-wavelength intervals
from the center of the hole. The bottom row shows the finite difference gradient field
of the cost function and that computed from the shape gradient. The vectors all have
unit magnitude and are intended to show direction only. The red circle indicates the
outline of the 5 mm hole in the plate.
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(b) Close-up of red inset of energy landscape.

−20 0 20 40 60
−30

−20

−10

0

10

20

30

40

50

60

70

x (mm)

y 
(m

m
)

Cost Function Gradient Field

(c) Finite-difference gradient of inset area.
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Figure 5.13: A numerical simulation of shape gradient reconstruction was conducted
for S0 waves at 75 kHz with 72 measurement points forming a ring about the origin of
the scan area. Sources 1, 3, and 5 were included in the simulation, but are not shown.
The top row shows the energy landscape (cost function) and a close-up of the region
around the true hole location at (x, y) = (20, 20) mm. The red markers indicate the
measurement locations, and the cyan rings are spaced at half-wavelength intervals
from the center of the hole. The top row shows the energy landscape (cost function)
and a close-up of the region around the true hole location at (x, y) = (20, 20) mm.
The bottom row shows the finite difference gradient field of the cost function and
that computed from the shape gradient. The vectors all have unit magnitude and are
intended to show direction only. The red circle indicates the outline of the 5 mm hole
in the plate.
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(b) Close-up of red inset of energy landscape.
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(c) Finite-difference gradient of inset area.
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Figure 5.14: A numerical simulation of shape gradient reconstruction was conducted
for S0 waves at 100 kHz with 96 measurement points forming a ring about the origin of
the scan area. Sources 1, 3, and 5 were included in the simulation, but are not shown.
The top row shows the energy landscape (cost function) and a close-up of the region
around the true hole location at (x, y) = (20, 20) mm. The red markers indicate the
measurement locations, and the cyan rings are spaced at half-wavelength intervals
from the center of the hole. The top row shows the energy landscape (cost function)
and a close-up of the region around the true hole location at (x, y) = (20, 20) mm.
The bottom row shows the finite difference gradient field of the cost function and
that computed from the shape gradient. The vectors all have unit magnitude and are
intended to show direction only. The red circle indicates the outline of the 5 mm hole
in the plate.
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PDEs and boundary conditions involved. Although the active surface reconstruction

isn’t compatible with the experimental data, other approaches could be used in its

place. Since the shape being reconstructed is simple, it is possible to appeal to more

traditional optimization strategies to find the unknown parameters. Two of these are

outlined below.

5.6 Shape Recovery via Nonlinear Optimization

Optimization approaches such as nonlinear least squares (NLS) and simplex methods

offer advantages under certain conditions. These are particularly useful when the

shape can be represented by a small number of descriptive parameters. For the Lamb

wave experiment only the hole’s radius and its position in a 2D plane are needed–

a total of three parameters. Although NLS and simplex method solutions are best

suited to low numbers of unknown parameters, they have the distinct advantage of

being amenable to the desired physical model. In contrast, the approximation used

to obtain the shape gradient derived for the Lamb wave reconstruction is valid only

for very large or very small values of ka.

In addition to the objective function, NLS ideally makes use of the corresponding

Jacobian and Hessian matrices (first and second derivatives). This is by no means

required, as solution schemes exist that employ numerical derivatives and/or slower

rates of convergence [97]. Simplex methods are derivative-free, being designed to

employ only the objective function. Both approaches are outlined briefly in this

section.

5.6.1 Nonlinear Least Squares

Nonlinear least squares techniques are used to find a parameter vector v ∈ RN from a

set ofM measurements, where it is understood thatM > N . This solution is therefore

applicable for shape reconstruction when the shape has a very simple form, such as a

circle or sphere, which can be described using only three or four parameters (position
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and radius). Arbitrary shapes are likely to require many descriptive parameters, and

such reconstructions are better suited to the strengths of the adjoint approach, as

detailed in Section 3.3.

The most general NLS solution is based on Newton’s method and is described in

Chapter 10 of Dennis and Schnaebel [97]. It is similar in form to the one-dimensional

Newton’s method solution for finding local extrema:

xn+1 = xn − f ′(xn)/f ′′(xn). (5.26)

There are only three unknowns in the problem of reconstructing the scattering void,

its radius and location in the (x, y) plane. But, there are many measurements avail-

able within the scanning area of the laser vibrometer. The problem is therefore

overdetermined, and the measurements are used to find the best estimate of the three

unknown parameters, expressed as the vector v = [x, y, r]T. The goal is to find

the v that minimizes the quantity f(v) = 1
2D(v)TD(v), where D(v) is known as the

residual function. The mth entry of D(v) is written, using (3.28), as:

Dm(v) = u(xm)− ûm,

where there are M measurements and D(v) ∈ RM×1.

The first and second derivatives of f(v) are required to form the solution using

Newton’s method. The first derivative of f(v) is

∇f(v) =
M∑
m=1

Dm(v) · ∇Dm(v)

= J(v)TD(v),
(5.27)

where J(v) ∈ RM×3 is the Jacobian matrix with J(v)mn = ∂Dm(v)/∂vn. Here, the

m index denotes the mth measurement and n indexes over the components of v. The

rows of the matrix J(v) are evaluated using known quantities and the current estimate
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of v. The second-derivative of f(v) is:

∇2f(v) =
M∑
m=1

(
∇Dm(v) · ∇Dm(v)T +Dm(v) · ∇2Dm(v)

)
= J(v)TJ(v) + S(v),

(5.28)

where

S(v) ≡
M∑
m=1

Dm(v) · ∇2Dm(v). (5.29)

The second derivative, or Hessian, of the residual Dm(v) is ∇2Dm(v) ∈ R3×3 whose

entries are given by:

∇2Dm(v)ij = ∂2Dm(v)
∂vi∂vj

. (5.30)

It is evaluated using the same information used to evaluate the Jacobian matrix.

Using the expressions for the first and second derivatives of the residual function,

and by analogy with (5.26), Newton’s method applied to the nonlinear least squares

problem is written as:

vc = vp −
[
J(vp)TJ(vp) + S(vp)

]−1
J(vp)TD(vp), (5.31)

where vc is the current estimate of the vector v computed from the previous estimate

vp, or from the initial guess. Equation (5.31) is iterated until the norm of the residual

is below a specified threshold:

‖D(v)‖ =
[
D(v)TD(v)

]1/2
< εtol.

Once this condition is met, the iteration stops and estimates for x, y, and r are

obtained.

While desirable, using the full Newton’s method is not always practical because of

the difficulty associated with obtaining closed-form expressions for the Hessian matrix

and/or the expense in computing it. A simplified approach results from ignoring the

higher-order derivative terms embedded in S(v)

vc = vp −
[
J(vp)TJ(vp)

]−1
J(vp)TD(vp). (5.32)
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This form is known as the Gauss-Newton method. As might be expected, the Gauss-

Newton method converges more slowly than Newton’s method. It is also prone to

taking bad step sizes. Two common modifications exist for controlling the step size.

The first is a simple scaling of the Jacobian term

vc = vp − λp
[
J(vp)TJ(vp)

]−1
J(vp)TD(vp), (5.33)

which is known as the damped Gauss-Newton method. The parameter λ is chosen to

prohibit step sizes that don’t reduce the residual function. The value of λ is usually

updated in some way that adapts to the local behavior of the cost function. This

method of control is called a line search, because the Gauss-Newton steps will be in

the right direction, but may over/undershoot.

Any of these versions of NLS is likely to work for the Lamb wave scattering

problem. The harmonic expansion model provides a way to obtain the necessary

derivatives. However, closed-form derivatives of Bessel functions are often written

using recursion relationships [98], and the resulting digital implementation can some-

times be unstable because of the precision loss associated with subtracting very large

or very small numbers. For this reason, the recommended approach for NLS is the

Gauss-Newton method using finite-difference approximations for the first derivative

terms. The smoothness of the cost function is well understood, being related to the

scale of the wavelength, so the finite difference derivatives should not present any

difficulties.

5.6.2 Simplex Methods

The NLS solution depends on knowledge of the derivatives of the cost function, ob-

tained either through closed-form expressions or finite differences. Simplex methods,

on the other hand, work only on the cost function itself. For an n-dimensional space,

a simplex is a generalized notion of a polygon (more properly, a polytope) with n+ 1
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sides. For example, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. Op-

timization schemes based on simplices compute the objective function at each vertex

of the simplex [99, 100]. For minimization problems, the vertex with the highest

value is reflected through the centroid of the simplex and the process iterated. When

visualized in two or three dimensions, the polytope resembles an amorphous blob

gradually making its way to a local minimum. For this reason, the simplex method

is sometimes called the amoeba method.

As with NLS there are many kinds of simplex methods, varying in their conver-

gence properties and complexity [101]. Faster-converging schemes adapt the step size

of the vertex reflection in ways similar to those used for controlling the line search

for NLS. The resulting polytope can change size and shape dramatically during the

course of the optimization. A simpler, but slower, approach is to assign fixed small

edge lengths to the polytope. In two dimensions, the resulting optimization looks like

a triangle flip-flopping down the cost surface toward the local minimum.

It was previously recommended that an NLS reconstruction use finite differences

instead of closed-form derivatives. Since this is tantamount to computing only the cost

function itself, there seems to be little advantage to favoring either NLS or simplex

over the other. If computational efficiency were a concern, then the decision could be

made based on convergence properties.
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CHAPTER 6

DETECTION OF REFRACTIVE ANOMALIES IN SAS
IMAGERY USING OPTICAL FLOW

Traveling boluses induced by breaking internal waves [102] have recently been ob-

served in synthetic aperture sonar (SAS) imagery, where their appearance resembles

natural seabed ripple patterns [40, 42]. The boluses cause refraction that concentrates

the acoustic energy in a manner resulting in regions of increased intensity followed

downrange by reduced intensity.

The presence of this effect in sidescan sonar imagery was discovered in 2012 in

data collected by the Norwegian Defence Research Establishment (FFI). The same

area of sea floor was surveyed multiple times, and the apparent sand ripples shifted in

a manner that was inconsistent with known sediment transport behavior in the area.

Example imagery showing the refractive effect of these boluses is given in Figure 1.2

of Chapter 1, repeated here as Figure 6.1. Even to a skilled interpreter, any one

of these images taken by itself appears to show the kind of sand ripples which are

common throughout the world’s oceans. Rippled formations are known to occur at

nearly all depths and size scales [103, 104, 105]. For comparison, Figure 6.2 shows a

set of true seafloor ripples.

Given the similarity in appearance, it seems likely that refractive effects are un-

knowingly present in SAS imagery collected in environments that support the forma-

tion of internal wave induced boluses (IWBs). At first, distinguishing between true

bathymetric features and IWBs may appear to be of purely scientific interest. There

are, however, significant practical applications. If their presence can be detected, then

those portions of a survey containing IWBs can be repeated as necessary to ensure

that no objects on the sea floor fail to be imaged. This is particularly important for

minehunting, where the potential cost of overlooking targets is exceedingly high.
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Figure 6.1: SAS images of the same scene were collected on three different passes on
the same day, at times 07:19 (left), 08:18 (center), and 12:05 (right). The scene size
is 80 m x 100 m and shows a pipeline with anchors on the seabed. The data were
collected by FFI’s HUGIN AUV carrying an interferometric SAS during the ARISE12
trials on board the NATO research vessel Alliance, outside Elba island, Italy.
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Figure 6.2: Sand ripples observed in the Gulf of Mexico by the Office of Naval Research
SAS12 synthetic aperture sonar.
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Detecting IWBs is obviously a time consuming process if repeat surveys are re-

quired. The motivation therefore exists to find detection methods that can be applied

to single-pass imagery. Several options are outlined by Hansen et al. [42], and the ex-

pected performance of each is discussed. This chapter builds on that work, extending

one of the proposed methods by using PDE-based optical flow to visualize apparent

motion of the IWB. Optical flow is a well-established means of estimating frame-to-

frame motion of video image content, and it may be used for single-pass detection

and motion tracking of transient refractive effects in SAS imagery such as those in-

duced by IWBs. Another goal of this work is to demonstrate the utility of variational

methods for SAS-related applications by linking free parameters (or “knobs”) used to

control the behavior of the algorithm to known physical and statistical properties of

the imagery.

6.1 Breaking Solitary Waves

Internal waves are supported in ocean waters where a steep density gradient exists.

This layering might be due to differences of temperature, or salinity, or both. The

internal waves propagate along the density interface, or pycnocline, either singly or

in groups. Isolated internal waves are called solitary waves or solitons. The fact

that they are common in the ocean has only been firmly established in the past two

decades. Solitons are governed by nonlinear effects, representing a balance between

(1) a tendency for wave speed to increase with amplitude, causing steepening and

shock formation, and (2) dispersion that tends to broaden wavefronts [106]. The

resulting wave possesses a stable shape.

The specific feature of solitons concerning this research is their interaction with

sloping sea floors. It has been shown numerically [107] and experimentally [108] that

solitons traveling up-slope can break, separating a bolus of dense water that continues

to travel along the sea floor before eventually dissipating. Figures 6.3 and 6.4 show
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Figure 6.3: Numerical simulation of the density field associated with a breaking soliton
and the resulting bolus. (Figure from Venayagamoorthy and Fringer [107].)

Figure 6.4: Acoustic soundings were used to observe soliton breaking off of Ile-aux-
Lièvres Island in the St. Lawrence Estuary in 2004. (Figure from Bourgault et al.
[108].)
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examples from the literature. Lyons et al., point out that the size and speed of these

boluses is consistent with the features visible in the 2012 FFI SAS imagery [40]. It

is therefore the present consensus of the SAS community that internal wave induced

boluses are responsible for the transient refractive effects observed in the imagery.

6.2 Optical Flow

The Lagrangian view of fluid mechanics may be used to motivate the derivation of

optical flow methods. In an analogy with fluid flow, consider a small patch of image

of fixed area whose intensity is represented as I(x(t), t), where the position vector is

x(t) = [x1(t), x2(t)]T. The patch is able to translate in space and its intensity may

vary. Taking the total derivative with respect to time gives

∂I

∂x1

dx1

dt
+ ∂I

∂x2

dx2

dt
+ ∂I

∂t
=
(
∂

∂t
+ v · ∇

)
I = DI

Dt
, (6.1)

where v = [v1, v2]T = [dx1/dt, dx2/dt]T is the velocity vector, and the shorthand

at the end of (6.1) is known as the material, or substantial, derivative [109]. The

material derivative gives the instantaneous change in I at any given position and

time.

When the intensity of each image patch is constrained to be unchanging as it

moves (a condition known as brightness constancy or the optical flow condition), the

resulting PDE becomes DI/Dt = 0, or

∂I

∂t
= −v · ∇I. (6.2)

This is a scalar PDE stating that the time rate of intensity change equals the com-

ponent of the intensity gradient in the direction of motion. By itself, this equation

cannot be solved for the velocity field. It only captures the component of the optical

flow in the direction of ∇I; that is, the flow normal to contours of constant intensity.

This ambiguity of motion is known as the aperture problem, and there are a number
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of approaches for resolving it [110]. One possibility is to impose a smoothness con-

straint on v. The literature contains many such constraints, tailored to a variety of

conditions.

The method of Horn and Schunck [111] was chosen for this investigation of op-

tical flow for detecting the presence of transient refractive effects. Here, brightness

constancy is combined with a smoothing term to obtain an energy functional that is

minimized by the optimal optical flow field:

E = (1− λ)
∫

Ω

(
v · ∇I + ∂I

∂t

)2

dx+ λ
2∑
j=1

∫
Ω
||∇vj||2 dx

=
∫

Ω
L(v, v′, x, t) dx,

(6.3)

where Ω is the domain of integration (i.e., the image), v′ represents the possible

derivatives of v with respect to its arguments (e.g., ∂v/∂x1 and ∂v/∂x2), and λ ∈ [0, 1]

is a user-chosen parameter whose purpose is to balance the relative contributions

of the data fidelity (v · ∇I + ∂I/∂t) and smoothness (||∇vj||) terms comprised by

the Lagrangian L. Horn and Schunck use a slightly different weighting α, which is

equivalent to λ/(1−λ). They suggest that the square of this term should be roughly

equal to the expected noise level of the image gradient. It is shown below that this

quantity can be estimated using the well-established statistical properties of coherent

scattering from rough surfaces.

The calculus of variations is used to find the function v(x, t) that minimizes the

energy functional E. This is accomplished by solving the Euler-Lagrange equa-

tions [112, 113] derived from L according to the following condition necessary for

minimizing E:
∂L
∂fi
−
∑
j

∂

∂ξj

(
∂L
∂f ′i,j

)
= 0, (6.4)

where the subscript i indicates the components of the vector function f , ξj is the jth

argument of f , and f ′i,j ≡ ∂fi/∂ξj. For this problem, v is identified with f . Carrying
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out the calculations, a pair of coupled equations is obtained:

(1− λ)
(
v · ∇I + ∂I

∂t

)
∂I

∂x
− λ∇2v1 = 0

(1− λ)
(
v · ∇I + ∂I

∂t

)
∂I

∂y
− λ∇2v2 = 0.

(6.5)

There are a number of suitable numerical approaches for solving the Euler-Lagrange

equations for v. A simple one is gradient descent, in which an artificial dependence

on a time marching parameter τ is assigned to v. Re-deriving the Euler-Lagrange

equations to include this dependence results in the same pair of equations above

with [∂v1/∂τ, ∂v2/∂τ ]T on the right-hand side instead of [0, 0]T. Starting from

an initial estimate v0 and the measured image pair, the solution is iterated while

[∂v1/∂τ, ∂v2/∂τ ]T approaches [0, 0]T. In practice an appropriate stopping criteria

is specified to keep the number of iterations reasonable; for example, the norm of

[∂v1/∂τ, ∂v2/∂τ ]T falling below a given threshold that is close to zero. Alternatively,

the largest dimension of the image may be used to set a fixed number of iterations.

6.3 Image Frame Generation

Optical flow computations are typically applied to sequential video frames. For sonar,

repeat passes are the obvious way to obtain such a sequence, but this is highly unde-

sirable. The time between passes is often long, and re-imaging severely reduces the

area coverage rate of the survey. The goal of this work is to find a reliable approach

for detecting transient refractive effects within a single image.

There are a number of ways in which a single SAS data collection might be divided

into subsets that can be processed into sequential images. Some of these are discussed

by Hansen et al. [42]. The approach chosen for this research begins with a complex-

valued stripmap SAS image, as opposed to the raw sonar data it was derived from.

The image is Fourier transformed into the two-dimensional (kx, ky) wavenumber do-

main, allowing the data to be easily filtered according to aspect, θview, and integration
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angle, θint, by applying the appropriate mask to the spectrum. The region of interest

is defined byM(kx, ky) = 1 for

kx = 2k sin θ

ky = 2k cos θ

 θ ∈
[
θview −

θint

2 , θview + θint

2

]
, (6.6)

and zero otherwise. Additional masking and/or weighting to control the shape of the

point scatterer response could be built into M. Applying an inverse Fourier trans-

form to the masked spectrum provides a single image frame. An image sequence is

constructed by varying θview. Beams of various widths and degree of overlap can be

extracted, and the resulting set of images used as input to the optical flow. For exam-

ple, a single image might be decomposed into a pair of images where one corresponds

to the forward-looking half of the sonar beam and the other to the aft-looking half.

The performance of the optical flow depends on θview and θint. Positive/negative

values of θview map to beams steered fore/aft, and there is a corresponding time

delay between the images formed from these beams. Since the images are sep-

arated by angle, the delay between images depends on range according to ∆t =

v−1
s y [tan(θfore)− tan(θaft)], where vs is the forward speed of the sensor, y is range,

and θfore and θaft are the values of θview for the pair of images being compared. Con-

sequently, any image-to-image displacement vector measured by optical flow can be

converted to a velocity by dividing it by the appropriate range-dependent ∆t.

There is a trade associated with the selection of integration angle for the generation

of frames. Larger angles are favored for imaging because they give finer cross-range

resolution. When the object of interest is moving, smaller integration angles are often

more suitable because the motion may be negligible or nearly constant over the time

required to collect the data. This effect has been used for detecting moving objects

in SAR imagery. Fine resolution is unnecessary in the present context, so θint can

be small to improve temporal localization. Table 6.1 summarizes the parameters

available to the user when applying Horn and Schunck optical flow to SAS imagery.
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Table 6.1: Parameters available for controlling optical flow.

Parameter Comments/Effect

α Mean of speckle gradient

Image oversampling factor Apparent smoothing of image

Aspect angle, θview Time between image frames

Integration angle, θint Image acquisition time and cross-range resolution

6.4 Experimental Approach

All optical flow schemes are affected by noise in the image, resolution, and the amount

of change between consecutive images, which are typically fixed by the sensor and

imaging conditions. The SAS application is somewhat unique in that it offers the flex-

ibility to vary all of these. The parameters are coupled, but the user has tremendous

latitude nevertheless.

6.4.1 Weighting the Smoothness Constraint

A key property of SAS is that an image can be modeled as an underlying reflectivity

function modulated by the speckle caused by the coherent rough scattering from

the sea floor. Speckle is not noise in the traditional sense because it is an inherent

property of coherent imaging systems. Furthermore, speckle is “deterministically

random” in that it is caused by the random distribution of small-scale scatterers

throughout the scene, yet that realization is the same each time the scene is imaged.

This feature is widely exploited for change detection and interferometric terrain height

estimation [3, 114], as well as motion estimation for SAS [5]. The speckle realizations

become decorrelated as two views of the same scene are separated in angle. This effect

limits the baseline that can be used for interferometry [115]. It is used to advantage,

however, in multilook processing where the image spectrum is divided to make a set

of images with lower resolution, but independent speckle realizations [116, 3]. The
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images are averaged, thus reducing the speckle contribution and revealing details

not otherwise visible. Multilooking is commonly done for remote-sensing SAR, as

these collections typically have ample spatial bandwidth to work with. It is less

commonly used for SAS because the nature of sound propagation in the ocean makes

it expensive to construct sensors capable of high sampling rates in the along-track

direction. Traditional multilooking tiles the wavenumber spectrum in both kx and

ky. Since the image frames for optical flow are generated by excising a specifically

chosen subset of the available beamwidth, any multilooking is applied only in the ky

dimension.

Speckle can be thought of as a modulation varying between 0 and 1 that imparts

a grainy texture to the image. For high-quality SAS imagery, the speckle is far more

pronounced than the noise. Assuming this to be the case, it is reasonable to follow

the guidance of Horn and Schunck and set the weighting parameter α2 equal to the

average value of the squared magnitude of the speckle (in lieu of noise) gradient.

The granularity of speckle is inversely proportional to the spectral support of the

image. Therefore, the average size of speckle is equal to the resolution of the image,

regardless of the sampling rate, and even regardless of the quality of image focus.

For this reason, the apparent gradient of the speckle depends on the sampling rate of

the image. Oversampling causes the speckle to appear smoother when its gradient is

computed numerically.

The mean value of the speckle gradient cannot generally be computed directly

from the image, although a smooth region of sea floor may provide a reasonable

value. Regardless, it can be conveniently estimated from a speckle realization created

separately from the image, yet possessing the same spectral support and weighting.

This is done by populating the wavenumber spectrum with complex phasors, whose

phases are uniformly distributed, and then multiplying it by the mask M defined

earlier for the purpose of creating image frames. The steps are outlined as follows:
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1. Compute the two-dimensional Fourier transform of the complex-valued SAS

image

2. Threshold the spectrum to create a binary mask indicating the region of support

in the Fourier domain

3. Populate the region of support with unit-amplitude phasors with uniformly-

distributed phase

4. Compute the inverse Fourier transform to obtain a speckle realization

5. Compute the expected value
〈
I2
x + I2

y

〉
as an estimate of α

Alternatively, the excellent book by Goodman [117] contains an extensive closed-form

analysis of speckle statistics that could be used to compute α.

6.4.2 Image Resolution

Fine-resolution SAS imagery has resolution on the order of 2-4 cm, while the refractive

distortions present in the image are typically on the scale of meters. Retaining the

best possible resolution is unnecessary for detecting transient refractive effects, so

the SAS image therefore has excess spatial bandwidth that can be used to reduce

speckle via multilooking. Multilooking carries the added benefit of reducing the

pixel count in the image, greatly accelerating the optical flow computation. This

reduction is advantageous because SAS imagery often contains on the order of 10-100

million pixels, and the optical flow can require thousands of iterations resulting in

impractically-long computation times. The spatial filtering and multilooking applied

to the SAS data in this experiment resulted in images with approximately 5% of their

original pixel count, a far more manageable size.

6.4.3 Spectral and Temporal Overlap

In addition to the integration angle (resolution), the angle between frames (time

separation) must be decided. These angles can be such that there may or may not be
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overlap in the spectral support between two or more consecutive frames. It is possible

to construct a sequence of images with arbitrarily small time separation. There are

drawbacks to making the time separation too large or too small. If the inter-frame

time separation is too small, then slow-moving features in the image may not change

enough to be reliably detected. If it is too large, then the scene content may change

drastically resulting in a meaningless optical flow field.

Regardless of the integration angle, a key consideration is the amount of spectral

overlap between consecutive frames. If there is no overlap, then the speckle real-

izations will be completely uncorrelated. Otherwise, the speckle will exhibit some

degree of correlation. Note that the correlation of the speckle is in addition to any

correlation due to the underlying seafloor reflectivity, for example, from specular or

point-like reflectors. These facts make it difficult to predict the correlation between

frames, but it is clear that as the overlap of the frames’ spectral regions of support

decreases, the optical flow field can be expected to exhibit some amount of fine scale

randomness [118]. This randomness can be masked or altered by the smoothing term

in Equation (6.3) and by the number of iterations used to compute the optical flow

field.

6.5 Experimental Results

The optical flow estimation was applied to data collected by FFI’s HUGIN au-

tonomous underwater vehicle carrying a HISAS wideband interferometric SAS. Two

collections were chosen for comparison. Both contain scenes of a smooth sea floor,

where one image is free of refractive anomalies while the other is known to contain

them. The presence of the anomalies was confirmed using imagery from repeat passes.

(Recall Figure 6.1, and see the article by Hansen et al. [42].)
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Figure 6.5: Rays were traced through a hypothetical internal wave bolus using a
geometry similar to the collection used for this study. Note the concentration of
acoustic energy followed downrange by a region that would appear as a shadow in an
image.

6.5.1 Raytracing

To better understand the behavior of optical flow in the context of SAS, the refraction

of an IWB was modeled by tracing rays through a local anomaly in the sound speed.

The choice of this shape is somewhat arbitrary, as ground truth is not available. A

parabola was used in [42], and a Gaussian shape is used here, giving similar results.

An example raytrace is shown in Figure 6.5, where the anomaly is centered at a

ground range of 120 m and extends approximately 2 m downrange and uprange. The

most obvious features visible in the raytrace are the concentration of acoustic energy

just downrange of the IWB and the depletion of acoustic energy causing an apparent

shadow to follow it. It is this combined highlight/shadow that causes the refraction

associated with the IWB to strongly resemble the appearance of sand ripples.

The Gaussian shape used in Figure 6.5 contains a feature not present in the

parabolic model. This is the secondary focusing at the downrange “foot” of the IWB,

located at a range of about 122 m in the figure. The raytraced profile was repeated

to create a simple reflectivity map. Speckle with the appropriate properties was then
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Figure 6.6: Legend for HSV optical flow representation. The color (hue) represents
the angle of the optical flow field, while the magnitude is given by saturation. Angles
of 90◦ and 270◦ correspond to the downrange and uprange directions, respectively.

included to create a simulated SAS image. These images are shown in the top row of

Figure 6.7. Which model is used for the IWB is largely immaterial for the purpose at

hand. However, it is interesting to note that some of the refractive features visible in

the right panel of Figure 6.1 exhibit the paired highlights predicted by the Gaussian

model. It is also important to point out that the image artifacts appear downrange

of the actual location of the IWB.

Optical flow estimation was applied to a sequence of images created by stepping

the Gaussian shape downrange. An independent speckle realization was applied to

each frame in keeping with the choices of θview and θint used in the next section for

the sea test data. The results are presented in Figure 6.7. The left and right columns

show the optical flow results for the raytraced image without and with speckle, re-

spectively. The middle row shows the magnitude of the optical flow. The true speed

of the simulated IWB was 2 cm/s. The bottom row plots the direction of the optical

flow vector field as well as its normalized magnitude using an HSV (hue-saturation-

value) representation. The hue represents the angle of the flow vector field, while

the saturation indicates the magnitude. Since the magnitude is provided separately,
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Figure 6.7: Comparison of optical flow for images without (left column) and with
(right column) speckle effects. The simulated SAS image was generated from the
raytrace shown in Figure 6.5. The red line segments indicate the ground ranges of
the center and edges of the IWB.
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the saturation is normalized to the maximum flow magnitude to enhance the angle

visualization. The mapping between flow angle and HSV color is given by the legend

in Figure 6.6.

The speckle-free optical flow in Figure 6.7 captures the details of the time-varying

intensity due to the movement of the refractive bolus. The addition of speckle removes

much of this detail, leaving a single dominant artifact. The optical flow appears to lose

details whose downrange extent is small, or at least comparable to the characteristic

dimension of the speckle. The highlights caused by the refractive focusing fall into

this category, and are difficult to discern in the bottom right plot of Figure 6.7. The

motion of the shadow is the dominant feature captured by the optical flow. This is

because the shadow is a large area of uniform (albeit low) intensity and because there

is little speckle in this region.

6.5.2 Application to Sea Test Data

The optical flow was applied to two pairs of images collected by FFI using the SAS

carried by the HUGIN autonomous underwater vehicle. The first image pair, Fig-

ure 6.8, contains a single strong IWB. The second set, Figure 6.9 shows the optical

flow applied to an image that is completely filled with refractive effects. Both exam-

ples contain a ‘control’ image that was taken at the same range but is free of refractive

effects. The images in Figure 6.8 are of the same area of sea floor. The areas imaged

in Figure 6.9 are near one another, but not identical.

As with the raytraced simulation, the top row of Figures 6.8 and 6.9 shows one

frame from the image pair used to compute the optical flow. The middle row shows

the magnitude of the optical flow vector field, and the bottom row shows its angle.

The effective integration angle is 1◦ and the frames correspond to view angles of ±5◦.

It is important to stress that the optical flow field is not a direct measurement of the

motion of the transient refractive anomaly. Even a totally quiescent environment is

expected to exhibit some amount of optical flow because of differences in the speckle
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realizations. Furthermore, the multiaspect image frames will cause shadows to be

cast in slightly different directions [119]. The observed optical flow field is a product

of the following contributions:

1. Differences in speckle between image frames

2. True displacement of the IWB

3. Evolving shape of the IWB

4. Apparent motion due to frame-to-frame variation in θview

5. Motion of the IWB during the time needed to form the synthetic aperture

These factors should be taken into account if it is desired to go beyond detection and

use the SAS imagery derive quantitative information about the true IWB.

The imagery examined in Figure 6.8 is helpful for characterizing the optical flow

performance because the IWB is clearly isolated within the image. One therefore

expects the majority of the optical flow field to behave randomly, as for the IWB-free

image. The large IWB spans the width of the image, but only about 40% of it is

clearly visible in the optical flow. If the constituent image pair is compared carefully

(not shown), the downrange limb of the IWB is seen to move appreciably more than

the rest of the feature. It is not clear that the near-range part of the IWB is moving at

all in the image sequence used. There is also a slight narrowing of the image artifact

at its closer ranges that would tend to mask what little motion may be present.

The optical flow angle indicates that the IWB is moving uprange. However, the

collection geometry and local bathymetry incidate that the IWB is actually moving

in the downrange direction. This discrepancy is believed to be attributable to the

optical flow being dominated by apparent motion due to changing the view angle, as

opposed to the true motion of the IWB. The fact that the IWB is at an oblique angle
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relative to the along-track axis of the image complicates the refraction. It should be

possible to model this by extending the raytracing approach described above.

In contrast with the solitary IWB, Figure 6.9 shows the result of applying optical

flow to a sizable region of a SAS image that is completely filled with refractive effects.

The image containing the refractive effects was taken from the upper-left corner of

the right-hand image in Figure 6.1. No objects are visible in the excised region, but

it can be inferred from the remainder of the image that the scene is well-focused.

The refraction-free comparison image contains some man-made objects large enough

to cast shadows, but otherwise shows a uniform sea floor. The shadows are seen to

induce some very localized motion, as they shift in response to the view angle.

The refractive boluses shown in the figure are undulating, but roughly parallel

to the cross-range axis, and are known to be moving quite slowly in the downrange

direction. It is clear that the overall optical flow is parallel to the range axis, but it is

not uniform. Rather, it is characterized by distinct regions moving both uprange and

downrange. The reason for the sign change is not yet understood. It is possible that

view-to-view changes in refraction are responsible, as is believed to be the case in

Figure 6.8. Another prominent visible effect are the unstructured regions appearing

as nearly horizontal stripes at ranges of 110 m, 120 m, and 128 m. These locations

coincide with the highlights in the SAS image. They appear to match the phenomenon

visible in the raytraced imagery (Figures 6.5 and 6.7) at the range corresponding to the

most intense ray focusing. This confusion of the optical flow field seems reasonable,

given the crossing rays visible in Figure 6.5.

6.6 Discussion

The optical flow behavior is impossible to explain completely without accurate knowl-

edge of the propagation environment. Nevertheless, some qualitative expectations can

be stated: The angular-temporal nature of the multiaspect filtering used to create the
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Figure 6.8: Comparison of optical flow for images without (left column) and with
(right column) refractive effects. The top row shows the underlying SAS imagery,
while the middle and bottom rows show the magnitude and angle of the optical flow
vector field.
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Figure 6.9: Comparison of optical flow for images without (left column) and with
(right column) refractive effects. The top row shows the underlying SAS imagery,
while the middle and bottom rows show the magnitude and angle of the optical flow
vector field.
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image frames should produce two kinds of effects: First, any changes in the speckle

pattern should result in a randomization of the optical flow field. Secondly, when ob-

jects are present in the scene, their highlights and shadows will shift primarily in the

cross-range direction according to the change in θview. The corresponding optical flow

vectors should point in the cross-range direction as well (angles near 0◦ and 180◦).

Assuming the speckle is uncorrelated among the two images being compared, it

should be possible to predict an upper bound on its optical flow. Since the charac-

teristic dimension of the speckle is the same as the image resolution, the optical flow

displacement should not exceed this distance, regardless of the temporal separation

or amount of frame-to-frame decorrelation. For the parameters used to visualize the

FFI data, the upper bound on speckle-driven optical flow is approximately 6 cm/s,

and the mean value is of course substantially lower. This prediction is supported by

the observations in Figures 6.8 and 6.9.

The characteristics of speckle are well-understood, suggesting an approach for au-

tomating the detection of refractive anomalies. For a given scene, a sliding window can

be used to estimate the local magnitude and direction of the optical flow map. Those

areas deviating significantly from the behavior associated with pure speckle would be

marked as being possibly influenced by refraction. Strictly speaking, speckle locally

violates the brightness constancy assumption used to derive optical flow, behaving

as a continuum of sources and sinks of intensity such that DI/Dt 6= 0. However,

brightness constancy is obeyed on average.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

This research was motivated by a desire to bring ideas from PDE-based image process-

ing into the sonar, radar, and nondestructive testing communities. Although isolated

examples are cited in Chapter 1, there has not yet been widespread exposure within

these fields. Image reconstruction via aperture synthesis is an important applica-

tion in all of these disciplines, so it was chosen as the context in which variational

techniques are discussed. Similarities and differences among a number of imaging

modalities presented in Chapter 2 include a high-level mathematical description of

image reconstruction via the adjoint to the model representing the observed data.

The adjoint operator was shown to be closely linked to the notion of backprojection,

and most, if not all, of the major synthetic aperture reconstruction algorithms can be

related back to this framework.

The first of two main thrusts of this research is the idea of the adjoint active surface

whose cost function is linked directly to the physics governing the wave propagation

and scattering. The primary distinction between this approach and traditional imag-

ing is that the purpose of the active surface is to segment out a scatterer of interest

from within a larger volume. While the entire volume is not imaged, a number of

significant benefits accrue to offset this loss. All degrees of freedom available to the

reconstruction are placed on the scattering surface of interest, not on the surrounding

volume. The reconstruction is also effectively decoupled from the specific solution to

the wave propagation. For example, the shape gradient needed for reconstruction is

written in terms of the field values on the active surface. These may be computed in

any way that is convenient to the user and well-matched to the problem. Since nu-

merical techniques are appropriate to use, reconstruction in complicated environments

becomes a more approachable prospect. An interesting feature of the adjoint active
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surface reconstruction is that it appears to be well-suited to low and mid-frequency

scattering, where many reconstructions are best suited to the high-frequency (short

wavelength) regime.

Active surfaces were developed in the context of the Helmholtz equation for the

cases of (1) opaque scatterers (i.e., with no interior field) embedded in free space,

and (2) penetrable scatterers in a volume that may be bounded. The latter was

demonstrated numerically using closed-form solutions based on spherical harmonics.

The former case was chosen as the basis for a laboratory experiment using Lamb

waves in an aluminum plate. The experiment was carefully designed so as to produce

only the S0 and A0 modes in the plate. Since the modes travel with different speeds,

it is possible to spatially filter the data to eliminate the unwanted mode. The shape

reconstruction was intended for the S0 mode, but the frequencies realized in the

experiment proved to be outside the range for which the approximate solution used

for the shape gradient is valid. Diligent et al. [120] and Grahn [88] describe models

that go beyond the plane stress to account for normal variations in stress across the

plate thickness.

Lamb wave propagation in plates is accurately described by the Helmholtz equa-

tion, where the field quantity is the displacement potential. While the experimental

data were of very high quality, the boundary conditions associated with the displace-

ment potential formulation of Lamb waves are incompatible with the shape gradient

derived for the Helmholtz equation, except for limiting values of ka. Unfortunately,

the experiment did not overlap these ka values, as it was specifically designed to span

a range just above and below ka = 1.

The second major theme of this research applied optical flow to solving a new and

unique problem in the field of synthetic aperture sonar. Areas of acoustic focusing and

dilution attributable to refraction can sometimes resemble the natural bathymetry of

the ocean floor. The difference is often visually indistinguishable, so it is desirable to
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have a means of detecting these transient refractive effects without having to repeat

the survey. The optical flow proved to be effective for this purpose.

Since any detection scheme would ideally be automated, connections were estab-

lished between the tunable parameters of Horn and Schunck’s optical flow and the

intrinsic properties of SAS imagery. Perhaps the most notable of these is the fact

that the well-known statistical behavior of coherent speckle can be used to appropri-

ately weight the smoothing term of the flow. The same principles could be applied to

synthetic aperture radar imagery, which is known to be susceptible to similar effects

under the right set of atmospheric conditions. Whether applied to sonar or radar,

the potential exists for using optical flow as a tool to increase understanding of the

dynamics of the ocean and the atmosphere.

7.1 Open Questions and Suggested Future Work

There are several clear avenues for continuing the investigation of adjoint active sur-

faces. The first is to further pursue experimental data that can be used to validate the

approach and more firmly establish it as a viable alternative to existing techniques.

Such experiments might be carefully constructed to prove a point, as was the ultra-

sonics experiment presented here. Or, data sets that work well with existing methods

could be identified and compared with the active surfaces to better understand their

relative strengths. Regardless, the best applications for adjoint active surfaces may

not be the ones currently enjoying the most attention from the community.

An outstanding question is the precise nature of the relationship between PDE-

based processing and classical array processing, including superresolution techniques.

It is also not yet clear what role bandwidth plays in PDE-based reconstruction and

what is the best way to use it. For traditional imaging methods bandwidth normally

translates into resolution. For active surfaces, the utility of bandwidth appears to be

in resolving ambiguities, that is, sorting out the globally optimal point in the cost
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function from surrounding local extrema.

Optical flow has been experimentally demonstrated to show promise for detecting

the presence of transient refractive effects using a single SAS image. The next logical

step would be to fully automate the detection since the visual cues hinting at the

presence of refractive anomalies can be subtle, often mimicking the appearance of

natural effects. Such a capability would be useful for identifying portions of a survey

area that may suffer from reduced image quality. A far more ambitious goal is to

measure the character of the refracting disturbance, for example, the shape of its

boundary and the sound speed profile within it. Such measurements could have a

significant impact on the science of oceanography. This is also a point of intersection

with adjoint active surface reconstruction, which could in principle be used to infer the

properties of the refracting portion of the medium based on the changing backscatter

from the sea floor.
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