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SUMMARY 

Information presented tc a decision maker for interpretation 

may be in at least two forms: cues - multiple indicators of the state 

of some underlying variable or construct; and components - representa-

tive separable dimensions of the entity about which a decision is to 

be made. Generally, the information is presented as a mixed set of 

these forms; this implies a requirement for a two-stage processing 

strategy, separating the estimation and evaluation phases. If the 

decision maker is able to apply an appropriate set of task-structuring 

constructs in an orderly manner, he should be able to reduce both his 

estimation error and the information-processing demands of the task. 

This research investigated the effects on performance, in such 

tasks, of suggesting, and forcing, an appropriate conceptual structure. 

The central model was Brunswik's Lens Model, while the conceptual !Struc-

ture was suggested, and imposed, by means of a verbal problem context. 

The outcome of the study contributed to understanding the impact of con-

ceptual structures on successful problem solving, particularly by its 

attempt to bridge the gap between the slow learning of laboratory experi-

ments, and the relatively fast learning of the real world. 

v i. 



CHAPTER I 

INTRODUCTION 

Shadows on the Wall of the Cave 

Historical Perspective  

Egon Brunswik, in 1956, published a most significant theory 

concerning the means of studying how man does his mental work. 

Brunswik was the first to notice that task modelling was different 

from people modelling. Moreover, he devised a task modelling tool 

that linked tasks and people (Edwards, 1971). His original work has 

been modified and enhanced by Brunswik himself, and by a great many 

other people, most notably by Kenneth R. Hammond, working with various 

other researchers. Hammond, the director of the Research Program on 

Human Judgment and Social Interaction, Institute of Behavioral Science 

at the University of Colorado, is perhaps the principal advocate of 

Brunswik's work. Let us then examine this task modelling tool which 

allows one to separate out the environmental elements' contributions to 

a judge's achievement (Hammond, 1966). 

Brunswik's Lens Model 

The central postulate of Brunswik's work is that our knowledge 

of our environment is acquired in the face of uncertainty. For example, 

his original research on perception stressed that human attainment of a 

percept, such as the distance of an object, is based on a number of 

error-prone indicators (or cues) such as apparent size, brightness, 
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perspective information, and so on. Each cue is, on its own, unrelia-

ble to some extent, although each is related to the environmental state 

being perceived. Successful performance in such situations thus requires 

the individual to process a number of unreliable cues into a sinale (and 

more reliable) percept. Subsequent extensions of this underlying idea 

include clinical judgment situations such as Rorschach test interpreta-

tion (Hammond, 1955), estimates of student grade averages (Hammond, 

Hursch, and Todd, 1964), and use of geometric cues to predict a numeri-

cal criterion (Todd and Hammond, 1965). 

The Brunswik approach to such situations treats simultaneously: 

(a) a set of relationships between a distal variable and a set of 

informational cues; and (b) a set of relationships between these cues 

and the subject's response. The model provides a framework in which 

the subject (or inferring organism) is placed in a structured rela-

tionship with the ecology, thus providing a basis for the study of 

complex human inferential situations (Yntema and Torgerson, 1961). 

This set of relationships is portrayed in Figure 1. 

Definitions 

Y
e is the established (true) value of the distal variable on 

the ecology side of the model. This is the variable which the subjct 

will estimate. Note that it may be extremely difficult, or even impos-

sible, to gain access to the value of Y e . 

[x] is a set of cues, or multiple indicators of the underlying 

distal variable. 

Y
s is the subject's response, his estimate of the value of the 

distal variable. 



Subject's 
Estimate Distal 

Variable 

Ecology Subject 

r
el 

Figure 1. Brunswik's Lens Model. 
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Ye 
is the best linear prediction of the distal variable based 

on the multiple indicators [x i ] of that variable. 

Y
s 

is the best linear prediction of the subject's response, 

based on the cues. 

r ie  is the simple product-moment correlation between the value 

of the i th  cue and the true value of the distal variable. It is called 

the ecological validity of the i th  cue, since it is calculated for the 

ecology side of the model. 

r is
, the simple product-moment correlation between the value of 

the ith cue and the subject's response, is called the subject's utili-

zation coefficient for the i th cue. 

r a , the simple product-moment correlation between the distal 

variable and the subject's response, is referred to as the achievement 

index, since it provides a measure of the subject's success in his esti-

mating task. 

R
e , the multiple correlation between the distal variable and 

its best linear prediction, measures the linear predictability of the 

distal variable from the cues. In laboratory tasks, 	may be .pre- 

determined. 

R
s is the multiple correlation between the subject's responSe 

and its best linear prediction, on the subject side of the model. When 

limited to laboratory tasks, Hammond and Summers (1972) have definld 

R
s 
to be the cognitive control that the subject exerts over the use of 

his knowledge. 

G is the multiple correlation coefficient between the best linear 

prediction of the distal variable, and the best linear prediction of the 
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distal variabley and the best linear prediction of the response v a ri-

able. it is called the matching index and measures the knowledge that 

the subject has obtained about the task properties (Hammond and Summers, 

1972). 

By definition, the task uncertainty measurement, R e , sets the 

limit to achievement of any simple linear model, reached only if the 

subject has exact knowledge of the task structure and perfect cognitive 

control. As Hammond and Summers (1972) state: 

R s  is statistically independent of G. Such independence 
is critical, for it means that even should G reach unity 
(indicating perfect knowledge), if R s  were less than unity 
(indicating imperfect control), performance would be less 
than the limit of achievement (R ) would permit. Gonverse1i,y, 
R might equal 1.00, thus indicating that the perfectly 
controlled cognitive system was not appropriate to the task 
system, thus preventing achievement r a  from reaching its 
upper limit R e . 

Two subjects, therefore, might have identical achieve- 
ment indexes for different reasons; one because of perfect 
knowledge (G = 1.00) but imperfect control (R, < 1.00), and 
the other because of perfect control (R s  = 1.60), but imper-
fect knowledge (G < 1.00). Variations between these extremes 
could also occur, of course. 

C is the simple product moment correlation between the non - linear 

	

residuals of Y
ee ) and the non-linear residuals of Y

s 
	). 

	

s 	s 

L. G. Tucker's 1964 paper presented an elegant alternative formu-

lation to the important work of Hursch, Hammond, and Hursch (1964),, and 

Hammond, Hursch, and Todd (1964). This formulation linked together the 

various elements defined above in a clear, concise manner. Tuckeii 

assumed that all variables were standardized, and that Ye had a normal 

underlyind distribution. He defined b. and t as the residual errors of 

the _standardized linear predictions of Y e  and Y s . Thus, 



Y =,Y +
e
, and 

e. 	e
A 

Y
s 
= Y

s 
+ g 

s . 

From multiple linear regression theory, 

Var (Ye ) = R e2 , and 

Var (V s
) = R

s
2 , 

so that, from (1): 

Var (b e ) = 1 -R e2 , and 

Var' (?,,$) = 1 -R s2 . 

Thus: 

A 0`. 

r = Cov(Y Y ) = Cov(Y) 	Cov( 6 ). 
a e s 	es  

Substitution into equation (4) yields: 

	

r =Gk h + C(1 - R ) (1 - R 2 	. a 	e 	 e 	s  

Observe that v,Hen any of the following o:, - cur: 	(a) coonitive 

control reaches one; (b) the linear predictibility aces to one; or 

when (c) C reaches zero, the right hand portion of equation (5) 

vanishes, and Tucker's equation reduces to: 

r
a 

= G R
e 

R
s 

. 

Therefore, Tucker has shown that under any of these restrictions, the 

achievement correlation is a function of the knowledge the subject has 

of the task, the properties of the environment and the subject's response 

6 

(2)  

(3)  

'(4 ) 

(5 ) 
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system, and the extent tc which the nonlinear variance elements 4 

the ecology side of the model are correlated with the non-linear 

lance elements of the subject side of the model (Slovic and Lichtenstein, 

1971). 

Empirical Studies 

The Brunswik model provides an excellent model for research, 

some of the results of which might be used to program a machine to aid 

a decision maker. After all, a machine is consistent, and does not 

suffer from fatigue or prejudice. Clearly, a machine programmed with 

a simple linear model will at least equal a man's performance in tasks 

for which such a model is optimal. 

Man, however, has been thought of as a superior decision maker 

because of some expectation of non-linear or configural skills. DT B. 

Yntema and bb. S. Torgerson (1961), suggested that consistent use of a 

simple linear model resulted in better judgments than when humans had 

free reign in arriving at a judgment, to include the ability to con-

sider non-linearities in the situation (Slovic and Lichtenstein, 1971), 

L. W. Dudycha and J. C. Naylor (1966) went even further. They 

observed that their subjects, working on complex-structured multiple 

cue inferential tasks, were assigning proper weights to the cues, but 

were causing inaccuracies due to their inconsistencies, They concluded 

that, once the judgment pattern had been established by the subjects, 

the subjects should allow "the strategy to persist unaltered (Slovic, and 

Lichtenstein, 1971). In fact, Dawes (1971, 1972) later arcl0ed•th4 any 

-linear model will, on the average, out-perform subjects, Other studies 

have been conducted by Yntema, Torgerson and Lee (1961) and Raiffa'(1970). 



With an observation that certainly resembles solid experimental 

design, Hoffman (1960) noticed that statistical difficulties present] 

themselves when the search for configural information use is made 

after conducting the experiment. Green (in Slavic and Lichtenstein,!: 

 1971) agreed and suggested that the first step be to advance the 

hypothesis of non-linear behavior, and then search for support for it. 

Slovic and Lichtenstein, 1971, found that differences in subjects' com-

bination strategies were a function of whether two cues were in conflict 

or not. When both the cues were congruent, the subjects used both. 

When they were not, the subjects discounted one or the other or both, 

and turned to other information. Slovic's work as well as experiments 

by Hoffman (1960) and Anderson and Jacobson (1966) show that the linear 

model may need a term to account for the level of incompatibility among 

the cues. 

In the modern world, decisions have become more necessary, more 

frequent, and more important than ever before. Ancient man had little 

to do but keep himself and his family alive. Life was remarkably simple 

then, albeit brutal. Technology has changed that; individual men now 

effect decisions that affect not only themselves and their families, 

but hundreds or millions of others. 

The aftermath of a bad decision is usually to complain that not 

enough accurate information was available at the time the decision had 

to be made. Often, however, the problem is not that the information 

was not available, but that it had to be sorted, interpreted and inte-

grated with other items of information to provide a proper base forl 

decision (Slovic and Lichtenstein, 1971). 

the 
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One must find some way of solving this problem, and judging by 

the way the world keeps moving along, human beings have become very 

proficient at it 	However, when an attempt is made to find out juSt 

how this is done, the issue becomes exceedingly complex. Aithoughb 

people have the facility for solving real life problems, and are dging 

a good job at it, attempts to present laboratory problems under con- 

trolled conditions meet with little successful comprehension by the sub-

jects (Hammond and Summers, 1972). For example, some of Brehmer's 

(1973) subjects labored over 360 trials of line estimation, only to 

have their performance rating equal little better than chance. 

The poor performance in a laboratory setting alluded to above, 

is often explained away by saying that the subject did not fully under-

stand what he was to do. One can, however, using the correlations and 

formulas described above, discover the individual's level of knowledge 

and of control, and show (as was discussed on page 5) that perfect H  

knowledge cannot guarantee perfect achievement, when there is imperfect 

cognitive control Hammond and Summers (1972). 

The Lens Model Re•examined 

Thus far, this paper has presented the fundamental concepts 

of Brunswik's Lens Model, its statistical developments, and some illus-

trative research sugoesting the power or the approach to understanding 

complex judgment and decision making skills. The remainder of this 

chapter will re-examine these ideas from a slightly different perspec-

tive, with a view to identifying the research question investigated in 

the empirical part of this study. 
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The lens model may be usefully considered as two interacting 

11) ,is ems% 	a task subsystem, consisting of the relationships between 

the distal variable and the cues, and a response subsystem, consisting 

if the relationships between the cues and the subject's response. (Prom 

this viewpoint, successful performance requires the subject to mak* some 

appropriate matching between the characteristics of his response sub-

system and those of the task subsystem. As Hoffman (1960) notes, iso-

morphism between the two subsystems is not necessary for good perform-

ances paramorphism will suffice. 

In this view, then, the subject's task is to use whatever 

information he has available to adjust his response subsystem so as 

to match the characteristics of the task subsystem. The bulk of the 

reported laboratory research has provided the subject only with "out-

come feedback" (e.g.: Hammond and Summers (1972); Dudycha and Naylor 

1966a) to assist him in this "tuning," though recent work by Hammond 

and others (Sorensen (1967); Newton (1965); Todd and Hammond 1965)6 

has shown the advantages of providing the subject with more detailed 

information on characteristics of either task or response subsystems, 

or both. Other types of information which would allow such "tuning" 

have not apparently, been systematically studied. Two exceptions are 

a study by Miklausich (1973) demonstrating the detrimental effects of 

error introduced into outcome feedback on the accuracy with which sub- 

jects can match a given task subsystem; and a study by Rose (in progress) 

of the effects of evaluation feedback on such matching, The present 

study will examine the effects of providing the subject with a verbal 

context implying the structure of the task subsystem. 

LI 
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A previously neglected aspect of the verbal context which will 

be considered here was proposed by Miller (1971). He was concerned with 

whether the name put on the cue was congruent with the values of the 

ecologicalcorrelations(r
ie
)or inconaruent with them. He also raised 

the question of how feedback of the true values of the distal varible 
r! , 1 

might interact with the cue labels. Miller had clinicians, statisticians, 

freshman math-oriented students, and other freshman students predict 

examination results, given three pieces of information. In one of the 

nine testing conditions, cues were labeled with what they actually rep-

resented; in the other eight they were either falsely labeled or not 

labeled at all. Except for the practicina statisticians, the subjects 

did worse when the conditions logically conflicted with the task subsystem 

correlations (which they were given). 

One area for extension of the existing research, then, is the 

examination of modes other than outcome or lens model feedback to allow 

the subject to tune. A second extension is the range of task properties 

considered. It appears that Brunswik's original form' iation (1956 

the Lens Model was in terms of a single underlying variable type of task, 

in which the cues serve as a set of indicators of the value of the 

underlyina variable. Much of the subsequent laboratory work, however, 

has examined a rather different task subsystem, in which a set of orthoao 

nal cue values determines the distal variable value either in a linear 

relationship, (e.a., Dawes (1971); Hammond, Hursch, and Todd (196 4 )), or 

a non-linear relationship, (e.g. Summers and Hammond (1966); Brehmer 

(1969)). Connolly (1973) argues that such procedures are inconsistent 

with Brunswik's formulations, and proposes a distinction between cue-typE 



12 

problems for the single underlying variable case, and component type 

problems for the other cases. 

Without developing Connolly's argument here in detail, it dbes 

appear of value to consider problem subsystems other than those in 

which there is a direct relationship between cues and distal variables. 

Of particular interest are what might be called complex structUred i prob-

lems in which there is at least one level of intermediate constructs 

between distal and cue variables. A simple example would be the esti-

mation of the distal variable "area" where the entire cue set would be 

partitioned into a subset relating to "width" and a second relating to 

"length." In such a case, one would expect the within-subset correla-

tions to be fairly high, while the between- subset correlations could 

appropriately be made equal to zero. 

The interest of such complex structures problems is two-fold. 

First, they appear to represent a range of complex real-world problems 

more closely than do the simple structured tasks oenerally used in ,  labo-

ratory studies. Second, they require the subject to adopt a two-Staoe 

information-processino strategy to achieve the highest possible per-

formance, This suaaests that insight into the task structure would be 

an important determinant of performance - an insight which may be 

readily provided by means of a suitable verbal context, as discussed 

earlier. 

In summary, the present research is intended to advance the 

domain the domain of laboratory studies in two areas. First, the task 

subsystem will be complex-structured. Second, the subject will be 

provided with a verbal context suggesting the structure of the task 
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subsystem, as well as the usual outcome feedback. 

An underlying question which is not often discussed in the liter- 

ature is that subjects seem to learn number puzzles in the laboratOry 

very slowly, and yet appear able to handle successfully the real-world 

learning of highly complex problems. This study will check to see 'if 

the verbal construct idea bridges this gap in learning perforMancef, 

The research question of interest may be summarized as follows: 

Research guestion 

"What are the effects on learning and performance in a complex 

structured inference task of suggesting, and of imposing, an appropriate 

conceptual structure?" 

The approach taken will be a three-group design. All three 

groups will work numerically identical problems, under conditions of 

no structuring insight, suggested structuring insight, and imposed 

structuring insight. Two major hypotheses will be examined: 

PIPothe.s.P§, 

H
1
s in a complex - structured multiple cue inference task, sU h 

 jects provided with a task-structuring insight will outperform subj 

not provided with such insight. 

fi.„
2 : 	In a complex-structured multiple cue inference task, sub- 

iects forced to use the task-structuring insic) It will outperform those 

who have had such insight merely suggested to them. 

The null hypothesis. in each case, is that the performance fails 

be sionificantly superior. 

The term complex - structured. as used above, indicates a problem 

in n which the cues and groups of cues are presented in such a mann 
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that the decision maker can apply some task-structuring constructs to 

reduce the demands of the task. The detailed experimental design and 

procedure used to test these hypotheses are reported in the followino 

chapter. 



CHAPTER 11 

EXPERIMENTAL DESIGN 

BackaroUnd 

The primary feature of a well-designed experiment is a direct., 

path - starting with the information desired, and working backward 

to the proper construction of an experiment to get this information . 

To test the hypotheses proposed in Chapter 1, it was necessary 

to design a complex-structured problem with three treatments, corre-

sponding to the three groups of subjects. Group 1 received the basic 

verbal context; its purpose was to orient the subject and arouse his 

interest in the problem. Group 11 received both the basic context, 

and a structuring context which implied the existence of intermediate 

constructs. Group 111 received all the information given the Group 

subjects, but were, in addition, asked to record their estimates of the 

intermediate constructs, as well as their overall estimates. 

Verbal  Contexts 

The basic verbal context was common to all three groups; and 

was the only information available to Group I. This basic context 

placed the subject in the position of the personnel director for a 

large corporation, responsible for the acceptance or rejection of job 

applicants. In an effort to do a good job for the corporation, the 

personnel director (subject) wanted to devise an efficiency score pre-

diction scheme usino only four expert ratings for each applicant 

lb 
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(provided by consultants to the corporation). The context explained 

that an assistant had gone into the corporation files and pulled out 

a sample of efficiency scores of current employees, as well as the 

expert ratings given at the time they were hired. Thus the basic 

procedure was for the subjects to take four cues (labeled Expert A, 

etc.), make their response (efficiency score prediction), and then be 

given feedback (the actual current efficiency score from the files). 

The context was specifically designed to exclude any requirement for 

expertise in any specific field. 

Group ii was given a structuring verbal context in addition 

to the basic context. These subjects were told that two of the four] 

expert ratings were by psychologists, and that the other two were by 

successful businessmen. The cues were relabeled PSY 1,2 and BUS 1,2. 

Thus intermediate constructs (overall psychological rating and overall 

business rating) were implied. 

Group III subjects were given all the information above, and 

then were told to actually estimate and write down the overall psycho- 

logical and business ratings as well as their predicted efficiency scores. 

Obviously, this actually forced the subjects in Group Iii to use (or, at 

least note the presence of) intermediate constructs. 

in summary then, each group of subjects worked a numerically 

identical problem (within each phase). The difference in treatment was 

that Group I received no insight into the structure of the problem, Group 

11 had the structure implied, while Group 111 had the structure imposed. 

Test Generation,. 

Given the sensitivity of many Lens Model phenomena to slight 
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variations in problem characteristics (see, for example, Miklausich. 

1973) it was decided to investigate two different versions (phases) of 

an essentially identical problem. The problem used throughout was a 

two -component, four - cue problem in which the distal variable ("effi-

ciency score') was calculated as the product of two components ("psycho-

logical rating," P, and "business rating," B. Each component had two 

associated cues. The structure of the problem is shown in Figure 2. 

As may be seen, the problem is "complex-structured"in the sense dis- 

cussed earlier. 

For Phase A, the two (1 X60) component matrices, named P and 61' 

were generated from a normal distribution with mean = 5, and variance 

- 4; this provided a range (within two standard deviations) of 1 to 9. 

The scale was truncated at 1 and 9 to eliminate unreal values (in par- 

ticular, the multiplication by zero in arriving at the distal variable). 

These matrices were then manipulated to provide the your cues (expert 

ratings), by adding induced error into the component array. The 

(4. X60) error matrix was generated using a normal distribution with 

mean = 0 and variance . 1. The error scale was truncated at -1 and +1 

(one standard deviation). 

The Cue Matrix was generated according to the following 

formulae: 
11. 

P 1,i . P i  4- E 1,i 	. 1,...,60 

P 	= P + E 

	

2,1 	i 	2,i ' 

	

. 	, B 	f£ 	j 	1...,60 

	

1.J 	3,j 	
, 

 

	

B. = B, 	E 

	

„I 	4,j 



Cues Dictal Variable 	 ConEonents, 

1  

Y
e 

P 	B 

Figure 2; Problem Structure. 

Generate 
Component 
Matrices 

P, B – N(5,4) 

P 1 9— " P 60 ) 
 B  

Generate 

Matrix 
Error 

Cues ,,,- 

E – N(0,1) 

E E 	' ..E 
1,1 	1,60 

E
4,1'

..E 4,60_ 

 

1 	4,60 r Generate 
Cue 
Matrix 

Figure 3. Test Generation Flow Diagram, Phase A. 
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and were arrayed for presentation to the subjects as P l,i ; 

P
2,1' 2 

 B.
j 
 , so as to avoid the intimation of the common origins of 

the P cues, and B cues, by their juxtaposition. 

The same two-component, four cue task was used for both phases 

A and B, with Y e 
equal to the product of the components in each case. 

In Phase A, the distribution of Y
e 
values followed that suqqestd by 

the histogram shown in the Appendix. In Phase B, the distribu t ion of 

Y
e 
was approximately uniform across the -.canoe 1 to 60. For the sample 

of trials used, Phase A had an R e  value of 0.94, Phase B of 0.96. From 

the subjects' viewpoint, the major difference between Phase A and Phase 

B was expected to be increased frequency of extreme Ye  values in the! 

latter. Since extreme values are probably highly diagnostic of problem 

structure, performance in Phase B was expected to exceed that in Phase A. 

EckqEment and Materials 

An overhead projector was fitted with a roll of acetate which ran 

over a mounted transparency. The transparency displayed the headings 

appropriate to the subject croup, e.g., for Group Is 

ACTUAL 
EMPLO'iEE 	EXPERT 	EXPERT 	EXPERT 	EXPERT 	EFFiCIENCY 
NUMBER 	 A 	 B 	C 	 D 	SCORE 

The cues and distal variable sets were written on the acetate 

roll, and were then rolled over the transparency. The actual efficiOpcy 
H 

score was covered by a card until the subjects had responded.• 

The answer booklet used by the subjects was reproduced by the 

XEROX copier, and was stapled together. The subjects were instructed. 

to pull out the staple, and to manipulate the individual canes of the 



20 

booklet in any way they saw fit. 

Subjects 

The members of the subject pool were unpaid juniors, seniors 

and graduate students attending the Georgia Institute of Technology, 

Each member of the pool was assigned to a phase, and to a particular 

group (five subjects per cell), solely on the basis of his random 

arrival at the testing site. 

Procedure 

The subject groups were physically separated while the test 

instructions were oiven, and during the test itself, so that no member 

of one group could hear and compare the instructions being given to ll  
I. 

another group. 

Each group was established in a comfortable room in standard: 

institutional furniture. An effort was made to make the test site and 

all materials to appear neat, clean, and orderly - so that each subject 

would feel that he was working with a substantial investigation, and was 

not wasting his time by taking the test. 

The groups were seated. and each subject was asked if he could 

see the projection screen clearly. When all were settled, the scenario 

cthe appropriate verbal contexts) was read carefully and distinctly, 

with a request for questions after its reading. immediately following, 

four examples were considered. The example data sets were shown orqthe 

projection screen, as well as on an example sheet in the subject's 
Iii 

answer booklet. The subjects were told to tear out their example sheet 
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and keep it handy to their work area. Additionally, the several key , r 

 points from the scenario (including the cue and response scales), 

printed at the top of the example sheet, were read aloud. 

After answering all questions about the scenario and examples, 

the test data sets of four cues were shown, and read aloud, one set at 

a time. After all the subjects had written down their predictions for 

each four cue set, and had so indicated by looking up from their work, 

the "Actual Efficiency Score" (distal variable feedback) for that set 

was uncovered by the monitor, and shown to, read aloud to, and recorded 

by the subjects. 

The data sets were shown sequentially until all 60 test data sets 

had been covered. The subjects in each group were given two one-minute 

breaks between each block of twenty test data sets to review their 

work, and to modify their approaches if they desired. 

Therefore there were established, for each phase, three groups 

which corresponded to the three levels of information (insight) described 

above. The subtle change between the phases of the experiment is caused 

solely by the source of the numbers that were used by the subjects. 

That is, the undelyino distribution of Phase A numbers was normal, 

while that of Phase B numbers was uniform. 



CHAPTER III 

RESULTS AND DISCUSSION OF RESULTS 

Primary_Analisis 

As explained previously, the experiment consisted of two phaSes. 

The only difference between phases was that Phase A had a normal under-

lying distribution, while Phase B's distribution was uniform. 

The cues and distal variables for both phases, with their asso-

ciated subject responses, were processed through routines of the Univac 

STAT-PACK. The RESTEM routine was used to obtain the linear predic-

tions Ye 
and Y

s
, and then the CORAN routine was used for the correlations 

r a , R e' 
R
s
, and G. Prior to further analysis, the correlations were 

transformed to Fisher's z values, since the distribution of the z values 

is approximately normal. The transformation allowed averaging and 

analysis of the variance. See McNemar (1969) for further discussio 

Fisher's transformation. 

The experimental task of Phase A was performed by the three 

groups of subjects, corresponding to the three treatment levels defined 

by the verbal context (insights). Since the hypotheses concerned the 

improvement in performance between groups, the statistic r a  was plotted 

(Figure 4). The value of the limit of achievement, and the knowledge 

about the properties of the task were also plotted to help with inter-

pretation. The data provide weak support (p < 0.10) for Hypothesis 2: 

that the performance of the group of subjects forced to use the task- 
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Figure 4. Display of Results, Phase A, 
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Table 1. Results and Analysis of Phase A (R e  = 0.94) 

Results 	( r a/z a ) 

Groups 

	

I 	 II 	 III 

Question 1 	 0.775/1.034 	 0.822/1.163 	 0.837/1.214 

Blocks 	2 	 0.901/1.488 	 0.688/1.413 	 0.935/1.696 

3 	 0.925/1.625 	 0.903/1.467 	 0.965/2.019 

ANOVA 	(on z a ) 

Source 	 5S    df 	MS 	 Ratio 

Insight 	 0.1534 	2 	0.077 	5.105 (p < 0.10) 

Ques. Blks. 	0.5156 	2 	0.250 	17:161 (p < 0.025) 

Error 	 0.0600 	4 	0.015 

Total 	 0.7290 

* F (0.10,2,4) = 4.32; reject the null hypothesis. 

Duncan's Test 

s
e 

. 0.054612; 	
n2 = 6; 	

a = 0.05. 

P = 	 2 

Sig. Range 	 3.46 

Least Sia. Rna 	0.190 

3 

3.58 

0.196 

p 	= 

p11 

1.380 

= 1.355 

11 

1. 

vs 	III: 

vs 	III: 

0.288 

0.264 

1`, 

> 

0.196 

0.190 

Plil = 	
1.643 l vs 	II: -0.025 < 0.190 

Group III outperformed Group Ii; H is supported. 
Group II did not outperform Group f ;  H I  is not supported. 
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,tructuring insight was superior to that of the group who had the 

insight merely suggested to them. 

Phase B was identical to Phase A (with the sole exception of 

the numbers in the problem), and was purposely conducted in the same 

manner as Phase A. The raw data was coded in the same manner, and 

transformed (by Fisher's transform) in the same manner as that of 

Phase A. To check on the group performance differences, the stati . Stid 

r
a 

for each aroup (along with R 	R , and 3) was plotted (Figure 5). e 	s 

These data provide strong, support (p ‹. 0.005) for both of the 

hypotheses (Table 2). 

ALthough the primary analysis was most satisfactory in support-

ing the hypotheses, some additional examinations were made. Recall that 

during the administration of the experiment, the subjects were given a 

break after the twentieth question and the fourtieth question. These 

made natural divisions in the work, so that it was possible to investi-

gate three blocks of questions, and check the groups" achievement across 

the blocks. 	Thereby, it was seen if the subject's improvement in ach4',.e.ve- 

meet was caused by experience gained by taking the test, or by the 

Jerbal contexts tested. in both Phases A and B it appeared that the 

subject's performance improved by the verbal context, and not by the 

experience of taking the test. 

As another method of gettAnd at this question, a ratio, 1--A, was 

deA:ned as percent achievement, or the ratio of average achevement with 

achievement. The conclusion reached above that the 
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Table 2. Results and Analysis of Phase B (R e  = 0.96) 

Results 	(ra/za ) 

I 
Groups 

II III 
Question 1 0.881/1.379 0.909/1.520 0.934/1.669 
Blocks 	2 0.929/1.654 0.946/1.794 0.969/2.079 

3 0.867/1.320 0.917/1.571 0.951/1.842 

ANOVA 	(on za ) 

Source SS df MS Ratio 

Insight 0.266 2 0.133 41.325 	(p = 0.005) 

Ques Blks 0.170 2 0.085 26.486 	(p 	= 	0.010j'. 

Error 0.013 4 0.003 

Total 0.489 8 

* 	F(0.01,2,4) 	= .18.00; 	reject the 	null 	hypothesis. 

Duncan's Test 

s
e 

= 0.025; 	n2  = 6; 	o = 0.05 

2 	 3 

	

5.24 	 5.51 

	

0.133 	0.140 

111 
vs 

 /11111 	
0,421 > 0.140 

111  µ11I: 0.242 > 0.133 

0.179 > 0.133 

P 

Sig Range 

Least Sig. Range 

1.450 

P'11 = 1.628 

. 1.670 

Group III outperformed Group 11; H 2  is supported. 

Group li outperformed Group 1; H I  is supported. 
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increased performance is caused by the verbal context rather than 

the experience of taking the test seems justified here as well. if 

each of the iso-group lines had a common origin, but varied at their 

conclusion, a different learning experience between groups would be 

shown. However, the iso-group lines, particularly in Phase B, are 

nearly parallel; this indicated the same learning experience, with the 

percent achievement varying only among contexts. See Figures 6 and 7 

for plots of percent achievement versus question blocks. 

A variation of the percent achievement ratio provided yet 

another analysis of the data. Based on the structure of the problem 

a B and P were calculated as the average of their associated cues' 

(recall that the cues were generated from B and P, rather than the 

opposite). Then, a variable called Y: was defined as the product of 

B and P. Finally, the correlation R 	rYeYe* was calculated, and 

PA* 	ra/R e
* 

was plotted in Figures 8 and 9, for Phases A and B respec- 

tively. It is felt that this variation is more illustrative than the 

previous method, since it recognizes that the subject can actually exceed 

the Re from the conventional lens model calculations, i.e., that the 

best possible stable performance for this problem can actually exceed 

what was considered the upper limit of achievement. Not incidentally, 

this method leads one to exactly the same conclusions as above - that 

the hypotheses have been supported. 

In summary, then, the data provide fairly strong support for both 

major hypotheses, with some indications as to the mechanisms involved, 

Phase B data strongly support the hypotheses of higher achievement of 

subjects provided with a structuring insight over those not so helped, 
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Groups 
II 	 Ili 

0.920 0.946 
0.951 0.975 
0.941 0.975 
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Table 3, Percent Achievement s  Phase A 

Question Block 	 R
e 

1 0.928 0.968 
2 0.924 0.992 
3 0.956 0,996 

0,4orall 0.938 (1.992 

Achievement Using R 
P 

Groups 

Question 1 0.785 0.832 0.848 
Blocks 2 0.908 0.895 0.942 

3 0.929 0.907 0.969 

% Achievement Using R
e 

Groups 
1 11 III 

Question 1 0.835 0.886 0.902 
Blocks 2 0.976 0.962 *1.012 

3 0.968 0.944 *1.010 

Table 4, Percent Achievement, Phase B 

Question Block 
e 

1 	 0.962 
2 	 0.985 
3 	 0.919 

Overall 	 0.963 

% AchievemeiA Using R
e 

I 
Question 1 0.892 
Blocks 2 0.935 

3 0.889 

0.939 
0.998 
0.994 
0.9 7 5 

A Achievement Using
e 	 . 

	

Groups 	 JI! 
I 	 II 	 11 

Qnestion 1 	 0.916 	 0.945 	 0,971 
Blocks 	2 	 0,944 	 0.961 	 0,984 

 

3 	 0,943 	 0.998 	 *1.033  
'Note that % achievement exceeds 100% in some calculations  
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and of subjects required to use such insight over those with insight 

merely available 	Phase A data tends to confirm the latter hypothesis, 

theugh howing no evidence of the former. 

Examination of Figures 6 - 9 suggests quite strongly that super- 
] 

10T achievement here is not the result of faster learning for the in 

sight„ and forced insight groups. Rather, it appears that all groups 

learn at essentially the same rate, with the highest performing groups 

stay don with an initial advantage, and maintaininp it throuohsut the 

experiment, 

A final comment should be added on the overall difference between 

Phase A and Phase B data. Recalling that the only difference between! 

the Phases was in the underlying Y distribution, it should be noted,, 

fir sL that the phenomena identified here are sensitive to apparently .  

minor chanqso in problem characteristics, and second, that the - antic4 

pat_?d hiqher diagnosticity of the uniform distribution used in Phase 

Lc, be sord- il- 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

Review of Results 

The experiment was designed to test if people, given an 

insight into the structure of a task, could use the insight to assist 

them in performing the task. The task, in this experiment, was to 

integrate cue information into the estimation of a distal variable. 

Each of the three groups of subjects was given a basic moti- 

vating verbal context; Group 1 received only that. Group Il was given 

some insight when the grouping of pairs of cues was implied. This 

insight was reemphasized and actually enforced for Group III, which 

was required to write down its overall estimates of the factors rept 

resented by the grouped pairs. 

As described and analyzed in detail above, it was demonstrated 

that under certain conditions, people can, and do, use verbal context 

successfully to establish their model. 

RelationshiL to Real horld 

The first and most obvious comparison to be made when comparing 

laboratory experiments with those of field observations is that the 

laboratory problems generally require no professional expertise (set 

of concepts) with which the subject is to work. Most laboratory experi-

mental designs specifically engineer out any such requirement of the 

33 
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subject, and provide any necessary concepts in the conduct of the 

experiment (verbal context, or outcome feedback). The laboratory sub-

ject may of course use combination rules which he has tried and found 

useflA in some setting other than the laboratory - but this does not 

constitute professional experience. 

The results in Chapter III show that the stated hypotheses 

are strongly supported for one set of data, less clearly for another. 

Thus the phenomena seem extremely sensitive to chances in the under-

lying problem characteristics. This sensitivity is not particularly 

helpful to an attempt to extend the thesis to real life decisions. 

Follow up experiments with an examination of a broader range of prob-

lems are clearly necessary, 

Nonetheless, it was shown herein that, given the situations 

and accompanying restrictions described, conceptual structures can be 

suggested or imposed by means of an appropriate verbal construct, and 

that these conceptual structures impact on the degree of success in a 

complex structured, multiple cue inference task. 

ExtensiopandExpapaipn 

.Despite the modest dimensions of the present e :Fort, it is felt 

that the field of inquiry into the study of comple x -structured tasks 

versus that of siocle underlying variable, has been opened. Obviously, 

replication and altered replication of this experiment should be made 

to firmly establish this area of the problem space, immediately there-

after, the exploration of the range of available models and other ele- 

ments ef the inferential base and their relationship (already begun by 



Miklausich and Rose, as previously noted), should be continued and 

expanded. 

Another area deserving of attention is the study of teaching 

as providing a conceptual framework for learning (tested by the rate 

of learning). 

When we understand the adareqate complex-structured task 

study, we may understand the relationship between the laboratory and 

the real world, 
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APPENDIX 

H1STOGRAPH OF DISTRIBUTION 

Set 	1 	 2 	 3 	4 6 	7 

Y Values | 1-10 	11-20 	21-30 	31-40 	41-50 	51-60 	61-70 
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