Extending and Evaluating Flow-insensitive and Context-insensitive Points-to

Analyses for Java*

Donglin Liang, Maikel Pennings, and Mary Jean Harrold
College of Computing, Georgia Institute of Technology
{dliang,pennings,harrold } @cc.gatech.edu

Abstract

This paper presents extensions to Steensgaard’s and
Andersen’s algorithms to handle Java features. With-
out careful consideration, the handling of these features
may affect the correctness, precision, and efficiency of
these algorithms. The paper also presents the results of
empirical studies. These studies compare the precision
and efficiency of these two algorithms and evaluate the
effectiveness of handling Java features using alternative
approaches. The studies also evaluate the impact of the
points-to information provided by these two algorithms
on client analyses that use the information.

1 Introduction

Program analyses and optimizations for Java programs
require reference information that determines the in-
stances whose addresses can be stored in a reference
variable. Researchers have suggested the use of points-
to analysis algorithms, originally developed for analyz-
ing C programs, for the computation of the reference
information for Java programs. Java has features, how-
ever, that are not present in the C language. With-
out careful adaptation of these algorithms for Java pro-
grams, these features may cause the algorithms to com-
pute incorrect information. These features may also af-
fect the ways in which Java programs are written, and
thus, may significantly affect the precision and efficiency
of the algorithms on these programs.

To evaluate the effectiveness of these points-to anal-
ysis algorithms for computing reference information for
Java programs, we studied two flow-insensitive, context-
insensitive algorithms—Steensgaard’s [10] and Ander-
sen’s [1]. Steensgaard’s algorithm has almost-linear com-
plexity and computes much more precise information
than the worst-case approximation. Andersen’s algo-
rithm, despite its cubic worst-case time complexity, can
compute pointer information efficiently for large C pro-
grams [7]. In addition, studies show that Andersen’s

*Supported by grants to Georgia Tech from Boeing Aerospace
Corporation, by NSF awards CCR-9988294, CCR-0096321, and ETA-
0196145, and by the State of Georgia under the Yamacraw Mission.

algorithm may compute information that is close in
precision to that computed by expensive flow-sensitive,
context-sensitive algorithms [5, 6].

This paper discusses extensions to Steensgaard’s and
Andersen’s algorithms to handle important Java fea-
tures. Our extensions account for the common ways
in which Java programs are written and attempt to
improve the precision and efficiency of these two algo-
rithms in analyzing such programs. Compared to other
approaches [8, 11] that extend Steensgaard’s or Ander-
sen’s algorithms for Java, our approaches for handling
this, collections, and maps can be more precise, and
our approaches for handling fields can be more efficient.

The paper also presents several empirical studies.
The studies evaluate the efficiency and the precision
of Steensgaard’s and Andersen’s algorithms, and evalu-
ate the effectiveness of using alternative approaches for
handling Java features. The studies also evaluate the
impact of using points-to information provided by these
algorithms on virtual call resolution and escape analy-
sis. Our studies are the first to show that, by carefully
handling features such as this, collections, and maps,
both algorithms can compute much more precise points-
to information than the worst-case approximation. Qur
studies are also the first to show that, by simplifying
field handling in Andersen’s algorithm to take advan-
tage of encapsulation present in Java programs, the ef-
ficiency of this algorithm can be significantly improved
without losing precision. Our studies also show that
the use points-to information can significantly improve
the precision of virtual call resolution, and can provide
useful escape information for optimization.

2 Extending Points-to Analyses for Java

This section discusses the extensions to Steensgaard’s
and Andersen’s algorithms to handle several important
Java features. Because of space limitation, we omit the
discussion of handling other Java features, such as re-
flection, that must also be carefully considered when
implementing a points-to analysis.

Steensgaard’s and Andersen’s Algorithms. We

adapted Steensgaard’s and Andersen’s algorithms to
compute points-to graphs for Java programs. In a points-
to graph, nodes represent variables or instances, and
edges represent variable references (labeled with “*7)
or instance field references (labeled with field names).
For efficiency, Steensgaard’s algorithm uses one node to
represent the instances that may be referenced by the
same variable or field. For example, in Figure 1(b.1),
instances created at both statements 12 (h12) and 13
(h13) are represented using one node. In contrast, An-
dersen’s algorithm uses one node to represent each in-
stance (see Figure 1(c.1)).

Both Steensgaard’s and Andersen’s algorithms pro-
cess reference assignments in an arbitrary order in each
method. When the algorithms process a method call,
they use a set of assignments to simulate the parameter
passing and the return of the target method. Steens-
gaard’s algorithm processes an assignment by merging
the node that represents the instances referenced by the
left side of the assignment with the node that represents
the instances referenced by the right side of the assign-
ment. Using this approach, Steensgaard’s algorithm
processes each assignment only once. In contrast, An-
dersen’s algorithm processes an assignment by adding
edges to the points-to graph so that the set of instances
referenced by the left side of the assignment subsumes
the set of instances referenced by the right side of the as-
signment. Because the set of instances referenced by the
right side may change after the assignment is processed,
Andersen’s algorithm revisits the assignments until no
new edges are added to the points-to graph. This ap-
proach causes Andersen’s algorithm to be more expen-
sive but more precise than Steensgaard’s algorithm.

Virtual Method Calls. We present two approaches
for handling virtual method calls in a points-to analysis.
The first approach computes the set of invokable meth-
ods at each virtual method-call using algorithms such as
class-hierarchy analysis (CHA) [4] or rapid type analysis
(RTA) [2]. This approach is simple and requires minor
modification to the points-to analysis. The second ap-
proach starts the analysis from main() and discovers,
during the analysis (on the fly), the targets of each vir-
tual method call that can be reached from main() or
from class initialization methods. This approach may
be more expensive but may compute more precise in-
formation than the first approach.

To use the second approach, a points-to analysis
computes, for each reference variable v, a set of virtual
method calls that invoke methods through v (for ease
of explanation, we assume that the program is format-
ted in such a way that virtual method calls are invoked
through variables). During the analysis, when a new
instance o of type T 1s added to v’s points-to set, if o

class A {

int[] p;

public A() {
this1.p=new int[2];

thisl this2 (S)l s2 | thisl this2 sl s2

public void set(int v) {
this2.p[0]=v;

O 00NN BN =
—

public static void
main(String [] av) {

10 A sl =new A();

11 A s2 =new A();

12 sl.set(0);

13 s2.set(0);

14} }

(c.2)

sl s2 A.p
*
h4

O O

(b.2) }) é
h12 hl3
(b) By Steensgaard’s

h12 hl3 h4
(c) By Andersen’s

(a) Program 1

Figure 1: Java example and its points-to graphs.

is the first instance of type T in the set, then the algo-
rithm reprocesses each virtual call that invokes methods
through v. If the algorithm discovers a new target at a
call, it binds the actual parameters of the call to the for-
mal parameters of the new target. If the new target has
not been processed previously, the algorithm processes
each statement in the new target.

Fields. We discuss two approaches for handling fields
in points-to analysis. The first approach treats the fields
of instances using an approach similar to those used for
fields of structures in C, and computes one points-to set
for each instance field [8, 11]. To do this, at a method
call r.m() (method call m() is treated as this.m()), the
analysis binds r to the implicit formal parameter this
to pass the receiver instance into m(). Figures 1(b.1)
and 1(c.1) depict the points-to graphs constructed for
Program 1 by Steensgaard’s and Andersen’s algorithms,
respectively, using this approach. The graphs show that
Steensgaard’s algorithm may compute very imprecise
information because instances pointed to by this of a
method m are forced to be represented by one node.
We propose a second approach that computes one
points-to set for each class field. At each statement in
which a field of an instance is accessed using expres-
sion r.f (f is declared in class &), the algorithm treats
such instance field access as class field access A.f and
drops r." Such simplication can improve the efficiency
of both algorithms. The approach also avoids comput-
ing the points-to set for this in the analysis if such
a points-to set i1s not needed for the computation of
the points-to sets of other variables.?2 The points-to set
of this i1s needed in a method m for the computation
of the points-to sets of other variables in the following
cases: (1) this is used in m as the right side of an as-
signment or an actual parameter; or (2) m calls another

LA similar approach is used in Reference [12] to resolve virtual
method calls in Java.

?The points-to set for this in method m can be computed, after
the analysis, by collecting the receiver instances at each call to m.

method m; through a direct method call—a call in the
format of my () or this.m;()—and the points-to set of
this is needed in my or the points-to analysis will dis-
cover the targets of the direct method call on the fly.
In other cases, the points-to set of this in m is not
needed. Given a call r.m(), if the points-to set of this
in m() is not needed, then the points-to analysis ignores
r and considers only the bindings between actuals and
formals. Otherwise, the analysis also binds r to this.
In many cases, Steensgaard’s algorithm using the
second approach may be more efficient and more precise
than using the first approach. For example, the graph in
Figure 1(b.2) computed by Steensgaard’s algorithm us-
ing the second approach is smaller but contains more
precise information than the graph in Figure 1(b.1).
Andersen’s algorithm using the second approach may
be more efficient but less precise than using the first ap-
proach. However, if the reference fields of each instance
are always accessed within the methods of the instance,
the information computed by Andersen’s algorithm us-
ing the second approach is equivalent to that computed
using the first approach. For example, the points-to
graph in Figure 1(c.2) computed by Andersen’s algo-
rithm using the second approach contains information
that is equivalent to the information contained in the
graph in Figure 1(c.1). In Java programs where encap-
sulation is strongly encouraged, we expect to see little
difference in the precision of information computed by
Andersen’s algorithm using either approach.

Collections and Maps. Besides arrays, a Java pro-
gram frequently uses a collection (e.g., Vector) or a
map (e.g., Hashtable) to store and retrieve data. Be-
cause many methods for a collection or a map may be
provided in native code, it is difficult to analyze these
methods. Even if the methods are provided in byte
code, analyzing these methods not only adds extra cost
to the analysis, but also causes a context-insensitive
points-to analysis to be less precise. For example, data
stored in one Vector instance may be returned by invok-
ing elementAt() on another Vector instance because
these data are referenced by the return statement of
elementAt (), which is shared by all instances.

We solve this problem with user-provided models.
A model instructs the algorithm to make a conserva-
tive assumption when processing calls to methods of a
collection or a map. A model describes different slots
where data can be stored in an instance. For example,
in a hash table instance, keys are stored in a key slot
and values are stored in a value slot. The model also
describes how each method stores data to or retrieves
data from slots. Given such models, when a new in-
stance of a collection or a map is instantiated, the slots
associated with the instance are also created. When a

method is called on an instance, data are stored to or
retrieved from slots associated with this instance.

Casting. Andersen’s algorithm for Java can benefit
from the fact that casting is checked at runtime. Given
a reference assignment p=(4)q, only instances of type A
or a subtype of A can be returned by the casting. Thus,
Andersen’s algorithm propagates only the instances whose
type is A or a subtype of A from q’s points-to set to p’s
points-to set. This approach improves both the preci-
sion and the efficiency of the algorithm.

Exceptions. We propose an approach that uses as-
signments to simulate the passing of exception instances
from the throw statements to the corresponding catch
statements. Our approach utilizes the control-flow in-
formation provided by Sinha and Harrold’s algorithm
[9]. This algorithm provides information about the pos-
sible types of the raised exception at a throw and infor-
mation about where the control flows after an exception
of a specific type is raised. The information can be used
to create assignments that assign the exception refer-
ence at a throw to the exception reference at a catch.
A type filter is also associated with each assignment to
specify the types of the exceptions that can be passed
from the throw to the corresponding catch.

3 Empirical Studies

We implemented Steensgaard’s and Andersen’s algo-
rithms using JABA3 that analyzes the control flow and
exceptions, simulates the changes in the operand stack,
and builds an abstract-syntax tree representation for a
Java program from the byte code. Our implementation
of the points-to analysis simulates the effects of method
calls on instances of classes in java.lang, java.util,
and java.io, and thus, avoids analyzing the byte code
of these classes. Our implementation also carefully han-
dles reflection using user-provided information.

Our implementation of points-to analysis for Java
can be instantiated into 12 algorithms depending on the
approaches for handling fields and virtual method calls.
The algorithms (nodes) and the precision subsumption
relations (edges) are shown in Figure 2(a). The first
letter in an algorithm’s name indicates whether the al-
gorithm is Steensgaard’s (S) or Andersen’s (A). The
second letter in the name indicates whether the algo-
rithm computes information for class fields (C) or in-
stance fields (T). The last three letters in the name in-
dicate how the algorithm handles virtual method calls:
using CHA | using RTA, or discovering targets on the fly
(Fly). The target of each edge is at least as precise as
the source of the edge. Note that S-I-* are not compara-
ble with S-C-*, and S-C-Fly is not comparable with the

3See http://www.cc.gatech.edu/aristotle/, Georgia Tech.

A-1-FIl A-I-Fly A-I-Fly
1.0 2.0 97/.87 .99/.99
S—I~Fly A-I-Rta A-C-FI A-I-Rta A-C-Fly | A-I-Rta A-C~Fly
2.1 1.0 .99/.97 .97/.86
S-I-Rta A-I-Cha A-C-Rta S—C-Fly| A-C-Rta A-C-Rta
1.2 1.4 96/.91 .68/.68
S-1-Cha A-C-Cha S-C-Rta A-C-Cha S-C-Rta | A-C-Cha S-C-Rta
1.4 12 o768 95/91
S-C-Cha S-C-Cha S—-C-Cha
42/.49
Worstjczllse
(a) Precision subsumption (b) Time () Precision

Figure 2: Intuitive comparison of algorithms.

(I)Steens (IT)Andersen

C- C- C- C- C- 1- 1-
program Cha Rta Cha Rta Fly Rta Fly
JavaSim 0.13 | 0.13 0.20 0.22 0.27 0.31 0.27
antlr 315 | 30.4 32.0 24.2 6.72 51.4 9.08
jar 0.25 0.20 0.36 0.27 | 0.30 0.36 0.31
javacup 2.94 | 2.13 9.38 | 887 | 9.48 10.4 11.3
javac 96.1 96.3 136. 123. 158. 1489 1480
jbf 1.50 1.63 194 | 284 | 2.11 2.58 2.52
jess 35.1 26.0 53.1 39.5 | 48.9 294. 344.
jfe 20.0 7.58 18.1 5.98 | 6.19 10.2 7.70
jlex 0.62 0.69 1.25 1.41 1.48 1.77 1.79
jtar 1.18 | 0.83 1.70 1.58 1.45 2.38 1.65
kawa 62.4 | 20.2 119. 23.1 25.8 95.8 102.
raja 0.81 0.76 0.15 0.17 | 0.14 0.18 0.19
sablecc 194 | 215 48.7 | 52.4 | 81.7 218. 305.
toba 1.59 1.79 2.58 | 3.58 | 2.09 3.30 2.32

Table 1: (I) Time in seconds for Steensgaard’s, (II)
Time in seconds for Andersen’s.

other S-C-* because of the difference in treating this.

We conducted several empirical studies on a set of
Java programs to evaluate the performance of these al-
gorithms. Table 2(T) shows the sizes of the subjects
(library excluded). All data are collected on a Sun
Ultra-30 with 640Mb physical memory. Because of the
space limitation, this paper shows only the results for
the seven algorithms underlined in Figure 2(a).

Efficiency. In this study, we compared the time re-
quired to run each of the seven algorithms. Table 1
shows the results. Figure 2(b) summarizes the results.
In the figure, the number associated with each edge
from A; to Ay shows the geometric mean of the ratio
of the time required by As to the time required by A;.
Note that antlr is excluded in computing the geometric
mean because it is an outlier: by discovering virtual call
targets on the fly, A-I-Fly and A-C-Fly analyze many
fewer methods, and thus, run much faster than A-I-
Rta and A-C-Rta on antlr. The results show that the
biggest efficiency gap appears between algorithms that
compute points-to sets for class fields and algorithms
that compute points-to sets for instance fields (about

10 times for javac). This is not surprising because the
latter must compute many more points-to sets than the
former. The results further show that, except for A-I-
Rta and A-I-Fly, the algorithms can efficiently compute
points-to information for large programs, and thus, can
be used in practice.

Precision. In this study, we compared the precision of
the algorithms. We also compared them to the worst-
case approximation: a reference variable of type T' may
refer to any instance of type T or a subtype of T.
For each algorithm A, we measured I¢[A], the aver-
age number of receiver instances for each method call,
and Cr[A], the average number of method calls that
are invoked on each instance computed using informa-
tion provided by A. These measurements reflect the
impact of the points-to information on subsequent data-
flow analyses. To compare the results for different algo-
rithms, when we compute I¢[A] and Cr[A], we consid-
ered only the code analyzed by all seven algorithms. Ta-
ble 2(TT,TTT,ITIT) shows the results. Each pair of numbers
for algorithm A shows I¢[A] and C[A], respectively.

Figure 2(c) summarizes the results. In the pair of
numbers associated with an edge from A; to As in
the figure, the first is the geometric mean of the ratio
Ic[As]/Ic[A4], and the second is the geometric mean of
the ratio Cr[Az]/C1[A1]. The study shows that Steens-
gaard’s algorithm computes significantly more precise
information than the worst-case approximation. This
result agrees with the comparison of the worst-case ap-
proximation to Steensgaard’s algorithm on C [5].* How-
ever, this result is quite different from that reported
in [11], in which the precision of Steensgaard’s is close
to the worst-case approximation. Although the preci-
sion 1s measured differently, another major factor that
may contribute to the difference is that our implemen-
tation of Steensgaard’s computes more precise informa-
tion: our implementation avoids computing points-to
sets for this and handles collections and maps more
precisely. The study also shows that Andersen’s algo-
rithm may compute significantly more precise informa-
tion than Steensgaard’s. However, as expected, there is
no significant difference between algorithms that com-
pute information for class fields and algorithms that
compute information for instance fields. This result
suggests that the high cost of computing information
for instance fields in Andersen’s is not worthwhile.

Virtual Call Resolution. In this study, we compared
the effectiveness of resolving virtual method calls using
the points-to information provided by the seven algo-
rithms. Let C' be the set of virtual method calls that
we consider, and R, be the set of virtual calls that are
resolved using z approach. Given an algorithm A, we

*Results are more dramatic on C because types are unsafe in C.

(I) Subject Sizet (IT)Worst (I11)Steens (I11T)Andersen
program Nodes Cls | Meths case C-Cha C-Rta C-Cha C-Rta C-Fly I-Rta I-Fly
JavaSim 3305 37 242 6.24/12.6 2.11/7.16 | 2.11/7.16 1.91/6.5 1.91/6.5 | 1.84/6.05 1.91/6.5 | 1.84/6.05
antlr 44065 | 148 1858 11.8/98.4 8.53/82.9 | 8.53/81.0 1.93/27.9 | 1.93/27.9 | 1.76/10.4 | 1.84/21.8 | 1.70/10.2
jar 2264 8 89 6.45/16.3 1.87/5.25 | 1.53/4.19 1.44/4.08 | 1.40/3.86 | 1.40/3.83 | 1.40/3.83 | 1.40/3.83
Jjavacup 12778 35 372 5.85/50.3 3.18/25.4 | 3.18/25.4 2.54/20.5 | 2.54/20.5 | 2.53/20.5 | 2.50/20.3 | 2.50/20.3
Jjavac 31346 | 151 1404 55.9/344. 53.8/335. | 53.8/335. 47.0/291. | 47.0/291. | 47.0/289. | 47.1/291. | 47.0/289.
jbf 730 | 45 548 || 13.0/69.8 || 5.53/32.9 | 5.53/32.5 || 4.71/27.7 | 4.71/27.7 | 4.71/27.7 | 4.71/27.7 | 4.71/27.7
jess 23412 | 207 1132 57.3/258. 48.6/227. | 44.4/186. 40.3/190. | 36.3/152. | 32.8/136. | 36.3/152. | 31.9/133.
jfe 31019 | 310 1837 28.7/148. 4.82/37.4 | 3.90/29.9 2.00/19.4 | 1.94/16.3 | 1.88/8.73 | 1.94/15.3 | 1.87/8.16
jlex 6629 20 134 4.31/46.6 1.39/13.8 | 1.39/13.8 1.19/11.8 | 1.19/11.8 | 1.19/11.7 | 1.19/11.8 | 1.19/11.7
jtar 6489 40 202 4.32/12.1 1.38/6.36 | 1.38/6.36 1.07/5.08 | 1.07/5.08 | 1.07/4.56 | 1.07/5.08 | 1.07/4.56
kawa 33388 | 319 1989 33.2/153. 20.3/125. | 16.1/73.0 13.0/83.2 | 8.61/39.3 | 8.07/35.3 | 8.58/38.6 | 8.06/35.3
raja 6351 65 391 9.25/42.8 2.62/10.6 | 2.62/10.6 1.33/3.60 | 1.33/3.60 | 1.33/3.60 | 1.33/3.60 | 1.33/3.60
sablecc 28232 | 295 2025 23.7/143 12.5/76.3 | 12.5/76.3 7.29/44.2 | 7.29/44.2 | 7.16/43.4 | 7.28/44.1 | 7.15/43.3
toba 10376 26 196 6.31/29.9 1.41/13.5 | 1.41/13.5 1.37/13.3 | 1.37/13.3 | 1.37/13.3 | 1.37/13.3 | 1.37/13.3

tThe statistics may differ from that reported in other works for a subject because (1) all interfaces, as well as the classes imple-
menting collections and maps (e.g. in sablecc), are excluded, (2) different versions are used.

Table 2: (T) Subject size, (IT) Worst case precision, (ITT) Precision of Steensgaard’s, and (ITI) Precision of Andersen’s.

Resolved % resolved by points-to analysis but not by CHAt % of method local instancest

by S-C- S-C- A-C- A-I- A-I- S-C- S-C- A-C- A-I- A-I-
program Cha Rta Cha Rta Cha Rta Fly Cha Rta Cha Rta Fly
JavaSim 100/100 0/0 0/0 0 /0 0/0 0/0 0/0 51/0. 51/0. | 51/0. 51/0. | 51/0.
antlr 60.7/67.1 | 13.9/30.5 | 14.3/30.5 | 14.3 /30.5 | 19.7/31.2 | 19.9/31.5 | 20.0/31.9 47/2. | 47/2. | 49/2. 50/4. | 59/39
jar 85.7/58.0 2.85/0 6.79/0 | 13.5 /41.9 | 9.70/41.9 | 13.5/41.9 | 13.5/41.9 || 48/56 | 53/63 | 76/85 | 76/85 | 76/85
javacup 94.1/96.3 | 0.42/0.00 | 0.43/0.00 | 0.43 /0.00 | 0.53/0.11 | 0.53/0.11 | 0.53/0.11 24/33 | 24/33 | 24/35 | 24/35 | 24/35
javaci 78.6/— 0.38/— 0.43/—- 0.43 /- 2.06/— 2.09/—- 2.09/- 33/- 33/- 40/- 40/- 40/-
jbf 92.7/43.0 0/0 | 3.61/24.1 | 3.61 /24.1 | 4.16/32.3 | 4.16/32.3 | 4.16/32.3 || 61/26 | 61/26 | 69/27 | 69/27 | 69/27
jess 69.0/95.7 | 3.78/1.47 | 3.83/1.47 | 3.96 /1.54 | 5.13/1.57 | 5.36/1.64 | 6.70/2.24 || 34/10 | 34/10 | 35/10 | 35/10 | 35/10
jfe 91.0/95.6 | 7.06/4.25 | 7.21/4.25 | 7.21 /4.25 | 7.21/4.25 | 7.21/4.25 | 7.25/4.25 || 61/55 | 61/55 | 67/55 | 67/55 | 68/56
jlex 99.2/99.9 | 0.38/0.02 | 0.57/0.03 | 0.57 /0.03 | 0.57/0.03 | 0.57/0.03 | 0.57/0.03 || 30/56 | 30/56 | 32/57 | 32/57 | 32/57
jtar 96.9/99.9 1.02/0 1.02/0 1.02 /0 1.02/0 1.02/0 1.02/0 60/23 | 60/23 | 70/27 | 70/27 | 70/27
kawa 83.7/95.6 2.43/0 2.57/0 2.75 /0 | 3.10/1.47 | 3.33/1.47 | 3.80/1.47 37/2. | 37/2. | 41/2. | 41/2. | 42/2.
raja 70.3/61.4 | 14.8/14.0 | 29.6/38.5 | 29.6 /38.5 | 29.6/38.5 | 29.6/38.5 | 29.6/38.5 11/15 | 11/15 | 42/65 | 42/65 | 42/65
sablecc 77.2/89.0 | 5.32/5.16 | 7.94/9.05 | 7.94 /9.05 | 7.97/9.65 | 7.97/9.65 | 11.2/9.65 || 27/13 | 27/13 | 36/13 | 36/13 | 36/13
toba 97.4/73.5 | 0.89/26.3 | 1.07/26.4 | 1.07 /26.4 | 1.07/26.4 | 1.07/26.4 | 1.07/26.4 || 78/32 | 78/32 | 79/36 | 79/36 | 79/36

tData for A-C-Rta and A-C-Fly are not shown because they are identifical to the data for A-I-Rta and A-I-Fly.
{Dynamic data are unavailable for javac because our profiler ran out of memory.

Table 3: Left: Percentage of resolved virtual method calls. Right: Percentage of method-local instances.

measured the percentage of virtual calls that can be
solved by A but not by CHA (|Ra — Rcma|*100/|C|).
We also compared the results with that computed using
RTA. To compare different algorithms, we considered
only the method calls that appear in the code that is
analyzed by all seven algorithms. The left-side of Ta-
ble 3 shows the results. In each pair of numbers, the
first number is computed by counting the number of vir-
tual method call statements in the code, and the second
number is computed by counting the number of virtual
call invocations in a trace generated by a profiler. The
table shows that, for several programs, using points-
to information can significantly improve the precision
of resolving virtual method calls over CHA and RTA.
This is consistent with the findings in Reference [8].
However, except for antlr and jar, the absolute differ-
ence for the results computed with various algorithms
is insignificant. This suggests that Steensgaard’s algo-
rithm is good enough for virtual call resolution. Note
that for toba, because a call statement that reads bytes

from a stream has been executed many times, resolving
such a call greatly increases the percentage of resolved
virtual method invocations.

Escape Analysis. In this study, we compared the ef-
fectiveness of computing escape information using the
points-to information provided by the seven algorithms.?
We measured the percentage of instances that are lo-
cal to a method (an instance I is local to a method
m if I is instantiated in m and cannot be returned to
m’s callers). To compare different algorithms, we con-
sidered only the instances that are explicitly created
using new statements in the code that 1s analyzed by
all seven algorithms. The right side of Table 3 shows
the results. In each pair of numbers, the first 1s com-
puted by examining the new statements the create local
instances and the second one is computed by examin-
ing the local instances created at those statements at
runtime. The table shows that points-to information

5Reference [8] discusses the details about computing escape infor-
mation using points-to information.

computed by these algorithms can effectively support
escape analysis. The table also shows that, for a few
programs (e.g., raja), Andersen’s algorithm computes
significantly better results than Steensgaard’s. How-
ever, among different versions of Andersen’s algorithm,
the differences in the results are insignificant. This sug-
gests that any version of Andersen’s algorithm can be
used for escape analysis.

Summary. Our studies suggest that A-C-Rta or A-C-
Fly perform the best among the evaluated algorithms:
they are more efficient than, but as precise as, A-I-Rta
and A-I-Fly, and they compute more precise informa-
tion than Steensgaard’s algorithm. Because A-C-Rta
and A-C-Fly handle mostly one-level references (only
references to arrays, collections, and maps are multi-
level), these algorithms may be implemented, without
losing much precision, using an efficient approach sim-
ilar to the one presented in [3]. Our future work will
evaluate such an optimization.

The lack of difference between the information com-
puted by A-I-* and that computed by A-C-* can be
interpreted in two ways: (1) encapsulation present in
Java programs helps to simply and improve Andersen’s
algorithm; or (2) encapsulation lowers the precision of
Andersen’s algorithm because the accesses to the same
field of different instances cannot be distinguished. Our
future work will investigate the impact of encapsulation
on other points-to analyses.

4 Related Work

Rountev et al. [8] extend Andersen’s algorithm to Java
using annotated inclusion constraints that let the algo-
rithm compute information for instance fields and dis-
cover the targets of virtual calls on the fly. The al-
gorithm uses stubs for native methods and analyzes
methods both in the application and in library. The
efficiency of the algorithm and the impact on call graph
construction, virtual call resolution, and escape analy-
sis have also been evaluated. Streckenbach and Snelt-
ing [11] extend both Steensgaard’s and Andersen’s al-
gorithms to Java using a framework. The framework
computes information for instance fields and uses con-
dition constraints to discover the targets of virtual calls
on the fly. They also propose a conservative approach
to approximate the effect of unanalyzed code. The ap-
proach puts all the instances that are passed into unan-
alyzed code into one set. When a statement in analyzed
code calls a method in unanalyzed code, the approach
assumes that all instances that are in the set and have
appropriate type may be returned. When a method in
analyzed code can be called from unanalyzed code, the
approach assumes that all instances that are in the set
and that have appropriate types may be passed through

formals. They also report empirical studies that evalu-
ate the efficiency, precision, and impact on virtual call
resolution and KABA, another client analysis.

Our work differs from these existing works in several
aspects. First, we consider other alternatives to han-
dle fields and virtual calls. Our empirical evaluation
of these alternatives reveal that simplifying field han-
dling in Andersen’s algorithm significantly improves its
efficiency without losing precision. It also reveals that
finding targets using RTA is almost as good as finding
them on the fly. Second, we propose a more precise way
to handle collections and maps. Third, we propose an
approach that avoids, if possible, computing points-to
set for this. This approach may help Steensgaard’s
algorithm to compute more precise information than
Streckenbach and Snelting’s approach.

Many virtual method resolution and escape analy-
sis algorithms have been proposed. Because of space
limitation, we omit the discussion of them.

References

[1] L. Andersen. Program analysis and specialization for the C
programming language. Technical Report 94-19, University
of Copenhagen, 1994.

[2] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++
virtual function calls. ACM SIGPLAN Notices, 31(10):324—
341, Oct. 1996.

[3] M. Das. Unification-based pointer analysis with directional
assignments. In PLDI’00, June 2000.

[4] J. Dean, D. Grove, and C. Chambers. Optimizations of
object-oriented programs using static class hierachy analy-
sis. In FCOOP’95, pages 77-101, 1995.

[5] M. Hind and A. Pioli. Which pointer analysis should i use?
In ISSTA’00, pages 113-123, Aug. 2000.

[6] D. Liang and M. J. Harrold. Efficient points-to analysis for
whole-program analysis. In 7th ESEC/FSE, pages 199-215,
Sept. 1999.

[7] A. Rountev and S. Chandra. Off-line variable substitution
for scaling points-to analysis. In PLDI’00, pages 47-56, June
2000.

[8] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analy-
sis for java based on annotated constraints. Technical Report
DCS-TR-424, Rutgers University, Nov. 2000.

[9] S.Sinhaand M. J. Harrold. Analysis and testing of programs
with exception-handling constructs. IEEE Trans. on Soft.
Eng., 26(9):849-871, Sept. 2000.

[10] B. Steensgaard. Points-to analysis in almost linear time. In
POPL’96, pages 32—41, Jan. 1996.

[11] M. Streckenbach and G. Snelting. Points-to for java: A gen-
eral framework and an empirical comparison. Technical re-

port, University Passau, Nov. 2000.

[12] V. Sundaresan, L.. Hendren, C. Razafimahefa, R. Valle-Rai,
P. Lam, E. Gagnon, and C. Godin. Practical virtual method
call resolution for java. In OPSLA’00, pages 264—280, Oct.
2000.

