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“This integrative action in virtue of which the nervous system unifies from separate 
organs an animal possessing solidarity, an individual, is the problem before us”. 

 
 

-Sir Charles Scott Sherrington 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This thesis is respectfully dedicated to all the individuals inculcating me  
with a love of learning.  

  
 
 
 
 
 



 

1 

ACKNOWLEDGEMENTS 

     This thesis presented here is the collective efforts of many people, without their help and 

support this work would not be possible.    

          The persistent scientific rigor and passion for research from my advisor, Richard T. 

Nichols, Ph.D. is the primary source that influences me to foster an interest in neuroscience and 

form a clear picture of my future career path in science. His support and optimism gives me 

strength to continue through the obstacles, and his insights and mentorship throughout the three 

years in the lab is the navigation beacon allowing me to be more adept in both theoretical and 

quantitative methods in research.  

         I want to thank all the members of the Nichols’ lab: Mark Lyle, who so patiently explained 

all my questions and demonstrated to me his research methodology; Chris Tuthill, who helped 

resolving many hardware and coding issues with Matlab and LabVIEW; Emmi Freimark and 

Daniel Martinez, who made the preliminary research of this thesis possible; Elma Kajtaz, whose 

humor and knowledge in the lab meeting instigated many interesting conversations. Their 

support and guidance helped me tremendously in my development as the scientist that I wish to 

become in the future. 

       To my family and friends – thank you for the support and understanding throughout all these 

years. I would like to thank my parents, Ling Yang and Qingwu Shi, for their unrequited love 

and unflagging belief in me to be able to achieve anything. They are my support hub and I hope 

to make them proud of me everyday. Additionally, I want to give a special thank to Katelyn 

DiGioia, a very dear friend who always offers me a helping hand. 

 
         
                                                



 2 

TABLE OF CONTENTS 

 Page 

ACKNOWLEDGEMENTS 1 

LIST OF FIGURES AND TABLES 3 

LIST OF SYMBOLS AND ABBREVIATIONS 4 

SUMMARY 5 

CHAPTER 

1 Introduction 6 

2 Literature Review 9 

3 Methods and Materials 11 

4 Research results 14 

5 Discussion 17 

6 Conclusion and Future work 18 

REFERENCES 20 

 

 

 

 

 

 

 

 



 3 

LIST OF FIGURES AND TABLES 

                                                                                                                          Page 

Figure 1-1: The Gait Cycle  7 

Figure 2-1: Sensory Neurons 10 

Figure 3-1: Schema of Experimental Design and the Arrangement of the Apparatus 12 

Figure 3-2: The Force Diagram Recorded by the Computer 12 

Figure 3-3: The Different Phases of Force Signal in the Force Diagram 13 

Figure 4-1: Muscle force over time with Different Level of Current Stimulation 15 

Figure 4-2: The Late Epoch Labeling 15 

Figure 4-3: The Bar Graph of Force Amplitude Result 15 

Figure 4-4: The Bar Graph of Duration Result 16 

Figure 4-5: The Box and Whisker Plot 16 

Figure 4-6: The Data Analysis of the Second Day’s Experiment 16 

Table 4-1: The Data Analysis of the Trials in Control versus Treatment 19 

 

 

 

 

 

 

 

 

 



 4 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

Abbreviation Name 

FES Functional Electrical Stimulation 

ALS Amyotrophic Lateral Sclerosis 

PFFB Positive Force Feedback 

 

 

 

 

 

 



 5 

SUMMARY 

Functional Electrical Stimulation (FES) is an assistive method for patients with 

dysfunctional nervous system who cannot functionally contract skeletal muscle to generate 

voluntary movement. By applying electrical stimulation on the skin, the muscle is able to 

generate the contractile force in which it previously wasn’t able to. Current FES systems rely on 

control systems that use external physical cues, such as a tilt sensor, to determine the timing of 

stimulation. This method still reflects some problems, as it doesn’t reflect individuality of 

patients and cannot function properly when the user walks on an inclined surface. This clinical 

research targets on examining the feasibility of developing an alternative control system that can 

control the muscle volitionally through the nervous signals generated by the user. A model of the 

FES system is created by stretching the gastrocnemius muscle and apply intramuscular 

stimulation in the decerebrated cat. It is hypothesized that the force of the muscle after electrical 

stimulation is higher than that without stimulation and this positive force feedback is only viable 

within a range of electrical stimulation. To test this hypothesis, a target tension of muscle 

contraction in an isolated feline muscle was used as the cue for electrical stimulation with the 

intent to boost that muscle contraction, that is, positive force feedback was used to initiate 

intramuscular stimulation as a means of increasing the force of muscle contraction in a 

decerebrate feline model. The maximum force and duration of contraction were compared when 

the muscle was stretched with and without stimulation. By varying the initial frequency of 

stimulation and the amount of stimulation relative to the force output of the muscle, the strength 

of distinct muscle contractions was increased. 

It is found out that using one tailed nonparametric, unpaired students’ t test, the p value of 

the controlled group(𝑛" = 9) and the threshold 1.2N(𝑛% = 10) is	2.48 ∗ 10./ < 0.05 , which 

rejects the null hypothesis. It is also observed that below threshold values of these parameters no 

effect was observed and above threshold values tetanic contraction was initiated, but between the 

range of the intermediate values, the force of muscle contraction between the stimulated groups 

and the control group increased. These findings suggest that positive force feedback could be a 

potentially viable control system for FES systems. 
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CHAPTER 1 

INTRODUCTION 

 Functional electrical stimulation (FES) system is a widely used technique that can 

greatly improve the quality of life of a person by restoring or assisting his or her 

voluntary ability such as walking, standing, breathing, coughing, arm reaching or bladder 

and bowel evacuation (Peckham, 2005). By applying current via the electrode pair, FES 

system can generate muscle contraction assisting the patient to achieve specific motor 

tasks. The idea behind the FES system is that electrical pulses applied to the nerve can 

create action potentials which, if propagated distally, can be transmitted to the 

neuromuscular junction and direct the muscle to contract. Because the threshold required 

for activation of a muscle fiber is much greater than the threshold for producing action 

potentials in a nerve fiber, the electrical stimulation of muscle occurs by stimulation of 

motor axons with the muscle.  An alternative approach is to stimulate muscle nerves, but 

this approach has the disadvantage of stimulating sensory afferents as well. Additionally, 

recent evidence suggests that functional electrical stimulation has significant therapeutic 

effects in reversing muscle atrophy, increasing cortico-spinal connections, controlling 

muscle spasticity and recovering the damaged reflex circuit closer to its normal 

neurological functions (Ragnarsson, 2008).  

 The FES system is commonly used to treat foot drop symptom. Foot drop, the 

inability to lift the foot during ambulation, is commonly observed in patients with ALS 

(amyotrophic lateral sclerosis), Parkinson’s disease, multiple sclerosis, stroke or 

incomplete spinal cord injury (Stevens, 2010). This could be seriously debilitating 

because the ability of lifting a foot is an essential part of the swing phase in the gait cycle. 

Foot drop can happen to one or both feet at the same time and can be rooted from 

underlying neurological, muscular or anatomical problem. Patients with foot drop show 

high stepping gait and exaggerated swing motion. They have difficulty performing 
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activities that require the use of the front foot and experience muscle atrophy in the leg. 

By using electrically stimulation on the peroneal nerve during footfall in the swing phase 

of the gait cycle (figure 1-1), the muscle contraction could be amplified, allowing 

dorsiflexion in the ankle joints. This can help patients return to their regular gait cycle. 

The current FES system uses a tilt sensor for controlling the gait of the person during 

walking (Dai, 1996). This external physical cue will determine the activation of the 

stimulation in the FES system during swing phase based on the angle between the sensing 

axis to the reference axis with respect to the gravity. This method, however, creates 

inaccuracy in mimicking the gait cycle because of the discrepancy in stride lengths and 

sagittal plane joint movements across individuals. Moreover, the hemiplegic patients 

adopting this type of controlled system will have difficulties walking on an incline 

because the reference axis doesn’t align with that of the inclined surface (Ghoussayni, 

2004).  

 
Figure 1-1. The Gait Cycle. The FES system activates at the beginning of the swing phase when the 
toe is lifting up from the ground.  
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 Recent neurophysiological research shows accumulating evidence for positive 

feedback in the control of motor tasks in animals, which can possibly substitute the 

current activation mechanism for the FES system. Positive force feedback is the 

excitatory effect of the muscle once perturbation is applied. Two prominent sensory 

receptors in muscle are the muscle spindle and the Golgi tendon organ neuron (Figure 

2.1). The muscle spindle detects the length of the muscle. The tendon organs, locating 

between the muscle and its tendon, senses muscle force.  Positive force feedback 

increases the force of muscular contraction in concert with length feedback from the 

muscle spindle. The patient who has foot drop will have deficit muscular or neural 

activities. This means that the patient has the willingness to lift the feet but is unable to 

exert enough muscular contraction during the foot lifting process. The FES system can 

detect the modest forces developed by the patient using the intramuscular EMG signal to 

apply electrical stimulation in the muscle to amplify the muscular contraction. This pilot 

study shows a preliminary result demonstrating the clinical potential of developing a new 

technique to enhance the current FES system to reduce the potential problems in which 

the current predicate device encounters.  
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CHAPTER 2 

LITERATURE REVIEW  

The ability to move efficiently is directed by the neural circuits called the 

locomotor central pattern generators which receive low-dimensional and simple sensory 

information signal and produce high dimensional and rhythmic movement (Goodman 

et.al, 2000). The central pattern generators consist of two types of muscle proprioceptors 

categorized as muscle spindle and Golgi tendon organs that sense the relative position of 

the body and maintain the spring-like property of the muscle. These proprioceptors input 

the length and force feedback signals into the central nervous system and mediate the 

output motor signals (Houk, 1997). These overall effects create the feed-forward control 

loop called the sensory feedback. Sensory feedback plays an important role in the 

modulation of posture since it alters the muscular stiffness. Sensory feedback could be 

categorized into heterogenic feedback and autogenic feedback. Heterogenic feedback 

happens between two distinct different muscles and autogenic feedback is the feedback 

that the muscle sends to itself. These feedbacks could be either excitatory or inhibitory. 

Typically, the excitatory feedback comes from the muscle spindle, and the inhibitory 

feedback comes from the Golgi tendon organ (Bonasera et.al., 1994). The muscle 

spindles generally dominate in length feedback while the Golgi tendon organs dominate 

in force feedback. The length related excitation and the force related inhibition are 

important because they are strongly correlated with the mechanical properties of the 

limbs. The length feedback can enhance the muscular stiffness and reduce the muscular 

stiffness’s dependency on the disturbance of the background force (figure 2-1). This 

adjustment to the muscular stiffness is termed as stiffness regulation (Houk, 1979). In a 
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static state, positive force feedback could contribute to instability and oscillation. 

However, during locomotion, the positive force feedback contributes to maintaining the 

spring-like property of the muscle and reducing the sensitivity of the perturbation in 

posture, increasing the movement’s stability and control (Prochazka et.al., 1997). 

Figure 2-1. Sensory Neurons. Figure 2-1-A represents the tendon organ. Tendons contain nerve 
capsules in the connective end of the skeletal muscle and connect the muscles with bones. The sensory 
axons in the nerve capsule, called the type Ib axon, detects the muscle force. Figure 2-1-B represents the 
muscle spindle. It is located in the middle part of the skeletal muscle. The sensory axons of the muscle 
spindles composed of Type Ia axon and Type II axon. The muscle spindle detects the length change of 
the muscle. Collectively, the tendon organ and the muscle spindle creates proprioception, the ability to 
sense the relative position of neighboring parts of the body and strength employed in movement. 
(Delphia, 2016).   
 
  

 

 

A B
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CHAPTER 3 

METHOD AND MATERIALS  

 All animal procedures were approved by the GT IACUC and followed guidance 

from the NIH. 

 A schema of the experiment design and arrangement of the apparatus is shown in 

figure 3-1. A female cat was decerebrated under isoflurane anesthesia with all the brain 

tissue rostral to the transection was removed (Nichols, 1987). Anesthesia was removed 

after the completion of the decerebration. Two experiments were performed in two 

different days. Day one consists of 51 trials and day two consists of 11 trials. The tendon 

of the gastrocnemius muscle was detached from the decerbrated cat and connected to a 

linear motor that can mechanically stretch the muscle for 0.1ms for every 0.25ms period. 

Strain gauge myograph lied between the linear motor and the muscle providing 

measurement in the skeletal muscle force. The computer took the measurement and 

outputted the force diagram as shown on figure 3-2. Figure 3-3 shows an example of the 

individual force signal in the force diagram. A value of the skeletal muscle force is set up 

in the computer prior to the stretching as the threshold value for activating the electrical 

stimulation. Intramuscular wire electrodes were placed within the gastrocnemius muscle 

and only activated if the force measured by the myograph exceeded the threshold value 

and the stimulation stopped once the muscle force dropped below the threshold 

value(<0.1ms). In the day one’s experiment, three electrodes with different amplitudes 

(5.5V, 2.7V and 2V) electrical stimulations pulsed at a square waveform once the force 

crosses the threshold value were placed in the right medial gastrocnemius muscle. In the 

second day’s experiment, only one electrode electrical stimulation pulsed at 1V 
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amplitude with the same waveform and frequency as the first day’s experiment was 

placed at the right gastrocnemius muscle.  

 

 
Figure 3-1. Schema of Experimental Design and the Arrangement of the Apparatus. The tendon of 
the gastrocnemius muscle is detached from the decerbrated cat and connected to a linear motor that 
mechanically stretches the muscle for 0.1ms for every 0.25ms period. Strain gauge myograph lies 
between the linear motor and the muscle providing measurement in the muscle force. Intramuscular 
wire electrode is inserted in the gastrocnemius muscle and stimulates electrical current to the 
muscles. The constant electrical stimulation is a square waveform with 80 Hz saturation frequency.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3-2. The Force Diagram Recorded by the Computer. Stimulation is applied every two force 
pulses. The black round dot indicates that electrical stimulation and mechanical stretch coexist while 
the triangle sign indicates when only stretch exists.  
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Figure 3-3. The Different Phases of Force Signal in the Force Diagram. Beginning phase is the 
mechanical pre-reflex resulted from the mechanical stretch of the linear motor. The early epoch 
phase of the force usually reaches to the highest level in force magnitude. In the middle phase, force 
amplitude is regulated to a stable level. The late epoch phase is the phase when force reaches the 
stable level before the force effect fades.  
 
Statistical Analysis 

 To assess the difference between the control trials and the experimental trials, the 

late epoch of the muscle contraction, the maximum muscle contraction and the duration 

of the muscle contraction are compared. Significance is examined by using one way 

nonparametric, unpaired students’ t test (p<0.05 means the result is significant) for day 

one’s trial. Bar graph would be displayed to show the difference between experimental 

trial and control trial. Box and whisker plot would also be used to graphically display a 

difference between the control and experimental groups in day 1’s trial. Because day 2 

has relatively small sample size, day 2’s table will be displayed showing the average of 

all the trials with the magnitude of late epoch, maximum force and the time duration. 
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CHAPTER 4 

RESULTS  

 The experiment compared force of muscle at the late epoch period of the control 

trial to a corresponding time point of experimental trials. Figure 4-1 demonstrates 

different scenarios of muscle contraction, including the contraction without positive force 

feedback(control), with positive force feedback and with excessive positive force 

feedback. Figure 4-1 shows examples of muscle force in different circumstance: without 

positive force feedback, with positive force feedback and with excessive positive force 

feedback. Below a threshold level of stimulation, there was no observed change in the 

muscle reaction (figure 4-1-A). Once threshold of stimulation was surpassed there was an 

increase in the force output (figure 4-1-B). Below threshold values of these parameters, 

no effect was observed and above threshold level of stimulation, the muscle would 

exhibit a sustained contraction until the trial was ended and stimulation removed (figure 

4-1-C). The late epoch is measured as the end point of the force signal when force 

reaches the stable level, and is taken at the first relatively horizontal curve’s end (figure 

4-2). The observed results show that within a range of intermediate values of electrical 

stimulation, the force of muscle contraction increased (figure 4-3). Across the trials, there 

is an increase of force response comparing the control and experiment group(p<0.05) 

with students’ t test and is further verified by the box plot (figure 4-5). However, it is also 

shown that there was no correlation between amount of PFFB and the increase in force at 

late epoch and between amount of PFFB and amount of increase of maximum force 

output (figure 4-3). There is no correlation between the amount of positive force feedback 

and the time duration of the muscle contraction (figure 4-4).  Table 4-1 is the result from 

the 11 trials day 2’s experiment and shows a similar outcome. 
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Figure 4-1. Muscle Force over time with Different Level of Current Stimulation. 4-1-A represents the 
muscle over time without positive force feedback. 4-1-B represents the muscle force over time with 
positive force feedback. 4-1-C represents the muscle force over time with excessive positive force 
feedback.  
 

 
Figure 4-2. The Late Epoch Labeling. The late epoch phase is the phase when force reaches the stable 
level, and is taken at the first relatively horizontal curve’s end. 4-2-A shows the late epoch labeling of 
muscle force over time without positive force feedback. 4-2-B shows the late epoch labeling of muscle 
force over time with positive force feedback. This example shows that if there is an increase of force 
after the force goes relatively stable, the late epoch is still taken at the end of the first horizontal 
curve.  The late epoch labeling is to be differentiated with the maximum force amplitude, which is 
taken at the maximum force level of each force signal. 
  

 
Figure 4-3. the Bar Graph of Force Amplitude result. 4-3-A shows that there was no correlation 
between amount of PFFB and the increase in force at late epoch. 4-3-B shows that there was no 
correlation between amount of PFFB and amount of increase of maximum force output  

A B C 

A B 

A B 
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Figure 4-4. the Bar Graph of Duration Results: there is no correlation between amount of positive 
force feedback and the time duration of the muscle contraction 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 4-5. The Box and Whisker Plot of the first day’s Experimental Data: the median of the 
experimental groups (threshold 1.2 and 1.5) is significantly higher than the threshold of the control 
group. This box plot shows that the electrical current stimulating the muscle elevate the force output 
and verifies that the existence of positive force feedback. Using nonparametric one tail t test with 
unequal variance, the p value between control and threshold 1.2N is 𝟐. 𝟒𝟖 ∗ 𝟏𝟎.𝟓 and the p value 
between the control and threshold 1.5N is is 𝟏. 𝟐𝟔 ∗ 𝟏𝟎.𝟏𝟎, which both reject the null hypothesis 
(p<0.05) 
 

N Late	Epoch(N) Max	(N) Time	Duration	(ms)
Control 4 0.21 0.24 0.61

Threshold	4N 3 0.32 0.74 1.16
Threshold	6N 5 0.38 0.60 0.62  

Table 4-6. The Data Analysis of the trials in control, and electrically stimulating the muscle above 4N 
and 6N in the second day’s experiment. N is the sample size. Late epoch means the magnitude of the 
late epoch. Max means the magnitude of the maximum point in a single force response. Time 
duration takes the time of a single force response.  
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CHAPTER 5 

DISCUSSION 

The results show that below a threshold level of stimulation, there was no 

observed change in the muscle force output. Once the force of the muscle exceeds the 

threshold of stimulation, electrical current is applied to the muscle and demonstrates a 

higher force output. An increase in the duration of the contraction is also observed in the 

addition of an electrical stimulation. However, at a certain range of threshold, the muscle 

would exhibit a sustained contraction until the trial was ended and stimulation removed.  

This behavior is expected from a positive feedback system with sufficient loop gain. The 

comparison of force of muscle at the late epoch period of the control trial to a 

corresponding time point of experimental trials shows that there was no correlation 

between amount of PFFB and the increase in force at late epoch, the amount of increase 

of maximum force output or the duration of contraction of the muscle. However, the 

study shows that the intramuscular stimulation does exhibit a positive force feedback 

response and verifies the fact that the electrical stimulation applied to the muscle can 

trigger an elevated force magnitude. The boundary point is still yet to be known for a 

stable positive force feedback where the ankle yield is low. It is determined that there was 

a wide range of parameters within which the system was stable during locomotion.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

     In this experiment, the relationship between the increment of force output and 

the stimulation threshold was unpredictable, but this study was able to show that there 

existed a range of gains where the behavior was stable, and a threshold beyond which the 

stabilized feedback system disappeared and became tetanic contraction. The result of this 

study shows that positive force feedback can be viable trigger system for activating the 

FES system. The technique currently approved for human use uses a tilt sensor, which 

has limitations when the user is walking on an incline (Ghoussayni et.al., 2004). This 

study shows that within a certain range, a stable effect of the positive force feedback 

exists. The next step is to find the boundary point where positive force feedback exists 

and use those theories to apply to an algorithm for the FES system to activate the muscle 

contraction. An EMG will be implemented in the muscle detecting the force response. 

When the user intends to move, the positive force feedback will activate the electrode of 

the FES system. Using the positive force feedback is potentially better than the other 

predicate device in the market. The device will work independently of terrain and will not 

alter its response arising from the change in angle. The device is also expected to function 

as a muscle modulator that provides muscle with a more spring-like behavior. 

 

 In a proposed design of the functional electrical stimulation device, Fiber optic 

micro sensor would be implanted to take the measurement of tendon force of the tibialis 

anterior (Behrmann et. al., 2012). Self-adhesive surface electrodes will be placed on the 

skin covering the motor points of tibialis anterior to stimulate. Once the initiation of toe 
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off action is detected through the measurement of the muscular force is higher above a 

certain threshold, the electrodes will electrically stimulate the muscle and stopped once 

the recorded force is beyond another upper boundary threshold. These lower and upper 

boundary threshold value will be further investigate to depict a more accurate range to 

maintain the stability of the muscle and avoid tetanic actions. To avoid instability, the 

electrical stimulation could be programmed to turn off once the tetanic contraction is 

detected by the fiber optic micro sensor. 

 

 This study still has several limitations. The sample size is small and the 

placements of electrodes were not uniform throughout all trials. The electrodes have 

resistance and might move during stimulation, therefore providing inconsistent responses. 

The voltage of the electrodes are different in order to attempt similar responses from the 

muscle. The medial gastrocnemius muscle was used for other studies prior to this 

experiment and might affect the muscle. To resolve the current issue, future studies will 

incorporate more experimental trials with more treatment groups and control groups. A 

selection matrix will be made to select trials that could be useful in the data analysis. To 

resolve the issue of the different placement of electrode in the muscle, a microelectrode 

array will be implemented to allow precise stimulation in the muscle.  
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