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Abstract

Prefetching disk blocks to main memory will become increasingly important to overcome the widening
gap between disk access times and processor speeds. We present a prefetching scheme that chooses which
blocks to prefetch based on their probability of access and decides whether to prefetch a particular block at
a given time using a cost-benefit analysis. To calculate the probability of access of prefetch candidates, we
construct a prefetch tree that records past access patterns. For the cost-benefit analysis, we derive equations
for the benefit of prefetching an additional block and the cost of allocating a buffer to the prefetch.

We use a trace-driven simulator to evaluate the performance of our prefetching scheme. For an efficient
implementation of the prediction algorithm, we limit the size of the prefetch tree. We show that our
prefetching scheme lowers overall cache miss rates by up to 32% compared to a system that performs no
prefetching. Coupled with the one block lookahead prefetching, this scheme improves overall cache miss rates
by up to 52% over a scheme that performs no prefetching and by up to 27% over an aggressive one block
lookahead prefetching scheme for small cache sizes. However, the frequency and effectiveness of prefetching
decrease as cache size grows.

1 Introduction

Prefetching disk blocks to main memory will be increasingly necessary to overcome the widening gap between
disk access times and processor speeds. Disk access times, which include mechanical seek and rotation operations,
improve at a rate of less than 10% per year. Typical disk access times are approximately 10 milliseconds in
1998. By contrast, processor speeds are improving at a rate of over 50% per year. For CPU clock rates of 100
MHz to 500 MHz, a disk access takes 1 million to 5 million processor cycles, and this disk access penalty will
worsen as clock rates increase.

Prefetching blocks before a processor requests them can reduce or eliminate the time a processor is idled
waiting for data to arrive from disk. Without prefetching, a processor initiates a demand fetch when it discovers
the data it requires is not contained in caches or in main memory. Disk I/O operations are so lengthy that
they frequently cause a processor to idle, or stop executing instructions. Prefetched disk blocks can make data
available to the processor sooner and minimize idle time.

Prefetching schemes make two decisions: which blocks to prefetch and when/whether to prefetch. A prefetch-
ing system can use probabilistic or deterministic information to determine which blocks to prefetch. A proba-
bilistic scheme uses past access patterns to infer which blocks have a high probability of being accessed in the
future [18, 4, 5,7, 9, 8, 11]. Since future accesses are predicted rather than known, such schemes may prefetch
blocks that are never accessed. A deterministic scheme chooses blocks to prefetch using application-provided
hints [13, 14, 6, 17, 2]. The application uses its knowledge of I/O access patterns to give the prefetching system
an ordered list of blocks that will be accessed in the future.

After choosing good candidates, the prefetching scheme must decide whether to prefetch a block and when
prefetching is most advantageous. Prefetched blocks displace blocks that were fetched on demand or blocks that
were prefetched earlier. If these displaced blocks are later needed, they must be re-fetched from disk, which
may hurt performance. Consequently, prefetching schemes avoid retrieving blocks earlier than necessary.
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This paper evaluates a prefetching technique that chooses which blocks to prefetch based on their probability
of access and decides whether to prefetch a particular block at a given time using a cost-benefit analysis. The
benefit of prefetching each candidate block is compared to the cost of replacing another block from the cache;
a block is prefetched only if the benefit exceeds the cost. Our cost-benefit analysis is based on Patterson’s
informed prefetching scheme [13, 14, 17]. Tt differs from informed prefetching in the two ways.

e Probabilistic hints: We infer probable future access patterns based on past accesses by constructing a
prefetch tree. Because some predictions are incorrect, some blocks will be prefetched and never accessed.
By contrast, in the informed prefetching scheme, applications are modified to provide deterministic hints
about future access patterns. All hinted blocks are eventually accessed.

e Prefetching blocks along multiple paths: When we consult our prefetch tree to decide which blocks to
prefetch, we may find more than one block with a moderate or high probability of being accessed soon.
Our cost-benefit algorithm may prefetch multiple blocks corresponding to different paths in the prefetch
tree.

We describe an efficient implementation of our algorithm in a trace-driven simulator. Our prefetching scheme
lowers overall miss rate up to 32% over a scheme that performs no prefetching for cache sizes that are small
relative to the working set of blocks being accessed. Coupled with the one block lookahead prefetching, our
predictive prefetching scheme improves overall cache miss rates by up to 52% over a scheme that performs no
prefetching and by up to 27% over an aggressive one block lookahead prefetching scheme for small cache sizes.
However, the frequency and effectiveness of prefetching decrease as cache size grows.

The remainder of this paper is organized as follows: In the next section, we explain how we predict future
accesses based on past access patterns using a prefetch tree. Next, we explain the system model for our
experiments. Section 4 gives an overview of the cost-benefit algorithm, followed by details of the analysis in
Sections 5, 6 and 7. Section 8 briefly discusses the implementation of our trace-driven simulator. We evaluate
the performance of our prefetching scheme in Section 9. Section 10 discusses related work.

2 The Prefetch Tree

In this section, we explain how we construct the prefetch tree that is used to make predictions about future
accesses. We use the Lempel-Ziv (LZ) scheme from Duke University [18, 4]. The LZ scheme constructs a
directed tree based on disk accesses. The tree contains a root node where the algorithm begins. The remaining
nodes in the tree correspond to disk blocks. An edge exists from node A to node B in the tree if disk block B
was accessed immediately after disk block A. Each node has a weight that is equal to the number of times the
node has been accessed. The probability that block B will be accessed after block A is the weight of node B
divided by the weight of node A. Figure 1 shows an example of a prefetch tree. In Figure 1(a), the probability
of accessing nodes a and b from the root node are p, = 0.83 and p, = 0.17, respectively. For nodes at deeper
levels in the tree, we multiply the probabilities along the edges that make up the path from the current node
to the block that is a candidate for prefetching. In Figure 1(a), the probability of accessing block @ followed by
b from the root node is p, = (0.83)(0.6) = 0.5.

The prefetch tree is constructed as follows. An application makes a series of disk accesses. We divide
the list of these accesses into “substrings”, where each substring consists of a previous substring plus one
additional disk access. Figure 1 shows a tree constructed after the following series of disk block accesses:
(a)(ac)(ab)(aba)(abb)(b), where the parentheses indicate substrings. When processing a new substring of disk
accesses, the LZ scheme starts from the root of the prefetch tree. When the first block of a new substring is
accessed, the LZ scheme checks the tree to see if the block was accessed from the root before. If so, it traverses
the edge to the node corresponding to that disk block and increments the weight of the node. The algorithm
continues to traverse edges in the tree corresponding to disk accesses until it encounters a disk block for which
an edge in the tree does not exist. A nonexistent edge in the tree suggests we are encountering this order of
accessing disk blocks for the first time. When this occurs, the LZ scheme adds a new edge and a new node
corresponding to the disk access to the prefetch tree. At this point, we have defined a new substring, and we
return to the root to process the next substring. Figure 1 shows the prefetch tree before and after visiting block
b from the root node.



root node root node

@ cache cache
(ii) 1

c
@ Figure 2: Structure of the combined

prefetch and demand cache. To ac-
@ @ commodate a new prefetch block, a
buffer must be reclatmed from either
the demand cache (i) or the prefetch

a) After string: (a)(ac)(ab)(aba)(abb)(b) b) After accessing node b from root cache. Likewise, if a demand miss

. ) occurs, a buffer is reclatmed from ei-
Figure 1: A prefetch tree for disk accesses (a)(ac)(ab)(aba)(abb)(b). ther the prefetch cache (ii) or the
Parts a) and b) show the prefetch tree before and after accessing node b demand cache. When a prefetched

from the root node. In part b), the weights of the nodes visited have been block is referenced, it moves to the
1
incremented. The figure also shows the distance d. = 2 between the root demand cache (iii).
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Since edges in the prefetch tree correspond to blocks that are accessed in order, we can initiate prefetches
“early” if we initiate prefetches for nodes that appear several edges away in the prefetch tree. More precisely,
when we prefetch a block b, we can define the depth or distance dp of a prefetch as the number of disk accesses
after which block b is expected to be accessed. dp reflects the number of edges in a path in the prefetch tree
between the current block and block b. Figure 1(a) illustrates a distance of two from the root node.

Once weights are assigned to nodes, we can choose blocks as candidates for prefetching that have a high
probability of being accessed.

3 System Model

Next, we describe the system model we use to calculate the cost and benefit of prefetching candidate blocks. We
share many assumptions with Patterson’s model [13]. We assume a uniprocessor running a modern operating
system. The system includes a file buffer cache that is partitioned into a demand cache and a prefetch cache,
as shown in Figure 2. The demand cache holds disk blocks that have been referenced previously and uses an
LRU replacement policy. The prefetch cache stores disk blocks that have been prefetched but have not yet been
referenced. A block “moves” from the prefetch to the demand cache when it is accessed. When a new prefetch
or demand fetch is initiated, a buffer must be reclaimed from either the demand cache or the prefetch cache.

Other assumptions shared with the informed prefetching scheme include the following. An application issues
I/0O requests as single block requests that can be read in a single disk access. We assume disk access time is a
constant, Ty;sr. We also assume that we have many disk drives and, therefore, no disk congestion. Between two
I/0O operations, the CPU performs computation for time T¢py, on average. When the CPU finds the data it
wants in the buffer cache, it takes Th;; time to read the block from the cache. Initiating a prefetch or a demand
fetch requires device driver overhead Tygriyer to allocate a buffer, queue the request at the drive, and service the
interrupt after the I/O completes. Figure 3(a) shows these parameters when no prefetching is performed.

Additional parameters are required in our predictive prefetching scheme. We define an access period as the
time between two successive disk accesses in the absence of prefetching. When consulting the prefetch tree, we
can prefetch along multiple paths simultaneously. On average, at every step in the algorithm, we prefetch s
blocks that may correspond to multiple paths in the tree. We calculate the value for s during execution. Figure
3(b) illustrates a prefetching timeline for s = 2.

We already defined the depth or distance, dp, of a candidate block b as the number of edges along a path
from the current position in the prefetch tree to the candidate block. Since not all prefetched blocks are accessed
in our predictive scheme, we also define the hit ratio, h, as the fraction of prefetched blocks that are accessed.
s and h are dependent; when we prefetch more blocks (increasing s), the prefetch hit ratio h decreases.
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Figure 3: Effect of prefetching on the execution timeline. (a) Timeline without prefetching. In each access period,
there is @ Tariver + Taisk time before the block s demand fetched into the cache. Once the block is available, the CPU
takes This +Tcpu time computing. (b) Timeline with prefetching and no CPU stalls when (s = 2). Each block is
prefetched sufficiently early so that the disk access time is overlapped with computation. In each access period, the CPU
prefetches 2 blocks (s = 2) which takes 2 X Tariver time. The amount of time spent computing does not change.

Finally, to make it possible to compare our cost and benefit estimates using the same units, we express all
cost and benefit values as those achieved per unit of buffer usage. Using Patterson’s definition of buffer usage
or bufferage, we define one unit of bufferage as the occupation of one buffer for one access period [14].

4 Algorithm Overview

Recall that an access period is the time between two successive disk accesses. Our algorithm performs the
following steps at the beginning of each access period.

1. Choose block to prefetch. Consult the prefetch tree and identify blocks with a high probability of
future access. For each block, calculate the benefit of prefetching. Choose the block with the greatest
benefit from prefetching.

2. Identify cache block to replace. Identify the least valuable buffer in the demand cache or the prefetch
cache. This block is a candidate for replacement.

3. Decide whether to prefetch. If the benefit of prefetching the new block exceeds the cost of replacing
the old block, perform the prefetch.

4. Repeat these steps, prefetching multiple blocks, until the cost of replacing an existing block exceeds the
benefit of prefetching a new block.

Figure 4 shows a block diagram of the inputs and outputs of our prefetching algorithm. It includes fixed
values such as Typiyer and Tyisr, as well as dynamically calculated values such as s, h, and pp, the probability
of accessing block b. Outputs of the prefetching scheme include the cost and benefit of prefetching block b as
well as the additional overhead, T, , incurred to initiate prefetches of blocks that are never accessed.

5 Benefit of prefetching a buffer

In this section, we derive an equation for the benefit of allocating an additional memory buffer to prefetch one
access deeper. Allocating this buffer will increase the bufferage, or occupation of buffer space, by one unit of
buffer usage per access period [14, 13]. Therefore, buf ferage = 1.

Given this additional buffer for prefetching, we prefetch block b at a depth of d in the prefetch tree, with
respect to the block currently being accessed. Block b has a probability of py of being accessed, according to
the prefetch tree. As part of the benefit calculation, we define AT,f(b,dy) as the amount of time saved by
prefetching block b at depth dp, compared to the time required to fetch b on demand. Suppose that block b has
a parent block z that is accessed with probability p,. The time saved by prefetching one block deeper to fetch
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Figure 5: Prefetching timelines: This figure shows timelines for a processor and disk system that are prefetching one
block ahead of the block being accessed. (1) Access period 1: Initiate a prefetch of block B and access block A, which
was previously prefetched. No processor stall. (2) Access period 2: Initiate the prefetch of block C and access block
B. Disk access time for block B was completely overlapped by CPU activity. No processor stall. (3) Access period 3:
Initiate the prefetch of block D and access block C. Processor stalls waiting for block C disk access to complete. Disk
accesses for blocks C and D partially overlap; access of block D does not cause a stall in the following access period.

block b in addition to block @ is pp AT, ¢ (b, dy) — ps AL, ¢ (2, dp — 1). The benefit of allocating a buffer to prefetch
one access deeper becomes:

_ DoATy (b, dy) — pe ATpp (2, dy — 1)
o bufferage

We calculate AT,¢(b,dy) by determining the amount of prefetch disk access time that is overlapped with
other activity on the processor. Ideally, the disk access for a prefetched block completely overlaps computation
on the processor or other I/O operations, effectively hiding the prefetch access time. If the entire prefetch is
hidden, then the time saved by prefetching the block is the disk access time, or ATy¢ (b, ds) = Tgisk. In practice,
the prefetch may not be initiated sufficiently early to hide the full disk access time. In this case, the CPU must
stall while the disk access completes, and the time saved by prefetching will be

B(b)

= pbATpf (b, db) — prTpf (;73, db — 1) (1)

ATyp(b,dp) = Taisk — Tstau(ds) (2)

Tistau(dp) is the average amount of time the CPU stalls waiting for a disk access to complete. Note that if
dy = 0, we are performing a demand fetch rather than a prefetch; we must stall for the entire disk access time,
50 Tstaur (0) = Tyisk, and ATps(b,0) = 0. Figure 5 illustrates the processor and disk system timelines for a series
of prefetch operations. The figure shows one prefetch disk access that completely overlaps processor activity
and does not stall the processor and another access that does cause a stall.

Before calculating Tsequ(dp) for dp > 0, we first determine the amount of prefetch disk access time that is
overlapped with processor activity. During each of the d; access periods between initiating the prefetch and
accessing block b, the processor performs computation (which takes Tcpy on average, according to our system
model), reads the currently-requested block from the buffer cache (T}i:), and initiates on average s additional
prefetches (s * Tyriyer). Thus, the total computation over the d; access periods is:

Tcompute(db) = db[TCPU + Thit + STdriver]: fOT’ db >0 (3)



Stall time can now be bounded by:
0 S Tstall(db) S Tdisk - Tcompute(db); fOT' db >0 (4)

If Teompute(ds) > Taisk, then the entire prefetch disk access time is hidden, and Tizan(ds) = 0.

Besides computation on the processor, stall time for a particular I/O can also be reduced by stalls generated
by other I/O operations that are executing concurrently. During dp access periods, a total of d blocks will be
accessed. If the CPU stalls waiting for one disk access, additional I/O operations can proceed in the background
and suffer less stall time. Figure 5 shows an example when disk accesses for blocks C' and D overlap. On average,
only one of dy accesses will stall for Taisk — Tcompute (dp) time. (Here we use logic similar to Patterson’s [13].)
Thus, on average, the stall time per block prefetched is given by:

Tdisk - Tcompute (db)

Tistau(ds) = max| 4 , 0], for dp >0 (5)
Substituting Equation 3 in Equation 5 yields
_ Tisk

Tstau(dp) = max] 4 (Thit + Tepu + sTariver), 0], for dp >0 (6)

We substitute this value for Ty¢qu into Equation 2 to calculate AT, ¢ (b, dp). Finally, we substitute the value
of AT,¢(b,dp) into our original benefit equation, B(b) = ps AT,y (b, dy) — pe ATpp(z, dp — 1).

By prefetching earlier (increasing dp), a larger portion of the disk access time can be overlapped with
computation. By prefetching more blocks per access period (increasing s), the CPU executes more driver
operations to initiate these accesses, and masks a larger portion of any individual disk access. Both circumstances
reduce average stall time and increases the benefit of prefetching. However, prefetching more blocks that are
never accessed will ultimately harm performance. We account for the overheads incurred in increasing the
number of prefetches in Section 6.3.

6 Cost

Next, we give expressions for the costs associated with prefetching. These include the cost of ejecting a buffer
from either the prefetch cache or the demand cache to make room for the prefetched block, as well as the
additional overhead in the predictive prefetching scheme for fetching blocks that are never accessed.

6.1 Ejecting a block from the prefetch cache

Blocks in the prefetch cache have been predicted but not yet accessed. If a block is removed from the prefetch
cache and later accessed or predicted again, it must be re-fetched. Thus, the cost of ejecting a block from the
prefetch cache relates to the penalty for re-fetching and the probability, py, that the block will be refetched:

_ PoAT(b)
Cor(b) = buf ferage

We will first derive an expression for bufferage using Patterson’s analysis [14]. The change in service time
for ejecting a block from the prefetch cache is a one-time cost that is borne by the next access to the ejected
block. If a block b is ejected, and if we find block b below the current position in the prefetch tree at depth
dp, then we expect to access the block again in dy access periods. We can initiate a new prefetch of the block
x access periods before its use. When we eject the block and later prefetch it again, a single buffer is freed for
dp — x access periods. Thus, buf ferage = dp — .

Next, we calculate AT f(b), the extra time required to re-fetch a block vs. finding it in the prefetch cache:

(7)

ATrf (b) = Tre—fetch (b) - Thit (8)

Thse is the time required to find the block in the buffer cache. T c_fetcn(b) is the time to refetch a discarded
block. Tre—feten(b) includes the time to initiate a disk access, possible CPU stall time waiting for the disk access



to complete, and the time to access the buffer in the cache. The CPU stall time is Tyzqu(2), where z is the
distance of the block in the tree at the time of the re-fetch. We use equation 6 to calculate Tyzq ().
Refetch time becomes:
Tre—fetch(b) = Tariver + Tstall(-r) + Thit (9)

Substituting the value of Ty feron(b) in Equation 8 gives:
ATrf (b) = Tdriver + Tstall(f) (10)

Substituting the bufferage value (dy — ) along with the value of AT, (b) into Equation 7, the cost of ejecting
block b from the prefetch cache becomes:

Do Tdriver + Ts all\
Cpr(b): ( db—xt ( )) (11)

Finally, we substitute the value for T:q; from Equation 6.

6.2 Ejecting a block from the demand cache

Blocks in the demand cache have already been accessed and may be accessed again. The cost of ejecting a block
is the probability of re-access multiplied by the penalty for re-fetching the block on demand. (For simplicity, we
assume the discarded block will not later be prefetched.) The demand cache uses a least-recently-used (LRU)
replacement strategy.

Let H(n) denote the hit rate of a demand cache of size n [14]. The reduction in cache hit rate caused by
removing one buffer from the demand cache is H(n) — H(n — 1). Logically, this difference in hit rate is due to
accesses to the least-recently-used block in the size n cache. Shrinking the number of buffers in the cache by
one reduces the number of occupied buffers, or bufferage, by one per access period. Thus, bufferage = 1, and
the cost of ejecting a block from the demand cache becomes:

(H(TL) — H(n — 1))(Tmi55 — T/—”'t)

(n) = =(H(n)— H(n—1))(Tiss — Thi 12
Cacln) o (H )~ H(n —1))( i) (12)
Since Tiniss = Tariver + Taisk + Thit, this cost becomes

Cac(n) = (H(n) — H(n — D)) (Tariver + Tuisk) (13)

Cost equations 11 and 13 also determine the best buffer to replace during a demand fetch operation.

6.3 Prefetching overhead

To this point, we have not considered the overhead of issuing prefetch requests. We define this overhead as
the time required to initiate new prefetch requests for blocks that are not eventually accessed. If we ignore
this overhead, we risk initiating too many prefetch accesses. To calculate this overhead, we must multiply the
probability that a prefetched block is not accessed by the time to initiate a prefetch, Tyriyer.

Assume that block b, our prefetch candidate, is one access deeper in the prefetch tree than another block
z. Recall that p, and p, are the probabilities of blocks x and b being accessed, respectively, and that these
probabilities are calculated by multiplying the probabilities along the edges in a path in the tree. The probability
that block x is accessed but block b is not accessed is 1 — g—i. The incremental overhead of issuing a prefetch
request for block b if it is never accessed is:

T, = (1 - p_b)Tdriver (14)

T

Another overhead that we ignore in our model is that of disks spending time fetching blocks that are never
accessed. For simplicity, we assume an infinite number of available disks and no wait time for disk accesses.



7 Cost benefit analysis

As discussed in the algorithm overview, our prefetching scheme has three parts:

1. Choose block to prefetch. We consult the prefetch tree to find candidates for prefetching based on
their probability of future access. We apply Equation 1 to find the block, b, with the greatest benefit,
B(b), from prefetching.

2. Identify cache block to replace. We use equations Equations 11 and 13 to determine the best buffers
to replace in the prefetch and demand caches, respectively. Between these two blocks, we choose the one
with the lower cost, C', of replacement.

3. Decide whether to prefetch. Compare the benefit of prefetching a block b to the cost of ejecting a
block from one of the caches. Account for prefetching overhead, T, . Prefetch block b if B(b) — T,, > C.

4. Repeat these steps, prefetching multiple blocks, until the above condition is not satisfied.

8 Implementation

We implemented our predictive prefetching scheme in a trace-driven simulator written in C and C++. Sim-
ulations run on a Sun UltraSparc workstation under the Solaris operating system. We use the same constant
parameters as Patterson [13], namely Th;; = 0.243 milliseconds, Tyriyer = 0.580 milliseconds, and Tyisx = 15.0
milliseconds. We vary T¢,, between 20 and 640 milliseconds.

8.1 Traces

As input to our simulator, we use the disk level traces generated by Ruemmler and Wilkes [16]. The traces
contain disk accesses of 3 machines, cello, snake and hplajw. cello is a timesharing system with a file buffer
cache of 30 MB for the traces used in this paper, while snake had a 5 MB file buffer cache and acted as a file
server and hplajw is a personal workstation with a 3 MB file buffer cache.

A problem with using these traces for this study is that they are disk level traces. Thus, they do not provide
a complete record of I/O accesses (in particular, these traces do not contain I/O accesses that were hits in the
original system’s file buffer cache), but instead reflect only disk accesses. These disk accesses represent misses
from the original system’s file buffer cache. In Section 11 we discuss our experimental plans for file level traces.

8.2 Optimizing Simulator Performance

To reduce the time to construct the prefetch tree, to choose prefetch candidates from the tree, and to calculate
the benefit and cost of allocating a buffer for prefetching, we make the following implementation decisions.

e We maintain the children of each node as lists ordered by decreasing probability of access and LRU order.

e On each iteration of the algorithm, we calculate the benefit of prefetching only one block at each level of
the prefetch tree: the block with the highest probability of access of all the blocks not yet considered.

e We only consider blocks at lower levels of the tree if their parent nodes have previously been prefetched.
e The root node has many children; we implement this level of the tree as a hash table for fast access.

e To limit the size of the tree and reduce the number of nodes that need to be examined, we experiment
with restricting the number of children allowed for a node in the tree.

e To limit the number of levels we check during prefetching, we use Patterson’s notion of the prefetch
horizon [13], which is the depth at which Tytqu(ds) = 0. We do not prefetch past the prefetch horizon.



e We experiment with two ways of assigning cost to “mispredicted” blocks. A mispredicted block is a
prefetched block that is not accessed by the time we predicted it would be. (We maintain estimated access
times for all prefetched blocks.) The first option for dealing with a mispredicted prefetch is to eject it
from the prefetch cache as quickly as possible. In this case, the cost of replacing the mispredicted block
is zero. Second, we consider that, although block b was not accessed at the predicted time, because of
locality of reference in the prefetch tree, it may be referenced soon. As time advances, the probability of
the block being accessed in the future decreases. The cost of ejecting the mispredicted block should reflect
its tardiness, the number of access periods between the estimated access time and the current time. As a
block’s tardiness increases, the cost of ejecting it should decrease. To estimate the cost of ejecting a tardy
block, we substitute the tardiness value for « in the cost equation (11).

9 Performance

To evaluate the performance of the prefetching algorithm we compared it with:
e no-prefetch peforms no prefetching.

e next-limit always prefetches the next disk block after demand fetch. Since this aggressive scheme
prefetches many blocks, we limit the fraction of the cache devoted to prefetch blocks to 10% to avoid
harming performance.

e tree is our algorithm that chooses prefetch candidates using a prefetch tree and decides to prefetch using
cost benefit analysis.

e tree-next-limit Uses our cost benefit analysis in combination with the next-limit algorithm. Thus, this
scheme always prefetches the block after a demand fetch, while limiting 10% of the cache for these blocks.
In addition, it maintains a prefetch tree and prefetches additional blocks according to our cost benefit
analysis.

9.1 Algorithm Performance

In this section we evaluate the behavior of our basic tree algorithm (¢ree) and describe an efficient implementation
of the prefetch tree.

We assume the following experimental conditions for the results presented in this section. The simulations
use a T,py of 150 milliseconds. (We discuss the T,p, parameter in more detail in Section 9.1.1.) We limit the
root node to 8192 children and the remaining nodes of the tree to 64 children. For the results in this section,
we simulated a portion of the cello trace consisting of 3.5 million disk accesses, a portion of the snake trace
containing 3.8 million disk accesses, and a 190,000 disk accesses long portion of the hplajw trace.

Figure 6 compares combined prefetch cache and demand cache miss rates for the three traces with and
without prefetching. The horizontal axis of the graph varies cache size from 2 megabytes to 64 megabytes and
uses a log scale. The figure shows that our prefetching scheme is quite effective for smaller cache sizes, lowering
overall miss rates by up to 32%. However, the advantage of prefetching declines as cache sizes increase. In
larger caches, a bigger fraction of the working set stays resident in the cache. Most misses in large caches occur
when a block is first accessed (often called compulsory misses). The basic tree algorithm cannot further reduce
compulsory misses; in Section 9.2, we show that combining the tree algorithm with one block lookahead further
reduces the miss rate.

Figure 7 supports the assertion that the working sets of the cello, snake and hplajw traces fit in cache
sizes of 32 Mbytes and above. This graph shows the fraction of blocks that the prefetch algorithm chooses to
prefetch, only to discover that the blocks already exist in either the demand cache or the prefetch cache. For
all three traces, over 90% of the blocks identified as prefetch candidates already reside in the cache.

As a result, the tree algorithm performs less prefetching at larger cache sizes, as shown in Figure 8. The
graph shows the average number of blocks prefetched per access period for the three traces. For small cache
sizes, the frequency of prefetching ranges from one to three blocks prefetched per 1/O access. Thus, prefetching
accounts for an increase of up to 300% in disk traffic for small cache sizes. At larger cache sizes, the tree
algorithm prefetches one block approximately every three access periods.
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cello snake hplajw
metric cost cost cost
zero cost | locality cost | zero cost | locality cost | zero cost | locality cost
Miss rate 66.26% 65.50% 24.77% 23.28% 33.51% 32.52%
Prefetch cache hit rate 3.15% 5.57% 3.711% 5.56% 6.56% 8.84%
s 0.794 0.672 1.794 1.552 0.621 0.595

Table 1: Effect of varying the cost of mispredicted blocks. Miss rate is combined demand and prefetch cache miss rate.
Prefetch cache hit rate is the hit rate for blocks in the prefetch cache. s is average number of blocks prefetched per access
period.

Finally, Figure 9 shows that the prefetch cache hit rate is low for all the traces: around 7% for the cello and
the snake traces, and up to 21% for the hplajw trace. This suggests that the basic tree algorithm prefetches
many blocks that are either never accessed or are discarded from the prefetch cache before being accessed.

In summary, the tree prefetching algorithm reduces the combined demand and prefetch cache miss rates by
up to 32% compared to a scheme that performs no prefetching. The tree prefetching scheme performs best for
file buffer cache sizes that are small relative to the size of the working set of blocks being accessed. For small
caches, the tree scheme prefetches up to three blocks for every 1/O access. At larger cache sizes, the amount of
prefetching is reduced because most prefetch candidates are already resident in the cache.

9.1.1 Varying T¢py

Figure 10 shows the impact of changing the value of T, the time that the processor spends computing between
successive I/O accesses. The graph shows s, the average amount of prefetching performed per access period.
This simulation used a cache size of 8 megabytes and varied T¢p, from 20 to 640 milliseconds. As T, increases,
the number of blocks prefetched per access period increases initially and then stays fairly constant for larger
values of T¢p,. The number of blocks prefetched initially increases with T¢,, because more I/Os can execute
concurrently without stalling the processor. However, as we prefetch more blocks,; the overhead of prefetching
increases. Eventually, the cost of ejecting a block from the cache exceeds the benefit of prefetching a new block,
and the rate of prefetching remains constant.

This is confirmed by Figure 11 which shows that the hit rate for blocks in the prefetch cache initially decreases
substantially with increasing T¢py and remains under 10% for values of T;p, over 100 milliseconds. For all the
traces, the miss rate for the combined demand and prefetch caches remains constant with increasing Tcp, as
shown in Figure 12.

Since performance is relatively insensitive to values of T¢,, above 100 milliseconds, we use a value of T¢p, =
150.0 milliseconds in our simulations. This value comes from the cello trace, which has an I/O rate of about 6
I/0Os per second, suggesting CPU activity of approximately 150 milliseconds between successive 1/O operations.
In a file level trace, T;p, might be smaller; our disk level trace does not include I/O operations that resulted in
hits in the original system’s buffer cache.

9.1.2 Ejecting Mispredicted Blocks

In the discussion of our implementation, we described two options for assigning cost for ejecting a prefetched
block that is not accessed at the predicted time. Either we choose to eject the block immediately and assign
it a cost of zero, or we assign a cost of replacement that decreases with the “tardiness” of the block. Table
1 shows the results of these two cost assignments. The tardiness scheme is labeled locality cost. While the
average number of prefetches per access period, s, and the overall cache miss rate are approximately constant
for the two schemes, the prefetch cache hit rate improves approximately 50% when we use the tardiness scheme.
Using tardiness to assign costs keeps blocks in the prefetch cache longer, rather than replacing them as soon
as a misprediction is detected. Because there is likely to be locality of reference in the prefetch tree, keeping
blocks in the cache longer increases the prefetch cache hit rate substantially. (The simulation results presented
in earlier sections used tardiness to assign cost to mispredicted blocks.)
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cello snake hplajw
depth children children children
128 8192 00 128 | 8192 00 128 | 8192 [oe}
1 128 8192 103143 | 128 | 8192 | 141642 | 128 | 8192 | 10890
2 27 11437 | 151617 | 268 | 2888 67315 59 7120 7928
3 6 4381 34003 94 1039 25048 17 1513 1706
4 4 1725 10916 35 424 9532 7 495 581
5 0 1060 5712 12 160 4521 5 242 288
6 0 873 3342 0 61 2442 0 128 146
7 0 476 1391 0 36 1462 0 65 70
8 0 291 876 0 18 919 0 42 43
9 0 175 519 0 8 523 0 11 11
10 0 147 469 0 6 366 0 4 4

Table 2: Shape of the prefetch tree

9.1.3 Limiting the Size of the Prefetch Tree

In this section, we show the shape of the prefetch tree and measure the performance of the prefetching algorithm.
To reduce the overhead required to insert nodes into the tree, we experiment with limiting the number of children
any node can have, including the root node. The simulations presented in this section use a cache size of §
megabytes and use 7¢p, = 150 milliseconds. For the results in this and the following section, we use only a
single day’s disk accesses from each trace, rather than the entire trace, to construct the prefetch tree. This
corresponds to 640,000 accesses, 460,000 accesses, and 37,000 accesses for the cello, snake and hplajw traces,
respectively.

Table 2 shows the number of nodes at each level of the tree below the root node. The first two columns
represent trees in which each node is limited to 128 or 8192 children, respectively; beyond these limits, adding a
new child ejects the least-recently-used child of a node to make room for the new child. The goal of eliminating
the LRU child is to eliminate older access history in the tree, so that prefetch predictions are based on more
recent accesses. The third column in the table shows a prefetch tree with no limit on the number of children
a node can have. For each trace, the root node in an unrestricted tree has many children; nodes at lower
levels have few children, on average. For example, for the cello trace, the root node has 103,143 children;
each of these nodes has, on average, 1.5 children. The trees restricted to 8192 children per node have shapes
proportional to those of the unrestricted trees; the trees restricted to 128 children per node have few children
below the fourth level in each tree. In the experimental results in the previous section, we restricted the root
node to 8192 children and lower levels of the tree to 64 children per node. This limits the overhead of the
prefetching algorithm while still maintaining a prefetch tree shape proportional to the unrestricted tree.

Table 3 shows several performance metrics for execution of our prefetching scheme with the restrictions just
discussed. These simulations were run using a cache size of 8 megabytes and a 7., value of 150.0 milliseconds.
Simulation time refers to the execution time of the simulator. The miss rate is the combined miss rate of
the prefetch and demand fetch caches. For the trees restricted to 8192 children per node, the miss rate with
prefetching is 3% to 5% lower than the miss rate without prefetching. In the unrestricted tree, the miss rate
with prefetching is 3% to 8% lower than the miss rate without prefetching. The parameter s is the average
number of prefetches executed per access period. The restricted or pruned trees prefetch fewer blocks than the
unrestricted trees. Thus, the pruned trees achieve combined miss rates close to those of the unrestricted trees
while generating far fewer prefetch accesses.

9.1.4 Profiling Algorithm Execution

Table 4 profiles the execution time of the simulator for trees restricted to 128 and 8192 children per node. Cache
lookup, to determine whether a desired block resides in the cache, takes a substantial amount of time for all the
traces and for both tree sizes. In trees restricted to 8192 children per node, the simulator spends about 20%
of the time sorting the children of the tree in order of decreasing probability, maintaining least-recently-used
ordering among the children, and in determining the cost and benefit of blocks. Other operations such as
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cello snake hplajw

metric children without children without children without

128 8192 00 prefetch 128 8192 00 prefetch 128 8192 00 prefetch

simulation TT7.71 | 422.02 843 89.36 588.66 | 333.96 | 475.23 65.49 85.58 15.39 | 31.05 9.51

time (sec)

miss rate 62.31 59.05 54.31 62.36 55.79 50.61 49.51 55.77 58.23 | 55.01 55.01 58.21
s 0 1.069 2.37 0 0 1.109 1.45 0 0 0.309 0.31 0

Table 3: Performance of the prefetching scheme with and without pruning. The simulation time refers to the running
time of the stmulation. The miss rate is the combined demand cache and prefetch cache miss rate. s is the average

number of blocks prefetched per access period.

cello snake hplajw

primitive children children children
128 8192 128 8192 128 8192
Cache lookup 76% | 60.9% | 75.1% | 63.1% | 76.2% | 64.7%
Sorting children 0% 9.9% 0% 3.7% 0% 9.6%
in prefetch tree
Tree insertion 0.1% | 0.4% 0.1% 0.2% 0.1% 0.4%
Hash table 0% 0.4% 0% 0.3% 0% 0.2%
Finding benefit | 3.1% | 1.1% 3.2% 1.3% 3.2% 0.8%
Finding cost 1.1% | 101% | 1.1% | 12.5% | 1.1% 3.4%

Table 4: Profiling information for the prefetching scheme

inserting a new node into a tree and using the hash table to look up a node in the first level of the tree take

relatively little time.

9.2 Comparison with other Prefetching Schemes

In this section we present results comparing tree with other prefetching schemes. Recall that tree prefetches
predicted blocks based on our cost benefit analysis, while tree-next-limit always prefetches the next block and
also uses our cost benefit analysis to prefetch predicted blocks. Figure 13 compares the miss rates for tree and
tree-next-limit for the three traces used in this study. For all the traces, tree-next-limit performs better than the
basic tree algorithm. tree-next-limit reduces the overall miss rate by up to 30% compared to tree. By always
prefetching the next disk block after an I/O access, the tree-next-limit scheme reduces compulsory misses in the
cache. Since its performance is always superior to the tree algorithm, for the reminder of this paper we focus
on the tree-next-limit scheme.

In Figure 14, we compare the tree-next-limit algorithm to two schemes: a system that performs no prefetching
and the nezt-limit scheme. Recall that nezt-limit always prefetches the next disk block after an I/O access and
places a limit on the number of prefetched blocks in the cache. Thus, next-limit and tree-next-limit differ only
in the use of our cost benefit scheme to prefetch additional predicted blocks in the tree-next-limit scheme.

The two prefetching schemes, next-limit and tree-next-limit, perform significantly better than the scheme
that does no prefetching for all cache sizes. This is largely due to the reduction in the number of compulsory
cache misses that occurs when the next disk block is prefetched after an I/O access. next-limit and tree-next-
limit reduce miss rates by up to 34% and 52% respectively for small cache sizes when compared to a scheme
that does no prefetching. For large caches, next-limit and tree-next-limit reduce miss rates by up to 47% and
55% when compared to no-prefetch.

Figure 14 also shows that the tree-nezt-limit scheme performs better than the next-limit scheme, particularly
for small cache sizes. tree-nezt-limit is effective at predicting future accesses. The algorithm reduces miss rates
for small caches by up to 27% compared to the next-limit algorithm. At larger cache sizes, the performance of
the two algorithms is similar.
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9.3 Limitations of Experiments

Our current experimental results have several limitations. Most importantly, we used disk-level traces rather
than file-level traces. The disk-level traces do not record accesses that were hits in the original system’s file buffer
cache. We need to use file-level traces to have a more accurate picture of the effectiveness of our prefetching
scheme. Using disk-level traces, we have no way to estimate overall execution time for trace accesses. Such
execution time estimates are necessary to determine the improvement in application workload performance with
prefetching. We recently obtained file level traces from the University of Kentucky and will use these traces to
evaluate our prefetching scheme and for comparison with informed prefetching. Finally, our current simulations
make various simplifying assumptions, including disregarding the amount of memory consumed by the prefetch
tree and ignoring issues of disk congestion. We plan to account for these parameters in future simulations.

10 Related Work

Our cost-benefit analysis is most closely related to Patterson’s informed prefetching [13]. In this scheme, I/O-
intensive applications disclose hints to the operating system regarding which data blocks will be accessed in
the future. Based on these deterministic hints, the informed prefetching scheme uses a cost-benefit analysis to
determine whether it is beneficial to allocate a memory buffer to prefetch an additional block. Extensions to the
original informed prefetching scheme include an implementation that uses disk striping [12], an implementation
for a network file system [15], and a variation that prefetches more deeply during disk idle periods in anticipation
of bursts of I/O activity [17].

Mowry et al. [10] describe a scheme in which the compiler automatically inserts hints into the program.
The compiler analyzes the code and predicts page faults and when data are no longer needed. The operating
system uses this information to manage I/O using prefetch and release operations. A run-time layer minimizes
prefetching overhead by keeping track of in-core application pages. Their work focuses on scientific applications.

The prefetch tree we use to predict future accesses uses an algorithm developed at Duke University [18] that
is adapted from a data compression technique. The scheme breaks a stream of disk accesses into substrings and
creates a prefetch tree, where nodes correspond to accessed disk blocks. The probability of accessing a node in
the future relates to the number of times the node was visited in the past. Curewitz et al. [4] describe a memory
efficient implementation of the prefetch tree. There are several other schemes that predict future accesses based
on past accesses. They include a scheme based on a multi-order context model compression technique [7], using
per-file hidden Markov models to predict future accesses [9], using associative memory and pattern recognition
to identify access patterns [11], and prefetching whole files using a tree that records past file accesses [5, 8].

In additional prefetching work, Cao et al. [1] propose rules that every optimal prefetching and caching
strategy must follow. The group proposes a modification to an LRU cache replacement policy to support
application-controlled cache replacement [2; 3]. Tracy Kimbrel et al. [6] propose a prefetching scheme called
Forestall that prefetches blocks based on future disk load; disk idle periods are used to prefetch blocks that will
be needed during periods of disk congestion.

11 Conclusions

We have described our scheme for prefetching using a cost-benefit analysis applied to predicted accesses. We
decide which blocks to prefetch based on their probability of access; we calculate these probabilities from past
access patterns using a prefetch tree proposed by Duke University [18, 4]. We then decide whether to prefetch a
candidate block using a cost-benefit analysis. This analysis modifies the informed prefetching scheme [13, 14] to
account for probabilistic hints and to allow prefetching along multiple paths in the prefetch tree. We implemented
our algorithm efficiently using a trace-driven simulator and evaluated its performance.

We demonstrated that this prefetching scheme improves overall cache miss rates by up to 32% over a scheme
that performs no prefetching for the three traces we studied. Coupled with the one block lookahead prefetching,
this scheme improves overall cache miss rates by up to 52% over a scheme that performs no prefetching and by
up to 27% over an aggressive one block lookahead prefetching scheme for small cache sizes. Prefetching works
best for cache sizes that are relatively small compared to the working set of data blocks being accessed. As
the demand cache grows to accommodate a larger percentage of the file blocks being accessed, the frequency
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of prefetching drops. We showed that prefetching increases overall disk traffic by up to 300% for smaller cache
sizes and less than 40% for larger cache sizes.

We gained several insights by constructing the prefetch probability trees. The trees we constructed were very
wide at the first level, with thousands of children for the root node; nodes below the root node have relatively
few children. Because the prefetch tree contains many nodes, most of which have low probabilities of access,
we experimented with limiting the size of the prefetch tree by limiting the number of children of each node.
We found that if we allowed 8192 children for the root node and a smaller number (64) on lower levels of the
tree, we could maintain the shape of the unrestricted probability tree, achieve similar overall miss rates, and
significantly lower the number of prefetch accesses and the overhead of running the algorithm. When pruning
children of the tree, we discarded least-recently-accessed blocks; this allowed us to make prefetch predictions
based on more recent access patterns.

We will extend this work in several ways. In the short term, we will use object reference traces from Curewitz
et al. [4] to further evaluate our tree-next-limit prefetching scheme. Our long term plans include using file level
traces recently obtained from the University of Kentucky. In addition, we will compare our scheme with informed
prefetching [13] and experiment with other schemes for choosing candidate blocks for prefetching. Finally, we
plan to implement our prefetching algorithm in an operating system and evaluate its performance on a variety
of workloads.
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Figure 13: For the three traces, compares the performance of tree and tree-next-limit. The miss rate for tree-next-limit
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exception, tree-next-limit has the lowest miss rate for all traces and cache sizes.

20



