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SUMMARY

In this research, we study two different geometric approaches, namely, the dis-

crete exterior calculus and differential complexes, for developing numerical schemes

for linear and nonlinear elasticity. Using some ideas from discrete exterior calculus

(DEC), we present a geometric discretization scheme for incompressible linearized

elasticity. After characterizing the configuration manifold of volume-preserving dis-

crete deformations, we use Hamilton’s principle on this configuration manifold. The

discrete Euler-Lagrange equations are obtained without using Lagrange multipliers.

The main difference between our approach and the mixed finite element formulations

is that we simultaneously use three different discrete spaces for the displacement field.

We test the efficiency and robustness of this geometric scheme using some numerical

examples. In particular, we do not see any volume locking and/or checkerboarding

of pressure in our numerical examples. This suggests that our choice of discrete so-

lution spaces is compatible. On the other hand, it has been observed that the linear

elastostatics complex can be used to find very efficient numerical schemes. We use

some geometric techniques to obtain differential complexes for nonlinear elastostatics.

In particular, by introducing stress functions for the Cauchy and the second Piola-

Kirchhoff stress tensors, we show that 2D and 3D nonlinear elastostatics admit sep-

arate kinematic and kinetic complexes. We show that stress functions corresponding

to the first Piola-Kirchhoff stress tensor allow us to write a complex for 3D nonlinear

elastostatics that similar to the complex of 3D linear elastostatics contains both the

kinematics an kinetics of motion. We study linear and nonlinear compatibility equa-

tions for curved ambient spaces and motions of surfaces in R3. We also study the

relationship between the linear elastostatics complex and the de Rham complex. The

x



geometric approach presented in this research is crucial for understanding connec-

tions between linear and nonlinear elastostatics and the Hodge Laplacian, which can

enable one to convert numerical schemes of the Hodge Laplacian to those for linear

and possibly nonlinear elastostatics.
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CHAPTER I

INTRODUCTION

Solving PDEs has always been a challenging task in computational mechanics. Having

the correct solution spaces that posses the essential mathematical structure of the

solutions of PDEs is crucial for designing stable numerical schemes. For example,

there have been many efforts during the past five decades to find a stable mixed

finite element method for linear elasticity. However, it was not until recently that

Arnold and Winther [12] obtained such mixed finite elements. The main reason for

their successful formulation is that they use a proper trial space that respects the

correct geometric structure of the solution. Ideas related to differential forms play a

crucial role in their derivations. In fact, the above formulation is closely related to the

Hodge Laplacian problem that is defined on Riemannian manifolds, i.e. a manifold

with a metric. One can consider the celebrated de Rham complex as the smooth

structure of the solution spaces of this problem and try to discretize this complex.

This was the main idea of the Finite Element Exterior Calculus introduced by Arnold

and his coworkers [11]. By a proper discretization of the de Rham complex, they

define the problem of the abstract Hodge Laplacian on a Hilbert complex with proper

Hilbert spaces as discrete trial spaces and then they introduce an efficient numerical

scheme by studying this problem. Efficient numerical schemes for elasticity have

many engineering applications. It is known that both linear and nonlinear elasticity

have rich geometric structures. This suggests that one may be able to obtain efficient

numerical schemes for them by defining discrete analogous of these smooth structures.
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1.1 Main Contributions

In this thesis, we study two different geometric approaches, namely, the discrete

exteior calculus and differential complexes, for developing numerical schemes for linear

and nonlinear elasticity as follows.

Discrete Exterior Calculus. The main challenge of the elasticity problem is that

unlike electromagnetism that only requires differential forms one needs to consider

various types of tensors for elasticity. We introduce a geometric structure-preserving

scheme for linearized incompressible elasticity. First, we show that in the smooth case,

the governing equations of incompressible elasticity can be obtained using Hamilton’s

principle over the space of divergence-free vector fields without using Lagrange mul-

tipliers. Then, we develop a discrete theory for linearized elasticity by assuming the

domain to be a simplical complex and choosing a discrete displacement field, which is

a primal vector field, as our primal unknown. Thus, we do not need to worry about

compatibility equations. Then, we use a discrete definition of divergence to specify

the space of discrete divergence-free vector fields over a simplical mesh and choose

this space as our solution space. Motivated by the Lagrangian structure of the smooth

case, we define a discrete Lagrangian and use Hamilton’s principle over the discrete

solution space without using Lagrange multipliers. We observe that pressure gradient

appears in the discrete governing equations. We use the discrete Laplace-Beltrami

operator to obtain the discrete pressure – a dual 0-form. This can be thought of

as a geometric justification for the known fact that using different function spaces

for pressure and displacement is crucial for obtaining robust numerical schemes for

incompressible elasticity. Finally, we consider some numerical examples that suggest

that our method is free of locking and checkerboarding of pressure.

The approach that we use for imposing the incompressibility constraint is equiv-

alent to the method of Lagrange multipliers for obtaining the mixed formulation of

2



incompressible elasticity. We directly use the space of discrete divergence-free dis-

placements given by the DEC theory. This is the deviation of our approach from the

FE method: The definition of the discrete divergence implies a specific linear interpo-

lation for displacements. However, we are free to choose other interpolation methods

for the displacement field when we calculate the kinetic and elastic energies. There-

fore, unlike the FE method, we simultaneously use three different discrete solution

spaces for the displacement field, in general. Similar to the mixed FE formulations,

discrete solution spaces for the displacement field should be compatible with each

other and with the discrete space of the pressure field to obtain a stable numerical

scheme. Our numerical examples suggest that a choice of discrete spaces given by P1

polynomials over primal meshes for the incompressibility constraint, P1 polynomials

over support volumes for the elastic energy, and P0 polynomials over primal meshes

for the pressure field is a compatible choice.

Differential Complexes. Formulating linear elastostatics complex in terms of dif-

ferential forms has been crucial in developing stable numerical schemes as this allows

one to confine solution spaces to proper subsets of differential forms [10, 8, 12]. There-

fore, it may be possible to obtain stable numerical schemes for nonlinear elastostatics

by properly expressing it in terms of differential forms. There have been some efforts

in the past to rewrite nonlinear elasticity in terms of differential forms [69]. The

complexes that Arnold and his coworkers [10, 8, 12] have used are as follows: For 2D

linear elastostatics, they consider kinetic complexes consisting of Airy stress functions.

For 3D linear elastostatics, they use complexes that contain both the kinematics and

kinetics of motion through the linear compatibility equations and Beltrami stress

functions. There have been some ideas for defining stress functions for the Cauchy

stress tensor for nonlinear elastostatics [103]. However, as far as we know, to this

date there have not been similar complexes for nonlinear elastostatics.
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We introduce the notion of stress functions for the first and second Piola-Kirchhoff

stress tensors. First Piola-Kirchhoff stress functions enable us to derive a complex for

3D nonlinear elastostatics that contains both the kinematics and kinetics of motion,

i.e. it contains the generalized compatibility equations and first Piola-Kirchhoff stress

functions. In R3, we show that this complex is equivalent to the R3-valued de Rham

complex, and therefore we can express 3D nonlinear elastostatics entirely in terms

of differential forms. This implies that 3D nonlinear elastostatics is related to the

de Rham complex more directly than 3D linear elastostatics as the nonlinear case is

equivalent to a twisted de Rham complex but the linear case is equivalent to a certain

restriction of another twisted de Rham complex. We also write kinetic complexes

for 3D nonlinear elastostatics in terms of Cauchy and second Piola-Kirchhoff stress

functions. For 2D nonlinear elastostatics, the kinematic and the kinetic complexes

are separate. This can be considered as a result of the shorter length of de Rham

complex for 2-manifolds in comparison with 3-manifolds. We derive the associated

2D kinetic complexes for various types of stress functions. The kinematic complex of

2D case in R2 is shown to be equivalent to the R2-valued de Rham complex.

We write the linear elastostatics complex as the linearization of a sequence of

differential operators associated with nonlinear elasticity on manifolds with constant

sectional curvatures. At first sight, 3-manifolds with constant sectional curvatures

may seem to be too abstract and unphysical. However, note that 3D bodies equipped

with nontrivial metrics (the Green deformation tensors) are special cases of such

manifolds. By using some classical results in differential geometry, we obtain linear

and nonlinear compatibility equations for motions in curved ambient spaces and also

motions of surfaces in R3. We should mention that these results are equivalent to

the compatibility equations obtained by using other approaches discussed in [103]

for curved ambient spaces and [37] for surfaces. We also study the relation between

linear elastostatics complex and the de Rham complex. Our results are useful if

4



one wants to derive new numerical schemes for linear elastostatics from the existing

numerical schemes of the Hodge Laplacian. For example, it is possible to define

discrete differential forms as discrete cochains of simplical complexes [61]. By tracing

the above construction, it should be possible to obtain a scheme for linear elastostatics

using discrete cochains.

We first discuss our geometric numerical scheme for incompressible elasticity in

chapter 2. In chapter 3, we study the complexes of linear and nonlinear elastostatics.

Finally, we mention conclusions and future directions in chapter 4.
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CHAPTER II

A GEOMETRIC NUMERICAL SCHEME FOR

INCOMPRESSIBLE ELASTICITY

Finding robust numerical schemes for solving incompressible elasticity problems has

been of great interest due to important applications of incompressible elasticity, e.g.

in analyzing biological systems where soft tissue is usually modeled as an incompress-

ible elastic body (see [108] and [112] and references therein). It is well known that

numerical methods that are reliable for compressible elasticity severely fail for the

case of incompressible problems (see [45, 58, 14] and references therein). Inaccurate

results are usually due to the locking phenomenon. Locking, in general, is the loss of

accuracy of the solution of a numerical scheme for the approximation of a parameter-

dependent problem as the parameter tends to a critical value [15, 100]. For example,

locking appears in plate and shell models as the thickness d → 0, analysis of incom-

pressible linear elasticity as Poisson’s ratio ν → 1/2, and heat transfer problems as

the ratio of conductivities µ→ 0. A robust numerical method is uniformly convergent

for all values of the parameter of the problem. Babuška and Suri [15] gave precise

mathematical definitions for locking and robustness and gave some general results on

the characterization of these phenomena.

To this date various numerical schemes have been developed for incompressible

elasticity. The finite element (FE) method is one of the best numerical methods

for compressible elasticity. However, FE results may be inaccurate in the near-

incompressible and incompressible regimes. To overcome this difficulty, many dif-

ferent approaches have been proposed in the literature. The standard FE formula-

tion based on displacements using low-order elements exhibits a poor performance

6



for near-incompressible elasticity. It has been observed that higher order elements

can avoid locking in near-incompressible linear elasticity [94]. Another approach is

to use discontinuous Galerkin FE methods [57, 24, 79, 109, 108]. In these formula-

tions, independent approximations are used on different elements and the continuity

across boundaries of elements is weakly enforced. Nonconforming FE methods can

also avoid locking for near-incompressible elasticity [46, 106, 35]. The simplicity

of the aforementioned methods is due to the fact that they are based on the dis-

placement variational formulation, and therefore, one does not need to include other

variables in the formulation. There are some formulations based on the Hu-Washizu

variational principle, where the displacement, strain, and stress are considered as in-

dependent variables. The method of enhanced assumed strain introduced by [97] and

the method of mixed enhanced strain of [70] are both based on the Hu-Washizu varia-

tional principle. Another approach that has widely been used for near-incompressible

and incompressible elasticity is mixed formulations based on the Hellinger-Reissner

variational principle. In the near-incompressible regime, the stress and displacement

are both unknowns. For the incompressible regime, the pressure and displacement are

the primary unknowns, where the pressure is the Lagrange multiplier of the incom-

pressibility constraint. It was observed that discrete spaces of the displacement and

pressure should be compatible [45]. Various mixed formulations have been developed

by using different techniques. Brink and Stephan [25] proposed an adaptive coupling

of boundary elements and mixed FE method for incompressible elasticity. Cervera et

al. [32] developed mixed simplical elements for incompressible elasticity and plastic-

ity. Discontinuous Galerkin methods have also been used in the mixed formulations,

see [96, 64] and references therein. It has been observed that reduced/selective in-

tegration techniques that are closely related to mixed formulations are useful for

incompressible elasticity [65, 80]. In these methods, the inf-sup stability require-

ment are also enforced for the displacement and implicit pressure interpolant spaces.
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Equal-order interpolation with stabilization methods [7] and average nodal pressure

elements [21, 75] have also been successfully implemented. Bonet and Burton [21]

proposed a linear tetrahedron element that prevents locking by introducing nodal

volumes and evaluating nodal pressures in terms of these volumes. Gatica et al.

[51] developed a dual-mixed finite element method for incompressible plane elasticity.

Hauret et al. [58] introduced a diamond element FE discretization for compressible

and incompressible linear and finite elasticity. Using both primal and dual vertices

of an arbitrary simplicial mesh for the domain and its barycentric dual mesh, they

constructed an associated diamond mesh. They defined interpolation spaces for dis-

placement and pressure supported on the diamond mesh by choosing piecewise linear

displacement interpolation on sub-elements and constant pressure interpolation on

diamond elements. They proved that the displacement field converges optimally with

mesh refinement and also showed that for the problem of linearized incompressible

elasticity their scheme satisfies the inf-sup condition, and hence, it is well posed. Al-

ternatively, it is also possible to use element-free Galerkin methods [18]. Vidal et al.

[105] introduced a pseudo-divergence-free element-free Galerkin method using a dif-

fuse divergence for near-incompressible elasticity. Similar techniques have been used

by other researchers for developing mesh-free methods for mixed formulations and

B-bar methods [87, 38, 91].

The incompressibility constraint can be imposed more directly using the stream

function formulation [13]. Because the divergence of the displacement is zero in in-

compressible linear elasticity, there is a scalar-valued function called stream function

whose curl gives the displacement. Then, the weak formulation of incompressible lin-

ear elasticity can be rewritten as a fourth-order elliptic problem over scalar functions.

Auricchio et al. [13] used an isogeometric interpolation base on Non-Uniform Rational

B-Splines (NURBS) [66] to obtain a locking-free isogeometric approach for the stream

function formulation. The high continuity across the elements is the key advantage
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of NURBS functions. The solution of the stream function formulation automatically

satisfies the incompressibility constraint, i.e. it is divergence-free by construction.

Another interesting idea in the literature (promoted mainly by Arnold and his

coworkers [11]) is to use an “elasticity complex”, which is similar in form to the

classical de Rham complex. In fact, Eastwood [41] showed that the linear elasticity

complex can be constructed from the de Rham complex. Having a complex for a field

theory, one then defines a discrete analogue of the continuum complex. In the case

of finite element method, this gives the appropriate finite element spaces for different

fields (e.g. displacements and stresses in the case of linear elasticity). This has led to

the discovery of several stable mixed finite elements for linear elasticity [11].

Ciarlet and Ciarlet [36] proposed a new approach for finding the solution of planar

linear elasticity that may be capable of handling near incompressible case as well.

They showed that this problem can be alternatively reformulated as minimization

of an associated Lagrangian over the strain field. They defined their finite element

space over a triangulation of the reference configuration as the space of 2×2 symmetric

matrix fields, which are constant over each triangle of the triangulation, has the same

values for the degrees of freedom at common edges of any two distinct triangles,

and is curl-curl free. This curl-curl free condition plays the role of the compatibility

conditions. Thus, this method enables one to directly obtain the strains and stresses

as they are considered the primal unknowns. Another numerical scheme for dealing

with incompressibility is the finite volume method. Bijelonja et al. [20] developed

a finite volume based method for incompressible linear elasticity using the solution

of the integral form of the governing equations and the introduction of pressure as

an additional variable. Considering several numerical examples, they concluded that

such numerical methods are locking free.

Geometric ideas were first introduced in numerical electromagnetism (see [54] and

references therein). Here the idea is to use some techniques from differential geometry,
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algebraic topology, and discrete exterior calculus to write the governing equations and

constraints in terms of appropriate geometric entities and then look for the solutions

in a proper solution space that satisfies the required constraints. The main advantage

of such methods is that by construction they are free of traditional numerical artifacts

such as loss of energy or momenta. Hirani et al. [63] used discrete exterior calculus

to obtain a numerical method for Darcy flow. They used flux and pressure, which are

considered to be differential forms, as the primal unknowns and then the numerical

method was derived by using the framework provided by discrete exterior calculus

for discretizing differential forms and operators that act on forms. Pavlov et al.

[89] proposed a structure-preserving discretization scheme for incompressible fluids.

Their main idea is that instead of discretizing spatial velocity, one can discretize push-

forward of real-valued functions and the Lie derivative operator. They showed that the

space of discrete push-forwards is the space of orthogonal, signed doubly-stochastic

matrices and the space of discretized Lie derivatives is the space of antisymmetric

null-column matrices. They obtained a discrete in space and continuous in time

version of Euler equations using the Lagrange-d’Alembert principle for their discrete

Lagrangian and then constructed a fully discrete variational integrator by defining a

space-discrete/time-discrete Lagrangian.

The problem with elasticity is that unlike electromagnetism that only requires

differential forms one needs to consider various types of tensors for elasticity. There

have been recent efforts in the literature in geometrizing discrete elasticity. Chao et

al. [33] used geometric ideas to introduce an integrator for nonlinear elasticity. Kanso

et al. [69] used bundle-valued differential forms for geometrization of stress. Assum-

ing the existence of some discrete scalar-valued and vector-valued discrete differential

forms, Yavari [111] presented a discrete theory with ideas for developing a numeri-

cal geometric theory. In this chapter, we introduce a geometric structure-preserving

scheme for linearized incompressible elasticity, see also Angoshtari and Yavari [5].
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First, we review incompressible linear and nonlinear elasticity, their geometries, and

their variational structures. In particular, we derive the governing equations of in-

compressible finite and linearized elasticity using Hamilton’s principle without using

Lagrange multipliers by a direct use of the configuration manifold of incompressible

elasticity and the Hodge decomposition theorem. Then, we review discrete exterior

calculus (DEC) specialized to elasticity applications and study discrete configuration

manifold of 2D incompressible linearized elasticity in detail. We write kinetic and

elastic energies of a discretized linear elastic body in the language of DEC. Using

Hamilton’s principle in the discrete configuration manifold of discrete incompress-

ible linearized elasticity then gives the discrete Euler-Lagrange equations. Finally,

we consider some numerical examples to demonstrate the efficiency and lack of any

volume locking in our geometric scheme.

2.1 Incompressible Elasticity

In this section, we review some basic topics in finite and linearized incompressible

elasticity. In particular, we study their variational structure and show that the gov-

erning equations of incompressible elasticity can be obtained using the variational

principle over the space of volume-preserving deformations.

2.1.1 Incompressible Finite Elasticity

Here, we first review some preliminaries on finite elasticity and then study the varia-

tional structure of incompressible finite elasticity, see [82, 117] for more details. Let

an m-dimensional Riemannian manifold (B,G) with local coordinates {XA} be the

material manifold for an elastic body, i.e., in this manifold the body is stress free.1 We

assume that ambient space is another Riemannian manifold (S,g) of dimension n ≥m

with local coordinates {xa}. Here for the sake of simplicity, we assume that m = n.

1In general, (B,G) is the underlying Riemannian manifold of the material manifold, which is
where the body is stress-free. See [114, 116, 115] for more details.
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We use (., .)G and (., .)g to denote the inner product using the metrics G and g, re-

spectively. Motion is a diffeomorphism ϕ ∶ B×R→ S. If we define ϕt ∶= ϕ(⋅, t) ∶ B → S,
then we note that ϕt(B) ⊂ S is a submanifold of S and hence it inherits the metric

structure of S. Let ϕX ∶= ϕ(X, ⋅) ∶ R → S. Then ϕX(t) specifies a curve in S and so

we can define the following vector field covering ϕt:

V(X, t) = ϕX∗ d
dt
= Tt(ϕX) ⋅ d

dt
=
∂ϕ(X, t)

∂t
, (1)

where the linear mapping TtϕX is the derivative of ϕX at point t and d
dt

is the unit

vector in the tangent space of R at t. This vector field is called material velocity. If

we push forward V, we obtain the spatial velocity v, which is a vector field on ϕt(B)
given by v(x, t) =V(ϕ−1t (x), t). Similarly, one can define the material acceleration A

and the spatial acceleration a as

A(X, t) = ∂V(X, t)
∂t

, a(x, t) =A(ϕ−1t (x), t). (2)

A motion ϕ is called volume preserving if for every nice set U ⊂ B we have

∫
ϕt(U)

dv = ∫
U
dV, (3)

where U is an open set with a piecewise C1 boundary ∂U and dV =
√
detG dX1∧⋯∧

dXn and dv =
√
detg dx1 ∧ ⋯ ∧ dxn are the volume forms of B and S, respectively.

If ϕ(X, t) is a volume-preserving motion then div v = 0 and its Jacobian J(X, t) = 1,
where Jacobin is defined as J =

√
detg/detGdetF, with F = TXϕt. Balance of linear

momentum reads

ρ0A = ρ0B +DivP, (4)

where ρ0 = ρ0(X) denotes mass density of B, B is the body force, and P is the first

Piola-Kirchhoff stress tensor. The right Cauchy-Green deformation tensor is defined

12



as C = FTF = ϕ∗t g. In this work, we consider hyperelastic materials, i.e. we assume

existence of a stored energy function W =W (X,G,F,g) or W =W (X,C). For such
materials we have the following identity

P = ρ0g♯
∂W

∂F
. (5)

In the next section, we study the variational structure of incompressible finite elas-

ticity.

2.1.1.1 Variational Structure of Incompressible Finite Elasticity

Let ∂dB denote the subset of ∂B on which essential boundary conditions are imposed,

i.e., ϕ∣∂d = ϕd, and let ∂τB be the portion of ∂B on which natural boundary conditions

τ = ⟨P,N♭⟩ are imposed, where N is the outward unit vector field normal to ∂B, τ is

the traction vector, and ⟨, ⟩ denotes the natural pairing of a vector and a form, i.e.,

contraction of a covariant index of one tensor with a contravariant index of another

tensor. We define the space of configurations of B to be

C = {ψ ∶ B → S ∣ ψ = ϕd on ∂dB} , (6)

where ϕd denotes the essential boundary condition on ∂dB. One can show that C is

a C∞ infinite-dimensional manifold [44]. A tangent vector to a configuration ψ ∈ C
is the tangent to a curve c ∶ (−ǫ, ǫ) → C with c(0) = ψ, which is a velocity field U

covering ψ and vanishes on ∂dB. Therefore, we have

TC = {(ψ,U) ∣ψ ∈ C,U ∶ B → Tψ(B) &U∣∂dB = 0} . (7)

TC is usually called the space of variations. Let Hs = W s,2 be the Sobolev space

consisting of all mappings ξ ∶ B → S such that ξ and all its derivatives up to order s
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belong to the Hilbert space L2.2 Note that by defining an appropriate inner product

on Hs, it is possible to show that Hs is a Hilbert space [45]. The configuration space

for incompressible elasticity is

Cvol = {ψ ∈ C ∣ J(ψ) = 1} . (8)

Ebin and Marsden [44] showed that if C ⊂Hs then Cvol is a smooth submanifold of C.
The tangent space of Cvol at a configuration ψ ∈ Cvol is

TψCvol = {U ∈ TψC ∣ div (U ○ ψ−1) = 0} . (9)

For unconstrained finite elasticity, the Lagrangian L ∶ TC → R is defined as

L(ϕ,V) =K − V, (10)

where

K(V) = 1

2 ∫B ρ0 (V,V)gdV =
1

2 ∫B ρ0 ∥V∥2gdV,
V (ϕ) = ∫

B
ρ0 W (X,F)dV +∫

B
ρ0 VB(ϕ)dV

+ ∫
∂τB
Vτ (ϕ)dA, (11)

with DϕVτ = −τ and DϕVB = −B, where B(X, t) = b(ϕ(X, t), t) is the material body

force and Dϕ denotes derivative with respect to ϕ. Note that in Euclidian space,

one can consider dead loads as Vτ (ϕ) = −(τ , ϕ)g and VB(ϕ) = −(B, ϕ)g. By setting

δ ∫ T0 Ldt = 0 in the time interval [0, T ], one obtains the Euler-Lagrange equations for
finite elasticity. For unconstrained finite elasticity, the Euler-Lagrange equations are

equivalent to the weak form and the strong form of the governing field equations of

2Recall that ξ ∶ B → Rn belongs to L2 if it is square integrable, i.e., ∥ξ∥2L2 = ∫B ∥ξ∥2dV <∞.
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nonlinear elasticity [82].

For incompressible finite elasticity we require δ ∫ T0 Ldt = 0 over volume-preserving

motions. To solve this problem, one needs to impose the constraint J = 1. This can

be done by directly imposing the constraint into the Lagrangian using the Lagrange

multipliers [86]. An alternative approach, which is more in line with our discretization

philosophy, is to consider the Lagrangian (10) on TCvol instead of TC as follows [82]

(see also [89] for a similar treatment of incompressible perfect fluids). We want to

find a curve ϕt ∈ Cvol on the time interval [0, T ] with ϕ0 = IdB (IdB ∶ B → B is the

identity map) and ϕT = ϕ̃ ∈ Cvol such that

I = δ∫ T

0
L(ϕt)dt = 0. (12)

Let ϕt,s ∈ Cvol be a variation field such that ϕt,0 = ϕt and δϕ = d
ds
∣s=0ϕt,s is a vector

field in TCvol. We consider proper variations, and therefore, ϕ0,s = ϕ0 and ϕT,s = ϕ̃.

Then, (12) is equivalent to

I = ( d
ds
∫ T

0
L(ϕt,s, ϕ̇t,s)dt)

RRRRRRRRRRRs=0 = 0. (13)

We have

L(ϕt,s, ϕ̇t,s) = ∫
B
{1
2
ρ0 (ϕ̇t,s, ϕ̇t,s)g − ρ0W (X,TXϕt,s) − ρ0VB (ϕt,s)}dV

− ∫
∂τB
Vτ (ϕt,s)dA, (14)
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and therefore, using the metric compatibility and symmetry of the Levi-Civita con-

nection [30], we obtain

I = ( d
ds
∫ T

0
L(ϕt,s, ϕ̇t,s)dt)

RRRRRRRRRRRs=0 = ∫
T

0

⎧⎪⎪⎨⎪⎪⎩
d

ds
L(ϕt,s, ϕ̇t,s)

RRRRRRRRRRRs=0
⎫⎪⎪⎬⎪⎪⎭dt

= ∫ T

0

⎧⎪⎪⎨⎪⎪⎩∫B
⎡⎢⎢⎢⎢⎣ρ0(ϕ̇t,∇∂

∂t
δϕ)g − ⟨ρ0∂W

∂F
,∇(δϕ)⟩ + ρ0 (B, δϕ)g

⎤⎥⎥⎥⎥⎦dV
+ ∫

∂τB
(τ , δϕ)g dA

⎫⎪⎪⎬⎪⎪⎭dt, (15)

where the components of the two-point tensor ∇(δϕ) read

(∇(δϕ))aA = (δϕ)a∣A = ∂(δϕ)a
∂XA

+ (δϕ)kγak lF l
A, (16)

with γak l denoting the Christoffel symbols of the coordinate system {xa} on S and

⟨ρ0∂W
∂F

,∇(δϕ)⟩ = ρ0 (∂W
∂F
)
a

A (∇(δϕ))aA. (17)

Because of metric compatibility of the Levi-Civita connection, we have

(ϕ̇t,∇∂
∂t
δϕ)g = d

dt
(ϕ̇t, δϕ)g − (∇∂

∂t
ϕ̇t, δϕ)

g
. (18)

As we consider proper variations, substitution of (18) into (15) yields

I = −∫ T

0

⎧⎪⎪⎨⎪⎪⎩∫B [ρ0(A −B, δϕ)g + ⟨ρ0
∂W

∂F
,∇(δϕ)⟩]dV

− ∫
∂τB
(τ , δϕ)g dA

⎫⎪⎪⎬⎪⎪⎭dt. (19)

The integrand of I is continuous and T is arbitrary, so setting I = 0 results in

∫
B
[ρ0(A −B, δϕ)g + ⟨ρ0∂W

∂F
,∇(δϕ)⟩]dV −∫

∂τB
(τ , δϕ)g dA = 0. (20)
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Equation (20) is called the weak form of the field equations of incompressible finite

elasticity. Now observe that

Div ⟨ρ0∂W
∂F

, δϕ⟩ = ⟨ρ0∂W
∂F

,∇(δϕ)⟩ + ⟨Div (ρ0∂W
∂F
) , δϕ⟩ , (21)

where Div ⟨ρ0 ∂W∂F , δϕ⟩ = [(ρ0 ∂W∂F )aA(δϕ)a]∣A and [Div(ρ0 ∂W∂F )]a = (ρ0 ∂W∂F )a A∣A. Thus, if
N denotes the unit normal vector field on ∂B, using divergence theorem one concludes

that

∫
∂B
(⟨ρ0∂W

∂F
, δϕ⟩ ,N)

G

dA =

∫
B
⟨ρ0∂W

∂F
,∇(δϕ)⟩ dV +∫

B
⟨Div (ρ0∂W

∂F
) , δϕ⟩dV. (22)

We assume that ∂B = ∂dB ∪ ∂τB and ∂dB ∪ ∂τB = ∅, and therefore because δϕ∣∂d = 0,
we obtain

∫
∂B
(⟨ρ0∂W

∂F
, δϕ⟩ ,N)

G

dA = ∫
∂τB
(⟨ρ0∂W

∂F
, δϕ⟩ ,N)

G

dA.

(23)

Note that we have

[Div (ρ0∂W
∂F
)]♯ = Div (ρ0∂W

∂F
)♯ , (24)

with [(ρ0 ∂W∂F )♯]aA = gab (ρ0 ∂W∂F )b A. Substituting (22) and (23) into (20) and using (24)

yields

∫
B
(ρ0A − ρ0B −Div (ρ0∂W

∂F
)♯ , δϕ)

g

dV +

∫
∂τB
(⟨(ρ0∂W

∂F
)♯ ,N♭⟩ − τ , δϕ)

g

dA = 0. (25)

Therefore, our problem has been reduced to finding ϕt ∈ Cvol that satisfies (25) for
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every δϕ ∈ TCvol. Next, we need to use the following lemma.

Lemma 2.1.1. Let ξ be a vector field on a Riemannian manifold (M,g). If for

every vector field w ∈ {z ∶M→ TM∣div z = 0,z∣∂M = 0} we have ∫M(ξ,w)gdv = 0,

then there exists a function p ∶M→ R such that ξ = −div(pg♯).
Proof. Let Ωk(M) denote the set of k-forms onM and assume thatM is a compact

oriented Riemannian manifold with smooth boundary ∂M. The inner product of

k-forms α,β ∈ Ωk(M) is defined as

(α,β)g = ∫
M
α ∧ (∗β) = ∫

M
⟨α,β♯⟩dv, (26)

where ∗ ∶ Ωk(M)→ Ωn−k(M) is the Hodge star operator. The Hodge decomposition

theorem [44, 1] states that Ωk(M) has the following orthogonal decomposition

Ωk(M) = d(Ωk−1 (M))⊕Dk
t (M), (27)

where

d(Ωk−1 (M)) = {α ∈ Ωk (M) ∣ ∃β ∈ Ωk−1 (M) s.t. α = dβ} ,
Dk
t (M) = {α ∈ Ωk

t (M) ∣ δα = 0} , (28)

with d ∶ Ωk(M)→ Ωk+1(M) and δ ∶ Ωk+1(M)→ Ωk(M) denoting the exterior deriva-

tive and codifferential operators, respectively, and

Ωk
t (M) = {α ∈ Ωk (M) ∣ α is tangent to ∂M} . (29)

Note that the k-form α ∈ Ωk (M) is tangent to ∂M if the normal part αn = i∗(∗α)
is zero, where i ∶ ∂M ↪M is the inclusion map [1]3. Thus, if ξ is a vector field on

3Note that if X is a vector field onM, then X is tangent to ∂M if and only if X♭ is tangent to
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M, then the one-form ξ♭ can be written as

ξ♭ = −dp + γ, (30)

where p ∶ M → R is a smooth function, δγ = 0, and γ♯ is parallel to ∂M, i.e.,

γ♯(q) ∈ Tq(∂M) for q ∈ ∂M. Note that div(γ♯) = −δγ = 0, and therefore γ♯ is a

divergence-free vector field parallel to ∂M. Using (30), we can write the assumption

of the lemma as

∫
M
(ξ,w)g dv = ∫

M
(ξ♭,w♭)

g
dv = ∫

M
− (dp,w♭)g dv +∫

M
(γ,w♭)g dv = 0, (31)

for an arbitrary divergence-free vector field w that vanishes on ∂M. Therefore, w

is parallel to ∂M and because the decomposition (27) is orthogonal with respect to

the inner product (26), −(dp,w♭)g is identically zero and hence (31) is equivalent to

(γ,w♭)g = 0, which means that γ = 0 as γ,w♭ ∈D1
t (M). Thus, we obtain

ξ♭ = −dp. (32)

On the other hand, using the identity

∂gab

∂xb
= −gcbγacb − g

acγbcb, (33)

one can write

(pgab)∣b = gab ∂p
∂xb
+ p(∂gab

∂xb
+ gcbγacb + g

acγbcb) = gab ∂p∂xb , (34)

∂M [1].
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or equivalently

div(pg♯) = (dp)♯. (35)

Substituting (35) into (32) yields ξ = −div(pg♯). This completes the proof.

Now returning to (25), we note that δϕ is arbitrary and, in particular, it can

vanish on the boundary. Hence, the first integral on the left hand side of (25) should

vanish. Now by using Lemma 2.1.1, we conclude that

ρ0A − ρ0B −Div (ρ0∂W
∂F
)♯ = −div(pg♯), (36)

where the time-dependent function p ∶ ϕt(B) × R → R is the pressure field. By

defining the material pressure field p0(X, t) ∶= ϕ∗t p(X) = p(ϕt(X), t), and noting that

the Jacobian of ϕt is unity, we can use the Piola identity [82] to write

div(pg♯) = Div (p0 (F−1)♯) , (37)

where (F−1)♯ is the tensor with components (F−1)aA. Substituting (37) into (36)

yields

ρ0A = ρ0B +Div [(ρ0∂W
∂F
)♯ − p0 (F−1)♯] , (38)

which are the governing equations of incompressible finite elasticity. Substituting

(38) back into (25) and using the divergence theorem results in the natural boundary

condition

τ ∣∂τB = ⟨(ρ0∂W∂F )
♯

− p0 (F−1)♯ ,N♭⟩ . (39)

Note that p is similar to pressure for perfect fluids and can be considered as the force

of the constraint [82]. Also (38) implies that the first Piola-Kirchhoff stress tensor

can be written as P = (ρ0 ∂W∂F )♯ − p0 (F−1)♯.
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2.1.2 Incompressible Linearized Elasticity

In this section we first review some preliminary concepts in linearized elasticity and

then study the variational structure of incompressible linearized elasticity formulated

on a Riemannian manifold. Here we do not use Lagrange multipliers to enforce the

incompressibility constraint. Instead, we confine the displacement field to the set of

divergence-free vector fields; motion of an incompressible elastic body extremizes the

action function in this space.

Linear elasticity can be considered as the linearization of finite elasticity with re-

spect to a reference motion [82, 118]. The linearized Jacobian about the configuration

o
ϕ reads [82]

Lo
ϕ
(U) = o

J +
o

J [(divu) ○ oϕ] , (40)

where u = U ○
o
ϕ
−1

and
o

J is the Jacobian of
o
ϕ. For an incompressible motion, we

have J = 1, and by choosing
o
ϕ to be the identity map IdB, we obtain 1 = J(x) ≈

J(IdB) + J(IdB)divu, which yields

DivU = divu = 0. (41)

Note that (41) is the first-order incompressibility condition, i.e., the incompressibility

condition is satisfied up to the first order using (41). Let u = uaea be the displacement

field. The linearized strain tensor is e = 1
2
Lug with components eab = 1

2
(ua∣b + ub∣a).

Balance of linear momentum for an isotropic material reads

ρü = ρb + div(2µe♯ + λ(tre)g♯) in B, (42)

or in components

ρüa = ρba + (2µeab + λuc∣c gab)∣b in B, (43)
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where µ and λ are Lamé constants with

λ =
Eν

(1 + ν)(1 − 2ν) , µ =
E

2(1 + ν) . (44)

2.1.2.1 Variational Structure of Incompressible Linearized Elasticity

Let us recall that the stored energy per unit volume, E of an isotropic linear elastic

solid can be written as

E = µ⟨e♯,e⟩ + λ
2
(tre)2 = µeabeab + λ(eaa)2. (45)

Because of metric compatibility of the Levi-Civita connection, we have (∇u)♭ = ∇u♭,
or equivalently, gac(uc∣b) = ua∣b, where∇ denotes the Levi-Civita connection of gab. The

incompressibility condition reads divu = ua∣a = 0. Therefore, for an incompressible

motion we can write

eaa =
1

2
gab (ua∣b + ub∣a) = 1

2
gab (gcauc∣b + gcbuc∣a)

=
1

2
(δbcuc∣b + δacuc∣a) = ua∣a = 0. (46)

Thus, the stored energy per unit volume of an incompressible linear elastic body reads

E = µ⟨e♯,e⟩ = µeabeab. (47)

The Cauchy stress tensor of an isotropic linear elastic body can be written as

σ♭ = 2µe + λ(tre)g. (48)

Also we have [82]

divu =
trσ

3k
, (49)
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where k = (3λ + 2µ)/3. If ν → 1/2, then from (44) we see that k → ∞ and hence

divu → 0, i.e., when ν = 1/2 any motion is incompressible. However, the converse

is not necessarily true because if trσ = 0 then motion is incompressible for any ν.

For example, let x and y be the usual Euclidian coordinate system and consider an

elastic planar sheet under uniform tension in the x-direction and uniform compression

of the same magnitude in the y-direction. Then, trace of stress vanishes and this sheet

undergoes an incompressible (linearized) motion regardless of the value of its Poisson’s

ratio.

Remark. Note that if ν = 1/2, then the elasticity tensor is neither pointwise stable

nor strongly elliptic [82], which leads to coercivity loss in the weak formulation of the

problem [45]. This means that the problem is no longer well posed and this is usually

called locking. In this case, usually mixed finite element formulations, i.e., approx-

imating displacement and pressure in different finite element spaces, or constrained

finite element formulations are used to obtain well-posed weak forms.

The Lagrangian of a linear incompressible isotropic body is written as L =K −V ,

where

K =
1

2 ∫B ρ(u̇, u̇)gdv,
V = ∫

B
µeabeabdv −∫

B
ρ(b,u)gdv −∫

∂τB
(τ ,u)gda,

(50)

with ∂B = ∂dB∪∂τB, where ∂dB and ∂τB denote the portions of the boundary on which

displacements and traction are specified, respectively. Let B and ∂B be compact

orientable Riemannian manifolds (we assume that the orientation of ∂B is induced
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from that of B) and consider the following sets of diffeomorphisms

D = {ψ ∶ B → B∣ψ is diffeomorphism} ,

Dvol = {ψ ∈ D∣ψ is volume preserving} ,

Dq = {ψ ∈ D∣ψ(q) = q for all q ∈ ∂B} ,
Dvol,q = Dvol ∩Dq,

(51)

and the following sets of vector fields

V = {w ∶ B → TB∣w(q) ∈ Tq(∂B) for all q ∈ ∂B} ,
Ū = {w ∈V∣divw = 0} ,

V0 = {w ∈V∣w∣∂B = 0} ,

U0 = {w ∈V∣divw = 0,w∣∂B = 0} ,

U = {w ∶ B → TB∣divw = 0,w∣∂dB = 0} .

(52)

Then D, Dvol, Dq, and Dvol,q are infinite-dimensional Lie groups (under composition)

with infinite-dimensional Lie algebras V, Ū, V0, and U0, respectively [44]. In fact,

Dvol and Dq are submanifolds (Lie subgroups) of D and Dvol,q is a submanifold (Lie

subgroup) of Dq. Also, we have U0 ⊂ U and U is the tangent space of Cvol defined in

(8) at the identity map [82], and thus it is an infinite-dimensional manifold and u(t)

is a curve in U. For an arbitrary w ∈ U, let hs(t) = u(t) + sw(t) be the variational

field for u(t)4. The Lagrangian for the variation field reads

L(s) =
1

2 ∫B ρ(u̇ + sẇ, u̇ + sẇ)gdv
−∫

B
µ⟨e♯ + se♯w,e + sew⟩dv +∫

B
ρ(b,u + sw)gdv +∫

∂τB
(τ ,u + sw)gda, (53)

4This choice of the variation field is simpler to work with. The general form of the variation field
is a one-parameter family of curves hs(t) = ψ(s, t), with ψ(0, t) = u(t) and δu = d/ds (ψ(s, t)) ∣s=0,
which yields the same result as the above choice.
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where the components of the tensor ew = 1
2
Lwg are given by

(ew)ab = 1

2
(wa∣b +wb∣a). (54)

The true motion of a linear incompressible elastic solid satisfies δ ∫ T0 Ldt = 0 over U,

i.e.

δ∫ T

0
Ldt =

d

ds
(∫ T

0
Ldt) RRRRRRRRRRRs=0

= ∫ T

0

⎧⎪⎪
⎨
⎪⎪⎩
∫
B
[ρ(u̇, ẇ)g + ρ(b,w)g − 2µeab(ew)ab]dv +∫

∂τB
(τ ,w)gda

⎫⎪⎪
⎬
⎪⎪⎭
dt

= −∫ T

0

⎧⎪⎪
⎨
⎪⎪⎩
∫
B
[ρ(ü − b,w)g + 2µeab(ew)ab]dv −∫

∂τB
(τ ,w)gda

⎫⎪⎪
⎬
⎪⎪⎭
dt

+(u̇,w)g∣
T

0
= 0. (55)

As we consider proper variations, i.e., w(0) = w(T ) = 0, and the integrand of the

time integral is continuous, we obtain the following weak form for the linearized

incompressible motion

∫
B
[ρ(ü − b,w)g + 2µeab(ew)ab]dv −∫

∂τB
(τ ,w)gda = 0. (56)

Next, we use the following relation that can be verified by direct substitution:

div⟨2µe♯,w♭⟩ = 2µ⟨e♯,ew⟩ + ⟨div(2µe♯),w♭⟩. (57)

Using (57) and the divergence theorem and because w∣∂dB = 0, we obtain

∫
∂τB
(⟨2µe♯,w♭⟩,n)gda = ∫

∂B
(⟨2µe♯,w♭⟩,n)gda

= ∫
B
2µ⟨e♯,ew⟩dv +∫

B
(div(2µe♯),w)g dv, (58)
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where n is the unit outward normal vector field for ∂B. In components this reads

∫
∂τB

2µeabwbnada = ∫
B
2µeab(ew)abdv +∫

B
(2µeab)∣awbdv. (59)

Substituting (58) into (56) yields

∫
B
(ρü − ρb − div(2µe♯),w)gdv +∫

∂B
(⟨2µe♯,n♭⟩ − τ ,w)gda = 0. (60)

Suppose w ∈ U0 ⊂ U, then the second term on the left hand side of (60) is identically

zero and hence by Lemma 2.1.1, we obtain

ρü = ρb + div(2µe♯ − pg♯) in B, (61)

where the time-dependent function p ∶ B ×R → R is the pressure field. Substituting

(61) back into (60) results in

−∫
B
(div(pg♯),w)g dv +∫

∂B
(⟨2µe♯,n♭⟩ − τ ,w)gda = 0. (62)

Using the relation

div(pg♯,w)g = p divw + (div(pg♯),w)g, (63)

and noting that w is divergence free, we can use the divergence theorem to write

∫
B
(div(pg♯),w)g dv = ∫

B
div(pg♯,w)gdv

= ∫
∂B
(⟨pg♯,w♭⟩,n)gda = ∫

∂B
(⟨pg♯,n♭⟩,w)gda. (64)

Substitution of (64) into (62) yields

∫
∂B
(⟨2µe♯ − pg♯,n♭⟩ − τ ,w)gda = 0. (65)
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Since w∣∂B is an arbitrary vector field on ∂B that vanishes on ∂dB, (65) implies that

τ = ⟨2µe♯ − pg♯,n♭⟩ on ∂τB. (66)

Equations (61) and (66) are the governing equations and the natural boundary con-

ditions for incompressible linearized elasticity, respectively. In components they read

ρüa = ρba + (2µeab − p gab)∣b in B, (67)

τ a = 2µeabnb − p g
abnb on ∂τB. (68)

Remark. We observed that the case ν = 1/2 corresponds to an incompressible motion,

and therefore it satisfies the governing equations of incompressible elasticity. On the

other hand, we know that ν = 1/2 should satisfy equation (42) as well. But there is

no pressure in the compressible equations and one may wonder how the compressible

and incompressible governing equations can be reconciled for this special case. Let

ν → 1/2. Then, from (49) we see that divu→ 0, and using (48) and (46) we conclude

that

trσ = 2µ tre + 3λ tre→ 3λ tre. (69)

Equivalently, by assuming that trσ is bounded and defining p = −trσ/3, we can write

λ tre→ −p. (70)

Substituting (70) into (48) and (42) results in the balance of linear momentum for

incompressible linearized elasticity. Therefore, we have shown that balance of linear

momentum for compressible and incompressible linearized elasticity are the same for

ν = 1/2.
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Remark. The solution space for incompressible fluids is similar to that of incom-

pressible linearized elasticity. Consider the motion of an incompressible fluid in

a Riemannian manifold M. The spatial velocity of the fluid, v, lies in the set

F = {w ∶M→ TM∣divw = 0 and w(q) ∈ Tq(∂M) ∀q ∈ ∂M}, which is similar to U.

The variation of the spatial velocity of an incompressible fluid δv satisfies the so-called

Lin constraint [83, 89], i.e., δv = ξ̇ + [v,ξ], where ξ is an arbitrary divergence-free

vector field that vanishes at initial and final times, dot denotes derivative with respect

to time, and [, ] is the usual bracket of vector fields (Lie bracket).

2.2 Discrete Exterior Calculus

The idea of discrete exterior calculus (DEC) is to define discrete versions of the smooth

operators of exterior calculus such that some important theorems, e.g. the generalized

Stokes’ theorem and the naturality with respect to pull-backs remain valid. However,

the convergence of these discrete operators to their smooth counterparts and, in

particular, the correct topology to investigate such convergence is still vague and

needs more work [61]. For an introductory discussion on the connections between

DEC and other structure-preserving schemes such as finite element exterior calculus

and mimetic methods, see [60] and references therein. In this section we review some

topics from DEC. First, we need to review some concepts from algebraic topology

and for this we mainly follow [85].

2.2.1 Primal Meshes

Let {v0, . . . , vk} be a geometrically independent set in RN , i.e., {v1 − v0, . . . , vk − v0}
is a set of linearly independent vectors in RN . The k-simplex σk is defined as

σk = {x ∈ RN ∣x = k∑
i=0

tiai, where 0 ≤ ti ≤ 1,
k∑
i=0

ti = 1} . (71)
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The numbers ti are uniquely determined by x and are called barycentric coordinates

of the point x of σ with respect to vertices v0, . . . , vk. The number k is the dimension

of σk. Any simplex σl spanned by a subset of vertices {v0, . . . , vk} is called a face of

σk and σl ≺ σk or σk ≻ σl means that σl is a face of σk.

A simplical complex K in RN is a collection of simplices in RN such that (i) every

face of a simplex of K is in K and (ii) the intersection of any two simplices is either

empty or a face of each of them. The largest dimension of the simplices of K is

called the dimension of K. Fig. 1 shows a 2-dimensional simplical complex with ●

representing its vertices and the solid lines representing its 1-simplices. A subcomplex

of K is a subcollection of K that contains all faces of its elements. The collection of

all simplices of K of dimension at most p is called the p-skeleton of K and is denoted

by K(p). The subset of RN that is the union of the simplices of K is denoted by

∣K ∣ and is called the underlying space or the polytope of K. The topology on ∣K ∣ is
considered to be the usual subspace topology induced from the ambient space RN . A

flat simplical complex K of dimension n in RN has all its simplices in the same affine

n-space of RN , i.e., ∣K ∣ is a subset of an n-dimensional subset of RN that has zero

curvature. Here we assume that all simplical complexes are flat.

A triangulation of a topological space X is a simplical complex K with a homeo-

morphism h ∶ ∣K ∣ → X . A differentiable manifold always admits a triangulation [84].

Roughly speaking, triangulation of a differential manifoldM ⊂ RN can be considered

as a complex M = h(K) that covers M and its cells, which in general, have curved

faces. A triangulation of the polytope ∣K ∣ is defined to be any simplical complex L

such that ∣L∣ = ∣K ∣.
Any ordering of the vertices of σk defines an orientation for σk. We denote the

oriented simplex σk by [v0, . . . , vk]. Two orderings of a simplex σk are equivalent if

one is an even permutation of the other. By definition, a zero simplex has only one

orientation. One can see that for 1 ≤ k ≤ N , σk can have two different orientations.
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Figure 1: A primal 2-dimensional simplical complex (solid lines) and its dual (dashed
lines). The primal vertices are denoted by ● and the dual vertices by ○. The circum-
center c([i, j, k]) is denoted by cijk, etc. The highlighted areas denote the support

volumes of the corresponding simplices, for example, [i, k] is the support volume of
the 1-simplex [i, k]. Note that the support volume of the primal vertex j coincides

with its dual [j] and support volume of the primal 2-simplex [l,m,n] coincides with
itself.

The equivalence class of the particular ordering is denoted by (v0, . . . , vk). Note that
the orientation of σk induces an orientation on the (k − 1)-faces of σk defined by

σk−1 = (−1)i[v0, . . . , v̂i, . . . , vk], where v̂i means omit the ith vertex. The ordered

collection of vectors (v1 − v0, v2 − v0, . . . , vk − v0) is called a corner basis at v0. The

span of this basis is called the plane of σk and is denoted by P (σk). The orientation

of two oriented simplices σ and τ that have the same dimension can be compared if

and only if either they have the same plane or they share a face of dimension k − 1.

If P (σk) = P (τ k), then σk and τ k have the same orientation if and only if their

corner basis orient their plane identically. If σk and τ k have a common k − 1 face,

then they have the same orientation if and only if the induced orientation by σk on

the common face is opposite to that induced by τ k. If two simplices have the same

orientations, we write sgn(σk, τ k) = +1, and if they have opposite orientations we

write sgn(σk, τ k) = −1. If two simplices have different dimensions, their orientations

can not be compared.

A manifold-like simplical complex K of dimension n is a simplical complex such
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that ∣K ∣ is a topological manifold (possibly with boundary) and each simplex of

dimension k with 0 ≤ k ≤ n − 1 is a face of an n-simplex in the simplical complex.

A manifold-like simplical complex of dimension n is called an oriented manifold-

like simplical complex if adjacent n-simplices have the same orientations (orient the

common (n − 1)-face oppositely) and simplices of dimensions n − 1 and lower are

oriented individually. In this work, by the primal mesh we mean a manifold-like

oriented simplical complex.

2.2.2 Dual Meshes

Dual complexes have an important rule in many computational fields. The two most

common dual complexes are circumcentric and barycentric dual complexes. The

barycentric dual has the nice property that it can be defined for any simplical complex

but the circumcentric dual is well-defined only for well-centered simplical complexes.5

This means that in problems for which one needs to consider a simplical complex that

evolves in time, e.g. finite elasticity, circumcentric dual may not be appropriate. On

the other hand, the metric-dependent DEC operators have simpler forms in circum-

centric duals [61]. The discretization method that we describe in this paper does not

depend on the specific choice of a dual complex as far as a consistent DEC theory is

available for that choice of the dual complex. Here we consider circumcentric duals

in order to present our method using simpler formulas. Note also that we consider

linearized elasticity and hence we are working with a fixed mesh.

The circumcenter of a k-simplex σk is the unique point c(σk) that has the same

distance from all the k + 1 vertices of σk. If c(σk) lies in the interior of σk, then σk

is called a well-centered simplex. A well-centered simplical complex is a simplical

complex such that all its simplices (of all dimensions) are well-centered. For example,

a planar mesh is well-centered if all of its 2-cells are acute triangles [104]. The

5Recently, Hirani et al. [62] introduced the notion of signed duals that allows one to work with
meshes that are not well-centered as well.

31



(circumcenteric) dual complex for an n-dimensional well-centered simplical complex

K is a cell complex ⋆K with cells σ̂ defined by the duality operator ⋆ as follows:

given a k-simplex σk in K, the duality operator gives an (n − k)-cell of ⋆K as

σ̂n−k = ⋆σk = ∑
σk≺σk+1≺...≺σn

ǫ(σk, σk+1, . . . , σn)[c(σk), c(σk+1), . . . , c(σn)], (72)

where the coefficients ǫ(σk, σk+1, . . . , σn) are introduced to glue elements with con-

sistent orientations. Sometimes it is possible to define notions similar to those of a

simplical complex for a dual cell. For example, the dual p-skeleton of K is the union

of the cells of dimension at most p of ⋆K and is denoted by K(p). Fig. 1 shows

a 2-dimensional simplical complex (solid lines) together with its dual (dashed lines)

where ● and ○ denote primal and dual vertices, respectively. Note that dual of a

primal vertex is a dual 2-cell, dual of a primal 1-simplex is a dual 1-simplex, and dual

of a primal 2-simplex is a dual vertex. For example, denoting c([i, j, k]) by cijk, etc.,
the dual of the primal 1-simplex [i, k] is either [cijk, coik] or [coik, cijk] depending on

the orientation of the primal mesh.

The support volume σk of a k-simplex σk in an n-dimensional complex K is the

n-dimensional convex hull of the geometric union of σk and ⋆σk, or equivalently

σk = ⋆σk = convex hull(σk,⋆σk) ∩ ∣K ∣. (73)

Support volumes of various simplices of a 2-dimensional mesh are shown in Fig. 1,

where highlighted regions denote the support volumes.

Now we discuss how to orient a dual cell. This is important in the subsequent

work. Suppose K is a well-centered n-dimensional primal mesh with the dual ⋆K and

we want to obtain the orientations of the simplices of the dual cell σ̂k that are induced

from the orientation of the primal mesh. First we consider the case 1 ≤ k ≤ n− 1. Let

σ0, σ1, . . . , σn be primal simplices with σ0 ≺ σ1 ≺ . . . ≺ σn and let the orientation of
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243

Figure 2: Oriented meshes: (a) primal mesh and (b) associated circumcentric dual
mesh. The primal vertices are denoted by ● and the dual vertices by ○. The circum-
center c([1,2,3]) is denoted by c123, etc.

elementary dual simplices be s[c(σk), . . . , c(σn)], where s = ±1, and the value of s is

to be determined. As we mentioned earlier, orientations of σk and [c(σ0), . . . , c(σk)]
can be compared as they have the same planes. Similarly, one can compare the

orientations of σn and [c(σ0), . . . , c(σn)]. Now let us define

s = sgn([c(σ0), . . . , c(σk)], σk) × sgn([c(σ0), . . . , c(σn)], σn). (74)

If k = n, then the dimension of the dual is 0 and hence it can have only one orientation

by definition. For k = 0 we define s = sgn([c(σ0), . . . , c(σn)], σn). Thus, we note that

unlike the primal mesh for which the orientations of the simplices with dimensions

less than n are arbitrary, the orientation of none of the simplices of the dual mesh

is arbitrary; the dual orientations are induced by the orientation of the primal mesh.

The correct orientation of the dual cell is important when we deal with discrete dual

forms. In this work by a dual mesh we mean the oriented dual of a well-centered

primal mesh. We clarify the previous definitions in the following simple example.

Example 2.2.1. (Orienting a 2-dimensional Dual Mesh). Consider the 2-dimensional

primal mesh and its circumcentric dual shown in Figs. 2(a) and (b), respectively. The

primal mesh is oriented and we want to obtain the induced orientation of the dual

mesh. By definition, orientation of 2-simplices of the dual mesh are the same as
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those of primal 2-simplices and thus the correct orientation of the dual 2-simplices

is counterclockwise. Now consider the dual 1-simplices. As an example, we obtain

the orientation of ⋆[3,2], which consists of two elementary 1-simplices with vertices

{c123, c32} and {c243, c32}. The orientation of these elementary simplices is s1[c32, c123]
and s2[c32, c243], respectively, where

s1 = sgn([2, c32], [3,2]) × sgn([2, c32, c123], [1,2,3]) = (−1) × (+1) = −1,
s2 = sgn([2, c32], [3,2]) × sgn([2, c32, c243], [2,4,3]) = (−1) × (−1) = +1. (75)

Thus, the correct orientation of ⋆[3,2] is [c123, c243]. Note that to orient a dual

simplex, one needs to orient its elementary duals individually and if the primal mesh

is correctly oriented, then these elementary duals will have the same orientations.

Similarly, one can obtain the orientations of the other simplices of the dual mesh as

is shown in Fig. 2(b). Note that there is an easy rule for orienting dual 1-simplices in

R2: consider a 1-dimensional face of a primal 2-simplex. If the orientation induced

on that face by the orientation of the 2-simplex is the same as the orientation of that

face then the direction of the dual of that face points into the 2-simplex, otherwise it

points out of the 2-simplex.

2.2.3 Discrete Vector Fields

As will be explained in the next section, we choose the displacement vector field as

our main unknown in incompressible linearized elasticity. Thus, we need to introduce

the concept of discrete vector fields on a flat simplical mesh. Here, there are at least

two possibilities: primal and dual vector fields as follows.

A primal discrete vector field X on an n-dimensional primal mesh K is a map

from primal vertices K(0) to Rn. The space of primal vector fields is denoted by

Xd(K). One can assume that the value of the primal vector field is constant on each

of the n-cells of ⋆K. A dual discrete vector field X on the dual of an n-dimensional
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Figure 3: A primal vector field (arrows on primal vertices ●) and a dual vector field
(arrows on dual vertices ○) on a 2-dimensional mesh. The solid and dashed lines
denote the primal and dual meshes, respectively.

Figure 4: Examples of forms on a 2-dimensional primal mesh (solid lines) and its
dual mesh (dashed lines): (a) primal and dual 0-forms, which are real numbers on
primal and dual vertices, (b) primal and dual 1-forms, which are real numbers on
primal and dual 1-simplices, and (c) primal and dual 2-forms, which are real numbers
on primal and dual 2-simplices, respectively.

primal mesh K is a map from dual vertices K(0) to Rn. The space of dual vector

fields is denoted by Xd(⋆K). One can assume that the value of the dual vector field

is constant on each of the n-cells of K. In Fig. 3, for a 2-dimensional mesh, primal

and dual vectors are denoted by arrows on primal vertices ● and dual vertices ○,

respectively.

2.2.4 Primal and Dual Discrete Forms

In the smooth case, a k-form on an n-manifold N is an antisymmetric covariant tensor

of order k and the set of k-forms on N is denoted by Ωk(N ). Now we define primal

and dual discrete k-forms. We need the notion of chains and cochains as follows. A

35



k-chain on a simplical complex K is a function ck from the set of oriented k-simplices

of K to the integers such that (i) ck(−σk) = −ck(σk), and (ii) c(σ) = 0 for all but

finitely many oriented k-simplices σ. If we add k-chains by adding their values, we

obtain the group of (oriented) k-chains of K, which is denoted by Ck(K). If k < 0 or

k > dimK, Ck(K) is defined to be the trivial group. For an oriented simplex σk, the

elementary chain c corresponding to σk is the function defined as

c(τ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, τ = σk,

−1, τ = −σk,

0, otherwise.

(76)

In the following the symbol σk denotes not only an oriented simplex but also the

elementary k-chain c corresponding to σk. The meaning is always clear from the

context. It can be shown that Ck(K) is free Abelian, i.e., a basis for Ck(K) can be

obtained by orienting each k-simplex and using the corresponding elementary chains

as a basis. A k-cochain ck is a homomorphism from the chain group Ck(K) to R. The

space of k-cochains is denoted by Ck(K) = Hom(Ck(K),R). A primal discrete k-form

is a k-cochain and the space of discrete k-forms on K is denoted by Ωk
d(K) = Ck(K).

Similarly, one can define the space of dual discrete k-forms on ⋆K, which is denoted

by Ωk
d(⋆K). For a k-chain ck ∈ Ck(K) and a k-form αk ∈ Ωk

d(K), we denote the

value of αk at ck by ⟨αk, ck⟩ = αk(ck). Since Ck(K) is a free Abelian group, we have

ck = ∑i ĉikσki , where ĉik = ck(σki ) ∈ Z, and summation is over all k-simplices of K. The

k-form αk is a linear function of chains, and thus we have

⟨αk, ck⟩ = αk (∑
i

ĉikσ
k
i ) =∑

i

ĉikαi, (77)

where the coefficients αi = αk(σki ) ∈ R are called the components of the k-form. Thus,

one can specify any k-form by a set of real numbers on k-simplices. Similarly, one
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can define a dual k-form. Fig. 4 shows examples of primal and dual 0, 1, and 2-forms

on a 2-dimensional mesh.

2.2.5 Discrete Operators

One of the main goals of this work is to find an appropriate discrete space for displace-

ment field of incompressible linear elasticity, i.e., the discrete space of divergence-free

vector fields. Here, we define the discrete divergence using discrete exterior derivative,

discrete Hodge star, and discrete flat operator.

Exterior derivative. The discrete exterior derivative is defined as the coboundary

operator as follows. A boundary operator ∂k ∶ Ck(K)→ Ck−1(K) is a homomorphism

defined on each oriented simplex σk = [v0, . . . , vk] as

∂kσ
k = ∂k[v0, . . . , vk] = k∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk]. (78)

The coboundary operator δk ∶ Ck(K)→ Ck+1(K) is defined as

⟨δkck, ck+1⟩ = ⟨ck, ∂k+1ck+1⟩. (79)

Using the above definitions, one can show that ∂k ○ ∂k+1 = 0 and δk+1 ○ δk = 0. The

sequence

0→ Cn(K) ∂n→ ⋯ ∂k+1→ Ck(K) ∂k→ ⋯ ∂1→ C0(K)→ 0, (80)

is called the chain complex induced by the boundary operator. Similarly, the sequence

0← Cn(K) δn−1← ⋯ δk← Ck(K) δk−1← ⋯ δ0← C0(K)← 0, (81)

is called the cochain complex induced by the coboundary operator. The discrete ex-

terior derivative d ∶ Ωk
d(K) → Ωk+1

d (K) is defined to be the coboundary operator δk.
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It follows that dk+1 ○dk = 0. Similarly, one can define discrete exterior derivative over

a dual mesh. Let K be an n-dimensional primal mesh. Then, the dual boundary op-

erator ∂k ∶ Ck(⋆K)→ Ck−1(⋆K) on each oriented dual simplex ⋆σn−k = ⋆[v0, . . . , vn−k]
is defined as

∂k ⋆ [v0, . . . , vn−k] = ∑
σn−k+1≻σn−k

sσn−k+1 ⋆ σn−k+1, (82)

where sσn−k+1 = ±1. If 0 ≤ k ≤ n − 1, sσn−k+1 is chosen such that sσn−k+1σn−k+1 induces

the same orientation on σn−k as its original orientation. For k = n, sσ1 is chosen such

that the orientation of sσ1 ⋆ σ1 is the same as that induced by ⋆σ0 on its geometric

boundary. Note that unlike the primal boundary, the dual boundary of a dual cell

is not necessarily the same as its geometric boundary. For example, in Fig. 2 the

dual boundary of ⋆σ0
2 is [c24, c243]+ [c243, c123]+ [c123, c12], which is different from the

geometric boundary of ⋆σ0
2.

The dual discrete exterior derivate d ∶ Ωk
d(⋆K) → Ωk+1

d (⋆K) is defined to be the

dual coboundary operator defined similar to (79) by using dual boundary operator.

There is a major difference between the dual discrete exterior derivative and the

primal one as we explain next. Consider primal and dual zero-forms on the planar

mesh shown in Fig. 5. Let {f 1, . . . , f 4} and {f 123, f 243} be the values of 0-forms

on primal and dual vertices, respectively. The value of df on the primal and dual

1-simplices are shown in Fig. 5(a) and (b), respectively. In the continuous case,

we have d(f + a) = df , where a is a real constant. The same is true for a primal

0-form as the value of df is the differences of values at the end points of each primal

1-simplex. But the value of df for dual 1-simplices with one end on the boundary

is not the difference of the values at their end points and thus, for a dual 0-form we

have d(f + a) ≠ df . As a consequence, the discrete Laplace-Beltrami operator on

dual 0-forms is bijective.
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Figure 5: The discrete 1-forms df obtained from (a) primal and (b) dual 0-form
f . The sets {f 1, f 2, f 3, f 4} and {f 123, f 243} are the sets of values of primal and dual
0-forms, respectively. Note that f 123 is the value of f at c([1,2,3]), etc.
Hodge Star. Recall that in the smooth case, the Hodge star operator ∗ ∶ Ωk(N )→
Ωn−k(N ) for a smooth n-manifold N , is uniquely defined by the identity [1]

α ∧ ∗β = ⟨α,β♯⟩µ, (83)

where α,β are k-forms and µ is the volume form for N . For an n-dimensional mesh,

the discrete Hodge star is defined as follows. Suppose 1 ≤ k ≤ n − 1, then the discrete

Hodge star operator is a map ∗ ∶ Ωk
d(K) → Ωn−k

d (⋆K) that for a k-simplex σk and a

discrete k-form α, satisfies the identity

1∣ ⋆ σk∣ ⟨∗α,⋆σk⟩ = 1∣σk∣ ⟨α, σk⟩, (84)

where ∣σk∣ and ∣ ⋆ σk∣ denote the volumes of σk and ⋆σk, respectively. Thus, one

can obtain the components of the (n − k)-form ∗α using the above relation, which

uniquely determines ∗α. Note that the left and right-hand sides of (84) depend on

the orientations of the dual and primal meshes, respectively. But as the primal and

dual vertices have only one orientation, by definition, for the cases k = 0 and k = n

one side of (84) will be independent of the orientation while the other side changes

sign by changing the orientation. Thus, we need to modify the above definition for
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these cases. For k = 0 we define

1

s∣ ⋆ σ0∣ ⟨∗α,⋆σ0⟩ = 1∣σ0∣ ⟨α, σ0⟩, (85)

where we assume the volume of a primal or dual vertex to be +1, i.e., ∣σ0∣ ∶= 1, and
s = (−1)n−1sgn(∂(⋆σ0),⋆σ1), where an edge σ1 ≻ σ0 pointing away from σ0 and ∂(⋆σ0)
has the orientation induced by ⋆σ0. Thus, if the dual of an outgoing 1-simplex has

the same orientation as the orientation induced by ⋆σ0, then s = (−1)n−1, otherwise
s = (−1)n. Similarly, if k = n we define

1∣ ⋆ σn∣ ⟨∗α,⋆σn⟩ = 1

s∣σn∣ ⟨α, σn⟩, (86)

where the value of s is determined as follows. Consider the induced orientation of σn

on an edge σn−1 ≺ σn. If ⋆σn−1 points away from ⋆σn, then s = (−1)n−1, otherwise
s = (−1)n. Note that the above relations can be used to define the discrete Hodge

star as a map ∗ ∶ Ωk
d(⋆K)→ Ωn−k

d (K).
Flat Operator. One can define different flat operators, for example, a flat operator

that associates a dual 1-form to a primal vector field or a primal 1-form to a dual vector

field. Here, we need the former case. Note that [61] denotes this type of flat operator

by ♭pdd. The discrete flat operator on a primal vector field, ♭ ∶ Xd(K) → Ω1
d(⋆K) is

defined by its operation on dual elementary chains: given a primal vector field X and

a primal (n − 1)-simplex σn−1, we define

⟨X♭,⋆σn−1⟩ = ∑
σ0≺σn−1

X(σ0) ⋅ (⋆σn−1), (87)

where ⋆σn−1 is the vector corresponding to ⋆σn−1, i.e., it has the length ∣ ⋆ σn−1∣ in
the direction of ⋆σn−1, and “⋅” is the usual inner product of Rn. Using this definition
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of flat operator, the primal discrete divergence theorem holds automatically. Also

note that discrete flat operator is neither surjective nor injective, see [61] for more

discussions.

Divergence. For vector fields on smooth manifolds the following relation holds [1]

divX = −δX♭ = ∗d ∗X♭, (88)

where δ ∶ Ωk+1(N ) → Ωk(N ) is the codifferential operator. Since we have already

defined the discrete flat operator, discrete Hodge star, and discrete exterior derivative,

we can directly use (88) as the definition of the discrete divergence as follows. Let X

be a primal vector field, then the discrete divergence divX is the dual 0-form given

by

⟨divX,⋆σn⟩ = ∗d ∗X♭. (89)

Then, the following divergence theorem holds on a primal mesh, which can be proved

by a direct calculation, see Lemma 6.1.6 of [61].

Divergence Theorem on a Primal Mesh. Let K be an n-dimensional primal

mesh and σ0 be one of its primal vertices. Let X be a primal vector field on the mesh.

Then

∣σn∣⟨divX,⋆σn⟩ = ∑
σn−1≺σn

sn−1∣σn−1∣ ( ∑
σ0≺σn−1

X(σ0)) ⋅ ⋆σn−1∣ ⋆ σn−1∣ , (90)

where sn−1 = +1 if the orientation of σn is such that the dual edges ⋆σn−1 point

outwards and sn−1 = −1 otherwise.

In the next section, we show that the discrete divergence on a planar simply-

connected mesh is surjective and use this discrete divergence to characterize the space

of discrete displacement fields of incompressible linearized elasticity.
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Laplace-Beltrami. The smooth Laplace-Beltrami operator ∆ ∶ Ω0(N )→ Ω0(N ) is
defined as ∆ = div ○ grad. As the gradient of a smooth function f ∶ N → R is (df)♯,
we can write

∆f = ∗d ∗ [(df)♯]♭ = ∗d ∗ df. (91)

We already know the definitions of discrete d and ∗, and hence we can use (91) to

define the primal and dual discrete Laplace-Beltrami operators ∆ ∶ Ω0
d(K) → Ω0

d(K)
and ∆ ∶ Ω0

d(⋆K) → Ω0
d(⋆K), respectively. Obviously, the smooth ∆ operator is not

injective. The same is true for the primal discrete ∆ operator, but as we will show in

the sequel, the dual discrete ∆ operator is bijective. In §2.4 we use the dual discrete

∆ operator to calculate the discrete pressure field from the pressure gradient.

2.2.6 Affine Interpolation

To define the elastic energy, we need to interpolate the discrete displacement field

over support volumes. For this we use the so-called P1 polynomials [45]. Let {ri ∈
Rn}i=1,...,n+1 be a set a of n+1 geometrically-independent points that are the vertices of

the n-simplex τn and suppose that {xi} is the canonical Euclidean coordinate system

for Rn. Let {Ui ∈ Rn}i=1,...,n+1 be a primal vector field on these points, i.e., Ui is

the value of the vector field at the vertex ri. For 1 ≤ i ≤ n + 1, let λi ∶ Rn+1 → R

be the associated barycentric coordinates [45]. Then, the interpolating function A ∶

τn → Rn is given by A(x1, . . . , xn) = ∑n+1i=1 λi(x1, . . . , xn)Ui, and we have A(ri) = Ui.

Alternatively, it is easier to use the following non-standard form:

A(x1, . . . , xn) = qn+1 + n∑
i=1

xiqi, (92)

where the constant vectors qi ∈ Rn, i = 1, . . . , n + 1, are given by

qi =
n+1∑
j=1

QijUj , i = 1, . . . , n + 1, (93)
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Figure 6: A discrete primal vector field, see Fig. 2 for the numbering of the simplices
and orientation of the primal and dual meshes. The vector i31,123 is the unit vector
with the same orientation as [c31, c123], etc.
and the diagonal matrices Qij ∈ Rn×n, i, j = 1, . . . , n + 1, depend only on ri’s and are

independent of Ui’s.

2.3 Discrete Configuration Manifold of Incompressible Lin-

earized Elasticity

As we mentioned in §2.1.2, in linearized elasticity one needs to find the unknown

displacement field, which is a vector field on the reference configuration of the elastic

body. Thus, we need to consider a fixed well-centered primal mesh for representing the

reference configuration, and therefore linearized elasticity is similar to fluid mechanics

in the sense that both need a fixed mesh. Note that choosing such well-centered

primal meshes is always possible in R2 as equilateral triangles fill R2, and hence one

can always approximate planar regions with these well-centered simplices. Generating

well-centered meshes is not a straightforward task, in general. See [104] and references

therein for further discussions. However, the approach that we develop here can be

extended to arbitrary domains by either generating well-centered meshes for that

domain or if it is not possible to generate a well-centered mesh, by using another

DEC theory that is appropriate for other types of meshes.

We select the displacement field as our primary unknown, which is a primal dis-

crete vector field. Note that by choosing displacement field as our unknown, we do not

need to consider compatibility equations. In order to design a structure-preserving
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scheme, we require that unknown variables remain in the correct space not only when

they converge to the final solution, but also during the process of finding the solution.

For incompressible elasticity, this means that we need to search in the space of discrete

divergence-free vector fields. The configuration space of incompressible elasticity is

similar to that of incompressible fluids. Pavlov et al. [89] developed a structure-

preserving method for incompressible perfect fluids. In that scheme, they discretized

push-forward of real-valued functions and showed that the space of divergence-free

vector fields can be described by some orthogonal matrices. However, in order to

define their discrete operators, they had to impose a nonholonomic constraint on

the orthogonal matrices, which perhaps makes sense for fluids but is not reasonable

for elasticity. Here, we propose a different idea for describing the space of discrete

divergence-free vector fields. For better understanding the idea, we return to the

primal mesh shown in Fig. 2 and calculate the divergence of a discrete primal vec-

tor field, see Fig. 6. Let Ui denote the vector field at vertex i. A straightforward

calculation using the definitions of the previous section yields

⟨divU,⋆[1,2,3]⟩ = 1∣[1,2,3]∣
4∑
i=1

c1i ⋅U
i,

⟨divU,⋆[2,4,3]⟩ = 1∣[2,4,3]∣
4∑
i=1

c2i ⋅U
i,

(94)

where “⋅” denotes the usual inner product and the vectors cij ∈ R2 are given by

c11 = ∣[3,1]∣i31,123 + ∣[1,2]∣i12,123,
c12 = ∣[1,2]∣i12,123 − ∣[3,2]∣i123,243,
c13 = ∣[3,1]∣i31,123 − ∣[3,2]∣i123,243, c14 = 0,

(95)
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and

c21 = 0, c22 = ∣[2,4]∣i24,243 + ∣[3,2]∣i123,243,
c23 = ∣[4,3]∣i43,243 + ∣[3,2]∣i123,243,
c24 = ∣[2,4]∣i24,243 + ∣[4,3]∣i43,243,

(96)

with i31,123 denoting a unit vector with the same orientation as [c31, c123], etc. (see

Fig. 6). Now we use (94) to impose divU = 0, which results in

I2×8X8×1 = 0, (97)

where

I2×8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cT11 cT12 cT13 cT14

cT21 cT22 cT23 cT24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X8×1 = {U1,⋯,U4}T . (98)

Note that the matrix I only depends on the mesh and does not depend on U.

Remark. The weak form of the incompressibility constraint reads

∫
B
q divU = 0, ∀q ∈ L2(B). (99)

Using the notation of [45], consider a Lagrange finite element over the mesh of Fig.

6, where the displacement field is approximated by continuous P1 polynomials and

the pressure field by P0 polynomials, i.e. the displacement field is continuous and

piecewise-linear while the pressure is piecewise-constant over triangles. For the sim-

plex [1,2,3], one can write ∣[3,2]∣i123,243 = ∣[1,2]∣i12,123 + ∣[3,1]∣i31,123. Using this re-

lation and the similar one for [2,4,3], it is straightforward to show that (97) is the

same as the discretization of (99) via the Lagrange finite elements.

45



Now let us consider an n-dimensional primal mesh Kh such that ∣Kh∣ ⊂ Rn is

simply-connected6 and denote the number of primal and dual vertices with Ph and

Dh, where h is the diameter of the primal mesh, i.e., h = sup{diam(σni )∣σni ∈K}, with
diam(σnk ) = sup{d(x, y)∣x, y ∈ σnk}, and d(x, y) denotes the standard distance between

x and y. Now we impose the essential boundary conditions. Suppose Sh denotes the

number of those primal vertices that are located on the boundary of Kh and their

displacements are specified. Note that these known displacements can be nonzero

or even time dependent. The unknown primal displacement field U is denoted by

{Ui}i=1,...,P̄h
, where P̄h = Ph−Sh, and Ui is the displacement at the vertex i. Imposing

the incompressibility constraint using the procedure that resulted in (97) yields

Ih
Dh×nP̄h

XnP̄h×1 = u
h
Dh×1

, (100)

where Ih is the reduced incompressibility matrix and depends only on the mesh, uh

depends on the known values of the displacements and also the mesh, and

XnP̄h×1 = {U1
n×1⋯U

P̄h

n×1}T . (101)

Thus, the displacement field is divergence free if and only if the vector X satisfies

(100). Note that if the known displacements are all zero, then uh = 0. There is

a systematic way to obtain the reduced incompressibility matrix and uh, which is a

consequence of the discrete divergence theorem, cf. (90). Here we explain the method

in R2, but it is also possible to extend it to higher dimensions.

Let n = 2 and consider a subset of a 2-dimensional primal mesh and its dual that

6Later, we will also discuss the effect of non-simply-connectedness.
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Figure 7: A subset of a primal mesh and its associated dual mesh. The vector ijlk,lqk
is the unit vector with the same orientation as [c([j, l, k]), c([l, q, k])], etc.
are shown in Fig. 7. We define the matrix Īh

Dh×(2Ph)
, the incompressibility matrix, as

Īh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cT11 ⋯ cT1Ph

⋮ ⋱ ⋮

cT
Dh1

⋯ cT
DhPh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Dh×(2Ph)

, (102)

where cim ∈ R2, i = 1, . . . ,Dh, m = 1,⋯,Ph, are specified as follows. Note that the

number of the rows of Īh is equal to the number of dual vertices (or equivalently primal

2-cells) as the divergence of a primal vector field is a dual zero-form. Now suppose

that we order primal vertices and primal 2-cells of the mesh such that the vertices j,

l, and k are the j th, lth, and kth primal vertices of the primal mesh, respectively, and

[j, l, k] is the ith 2-cell, i.e., σ2
i = [j, l, k], as shown in Fig. 7. Then, in the ith row

of Īh, cim is nonzero if and only if the mth primal vertex is a face of the ith primal

2-cell. This means that the only nonzero elements in the ith row corresponding to

σ2
i = [j, l, k], are cij, cil, and cik. The vector cij is given by

cij = sk∣[k, j]∣irjk,jlk + sl∣[l, j]∣ijlk,jol, (103)
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where irjk,jlk denotes the unit vector with the same orientation as [c([r, j, k]), c([j, l, k])],
etc., and sk is +1 if the orientation of [k, j] is the same as the orientation induced by

σ2
i = [j, l, k], otherwise sk = −1. One can determine sl similarly. Here we have sk = +1

and sl = −1. Similarly, we obtain

cil = −∣[l, j]∣ijlk,jol − ∣[k, l]∣ijlk,lqk,
cik = −∣[k, l]∣ijlk,lqk + ∣[k, j]∣irjk,jlk.

(104)

Noting that ijol,jlk = −ijlk,jol, one can rewrite (103) and (104) as

cij = ∣[k, j]∣irjk,jlk + ∣[l, j]∣ijol,jlk,
cil = ∣[l, j]∣ijol,jlk + ∣[k, l]∣ilqk,jlk,
cik = ∣[k, l]∣ilqk,jlk + ∣[k, j]∣irjk,jlk,

(105)

which means that for writing nonzero cim’s for the ith 2-cell, one simply needs to

consider unit normal vectors pointing into that cell and then consider all those terms

with a plus sign in each nonzero cim’s. Thus, we can write the incompressibility

matrix without using the orientation of the primal and dual meshes. The condition

divU = 0 is equivalent to

ĪhDh×(2Ph)
X̄(2Ph)×1 = 0, (106)

where X̄ is defined similarly to (101) but contains both known and unknown dis-

placements.

Suppose ∣Kh∣ ⊂ R2 is simply-connected, i.e. its fundamental group and conse-

quently its first homology group are both trivial. Then, the Euler characteristic of

∣Kh∣ reads [78]

χ(∣Kh∣) = #(0-simplices) −#(1-simplices)
+ #(2-simplices) = Ph − Eh +Dh = 1, (107)
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Figure 8: Two possible ways for adding a triangle to a 2-dimensional shellable mesh,
either (a) the new triangle introduces a new primal vertex or (b) the new triangle
does not introduce any new primal vertices.

where # denotes “number of” and we have used the fact that the number of 2-

simplices of the primal mesh is equal to the number of dual vertices. Let Pih and Pbh

denote the number of primal vertices that belong to interior and boundary of ∣Kh∣,
respectively. Then we have Ph = Pih +P

b
h. Similarly, let Eih and Ebh denote the number

of primal 1-simplices that belong to interior and boundary of ∣Kh∣, respectively. We

have Eh = Eih + E
b
h. Using the above definitions, one can show that the following

relations hold

3Dh = Ebh + 2E
i
h, Pbh = E

b
h. (108)

Using (107) and (108) we obtain

Dh = 2Pih + P
b
h − 2 = 2Ph − P

b
h − 2. (109)

Thus, we always have

Dh < 2Ph. (110)

So, if Īh is full-ranked, then rank(Īh) = Dh. Now, we show that the incompressibility

matrix of a planar simply-connected mesh is always full-ranked.

Theorem 2.3.1. Let Kh be a 2-dimensional well-centered primal mesh such that

49



∣Kh∣ is a simply-connected set. Then, the associated incompressibility matrix Īh is

full-ranked.

Proof. Since ∣Kh∣ is simply connected, because of (110) we need to show that the

rows of Īh are linearly independent. We use induction to complete the proof. Since

Kh is shellable7, one can consider a construction of Kh by starting with one triangle

and then adding one triangle at a time such that the resulting simplical complex at

each step is homeomorphic to a square. Thus, at each step the mesh has the same

topological properties as Kh and, in particular, it is simply connected. Using (103)

and (104), we conclude that the incompressibility matrix of a single triangle is full

ranked, i.e., there exist non-zero elements in the matrix since edges of a triangle

cannot be parallel to each other. Now suppose that in the process of constructing

Kh we have a mesh with m triangles, Km, that has a full-ranked incompressibility

matrix Īm, i.e., rows of Īm are linearly independent. As Fig. 8 shows, there are two

possibilities for adding a new triangle to Km: (i) the new triangle adds a new primal

vertex to the mesh as in Fig. 8(a), and (ii) no new primal vertex is added to the mesh

as in Fig. 8(b). In case (i) the incompressibility matrix of the resulting mesh, Īm+1, is

full ranked because it is obtained from Īm by adding a row corresponding to the added

triangle and two columns for the displacement of the new vertex q (see Fig. 8(a)).

The only nonzero entries in the new columns are placed on the new row and hence

the new row is linearly independent from other rows. In case (ii) note that Īm+1 is

obtained from Īm by adding a new row corresponding to the new primal 2-cell, which

has the vertices p, q, and r as is shown in Fig. 8(b). The matrix Īm is full ranked

and so it has Dm linearly independent columns, where Dm is the number of primal

2-cells of Km. Thus, because of (110), the number of linearly-dependent columns of

7A simplical complex is called regular if it is homeomorphic to the unit cube. A regular simplical
complex is shellable if either it consists of a single complex or it is possible to obtain a smaller
regular complex by removing one of its simplices. All 2-dimensional regular complexes are shellable.
Delaunay triangulation of a regular complex is shellable in any dimension [2].
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Īm is equal to 2Pm −Dm = Pbm + 2. Due to the structure of Īm, one can choose all the

independent columns from those that do not correspond to p, q, and r. Suppose that

we choose such independent columns. The matrix Īm+1 is obtained by adding a row to

Īm that has zero components except for the ones that correspond to p, q, and r. This

means that all the chosen independent columns of Īm still remain independent for Īm+1

and at least one of the columns that corresponds to p, q, and r becomes independent

of other columns. Therefore, Īm+1 has at least Dm + 1 independent columns and since

Dm+1 = Dm + 1, we conclude that Īm+1 has exactly Dm+1 independent columns and

rows, and therefore it is full ranked. This completes the proof.

Remark. The assumption of simply connectedness is necessary in the above proof.

Note that the incompressibility matrix I is important in our numerical scheme and

not Ī. The incompressibility matrix is obtained by removing some rows of Ī and it

may or may not remain full-ranked even for a simply-connected domain. Here the

important thing is that the number of columns of I remains greater than the number

of its rows. This guarantees that the nullity of incompressibility matrix is greater

than zero and hence the space of divergence-free vector fields would be a nontrivial

finite-dimensional set. For both simply-connected and non-simply-connected domains

one can obtain the incompressibility matrix with larger number of columns by mesh

refinement.

Also note that the extension of this theorem to 3-dimensional meshes is not straight-

forward. In particular, a simply-connected mesh in R3 is not necessarily shellable. In

fact, Rudin [93] showed that there exists an unshellable triangulation for a tetrahedron.

Remark. The above theorem tells us that the discrete primal-dual divergence over

a planar simply-connected mesh is surjective because the discrete divergence operator

from the space of discrete primal vector fields to the space of discrete dual zero-forms

is a linear map defined by the matrix Ī. Thus, Ī being full-ranked implies that the

associated linear map is surjective. This is interesting as the discrete flat operator
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that is used in the definition of divergence is not surjective.

Now, let us consider (106). In general, using the rank-nullity theorem and (110),

we can write

nullity(Īh) = 2Ph − rank(Īh) = 2Ph −Dh = Pbh + 2 > 0, (111)

which means that for an arbitrary planar simply-connected mesh, the space of discrete

divergence-free primal vector fields is finite-dimensional. In particular if {w̄i, . . . , ∈

R2Ph} is a basis for the null space of Īh, we then can write

X̄ =∑
i

D̂iw̄i, (112)

where D̂i are real numbers. Therefore, a displacement field is divergence free if and

only if it can be expressed as in (112).

By imposing the essential boundary conditions in (106), we obtain (100), i.e.,

Ih is obtained by eliminating those columns of Īh that correspond to the specified

displacements. The vector uh is obtained by moving terms that include the specified

displacements to the right-hand side of (106). If there are “too many” boundary

vertices with specified displacements, then the number of rows of Ih may exceed the

number of its columns, and therefore (100) may not admit any solution. This is

similar to the continuous case where there may not exist a divergence-free vector field

for some choices of boundary conditions. We elucidate this in the following example.

Example 2.3.2. (Incompressibility matrix for a planar mesh). Consider a mesh

consisting of equilateral triangles with unit lengths as shown in Fig. 9. Using (105),

we obtain the incompressibility matrix Īh6×14 as

Īh = [Jh Kh] , (113)
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Figure 9: A 2-dimensional primal mesh with its associated dual mesh and the asso-
ciated unit vectors. The vector i12,132 is the unit vector with the same orientation as[c([1,2]), c([1,3,2])], etc.
where

Jh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i12,132+i143,13 i12,132+i23,132 i23,132+i143,13 0

i13,143+i154,14 0 i13,143+i34,143 i34,143+i154,14

i14,154+i165,15 0 0 i14,154+i45,154

i15,165+i176,16 0 0 0

i16,176+i127,17 0 0 0

i17,127+i132,12 i27,127+i132,12 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (114)

and

Kh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

i45,154+i165,15 0 0

i15,165+i56,165 i56,165+i176,16 0

0 i16,176+i67,176 i67,176+i127,17

0 0 i17,127+i27,127

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (115)
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where i’s are unit vectors shown in Fig. 9 with i143,13 = −i13,143, etc. Also we have

X̄14×1 = {U1,⋯,U7}T . (116)

A primal vector field on this mesh is divergence-free if and only if (106) is satisfied.

Since Īh is full ranked in this example we have nullity(Īh) = 14 − 6 = 8, so we observe

that similar to the continuous case where the set of divergence-free vector fields Ū

defined in (52) is nonempty and, in fact, is infinite-dimensional, the set of discrete

divergence-free vector fields on this mesh is also nonempty but, of course, it is finite-

dimensional. Now suppose that all the boundary vertices have specified displacements,

i.e., Ui = Ũi for i = 2, . . . ,7. Then, by moving the terms corresponding to the known

displacements to the right-hand side of (106), we obtain (100), where X2×1 =U1, with

Ih6×2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i12,132 + i143,13

i13,143 + i154,14

i14,154 + i165,15

i15,165 + i176,67

i67,176 + i17,127

i17,127 + i132,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (117)

and

uh6×1 = −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i12,132 + i23,132) ⋅ Ũ2 + (i23,132 + i143,13) ⋅ Ũ3

(i13,143 + i34,143) ⋅ Ũ3 + (i34,143 + i154,14) ⋅ Ũ4

(i14,154 + i45,154) ⋅ Ũ4 + (i45,154 + i165,15) ⋅ Ũ5

(i15,165 + i56,165) ⋅ Ũ5 + (i56,165 + i176,67) ⋅ Ũ6

(i16,176 + i67,176) ⋅ Ũ6 + (i67,176 + i127,17) ⋅ Ũ7

(i27,127 + i132,12) ⋅ Ũ2 + (i17,127 + i27,127) ⋅ Ũ7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (118)
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Here it is obvious that (100) cannot admit any solutions for some values of the bound-

ary displacements. In our example, if all the boundary displacements vanish, then

X = 0 is the only solution. Thus, we see that contrary to the continuous case where

the set of divergence-free vector fields that vanish on the boundary of a manifold (U0

defined in (52)) is always infinite-dimensional, the corresponding discrete set may

only contain the zero vector field.

In general, if

2Sh < Pbh + 2, (119)

then from (109) we have

nullity(Ih) = 2P̄h − rank(Ih) = 2Ph − 2Sh − rank(Ih)
≥ 2Ph −Dh − 2Sh = Pbh + 2 − 2Sh > 0, (120)

and, therefore, the space of divergence-free vector fields satisfying the essential bound-

ary conditions would be finite-dimensional. Also note that if the essential boundary

conditions are not imposed on all the boundary vertices, then one can satisfy (119)

by choosing finer meshes on that part of the boundary with no essential boundary

conditions. To summarize, we observe that the dimension of the space of divergence-

free vector fields on a planar simply-connected mesh is 2Ph − Dh, but by imposing

essential boundary conditions, this space may become empty or may contain only the

zero vector field.

Let Kh be an n-dimensional primal mesh, possibly not simply-connected and

suppose nullity(Ih) = N. Let {wi ∈ RnP̄h}Ni=1 be a basis for the null space of Ih. Then,

from (100) we conclude that if a time-dependent displacement field is divergence-free

we have

X(t) =X○ +
N∑
i=1

Di(t)wi, (121)
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where X○ is a solution to the inhomogeneous linear system (100) and Di’s are some

real-valued functions of time andX○ and wi’s are time independent. This completely

determines the space of time-dependent displacement fields. Note that if the essential

boundary conditions are time dependent, then Īh and so wi’s are still time indepen-

dent but uh becomes time dependent, which implies that X○ is time dependent, as

well.

Remark. (Non-simply-connected meshes) If Kh has some holes, then (106) and (108)

are still valid but (107) reads

χ(∣Kh∣) = Ph − Eh +Dh = 1 −H, (122)

where H denotes the number of holes. Thus, (109) is replaced by

Dh = 2Ph − Pbh − 2 + 2H, (123)

and so (110) is not necessarily valid. Thus, the effect of holes is similar to the effect

of essential boundary conditions in the sense that both can cause the number of the

rows of the incompressibility matrix exceed the number of its columns. In particular,

note that a non-simply-connected domain may have an incompressibility matrix with

the number of its rows exceeding the number of columns even without any essential

boundary conditions if there are too many holes in the mesh, i.e., if P
b
h + 2 < 2H.

Similar to the problems that have too many nodes with essential boundary conditions,

here one can obtain an incompressibility matrix with more columns than rows by

refining the mesh.

2.4 Discrete Governing Equations

As we showed in §2.1.1 and §2.1.2, incompressible finite and linear elasticity solutions

extremize the action in the space of divergence-free motions. This is the procedure
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i

Figure 10: Dual cells that are used for defining the kinetic energy. Primal and dual
vertices are denoted by ● and ○, respectively. The solid lines denote the boundary
of the primal 2-cells and the colored regions denote the dual of each primal vertex.
The material properties, displacements, and velocities are considered to be constant
on each dual 2-cell. For example, consider the primal vertex i (σ0

i ). The velocity at
the corresponding dual cell is assumed to be equal to the velocity at vertex i, which
is denoted by U̇i.

that we use for obtaining the governing equations in our discrete formulation. In the

previous section, we characterized the space of discrete divergence-free motions in

(121). Now, we need to write a discrete Lagrangian. We first define discrete kinetic

and stored energies in the following.

2.4.1 Kinetic Energy

Let Kh be an n-dimensional mesh. The discrete displacement field is a primal vector

field with displacement Ui at the primal vertex σ0
i . As the numbers of primal vertices

and dual n-cells are equal, we can associate Ui to ⋆σ0
i , see Fig. 10. This means that

we are assuming that the primal mesh is the union of the dual cells and we consider

constant displacement and velocity on each dual cell. Suppose we order the primal

vertices such that i = 1, . . . , P̄h denote the primal vertices without essential boundary

conditions and i = P̄h +1, . . . ,Ph denote those primal vertices with essential boundary
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conditions. We can now define the discrete kinetic energy, Kd, as

Kd =
1

2

P̄h∑
i=1

ρi∣ ⋆ σ0
i ∣ U̇i ⋅ U̇i +

1

2

Ph∑
i=P̄h+1

ρi∣ ⋆ σ0
i ∣ U̇i ⋅ U̇i, (124)

where “⋅” denotes the usual dot product and ρi is the density on the dual cell ⋆σ0
i ,

which can have different values on different cells if the elastic body is inhomogeneous.

In fact, mass density can be considered as a primal 0-form. Note that time-dependent

essential boundary conditions contribute to the kinetic energy through the term

Kd
e =

1

2

Ph∑
i=P̄h+1

ρi∣ ⋆ σ0
i ∣ U̇i ⋅ U̇i, (125)

but because the variation of Kd
e is zero, it does not contribute to the Euler-Lagrange

equations and hence one can safely exclude this term from the following calculations.

Using (101) we can rewrite the discrete kinetic energy as

Kd =
1

2
Ẋ

T
MẊ +Kd

e , (126)

where M ∈ R(nP̄h)×(nP̄h) is a diagonal square matrix with elements

Mjk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi∣ ⋆ σ0
i ∣, if j = k = n(i − 1) + s,

with 1 ≤ s ≤ n, 1 ≤ i ≤ P̄h,

0, if j ≠ k.

(127)

We will use (126) to write the discrete Lagrangian.

2.4.2 Elastic Stored Energy

In this section we define a discrete elastic stored energy. For the sake of clarity, we

do not use summation convention throughout this section unless it is explicitly stated

otherwise. We order the primal vertices such that {σ0
i }P̄h

i=1 and {σ0
i }Ph

i=P̄h+1
denote the
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Figure 11: Regions that are used for calculating the elastic stored energy. Primal
and dual vertices are denoted by ● and ○, respectively. The dotted lines denote the
primal one-simplices. Displacement is interpolated using affine functions in each of
the colored triangles which are the intersection of a support volume of a primal 1-
simplex with a dual 2-cell. The elastic body is assumed to be homogeneous in each
dual 2-cell. The region bounded by the solid lines denotes the dual of the primal
vertex i. The stored energy at this dual cell is obtained by summing the internal
energy of the corresponding 6 smaller triangles.

primal vertices without and with essential boundary conditions, respectively. We

define the discrete elastic stored energy as Ed = ∑l E l, where E l is the internal energy
of a portion of support volumes of 1-simplices that is calculated by interpolation of

discrete displacements using an affine interpolation function. To fix ideas, we derive

the explicit form of the discrete stored energy in R2 (n = 2). Consider a primal mesh

as shown in Fig. 11. Discrete stored energy is written as

Ed =
2Eh∑
l

E l, (128)

where Eh is the number of primal 1-simplices and E l’s are the energies associated

to the colored regions. This choice of regions follows naturally from our previous

assumption of homogeneous material properties within each dual cell and the fact

that we need three vertices for a planar affine interpolation. To obtain the explicit

form of E l, consider the enlarged part of Fig. 11 and suppose that i, j, k, andm are the
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ith, j th, kth, and mth primal vertices, respectively. Here we have Vl = ∣[i, k]⋂(⋆σ0
i )∣,

where [i, k] denotes the support volume of [i, k] defined in (73). Assuming summation

convention on indices a, b = 1, . . . , n, we define

E l = ∫
Vl

µeabeabdv, (129)

where strains are calculated considering an affine interpolating function for vertices

i, cikm, and cijk. Using (92), let

u∣Vl = qn+1l +
n∑
b=1

xbqbl , (130)

where qbl ∈ Rn, b = 1, . . . , n + 1, are constant vectors associated to Vl that can be

written as (see (93))

qbl = Q
bi
l U

i +Q
bcijk
l Ucijk +Qbcikm

l Ucikm , (131)

with Ucijk and Ucikm denoting displacements of cijk and cikm, respectively, and Qbi
l ,

Q
bcijk
l , and Q

bcikm
l defined in §2.2.6 and are calculated using the vertices i, cijk, and

cikm. To obtain Ucijk and Ucikm we need to interpolate displacements of Jijk = {i, j, k}
and Jikm = {i, k,m}, respectively. Using (92), we can write

Ucijk = ∑
b∈Jijk

Q3b
[i,j,k]U

b +
2∑
a=1
∑
b∈Jijk

xacijkQ
ab
[i,j,k]U

b, (132)

Ucikm = ∑
b∈Jikm

Q3b
[i,k,m]U

b +
2∑
a=1
∑

b∈Jikm

xacikmQ
ab
[i,k,m]U

b, (133)

where xacijk and xacikm denote the a-coordinate of cijk and cikm, respectively, and the

index [i, j, k] in Qab
[i,j,k]

emphasizes that this matrix is obtained by interpolation over
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[i, j, k]. Let Jijkm = {i, j, k,m}, then substituting (132) and (133) into (131) yields

qbl = ∑
a∈Jijkm

Hba
l U

a, b = 1,2,3, (134)

where by defining S = {[i, j, k], [i, k,m]}, we can write Hba
l ∈ R2×2 as

Hbi
l = Q

bi
l +∑

σ∈S

Qbcσ
l (Q3i

σ +
2∑
a=1

xacσQ
ai
σ ) ,

H
bj
l = Q

bcijk
l (Q3j

[i,j,k]
+

2∑
a=1

xacijkQ
aj

[i,j,k]
) ,

Hbk
l = ∑

σ∈S

Qbcσ
l (Q3k

σ +
2∑
a=1

xacσQ
ak
σ ) ,

Hbm
l = Q

bcikm
l (Q3m

[i,k,m] +
2∑
a=1

xacikmQ
am
[i,k,m]) .

(135)

Note that Hba
l ’s are diagonal matrices and hence symmetric. Because the ambient

space is flat, we have

ua∣b =
∂ua

∂xb
= qb,al , (136)

where qb,al denotes the a-component of qbl . Also as gab = δab, using summation con-

vention on index c, we can write ua∣b = gcauc∣b = δcaq
b,c
l = q

b,a
l , and hence

eab =
1

2
(qb,al + qa,bl ) . (137)

Note that (with summation convention on indices c and d)

eab = gacgbdecd = δacδbdecd = eab. (138)

So using (137) and (138) we obtain

E l = 1

4
µlVl (qb,al + qa,bl )(qb,al + qa,bl ) , (139)
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where we use summation convention on a, b = 1,2, and µl is the value of Lamé constant

µ at Vl8. Alternatively, we can write (139) as

E l = 1

2
µlVl [(q1

l )TJq1
l + (q2

l )TKq2
l + (q1

l )TLq2
l ] , (140)

where

J =

⎡⎢⎢⎢⎢⎢⎢⎣
2 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦
, K =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0

0 2

⎤⎥⎥⎥⎥⎥⎥⎦
, L =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

2 0

⎤⎥⎥⎥⎥⎥⎥⎦
. (141)

Note that L is asymmetric and as we will see in the sequel, it induces asymmetry in

subsequent matrices. Substituting (134) into (140) results in

E l = ∑
a,b∈Jijkm

(Ua)TSabl Ub, (142)

with the matrices Sabl ∈ R2×2 given by

Sabl =
1

2
µlVl [(H1a

l )TJH1b
l + (H2a

l )TKH2b
l + (H1a

l )TLH2b
l ] . (143)

Note that Hl’s, J , and K are diagonal and so symmetric but L is asymmetric, and

therefore Sabl ≠ (Sbal )T, and in particular, Saal ’s are not symmetric.

Next, we impose the essential boundary conditions and obtain an expression for

Ed. First consider the following definitions

N(σ0
a) = {σ0 ∈Kh∣ ∃σ1 ∈Kh s.t. σ0

a, σ
0 ≺ σ1 & σ0

a ≠ σ0} ,
E = {σ0 ∈Kh∣ Essential B.C. is imposed on σ0} ,
E(σ0

a) =N(σ0
a) ∩E.

(144)

8Recall that µl can be considered as a primal 0-form.
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Thus, N(σ0
a) is the set of neighbors of σ0

a and E(σ0
a) is the set of the neighbors of

σ0
a that have essential boundary conditions. Substituting (142) into (128) yields the

following expression for the discrete elastic stored energy

Ed =XTSX + s ⋅X +Ed
e , (145)

where X ∈ RnP̄h is defined in (101), the matrix S ∈ RnP̄h×nP̄h can be written as

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 ⋯ D1P̄h

⋮ ⋱ ⋮

DP̄h1 ⋯ DP̄hP̄h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (146)

with

Dab
2×2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑l Sabl , if b ∈N(a),
0, otherwise.

(147)

The vector s ∈ RnP̄h is defined as s = {d1,⋯,dP̄h}T, with

da = ∑
b∈E(a)

(Ub)T [(Sabl )T + Sbal ] , (148)

and finally, the scalar Ed
e is given by

Ed
e =∑

a∈E

∑
l

(Ua)T Saal Ua. (149)

The summation on l in (147) denotes summation over all those regions whose elastic

energies are affected by the displacements of vertices a and b. Equation (149) has a

similar interpretation. The matrix S is not symmetric, in general, and the vector s is

zero if boundary vertices have zero displacements. Because both S and ST appear in
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the Euler-Lagrange equations, the governing equations remain symmetric in the sense

that reciprocity holds. Also similar to Kd
e defined in (125), Ed

e does not contribute

to the Euler-Lagrange equations either. Finally, note that there are other possible

choices for writing a discrete elastic energy. In the next section, we use the discrete

kinetic and elastic stored energies to write a discrete Lagrangian and obtain the

Euler-Lagrange equations for linearized incompressible elasticity.

2.4.3 Discrete Euler-Lagrange Equations

In this section we use Hamilton’s principle in the space of divergence-free displace-

ments to obtain the Euler-Lagrange equations for the unknown X. As in the con-

tinuous case that was discussed in §2.1.2.1, we do not use Lagrange multipliers to

impose the incompressibility constraint. Instead, we confine the solution space to the

divergence-free displacements and gradient of pressure appears naturally.

Similar to the Lagrangian in the continuous case, we define the discrete Lagrangian

as

Ld =Kd − V d, (150)

where V d = Ed − Bd − T d, with Bd and T d denoting the work of body forces and

tractions at boundary nodes, respectively. We model a body force with a primal

vector field. Let Bi be the body force at vertex i. Then, we have

Bd =
Ph∑
i=1

miBi ⋅Ui = b ⋅X +Bd
e , (151)

where mi = ρi∣ ⋆ σ0
i ∣, is the mass of the dual cell ⋆σ0

i and b ∈ RnP̄h is defined as

b = {b1,⋯,bP̄h}T, with bi =miBi, and

Bd
e =

Ph∑
i=P̄h+1

miBi ⋅Ui. (152)

Note that similar to the previous section, we order the primal vertices such that
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{σ0
i }P̄h

i=1 and {σ0
i }Ph

i=P̄h+1
denote the primal vertices without and with essential boundary

conditions, respectively. Let us define

T d = t ⋅X, (153)

where the vector t ∈ RnP̄h is defined as t = {t1,⋯, tP̄h}, with ti = 0, if the traction

at σ0
i is zero. Note that we assume that the set of vertices with essential bound-

ary conditions and the set of vertices with natural boundary conditions are disjoint.

Therefore, the specified displacements do not contribute to T d. Substituting (126),

(145), (151), and (153) into (150) results in

Ld =
1

2
Ẋ

T
MẊ −XTSX +F ⋅X +Lde, (154)

where

F = −s + b + t, Lde =Kd
e −E

d
e +B

d
e . (155)

Let the variational field of X be a 1-parameter family of divergence-free vector fields

Xǫ that satisfy the essential boundary conditions and

X0 =X,
d

dǫ
∣
ǫ=0
Xǫ = δX. (156)

Note that Xǫ satisfies (100), i.e.

IhXǫ = uh, (157)

and therefore

Ih δX = 0, (158)
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which means that δX ∈ Ker(Ih). Hamilton’s principle tells us that

δ∫ t2

t1

Lddt =
d

dǫ
∣
ǫ=0
∫ t2

t1

Ldǫdt = 0. (159)

Using (154), we can write

δ∫ t2

t1

Lddt =
d

dǫ
∣
ǫ=0
∫ t2

t1

(1
2
Ẋ

T

ǫMẊǫ −X
T
ǫ SXǫ +F ⋅Xǫ +L

d
e)dt

= ∫ t2

t1

[ẊT
M( d

dt
δX) −XT(S + ST) δX +F ⋅ δX]dt

= −∫ t2

t1

[MẌ + (S + ST)X −F] ⋅ δXdt = 0,

(160)

where we used symmetry of the matrix M, the integration by parts for simplifying

the kinetic energy contribution, and the assumption that δX is a proper variation,

i.e., δX = 0 at both t1 and t2. Because the integrand of (160) is a continuous function

of time and t1 and t2 are arbitrary, we obtain

[MẌ + (S + ST)X −F] ⋅ δX = 0. (161)

Note that we can write

RnP̄h = Ker(Ih)⊕Ker(Ih)⊥, (162)

and since δX ∈ Ker(Ih), from (161) we conclude that

MẌ + (S + ST)X −F = Λ, (163)

where Λ ∈ Ker(Ih)⊥.
Remark. In the smooth case, we observed that confining the variations to the divergence-

free vector fields results in the appearance of pressure gradient in the balance of linear

momentum. As the vector Λ appears in the discrete governing equations through a

similar procedure, it is reasonable to expect that this vector should somehow be related
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Figure 12: Discrete solution spaces: (a) P0 over primal meshes for the pressure
field, (b) P1 over primal meshes for the displacement field in the incompressibility
constraint, (c) P0 over dual meshes for the displacement field for approximating the
kinetic energy, and (d) P1 over support volumes for the displacement field for approx-
imating the elastic energy.

to discrete pressure gradient. As a matter of fact, the vector Λ ∈ RnP̄h can be written

as

Λ = {Λ1,⋯,ΛP̄h}T , (164)

where Λi ∈ Rn can be thought as the value of the gradient of pressure at the primal

vertex σ0
i . Although we do not conduct a convergence analysis to show that the pressure

field that is obtained by this assumption converges to the smooth pressure field, our

numerical examples in the next section demonstrate that this assumption is valid. On

the other hand, this correspondence suggests that pressure should be a dual zero-form

because ∇p = (dp)♯. This is a geometric justification for the known fact that using

different function spaces for displacement and pressure is crucial in incompressible

linearized elasticity [45, 58]. Also note that we do not obtain the pressure gradient

for vertices with essential boundary conditions.

Recall that Ker(Ih)⊥ is the orthogonal complement of the null space of Ih, which

is the row space of Ih, i.e., the space spanned by the rows of Ih. To obtain Λ, note

that from the rank-nullity theorem, one can write

dim(Ker(Ih)⊥) = nP̄h − nullity(Ih) = rank(Ih) = R. (165)
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Let {z1, . . . ,zR} be a basis for Ker(Ih)⊥. Then, we have

Λ(t) = R∑
i=1

Λi(t)zi, (166)

where the time-dependent functions Λi’s are unknowns to be determined. Thus, we

have the following discrete governing equations for the unknowns X and Λi’s:

MẌ + (S + ST)X −F = R∑
i=1

Λiz
i, (167)

IhX = uh. (168)

The number of unknowns is nP̄h + R and since rank(Ih) = R, we conclude that Ih has

R independent rows (columns) and thus (168) has R independent equations and so

the number of independent equations becomes nP̄h +R, which is equal to the number

of unknowns. Therefore, one can solve (167) and obtain the displacement field and

the pressure gradient.

Remark. The difference between our approach for deriving (167) and (168) and that

of the FE method is as follows. As we mentioned in §2.3, (168) is equivalent to a

Lagrange finite element approximation, where the pressure field is approximated by

P0 polynomials over the primal mesh and the displacement field is approximated by

piecewise linear P1 polynomials over the primal mesh. On the other hand, we used

two different spaces for the displacement field for writing (167), see Fig. 12. For

discretizing the kinetic energy, the displacement field is discontinuous and is approx-

imated by P0 polynomials over the dual mesh. However, for discretizing the elastic

energy, it is continuous and is approximated by P1 polynomials over (part of) the

support volumes.

Remark. (Incompressible linear elastostatics) For incompressible linearized elasto-

statics, the displacements and pressures are time independent, and therefore (167)
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and (168) are equivalent to

K(nP̄h+Dh)×(nP̄h+R) X(nP̄h+R)×1 = F(nP̄h+Dh)×1, (169)

where

K =

⎡⎢⎢⎢⎢⎢⎢⎣
(S + ST)nP̄h×nP̄h

−ZnP̄h×R

Ih
Dh×nP̄h

0Dh×R

⎤⎥⎥⎥⎥⎥⎥⎦
, (170)

with the ith column of Z equal to zi for i = 1, . . . ,R. By defining λ = {Λ1,⋯,ΛR}T ∈ RR,

the vectors X and F can be written as

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X

λ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∈ RnP̄h+R, F =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F

uh

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∈ RnP̄h+Dh . (171)

2.4.4 Discrete Pressure Field

Equations (167) and (168) enable us to obtain the displacement field of linear in-

compressible elasticity together with the pressure gradient Λ. The next step is to

calculate stresses. Note that we do not define a notion of discrete stress and, instead,

we define stresses on subregions with constant strains, cf. §2.4.2. Therefore, we define

the stress to be

σab = 2µeab − p gab, (172)

on each shaded region of Fig. 11. Using (137) and (138), the stress of the subregion

l can be written as

σabl = µl (qa,bl + qb,al ) − pl δab. (173)

Thus, we need to calculate the value of pressure on each dual vertex. The number

of unknown pressures is Dh. Let {p1, . . . , pDh} denote the value of unknown pressures

at dual vertices. We need to obtain Dh independent equations from the pressure
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gradient Λ to be able to specify the pressure. One way to do so is to use the discrete

Laplace-Beltrami operator. This is explained in the following example.

Example 2.4.1. Consider the planar mesh of Fig. 9 once again. Let p be a dual

0-form on this mesh representing the pressure and suppose p123 denotes ⟨p,⋆[1,2,3]⟩,
etc. We know that ∆p is also a dual 0-form. Let us define the vector p ∈ R6 as

p = {p132, p143, p154, p165, p176, p127}T . (174)

One can use (91) to calculate ∆p. On the other hand, one can obtain ∆p using the

pressure gradient Λ. Suppose, for example, that the vertices 2 and 3 have essential

boundary conditions. Thus, pressure gradient obtained from (167) lies in R10 and

∆p is equal to the divergence of Λ. To calculate the discrete pressure field, we need

to obtain the discrete pressure gradient Gp ∈ R14, which is a primal vector field. To

this end, we need to assign a pressure gradient to those vertices that have essential

boundary conditions. This can be done by assuming that pressure gradient of these

vertices are equal to those of their closest interior primal vertices. This way, using

Λ, we can obtain the pressure gradient Gp ∈ R14. Now we equate the expressions for

∆p obtained using the previous two approaches. This gives

L6×6p = Ī6×14Gp, (175)
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where Ī is given in (113) and

L =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1,2+r1,3+r2,3 −r1,3 0 0 0 −r1,2

−r1,3 r1,3+r1,4+r3,4 −r1,4 0 0 0

0 −r1,4 r1,4+r1,5+r4,5 −r1,5 0 0

0 0 −r1,5 r1,5+r1,6+r5,6 −r1,6 0

0 0 0 −r1,6 r1,6+r1,7+r6,7 −r1,7

−r1,2 0 0 0 −r1,7 r1,7+r1,2+r2,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(176)

with

ri,j =
∣[i, j]∣∣ ⋆ [i, j]∣ . (177)

The right-hand side of (175) is a discrete analogue of ∆ = div ○ grad. Note that here

L is symmetric and invertible. Therefore, we are able to obtain a unique dual 0-form

p.

Let us consider a planar mesh Kh. Fig. 7 shows part of this mesh. We define

a symmetric matrix Lh ∈ RDh×Dh as follows. Each row of Lh corresponds to a dual

vertex of Kh. All the elements in each row are zero except the diagonal elements and

the ones that correspond to the dual vertices that are joined to the reference dual

vertex by a dual 1-simplex. For example, in Fig. 7, nonzero components of the row

that corresponds to ⋆[j, l, k] are those that correspond to ⋆[j, l, k], ⋆[j, o, l], ⋆[l, q, k],
and ⋆[r, j, k]. Let us denote these components of Lh by Ljlk,jlk, Ljlk,jol, Ljlk,lqk, and

Ljlk,rjk, respectively. Then, we have

Ljlk,jlk = rl,k + rk,j + rj,l, Ljlk,jol = −rj,l,

Ljlk,lqk = −rl,k, Ljlk,rjk = −rk,j.
(178)
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Figure 13: Part of a primal mesh and its associated dual mesh. The 2-simplex [j, l, k]
lies on the boundary.

Note that if [j, l, k] is on the boundary as shown in Fig. 13, then the only nonzero

components are Ljlk,jlk, Ljlk,jol, and Ljlk,lqk, which are defined as above. Note also

that by construction, the matrix Lh is symmetric. The sum of the components of

the row corresponding to an internal primal n-simplex is zero while the same sum

for rows that correspond to boundary n-simplices is not zero. As we will see in the

following theorem, as a result of this specific structure, the symmetric matrix Lh is

nonsingular and because ∆p can be calculated using this matrix, the dual Laplace-

Beltrami operator is injective. Note that the primal ∆ operator is not injective. The

reason for this is that the dual coboundary operator is not the same as the geometric

boundary of a dual cell, see (82) and (91), and the corresponding discussions.

Theorem 2.4.2. Let Kh be a planar well-centered primal mesh such that ∣Kh∣ is a

simply-connected set. Then, the matrix Lh ∈ RDh×Dh is nonsingular.

Proof. The proof of this theorem is similar to that of Theorem 2.3.1. Using the fact

that Kh is shellable, one can use induction and the specific structure of the matrix L

to complete the proof.

Let the vector p ∈ RDh denote the pressure p on Kh, i.e., the ith component of

p is pi = ⟨p, σ̂0
i ⟩, where σ̂0

i is the ith dual vertex. Then, one can use Lh to calculate
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Figure 14: Cantilever beam: (a) Geometry, boundary conditions, and loading, (b) a
well-centered primal mesh with ○ denoting the circumcenter of each primal 2-cell.

Figure 15: Cantilever beam: (a) Convergence of the normalized displacement of the
tip point A (ratio of the numerically-calculated and exact displacements). N is the
number of primal 2-cells of the mesh. (b) Pressure of the dual vertices that correspond
to the primal 2-cells that are on the bottom of the beam.

∆p. Alternatively, ∆p can be calculated using the pressure gradient Gp ∈ RnPh ,

which is a vector that has the same components as Λ ∈ RnP̄h at vertices without

essential boundary conditions. Those components that are associated with vertices

with essential boundary conditions are chosen to be equal to the pressure gradient

of the closest internal primal vertex. For example, suppose in Fig. 13, vertex k has

essential boundary conditions and the closest internal vertex to k is l. Then, pressure

gradient at vertex k is assumed to be equal to the pressure gradient at l.9 Then,

9If there are more than one closest vertexes, one can associate the average pressure to vertex k.
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equating ∆p’s obtained using the above two approaches we obtain

Lhp = ĪhGp, (179)

and because Lh is nonsingular one can solve (179) and obtain the pressure on each

dual vertex. However, our numerical experiments show that the direct use of (179)

does not yield satisfactory results for pressure and this is not unusual as we have not

imposed the natural boundary conditions on each primal 2-cell with such boundary

conditions yet. Recall that if τa denotes the a-component of the traction τ , then

using the summation convention on index b, we can write

τa = σab nb = (2µeab − p gab)nb, (180)

where nb is the b-component of the unit outward normal vector at the natural bound-

ary. Now suppose that in Fig. 13, the 2-cell [j, l, k] lies on the natural boundary.

Then, using (173) and (180) we can write

τakj = [µjlk (qa,bjlk + qb,ajlk) − pjlk δab]nbkj, (181)

where we assume summation convention on index b. Using (181) we can determine

the pressure at all the 2-cells with natural boundary conditions. Next, we omit the

rows that correspond to those 2-cells with natural boundary conditions in (179) and

move all the terms containing the known values of the pressure to the right-hand side

of the remaining equations. This way, from (179) we obtain the required number of

equations to determine pressure at all the dual vertices. Finally, one can use (173) to

calculate the stress on each dual subregion.
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Figure 16: The pressure field for the beam problem for meshes with (a) N = 64, (b)
N = 156, (c) N = 494, where N is the number of primal 2-cells of the mesh.

Figure 17: Cook’s membrane: (a) Geometry, boundary conditions, and loading, (b)
a well-centered mesh with N = 123 primal 2-cells with ○ denoting the circumcenter of
each primal 2-cell.

2.5 Numerical Examples

To demonstrate the efficiency and robustness of our geometric method, in this section

we consider the following two 2-dimensional benchmark problems: a cantilever beam

subjected to a parabolic end load and Cook’s membrane.

Cantilever beam. As our first example, we consider a planner cantilever beam

shown in Fig. 14 that has a closed-form solution for its displacements field [102]. The

parabolic load per unit length at the right boundary is given by f(y) = F
2I
(c2 − y2),
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Figure 18: Convergence of the normalized displacement of the tip point A of the
Cook’s membrane. N is the number of primal 2-cells of the mesh.

where I = 2c3/3. Thus, the total shear load on the right boundary is F . Now, we

consider the analytical solution for a beam under this load given by

ux =
(1 − ν2)Fy

6EI
(3x2 − 6Lx + ν y2

1 − ν
) − Fy

6Iµ
(y2 − 3c2) ,

uy =
(1 − ν2)F

6EI
[3ν(L − x)y2

1 − ν
+ 3Lx2 − x3] , (182)

and impose the displacements at x = 0. The divergence of the displacement field reads

divu =
1

EI
(1 + ν)(1 − 2ν)F (x −L)y, (183)

and hence, for ν = 0.5 we have divu = 0. Note that if ν = 0.5, then as we explained in

Remark 2.1.2.1, the above displacements also satisfy the equations of incompressible

linearized elasticity. For this case, pressure is given by

p(x, y) = −F (x −L)y
2I

. (184)

We assume the following parameters: L = 16, c = 2, F = 1, E = 107, and ν = 0.5.

We show one of the primal meshes with N = 236 primal 2-cells in Fig. 14(b). We
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Figure 19: The pressure field for the Cook’s membrane for meshes with (a) N = 123,
(b) N = 530, (c) N = 955, where N is the number of primal 2-cells of the mesh.

increase the number of primal 2-cells and study the convergence of the solutions. In

Fig 15(a), we plot the normalized vertical displacement of the tip point A defined as

UA
y /uAy , where UA

y and uAy denote the vertical displacement of point A obtained by

our structure-preserving scheme and the exact solution, respectively. We see that the

numerical solutions converge to the exact solution. Moreover, we observe a smooth

pressure field for the beam. As an example, in Fig. 15(b) we show the variation of

pressure at the bottom of the beam (y = −c) in the x-direction and again we observe

that pressure converges to its exact value. We plot the pressure field over different

primal meshes with exaggerated deformations in Fig. 16. The pressure field is free

from checkerboarding and becomes smoother and smoother upon mesh refinement.

Cook’s membrane. Now we consider the Cook’s membrane problem, which is a

standard benchmark problem that has been used in the past to investigate the in-

compressible and near-incompressible solutions under combined bending and shear

[58, 87]. Fig. 17 depicts the geometry, boundary conditions, and loading of the prob-

lem together with a well-centered mesh withN = 123 primal 2-cells. The left boundary

is fully clamped and the right boundary is subjected to a distributed shearing load

of magnitude T = 6.25 per unit length (a total vertical force of 100 is imposed on the

right boundary). The material is assumed to be homogeneous with the parameters
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E = 250 and ν = 0.5. Now we study the variations of the vertical displacement of the

tip point A upon mesh refinement. The result is plotted in Fig. 18 that shows the

convergence of the normalized displacements by increasing the number of primal 2-

cells, N . Note that we use the limit value of the numerically-calculated displacement

UA
y = 4.2002 for normalization of displacements in this figure. Finally, we observe that

our structure-preserving scheme is free of checkerboarding as is clearly seen in Fig.

19. In this figure, we plot the pressure field over deformed configuration of Cook’s

membrane. We see that pressure field becomes smoother and smoother upon mesh

refinement. Also note that the rate of convergence of the results in our numerical

examples is comparable with those of finite element mixed formulations [58, 87].
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CHAPTER III

COMPLEXES OF LINEAR AND NONLINEAR

ELASTOSTATICS

The main reason that elasticity is harder to discritize compared to electromagnetism

is that unlike electromagnetism that deals merely with forms, one has to consider

higher order tensors for elasticity. Interestingly, by using some methods from the

theory of relativity, Eastwood [41] showed that it is possible to express linear elas-

tostatics in terms of forms. He observed that there is a relation between the linear

elastostatics complex and a twisted de Rham complex through a general construction

known as the Bernstein-Gelfand-Gelfand (BGG) resolution [19, 28]: One starts from

a twisted de Rham complex and constructs another complex called the associated

BGG complex that has properties similar to those of the original de Rham complex.

Arnold and his coworkers [10, 8, 12] used this important fact to develop stable mixed

finite elements formulations for linear elastostatics. One can either directly discretize

the linear elastostatics complex [12] or use its relation with the de Rham complex

[10]. Motivated by the Eastwood’s BGG construction for linear elastostatics, Gey-

monat and Krasucki [52] deduced a Hodge orthogonal decomposition for symmetric

matrix fields in L2 analogous to the classical Hodge decomposition. This shows that

the similarities between the linear elastostatics complex and the de Rham complex

also extend to less smooth Sobolev spaces.

The linear elastostatics complex was first introduced by Kröner [74] in connection

with linear elastic dislocation theory. As far as we know, Calabi [26] was the first who

mathematically studied this complex. He obtained a complex on n-manifolds with

constant sectional curvatures (Clifford-Klein spaces) which is equivalent to the linear
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elastostatics complex in R3. He calculated the cohomology groups of this complex

if the underlying manifold is also compact. Later, Eastwood [41] observed that the

linear elastostatics complex is the special case of the Calabi complex and showed that

in R3 the linear elastostatics complex is equivalent to a BGG complex that can be

derived from a twisted de Rham complex on the 3-sphere S3 or the linear projective

space RP 3. Of course, his derivation does not imply that the linear elastostatics

complex is metric independent as one needs a metric to identify this complex with

the BGG complex. In this chapter, we study linear and nonlinear elastostatics com-

plexes, see also [6]. We begin by reviewing some geometric preliminaries and then, we

explain the differential operators of linear and nonlinear elastostatics. In particular,

we study compatibility equations and introduce various notions of stress functions for

nonlinear elastostatics. Finally, we write differential complexes of linear and nonlinear

elastostatics. We also discuss the relation between the linear elastostatics complex

and the de Rham complex.

3.1 Algebraic and Geometric Preliminaries

For understanding the linear and nonlinear elastostatics complexes and sheaves, var-

ious algebraic and geometric notions are required. We review these preliminaries in

this section.

3.1.1 Categories and Functors

A category C is a collection of objects Ob(C ) and for any two objects A and B a

set Mor(A,B) called the set of morphisms of A into B and for any three objects

A,B,C ∈ Ob(C ) a law of composition c ∶ Mor(B,C) ×Mor(A,B) → Mor(A,C) such
that (i) Mor(A,B)∩Mor(A′,B′) = ∅ unless A = A′ and B = B′ for which Mor(A,B) =
Mor(A′,B′), (ii) for each object A there is an identity morphism IdA ∈ Mor(A,A),
and (iii) the law of composition is associative, i.e. if f ∈ Mor(A,B), g ∈ Mor(B,C),
and h ∈Mor(C,D) then c(c(h, g), f) = c(h,c(g, f)), for all A,B,C,D ∈ Ob(C ) [76].
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In general, a morphism f ∈ Mor(A,B) is not a map from A into B. But in the

cases that we consider in the sequel, f is either a map from set A into set B or a map

from a set related to object A into a set related to object B. If the objects A and

B have a special structure and their morphisms preserve that structure, then their

morphisms are usually called homomorphisms1 and Hom(A,B) ∶=Mor(A,B).
For example, all smooth n-dimensional manifolds together with local diffeomor-

phisms (i.e. immersions) between them form the category M fn. Also let V andW be

arbitrary finite-dimensional vector spaces. Then all finite-dimensional vector spaces

together with linear maps between them (i.e. Mor(V,W ) = L(V,W )) is a category.

The morphisms of this category are called the homomorphisms of linear spaces or

simply homomorphisms. Another important example of homomorphism is the group

homomorphism. Let G and H be groups, then φ ∶ G → H is a group homomorphism

if φ(g1 ⋅g2) = φ(g1) ⋅φ(g2) for all g1, g2 ∈ G, where the dots denote the group operation

of G and H, respectively. We will see other types of homomorphisms in the sequel.

A morphism f ∈ Mor(A,B) is called endomorphism if A = B and we define

End(A) ∶= Mor(A,A). A morphism f is called isomorphism if it is invertible, i.e.

there exists g ∈ Mor(B,A) such that c(f, g) = IdB and c(g, f) = IdA. Invertible mor-

phisms of an object into itself are called automorphisms. The sets of automorphisms

of A is denoted by Aut(A). Let V be an n-dimensional vector space. Then the gen-

eral linear group of V , GL(V ), is identical to Aut(V ). Thus, GL(V ) is the set of

all invertible linear maps f ∶ V → V . Similarly, gl(V ) ∶= End(V ). Note that GL(V )
and gl(V ) can be considered as the set of all invertible n × n matrices and all n × n

matrices, respectively. The set GL(V ) is a group using the composition of functions

as the group action. The representation of a group G on a finite-dimensional vector

space V is a group homomorphism φ ∶ G → GL(V ). Equivalently, we can consider a

1A homomorphism is an algebraic concept, which is different from a homeomorphism, which is a
topological concept.
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representation of G as a map φ̂ ∶ G×V → V such that φ̂(g1 ⋅ g2, v) = φ̂(g1, φ̂(g2, v)) for
all g1, g2 ∈ G and v ∈ V .

Let C and B be categories. A (covariant) functor F of C into B is a map that

to each A ∈ Ob(C ) associates an object F (A) ∈ Ob(B) and to each f ∈ Mor(A,B)
associates a morphism F (f) ∈Mor(F (A), F (B)) such that (i) F (IdA) = IdF (A) for all
A ∈ Ob(C ), and (ii) for all f ∈ Mor(A,B) and g ∈ Mor(B,C) we have F (cC (g, f)) =
cB(F (g), F (f)), where cC and cB are the composition laws of C and B, respectively

[76]. For contravariant functors, the condition (i) remains the same but F (f) ∈
Mor(F (B), F (A)) and F (cC (g, f)) = cB(F (f), F (g)).

The product category C × C ′ is the category with Ob(C × C ′) = {(A,A′) ∶ A ∈
Ob(C ),A′ ∈ Ob(C ′)} and Mor((A,A′), (B,B′)) = {(f, f ′) ∶ f ∈ Mor(A,B), f ′ ∈
Mor(A′,B′)}. In a similar manner, one can define the product of more than two

categories. A bifunctor F is a functor from C ×C ′ into a category B with F (A,A′) ∶=
F ((A,A′)) ∈ Ob(B). For morphisms there are four possibilities: co-covariant, contra-

covariant, co-contravariant, and contra-contravariant bifunctors. For example, if F

is a contra-covariant functor, then F (f, f ′) ∶= F ((f, f ′)) ∈ Mor(F (B,A′), F (A,B′)).
The space of homomorphisms of vector spaces L(V,W ) = Hom(V,W ) is a contra-

covariant bifunctor. Let V ′ andW ′ be vector spaces, f ∈ L(V,V ′), and g ∈ L(W,W ′).
Then L(f ,g) ∶ L(V ′,W )→ L(V,W ′), h↦ g ○h ○f . Similar conclusions are valid for

group homomorphisms. It is also possible to define multifunctors, i.e. functors from

C1 × ⋅ ⋅ ⋅ × Cn into B. We use functors for defining natural bundles and also special

vector bundles whose sections are tensor fields.

3.1.2 Tensor Product and Exterior Power

Let V , W , and X be vector spaces over R (R-modules in general). A tensor product

of V and W is a vector space V ⊗RW over R (R-module in general) together with an

R-bilinear map ϑ ∶ V ×W → V⊗RW such that for every R-bilinear map γ ∶ V ×W →X
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there exists a unique linear map Φ ∶ V ⊗RW →X such that γ = Φ○ϑ, i.e. the diagram

V ⊗RW
Φ

##H
HH

HH
HH

HH

V ×W

ϑ

OO

γ
// X

commutes [48]. Alternatively, one can define a tensor product as a universal object

of a category [76]. If the scaler field is obvious, then usually the above tensor product

is written as V ⊗W . It is possible to show the existence and uniqueness (up to a

unique isomorphism) of tensor products. Thus, one can think of a tensor product to

be a family, i.e. although a tensor product of two vector spaces is not unique, one

can determine all tensor products by knowing just one of them. Usually, the general

properties of a tensor product is important not a specific element of the class of tensor

products. So we speak of the tensor product of vector spaces to refer to any element

of the class of tensor products. Assume v ∈ V and w ∈W . Since the map ϑ is usually

not important, ϑ(v,w) is written as v ⊗w. We have dim(V ⊗W ) = dimV × dimW .

In particular, let {vi} and {wj} be bases for V andW , respectively. Then {vi⊗wj} is
a basis for V ⊗W . It is also possible to define the tensor products of homomorphisms

of vector spaces. Let k ∈ L(V,W ) and h ∈ L(M,N). Then

k ⊗h ∶ V ⊗M Ð→ W ⊗N,

v ⊗m z→ k(v)⊗h(m). (185)

Thus, the tensor product is a co-covariant bifunctor.

Let V ∗ = L(V,R) be the dual set of V with the basis {vi}, where vi(vk) = δik. For
finite-dimensional vector spaces, we have V ∗∗ = (V ∗)∗ ≈ V , where ≈means isomorphic.

This result is due to the existence of the natural isomorphism ιn ∶ V → V ∗∗ given by
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(ιn(v))(v∗) = v∗(v) for v ∈ V and v∗ ∈ V ∗. One can show that

L(V,W ) ≈W ⊗ V ∗ ≈ L2(W ∗, V ;R), (186)

where L2(W ∗, V ;R) is the set of R-bilinear maps f ∶W ∗ × V → R. Suppose v = vivi

and w = wjwj, where we use the summation convention. Then, (186) implies that the

tensor product wj ⊗ vi can be considered as the bilinear map wj ⊗ vi ∶W ∗ × V → R

with

wj ⊗ vi(wl,vk) = ((ιn (wj)) (wl)) ⋅ vi(vk) = δj lδik. (187)

Note that the same symbol wj ⊗ vi is used to denote both an element of the tensor

product and also a bilinear map. This simplifies the notation and introduces no con-

fusion as long as we know the isomorphism that relates the isomorphic sets. Similarly,

we may write v to denote ιn(v) ∈ V ∗∗.
Consider an R-bilinear map f ∶W ∗ ×V → R and let f j i = f(wj,vi). Then, in the

coordinate systems {vi} and {wj}, the map f can be expressed as f = f j iwj⊗ vi.

Similar results hold for the tensor product of arbitrary finite number of linear spaces

over R. In particular, the tensor product is associative and we define

⊗rW =W ⊗⋯⊗W´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

. (188)

A tensor is an element of a tensor product of linear spaces over R. The main observa-

tion is that such elements can be considered as R-valued R-multilinear maps. Thus,

one can define tensors to be multilinear maps as well. Geometers use the notation

W ⊗V ∗ but they actually mean L(V,W ). It is straightforward to define tensor fields

as sections of vector bundles using tensor products.

Another notion closely related to tensor products is exterior powers. Let W and
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X be vector spaces over R as before. An R-multilinear map

γ ∶W ×⋯×W´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

→X (189)

is called alternating if γ(w̄1, . . . , w̄r) = 0 whenever w̄i = w̄j for any two indices i ≠ j.

Note that an alternating map is antisymmetric.

An exterior rth power Λr
R
W over R (or simply ΛrW ) is a vector space ΛrW over

R with an alternating map

α ∶W ×⋯×W´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

→ ΛrW

such that for every alternating R-multilinear map γ as (189), there exists a unique

R-linear map Ψ ∶ ΛrW →X such that γ = Ψ ○ α, i.e. the diagram

ΛrW
Ψ

%%J
JJ

JJ
JJ

JJ
JJ

J

W ×⋯
r
×W

α

OO

γ
// X

commutes [48]. Similar to tensor products, exterior powers exist and are unique (up

to a unique isomorphism). The notation α(w̄1, . . . , w̄r) = w̄1 ∧ ⋅ ⋅ ⋅ ∧ w̄r is used for

the image of α. Suppose n = dim W . For 0 ≤ r ≤ n we have dim(ΛrW ) = (nr ).
In particular, let {wi}ni=1 be a basis for W . Then, the monomials wi1 ∧ ⋅ ⋅ ⋅ ∧ wir

with i1 < ⋯ < ir form a basis for ΛrW . Let Altr(W ) denote the set of alternating

R-multilinear maps

h ∶W ×⋯×W´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

→ R.

We can write

ΛrW ∗ ≈ Altr(W ). (190)
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Let Altr(W ;X) denote the set of alternating R-multilinear maps as in (189). Then

we have

ΛrW ∗ ⊗X ≈ Altr(W ;X). (191)

Later we will use the relations (190) and (191) for defining forms and vector bundle-

valued forms, respectively.

3.1.3 Lie Algebras and Lie Groups

An algebra E is a vector space (a module in general) over a field A (a ring in general)

together with an A-bilinear map E ×E → E. A Lie algebra (g, [, ]) is a vector space

g over R together with the Lie bracket [, ] ∶ g × g → g, which is an antisymmetric

R-bilinear mapping that satisfies the Jacobi identity, i.e.

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0, (192)

for allX,Y,Z ∈ g [27]. Let g and k be Lie algebras. Then φ ∶ g→ k is a homomorphism

of Lie algebras if it is R-linear and compatible with the brackets, i.e. [φ(X), φ(Y)]k =
φ([X,Y]h), ∀X,Y ∈ g.

A linear subspace h ⊂ g is called a Lie subalgebra, denoted by h ≤ g, if it is closed

under the Lie bracket, i.e. if [h,h] = {[X,Y] ∶X,Y ∈ h} ⊂ h. For any subset A ⊂ g, the

smallest subalgebra of g that contains A exists and is called the subalgebra generated

by A. A subalgebra h ≤ g is an ideal in g and we write h◁ g if [g,h] ⊂ h.
Let g1 = g and gk+1 ∶= [g,gk]. Then for each k ∈ N we have gk ◁ g and g ⊃

g2 ⊃ ⋯ ⊃ gk ⊃ gk+1 ⊃ ⋯, which is called the lower central series of g. The Lie

algebra g is called nilpotent if gk = 0 for some k ∈ N. Similarly, let g(1) = g and

g(k+1) ∶= [g(k),g(k)]. We have g(k) ◁ g and g ⊃ g(2) ⊃ ⋯ ⊃ g(k) ⊃ g(k+1) ⊃ ⋯, which is

called the derived series of g. The Lie algebra g is called solvable if g(k) = 0 for some

k ∈ N. Suppose h ≤ g. If g is nilpotent (solvable) then h is also nilpotent (solvable).
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A Lie algebra g is called semisimple if it has no nonzero solvable ideal and is called

simple if g = [g,g] and the only ideals in g are {0} and g. The center of g is defined

as z(g) ∶= {X ∈ g ∶ [X,Y] = 0, ∀Y ∈ g}. The Lie algebra g is called reductive if any

solvable ideal of g is contained in z(g). The direct sum of Lie algebras h and g, h⊕g,

is the direct sum of vector spaces h and g endowed with the componentwise bracket.

One can show that a finite direct sum of simple Lie algebras is semisimple.

A Lie group G is a manifold and also a group such that the group multiplication

µ ∶ G × G → G is a smooth mapping [73, 27]. Let g, x ∈ G. The multiplication

µ(g, x) is usually denoted by g ⋅ x. The left translation λg ∶ G → G, x ↦ g ⋅ x,

and the right translation ρg ∶ G → G, x ↦ x ⋅ g, are both diffeomorphisms of G with

inverses λg−1 and ρg
−1
, respectively. Let X(G) denote the linear space of smooth vector

fields of the Lie group G. A smooth vector field ξ ∈ X(G) is called left invariant if

λ∗gξ = ξ for all g ∈ G, where λ∗gξ(x) = (Tg⋅xλg−1) ⋅ ξ(g ⋅ x). If we assume x = g−1, then

the definition of the left invariant vector fields yields ξ(x) = Teλx ⋅ ξ(e), where e is

the unit element of G. Thus, any left invariant vector field is uniquely determined

by ξ(e) ∈ TeG. Conversely, given X ∈ TeG, one can obtain a left invariant vector

field LX ∈ XL(G), where XL(G) ⊂ X(G) is the space of left-invariant vector fields.

Table 1: Common Lie groups and their Lie algebras.
Lie Group Lie Algebra

Name Definition

General Linear Group GL(Rn) = {A ∈ Rn×n ∶ det A ≠ 0} gl(Rn) = {A ∈ Rn×n}
Positive General Linear Group GL+(Rn) = {A ∈ GL(Rn) ∶ det A > 0} gl+(Rn) = gl(Rn)
Special Linear Group SL(Rn) = {A ∈ GL(Rn) ∶ det A = 1} sl(Rn) = {A ∈ Rn×n ∶ tr A = 0}
Orthogonal Group O(Rn) = {A ∈ GL(Rn) ∶ AAT

= IdRn} o(Rn) = {A ∈ Rn×n ∶ A +AT
= 0}

Special Orthogonal Group
SO(Rn) = {A ∈ GL(Rn) ∶ so(Rn) = o(Rn)

AAT
= IdRn , det A = 1}

Euclidean Group
Euc(Rn) = {( 1 0

v A
) ∈ GL(Rn+1) ∶ euc(Rn) = {( 0 0

v A
) ∈ gl(Rn+1) ∶

v ∈ Rn,A ∈ SO(Rn)} v ∈ Rn,A ∈ so(Rn)}

Positive Affine Group
Aff+(Rn) = {( 1 0

v A
) ∈ GL+(Rn+1) ∶ aff+(Rn) = {( 0 0

v A
) ∈ gl(Rn+1) ∶

v ∈ Rn,A ∈ GL+(Rn)} v ∈ Rn,A ∈ gl(Rn)}
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This defines a linear isomorphism L ∶ TeG → XL(G), X ↦ LX. Note that X(G)
with the usual bracket of vector fields is a Lie algebra. Also the pullback along

a diffeomorphism is compatible with the Lie bracket of vector fields, so we have

λ∗g[ξ,η] = [λ∗gξ, λ∗gη] for all ξ,η ∈ X(G). Therefore, XL(G) is a Lie subalgebra of

X(G). Note that L endows a Lie bracket to g ∶= TeG given by [X,Y] ∶= [LX,LY](e),
for all X,Y ∈ g. The pair (g, []) is called the Lie algebra of the Lie group G. Also

note that similar to left invariant vector fields, one can define the notion of right

invariant vector fields XR(G). We summarize some of the most common Lie groups

and their Lie algebras in Table 1. Each of these groups is a subgroup of the general

linear group GL(Rn) with the composition (or the matrix multiplication) as its group

multiplication. The linear space gl(Rn) is equipped with the commutator of matrices

as its Lie bracket, i.e. [A,B] = AB − BA, ∀A,B ∈ Rn×n. Let x ∈ G and ξ ∈ G.

The flow of the vector field ξ is the mapping Flξ defined as Flξ(t, x) ∶= cx(t), where
cx ∶ Ix ⊂ R → G is an integral curve of ξ with Ix an open interval containing 0, i.e.

c′x(t) ∶= Ttcx ⋅ 1 = ξ(c(t)) and cx(0) = x. The exponential map exp ∶ g → G is a local

diffeomorphism given by exp(X) ∶= FlLX(1, e).
A subgroup H of a Lie group G that is also a submanifold of G is called a Lie

subgroup. A Lie subgroup H is a closed subset of G, and conversely, any closed

subgroup of G is a Lie subgroup. The Lie algebra h of a Lie subgroup H is a Lie

subalgebra of g. A subgroup H of G is called normal if conjg(h) ∈ H, ∀g ∈ G and

∀h ∈ H. A connected Lie subgroup H ⊂ G is normal if and only if the Lie subalgebra

h ⊂ g is an ideal.

3.1.3.1 Homogeneous Spaces and Group Actions

Let H be a Lie subgroup of G. The homogeneous space of G corresponding to H

is the coset space G/H = {g ⋅H ∶ g ∈ G}, where g ⋅H = {g ⋅ h ∶ h ∈ H} [73, 27]. The

homogeneous space G/H is equipped with the quotient topology, i.e. U ⊂ G/H is open
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if and only if p−1(U) is open in G, where p ∶ G → G/H is the natural projection. If H

is a closed subgroup of G (and so a Lie subgroup), then G/H is a smooth manifold

with dim(G/H) = dim G − dim H and the projection p is a submersion, i.e. Tgp is a

surjective map for all g ∈ G.

A left action of a Lie group G on a manifoldM is a smooth mapping ℓ ∶ G×M→M
such that ℓ(e, x) = x and ℓ(g1, ℓ(g2, x)) = ℓ(g1 ⋅ g2, x). Usually, if there is no risk of

confusion, ℓ(g, x) is denoted by g ⋅x. Consider mappings ℓg ∶M →M and ℓx ∶ G →M
with ℓg(x) = ℓx(g) = ℓ(g, x). Then, ℓg is a diffeomorphism with the inverse ℓg−1 . A

representation of G on a vector space V is a left action of G on V with linear mappings

ℓg ∶ V → V . But a representation ̺ ∶ d×V → V of a Lie algebra d is not a group action

since ̺0 ∶= ̺(0, ⋅) ≠ IdV . Similarly, a right action is a smooth mapping r ∶M×G →M
such that r(x, e) = x and r(r(x, g1), g2) = r(x, g1 ⋅g2). The following notation is usually

used for right actions: rx(g) = rg(x) = r(x, g). Note that each left action ℓ induces

a right action rℓ(x, g) = ℓ(g−1, x). The orbit of a left action through a point x ∈ M

is G ⋅ x = {g ⋅ x ∶ g ∈ G}. Two orbits are either disjoint or equal. The manifold M is

the union of disjoint orbits. The set of all orbits is denoted by M/G. The isotropy

subgroup of G at x or the stabilizer of x is defined as Gx = {g ∈ G ∶ ℓ(g, x) = x}. One

can define orbits and isotropy groups for right actions in a similar way. An action is

called transitive if it has only one orbit2. An action is called effective if only neutral

element e ∈ G acts as the identity of M. A free action is an action that all of its

isotropy subgroups equal {e}.
The homogeneous space G/H can be considered as the orbits of the free right

action r ∶ G ×H → G, (g, h) ↦ µ(g, h), where µ is the group multiplication of G. The

group multiplication of G induces a smooth transitive left action of G on G/H given

by ℓ(g1, g2 ⋅H) ∶= (g1 ⋅ g2) ⋅H. For each right action r ∶M × G →M, the fundamental

2Note that the relation dim(M/G) = dimM− dim G is not valid for an action of a Lie group G
on a manifoldM, in general.
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vector field ζX ∈ X(M) is defined as

ζX(x) = d

dt
∣
t=0
r(x, exp(tX)) = Te(rx) ⋅X, (193)

for all x ∈ M and X ∈ g. Thus, we obtain a linear mapping ζ ∶ g → X(M), which is

a Lie algebra homomorphism, i.e. ζ[X,Y] = [ζX,ζY]. Also we have Tx(rg) ⋅ ζX(x) =
ζAd(g−1)(X)(x ⋅ g). For a left action ℓ ∶ G ×M →M, we define

ζX(x) = d

dt
∣
t=0
ℓ(exp(tX), x) = Te(ℓx) ⋅X. (194)

The mapping ζ is not a Lie algebra homomorphism for left actions since in this case

we have ζ[X,Y] = −[ζX,ζY]. For left actions, one can show that Tx(ℓg) ⋅ ζX(x) =
ζAd(g)(X)(g ⋅ x).

Let φ ∶ M → M̄ be a mapping between manifolds M and M̄ with left actions

ℓ ∶ G ×M → M and ℓ̄ ∶ G × M̄ → M̄, respectively. Then, φ is called G-equivariant

if we have φ(ℓ(g, x)) = ℓ̄(g, φ(x)), ∀x ∈ M and ∀g ∈ G. Similarly, if M and M̄

have right actions r ∶ M × G → M and r̄ ∶ M̄ × G → M̄, then φ is G-equivariant if

φ(r(x, g)) = r̄(φ(x), g) for all x ∈ M and g ∈ G.

3.1.3.2 Representations of Lie Groups and Lie Algebras

We briefly review some basic concepts of the representation theory that will be used

later. For more detailed discussions, see [27, 47, 67]. The representation of a group

G on a finite-dimensional vector space V is a group homomorphism φ ∶ G → GL(V ).
Equivalently, we can consider a representation of G as a map φ̂ ∶ G × V → V such

that φ̂(g1 ⋅ g2, v) = φ̂(g1, φ̂(g2, v)), ∀g1, g2 ∈ G and v ∈ V . Let H ⊂ G be a subgroup

and let W ⊂ V be a subspace. The restriction ̺∣H ∶ H → GL(V ) is a representation

of H on V . A subspace W ⊂ V is G-invariant under ̺ if ̺(g)(W ) ⊂W , ∀g ∈ G. A G-

invariant subspace W defines the subrepresentation ̺W ∶ G→ GL(W ), g ↦ ̺(g), and
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the representation ˆ̺ ∶ G → GL(V /W ) given by ˆ̺(g)(v +W ) ∶= ̺(g)(v) +W , ∀g ∈ G.

Let V ∗ ∶= L(V,R) be the dual of V . The pairing between V ∗ and V is defined as

⟨v∗,v⟩ ∶= v∗(v), ∀v ∈ V and v∗ ∈ V ∗. The dual representation ̺∗ ∶ G → GL(V ∗) is
given by ̺∗(g) ∶= [̺(g−1)]T [47]. We have ⟨̺∗(g)(v∗), ̺(g)(v)⟩ = ⟨v∗,v⟩. Moreover, ̺

induces a representation on ⊗nV , v1 ⊗⋯⊗vn ↦ ̺(g)(v1)⊗ ⋅ ⋅ ⋅ ⊗ ̺(g)(vn). Similarly,

if ε ∶ G → GL(X) is another representation, we obtain the representation ̺V ⊗X(g) ∶
V ⊗X → V ⊗X, v ⊗ x ↦ ̺(g)(v) ⊗ ε(g)(x). A (left) G-module (V, ς) is a vector

space V together with a representation ς ∶ G→ GL(V ) of G on V . A homomorphism

of G-modules from (V, ς) into (V ′, ς ′) is a G-equivariant linear mapping ψ ∶ V → V ′,

i.e. ψ is a linear map and ψ(ς(g,v)) = ς ′(g,ψ(v)), ∀g ∈ G and ∀v ∈ V .

A representation of a Lie algebra on V is a Lie algebra homomorphism ̺ ∶ g →
gl(V ). Alternatively, a representation can be considered as an R-bilinear map ̺ ∶

g × V → V such that ∀X,Y ∈ g and ∀v ∈ V we have ̺ ([X,Y],v) = ̺ (X, ̺(Y,v)) −
̺ (Y, ̺(X,v)). The adjoint map or the adjoint representation of g is defined as ad ∶

g→ gl(g), X↦ [X, ⋅], and is a representation of g on g. Let h ⊂ g be a Lie subalgebra

and let W ⊂ V be a subspace. It is obvious that ̺∣h ∶ h → gl(V ) is a representation

of h on W . A subspace W is called g-invariant under ̺ if ̺(X)(W ) ⊂ W , ∀X ∈ g.

A g-invariant subspace W defines a representation ̺W ∶ g → gl(W ), X ↦ ̺(X),
that is called a subrepresentation of g. Moreover, ̺ induces a representation ˆ̺ ∶ g →
GL(V /W ) given by ˆ̺(X)(v +W ) ∶= ̺(X)(v) +W, ∀X ∈ g. Suppose f ∶ V → X is

a linear map. The transpose fT ∶ X∗ → V ∗ is defined as fT(x∗) = x∗ ○ f , ∀x∗ ∈ X∗.
A representation ̺ ∶ g → gl(V ) induces the dual representation ̺∗ ∶ g → gl(V ∗) given
by ̺∗(X) ∶= (̺(−X))T [47], i.e. ̺∗(X)(v∗) ∶= v∗(̺(−X)) = −v∗(̺(X)), ∀v∗ ∈ V ∗. A

g-module (V, ̺) is a vector space V (over the field of g) together with a representation

̺ ∶ g → gl(V ) of g on V . One can define the category of g-modules as follows. Let

(V, ̺ ∶ g → gl(V )) and (V ′, ̺′ ∶ g → gl(V ′)) be two objects. A homomorphism of g-

modules from (V, ̺) into (V ′, ̺′) is an R-linear map φ ∶ V → V ′, which is compatible
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with the action of g, i.e. φ(̺(X)(v)) = ̺′(X)(φ(v)). Such a homomorphism is also

called g-invariant or g-equivariant.

Suppose V is a finite-dimensional vector space. The group GL(V ) is a Lie group

with the Lie algebra gl(V ). Let G and H be Lie groups and φ ∶ G → H be a ho-

momorphism of Lie groups. Then, the tangent map Teφ ∶ g → h is a Lie algebra

homomorphism. In particular, if ̺ ∶ G → GL(V ) is a group representation of G

on V , then Te̺ ∶ g → gl(V ) is a Lie algebra representation of g on V called the

infinitesimal representation corresponding to ̺. The conjugation by g is defined

as conjg ∶ G → G, x ↦ gxg−1. Let Ad(g) ∶= Te(conjg) ∶ g → g. Then the map

Ad ∶ G → GL(g) is a representation of G on g called the adjoint representation of G.

Furthermore, the map ad ∶= Te(Ad) ∶ g→ gl(g) is a representation of Lie algebra g on

g called the adjoint representation of g. We have ad(X)(Y) = [X,Y] for all X,Y ∈ g.
In general, any representation of a Lie group induces a representation on its Lie alge-

bra which is obtained by differentiation [47]. All of the above g-representations that

was constructed from the representation V can be also obtained by differentiating

the counterpart G-representation. As an example, consider a representation of g that

is induced by a representation of G. Then, the dual representation of g can also be

obtained by differentiating the dual representation of G.

3.1.3.3 The Killing Form

Recall that the trace tr(f) of a linear mapping f ∶ V → V is defined as the trace

of a matrix representation of f , which does not depend on the specific choice of

coordinate systems on V . The Killing form B of the Lie algebra g is a symmetric

R-bilinear mapping given by B ∶ g×g→ R, (X,Y)↦ tr(ad(X)○ad(Y)). The Killing

form is a g-invariant bilinear form in the sense that B([X,Y],Z) = B(X, [Y,Z]),
∀X,Y,Z ∈ g. Moreover, the Killing form is invariant under automorphisms of g-

module (g,ad), i.e. B(φ(X), φ(Y)) = B(X,Y), where φ ∶ g → g is an arbitrary
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automorphism of g-module (g,ad). The Killing form is called nondegenerate if {X ∈
g ∶ B(X,Y) = 0,∀Y ∈ g} = {0}. A Lie algebra is semisimple if and only if its Killing

form is nondegenerate. The Killing form B ∶ g×g→ R defines the mapping B̂ ∶ g→ g∗

given by B̂(X) = B(X, ⋅), where g∗ ∶= L(g,R) is the dual of the g. For a finite-

dimensional vector space g one can show that B is nondegenerate if and only if B̂ is

an isomorphism [76].

3.1.4 Fiber Bundles

Here we review three types of fiber bundles: vector bundles, principal bundles, and

associated bundles. More details can be found in [73].

3.1.4.1 Fibered Manifolds

A map f ∶M → N is called submersion if it is a submersion at each x ∈ M, i.e. the

rank of Txf ∶ TxM→ Tf(x)N is equal to dim N . The map f is called immersion if Txf

is injective for all x. A triple (M, p,N ), where p ∶M→ N is a surjective submersion,

is called a fibered manifold. The manifoldsM and N are called the total space and

the base, respectively. The mapping p is called the projection. The fibered manifold

(M, p,N ) is also denoted byM → N or justM if the projection p is clear. A trivial

fibered manifold with a fiber S is (M × S, π̄M,M), where π̄M = pr1, i.e. π̄M is the

projection on the first coordinate.

A section of (M, p,N ) is a smooth mapping s ∶ N →M such that p ○ s = IdN .

The space of all smooth sections of (M, p,N ) is denoted by Γ(M) or Γ(M → N ).
Let x ∈ N and recall that a subset A ⊂M is a smooth submanifold of M if it is a

smooth manifold and the inclusion i ∶ A ↪M is an embedding, i.e. i is an immersion

and i ∶ A → i(A) is a homeomorphism, where i(A) has the subspace topology. Then,

Mx ∶= p−1(x) is a submanifold ofM called the fiber over x.

Suppose (M̄, p̄, N̄ ) is another fibered manifold. Then a morphism from (M, p,N )
into (M̄, p̄, N̄ ) is a smooth fiber-respecting map φ ∶M→ M̄, i.e. the smooth map φ
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transforms each fiber ofM into a subset of a fiber of M̄. The relation φ(Mx) ⊂ M̄x̄

defines a map φ ∶ N → N̄ such that p̄ ○φ = φ ○p, i.e. the following diagram commutes.

M
p

��

φ
// M̄

p̄
��N φ

// N̄
In this case, it is usually said that φ covers φ. All fibered manifolds together with

their morphisms form a category denoted by FM . As we mentioned earlier, M fm is

the category of m-dimensional manifolds and their local diffeomorphisms. A natural

bundle is a functor of M fm into FM that to each manifoldM associates a fibered

manifold (F (M), pM,M) and to each f ∶M→N associates a fiber-respecting mor-

phism F (f) ∶ F (M)→ F (N ) covering f . Thus, the following diagram commutes.

F (M)
pM

��

F (f)
// F (N )

pN

��M f
// N

3.1.4.2 Fiber Bundles

A fiber bundle (E , p,M,S) is a fibered manifold (E , p,M) together with a manifold

S such that each x ∈ M has an open neighborhood U ⊂ M with p−1(U) being dif-

feomorphic to U × S via a fiber-respecting diffeomorphism ψ such that the following

diagram commutes.

p−1(U)
p

##F
FF

FF
FF

FF

ψ
// U × S

pr1
||yy
yy
yy
yy
y

U

The manifolds E ,M, and S are called the total space, the base space, and the standard

fiber, respectively. The mapping p is called the projection. The pair (U,ψ) is called
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a fiber chart or a local trivialization of E . Note that a local trivialization is different

from a (local) chart of the manifold E , which is a pair (U , u), where U ⊂ E is an open

set and u ∶ U → u(U) ⊂ Rk, with k = dim E , is a diffeomorphism. A trivialization can

be considered as an alternative coordinate system induced by the additional bundled

structure of E .

A set of charts {(Uα, ψα)}α∈I such that {Uα}α∈I is an open cover of M, is called

a fiber bundle atlas. Suppose x ∈ Uαβ = Uα ∩ Uβ and s ∈ S. Then, ψα ○ ψ−1β (x, s) =
(x,ψαβ(x, s)), where ψ ∶ Uαβ × S → S is a diffeomorphism of S for each x. Alterna-

tively, one can assume that ψαβ ∶ Uαβ → Diff(S), where Diff(S) is the group of all

diffeomorphisms of S. The mappings ψαβ are called the transition functions of the

bundle.

3.1.4.3 Vector Bundles

Consider a fiber bundle (E , p,M,S) with S being a finite-dimensional vector space V .

In this case, a fiber chart (U,ψ) is called a vector bundle chart (or a local trivialization

of E). Moreover, assume that the transition functions of a fiber bundle atlas of E are

fiber linear isomorphisms, i.e. ψαβ ∶ Uαβ → GL(V ). Such fiber bundle atlases are

called vector bundle atlases. Two different vector bundle atlases are called equivalent

if their union is a vector bundle atlas. This defines an equivalence relation. A fiber

bundle (E , p,M, V ) together with an equivalence class of vector bundle atlases is

called a vector bundle. If there exists at least one vector bundle atlas, then there also

exists an equivalent class of vector bundle atlases.

If (E , p,M, V ) is a vector bundle, then Ex for all x ∈ M is a vector space since

the transition functions are homomorphisms of the vector space V and they induce

a unique linear structure on each Ex = p−1(x). In particular, for each u1,u2 ∈ Ex with

ψα(ui) = (x,vi) for i = 1,2, and c1, c2 ∈ R, we define c1u1 + c2u2 ∶= ψ−1α (x, c1v1 + c2v2).
Furthermore, 0x ∈ Ex is given by 0x = ψ−1α (x,0). The zero section 0 ∶M→ E is defined
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as 0(x) = 0x.
The tangent bundle (TM, πM,M,Rm) with m = dimM and πM(TxM) = x, is

a vector bundle. One can obtain the atlas {(π−1M(Uα), Tuα)} of TM from an atlas

{(Uα, uα)} ofM. The chart changing maps for this atlas are given by

Tuα ○ (Tuβ)−1(y,Y) = (uαβ(y), Ty(uαβ) ⋅Y), (195)

where y ∈ uβ(Uα ∩Uβ) and Y ∈ Rm. Since chart changing maps are diffeomorphisms,

we have Tyuαβ ∈ GL(Rm) and therefore, {(Uα, Tuα)} is a vector bundle atlas for the

tangent bundle. As we will see in the sequel, tensors and k-forms are vector bundles

as well.

Let (E , p,M, V ) and (F , q,N ,W ) be vector bundles. Then, a homomorphism

of vector bundles from (E , p,M, V ) into (F , q,N ,W ) is a fiber-respecting fiber-linear

smooth mapping φ ∶ E → F covering φ ∶M → N , i.e. the following diagram commutes.

E
p

��

φ
// F
q

��

M
φ

// N

Thus, φx ∶= φ∣Ex ∶ Ex → Fφ(x) is a homomorphism of linear spaces. The smooth vector

bundles and their homomorphisms form a category V B.

Let (E , p,M, V ) be a vector bundle. Suppose {vj}kj=1 is a basis for V and (Uα, ψα)
is a vector bundle chart. Consider the sections sj ∶ Uα → E , x ↦ ψ−1α (x,vj), for
j = 1, . . . , k. Then, for each x ∈ Uα, the set {sj(x)}kj=1 is a basis for Ex. The set

{sj}kj=1 is called a local frame field for E over Uα.

3.1.4.4 The Tangent Bundle of a Vector Bundle

In order to define the notion of connections, we need to study the structure of

the tangent bundle (TE , πE ,E) of a vector bundle (E , p,M, V ). Let {(Uα, ψα)}
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Figure 20: For an arbitrary vector bundle (E , p,M, V ), any chart (Uα, uα) ofM such
that (Uα, ψα) is a vector bundle chart for E , induces the trivialization (p−1(Uα), ψα)
on E .

be a vector bundle atlas for E such that {(Uα, uα)} is a smooth atlas for an m-

dimensional manifold M. As is schematically shown in Fig. 20, one can obtain an

atlas {(p−1(Uα), ψα)}3 for E , where

ψα ∶ p
−1(Uα) Ð→ uα(Uα) × V ⊂ Rm × V,

z z→ (uα ○ pr1 ○ ψα(z),pr2 ○ ψα(z)) . (196)

Recall that ψα ○ ψ−1β (x,v) = (x,ψαβ(x) ⋅ v) for all x ∈ Uα ∩Uβ and v ∈ V . Also for all

y ∈ uβ(Uα ∩Uβ), we have uα ○ u−1β (y) = uαβ(y) and

ψα ○ (ψβ)−1(y,v) = (uαβ(y), ψαβ (u−1β (y)) ⋅ v) . (197)

3Strictly speaking, (p−1(Uα), ψα) is not a chart, since the image of ψα is not a subset of Rl for
l =m + dim V.
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Note that (196) induces an atlas for TE with charts determined by

Tψα ∶ π
−1
E (p−1 (Uα))Ð→ uα(Uα) × V ×Rm × V. (198)

For writing (198), we use the fact that TvV ≈ V , i.e. we use V instead of TvV . Let

{vi} be a basis for V , v = vivi ∈ V , v̄ = v̄ivi ∈ V , and f ∈ C∞(V,R), where C∞(V,R)
is the set of smooth functions from V into R. Consider the curve c(t) = v + tv̄ in V .

Then c′(0)f = d
dt
∣t=0f ○ c(t) = v̄i ∂f∂xi = (v̄i ∂

∂xi
)f , where ∂

∂xi
∶= c′i(0) with ci(t) = v + tvi.

Naturally, one can consider the isomorphism ῑ ∶ V → TvV, vivi ↦ vi ∂
∂xi

. Whenever we

use a vector v̄ ∈ V as an element of TvV , we mean ῑ(v̄) that in the base { ∂
∂xi
} has

the same components as v̄ in the base {vi}. We have TV ≈ V × V .

Using (196), (195), and (197) we obtain the chart changing relations for TE as

follows:

Tψα ○ (Tψβ)−1(y,v,Y,V) = ( uαβ(y) , ψαβ (u−1β (y)) ⋅ v , Tyuαβ ⋅Y ,

(Ty(ψαβ ○ u−1β ) ⋅Y) ⋅V +ψαβ (u−1β (y)) ⋅V ),
(199)

whereY ∈ Rm andV ∈ V . For fixed (y,v), (199) is linear in (Y,V), which means that

(TE , πE ,E ,Rm × V ) is a vector bundle with a vector bundle atlas {(p−1(Uα), Tψα)},
such that the following diagram commutes.

π−1E (p−1(Uα))
πE

''O
OO

OO
OO

OO
OO

Tψα // p−1(Uα) ×Rm × V

pr1
vvmm
mm
mm
mm
mm
mm

p−1(Uα)
On the other hand, (199) is also linear in (v,V) for fixed (y,Y), which suggests that

(TE , Tp, TM, V ×V ) is a vector bundle with a vector bundle atlas {(π−1M(Uα), Tψα)},
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i.e. the following diagram commutes.

(Tp)−1(π−1M(Uα))
Tp

((P
PP

PP
PP

PP
PP

P

Tψα // π−1M(Uα) × V × V
pr1

vvnn
nn
nn
nn
nn
nn

π−1M(Uα)
The vertical space V E ⊂ TE of the vector bundle (E , p,M, V ) is defined as

V E ∶= Ker(Tp) = {Z ∈ TE ∶ Tp ⋅Z = (p (πE (Z)) ,0)} . (200)

For an arbitrary Z ∈ V E , we have Tψα ⋅ Z = (y,v,0,V). Thus, by using (199), we

obtain a trivialization for V E with transition functions

Tψα○(Tψβ)−1(y,v,0,V) = ( uαβ(y) , ψαβ (u−1β (y)) ⋅v , 0 , ψαβ (u−1β (y)) ⋅V ), (201)

which are linear in (v,V) for fixed y. Therefore, (V E , πM ○Tp,M, V ×V ) is a vector

bundle. Note that tangent vectors to curves that lie in a fix fiber of E are vertical,

i.e. belong to V E .

Let EM×E = {(z, y) ∈ E × E ∶ p(z) = p(y)} and vx, wx ∈ Ex with ψα(vx) = (uα(x),v)
and ψα(wx) = (uα(x),w). The vertical lift ℓvE ∶ EM ×E → V E is defined as ℓvE(vx, wx) =
d
dt
∣t=0(vx+twx). In a local coordinate chart, we have (Tψα)○ℓvE ( ψ−1α (x,v) , ψ−1α (x,w) ) =
(uα(x),v,0,w). The vertical projection is defined as prvE ∶= pr2 ○ (ℓvE)−1 ∶ V E → E .

3.1.4.5 Tensors and Differential Forms

It is possible to give a description of the size of vector bundles over a fixed base and

a fixed standard fiber. In particular, one can construct a set that is in a bijective

correspondence with the set of all isomorphism classes of vector bundles overM with

standard fiber V [73]. The main observation is that one can determine a unique class

of isomorphic vector bundles by a proper set of transition functions.
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Let V S be the category of finite-dimensional vector spaces and their homomor-

phisms. Suppose F is a covariant functor from V S into V S such that F ∶ L(V,W )→
L(F (V ), F (W )) is smooth. Then, it is possible to extend F to a covariant functor

from V B into V B. Let (E , p,M, V ) be an object of V B with a vector bundle at-

las {(Uα, ψα)} and corresponding transition functions ψαβ ∶ Uαβ → GL(V ). Then,

(F (E), p̃,M, F (V )) is the unique image of (E , p,M, V ) with an atlas {(Uα, ψ̃α)} and
ψ̃αβ = F (ψαβ) ∶ Uαβ → GL(F (V )), where F (ψαβ)(x) ∶= F (ψαβ(x))4. Thus, F (E) is
just a vector bundle over M with the standard fiber F (V ). Also let (E , p,M, V )
be another object of V B and h ∶ E → E be a vector bundle homomorphism. We

have F (h) ∶ F (E) → F (E), where F (h)∣F (E)x ∶= F (h∣Ex). If F is a contravariant

functor, then one can obtain a covariant functor from V B into V B by defining

(F (E), p̃,M, F (V )) to be a vector bundle with ψ̃αβ = F (ψ−1αβ) ∶ Uαβ → GL(F (V )) and
using F (h−1) instead of F (h).

The tensor product ⊗rV defines a covariant functor such that F (V ) = ⊗rV and

F (f) ∶ ⊗rV → ⊗rW, v1 ⊗ ⋯ ⊗ vr ↦ f(v1) ⊗ ⋯ ⊗ f(vr), where f ∈ L(V,W ) and
vi ∈ V for i = 1, . . . , r. Thus, one can associate the vector bundle (⊗rE , p̃,M,⊗rV )
to (E , p,M, V ). Similarly, the exterior power is a covariant functor, i.e. F (V ) = ΛrV
and F (f) ∶ ΛrV → ΛrW, v1 ∧ ⋯ ∧ vr ↦ f(v1) ∧ ⋯ ∧ f(vr). The duality functor

F (V ) = V ∗ is a contravariant functor with F (f) = f∗ ∶W ∗ → V ∗, w∗ ↦w∗ ○ f .

One can also use multifunctors to construct vector bundles. For example, consider

a contra-covariant bifunctor F and let (E , p,M, V ) and (E , p,M, V ) be vector bundles
with transition functions ψαβ and ψ

αβ
, respectively. Then, (F (E ,E), p̄,M, F (V,V ))

is a vector bundle with transition functions F (ψ−1αβ, ψ αβ
). In summery, given vector

bundles (E , p,M, V ) and (E , p,M, V ), one can define the following vector bundles

with the baseM: E∗, ΛrE , ⊗rE , E ⊗ E , E ∧ E , E ⊕ E , and L(E ,E).
4The vector bundle (F (E), p̃,M, F (V )) is an element of the unique isomorphic class of vector

bundles with the transition functions ψ̃αβ . Note that Ex is linear and we have F (E)x ∶= p̃−1(x) is
equal to F (Ex).
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A natural vector bundle is a covariant functor F from M fm into V B, i.e. the

functor F associates a vector bundle (F (M), pM,M, VM) to a manifold M and a

vector bundle isomorphism (invertible homomorphism) F (f) ∶ F (M) → F (M̄) to
each immersion f ∶M → M̄ such that the following diagram commutes.

F (M)
pM

��

F (f)
// F (M̄)

pM̄
��

M
f

// M̄

For example, TM is a natural vector bundle with M ↦ (TM, πM,M,Rm) and

f ↦ Tf . Let T ∗M ∶= (TM)∗, which is called the cotangent bundle. Then, T ∗M is

also a natural vector bundle: M ↦ (T ∗M, π̃M,M, L(Rm,R)) and f ↦ T ∗f , where

(T ∗f)x ∶= ((Txf)−1)∗ ∶ T ∗xM → T ∗
f(x)
M̄. In general, let F be a covariant functor

from V S into V S as we mentioned earlier. Then, F (TM) defines a natural vector

bundle given by M ↦ (F (M), p̄,M, F (Rm)) and f ↦ F (Tf). For contravariant

functors we have f ↦ F ((Tf)−1), where (Tf)−1∣f(x) ∶= (Txf)−1.
A tensor field of type (pq) is a section of the vector bundle ⊗pTM⊗⊗qT ∗M→M.

Let (U,u) be a chart for M. Then, { ∂
∂ui
}mi=1 and {dui}mi=1 are local frame fields for

TM and T ∗M over U , respectively. The corresponding local frame field over U for

⊗pTM⊗⊗qT ∗M is

{ ∂

∂ui1
⊗⋯⊗

∂

∂uip
⊗ duj1 ⊗⋯⊗ dujq}

i1,...,ip,j1,...jq∈{1,...,m}
. (202)

Therefore, any (pq)-tensor field T over U can be written as

T = T i1...ipj1...jq
∂

∂ui1
⊗⋯⊗

∂

∂uip
⊗ duj1 ⊗⋯⊗ dujq . (203)

Alternatively, using the relation W ⊗V ∗ ≈ L2(W ∗, V ;R) (see (186)), one can consider
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T as a multilinear function with

T (dui1 , . . . , duip , ∂

∂uj1
, . . . ,

∂

∂ujq
) = T i1...ipj1...jq ∈ C∞(U,R), (204)

with C∞(U,R) denoting the set of smooth functions g ∶ U ⊂ M → R. On the other

hand, the relation W ⊗V ∗ ≈ L(V,W ) yields another interpretation: a (pq)-tensor field
T can be considered as a mapping

T ∶ X(M) ×⋯×X(M)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
q

→ Γ(⊗pTM), (205)

which is q-linear over C∞(M,R). To simplify the notation, the same symbols are

used to denote tensors in all of the above interpretations, but it should be kept in

mind that they are elements of three different sets.

Another type of tensors which is important in nonlinear elasticity is two-point

tensors [82]. Let ϕ ∶M→ N be a diffeomorphism. A two-point tensor of type (pq rs) is
a section of the vector bundle T →M, where the fiber of T over x ∈M is given by

Tx =⊗pTxM⊗⊗qT ∗xM⊗⊗rTϕ(x)N ⊗⊗sT ∗ϕ(x)N . (206)

A differential form or an exterior form of degree k or simply a k-form is a section

of the vector bundle ΛkT ∗M→M. The space of all k-forms is denoted by Ωk(M) ∶=
Γ(ΛkT ∗M). Using (190), one can also consider a k-form α as a mapping

α ∶ X(M) ×⋯×X(M)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

→ C∞(M,R), (207)

which is alternating and k-linear over C∞(M,R). Therefore, a k-form is an alternat-

ing (0k)-tensor. The local frame field for ΛkT ∗M corresponding to the chart (U,u) of
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M is given by

{dui1 ∧⋯∧ duik}i1,...,ik∈{1,...,m}
i1<i2<⋯<ik

. (208)

Thus, a form α ∈ Ωk(M) over U can be written as

α = ∑
i1<i2<⋯<ik

αi1...ikdu
i1 ∧⋯∧ duik =

1

k!
αi1...ikdu

i1 ∧⋯∧ duik , (209)

where the summation convention is suppressed in the left summation.

Let V → M be a vector bundle. A vector bundle valued k-form is a section of

ΛkT ∗M⊗V →M. The space of V-valued k-forms is denoted by Ωk(M;V). From the

relation (191), we conclude that a form β ∈ Ωk(M;V) is also an alternating k-linear

(over C∞(M,R)) mapping

β ∶ X(M) ×⋯×X(M)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

→ Γ(V). (210)

Suppose V is a finite-dimensional vector space. An alternating k-linear mapping

γ ∶ X(M) ×⋯×X(M)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

→ C∞(M, V ) (211)

is called a V -valued k-form. We have γ ∈ Ωk(M;V ) ∶= Γ(ΛkT ∗M⊗ V →M).
3.1.4.6 Principal Bundles

Let G be a Lie group. A fiber bundle (P , p,M,G) is called a principal (fiber) bundle

if it has a fiber bundle atlas {(Uα, ψα)} such that ψα ○ ψ−1β (x, g) = (x,ψαβ(x, g)) =
(x,ϕαβ(x) ⋅ g), where the dot denotes the group multiplication of G and the smooth

functions ϕαβ ∶ Uαβ → G satisfy the cocycle conditions ϕαβ(x) ⋅ ϕβγ(x) = ϕαγ(x) for
x ∈ Uα∩Uβ ∩Uγ and ϕαα(x) = e, with e being the unit element of G. The bundle atlas

{(Uα, ψα)} is called a principal bundle atlas and G is called the structure group. The

principal bundle P is also called a principal G-bundle. Suppose ux = ψ−1α (x, g1) ∈ Px.
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It is possible to define a unique right action r ∶ P × G → P on P which is called the

principal right action and is given by

r(ux, g2) = r(ψ−1α (x, g1), g2) ∶= ψ−1α (x, g1 ⋅ g2). (212)

The principal right action is also written as ux ⋅ g ∶= r(ux, g) and is free and proper.5

The orbit of the principal right action through ux is the fiber Px. In fact, the mapping

rux ∶ G → P is a diffeomorphism onto the fiber through ux. Note that in contrast to

the fibers Vx of a vector bundle (V , p,M, V ), which inherit the linear structure of the

standard fiber V , the fibers Px of a principal G-bundle P are diffeomorphic to G and

do not have a Lie group structure, in general.

One can generalize the previous example to arbitrary homogeneous spaces as fol-

lows. Let G be a Lie group and H ⊂ G be a Lie subgroup. Consider the homogeneous

space G/H and the natural projection p ∶ G → G/H. Then, (G, p,G/H,H) is a principal

fiber bundle. More generally, let O be a smooth manifold with a smooth, free, proper

right action O×G → O. The set O/G with the quotient topology is a smooth manifold

with dim (O/G) = dim O − dim G, and (O, p̄,O/G,G) is a principal G-bundle, where

p̄ ∶ O → O/G is the natural projection.

Let ξ,η ∈ X(P). The tangent map of the multiplication µ ∶ G × G → G of G makes

TG into a Lie group with the multiplication given by

T(g1,g2)µ ⋅ (ξ(g1),η(g2)) = Tg1(ρg2) ⋅ ξ(g1) + Tg2(λg1) ⋅ η(g2).

As we mentioned earlier, (g,X) ↦ LX(g) defines an isomorphism G × g → TG. Let

ug1 , vg2 ∈ TG, where ug1 = LU(g1) and vg2 = LV(g2). The group multiplication of TG

can be written as ug1 ⋅ vg2 = L(Ad(g−1
2
)U+V)(g1 ⋅ g2). In fact, TG is isomorphic to the

5A right action r ∶ P × G → P is proper if for any compact subsets A,D ⊂ P , the set {g ∈ G ∶(A ⋅ g) ∩D ≠ ∅} is also compact.
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semidirect product G ⋉g. The fiber bundle (TP , Tp, TM, TG) is also a principal fiber

bundle with the principal right action Tr ∶ TP ×TG → TP , where r ∶ P ×G → P is the

principal right action of (P , p,M,G).
Let (P , p,M,G) and (Q, q,N ,G) be principal G-bundles. A fibered manifold mor-

phism χ ∶ P → Q is called a principal bundle homomorphism if it is G-equivariant

with respect to the principal right actions, i.e. if χ(ux ⋅ g) = χ(ux) ⋅ g, where the

dots denote the principal right actions. Principal G-bundles together with their ho-

momorphisms form a category, which is denoted by PB(G). Let (P ′, p′,M′,G′) be
another principal bundle and φ ∶ G → G′ be a group homomorphism. Then, a fibered

manifold morphism χ ∶ P → P ′ is called a homomorphism over φ of principal bun-

dles if χ(ux ⋅ g) = χ(ux) ⋅ φ(g). The category of principal fiber bundles and their

homomorphisms is denoted by PB.

Let (V , p,M, V ) be a vector bundle. Using the method described in §3.1.4.5, we

can define the vector bundle L(M × V,V) →M whose fiber over x ∈ M is L(V,Vx).
Consider the open subset GL(V) ∶= GL(M × V,V) ⊂ L(M × V,V), which is a fiber

bundle over M with fibers GL(V,Vx), i.e. invertible linear maps from V into Vx.

Composition from the right by elements of GL(V ) gives a right action of GL(V )
on GL(V). One can show that this right action is the principal right action for the

principal GL(V )-bundle GL(V) → M. The principal bundle GL(V) is called the

linear frame bundle of V . Note that a local section of GL(V) specifies a unique

local frame field for V . The linear frame bundle of TM is denoted by P1M, i.e.

P1M ∶= GL(TM). Thus, P1M→M is a principal GL(Rm)-bundle whose fiber over

x ∈ M can be considered as the set of all bases of TxM.

3.1.4.7 Associated Bundles

Suppose (P , p,M,G) is a principal bundle and S is a manifold with a left action

ℓ ∶ G × S → S. We can define a right action of G on P × S as r̃ ∶ (P × S) × G →
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P ×S, ((ux, s), g)↦ (ux ⋅g, g−1 ⋅s). Let P ×G S ∶= (P ×S)/G, i.e. P ×G S is the space of

the orbits of r̃. By ⟦ux, s⟧ ∈ P ×G S, we denote the orbit of (ux, s) ∈ P × S. The space

P ×G S is a manifold and the natural projection p ∶ P × S → P ×G S is a surjective

submersion. One can show that (P × S, p,P ×G S,G) is a principal bundle with the

principal right action r̃. Moreover, consider the projection p̃ ∶ P ×G S →M such that

the following diagram commutes.

P × S
pr1
��

p
// P ×G S

p̃

��

P
p

//M

Then, (P ×G S, p̃,M,S) is a fiber bundle, which is called the associated bundle to the

principal bundle P with standard fiber S.6

Let ̺ ∶ G → GL(V ) be a representation of G on a finite-dimensional vector space

V . As we mentioned earlier, ̺ introduces a left action of G on V . The associated

bundle (P ×G V, p̃,M, V ) is a vector bundle. The linear structure of P ×G V is as

follows: suppose c1, c2 ∈ R, v1,v2 ∈ V , and ux ∈ P . Then, we have

⟦ux, c1v1 + c2v2⟧ = (ux, c1v1 + c2v2) ⋅ G = {(ux ⋅ g, ̺(g−1)(c1v1 + c2v2)) , ∀g ∈ G}
= {(ux ⋅ g, c1̺(g−1)(v1) + c2̺(g−1)(v2)) , ∀g ∈ G}
∶= c1⟦ux,v1⟧ + c2⟦ux,v2⟧. (213)

Let F be a functor as in §3.1.4.5. Then, ˜̺ ∶ G → GL(F (V )) is also a representation of

G and the corresponding associated bundle P ×G F (V ) →M is identical to the fiber

bundle F (P ×G V )→M.

6Actually, an associated bundle is more than a fiber bundle; it is a G-bundle, which means that
it has an extra interaction with the structure group of P , see [73] for more details.
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3.1.4.8 Jets

LetM and N be manifolds. We say two smooth mappings f ∶M → N and h ∶M → N
determine the same jet of order r (or r-jet) at x ∈ M if f(x) = h(x) and in some local

coordinates around x and f(x), all partial derivatives of f and h up to order r are

equal. Then, the chain rule implies that the partial derivatives are equal in all other

charts as well. This defines an equivalence relation on the set of smooth mappings,

whose classes are called r-jets at x and denoted by jrxf . The set of all r-jets is

denoted by Jr(M,N ). The points x and f(x) are called the source and the target of

jrxf , respectively. The space of all r-jets with the source x is denoted by Jrx(M,N ).
Similarly, Jr(M,N )y denotes the space of all r-jets with the target y. We define

Jrx(M,N )y ∶= Jrx(M,N ) ∩ Jr(M,N )y. For 0 ≤ s < r, we can define the projection

map πrs ∶ J
r(M,N )→ Js(M,N ) that sends an r-jet to its underlying s-jet. For s = 0,

we define πr0 ∶ J
r(M,N ) →M ×N . The mapping jrf ∶M → Jr(M,N ), x ↦ jrxf , is

called the r-jet prolongation of f ∶M→ N .

Let jrxf ∈ Jrx(M,N )y and jryg ∈ Jry(N ,Q)z. Then the composition of r-jets is

defined as (jryg) ○ (jrxf) = jrx(g ○ f) ∈ Jrx(M,Q)z. The chain rule implies that this

composition is well-defined. An element X ∈ Jrx(M,N )y is called invertible if there

exists another element Y ∈ Jry(N ,M)x such that X ○ Y = jry(IdN ), and Y ○ X =

jrx(IdM). The existence of an invertible jet implies that dimM = dim N . One can

show that Jr(M,N ) is a smooth manifold and (Jr(M,N ), πr0,M ×N ) is a fibered

manifold. Moreover, the mappings πrs for 0 ≤ s < r are smooth. Let M f denote

the category of manifolds and smooth mappings and consider a local diffeomorphism

ξ ∶M → M̄ and a smooth mapping ζ ∶ N → N̄ . The r-jet prolongation bifunctor is

defined as Jr ∶ M fm ×M f → FM such that (M,N ) ↦ Jr(M,N ), and (ξ, ζ) ↦
Jr(ξ, ζ) ∈FM , where

Jr(ξ, ζ) ∶ Jr(M,N )→ Jr(M̄, N̄ ), X ↦ jryζ ○X ○ (jrxξ)−1, (214)
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with x and y being the source and the target of X ∈ Jr(M,N ).
Let (E , p,M) be a fibered manifold. The subset of Jr(M,E) consisting of all

r-jets of local sections of E is called the r-jet prolongation of E and is denoted by

Jr(E →M) or Jr(E). It is possible to show that Jr(E) is a smooth submanifold of

Jr(M,E) and Jr(E)→M is a fibered manifold. One can show that Jr() is a functor.7
The r-jet prolongation of sections of the fibered manifold E can be considered as the

mapping jr ∶ Γ(E)→ Γ(Jr(E)) given by s↦ jrs, with jrs ∶M → Jr(E), x↦ jrxs. An

operator D ∶ Γ(E →M) → Γ(E ′ →M) is of order 0 ≤ r ≤ ∞ if jrxs = jrxr implies that

D(s)(x) =D(r)(x). In this case, there exists a fiber-respecting mapping D̃ ∶ JrE → E ′
given by D(s)(x) = D̃(jrxs), that covers IdM. A differential operator of order r is a

smooth mapping D ∶ Γ(E →M) → Γ(E ′ →M) of order r. Let V →M and V ′ →M
be vector bundles over a compact manifold. One can show that any linear operator

Γ(V)→ Γ(V ′) is a linear differential operator [98]. Note that the associated operator

JrV → V ′ of such a linear operator is a homomorphism of vector bundles.

3.1.5 Derivatives on Vector Bundles

The main goal of this section is to introduce the Maurer-Cartan form. First we need

to extend the notion of exterior derivative to bundle-valued forms. We also define Lie

derivatives of sections of vector bundles.

Consider vector fields X,Z ∈ X(M). Recall that the Lie bracket [, ] ∶ X(M) ×
X(M) → X(M) is an R-bilinear mapping, which is antisymmetric and satisfies the

Jacobi identity (192). The Lie bracket is not linear over C∞(M,R) since [fX,Z] =
f[X,Z] − (Zf)X, with f ∈ C∞(M,R). In a local chart (U,u) ofM let X = X i ∂

∂ui

and Z = Zi ∂
∂ui

. We have

[X,Z] = (X i∂Z
j

∂ui
−Zi∂X

j

∂ui
) ∂

∂uj
.

7The functor Jr() is different from the bifunctor Jr(, ), which was defined earlier.
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The pair (X(M), [, ]) is a Lie algebra, where X(M) is considered to be a vector

space over R and not C∞(M,R). Let ϕ ∶M → N be a local diffeomorphism8 and

Y 1,Y 2 ∈ X(N ). Then we can write ϕ∗[Y 1,Y 2] = [ϕ∗Y 1, ϕ∗Y 2], i.e. ϕ∗ ∶ X(N ) →
X(M) is a Lie algebra homomorphism. One can use natural vector bundles to define

the pull-back of sections of vector bundles. Let F be a natural vector bundle and

σ ∈ Γ (F (N )). The pull-back ϕ∗σ ∈ Γ (F (M)) is defined as

ϕ∗σ = F (ϕ−1ℓ ) ○σ ○ϕ, (215)

where ϕ−1ℓ is the local inverse of ϕ. In particular, one can use this definition to obtain

the pull-back of tensors.

3.1.5.1 Lie Derivative

Consider a vector field X ∈ X(M). The mapping FlXt ∶= Fl
X(t, ⋅) ∶M →M is a local

diffeomorphism. Let f ∈ C∞(M,R). The Lie derivative of f is a smooth mapping

LXf ∈ C∞(M,R) defined as

LXf(x) ∶= d

dt
∣
t=0
f (FlX(t, x)) ,

or equivalently

LXf ∶=
d

dt
∣
t=0
(FlXt )∗f = d

dt
∣
t=0
(f ○ FlXt ). (216)

One can show that LXf =X(f). Now suppose Y ∈ X(M). The Lie derivative of Y

along X, LXY ∈ X(M), is given by

(LXY )f ∶= d

dt
∣
t=0
[((FlXt )∗Y )f] = d

dt
∣
t=0
[(T (FlX−t) ○Y ○ FlXt )f] , (217)

8Note that for a local diffeomorphism ϕ ∶M→ N , the pull-back ϕ∗ ∶ X(N) → X(M) is defined
as (ϕ∗Y )(x) ∶= (Txϕ)−1 ⋅Y (ϕ(x)), where x ∈M and Y ∈ X(N).
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which can be written as

LXY ∶=
d

dt
∣
t=0
(FlXt )∗Y = d

dt
∣
t=0
(T (FlX−t) ○Y ○ FlXt ) . (218)

We have LXY = [X,Y ]. Next, we define the Lie derivative of sections of vector

bundles. Suppose F is a natural vector bundle. Fixing t, the mapping FlXt ∶M →M
is a local diffeomorphism, and hence one can define the vector bundle isomorphism

F (FlXt ) ∶ F (M)→ F (M) such that the following diagram commutes.

F (M)
pM

��

F (FlXt )// F (M)
pM

��

M
FlXt //M

Here F maps M to (F (M), pM,M, VM). The pull-back via FlXt of a section s ∈

Γ(F (M)) is defined as

(FlXt )∗s ∶= F (FlX−t) ○ s ○ FlXt ∈ Γ(F (M)). (219)

For a fixed x ∈ M, t ↦ (FlXt )∗s(x) is a curve in the vector space F (M)x, and

therefore, the expression d
dt
∣t=0 [(FlXt )∗s(x)] is meaningful, i.e. it is the tangent vector

to the curve (FlXt )∗s(x) at s(x). Here we are using the fact that a vector space is

isomorphic to its tangent space, and thus we identify the vector space and its tangent

space. Using the notation introduced after (198), by d
dt
∣t=0 [(FlXt )∗s(x)] we actually

mean (ῑ)−1( d
dt
∣t=0 [(FlXt )∗s(x)]). For sections of fiber bundles, one should consider

d
dt
∣t=0 [(FlXt )∗s(x)] as an element of the vertical bundle (200), see [27]. The Lie

derivative of s ∈ Γ(F (M)→M) along X ∈ X(M) is given by

LXs ∶=
d

dt
∣
t=0
[(FlXt )∗s] . (220)
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Note that if F (M) = TM, the definition (220) coincides with (218).

3.1.5.2 Exterior Derivative

Let α ∈ Ωk(M) and X0, . . . ,Xk ∈ X(M). We define Ω0(M) ∶= C∞(M,R) and

suppress the summation convention throughout this section unless stated otherwise.

The exterior derivative d ∶ Ωk(M)→ Ωk+1(M) is defined as

dα(X0, . . . ,Xk) = k∑
i=0

(−1)iX i (α(X0, . . . , X̂ i, . . . ,Xk))
+ ∑

i<j

(−1)i+jα ([X i,Xj],X0, . . . , X̂ i, . . . , X̂j, . . . ,Xk) ,(221)

where the hat over a vector field means the omission of that argument. To calculate

the first summation, one needs to consider X i as the mapping X i ∶ C∞(M,R) →
C∞(M,R). Let V be a finite-dimensional vector space with a basis {vi} and suppose

γ ∈ Ωk(M;V ). One can also use (221) to define dγ ∈ Ωk+1(M;V ). In this case, we

have X i ∶ C∞(M, V )→ C∞(M, V ), f jvj ↦X i(f j)vj, where f j ∈ C∞(M,R) and we

use the summation convention on the index j.

Suppose in a local chart (U,u), α ∈ Ωk(M) is expressed as in (209). One can

show that

dα = ∑
i1<i2<⋯<ik

dαi1...ik ∧ du
i1 ∧⋯∧ duik . (222)

Let ϕ ∶M → N and η ∈ Ωk(N ). Using the general definition of pull-back given in

(215), the pull-back ϕ∗η ∈ Ωk(M) is defined as

ϕ∗η(x)(X1, . . . ,Xk) = η(ϕ(x))(Txϕ ⋅X1, . . . , Txϕ ⋅Xk), (223)

where x ∈ M. The exterior derivative commutes with the action of local diffeomor-

phisms, i.e. ϕ∗(dη) = d(ϕ∗η). A differential from α ∈ Ωk(M) is closed if dα = 0, and

is exact if α = dβ for some β ∈ Ωk−1(M). Any exact form is closed, i.e. d ○d = 0. The

Poincaré lemma states that a closed differential form is locally exact.
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Figure 21: The Maurer-Cartan form ω ∈ Ω1(G;g) of a Lie group G defines the linear
isomorphism ω(g) ∶ TgG → g.

3.1.5.3 The Maurer-Cartan Form

Using the notion of left invariant vector fields, one can obtain a trivialization for the

tangent bundle of a Lie group G. Recall that the mapping L ∶ g→ XL(G), X↦ LX, is

an isomorphism of vector spaces. The mapping G × g→ TG given by (g,X)↦ LX(g)
is a vector bundle isomorphism covering IdG. The inverse of this mapping can be

considered as a g-valued one-form ω ∈ Ω1(G;g) defined as ω(g)(ξ) ∶= Tgλg−1 ⋅ξ(g), see
Fig. 21. For each g ∈ G, the mapping ω(g) ∶ TgG → g is a linear isomorphism. This

one-form is called the Maurer-Cartan form. We have ω(LX) =X, and λ∗gω = ω. Also

we can write

(ρg)∗ω(ĝ)(ξ (ĝ)) = ω(ĝ ⋅ g) (Tĝρg ⋅ ξ(ĝ)) = Tĝ⋅gλg−1⋅ĝ−1 ○ Tĝρg ⋅ ξ(ĝ)
= Tgλg−1 ○ Tĝ⋅gλĝ−1 ○ Tĝρ

g ⋅ ξ(ĝ)
= Tgλg−1 ○ Teρ

g ○ Tĝλĝ−1 ○ ξ(ĝ)
= Te (λg−1 ○ ρg) ○ Tĝλĝ−1 ⋅ ξ(ĝ)
= Ad(g−1) ○ω(ĝ) (ξ(ĝ)) . (224)

Thus, we obtain

(ρg)∗ω = Ad(g−1) ○ω. (225)
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Using the definition (221) and noting that the value of ω on left invariant vector fields

is constant, we can write

dω(LX,LY) = −ω([LX,LY]), ∀X,Y ∈ g. (226)

The definition of the Lie bracket of g yields ω([LX,LY]) = [X,Y]. Thus, (226) can
be written as

dω(ξ,η) + [ω(ξ),ω(η)] = 0, ∀ξ,η ∈ X(G). (227)

This is called the Maurer-Cartan equation. LetX,Y ∈ X(M) and β1,β2 ∈ Ω1(M;v),
where v is a Lie algebra. The bracket [β1,β2] ∈ Ω2(M;v) is defined as [β1,β2](X,Y ) ∶=
[β1(X),β2(Y )]+ [β2(X),β1(Y )], see [95]. In particular, we have [β(X),β(Y )] =
1
2
[β,β](X,Y ). Thus, one can also write the Maurer-Cartan equation as

dω +
1

2
[ω,ω] = 0. (228)

3.1.6 Connections

In this section, we discuss various types of connections including general connections,

principal connections, induced connections, and linear connections. Let M be a

manifold. Recall that a distribution D onM is a subset D ⊂ TM such that for each

x ∈ M, Dx ∶= D∩TxM is a vector subspace of the vector space TxM. Note that D can

be considered as the kernel of a one-form with values in a suitable vector space V ,

where dim V ≥ dimM −maxx∈M{dim Dx}. A distribution D is of constant rank k if

dim Dx = k, ∀x ∈ M. A distribution is smooth if it is the kernel of a smooth one-form.

An integral manifold I ⊂ M of D is a submanifold of M such that TxI ⊂ Dx for all

x ∈ I. A maximal integral manifold is an integral manifold such that TxI = Dx for

all x ∈ I. A distribution is integrable if there is a maximal integral manifold through

each point x ∈ M. A distribution D is called involutive if for all ξ,η ∈ X(M) with
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ξ(x),η(x) ∈ Dx, ∀x ∈ M, we have [ξ,η](x) ∈ Dx. The Frobenius theorem states that

a smooth constant-rank distribution is integrable if and only if it is involutive.

A vector sub-bundle (W , p,M) of a vector bundle (V , p,M) is a vector bundle for

which there exists a vector bundle homomorphism τ ∶ W → V that covers IdM and

τx ∶Wx → Vx is a linear embedding. Let φ ∶ V → V ′ be a vector bundle homomorphism

between (V , p,M) and (V ′, p′,M′) such that the rank of φx ∶= φ∣Vx is constant for all

x ∈ M. Then, Ker(φ) is a vector sub-bundle of V , where (Ker(φ))x ∶= Ker(φx). In

particular, suppose (E , p,M,S) is a fiber bundle. Since the mapping p is a submersion,

the rank of Tp is constant, and hence the vertical bundle (V E ∶= Ker(Tp), πE ,E) is
a vector sub-bundle of (TE , πE ,E). Note that V E is also a smooth constant-rank

distribution of TE . Let ψ,λ ∈ X(E) with ψ(u),λ(u) ∈ V E , ∀u ∈ E . We have Tp ⋅

[ψ,λ] = [Tp ⋅ ψ, Tp ⋅ λ] = 0.9 This means that [ψ,λ] ∈ V E , i.e. V E is involutive.

Therefore, V E is integrable as a consequence of the Frobenius theorem.

Let K ∈ Ωk(M;TM), L ∈ Ωl(M;TM), and X,Y ∈ X(M). The Frölicher-

Nijenhuis bracket [K,L] is defined such that [K,L] ∈ Ωk+l(M;TM). For k = l = 1,
[K,L] ∈ Ω2(M;TM) is given by

[K,L](X,Y ) = [K(X),L(Y )] − [K(Y ),L(X)]
− L([K(X),Y ] − [K(Y ),X]) −K([L(X),Y ] − [L(Y ),X])
+ (L ○K +K ○L) [X,Y ]. (229)

See [73] for the general definition. Let P ∈ Ω1(M;TM) be a projection in each fiber

of TM, i.e. P ○ P = P . The spaces Ker(P ) and Im(P ) are called the horizontal

space and the vertical space of P , respectively. If the rank of P is constant, both are

9Note that this relation is valid although p is not a local diffeomorphism. For a smooth function
f , the Lie brackets of f -related vector fields are f -related, see [73].
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vector sub-bundles of TM. Substituting P in (229) yields

[P ,P ] = 2R + 2R̄, (230)

where R, R̄ ∈ Ω2(M;TM) are given by

R(X,Y ) = P ( [(IdTM −P )(X), (IdTM −P )(Y )] ), (231)

and

R̄(X,Y ) = (IdTM −P )([P (X),P (Y )]). (232)

The vector-valued form R is called the curvature and R̄ is called the co-curvature of

P . For a constant-rank projection P , R and R̄ are the obstructions to integrability

of Ker(P ) and Im(P ), respectively. The Bianchi identity reads

[P ,R + R̄] = 0. (233)

As we will see later, connections are special cases of vector-valued 1-forms that are

also projections in the sense that we mentioned above.

3.1.6.1 General Connections

Let (E , p,M,S) be a fiber bundle and V E ∶= Ker(Tp) be the vertical bundle of E . A

general connection on (E , p,M,S) is a vector-valued one-form Φ ∈ Ω1(E ;V E) such
that Im(Φ) = V E and Φ ○Φ = Φ, i.e. a connection is a projection TE → V E . As we

mentioned earlier, the vertical bundle V E is a vector sub-bundle of TM. On the other

hand, since HE ∶= Ker(Φ) is of constant rank, it is another vector sub-bundle of TE

that is called the horizontal bundle of E associated to the connection Φ. Elementary

linear algebra tells us that TǫE =HǫE ⊕ VǫE for ǫ ∈ E , i.e. TE =HE ⊕ V E .

Suppose {(Wα, wα)} is an atlas for S and {(Uα, ψα)} is a fiber bundle atlas for E
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Figure 22: Local charts (Wα, wα) of S and (Uα, uα) of M such that (Uα, ψα) is a
fiber bundle chart for a fiber bundle (E , p,M,S) induce the chart (ψ−1α (Uα×Wα), ψα)
on E .

such that {(Uα, uα)} is an atlas for M. Similar to §3.1.4.4, we can obtain an atlas

{(ψ−1α (Uα ×Wα), ψα)} for E given by

ψα ∶ ψ
−1
α (Uα ×Wα) ⊂ p−1(Uα) Ð→ uα(Uα) ×wα(Wα) ⊂ Rm+s,

z z→ (uα ○ pr1 ○ ψα(z), wα ○ pr2 ○ ψα(z)) , (234)

where m = dim M and s = dim S, see Fig. 22. Using (234), we obtain the atlas

{(π−1E (ψ−1α (Uα ×Wα)) , Tψα)} with the charts Tψα ∶ π
−1
E (ψ−1α (Uα ×Wα)) → uα(Uα) ×

wα(Wα) × Rm × Rs for (TE , πE ,E). Consider a point ǫ = ψ−1α (x, σ) ∈ ψ−1α (Uα ×Wα),
with ψα(ǫ) = (û1, . . . , ûm, ŵ1, . . . , ŵs), and the curves

αi(t) = (ψα)−1 (û1, . . . , ûi + t, . . . , ûm, ŵ1, . . . , ŵs) for i = 1, . . . ,m, (235)
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Figure 23: A box B can be considered as a fiber bundle with the line l as the base
space and the “vertical” planes Pǫ as the fibers, where ǫ is the intersection point of
the plane and l. The tangent vectors to curves c1 and c2 that remain on a single
“vertical” plane belong to V B. Any curve that moves between the fibers such as the
line l′, has a tangent vector in HB. Note that this is valid for any connection on B.

and

βj(t) = (ψα)−1 (û1, . . . , ûm, ŵ1, . . . , ŵj + t, . . . , ŵs) for j = 1, . . . , s. (236)

Note that p (βj(t)) = x, i.e. the curves βj(t) remain in a single fiber of E . We define

∂
∂ûi
∶= α′i(0) and ∂

∂ŵj ∶= β′j(0). The set { ∂
∂û1
, . . . , ∂

∂ûm
, ∂
∂ŵ1 , . . . ,

∂
∂ŵs} is a basis for TǫE .

The local expression for p ∶ E →M in local charts (ψ−1α (Uα ×Wα), ψα) and (Uα, uα)
is given by p(û1, . . . , ûm, ŵ1, . . . , ŵs) = (û1, . . . , ûm), which yields Tǫp ⋅

∂
∂ûi
= ∂

∂ui
, and

Tǫp ⋅
∂
∂ŵj = 0. Thus, { ∂

∂ŵ1 , . . . ,
∂
∂ŵs} is a basis for VǫE . The tangent vectors to any curve

that stay in a single fiber of E belong to V E . A tangent vector c′(0) that belongs to
HE indicates that the curve c(t) does not lay on a single fiber of E , where c is a curve

in E , see Fig. 23.

Consider the mapping (Tp, πE) ∶ TE → TMM× E , where TMM× E ∶= {(ξ, ǫ) ∈
TM×E ∶ πM(ξ) = p(ǫ)}. One can show that (Tp, πE)∣HE ∶HE → TMM×E is a fiber-

linear isomorphism. The horizontal lift C associated to the connection Φ is defined

as

C ∶= ((Tp, πE)∣HE)−1 ∶ TMM× E →HE . (237)

The mapping χ ∶= IdTE −Φ = C ○ (Tp, πE) is called the horizontal projection. The
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connection Φ is also called the vertical projection. Since V E is integrable, the co-

curvature of the connection Φ ∈ Ω1(E ;V E) vanishes and therefore, (230) and (231)

yield

R =
1

2
[Φ,Φ] =Φ[χ,χ] ∈ Ω2(E ;V E). (238)

Let ξ,η ∈ X(E). Equation (238) states that R(ξ,η) = 1
2
[Φ,Φ](ξ,η) =Φ[χ(ξ), χ(η)].

Note that as we mentioned earlier, R is an obstruction to integrability of HE . The

horizontal lift of X ∈ X(M), CX, is defined as CX(ǫ) ∶= C (X (p(ǫ)) , ǫ) ∈ HǫE . We

have R(CX, CY ) = [CX, CY ] −C([X,Y ]). Also using (233), the Bianchi identity

for a connection Φ is given by

[Φ,R] = 0. (239)

Let (E , p,M,S) be a fiber bundle and consider a smooth mapping f ∶ N →M.

The set NM× E ∶= {(y, ǫ) ∈ N × E ∶ f(y) = p(ǫ)} is a submanifold of N × E . The

manifold NM× E is called the pull-back of the fiber bundle E by f and is denoted by

f∗E . We define f∗p ∶= pr1 ∶ NM× E → N , and p∗f ∶= pr2 ∶ NM× E → E . The following

diagram commutes.

f∗E

f∗p
��

p∗f
// E
p

��

N
f

//M

One can show that (f∗E , f∗p,N ,S) is a fiber bundle10 and p∗f is a fiber-wise diffeo-

morphism. Note that (f∗E)y = (y,Ef(y)). Let Z ∈ T(y,ǫ)(f∗E) and Φ ∈ Ω1(E ;V E) be
a connection of E . Then, f∗Φ ∈ Ω1(f∗E ;V f∗E) given by (f∗Φ)(y,ǫ)Z = Tǫ(p∗f)−1 ⋅Φ ⋅
T(y,ǫ)(p∗f) ⋅Z, is a connection on f∗E .

Let {(Uα, ψα)} be a fiber bundle atlas for E and ǫ = ψ−1α (x, σ) ∈ E . We define

10One should not confuse the pull-back of a fiber bundle defined here with the pull-back of a
section of a fiber bundle given in (215).
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(ψ−1α )∗Φ ∈ Ω1(Uα × S;Uα × TS) as

(ψ−1α )∗Φ(Xx,Sσ) ∶= Tǫψα ⋅Φ ⋅ T(x,σ)ψ−1α ⋅ (Xx,Sσ) = Sσ − Γα(Xx, σ), (240)

where Xx ∈ TxM, Sσ ∈ TσS, and

(0x,Γα(Xx, σ)) ∶= −Tǫψα ⋅Φ ⋅ T(x,σ)ψ−1α ⋅ (Xx,0σ). (241)

One can assume Γα ∈ Ω1(Uα;X(S)). The forms Γα are called the Christoffel forms of

the connection Φ with respect to the bundle atlas {(Uα, ψα)}.
Let (a, b) ⊂ R be an open interval containing zero and let c ∶ (a, b) → M be a

smooth curve with c(0) = x. For any ǫ ∈ Ex, there exists a unique maximal subinterval

(a′, b′) ⊂ (a, b) containing zero and a unique curve c̃ǫ ∶ (a′, b′)→ E such that c̃ǫ(0) = ǫ,
p(c̃ǫ(t)) = c(t), and Φ(c̃′ǫ(t)) = 0, i.e. c̃′ǫ(t) ∈ HE . The curve c̃ǫ(t) defines the parallel

transport of ǫ along c̃ǫ.

3.1.6.2 Principal Connections

Let (P , p,M,G) be a principal fiber bundle with the principal right action r and let

Φ ∈ Ω1(TP ;V P) be a general connection. From §3.1.4.6 recall that (TP , Tp, TM, TG)
is a principal bundle with the principal right action Tr. On the other hand, (V P , p ○
πP ,M, TG) is also a fiber bundle with the principal right action Tr∣V P ∶ V P × TG →
V P . A principal connection Φ is a general connection that is also G-equivariant for

the principal right action r, i.e. if Φ ○ Trg = Trg ○Φ, or equivalently (rg)∗Φ = Φ,

∀g ∈ G. The vertical bundle V P → P is trivial as P × g → P , i.e. P × g ≈ V P

via the vector bundle isomorphism (z,X) ↦ Terz ⋅X = ζX(z), where z ∈ P , X ∈ g,
and ζ ∶ g → X(P) is the fundamental vector field mapping defined in (193). Define
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γ ∈ Ω1(P ;g) such that γ (X(z)) = Tz(rz)−1 ⋅Φ (X(z)), or equivalently

Φ (X(z)) = Terz ⋅ γ (X(z)) = ζγ(X(z))(z), (242)

where X ∈ X(P). The one-form γ ∈ Ω1(P ;g) is called the connection form of the

principal connection Φ. Since ζY(z) ∈ V P for all Y ∈ g, we obtain γ (ζY(z)) =
Te(rz)−1 ⋅ Φ (ζY(z)) = Te(rz)−1 ⋅ ζY(z) = Y. Moreover, the connection form γ is

G-equivariant, i.e.

((rg)∗ γ) (X(z)) = γ (Tzrg ⋅X(z)) = Ad(g−1) (γ (X(z))) . (243)

Conversely, a one-form γ ∈ Ω1(P ;g) satisfying γ(ζY) =Y, defines a connection Φ on

P by (242), that is also a principal connection if and only if (243) is satisfied.

The curvature R of a principal connection γ has vertical values, and thus, one

can define the curvature form ρ ∈ Ω2(P ;g) such that ρ(X(z),Y (z)) = −Tz(rz)−1 ⋅
R(X(z),Y (z)), or R(X(z),Y (z)) = −ζρ(X(z),Y (z))(z), where X,Y ∈ X(P). The

curvature form ρ is G-equivariant in the sense that (rg)∗ρ = Ad(g−1) ○ ρ. Also the

following Maurer-Cartan formula holds:

ρ(X,Y ) = dγ(X,Y ) + [γ(X),γ(Y )]. (244)

3.1.6.3 Induced Connections

Let (P , p,M,G) be a principal bundle and let S be a manifold with a left action

ℓ ∶ G × S → S. From §3.1.4.6 recall that (TP , Tp, TM, TG) is a principal TG-bundle.

The mapping Tℓ ∶ TG×TS → TS induces a left action of TG on TS. As we mentioned

in §3.1.4.7, (P ×S, p,P ×G S,G) is a principal G-bundle and (P ×G S, p̃,M,S) is a fiber

bundle. Using Tp ∶ TP ×TS → T (P ×G S), one can show that T (P ×G S) = TP ×TG TS.
By embedding P into TP and G into TG as the zero sections, the restriction of Tp
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to P ×TS implies that V (P ×G S) = P ×G TS, where V (P ×G S) is the vertical bundle
of P ×G S. Let Φ ∈ Ω1(P ;V P) be a principal connection of P . One can define

Φ̄ ∈ Ω1(P ×G S;T (P ×G S)) such that the following diagram commutes.

TP × TS
Tp

��

Φ×Id // TP × TS
Tp

��

TP ×TG TS
Φ̄ // TP ×TG TS

We have Φ̄ ○ Φ̄ = Φ̄ and Im(Φ̄) = V (P ×G S). Thus, Φ̄ is a connection on P ×G S,

which is called the induced connection.

Let φ ∶ G ×W → W be a representation of the structure group G on a finite-

dimensional vector space W . As mentioned in §3.1.4.7, (W = P ×G W, p̃,M,W ) is
a vector bundle. From §3.1.4.4 recall that TW = TP ×TG TW ≈ TP ×TG (W ×W )
can be considered as the vector bundles (TW , πW ,W) and (TW , T p̃, TM). Suppose
Φ ∈ Ω1(P ;V P) is a principal bundle and Φ̄ ∈ Ω1(W ;TW) is the induced connection.

The following diagram commutes.

TP × TW

Tp

��

πP×W ''N
NN

NN
NN

NN
NN

Φ×Id // V P × TW

πP×Wwwpp
pp
pp
pp
pp
p

Tp

��

P ×W
p

��

W

TW

πW

88pppppppppppp
Φ̄ //

T p̃ ''N
NN

NN
NN

NN
NN

VW

πW

ggNNNNNNNNNNNN

T p̃wwpp
pp
pp
pp
pp
p

TM

One can show that Φ̄ is fiber-linear in both vector bundle structures of TW .11 The

induced connection Φ̄ is called the linear connection of the associated bundle. The

11Note that any induced connection Φ̄ ∈ Ω1(P ×G S;T (P ×G S)) is fiber-linear in the vector bundle
structure T (P ×G S) → P ×G S.
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connector K ∶ TW →W of the linear connection Φ̄ is defined as K ∶= prvW ○ Φ̄, where

the vertical projection prvW ∶ VW →W is defined in §3.1.4.4. One can show K is both

πW − p̃−fiber−linear and T p̃− p̃−fiber−linear, i.e. both K ∶ (TW , πW ,W)→ (W , p̃,M)
and K ∶ (TW , T p̃, TM)→ (W , p̃,M) are homomorphisms of vector bundles.

3.1.6.4 Linear Connections

Let (V , p,M, V ) be a vector bundle. A linear connection on V is a connection Ψ ∈

Ω1(TV ;V V) such that Ψ ∶ TV → V V is also Tp−Tp−fiber−linear. One can show that

Ψ is the induced connection for a unique principal connection on P1M. The connector

of Ψ is given by K ∶= prvV ○Ψ. On the other hand, a mapping K ∶ TV → V that is

both πV − p−fiber−linear and Tp− p−fiber−linear such that K ○ ℓvV = pr2 ∶ VM×V → V ,
specifies a linear connection with the horizontal bundle HV = {Xu ∶K(Xu) = 0p(u)}.

Let s ∈ Γ(V) and X ∈ X(M). The covariant derivative of s along X is defined as

∇Xs ∶=K ○ Ts ○X ∈ Γ(V). (245)

The operator ∇ ∶ X(M) × Γ(V) → Γ(V) is also called a linear connection. Suppose

f, g ∈ C∞(M,R), Y ∈ X(M), and s̃ ∈ Γ(V). One can show that

∇fX+gY s = f∇Xs + g∇Y s, (246a)

∇X(s + s̃) = ∇Xs +∇X s̃, (246b)

∇X(fs) =X(f)s + f∇Xs. (246c)

Conversely, an operator ∇ ∶ X(M) × Γ(V) → Γ(V) that satisfies the properties (246)

determines a linear connection. The curvature of the covariant derivative or the

curvature of the linear connection is defined as

RV(X,Y )s ∶= ∇X∇Y s −∇Y ∇Xs −∇[X,Y ]s. (247)
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We have RV ∈ Ω2(M;L(V ,V)). Let α ∈ Ωk(M;V). The covariant exterior derivative

d∇ ∶ Ωk(M;V)→ Ωk+1(M;V) is defined as

(d∇α)(X0, . . . ,Xk) = k∑
i=0

(−1)i∇Xi
(α(X0, . . . , X̂ i, . . .Xk))

+∑
i<j

(−1)i+jα ([X i,Xj],X0, . . . , X̂ i, . . . , X̂j, . . . ,Xk) ,
(248)

where the hat over a vector field means the omission of that argument. In contrast

to the exterior derivative (221), d∇ is not a differential, i.e. d∇ ○ d∇ ≠ 0, in general

[27]. Straightforward calculations show that the curvature of ∇ is the obstruction for

being a differential.

3.2 Differential Operators of Elastostatics

In this section, we study various operators that are required for writing complexes for

linear and nonlinear elastostatics. There are three operators in the linear elastostat-

ics complex: (i) The Killing operator that represents linear strains, (ii) the curvature

operator that is related to the compatibility equations, and (iii) the Bianchi operator

that is related to stress functions. We will obtain the Killing and the curvature opera-

tors by linearizing the corresponding operators of nonlinear elasticity. But the Bianchi

operator will be written using the Calabi complex. We will show that the Bianchi

operator can be identified with the divergence operator in flat ambient spaces. This

implies that classical stress functions of linear elastostatics and the one that we intro-

duce here for nonlinear elastostatics are well-defined in flat spaces such as Euclidean

space. Note that flatness is an intrinsic notion not an extrinsic one; for example, the

cylinders and cones with their standard metrics in R3 are flat spaces. The Killing

and the Bianchi operators are related to the kinematics and the kinetics of motion,

respectively. On the other hand, the curvature operator can represent both the kine-

matics and kinetics of motion. The corresponding kinematic and kinetic complexes
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are coupled for 3-dimensional manifolds, but they become decoupled for 2-manifolds.

We will also derive a sequence of differential operators for linear elastostatics that de-

pends on the projective structures rather than the Riemannian metric. The projective

structures are crucial for understanding the relation between the linear elastostatics

complex and the de Rham complex. We begin this section by introducing projective

structures.

3.2.1 Projective Differential Geometry

Projective structures are closely related to Hilbert’s fourth problem. For a complete

introduction and brief history of these structures, we refer readers to [42, 27]. LetM

be a manifold with m = dimM≥ 2. Torsion-free linear connections ∇ and ∇̂ on TM

are called projectively equivalent if and only if there is a one-form Υ ∈ Ω1(M) such
that ∇̂XY = ∇XY +Υ(Y )X +Υ(X)Y , ∀X,Y ∈ X(M). More geometrically, it

can be shown that torsion-free connections ∇ and ∇̂ are projectively equivalent if and

only if they have the same geodesics up to parametrization. A projective structure

(M, [∇]) onM is a projective equivalence class [∇] of a torsion-free linear connection
∇ on TM. The subject of Hilbert’s fourth problem is to study a metric ǧ on Rn such

that ∇̌ ∈ [∇], where ∇̌ is the Levi-Civita connection of ǧ and ∇ is the standard metric

of Rn [3].

Recall that a linear connection ∇ ∶ X(M)×X(M)→ X(M) on TM induces a linear

connection on T ∗M that is denoted by the same symbol ∇ ∶ X(M)×Ω1(M)→ Ω1(M)
and is given by ∇Xα(Y 1) =X(α(Y 1))−α(∇XY 1) [30]. More generally, it induces a

linear connection on ⊗pTM⊗⊗qT ∗M, ΛkT ∗M, and SkT ∗M. A differential operator

in terms of ∇ is called projectively invariant if it remains the same for all ∇̂ ∈ [∇].
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The exterior derivative is projectively invariant: For β ∈ Ωk(M), one can write

(dβ)(Y 0, . . . ,Y k) = k∑
i=0

(−1)iY i (β(Y 0, . . . , Ŷ i, . . . ,Y k))
+∑
i<j

(−1)i+jβ([Y i,Y j],Y 0, . . . , Ŷ i, . . . , Ŷ j, . . . ,Y k)
=

k∑
i=0

(−1)i(∇Y i
β)(Y 0, . . . , Ŷ i, . . . ,Y k+1),

(249)

where ∇ can be any torsion-free connection on TM. Of course, we do not need

any connection to define the exterior derivative. The skew-symmetrization in the

last term simply cancels out the effect of torsion-free connections. The condition for

projective equivalence can be reformulated for other types of tensors as well. For

example, let α ∈ Ω1(M). Then, ∇ and ∇̂ are projectively equivalent if and only

if ∇̂Xα = ∇Xα − α(X)Υ −Υ(X)α. In general, for β ∈ Ωk(M), the equivalence

condition reads

(∇̂Xβ) (Y 1, . . . ,Y k) = (∇Xβ) (Y 1, . . . ,Y k) − (k + 1)Υ(X)β(Y 1, . . . ,Y k)
+ (Υ ∧β)(X,Y 1, . . . ,Y k).

(250)

In order to write invariant differential operators corresponding to the operators of

linear elastostatics, we need density bundles.

3.2.1.1 Density Bundles

The linear frame bundle P1M is a principal GL(Rm)-bundle onM, where P1Mx =

GL(Rm, TxM). For an arbitrary α ∈ R consider the representation of GL(Rm) on R

given by A ⋅ c = ∣detA∣−αc. The associated line bundle P1M ×GL(Rm) R→M is called

the bundle of α-densities [27]. On orientable manifolds, the bundle of 1-densities

is isomorphic to ΛmT ∗M. A Riemannian metric introduces a trivialization for the

bundle of α-densities [1]. In particular, an α-density µ ∈ Γ(P1M ×GL(Rm) R) can be

expressed as µ = aµα,g, where a ∈ R and µα,g(x)(ξ1, . . . ,ξm) = ∣det[g(x)(ξi,ξj)]∣α/2,
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with the vector fields ξ1, . . . ,ξm ∈ X(M) constituting a basis for TxM for all x ∈ M.

Let w ∈ R. The bundle of (− w
m+1
)-densities is called the bundle of projective densities

of weight w [42]. We denote this line bundle by L⟨w⟩ and w is called the projective

weight. The equivalence condition in terms of µ ∈ Γ(L⟨w⟩) reads ∇̂Xµ = ∇Xµ +

wΥ(X)µ [42]. In the presence of a Riemannian metric, one can show that µα,g is

parallel for the Levi-Civita connection, i.e. ∇µα,g = 0 [88]. For bundles of projective

densities of weight w, we define µ⟨w⟩ ∶= µα,g, where α = −
w
m+1

.

3.2.2 The Killing Operator

Let (B,G) and (S,g) be Riemannian manifolds and consider an orientation-preserving

embedding ϕ ∶ B → S. We equip TB and TS with connections ∇̄ and ∇, re-

spectively, that are not necessarily the associated Levi-Civita connections of the

metrics. The Green deformation tensor C ∈ Γ(S2T ∗B) is defined by C(X,Y ) ∶=
G(X, (Tϕ)T ○ Tϕ ⋅ Y ) = (ϕ∗g)(X,Y ), where T denotes the transpose with respect

to the metrics. The material strain tensor E ∈ Γ(S2T ∗B) is 2E ∶= C − G. The

linearized strain tensor e(U) ∈ Γ(S2T ∗B), ∀U ∈ X(ϕ0(B)), is the linearization of E

with respect to a reference motion ϕ0 ∶ B → S. We have [82, 118]

2e(U)(ϕ∗0X, ϕ∗0Y ) =
2E(ϕ∗0X, ϕ∗0Y ) + g(X,∇YU) + g(∇XU ,Y ), ∀X,Y ∈ X(ϕ0(B)).

(251)

Suppose B is a connected open subset of S with G = g∣B. Also assume that ϕ0 = IdB.

Then, we obtain

2e(U)(X,Y ) = g(X,∇YU) + g(∇XU ,Y ), ∀X,Y ,U ∈ X(B). (252)

The operator DK ∶ X(B) → Γ(S2T ∗B), U ↦ e, is metric dependent and is not pro-

jectively invariant, in general, where Γ(S2T ∗B) is the linear space of sections of the

126



vector bundle S2T ∗B → B, i.e. the space of symmetric (02)-tensors on B. How-

ever, if ∇ is chosen to be the Levi-Civita connection of g, DK induces a projec-

tively invariant operator, i.e. an operator that depends on projective structures on

B rather than its Riemannian metric. Let (B, [∇]) be a projective structure on B

arising from the Levi-Civita connection ∇ of g. Since ∇ is metric compatible, we

can write 2e(U)(X,Y ) = (∇XU
♭) (Y ) + (∇YU

♭) (X) =∶DS(U ♭)(X,Y ), where the

flat operator ♭ ∶ X(B) → Ω1(B) is the natural isomorphism induced by the metric.

The operator DS ∶ Ω1(B) → Γ(S2T ∗B) is not projectively invariant. In the pres-

ence of the metric g, we can identify Ωk(B) and Ωk(B;L⟨w⟩) using the isomorphism

ι(β) = β ⊗µ⟨w⟩, where µ⟨w⟩ was defined in §3.2.1.1. Such an isomorphism also exists

for other tensor bundles and is denoted by the same symbol ι. Now, consider the

operator D
⟨w⟩
1 ∶ Ω1(B;L⟨w⟩) → Γ(S2T ∗B ⊗L⟨w⟩), D⟨w⟩1 (β ⊗µ⟨w⟩) ∶= DS(β)⊗µ⟨w⟩. Let

∇̂ ∈ [∇] and note that if υ ∈ Ω1(B;L⟨w⟩), we can write

(∇̂Xυ) (Y ) + (∇̂Y υ) (X) = (∇Xυ) (Y ) + (∇Y υ) (X)
+ (w − 2)(Υ(X)υ(Y ) +Υ(Y )υ(X)). (253)

Thus, for w = 2, the operator D1 ∶= D
⟨2⟩
1 is projectively invariant. Since µα,g is

parallel for the Levi-Civita connection, we conclude that D1 ○ ι = ι○DS, i.e. ι becomes

a morphism of complexes, and we can replace DS with D1.

A motion ϕ with zero material strain tensor satisfies g(Tϕ⋅X, Tϕ⋅Y ) =G(X,Y ),
i.e. strain-free motions of nonlinear elastostatics are isometries B → S. The set of

strain-free motions in Rn with its standard metric is the set of isometries of Rn

and thus, it is in a one-to-one correspondence with the Euclidean group Euc(Rn) ∶=
{(1v 0

A) ∈ GL(Rn+1) ∶ v ∈ Rn,A ∈ SO(Rn)}, with the special orthogonal group SO(Rn) ∶=
{A ∈ GL(Rn) ∶ AAT = IdRn ,detA = 1}. Using the Levi-Civita connection ∇, strain-

free displacements of linear elastostatics are infinitesimal isometries, since one can
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write

2e(U)(X,Y ) = U(g(X,Y )) + g([X,U ],Y ) + g(X, [Y ,U])
= (LUg)(X,Y ), (254)

where LU is the Lie derivative in the direction of U . Hence, e(U) = 0 if and only if

LUg = 0, i.e. U is a Killing field. Due to this result and the fact that the operators

DK and DS are equivalent on a Riemannian manifold, we call both of these operators

the Killing operator [42]. For a Killing field U , one can show that FlUt ∶= Fl
U(t, ⋅) ∶

U ⊂ B → B is an isometry for each t [30], where FlU is the flow of U . Vector fields on

Rn can be considered as mappings Rn → Rn. The space of strain-free displacements

of linear elastostatics in Rn with its standard metric is isomorphic to euc(Rn), where
euc(Rn) ∶= {(0v 0

A) ∈ gl(Rn+1) ∶ v ∈ Rn,A ∈ so(Rn)}, is the Lie algebra of Euc(Rn), with
so(Rn) ∶= {A ∈ Rn×n ∶ A +AT = 0}, being the Lie algebra of SO(Rn). Note that the

Killing operator does not depend on the curvature of the ambient space.

3.2.3 The Curvature Operator and the Compatibility Equations

Next, we write the second operator in the elastostatics complex. This operator

expresses the so-called compatibility equations that address the following problem:

Given an arbitrary ě ∈ Γ(S2T ∗B) (or equivalently Č ∈ Γ(S2T ∗B) for nonlinear elas-
ticity), is there any U ∈ X(B) (ϕ ∶ B → S) such that e(U) = ě (C(ϕ) = Č)? It turns

out that the answer depends on the curvature of the ambient space S. Classically,

the compatibility equations were expressed for flat ambient spaces. Here, we derive

these conditions for non-flat ambient spaces as well. Similar to our treatment of the

linear strain, we first obtain the compatibility equations for nonlinear elasticity and

then we write linear compatibility equations by linearizing the nonlinear equations.

Consider a motion ϕ ∶ B → S of (B,G) in (S,g), where dimB = dimS such that

ϕ(B) is an open subset of S. Since ϕ is a diffeomorphism, it is easy to observe that

C = ϕ∗g is symmetric and positive-definite and thus, it is a Riemannian metric for B.
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The mapping ϕ is an isometry between Riemannian manifolds (B,C) and (ϕ(B),g).
Hence, the above integrability question is equivalent to: Given a metric C on B,

is there any isometry between (B,C) and an open subset of S? Note that we do

not a priori know which part of S would be occupied by B. This suggests that a

useful compatibility equation should be expressed only on B. As we will see in the

remainder of this section, we need to use the pull-back of some tensors on S. This

implies that we have to consider a “homogeneity” assumption for these tensors in

the sense that they are constant on S such that the specific location of ϕ(B) in S
does not matter. In particular, we will express such a homogeneity assumption for

the Riemannian curvature. In the following, we need to assume that the connection

∇ of S is the Levi-Civita connection of g. Recall that the curvature of S is given by

R(X̄, Ȳ )Z̄ = ∇X̄∇Ȳ Z̄ − ∇Ȳ ∇X̄Z̄ − ∇[X̄,Ȳ ]Z̄, ∀X̄, Ȳ , Z̄ ∈ X(S). The Riemannian

curvature is given byR(X̄, Ȳ , Z̄, T̄ ) = g(R(X̄, Ȳ )Z̄, T̄ ). Let Σx be a 2-dimensional

subspace of TxS and let X1,X2 ∈ Σx be two arbitrary linearly independent vectors.

The sectional curvature of Σx is defined as [30]

K(Σx) = R(X1,X2,X2,X1)(g(X1,X1)g(X2,X2))2 − (g(X1,X2))2 . (255)

Of course, K(Σx) is independent of the choice of X1 and X2. The linear connection ∇

on TS induces a linear connection ϕ∗∇ on TB given by (ϕ∗∇)XY = ϕ∗ (∇ϕ∗X ϕ∗Y ),
∀X,Y ∈ X(B). Using the definition of the Levi-Civita connection ∇ [71], one can

write

C(Z, (ϕ∗∇)XY ) = g(ϕ∗Z,∇ϕ∗X ϕ∗Y )
=
1

2
{Y (C(X,Z)) +X (C(Z,Y )) −Z (C(X,Y ))

−C ([Y ,Z],X) −C ([X,Z],Y ) −C ([Y ,X],Z)},
(256)
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i.e. ∇C ∶= ϕ∗∇ is the Levi-Civita connection corresponding to C. Moreover, we have

(ϕ∗R)(X,Y )Z = ϕ∗ (R(ϕ∗X, ϕ∗Y )ϕ∗Z) = ∇C
X∇

C
YZ −∇

C
Y ∇

C
XZ −∇

C
[X,Y ]Z, (257)

i.e. RC ∶= ϕ∗R is the curvature of ∇C . In other words, if ϕ ∶ B → S is an isometry

between (B,C) and (ϕ(B),g), then we must have

R
C(X,Y ,Z,T ) =R(ϕ∗X, ϕ∗Y , ϕ∗Z, ϕ∗T ), (258)

where RC is the Riemannian curvature of C. On the other hand, the following

result was first proved by Cartan [31, 30]: Suppose (B,C) and (S,g) are Riemannian

manifolds with the same dimension and let i ∶ TXB → TxS be a linear isometry. The

exponential maps expC
X ∶ U ⊂ TXB → UX ⊂ B and expx ∶ Ū ⊂ TxS → Ūx ⊂ S are (local)

diffeomorphisms and one can define the mapping f ∶= expx ○i○(expC
X)−1 ∶ UX → S. The

neighborhood UX can be restricted such that ∀Y ∈ UX there is a unique normalized

geodesic between X and Y . Let Pt ∶ TXB → TY B be the parallel transport along this

geodesic and consider the mapping ΨX ∶ P̄t ○ i ○ (Pt)−1 ∶ TY B → Tf(Y )S. Then, if we

have

R
C(X,Y,Z,T) =
R(ΨX ⋅X,ΨX ⋅Y,ΨX ⋅Z,ΨX ⋅T), ∀Y ∈ UX ,∀X,Y,Z,T ∈ TY B,

(259)

the mapping f ∶ UX → f(UX) is a local isometry at X and TX f = i. Hence, if it is

possible to choose a linear isometry between the tangent spaces of a point of (B,C)
and a point of (S,g), the curvature condition (259) becomes a sufficient condition

for the existence of a local isometry.12 As we will explain in the following, the above

12Let ϕ ∶ B → S be an isometric immersion. Since ϕ commutes with the parallel transport and
preserves curvature, the condition (259) is locally satisfied in neighborhoods of X and ϕ(X) with
i = TXϕ [59].
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curvature condition can be easily verified for manifolds with a constant sectional

curvature. Ambrose [4, 34] proved a global version of the above condition: If B and S

are complete and simply-connected and a condition similar to (259) is satisfied at a

point of B and a point of S for a linear isometry, then there exists a global isometric

embedding B → S.
In this work, we obtain the compatibility equations for two classes of motions:

(i) Motions in ambient spaces with constant sectional curvatures, and (ii) motions of

hypersurfaces in ambient spaces with constant sectional curvatures.

3.2.3.1 Motions in Ambient Spaces with Constant Sectional Curvatures

Suppose the ambient space S has a constant sectional curvature k ∈ R, i.e. K(Σx) = k,
∀x ∈ S and ∀Σx ∈ TxS. Then, it is a well-known fact that if S is complete13 and

simply-connected, it is isometric to: (i) The n-sphere with radius 1/√k, if k > 0, (ii)
Rn, if k = 0, and (iii) the hyperbolic space, if k < 0 [71]. In general, it is possible

to show that if a Riemannian manifold has constant sectional curvature k, then each

x ∈ S has a neighborhood that is isometric to an open subset of a sphere if k > 0, Rn

if k = 0, and a hyperbolic space if k < 0 [110]. Such spaces are also called Clifford-

Klein spaces [26]. For example, the sectional curvature of a cylinder in R3 is zero

and it is locally isometric to R2. In fact, the only surfaces of revolution with k = 0

in R3 are cylinders, planes, and cones. Note that these spaces are flat with respect

to their metric induced by the standard metric of the Euclidean space. See [29] for

discussions on surfaces of revolution with positive and negative constant sectional

curvatures. More general discussions on the classification of Riemannian manifolds

with constant sectional curvature can be found in [110]. Since S has a constant

13Hopf-Rinow Theorem [30] states that any two distinct points of a complete, connected Rieman-
nian manifold can be joined by a geodesic. Note that the metric topology on a connected Riemannian
manifold coincides with its original topology.
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sectional curvature, its curvature can be written as [71]

R(X̄, Ȳ )Z̄ = k (g(Z̄, Ȳ )X̄ − g(Z̄, X̄)Ȳ ) , ∀X̄, Ȳ , Z̄ ∈ X(S). (260)

The pull-back of (260) along an isometric embedding ϕ reads

RC(X,Y )Z = kC(Z,Y )X − kC(Z,X)Y , ∀X,Y ,Z ∈ X(B), (261)

i.e. (B,C) has constant sectional curvature k as well. Therefore, if C ∈ Γ(S2T ∗B) is
the Green deformation tensor of a motion, then it must satisfy (261). Conversely, we

have the following theorem.

Theorem 3.2.1. Suppose the manifolds B and S have the same dimensions and

(S,g) has a constant sectional curvature. Let C be a metric on B with the same

constant sectional curvature. Then, for each X ∈ B, there is a neighborhood UX ⊂ B

of X and an isometry ϕX between (UX ,C) and (ϕX(UX),g). The mapping ϕX is

unique up to an isometry of S.

Proof. Consider arbitrary points X ∈ B and x ∈ S and let {Ei} and {ei} be arbitrary

orthonormal bases for TXB and TxS, respectively. Choose the isometry i ∶ TXB → TxS

such that i(Ei) = ei. Then, the condition (259) is satisfied and therefore, there is a

local isometry that maps X to x. It is straightforward to conclude that ϕX is unique

up to an isometry of S.

Note that Theorem 3.2.1 implies that there are many local isometries between

manifolds with a similar constant sectional curvature. We will study a global version

of the above theorem in a future work. The symmetries of the Riemannian curvature

determine the number of compatibility equations, i.e. the number of independent

equations that we obtain by writing (261) in a local coordinate system. Recall that
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these symmetries include the first Bianchi identity

R
C(X,Y ,Z,T ) +RC(Y ,Z,X,T ) +RC(Z,X,Y ,T ) = 0, (262)

and also

R
C(X,Y ,Z,T ) = −RC(Y ,X,Z,T ) = −RC(X,Y ,T ,Z), (263)

R
C(X,Y ,Z,T ) = RC(Z,T ,X,Y ). (264)

For an n-dimensional Riemannian manifold, one can show that the number of inde-

pendent components of the Riemannian curvature is n2(n2 −1)/12 [99]. For example,

for n = 2,3,4, the number of compatibility equations is 1,6,20, respectively. There-

fore, the number of compatibility equations only depends on the dimension of the

ambient space. The symmetries (262) and (263) imply (264), but (263) and (264)

do not imply (262), in general. Tensors with the symmetries (263) and (264) belong

to Γ(S2(Λ2T ∗B)) and have (n2 − n + 2)(n2 − n)/8 independent components on an

n-manifold. Note that for n = 2,3, (263) and (264) yield (262).

Alternatively, it is also possible to write the compatibility equations in terms of

F ∶= Tϕ. Let dimB = dimS. By a TS-valued k-form α over ψ we mean a multilinear

mapping that associates an element of ΛkT ∗XB⊗Tψ(X)S to eachX ∈ B, where ψ ∶ B → S
is a smooth embedding that we call the underlying embedding of forms. We denote

the space of all TS-valued k-forms over ψ by Ωk
ψ(B;TS). The connection ∇ of TS

enables us to define the covariant exterior derivative d∇k ∶ Ω
k
ψ(B;TS) → Ωk+1

ψ (B;TS)
by

(d∇kα)(X0, . . . ,Xk) = k∑
i=0

(−1)i∇ψ∗Xi
(α(X0, . . . , X̂ i, . . .Xk))

+∑
i<j

(−1)i+jα ([X i,Xj],X0, . . . , X̂ i, . . . , X̂j, . . . ,Xk) ,
(265)
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where the hat over a vector field implies the omission of that argument. Since

(d∇0α)(X) = ∇ψ∗Xα, we have

(d∇1 ○ d∇0 (α)) (X0,X1) = ∇ψ∗X0
∇ψ∗X1

α −∇ψ∗X1
∇ψ∗X0

α −∇ψ∗[X0,X1]α

=R (ψ∗X0, ψ∗X1)α.
(266)

Hence, d∇ is a differential, i.e. d∇ ○ d∇ = 0, if and only if the ambient space S is flat.

Let ϕ ∶ B → S be an embedding with the tangent map F = Tϕ ∈ Ω1
ϕ(B;TS). One can

write

(d∇1 F ) (X0,X1) = ∇F (X0)F (X1) −∇F (X1)F (X0) −F ([X0,X1])
= T (ϕ∗X0, ϕ∗X1),

(267)

where T is the torsion of ∇. If ∇ is torsion-free, then F must satisfy d∇F = 0.

One may want to consider the converse problem as: Given β ∈ Ω1
ϕ(B;TS), do we

have β = Tϕ? But this is a trivial question since one needs to simply calculate the

tangent map of the underlying embedding ϕ to answer this question. Instead, we

define the following generalized compatibility problem: Given β ∈ Ω1
ϕ(B;TS), does

β belong to the cohomology class of F ? Equivalently, the generalized compatibility

problem can be stated as: Given β ∈ Ω1
ϕ(B;TS), is there any α ∈ Ω0

ϕ(B;TS) such
that β − F = d∇0α? The physical significance of this problem will become clearer in

the next section, where this approach allows us to define stress functions for nonlinear

elastostatics and obtain a complex for nonlinear elastostatics.

Suppose β −F = d∇0α, where ∇ is the Levi-Civita connection of the flat manifold

(S,g). The relations (266) and (267) imply that d∇1 β = 0. If S = Rn, the vector

bundle Tϕ(B) → B is the trivial vector bundle ϕ(B) ×Rn. In this case, cohomology

groups of the twisted de Rham complex induced by (265) can be computed by the

cohomology groups of the de Rham complex [22]. In particular, if B is contractible,
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then d∇1 (β −F ) = d∇1 β = 0, implies that there is an α ∈ Ω0
ϕ(B;TS) such that β −F =

d∇0α. Similarly, for non-contractible domains in Rn, one can use the cohomology

groups of the de Rham complex to obtain global compatibility equations, see [113].

This result is also locally valid on any flat manifold as we will discuss later.

3.2.3.2 Motions of Hypersurfaces

Suppose (H, ĝ) is a submanifold of a manifold (S,g), where ĝ is induced by g. Let

∇̂ and ∇ be the associated Levi-Civita connections of H and S, respectively. For

any x ∈ H, we have the decomposition TxS = TxH ⊕ (TxH)⊥, where (TxH)⊥ is the

normal complement of TxH in TS. Any local vector fields X on H can be extended

to a local vector field X̃ on S and we have ∇̂XY = (∇X̃Ỹ )T, where T denotes

the tangent component. The second fundamental form B ∈ Γ(S2T ∗H ⊗ TH⊥) is

defined as B(X,Y ) = ∇X̃Ỹ − ∇̂XY , with X̃ and Ỹ being any local extension of

local vector fields X and Y . Let X ∈ Γ(TH⊥) =∶ X(H)⊥. We can associate a linear

self-adjoint operator SX ∶ TH → TH to B by ĝ(SX(X),Y ) = g(B(X,Y ),X). The

operator S is called the shape operator of H. One can show that (∇XX)T = −SX(X)
[30]. On the other hand, we can also define a linear connection ∇̂⊥ on TH⊥→ H by

∇̂⊥XX = (∇XX)N, where N denotes the normal component. The normal curvature R̂
⊥
∶

X(H)×X(H)×X(H)⊥ → X(H)⊥ is the curvature of ∇̂⊥. Hence, there are two different

geometries on TH and TH⊥. The relation between these geometries is expressed by

the Gauss, Ricci, and Codazzi equations as follows. Let X,Y ,Z,T ∈ X(H), and
X,Y ∈ X(H)⊥. The following relations hold [30]:

R(X,Y ,Z,T ) = R̂(X,Y ,Z,T ) + g(B(X,Z),B(Y ,T ))
− g(B(X,T ),B(Y ,Z)), (268)

ĝ([SY,SX]X,Y ) = g(R(X,Y )X,Y) − g(R̂⊥(X,Y )X,Y), (269)

g(R(X,Y )Z,X) = (∇XB)(Y ,Z,X) − (∇Y B)(X,Z,X), (270)
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where [SY,SX] = SY ○ SX − SX ○ SY, B(X,Y ,X) = g(B(X,Y ),X), and
(∇XB)(Y ,Z,X) =X(B(Y ,Z,X))

−B(∇̂XY ,Z,X) −B(Y , ∇̂XZ,X) −B(Y ,Z, ∇̂⊥XX). (271)

The equations (268), (269), and (270) are called the Gauss, Ricci, and Codazzi equa-

tion, respectively. These equations generalize the compatibility equations of the local

theory of surfaces, see [101] for more discussions. To simplify the above equations,

we assume that S has a constant sectional curvature k and H is a hypersurface, i.e.

dimS−dimH = 1. These assumptions are quite natural if we want to study motions of

a 2-dimensional surface in R3. Using (260) and the fact that the second fundamental

form of hypersurfaces can be expressed as B(X,Z) = g(B(X,Z),N)N, where N is

the unit normal vector field, the Gauss equation can be written as

R̂(X,Y ,Z,T ) + ĝ(SNZ,X)ĝ(SNT ,Y ) − ĝ(SNT ,X)ĝ(SNZ,Y )
+ k ĝ(X,Z) ĝ(Y ,T ) − k ĝ(X,T ) ĝ(Y ,Z) = 0. (272)

Since vector fields in X(H)⊥ are normal to those in X(H), if S has a constant sectional

curvature, we observe that g(R(X,Y )X,Y) = 0. Moreover, for hypersurfaces we have

X = XN, and Y = YN, with X,Y ∈ Ω0(H), and since g(N,N) = 1, we conclude that

∇̂⊥XN = 0, which implies that g(R̂⊥(X,Y )X,Y) = 0. Thus, the Ricci equation merely

implies that XY[SN,SN] = 0, i.e. the Ricci equation becomes vacuous with the above

assumptions. Similarly, the Codazzi equation simplifies to read

∇̂X (SN(Y )) − ∇̂Y (SN(X)) = SN([X,Y ]). (273)

Suppose B ⊂ H is a connected open subset and assume H and S are orientable. The

eigenvalues λi of SN are all real and the corresponding eigenvectors constitute an

136



orthonormal basis {ê1, . . . , ên} for H such that {ê1, . . . , ên,N} is in the orientation of

S. The eigenvalues λi are called the principal curvatures of H and are extrinsic in the

sense that they depend on the structure of H inside S. A direct consequence of the

Guass equation is that the products λiλj, i ≠ j, are intrinsic if S has zero sectional

curvature, i.e. λiλj is merely determined by the induced metric. For the special case

of surfaces in R3, we recover the celebrated Theorem Egregium of Gauss, which states

that the Gaussian curvature, i.e. λ1λ2, is intrinsic.

Let ϕ ∶ B → S be an orientation-preserving isometric embedding and let X̄ =

ϕ∗X ∈ X(ϕ(B)). Suppose θ ∈ Γ(S2T ∗B) is defined as θ(X,Y ) = ḡ(S̄N̄X̄, Ȳ ), where
S̄N̄ is the shape operator of the hypersurface ϕ(B) ⊂ S with the unit normal vector

field N̄ and the induced metric ḡ ∶= g∣ϕ(B). We call θ the extrinsic deformation tensor.

Let C = ϕ∗ḡ be the Green deformation tensor. Of course, equations similar to (272)

and (273) are valid for (ϕ(B), ḡ) with its shape operator S̄N̄. The pull-back of the

Gauss equation along ϕ can be written as

R
C(X,Y ,Z,T ) + θ(X,Z)θ(Y ,T ) − θ(X,T )θ(Y ,Z)

+ kC(X,Z)C(Y ,T ) − kC(X,T )C(Y ,Z) = 0. (274)

The pull-back of the Codazzi equation simply implies that

(∇C
Xθ) (Y ,Z) = (∇C

Y θ) (X,Z), (275)

i.e. θ ∈ Γ(S3T ∗B). Therefore, if (C,θ) denote the intrinsic and extrinsic deformations

of an isometry ϕ, they must satisfy (274) and (275). The converse of this statement is

the compatibility condition for motions of hypersurfaces: Let (S,g) be a Riemannian

manifold and dimS − dimB = 1. Given a metric C ∈ Γ(S2T ∗B) and a symmetric

tensor θ ∈ Γ(S2T ∗B), is there an isometric embedding ϕ ∶ B → S such that C = ϕ∗ḡ

and g (B(ϕ∗X, ϕ∗Y ),N) = θ(X,Y )? Here, ḡ and B denote the induced metric and
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Figure 24: Two isometric embeddings of a plane into R3: The resulting surfaces are
cylinders with different radii but both motions have the same deformation tensor C.

the second fundamental form of ϕ(B), respectively. One may wonder why we have to

include θ in the formulation. Roughly speaking, the answer is that we want surfaces

with similar deformations to be unique up to isometries of the ambient space S. This

criterion cannot be satisfied if we only consider C. For example, consider isometric

deformations of a plane in R3 into portions of cylinders with different radii as shown

in Fig. 24. All these motions have the same intrinsic deformation C, but obviously

cylinders with different radii are not isometric via isometries of R3, i.e. cannot be

mapped onto each other using rigid motions of R3. The upshot is expressed in the

following theorem [68, 72]:

Theorem 3.2.2. Let S = Rn+1 and (B,C) be a Riemannian n-manifold with a sym-

metric tensor θ ∈ Γ(S2T ∗B) such that (274) and (275) are satisfied. Then, for each

X ∈ B, there is an open neighborhood UX ⊂ B of X and an isometric embedding

ϕ̌ ∶ UX → S, such that ϕ̌∗(g(B̌, Ň)) = θ, where B̌ and Ň are the second fundamen-

tal form and the unit normal of ϕ̌(UX), respectively. Moreover, ϕ̌ is unique up to

isometries of S.

Note that if in addition B is simply-connected and connected, then under the

above assumptions there is a global isometric immersion ϕ ∶ B → S, which is unique

up to an isometry of S [72, 101]. Also we should mention that the above compatibility

equations are equivalent to those obtained by [37].
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3.2.3.3 Linear Compatibility Equations

Now, we linearize the compatibility equations to obtain the second operator of the

linear elasticity complex. We first linearize the operator Γ(S2T ∗B)→ Γ(S2(Λ2T ∗B)),
C →RC , that is associated to the Riemannian curvature, where C is a Riemannian

metric. Let ε ∈ Γ(S2T ∗B) and consider a curve t ↦ C + tε in Γ(S2T ∗B). Note that

∃ǫ > 0 such that for ∣t∣ < ǫ the symmetric tensor C + tε is a Riemannian metric on B.

The linearization of the above operator is defined as the linear operator ε↦ r(C,ε) ∶=
d
dt
∣t=0RC+te ∈ Γ(⊗4T ∗B) [50]. One can show that [49]

2r(C,ε)(X,Y ,Z,T ) = L(C,ε)(X,Y ,Z,T )
+ ε(RC(X,Y )Z,T ) − ε(RC(X,Y )T ,Z), (276)

where

L(C,ε)(X,Y ,Z,T ) =
(∇C

X∇
C
Zε) (Y ,T ) + (∇C

Y ∇
C
T ε) (X,Z) − (∇C

X∇
C
T ε) (Y ,Z) − (∇C

Y ∇
C
Zε) (X,T )

− (∇C
∇C

X
Z
ε) (Y ,T ) − (∇C

∇C

Y
T
ε) (X,Z) + (∇C

∇C

X
T
ε) (Y ,Z) + (∇C

∇C

Y
Z
ε) (X,T ).

(277)

Our goal is to obtain a necessary and (locally) sufficient condition that guarantees

the existence of a displacement field for a given linear strain in an ambient space

with constant sectional curvature k. We will study linear compatibility equations

for hypersurfaces in a future work. It turns out that by substituting for RC from

(261) into (276), one can obtain the desired condition. This is stated in the following

theorem due to Calabi [26]:

Theorem 3.2.3 (The Linear Compatibility Equations). Let (S,g) have constant

sectional curvature k and let B ⊂ S with G =C = g∣B. The linear strain e(U) defined
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in (252) satisfies

I(e)(X,Y ,Z,T ) = L(g,e)(X,Y ,Z,T ) + k{g(Y ,Z)e(X,T )
− g(X,Z)e(Y ,T ) − g(Y ,T )e(X,Z) + g(X,T )e(Y ,Z)} = 0. (278)

Conversely, if an arbitrary tensor ε ∈ Γ(S2T ∗B) satisfies I(ε) = 0, then for each

X ∈ B, there is a vector field UX in a neighborhood of X such that ε = e(UX).
Rather than the direct proof given in [26], another way to justify the above result

on the Euclidean space is through the construction of the linear elasticity complex

from a twisted de Rham complex that will be explained in the next section. Equiv-

alently, one can obtain (278) by linearizing (267) with respect to F = Tϕ0, where

ϕ0 = IdB. The equation (278) is called the linear compatibility equation. If we want

to refer to the components of I(ε) in a local coordinate system, we call (278) the linear

compatibility equations. Note that the tensors r(C,ε) and I(ε) inherit the symme-

tries of the Riemannian curvature, i.e. they satisfy (262) and (263). Consequently,

similar to the nonlinear case, the number of independent linear compatibility equa-

tions in a n-dimensional ambient space is n2(n2−1)/12. The tensor I(ε)(X) belongs
to a (n2(n2 −1)/12)-dimensional subspace of the ((n2 −n+2)(n2 −n)/8)-dimensional

space S2(Λ2T ∗XB). Let us denote the corresponding tensor bundle by C4B → B, i.e.
Γ(C4B) is the space of (04)-tensors that have the symmetries (262) and (263) of the

Riemannian curvature. As we study the relation between the linear elasticity complex

and the de Rham complex in the next section, we will observe that if T ∗B is induced

by a representation, the representation theory provides some tools to neatly specify

tensors with complicated symmetries such as the Riemannian curvature. Let us write

the linear compatibility equations in a local coordinate system. To this end, we use

normal coordinate systems that facilitate calculations: For any Riemannian manifold

(M, ǧ) and an arbitrary X ∈ M, there is a local coordinate system {X i} centered
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at X such that ∇∂/∂Xi(∂/∂Xj) = 0, at X, where ∇ is the Levi-Civita connection and

{∂/∂X i} is a local basis for TM which is orthonormal at X.14 The coordinate sys-

tem {X i} is called a normal coordinate system or a geodesic coordinate system at X

[71, 88]. The Cartesian coordinate of Rn gives us a global normal coordinate system

for the Euclidean space. Suppose {X i} is a normal coordinate system at an arbitrary

X ∈ B. Also let Ei ∶= ∂/∂X i and εij ∶= ε(Ei,Ej). It is easy to verify that

(∇Ei
∇Ek

ε)(Ej,El) =
Ei (Ek (ε(Ej,El))) −Ei(ε(∇Ek

Ej,El) + ε(Ej,∇Ek
El)).

(279)

Let ∇Ei
Ej = γrijEr, where γrij’s are Christoffel symbols of ∇ and note that ∇Ei

Ej =

∇Ej
Ei. Using (279), the linear compatibility equations at X corresponding to the

component I(X)(Ei,Ej,Ek,El) ∶= Iijkl(X) read
∂2εjl

∂X i∂Xk
+

∂2εik

∂Xj∂X l
−

∂2εjk

∂X i∂X l
−

∂2εil

∂Xj∂Xk

+ (∂γrlj
∂X i

−
∂γrli
∂Xj
) εrk + (∂γrki

∂Xj
−
∂γrkj

∂X i
) εrl + k{δjkεil − δikεjl − δjlεik + δilεjk} = 0.

(280)

For n = 2, there is only one compatibility equation corresponding to I1212:

∂2ε11

∂X2∂X2
− 2

∂2ε12

∂X1∂X2
+

∂2ε22

∂X1∂X1
+ (∂γr11

∂X2
−
∂γr12
∂X1
) εr2 + (∂γr22

∂X1
−
∂γr21
∂X2
) εr1

− k(ε11 + ε22) = 0.
(281)

For n = 3, we have 6 compatibility equations corresponding to I1212, I1223, I1313, I2113,

I2323, and I3123.

Example 3.2.4 (The Linear Compatibility Equation on 2-Spheres). Let us calculate

the compatibility equation on the 2-sphere with radius R. As mentioned earlier, we

have k = 1/R2. We choose the spherical coordinate system with (X1,X2) ∶= (θ, φ).
14Let {Ei} be an orthonormal basis for TXM and consider a linear isomorphism u ∶ Rn → TXM,

u(ei) = Ei. Then, the mapping (expX ○u)−1 defines a normal coordinate system [71].
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We have g11 = R2 sin2 φ, g12 = g21 = 0, and g22 = R2. The nonzero Christoffel symbols

are γ211 = −
1
2
sin 2φ, and γ112 = γ121 = cotφ. Note that (θ, φ) is an orthogonal coordinate

system but it is not a normal coordinate system at any point. Therefore, we must

use the general form of the compatibility equations given in (278). Using the rela-

tions ∇E1
E1 = γ211E2, ∇E1

E2 = ∇E2
E1 = γ112E1, and ∇E2

E2 = 0, and after lengthy

calculations, we obtain the following compatibility equation:

∂2ε11

∂X2∂X2
− 2

∂2ε12

∂X1∂X2
+

∂2ε22

∂X1∂X1
− cotX2 ∂ε11

∂X2
−
1

2
sin 2X2 ∂ε22

∂X2

+ 2 cot2X2 ε11 = 0.
(282)

Interestingly, the sectional curvature of 2-spheres does not appear in their linear com-

patibility equations. One should note that εij’s are not the conventional components

of the linear strain in the spherical coordinate system as the lengths of E1 and E2 are

not unity. In fact, we have

ε11 = R2 sin2φ εθθ, ε12 = R2 sinφ εθφ, and ε22 = R2εφφ, (283)

where εθθ, εθφ, and εφφ are the conventional spherical components. Substituting (283)

into (282) yields

sin2φ
∂2εθθ

∂φ2
− 2

∂2 (sinφ εθφ)
∂θ∂φ

+
∂2εφφ

∂θ2
+
3

2
sin 2φ

∂εθθ

∂φ
−
1

2
sin 2φ

∂εφφ

∂φ

+ (sin 2φ − 1)εθθ = 0.
(284)

In summary, we obtained the curvature operator DC ∶ Γ(S2T ∗B) → Γ(C4B), ε ↦
I(ε). Similar to the first operator DK, it is possible to obtain a projectively invariant

operator D2 from DC. Consider the operator D
⟨w⟩
2 ∶ Γ(S2T ∗B⊗L⟨w⟩)→ Γ(C4B⊗L⟨w⟩),

ε⊗µ⟨w⟩ ↦DC(ε)⊗µ⟨w⟩. One concludes that for w = 2, the operatorD⟨w⟩2 is projectively

invariant [42]. We define D2 ∶= D
⟨2⟩
2 ∶ Γ(S2T ∗B ⊗ L⟨2⟩) → Γ(C4B ⊗ L⟨2⟩). Similar to
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DK, we observe that there is a morphism of complexes ι such that D2 ○ ι = ι ○DC.

3.2.4 The Bianchi Operator and Stress Functions

Let ∇ be the Levi-Civita connection for (B,g). The operators DS and DC defined

in the previous sections coincide with the first two operators of the deformation

complex in Riemannian geometry obtained by Calabi [26] for manifolds with constant

sectional curvatures. For 2-dimensional manifolds, this sequence terminates after DC.

However, in general, it behaves similarly to the de Rham complex and terminates

after n operators. Let us also write the third operator of this complex as we are

interested in linear elasticity in R3. We call this operator the Bianchi operator as it is

closely related to the second Bianchi identity. It is given by DB ∶ Γ(C4B)→ Γ(D5B),
DB(s)(X,Y ,Z,T ,W ) =

(∇Xs) (Y ,Z,T ,W ) + (∇Y s) (Z,X,T ,W ) + (∇Zs) (X,Y ,T ,W ), (285)

where D5B denotes the space of (05)-tensors that have symmetries imposed by DB and

C4B: The tensor ∇Xs belongs to Γ(C4B) and therefore, DB(s) is skew-symmetric in

the first three entries and has the symmetries of the Riemannian curvature in the last

four entries. For n = 3, the bundle D5B has 3-dimensional fibers. The second Bianchi

identity implies that DB(R) = 0, where R is the Riemannian curvature of (B,g).
Since DB is the operator after DC in the Calabi complex, the following result holds.

Theorem 3.2.5. Let the Riemannian manifold (B,g) have a constant sectional cur-

vature. We have DB(DC(ε)) = 0. Conversely, if DB(s) = 0, then for each X ∈ B,

there is a symmetric tensor ε in a neighborhood of X such that s =DC(ε).
The operators DK and DC are related to the kinematics of motion. In contrary to

these operators, the physical significance of DB is not clear at all. For flat manifolds,

it is possible to obtain an interesting physical interpretation for DB. We proceed as

follows. Since (B,g) is flat, one can choose an orthonormal local coordinate system
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{X i} centered at X ∈ B, i.e. gij = δij in a neighborhood of X.15 For such a local

coordinate system, it is easy to observe that γijk = 0. Let h ∶=DB(s). For 2-manifolds,

it is straightforward to show that DB(s) = 0, ∀s ∈ Γ(C4B), i.e. the Calabi complex

terminates after DC for 2-manifolds. For n = 3, the independent components of h are

h12323, h21313, and h31212. Using the six independent components of s, i.e. s1212, s1223,

s1313, s2113, s2323, and s3123, one obtains the following expressions for the components

of h in the local coordinate system {X i}:

h12323 =
∂s2323

∂X1
+
∂s3123

∂X2
+
∂s1223

∂X3
,

h21313 =
∂s3123

∂X1
+
∂s1313

∂X2
+
∂s2113

∂X3
, (286)

h31212 =
∂s1223

∂X1
+
∂s2113

∂X2
+
∂s1212

∂X3
.

For 3-manifolds, the vector bundles C4B and S2TB have the same dimension, but

there is no global isomorphism between them, in general. The orthonormal coordinate

system {X i} enables us to obtain a local isomorphism between corresponding tensors

given by

s2323 ↦ σ11, s3123 ↦ σ12, s1223 ↦ σ13, s1313 ↦ σ22, s2113 ↦ σ23, and s1212 ↦ σ33. (287)

Thus, we can locally identify Γ(C4B) and Γ(S2TB) via an isomorphism ι̃X . If one can

obtain an orthonormal coordinate system covering B, this identification is also valid

globally. The Cartesian coordinate system provides such a global identification for the

Euclidean space with its standard metric. Recall that the divergence of (20)-tensor
σ ∈ Γ(S2TB) is a (10)-tensor given by (div σ)(α) = tr(∇σ(α)), ∀α ∈ Ω0(B). Let

σ = ι̃X(s). Using (286), it is easy to verify that DB(s) = 0, if and only if div σ = 0.

15Note that normal coordinate systems are orthonormal only at X, in general. The normal
coordinate system explained in Footnote 14 is also orthonormal in a neighborhood of X for flat
manifolds [82].
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Note that to obtain this result, the underlying coordinate system of (287) is assumed

to be orthonormal, i.e. gij = δij . Hence, we have proved the following Lemma.

Lemma 3.2.6. Let (B,g) be a flat 3-manifold. Then, for each X ∈ B, there exists

a neighborhood VX ⊂ B of X and an isomorphism ι̃X ∶ Γ(C4VX) → Γ(S2TVX) such
that DB(s) = 0, if and only if div (ι̃X(s)) = 0. In an orthonormal coordinate system

centered at X, the expression of ι̃X is given in (287). We denote this isomorphism

by ι̃ if it can be defined globally on B.

Now, we are ready to give a physical interpretation for DB: In the absence of

external body forces, the governing equation of linear elastostatics reads div σ = 0,

where σ ∈ Γ(S2TB) is the stress tensor on the body B [82]. Using Theorem 3.2.5 and

Lemma 3.2.6, we can prove the existence of the so-called Beltrami stress functions as

follows.

Corollary 3.2.7 (Beltrami Stress Functions in Linear Elastostatics). Let (B,g) be a

flat 3-manifold and let {X i} be an orthonormal coordinate system for B in a neigh-

borhood of an arbitrary point X ∈ B. If the stress tensor σ satisfies div σ = 0 on B,

there is a tensor Φ ∈ Γ(S2T ∗UX) in a neighborhood UX ⊂ B of X covered by {X i}
such that σ∣UX = ι̃X(DC(Φ)). The tensor Φ is called a Beltrami stress function for

(B,g) and in the local coordinate system {X i}, we have

(ι̃ −1X (σ))ijkl = ∂2Φjl

∂X i∂Xk
+

∂2Φik

∂Xj∂X l
−

∂2Φjk

∂X i∂X l
−

∂2Φil

∂Xj∂Xk
. (288)

Conversely, if (B,g) admits a stress function in a neighborhood UX of X, we have

(div σ)∣UX = 0.
The global version of Corollary 3.2.7 is also valid if B is contractible, i.e. without

any holes, and is covered by an orthonormal coordinate system {X i}. Since R3 with

its standard metric has a global orthonormal coordinate system, Corollary 3.2.7 is
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globally valid if B ⊂ R3 is a contractible open subset. For non-contractible bodies, a

global result can be obtained using cohomology groups of the Calabi complex. Al-

ternatively, it is also possible to obtain a global result in R3 using other methods,

see [56, 92] and references therein for more discussions. Therefore, we observe that

the operators DK and DB correspond to the kinematics and kinetics of motion, re-

spectively, while depending on the position of DC in the short subcomplexes, DC can

correspond to both the kinematics and the kinetics of motion. If the components Φij

vanish for i ≠ j, Φ is called a Maxwell stress function and if they vanish for i = j, Φ

is called a Morera stress function [56, 55, 77, 103]. If the only nonzero component

is Φ33, Φ is called an Airy stress function. For Airy stress functions, we have plane

stresses, i.e. σ13 = σ23 = σ33 = 0. The converse is also true in R2: There is a local Airy

stress function for a body B ⊂ R2 that satisfies div σ = 0 [107]. The upshot is the

following.

Corollary 3.2.8 (Airy Stress Functions in 2D-Linear Elastostatics). Let (B,g) be
a flat 2-manifold with an orthonormal coordinate system {X i}. If the stress tensor

σ ∈ Γ(S2TB) satisfies div σ = 0 on B, then for each X ∈ B there is a neighborhood

UX ⊂ B of X and a function ψ ∈ Ω0(B) such that σ∣UX = DA(ψ). The function ψ is

called an Airy stress function for (B,g) and in the local coordinate system {X i}, we
have

σ11 =
∂2ψ

∂X2∂X2
, σ12 = −

∂2ψ

∂X1∂X2
, σ22 =

∂2ψ

∂X1∂X1
. (289)

Conversely, if σ∣UX =DA(ψ), for a function ψ ∈ Ω0(B), we have (div σ)∣UX = 0.
Therefore, as we will discuss later, we also have a kinetic complex for linear elas-

tostatics in R2, which is not connected to the kinematic complex as in R3. For

3-manifolds, it is straightforward to check that the operator D3 ∶ Γ(C4B ⊗ L⟨2⟩) →
Γ(D5B ⊗L⟨2⟩) given by D3(s⊗µ⟨2⟩) =DB(s)⊗µ⟨2⟩ is projectively invariant [42] and

there is a morphism ι such that D3 ○ ι = ι ○DB.
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Theorem 3.2.5 also guarantees the existence of stress functions for nonlinear elas-

tostatics. We have various notions for stress in nonlinear elasticity, and consequently,

one can obtain various stress functions for each of these stresses. Let ϕ ∶ B → S be

a motion of (B,G) in a flat ambient space (S,g). In the absence of body forces,

the elastostatics equilibrium in terms of Cauchy stress tensor σ ∈ Γ(S2Tϕ(B)) reads
div σ = 0 [82]. By replacing (B,g) with (ϕ(B),g) in Corollary 3.2.7, we can directly

conclude the existence of local stress functions Φ ∈ Γ(S2Tϕ(B)) for the Cauchy stress

tensor. We call these stress functions Cauchy stress functions. Now, let C = ϕ∗g be

the Green deformation tensor of ϕ. Clearly, (B,C) is a flat Riemannian manifold.

The governing equation of nonlinear elastostatics without body forces can be written

as divCS = 0, where S ∈ Γ(S2TB) is the second Piola-Kirchhoff stress tensor and

divC is the divergence with respect to the Levi-Civita connection ∇C of the metric C

[82]. Corollary 3.2.9 extends the notion of stress functions to nonlinear elastostatics

in terms of the second Piola-Kirchhoff stress tensor as follows.

Corollary 3.2.9 (Second Piola-Kirchhoff Stress Functions in Nonlinear Elastostat-

ics). Let {X i} be an orthonormal local coordinate system for a flat 3-manifold (B,C),
where C is the Green deformation tensor. If the second Piola-Kirchhoff stress tensor

satisfies divCS = 0, on B, there exists a tensor Ψ ∈ Γ(S2T ∗UX) in a neighborhood UX ⊂

B of X covered by {X i} such that S∣UX = ι̃X(DC
C
(Ψ)), where DC

C
(Ψ) ∶= L(C,Ψ), and

L is defined in (277). We call the tensor Ψ a second Piola-Kirchhoff stress function

for (B,C). The components (ι̃ −1X (S))ijkl in {X i} are similar to (288). Conversely,

if (B,C) admits a second Piola-Kirchhoff stress function in a neighborhood UX ⊂ B

of X, we have (divCS)∣UX = 0.
In Corollary 3.2.9, note that {X i} must be orthonormal with respect to C not G.

For S = R3 with its standard metric, the motion ϕ always provides such an orthonor-

mal coordinate system on B globally. We will study a global version of Corollary

3.2.9 on non-contractible domains in a future work. Similar to the compatibility
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equations, it is also possible to use the covariant exterior derivative defined in (265).

Let (B,G) and (S,g) be flat Riemannian manifolds with the same dimensions that

admit global orthonormal coordinate systems {XI} and {xi}, respectively. Note that
the flatness of B is required as we need a global orthonormal coordinate system on

B. Let EI ∶= ∂/∂XI , and ei ∶= ∂/∂xi. We have G(EI ,EJ) = δIJ , and g(ei,ej) = δij .
Recall that a two-point tensor of type (pq lm) over an embedding ϕ ∶ B → S is a section

of a vector bundle over B with the fiber ⊗pTXB ⊗⊗qT ∗XB ⊗⊗lTϕ(X)S ⊗⊗mT ∗ϕ(X)S
over X ∈ B [82]. Let α ∈ Ω1

ϕ(B;TS) and assume ∇ is the Levi-Civita connection of g.

Using (265), and the Jacobi identity for brackets, we can write

(d∇2 ○ d∇1 (α))(X0,X1,X2) =
R(X̄0, X̄1)α(X2) −R(X̄0, X̄2)α(X1) +R(X̄1, X̄2)α(X0),

(290)

where X̄ i ∶= ϕ∗X i. Hence, if (S,g) is flat, then d∇2 ○ d∇1 = 0. For 3-manifolds B and

S, the fibers of T ∗B⊗Tϕ(B), Λ2T ∗B⊗Tϕ(B), and Λ3T ∗B⊗Tϕ(B) are 9-, 9-, and 3-

dimensional, respectively. The independent components of (0210)-tensor β ∈ Ω2
ϕ(B;TS)

are β12i, β13i, and β23i, for i = 1,2,3, where βIJ i ∶= g(β(EI ,EJ),ei). We have

(d∇2 β) (E1,E2,E3) = (∂β23i
∂X1

−
∂β13i

∂X2
+
∂β12i

∂X3
)ei. (291)

Let P ∈ Γ(TB ⊗ Tϕ(B)). The divergence of (1010)-tensor P is a (0010)-tensor given

by (divP )(ᾱ) ∶= tr(∇̃P (ᾱ)), ∀ᾱ ∈ Ω1(ϕ(B)), where ∇̃ is the Levi-Civita connec-

tion of (B,G) [82]. The coordinate systems {XI} and {xi} enable us to define an

isomorphism ι̂ ∶ Ω2
ϕ(B;TS)→ Γ(TB ⊗ Tϕ(B)) defined by

β23
i ↦ P 1i, β13

i ↦ −P 2i, β12
i ↦ P 3i, i = 1,2,3. (292)

We can readily verify that d∇2 β = 0, if and only if div(ι̂(β)) = 0. Therefore, we have

148



proved the following lemma.

Lemma 3.2.10. Let (B,G) and (S,g) be flat Riemannian 3-manifolds that admit

global orthonormal coordinate systems {XI} and {xi}, respectively. Then, for any

embedding ϕ ∶ B → S, there is an isomorphism ι̂ ∶ Ω2
ϕ(B;TS) → Γ(TB ⊗ Tϕ(B))

such that ∀β ∈ Ω2
ϕ(B;TS), we have d∇2 β = 0, if and only if div(ι̂(β)) = 0. In the

orthonormal coordinates {XI} and {xi}, the expression of ι̂ reads as in (292).

Now, we can define the first Piola-Kirchhoff stress functions as follows: The gov-

erning equation of nonlinear elastostatics can be written as divP = 0, where ϕ ∶ B → S
is a motion and P ∈ Γ(TB ⊗ Tϕ(B)) is the first Piola-Kirchhoff stress tensor asso-

ciated to ϕ [82]. The orthonormal coordinate system {xi} trivializes TS and there-

fore, any β ∈ Ωk
ϕ(B;TS) can be written as ∑iωi ⊗ ei, where ωi ∈ Ωk(B). Since

d∇(ωi⊗ei) = (dωi)⊗ei, we conclude that the cohomology group H∗ϕ(B, TS) induced
by d∇ is the same as H∗(B,R3) [22]. In particular, if B is contractible, H∗ϕ(B, TS) is
trivial. Using this result, it is straightforward to prove the following theorem:

Theorem 3.2.11 (First Piola-Kirchhoff Stress Functions in Nonlinear Elastostatics).

Suppose (B,G) and (S,g) are flat Riemannian 3-manifolds with global orthonormal

coordinate systems {XI} and {xi}, respectively. If the first Piola-Kirchhoff stress

tensor P corresponding to a motion ϕ ∶ B → S satisfies divP = 0, then at each

X ∈ B, there is a neighborhood UX of X and a tensor Ξ ∈ Ω1
ϕ(B;TS) such that

P ∣UX = ι̂(d∇1 (Ξ)). We call Ξ a first Piola-Kirchhoff stress function for the motion ϕ.

In coordinate systems {XI} and {xi}, we have

(ι̂ −1(P ))
IJ

i =
∂ΞJ i

∂XI
−
∂ΞI i

∂XJ
. (293)

Conversely, if ϕ ∶ B → S admits a first Piola-Kirchhoff stress function Ξ in a neigh-

borhood UX , i.e. P ∣UX = ι̂(d∇1 (Ξ)), then (divP )∣UX = 0.
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The above theorem is also globally valid if B is contractible. If flat manifolds B and

S do not admit global orthonormal coordinates, one may restate the above theorem

as Corollary 3.2.9. Although we derived nonlinear stress functions separately, one

can obtain a relation between them using the relation between the Cauchy and the

first and the second Piola-Kirchhoff stress tensors. Also, one should note that the

expressions of the isomorphisms ι̃ and ι̂ in non-orthonormal coordinate systems are

not the same as the canonical relations (287) and (292). Stress functions can be

defined for nonlinear elastostatics on flat 2-manifolds as well. In particular, it is

straightforward to define the Cauchy stress function and the second Piola-Kirchhoff

stress functions for flat 2-manifolds using Corollary 3.2.8. Regarding Theorem 3.2.11,

suppose the only non-vanishing components of Ξ are Ξ3
1 and Ξ3

2 and they only

depend on X1 and X2. Then, the independent components of ξ = d∇1 Ξ are

ξ13
1 =

∂Ξ3
1

∂X1
, ξ13

2 =
∂Ξ3

2

∂X1
, ξ23

1 =
∂Ξ3

1

∂X2
, ξ23

2 =
∂Ξ3

2

∂X2
. (294)

Suppose the associated first Piola-Kirchhoff stress tensor of a motion ϕ ∶ B → S of

the 2-manifold B satisfies P =DSF(υ), where the homomorphism DSF ∶ Ω0
ϕ(B;TS)→

Γ(TB ⊗ Tϕ(B)) in the orthonormal coordinate systems {XI} and {x1} is expressed
as

P 11 =
∂υ1

∂X2
, P 12 =

∂υ2

∂X2
, P 21 = −

∂υ1

∂X1
, P 22 = −

∂υ2

∂X1
. (295)

Note that DSF is defined by using (292) and (294). Then, one can show that divP = 0.

The tensor υ ∈ Ω0
ϕ(B;TS) is called a first Piola-Kirchhoff stress function for the

motion ϕ of the 2-manifold B.

3.3 Complexes in Linear and Nonlinear Elastostatics

We have already derived the differential operators of linear and nonlinear elastostatics.

We are now ready to write the associated differential complexes. Let us first introduce
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resolutions of sheaves, which are suitable for expressing local results. We refer the

reader to [23] for further details. Note that sheaves are not required for understanding

the complexes of elastostatics and one can skip §3.3.1.

3.3.1 Resolutions of Sheaves

Let X be a topological space and consider the category Op(X) with open subsets

of X as its objects. For open sets U,V ⊂ X, Mor(U,V ) contains only the inclusion

map iU,V ∶ U ↪ V if U ⊂ V , and Mor(U,V ) = ∅ if otherwise. Recall that a presheaf

A of Abelian groups on X is a contravariant functor from Op(X) to the category

of Abelian groups [23]. Thus, A(U) is an Abelian group and the morphism rU,V ∶=

A(iU,V ) ∶ A(V )→ A(U), is a homomorphism of Abelian groups called the restriction.

A sheaf of Abelian groups (A , π,X) on X is a topological space A and a local

homeomorphism π ∶ A → X called projection. For each x ∈ X, the stalk of A at

x is defined as Ax ∶= π−1(x), which is an Abelian group with a continuous group

operation [23]. Note that unlike vector bundles, the projection of a sheaf is also a

local homeomorphism and not merely a surjective map. Let G be an Abelian group.

A constant sheaf on X with stalk G is the sheaf X×G, where G is equipped with the

discrete topology, i.e. any subset of G is an open set. The constant sheaf X ×G is

also denoted by G. Sections of a sheaf A are defined similar to sections of fibered

manifolds. The set of sections of A on U is denoted by A (U). If U = X, then A (X)
is also denoted by Γ(A ).

LetM be a manifold and consider the space of k-forms Ωk(U) on an open subset

U ⊂ M. Then, Ωk defines a presheaf on M, where rU,V (α) = α∣U , with α ∈ Ωk(V )
and U ⊂ V . The presheaf Ωk defines a sheaf Ωk

M as follows. Let Sx = {α ∈ Ωk(U) ∶
U ⊂M, x ∈ U}. One can define an equivalence relation on Sx: suppose α,β ∈ Sx, with

α ∈ Ωk(U) and β ∈ Ωk(U ′). Thenα ∼ β if there is a neighborhoodW ⊂ U∩U ′ of x such

that α∣W = β∣W . The equivalence classes Sx/ ∼ is called the germs of Ωk at x and is
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denoted by (Ωk
M)x. The germ of α at x, [α]x, is the equivalence class of α in (Ωk

M)x.
Let Ωk

M = ⊔x∈M(Ωk
M)x, i.e. Ωk

M is the disjoint union of (Ωk
M)x. For a fixed α ∈ Ωk(U),

the set α = {[α]x ∶ x ∈ U}, is assumed to be an open set in Ωk
M and the topology

of Ωk
M is taken to be the topology generated by these open sets. Note that Ωk

M is

an Ω0
M-module, i.e. (Ωk

M)x is an (Ω0
M)x-module, and we have [φ]x[α]x + [ψ]x[β]x =

[φ∣Wα∣W + ψ∣Wβ∣W ]x, where φ ∈ Ω0(U1), ψ ∈ Ω0(U2), α ∈ Ωk(U3), β ∈ Ωk(U4), and
W ⊂ ∩4i=1Ui is a neighborhood of x. One can show that (Ωk

M, π,M) is a sheaf, where

π ∶ Ωk
M → M, [α]x ↦ x. Using a similar construction, one can define the sheaf of

germs of an arbitrary presheaf [23]. The sheaf Ωk
M defines a presheaf U ↦ Ωk

M(U).
There is a natural mapping θU ∶ Ωk(U) → Ωk

M(U), α ↦ (x ↦ [α]x). One can show

that θU defines an isomorphism of presheaves [23], i.e. a natural transformation of

functors, and therefore, we can identify Ωk(U) and Ωk
M(U). But note that there is no

one-to-one correspondence between ΛkT ∗M and Ωk
M. Similar to vector bundles, one

can consider algebraic constructions on sheaves. As an example, the tensor product

of sheaves A and B on X is a sheaf A ⊗B on X defined to be the sheaf of germs of

the presheaf U ↦ A (U)⊗B(U). One can show that (A ⊗B)x = Ax ⊗Bx, ∀x ∈ X.

Moreover, A (U) ⊗B(U) ≈ A(U) ⊗ B(U) = A ⊗ B(U), and hence A ⊗B can be

considered as the sheaf of germs of the presheaf U ↦ A ⊗B(U). This identification

is also valid for other functors such as ⊕, Λk, and Sk [23]. We denote the sheaf of

germs of local sections of TM and T ∗M by TM and T ∗M = (TM)∗, respectively.
We have Ωk

M = Λ
kT ∗M.

Suppose A and B are sheaves over X. A homomorphism of sheaves h ∶ A → B

is a stalk-preserving mapping covering IdX, which is a stalk-wise homomorphism, i.e.

the restriction hx ∶Ax →Bx is a homomorphism for all x ∈ X. A sheaf C is a subsheaf

of A if it is an open subset of A and Cx = C ∩Ax is a subgroup of Ax for all x ∈ X. One

can show that kerh and imh are subsheaves of A and B, respectively. A sequence

of sheaves is exact if the image of each operator is equal to the kernel of the next
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one. A sequence of sheaves ⋯ → A →B → C → ⋯ induces a sequence of presheaves

⋯ → A (U) → B(U) → C (U) → ⋯, ∀U ⊂ X. An exact sequence of sheaves does

not necessarily induce an exact sequence of presheaves [23]. A resolution of a sheaf

A is a sequence {L k}∞k=0 of sheaves together with homomorphisms hk ∶L k →L k+1

with hk+1 ○ hk = 0, and an augmentation homomorphism ε ∶ A → L 0, such that the

sequence

0 // A
ε // L 0 h0 // L 1 h1 // L 2 h2 // ⋯ (296)

is exact. Let M be a manifold and consider the exterior derivative dk ∶ Ωk(U) →
Ωk+1(U) for U ⊂ M. Note that d is only an R-module homomorphism and not

an Ω0-module homomorphism. The exterior derivative induces the homomorphisms

dk ∶ Ωk
M → Ωk+1

M , [α]x ↦ [dkα]x. Clearly, we have dk+1 ○ dk = 0. For the constant

sheafM×R, or simply R, one can define an augmentation ε ∶ R→ Ω0
M, (x, c)↦ [c]x,

where [c]x is the germ of the constant function f(x) = c, ∀x ∈M. Thus, we obtain

the following sequence:

0 // R
ε // Ω0

M
d0 // Ω1

M
d1 // Ω2

M
d2 // ⋯ (297)

Let dk[α]x = [dkα]x = [0]x, i.e. α is closed on an open subset U ⊂M. The Poincaré

lemma [22], states that there is a neighborhood W ⊂ U of x and η ∈ Ωk−1(W ) such
that α∣W = dk−1η, i.e. [α]x = [dk−1η]x = dk−1[η]x. Therefore, the above sequence is a

resolution of the constant sheaf R on a manifoldM, regardless of topological proper-

ties ofM. The restriction of (297) to any open subset ofM is still exact. Of course,

the induced sequence on Ωk(M) is not exact in general and its cohomology depends

on some topological properties of M. Let V be a finite-dimensional vector space.

The twisted exterior derivative dk ∶ Ωk(M;V ) → Ωk+1(M;V ) induces a resolution of

constant sheaf V given by 0 → V → Ω0
M;V → Ω1

M;V → ⋯, where Ωk
M;V is the sheaf of

V -valued k-forms.
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3.3.2 Linear Elastostatics Complexes

Let (B,g) be a Riemannian 3-manifold with a constant sectional curvature and the

Levi-Civita connection ∇. The linear elastostatics complex is induced by the Calabi

complex [26]. Suppose K(B) is the space of Killing vector fields on B. By using the

operators defined in the previous section, the Calabi complex is written in the first

row of the following diagram.

0 // K(B) ς
// Ω1(B) DS //

ι

��

Γ(S2T ∗B) DC //

ι

��

Γ(C4B) DB //

ι

��

Γ(D5B) //

ι

��

0

0 // K(B) ς̂
// Ω1(B;L⟨2⟩) D1 // Γ(S2T ∗B ⊗L⟨2⟩) D2 // Γ(C4B ⊗L⟨2⟩) D3 // Γ(D5B ⊗L⟨2⟩) // 0

(298)

In this diagram, we have ς(K) = K♭, and ς̂(K) = K♭ ⊗ µ⟨2⟩. We observed that

the Riemannian metric g allows us to define isomorphisms ι and thus, the Calabi

complex can be identified with the second row of the above diagram, which we call

the Eastwood complex [42, 41]. Consequently, Cohomology groups of the Calabi and

Eastwood complexes are the same. The Eastwood complex depends on the projective

structure [∇] on B, where [∇] is the projective equivalence class of the Levi-Civita

connection ∇. In the next section, we will show that if B is an open subset of R3,

the Eastwood complex is induced by a certain twisted de Rham complex. Of course,

this result does not imply that the Calabi complex is metric independent, as we need

metric to identify these complexes. Let B ⊂ R3 be an open subset equipped with the

standard metric of R3. Then, K(B) is isomorphic to euc(R3). By using Corollary

3.2.7, we can also define Beltrami stress functions for B ⊂ R3. Consequently, we obtain

the following diagram.
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0 // euc(R3) // Ω1(B) DS // Γ(S2T ∗B) DC // Γ(C4B) DB //

ι̃

��

Γ(D5B) //

ι

��

0

Γ(S2TB) div // X(B) // 0

(299)

Here, we have div ○ ι̃ = ι ○ DB, where in the Cartesian coordinate system, the iso-

morphism ι ∶ Γ(D5B) → X(B), h ↦ Z, is given by h12323 ↦ Z1, h21313 ↦ Z2, and

h31212 ↦ Z3. The linear elastostatics complex for B ⊂ R3 reads

0 // euc(R3) // Ω1(B) DS // Γ(S2T ∗B) D̃C // Γ(S2TB) div // X(B) // 0,

(300)

where D̃C ∶= ι̃○DC. The linear elastostatics complex and the Calabi complex have the

same cohomology groups. In particular, (300) is exact on contractible bodies. Since

Λ2R4 ≈ euc(R3), the complex (300) induces the following resolution of the constant

sheaf B ×Λ2R4:

0 // Λ2R4 // Ω1
B

DS // S2T ∗B
D̃C // S2T B div // T B // 0. (301)

The complex (300) is the complex that Arnold et al. [8] used for developing a numer-

ical scheme. They rewrote this complex on less smooth spaces and then, they directly

discretized the resulting complex. However, since the symmetry of strain and stress

tensors is strictly imposed in (300), the resulting discrete scheme is very complicated

and requires large numbers of degrees of freedom for each cell of a mesh [10, 11]. Al-

ternatively, one can develop numerical schemes that are based on a mixed formulation

that weakly imposes the symmetry of the stress tensor [10]. To this end, Arnold et
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al. [9] introduced the Arnold-Falk-Winther elastostatics complex as follows:

X(B) X(B)
0 // euc(R3) // ⊕ // Γ(⊗2T ∗B) // Γ(⊗2TB) // ⊕ // 0.

Ω1(B) Ω1(B)
(302)

We will study this complex in the next section, where we will show that the complex

(302) can be constructed from the same twisted de Rham complex that induces (300).

Arnold et al. [9] derived (302) by an equivalent construction.

For 2-manifolds with constant sectional curvatures, the Calabi complex terminates

after DB and therefore, the Calabi and the Eastwood complex for 2-manifolds are as

follows.

0 // K(B) ς
// Ω1(B) DS //

ι

��

Γ(S2T ∗B) DC //

ι

��

Γ(C4B) //

ι

��

0

0 // K(B) ς̂
// Ω1(B;L⟨2⟩) D1 // Γ(S2T ∗B ⊗L⟨2⟩) D2 // Γ(C4B ⊗L⟨2⟩) // 0

(303)

Thus, the linear elastostatics complex (300) for an open subset B ⊂ R2 reads

0 // euc(R2) // Ω1(B) DS // Γ(S2T ∗B) DC // Γ(C4B) // 0. (304)

We call (304) the kinematic complex of 2D linear elastostatics, since it only deals with

the kinematics of motion. We also obtain a resolution of constant sheaf B ×Λ2R3:

0 // Λ2R3 // Ω1
B

DS // S2T ∗B
DC // C 4B // 0, (305)

where C 4B is the sheaf of germs of local sections of C4B. On the other hand, Corollary

3.2.8 implies that we also have the kinetic complex for 2D linear elastostatics:

0 // euc(R2) a // Ω0(B) DA // Γ(S2T ∗B) div // X(B) // 0, (306)
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where the augmentation mapping a ∶ euc(R2) → Ω0(B) in the Cartesian coordinate

{X i} has the expression

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

c1 0 c3

c2 −c3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
az→ ((X1,X2)↦ c1X

1 + c2X
2 + c3) . (307)

The kinetic complex (306) can be considered as a restriction of the kinetic part of

the 3D linear elastostatics complex in the following sense: An open subset B ⊂ R2

can be extended to the open subset B ∶= B × (−ǫ, ǫ) ⊂ R3, where ǫ > 0 is an arbitrary

real number. Accordingly, a stress tensor σ ∈ Γ(S2T ∗B) induces the stress tensor

σ ∈ Γ2(S2T ∗B) defined as (σ11, σ12, σ22) = (σ11, σ12, σ22), and (σ13, σ23, σ33) = (0,0,0).
Clearly, div σ = 0, if and only if div σ = 0. In this case, an Airy stress function ψ for σ

induces a Beltrami stress function Φ for σ, where the only nonvanishing component

of Φ is Φ33 = ψ. Arnold et al. [12] used the kinetic complex (306) to derive the first

stable numerical scheme for the mixed formulation of 2D linear elastostatics.

3.3.3 Nonlinear Elastostatics Complexes

Let (B,G) and (S,g) be Riemannian 3-manifolds and let C(B,S) denote the space

of smooth embeddings ϕ ∶ B → S. We can either use the Green deformation C = ϕ∗g,

or the deformation gradient F = Tϕ to write a sequence of differential operators

for nonlinear elastostatics. By using C, we will obtain two separate short sequences

representing the kinematics and kinetics of motion. Let (S,g) have constant sectional
curvature k. We have the kinematic short sequence

C(B,S) DM // ΓM(S2T ∗B) DR // Γ(C4B), (308)
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where ΓM(S2T ∗B) is the space of Riemannian metrics on B, DM(ϕ) ∶= ϕ∗g, and the

tensor DR(C), ∀C ∈ ΓM(S2T ∗B), is a (04)-tensor given by

(DR(C))(X,Y ,Z,T ) =
R

C(X,Y ,Z,T ) − kC(Z,Y )C(X,T ) + kC(Z,X)C(Y ,T ). (309)

The compatibility equation (261) implies that DR ○ DM = 0. Note that DR and

DM are not linear homomorphisms. If B ⊂ S = R3, and the Cartesian coordinate

system of R3 is used for both B and S, one can define the displacement vector field

U ∈ X(B) by U(X) = ϕ(X) − X, ∀X ∈ B. Let Pϕ ∶ TB → TS be the parallel

transport in R3 with respect to ϕ given by Pϕ(X,Y) = (ϕ(X),Y), Y ∈ TXB. It is

straightforward to show that Tϕ = Pϕ ○ (Id +∇U). Using the fact that PT
ϕ = P−1ϕ , one

can show that C♯ = Id + ∇U + ∇TU + ∇TU ○ ∇U [82], where ∇TU ∶= (∇U)T, and
G(C♯(X),Y ) =C(X,Y ). This defines a mapping D̄M(U) =C. Now, the sequence

(308) can be rewritten as

X(B) D̄M // ΓM(S2T ∗B) DR // Γ(C4B). (310)

Theorem 3.2.1 states that the corresponding sequence of sheaves is an exact sequence,

i.e. the sequence (308) and (310) are locally exact. If (B,C) and (S,g) are flat 3-

manifolds, then we can use Corollary 3.2.9 to define a kinetic complex in terms of

C. Suppose the isomorphism ι̃ defined in Lemma 3.2.6 is globally defined on (B,C).
Then, the following diagram commutes.

0 // kerDC
C

�

�

// Γ(S2T ∗B) DC

C // Γ(C4B) DC

B //

ι̃

��

Γ(D5B) //

ι

��

0

Γ(S2TB) divC // X(B) // 0

(311)
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In this diagram, kerDC
C

is the kernel of DC
C

and DC
B

is defined similar to DB but by

using ∇C . The isomorphism ι in the normal coordinate system {XI} reads h12323 ↦
Z1, h21313 ↦ Z2, and h31212 ↦ Z3. Accordingly, one obtains the following kinetic

complex for nonlinear elastostatics:

0 // kerDC
s

�

�

// Γ(S2T ∗B) DC
s // Γ(S2TB) divC // X(B) // 0, (312)

where DC
s ∶= ι̃ ○DC

C
. Corollary 3.2.9 implies that (312) induces an exact sequence of

sheaves and is an exact complex on contractible bodies. Note that (308) and (312)

cannot be joined, since DC
s and DR are not the same. In fact, DC

s is the linearization

of DR. By using Cauchy stress functions, we obtain another kinetic complex for

nonlinear elastostatics:

0 // ker D̂C
�

�

// Γ(S2T ∗ϕ(B)) D̂C // Γ(S2Tϕ(B)) div // X(ϕ(B)) // 0, (313)

where D̂C in an orthonormal coordinate system {xi} on (ϕ(B),g) has the same ex-

pression as the operator D̃C introduced in (300) in an orthonormal coordinate system

on (B,g). In contrary to using C, using F leads to a complex that contains both the

kinematics and kinetics of motion. Suppose (B,G) and (S,g) are flat Riemannian

3-manifolds with global orthonormal coordinate systems {XI} and {xi}, respectively.
Let ∇ be the Levi-Civita connection of g and consider an embedding ϕ ∶ B → S that

represents a motion of B in S. We call Y ∈ Ω0
ϕ(B;TS) a uniform vector field of S

on B covering ϕ if ∇Y = 0. Let Uϕ(B,S) denote the space of uniform vector fields

of S on B covering ϕ. The first row of the following diagram is a twisted de Rham
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complex that is associated to the motion ϕ:

0 // Uϕ(B,S) � � // Ω0
ϕ(B;TS) d∇

0 // Ω1
ϕ(B;TS) d∇

1 // Ω2
ϕ(B;TS) d∇

2 //

ι̂

��

Ω3
ϕ(B;TS) //

ι̌

��

0

Γ(TB ⊗ Tϕ(B)) div // Ω0
ϕ(B;TS) // 0

(314)

Of course, this twisted de Rham complex is an exact complex if B is contractible. In

the above diagram, the isomorphism ι̂ is defined in (292) and the expression of the

isomorphism ι̌ ∶ Ω3
ϕ(B;TS) → Ω0

ϕ(B;TS) in the orthonormal coordinates {XI} and

{xi} is ξ123i ↦ αi. Note that similar to (292), the given canonical form of ι̌ is only

valid in orthonormal coordinate systems. It is easy to check that the above diagram

commutes, i.e. div ○ ι̂ = ι̌ ○ d∇2 . Thus, we obtain the following complex for nonlinear

elastostatics corresponding to a motion ϕ:

0 // Uϕ(B,S) � � // Ω0
ϕ(B;TS) d∇

0 // Ω1
ϕ(B;TS) DF

f
// Γ(TB ⊗ Tϕ(B)) div // Ω0

ϕ(B;TS) // 0,

(315)

where DF
f ∶= ι̂○d

∇
1 . The cohomology groups of the complex (315) are the same as those

of the twisted complex (314). Recall the generalized compatibility problem introduced

in §3.2.3.1. Then, the space Uϕ(B,S) can be considered as the space of translations in

S. The space Ω1
ϕ(B;TS) denotes both the space of deformation gradients F and the

space of first Piola-Kirchhoff stress functions. Similarly, Γ(TB ⊗ Tϕ(B)) represents
two different physical spaces, namely, the space of covariant exterior derivatives of

deformation gradients and the space of first Piola-Kirchhoff stresses. Let Uϕ denote

the sheaf of germs of locally uniform vector fields of S on B covering ϕ. Then, the

complex (314) induces the following resolution of UB:

0 // Uϕ
�

�

// Ω0
ϕ

d∇
0 // Ω1

ϕ

d∇
1 // Ω2

ϕ

d∇
2 // Ω3

ϕ
// 0, (316)
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where Ωk
ϕ is the sheaf of germs of local TS-valued k-forms on B over ϕ. Note that

(316) is exact on any flat 3-manifold regardless of its topological properties. Similarly,

one can write a sequence of sheaves for (315). In particular, if S = R3, then we obtain

a resolution of the constant sheaf R3:

0 // R3 a // Ω0
ϕ

d∇
0 // Ω1

ϕ

DF

f
// T B ⊗T ϕ(B) div // Ω0

ϕ
// 0, (317)

where T B ⊗ T ϕ(B) is the sheaf of germs of local sections of TB ⊗ Tϕ(B). The

augmentation homomorphism of the above resolution is defined as a ∶ (X,v)↦ [v]X ,
and therefore, each vector v ∈ R3 can be considered as representing the translation

by constant vector v. For an open subset B ⊂ S = R3, one can further simplify

(314) and (315). Let the coordinate systems {XI} and {xi} on B and S be the

Cartesian coordinate system {X i} with the basis vectors {Ei}. Let β ∈ Ωk
ϕ(B;TS),

where β(X1, . . . ,Xk) = βi(X1, . . . ,Xk)(∂/∂xi) ∈ X(ϕ(B)), ∀Xj ∈ X(B). For any

embedding ϕ ∶ B → S = R3, one can define isomorphisms ςk ∶ Ωk
ϕ(B;TS) → Ωk(B;R3),

that in the Cartesian coordinate system have the expression βI1⋯Ik
j ↦ βi1⋯ik

j. For

β ∈ Ω1
ϕ(B;TS), we have

(d∇1 β) (X,Y ) = ∇ϕ∗X (βi(Y )Ei) −∇ϕ∗Y (βi(X)Ei) −βi([X,Y ])Ei

= (X (βi(Y )) −Y (βi(X)) −βi([X,Y ]))Ei

= (ς−12 ○ d1 ○ ς1(β)) (X,Y ),
(318)

where dk ∶ Ωk(B;R3)→ Ωk+1(B;R3) is the usual twisted exterior derivative defined as

dk(ω⊗V) = dk(ω)⊗V, ∀ω ∈ Ωk(B) and ∀V ∈ R3 [22]. Hence, we have ς2○d
∇
1 = d1○ς1.

Similarly, one can show that ςk+1 ○ d
∇
k = dk ○ ςk, and therefore, for any embedding
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ϕ ∶ B → R3, the following diagram commutes.

0 // R3 // Ω0
ϕ(B;TS) d∇

0 //

ς0

��

Ω1
ϕ(B;TS) d∇

1 //

ς1

��

Ω2
ϕ(B;TS) d∇

2 //

ς2

��

Ω3
ϕ(B;TS) //

ς3

��

0

0 // R3 // Ω0(B;R3) d0 // Ω1(B;R3) d1 // Ω2(B;R3) d2 //

ς̂

��

Ω3(B;R3) //

ς̌

��

0

Γ(TB ⊗ TB) div // X(B) // 0

(319)

In this diagram, the expression of the isomorphisms ς̂ ∶ Ω2(B;R3) → Γ(TB ⊗ TB),
β ↦ ̟, and ς̌ ∶ Ω3(B;R3) → X(B), ξ ↦ X, in the Cartesian coordinate system

are β23i ↦ ̟1i, β13i ↦ −̟2i, β12i ↦ ̟3i, and ξi123 ↦ X i, i = 1,2,3, respectively.

Consequently, the 3D nonlinear elastostatics complex (315) in R3 simplifies to the

first row of the following diagram, where Dfp ∶= ς̂ ○ d1.

0 // R3 // Ω0(B;R3) d0 //

i0
��

Ω1(B;R3) Dfp
//

i1
��

Γ(TB ⊗ TB) div //

i2
��

X(B) //

i3
��

0

0 // R3 // Ω0
ϕ(B;TS) d∇

0 // Ω1
ϕ(B;TS) DF

f
// Γ(TB ⊗ Tϕ(B)) div // Ω0

ϕ(B;TS) // 0

(320)

This diagram commutes for any embedding ϕ ∶ B → R3 and the isomorphisms

i0 ∶ αi(X)Ei ↦ αi ∂/∂xi(ϕ(X)), i1 ∶ dX i(X) ⊗ Ej ↦ dX i(X) ⊗ (∂/∂Xj)(ϕ(X)),
i2 ∶ (∂/∂X i) ⊗ (∂/∂Xj)(X) ↦ (∂/∂X i (X)) ⊗ (∂/∂xj (ϕ(X))), i4 ∶ (∂/∂X i)(X) ↦
(∂/∂xi)(ϕ(X)), where the coordinate system {xi} on S is the Cartesian coordinate

{X i} on B. The physical interpretation of the complex (320) is as follows: A vector

V ∈ R3 is augmented in Ω0(B;R3) as the uniform translation byV, i.e. V ↦ (X ↦V).
An element U ∈ Ω0(B;R3) is considered as a displacement field with d0U = Tϕ− IdB,

where ϕX =X+U(X). Suppose B is contractible. Given β ∈ Ω1(B;R3), the condition
d1β = d1(β − IdB) = 0, is the necessary an sufficient condition for the existence of a

displacement field U ∈ Ω0(B;R3) such that Tϕ = β, with ϕ(X) =X +U(X). On the

other hand, ξ ∈ Ω1(B;R3) can be considered as a first Piola-Kirchhoff stress function
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with Dfp(ξ) representing the corresponding first Piola-Kirchhoff stress tensor. In

fact, i2 ○Dfp(ξ) is the corresponding stress tensor, but in R3 we can identify this with

Dfp(ξ). Given a first-Piola Kirchhoff stress tensor ̟ ∈ Γ(TB ⊗ TB), the condition

div ̟ = 0, is the necessary and the sufficient condition for the existence of a first

Piola-Kirchhoff stress function for ̟. In summary, the linear structure of R3 allows

us to remove the explicit dependence of the complex (315) on ϕ and obtain the 3D

nonlinear elastostatics complex (320).

Finally, let us also mention the complexes for 2D nonlinear elastostatics. The main

difference between 2D and 3D cases is that 2D case does not admit a complex that

contains both the kinematics and kinetics of motion. For 2-manifolds, the sequences

(308) and (310) are still valid. Using Corollary 3.2.8, the kinetic complex in terms of

the second Piola-Kirchhoff stress tensor reads

0 // kerDC
A

�

�

// Ω0(B) DC

A // Γ(S2TB) divC // X(B) // 0, (321)

where the expression of DC
A

in an orthonormal coordinate system of (B,C) is given
in (289). In terms of Cauchy stress functions, we obtain the kinetic complex

0 // kerDA
�

�

// Ω0(ϕ(B)) DA // Γ(S2Tϕ(B)) div // X(ϕ(B)) // 0, (322)

with DA being defined in (289). Note that for B ⊂ R2, kerDC
A

and kerDA can be

replaced with euc(R2) with augmentation mappings similar to (307). For flat 2-

manifolds, the complexes (314) and (315) terminate after d∇2 and div, respectively. In

particular, we obtain the following kinetic complex in R2:

0 // R2 // Ω0(B;R2) d0 // Ω1(B;R2) Dfp
// Γ(TB ⊗ TB) // 0, (323)

with similar physical interpretation as the kinematic part of (320). On the other
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hand, our discussion at the end of §3.2.4 enables us to write the following kinetic

complex in terms of the first Piola-Kirchhoff stress tensor:

0 // kerDSF
�

�

// Ω0
ϕ(ϕ(B);TS) DSF // Γ(TB ⊗ Tϕ(B)) div // Ω0

ϕ(B;TS) // 0.

(324)

For an open subset B ⊂ R2, this complex simplifies to

0 // R2 // Ω0(B;R2) D̂SF // Γ(TB ⊗ TB) div // X(B) // 0, (325)

where the components of P = D̂SF(υ) in the Cartesian coordinate {X i} is given in

(295). Note that R2 is augmented in Ω0(B;R2) as the space of constant functions.

3.4 Linear Elastostatics Complexes and

Homogeneous Spaces

In this section, we explain how the linear elastostatics complex arises as a BGG

resolution. To this end, we require various notions from differential geometry and

the representation theory of Lie groups and Lie algebras. The methods that will be

explained in the remainder are first developed for studying the celebrated Minkowski

space in the theory of relativity [17, 90]. The application of these methods to the

linear elastostatics complex is due to Eastwood [41, 40, 42]. We first mention the

required preliminaries. Then, we explain that the linear elastostatics complex is a

BGG complex that can be constructed from a twisted de Rham complex. We will

also explain the derivation of complexes (302) that Arnold et al. [9] introduced for

weakly imposing the symmetry of the stress tensor.

3.4.1 Semisimple Lie Algebras

Let G be a Lie group with a complex semisimple Lie algebra g. A Cartan subalgebra

h of g is a maximal Abelian subalgebra that consists of semisimple elements [27],
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i.e. a maximal subalgebra such that [X,Y] = 0, ∀X,Y ∈ h and the linear mapping

ad(X)(⋅) = [X, ⋅] ∶ g → g is diagonalizable, i.e. if there is a basis for g consisting of

eigenvectors of ad(X). Cartan subalgebras of semisimple Lie algebras are unique in

the sense that any two Cartan subalgebras of g are conjugate [47] and thus, one can

fix one of them. The zero eigenspace of ad(X) is h. A root α of g with respect to

h is a nonzero α ∈ h∗ such that gα = {X ∈ g ∶ ad(Y)(X) = α(Y)X, ∀Y ∈ h} ≠ {0}.
Subspaces gα are called root spaces and all are 1-dimensional. The space of all roots

of g relative to h is denoted by ∆(g,h) for which we have the root decomposition

g = h⊕ ⊕
α∈∆(g,h)

gα. (326)

There is a set of simple roots of g, which is defined to be a subset S ⊂ ∆(g,h) such
that every root α ∈ ∆(g,h) can be expressed as a linear combination of elements

of S with all non-negative or non-positive coefficients. The subsets S are unique up

to a conjugation. One can show that S is a basis for h∗ and induces an ordering

on h∗ [17]: let ξ, η ∈ h∗. Then ξ ≥ η ⇐⇒ ξ − η = ∑i aiαi, where αi ∈ S and ai ≥ 0.

The set of positive roots with respect to S is ∆+(g,h,S) = {α ∈ ∆(g,h) ∶ α > 0},
where α > 0 ⇐⇒ α = ∑i aiαi, with ai ≥ 0 and at least one ai ≠ 0. The Killing form

of g is nondegenrate on h and for each ξ ∈ h∗ there is a unique Hξ ∈ h such that

ξ(X) = B(Hξ,X), ∀X ∈ h. One can also define a nondegenerate complex bilinear

form on h∗ by ⟨ξ, η⟩ = B(Hξ,Hη). The real span of ∆(g,h) is denoted by h∗
R
and h∗

is the complexification of h∗
R
[27]. Moreover, the real dual of h∗

R
, hR, is the same as

the real span of the elements Hα, ∀α ∈∆(g,h).
As an example, consider the semisimple complex Lie algebra g = sl(Cn). Let Eij

denote a matrix with zero elements except for the element in the jth column of the

ith row which equals to one. It can be shown that the set of n×n complex trace-free

diagonal matrices is a Cartan subalgebra h for g [27]. Therefore, the rank of g, which
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is the dimension of h, is n − 1. Let ei ∶ h → C be a mapping that returns the ith

diagonal element. We have ∆(g,h) = {ei − ej ∶ 1 ≤ i, j ≤ n, i ≠ j} ⊂ h∗. The real

subspace hR is the space of n×n real trace-free diagonal matrices. The 1-dimensional

root space gei−ej is the subspace spanned by Eij and we have the root decomposition

g = h ⊕⊕i≠jgei−ej . A set of simple roots is S = {α1, . . . , αn−1}, where αi = ei − ei+1,
and the corresponding positive roots are ∆+(g,h,S) = {ei − ej ∶ 1 ≤ i < j ≤ n}. Simple

roots can be denoted by Dynkin diagrams.16 The Dynkin diagram of sl(Cn) has

n − 1 vertices: α1 α2 α3 αn−2 αn−1● ● ● ⋅ ⋅ ⋅ ● ● . Each vertex of the Dynkin diagram denotes

a simple root. Borel subalgebras are the maximal solvable subalgebras of g. All Borel

subalgebras are conjugate to the standard Borel subalgebra defined as

b = h⊕ ⊕
α∈∆+(g,h,S)

gα. (327)

The standard Borel subalgebra of sl(Cn) is the set of upper triangular matrices. A

parabolic subalgebra of g is a subalgebra containing a Borel subalgebra. Up to a con-

jugation, all parabolic subalgebras have the following standard form [17]. Suppose Sp

is a subset of S and let ∆(l,h) = span(Sp)∩∆(g,h), and ∆(u,h) =∆+(g,h,S)/∆(l,h).
A standard parabolic subalgebra of g is defined as p = l⊕ u, where

l = h⊕ ⊕
α∈∆(l,h)

gα, and u = ⊕
α∈∆(u,h)

gα. (328)

The decomposition p = l⊕u is called a Levi decomposition of p. We also have g = u−⊕p,

where the subalgebra u− is given by

u− = ⊕
α∈∆(u,h)

g−α. (329)

16Dynkin diagrams are used to determine the Cartan matrix of g that uniquely specifies g, see
[47].
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Given the Dynkin diagram of g, one can denote a standard parabolic subalgebra by

crossing through all nodes that correspond to the simple roots of g in S/Sp [17]. For

example, for g = sl(C4), one can write

× ● ●=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ sl(C4)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (330)

and we have

u− =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

∗ 0 0 0

∗ 0 0 0

∗ 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ sl(C4)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 0

0 ∗ ∗ ∗

0 ∗ ∗ ∗

0 ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ sl(C4)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ ∗ ∗

0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ sl(C4)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(331)

Clearly, we have the decomposition g = u−⊕ l⊕u. The celebrated Minkowski space of

the theory of relativity correspond to the parabolic subalgebra● × ●.

Let ̺ ∶ g → gl(V ) be a representation of a complex semisimple Lie algebra g over

a complex finite-dimensional vector space V . One can show that ̺(H) ∶ V → V ,

∀H ∈ h, is diagonalizable [27]. A weight of g is any element η ∈ h∗. A weight of V is

defined to be an element λ ∈ h∗ such that Vλ = {v ∈ V ∶H ⋅ v = λ(H)v,∀H ∈ h} ≠ {0}.
The set of all weights of V is denoted by ∆(V ). Note that we have the decomposition

V = ⊕
λ∈∆(V )

Vλ. (332)
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Using S = {αi}, one obtains another basis {λi} for h∗ by requiring 2⟨λi, αj⟩/⟨αj, αj⟩ =
δij. Thus, any η ∈ h∗ can be written as η = ∑i cηi λi, where cηi = 2⟨η,αi⟩/⟨αi, αi⟩. In

particular, any weight λ ∈ ∆(V ) can be written as λ = ∑i cλi λi. One can use the

Dynkin diagram of g to denote weights of V by writing the coefficient cλi on the node

αi. For example, consider sl(C4) with λi = ∑i ei, i = 1,2,3 [27]. Then, for example,

we have

λ =−1 2 −1● ● ● = −e1 + 2(e1 + e2) − (e1 + e2 + e3) = α2. (333)

Since ∆(V ) has finitely many weights, using the ordering that S induces on ∆(V ) ⊂ h∗,
we can define highest (lowest) weight λ of ∆(V ) as a weight λ with λ ≥ λ′ (λ ≤ λ′),

∀λ′ ∈ ∆(V ). A weight λ = ∑i cλi λi is called dominant if all cλi ≥ 0, and is called

integral if all cλi ∈ Z. There is a one-to-one correspondence between finite-dimensional

irreducible g-modules and dominant integral weights [17, 27]: Highest weight of such

a representation is dominant and integral, and conversely for any dominant integral

weight λ ∈ h∗, there is a unique (up to an isomorphism) irreducible g-module with

highest weight λ. If an irreducible representation of g on V has highest weight λ, then

the induced dual representation has lowest weight −λ. We assume that the Dynkin

diagram of an integral dominant weight λ also denotes the representation with lowest

weight −λ.

It is also possible to show that finite-dimensional irreducible representations of a

parabolic subalgebra p ⊂ g are in one-to-one correspondence with dominant integral

weights for p [17], i.e. weights with non-negative integers on the nodes that corre-

spond to all αi ∈ Sp. Similar to weights for g, by the Dynkin diagram of λ, which is

a dominant integral weight for p, we also denote the representation of p with lowest
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weight −λ.17 For example, the Dynkin diagram 2 1 0● ● ● denotes the irreducible repre-

sentation of sl(C4) with lowest weight −(3e1 + e2) and the Dynkin diagram −2 1 0
× ● ●

is the irreducible representation of p ⊂ sl(C4) given in (330), with lowest weight

α1. Let λ = ∑ni=1 cλi λi be a dominant integral weight for g. Also let Vi denote the

irreducible g-module corresponding to λi. One can show that the irreducible repre-

sentation of g corresponding to λ is a subrepresentation of the induced representation

Sc
λ
1V1 ⊗⋯⊗Sc

λ
nVn [47]. For sl(Cn), we have λi = e1 +⋯+ ei, i = 1, . . . , n− 1. Consider

the standard representation of sl(Cn) on Cn. The fundamental irreducible represen-

tation Vi is the induced irreducible representation ΛiCn [27]. As we discuss in the

next section, irreducible representations of sl(Cn) can be denoted by Young diagrams.

For α ∈∆(g,h), the root reflection sα ∶ h∗R → h∗
R
is given by

sα(ξ) = ξ − 2⟨ξ, α⟩⟨α,α⟩ α. (334)

These reflections are orthogonal mappings with determinant −1 and sα(α) = −α [27].

The Weyl group of g, Wg, is the subgroup of the orthogonal group O(h∗
R
) generated

by all the reflections sα, α ∈ ∆(g,h) [27], i.e. the group Wg consists of mappings

h∗
R
→ h∗

R
, with determinant 1 or −1, that are obtained by multiplication (composition)

of mappings sα. Note that (334) defines a left action Wg × h∗R → h∗
R
. It can be

shown that Wg is generated by {sα ∶ α ∈ S}, where S is the set of simple roots. A

root reflection sα with α ∈ S is called a simple reflection. For any w ∈ Wg, there

is a minimal integer ℓ(w), called the length of w, such that w can be written as

a composition of ℓ(w) simple reflections [17]. Such an expression is not unique in

general and is called a reduced expression for w. For example, let g = sl(Cn). We

17Let g and p be the Lie algebras of Lie groups G and P ⊂ G, respectively. An irreducible
representation of p is induced by an irreducible representation of P if and only if the corresponding
integral dominant weight for p is also integral for g [17], i.e. all coefficients of the corresponding
Dynkin diagram are integers.
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have h∗
R
= {∑nk=1 akek ∶ ∑nk=1 ak = 0}. Then, one can show that

sei−ej ( n∑
k=1

akek) = n∑
k=1
k≠i,j

akek + aiej + ajei, (335)

i.e. the reflection sei−ej exchanges the coefficients of ei and ej. Thus, Wg is the

permutation group Sn. Let (i⋯k) denote sαi
⋯sαk

. The reduced expressions for

elements of Wsl(C3) read {Id, (1), (2), (12), (21), (121)}. Usually directed diagrams

are used for Weyl groups. Let w,w′ ∈Wg. We write w → w′ if ℓ(w′) = ℓ(w) + 1, and
∃α ∈∆(g,h) such that w′ = sαw [17]. The directed graph of Wsl(C3) is as follows.

(1) //

!!C
CC

CC
CC
(12)

))S
SS

S

Id

77ooooo

''O
OOO

O (121)
(2)

=={{{{{{{

// (21) 55llll

Using (334), one can schematically show the action of simple reflections sαi
(λ) by

the Dynkin diagram of λ. For example, consider sl(C5). We have sα3
(a b c d● ● ● ●) =

a b+c −c c+d● ● ● ● , i.e. for calculating sαi
(λ), the coefficient cλi is replaced by −cλi and

cλi is added to adjacent coefficients cλi−1 and cλi+1.
18 Let ρ be the sum of all λi’s, i.e.

ρ = ∑i λi. The Weyl group Wg has a one-to-one correspondence with the orbit of ρ

under the left action of Wg on h∗
R
. The affine Weyl action on weights is defined as

w.λ = w(λ + ρ) − ρ, ∀w ∈ Wg. A weight λ is called singular if there is an element

w ∈Wg with w ≠ Id, such that w.λ = λ [17]. Otherwise, λ is called non-singular. If λ

is singular, there are some w ∈ Wg and αi ∈ S such that c
w(λ+ρ)
i = 0, i.e. the Dynkin

diagram of w(λ + ρ) has a zero coefficient.

For a standard parabolic subgroup p ⊂ g, one can define the Hasse diagram W p,

which is the subset of Wg whose action sends a dominant weight for g to a dominant

18This role is valid only for sl(Cn) and needs some modifications for other types of Lie algebras,
see [17].
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weight for p [17]. Let p = l⊕u be the Levi decomposition of p as was explained earlier.

For an element w ∈ Wg, we define ∆(w) = {α ∈∆+(g,h,S) ∶ w−1(α) ∈ −∆+(g,h,S)},
where we have ∣∆(w)∣ = ℓ(w) [67]. One can show thatW p = {w ∈Wg ∶∆(w) ⊂∆(u,h)}
[17]. Let ρp = ∑i λi, ∀i such that αi ∈ S/Sp, i.e. the Dynkin diagram of ρp has 1’s on

crossed nodes and 0’s on all other nodes. The Hasse diagram of p is in a one-to-one

correspondence with the orbit of ρp under the action of Wg. The Hasse diagram of

p ⊂ sl(Cn+1), with p = × ● ●. . .● ●, is given in the following diagram [17].

Id // (1) // (12) // (123) // . . . // (123 . . . n) (336)

3.4.2 Irreducible Representations of SL(Cn)
For obtaining the BGG resolution of linear elasticity, one needs to determine a se-

quence of projections on some associated vector bundles that correspond to irreducible

representations of SL(Cn). The Dynkin diagram notation for weights is appropriate

for calculation of BGG resolutions but it does not specify the irreducible representa-

tion of a given weight. In this section, we review Young diagrams which are standard

tools for specifying irreducible representations of GL(Cn) and SL(Cn). For more

details, see [47, 17, 90].

Let Sd be the symmetric group of permutations of integers {1, . . . , d} and let

σ = {a1⋯ak} ∈ Sd denote a k-cycle. Recall that a partition η = (η1, . . . , ηl) of an
integer d is a set of integers such that d = ∑li=1 ηi, with η1 ≥ ⋯ ≥ ηl ≥ 1. The number

of irreducible representations of Sd is equal to the number of partitions of d [47].

Partitions are usually shown by Young diagrams. For example, the Young diagram

of the partition (3,2,2,1) of 8 is given by:
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By associating integers 1, . . . , d to a Young diagram such that each row and each

column is in increasing order, we obtain a Young tableau. The canonical Young

tableau for the above example is:
1 2 3
4 5
6 7
8

The conjugate of a Young diagram (tableau) is obtained by interchanging rows and

columns. Thus, the conjugate partition of (3,2,2,1) is (4,3,1) and the conjugate of

the above tableau is as follows.
1 4 6 8
2 5 7
3

Given a finite group G, the group ring or group algebra CG is defined to be the

vector space spanned by mappings Eg ∶ G → C, ∀g ∈ G, where Eg(x) is 1 if x = g,

and 0 otherwise, i.e. the underlying vector space of CG is the set of all C-valued

functions on G. The multiplication CG ×CG → CG is defined by Eg1 ⋅ Eg2 = Eg1⋅g2 , or

equivalently f ⋅h(x) = ∑g1⋅g2=x f(g1)h(g2), ∀f, h ∈ CG [47]. A representation of CG is

an algebra homomorphism ˆ̺ ∶ CG → End(V ). A representation ̺ ∶ G → GL(V ) of G
induces a representation of CG by defining ˆ̺(Eg) ∶= ̺(g). Consider a Young tableau

on a partition η = (η1, . . . , ηk) of an integer d. Let the subgroups Pη,Qη ⊂ Sd be

Pη = {σ ∈ Sd ∶ σ preserves each row}, and Qη = {σ ∈ Sd ∶ σ preserves each column}.
The elements aη, bη ∈ CSd are defined as aη = ∑σ∈Pη

Eσ, and bη = ∑σ∈Qη
sgn(σ)Eσ,

where sgn(σ) is 1 (−1) if σ is an even (odd) permutation. The Young symmetrizer

cη19 of the partition η is defined to be [47]

cη = aη ⋅ bη ∈ CSd. (337)

19As we will see in the sequel, each symmetrizer specifies an irreducible representation. Represen-
tations that correspond to different tableaux of a partition are isomorphic [47]; this is the reason for
specifying cη merely with η.
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For a vector space V , we have a right action ⊗dV ×Sd →⊗dV given by

(v1 ⊗⋯⊗ vd) ⋅ σ = vσ(1) ⊗⋯⊗ vσ(d). (338)

This right action defines a mapping r̂ ∶ CSd → End(⊗dV ) by (∑i ziEσi ,v1⊗⋯⊗vd)↦
∑i zi ((v1 ⊗⋯⊗ vd) ⋅ σi), where zi ∈ C. The image r̂(cη,⊗dV ) ⊂ ⊗dV is denoted

by SηV , where the functor Sη is called the Schur functor corresponding to η. Let

{ei}ni=1 be a basis for V . Recall that the corresponding bases for (n+d−1d )-dimensional

space SdV and (nd)-dimensional space ΛdV are given by {ei1 ⊙⋯⊙ eid}1≤i1≤⋯≤id≤n and

{ei1 ∧ ⋯ ∧ eid}1≤i1<⋯<id≤n, respectively, where we have embeddings SdV → ⊗dV and

ΛdV → ⊗dV defined by v1 ⊙ ⋯ ⊙ vd ↦ ∑σ∈Sd
vσ(1) ⊗ ⋯ ⊗ vσ(d), and v1 ∧ ⋯ ∧ vd ↦

∑σ∈Sd
sgn(σ)vσ(1)⊗⋯⊗vσ(d), respectively. For the partitions (d) and (1, . . . ,1) of d,

we have S(d)V = SdV and S(1,...,1)V = ΛdV . In general, for a partition η = (η1, . . . , ηk),
one can show that [47]

dim(SηV ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if k > dimV = n,

∏
1≤i<j≤n

ηi−ηj+j−i

j−i
, if k ≤ n,

(339)

where for case k ≤ n, it is assumed that ηi = 0, for k < i ≤ n. Consider the standard

action of GL(Cn) on V = Cn, i.e. A ⋅v = Av, for A ∈ GL(Cn), and v ∈ Cn. This action

induces a representation on ⊗dCn by A ⋅ (v1 ⊗⋯⊗ vd) = (Av1) ⊗⋯⊗ (Avd). Then,

given a partition η for d, the subspace SηC
n ⊂ ⊗dCn is GL(Cn)-invariant under this

representation. In fact, SηCn is an irreducible representation of GL(Cn) [47]. Since

any irreducible representation of GL(Cn) restricts to an irreducible representation of

SL(Cn), and therefore, an irreducible representation of sl(Cn), we observe that SηCn

is also an irreducible representation of SL(Cn) and sl(Cn). Let λ be a dominant

173



integral weight of sl(Cn) given by

λ =
n−1

∑
i=1

ciλi = c1 c2 c3 cn−2 cn−1● ● ● ⋅ ⋅ ⋅ ● ● . (340)

The corresponding irreducible representation of sl(Cn) with the highest weight λ is

the representation SηC
n ⊂⊗dCn, where the partition η is given by [47]

η = (n−1∑
i=1

ci,
n−1

∑
i=2

ci, . . . , cn−2 + cn−1, cn−1,0) , (341)

and

d =
n−1

∑
j=1

n−1

∑
i=j

ci. (342)

Note that the partition η is actually obtained from the right side of (341) by re-

moving zero entries from the right end. Moreover, the irreducible representation of

(η1, . . . , ηn−1,0) is isomorphic to that of (η1 + b, η2 + b, . . . , ηn−1 + b, b), where b ∈ N is

an arbitrary constant [47]. By using (339) and (341), we can write

dim(SηCn) = ∏
1≤i<j≤n

ci +⋯+ cj−1 + j − i

j − i
. (343)

Let us calculate the irreducible representations of some weights that will be used in

the sequel. Let n = 4. Then, the weights 1 0 0● ● ● , 0 1 0● ● ● , and 0 0 1● ● ● correspond to the

representations C4, Λ2C4, and Λ3C4, respectively. The weight d 0 0● ● ● is the highest

weight of SdC4. Finally, consider the less trivial case 0 2 0● ● ● . Clearly, it corresponds

to the canonical Young Tableau
1 2

3 4 for the partition (2,2,0,0) = (2,2) of d = 4. We

have P(2,2) = {Id,{12},{34},{12}{34}}, and Q(2,2) = {Id,{13},{24},{13}{24}}, which
implies that

c(2,2) = EId + E{12} + E{34} − E{13} − E{24} + E{13}{24} + E{12}{34} + E{14}{23}

− E{132} − E{124} − E{143} − E{234} + E{1324} + E{1423} − E{1432} − E{1234}.

(344)
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Consider the embedding S2(Λ2C4)→⊗4C4 given by

(v1 ∧ v3)⊙ (v2 ∧ v4) ↦ v1 ⊗ v2 ⊗ v3 ⊗ v4 + v2 ⊗ v1 ⊗ v4 ⊗ v3 − v1 ⊗ v4 ⊗ v3 ⊗ v2

− v4 ⊗ v1 ⊗ v2 ⊗ v3 − v3 ⊗ v2 ⊗ v1 ⊗ v4 − v2 ⊗ v3 ⊗ v4 ⊗ v1

+ v3 ⊗ v4 ⊗ v1 ⊗ v2 + v4 ⊗ v3 ⊗ v2 ⊗ v1, (345)

i.e. S2(Λ2C4) is assumed to be the space of vectors that are alternating for exchang-

ing first with third entries and second with fourth entries and are symmetric for

mutual interchanging of first and third entries with second and fourth ones. Note

that the alternating entries correspond to the columns of the Young tableau while

the symmetric entries correspond to rows. The 20-dimensional subspace S(2,2)C
4 of

the 21-dimensional space S2(Λ2C4) is the span of all vector of the form

(v1 ∧ v3)⊙ (v2 ∧ v4) + (v2 ∧ v3)⊙ (v1 ∧ v4). (346)

Note that the elements of S(2,2)C4 has the symmetries of the Riemannian curvature

given in (262) and (263). In general, the weight (340) is the highest weight of a

subrepresentation of V ′ = Sc1Cn⊗Sc2(Λ2Cn)⊗⋯⊗Scn−1(Λn−1Cn), where V ′ is assumed

to be the span of all elements of⊗dCn that are alternating for permutations of columns

and are symmetric for mutual permutations of columns with the same length. As an

example, consider the weight 2 2 1● ● ● with the following canonical Young tableau.

1 2 3 4 5
6 7 8
9

We have V ′ = S2C4 ⊗S2(Λ2C4)⊗Λ3C4, where V ′ is the span of all elements of ⊗9C4

that are alternating for permutations 3 ⇔ 8, 2 ⇔ 7, and 1 ⇔ 6 ⇔ 9, and are

symmetric for 4⇔ 5 and the mutual permutation 2∣7⇔ 3∣8, where the numbers are
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the position of entries in v1 ⊗⋯⊗ v9, see (345).

As mentioned in the previous section, the Dynkin diagram of a weight λ is used to

denote a representation that its dual has the highest weight λ. For Young diagrams

over Cn, the following result holds [39, 17]: Consider a partition η = (η1, . . . , ηn), with
η1 ≥ η2 ≥ ⋯ ≥ ηn ≥ 0. Then, the Dynkin diagram of the representation SηC

n of SL(Cn)
is ηn−1−ηn ηn−2−ηn−1 η2−η3 η1−η2● ● ⋅ ⋅ ⋅ ● ● . The Dynkin diagrams of some representations

are given in the following:

C4 ≈ Λ3(C4)∗ = 0 0 1● ● ● , (C4)∗ ≈ Λ3C4 = 1 0 0● ● ● ,

Λ2C4 ≈ Λ2(C4)∗ = 0 1 0● ● ● , Sd(C4)∗ = d 0 0● ● ● ,

SdC4 = 0 0 d● ● ● , S(2,2)(C4) ≈ S(2,2)(C4)∗ = 0 2 0● ● ● .

(347)

Note that as isomorphisms of representations, we have (ΛkV )∗ ≈ ΛkV ∗, (SkV )∗ ≈
SkV ∗, (⊗kV )∗ ≈ ⊗kV ∗, and more generally (SηV )∗ ≈ Sη(V ∗), where all of these

representations are induced by the representation V . Moreover, for the standard

representation of SL(V ) on n-dimensional space V , we have the isomorphism of

representations ΛkV ≈ Λn−kV ∗ [47]. Also note that for defining SηV , we only need

the action of Sd on ⊗dV . Thus, we can safely define SηV ∗ but it should be kept in

the mind that in the above examples, this representation is induced by the standard

action of SL(V ) on V and not the standard action of SL(V ∗).
3.4.3 Parabolic Geometries

The linear elastostatics complex is equivalent to a complex on a flat parabolic ge-

ometry on the 3-sphere. The main goal of this section is to introduce the parabolic

geometries. First, we have to define Klein and Cartan geometries. A complete study

of Klein and Cartan geometries is available in [95]. Roughly speaking, the Cartan

geometries generalize the Klein geometries in the same way that a Riemannian geom-

etry generalizes the Euclidean geometry, i.e. the curved Cartan geometries are locally
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similar to the flat Klein geometries. On the other hand, Cartan geometries gener-

alize the Riemannian geometry very similar to the Klein geometries that generalize

non-Euclidean geometries.

3.4.3.1 Klein Geometries

A Klein geometry is a pair (G,H), where G is a Lie group and H ⊂ G is a closed

subgroup of G such that G/H is connected. The Lie group G is called the principal

group of the geometry and the homogeneous space G/H is called the space of the Klein

geometry, or by abuse of notation, the Klein geometry. From §3.1.3.1 and §3.1.4.6,

we know that G/H is a smooth manifold and (G, p,G/H,H) is a principal bundle with

the principal right action r = µ ∶ G ×H → G, where µ is the multiplication of G. The

Maurer-Cartan form ω ∈ Ω1(G;g) is a linear isomorphism on each fiber of G → G/H.
By restricting (225) to H, we obtain (ρh)∗ω = Ad(h−1) ○ ω, ∀h ∈ H. The principal

right action of G → G/H can be written as rg = λg ∶H → G. By using (193), we obtain

ω (ζX(g)) = ω(Terg ⋅X) = Tgλg−1 ○ Teλg ⋅X =X, ∀g ∈ G and ∀X ∈ h. (348)

In general, ω ∉ Ω1(G;h) and thus, it is not a principal connection for G → G/H.
Recall that we have a smooth transitive left action ℓ ∶ G × G/H → G/H given by

g1 ⋅ (g2 ⋅H) = (g1 ⋅ g2) ⋅H. A Klein geometry is called effective if ℓ is effective. The

kernel K ⊂ G of the Klein geometry is the set of all elements g ∈ G such that ℓg = IdG/H.

One can show that K is the maximal normal subgroup of G that is contained in H.

Also K is a Lie subgroup and its Lie algebra k is the maximal ideal in g that is

contained in h. By restricting the adjoint action of G to H, one obtains the mapping

Ad∣H ∶ H → GL(g). On the other hand, as a subgroup of G, the adjoint action of H

is obtained by restricting G to H and g to h. Therefore, h is an H-invariant subspace

of g, i.e. Ad∣H(h)(X) ∈ h, ∀h ∈ H and X ∈ h. The Klein geometry (G,H) is called

reductive if there is an H-invariant Lie subalgebra n ⊂ g that is complementary to
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h, i.e. g = n ⊕ h and Ad∣H(h)(Y) ∈ n, ∀h ∈ H and Y ∈ n. The Klein geometry is

called split if there exists a Lie subalgebra g− ⊂ g, which is complementary to h, i.e.

g = g− ⊕ h as a vector space.

A homogeneous vector bundle over the homogeneous space G/H is a vector bundle

π ∶ V → G/H together with a left action ℓ̃ ∶ G × V → V such that π is G-equivariant,

i.e. π(ℓ̃(g, z)) = ℓ(g, π(z)), ∀g ∈ G and ∀z ∈ V , and also ℓ̃g ∶ V → V is a vector

bundle homomorphism for all g ∈ G, i.e. ℓ̃g is fiber-linear. Similarly, one can define

a homogeneous principal bundle π ∶ P → G/H over G/H. Here it is required that

ℓ̃g ∶ P → P is a homomorphism of principal bundles, i.e. equivariant with respect to

the principal right action of the structure group of P . A homorphism of homogeneous

vector bundles (homogeneous principal bundles) is a homomorphism of vector bundles

(principal bundles) covering IdG/H that is also G-equivariant.

3.4.3.2 Cartan Geometries

As mentioned earlier, Cartan geometries are “curved” spaces that are locally similar to

flat Klein geometries. Cartan geometries are used in important physical theories such

as physical gauge theories, where particles (fermions) are considered to be functions

on a principal bundle and forces (bosons) are modeled as connections on that principal

bundle, see [81] and references therein. There are two seemingly different ways for

defining Cartan geometries: the base and the bundle definitions. These two definitions

are equivalent if the underlying Klein geometry, i.e. the homogeneous model, of a

Cartan geometry is effective [95]. Here we mention the principal bundle definition,

see [27, 95] for more details.

Let H ⊂ G be a Lie subgroup of a Lie group G and let g be the Lie algebra of

G. A Cartan geometry of type (G,H) on a smooth manifold M is a principal H-

bundle (P , p̃,M,H) together with a g-valued one-form ω ∈ Ω1(P ;g) called a Cartan

connection. The Cartan connection has the following properties:
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(i) the linear mapping ω(z) ∶ TzP → g is a linear isomorphism for all z ∈ P ;

(ii) it is H-equivariant20, i.e. (rh)∗ω = Ad(h−1) ○ω, ∀h ∈H;
(iii) it reproduces the generators of fundamental vector fields, i.e. ω (ζX(z)) = X,

∀X ∈ h and ∀z ∈ P .

Recall that as mentioned in §3.1.6.2, for the principal bundle (P , p̃,M,H), we have
V P ≈ P ×h. The property (i) implies that TP ≈ P ×g. Note that a Cartan connection

ω ∈ Ω1(P ;g) is not a principal connection form, since ω ∉ Ω1(P ;h), in general. The

homogeneous model for Cartan geometries of type (G,H) is the principal H-bundle

(G, p,G/H,H) together with the Maurer-Cartan form ω̄ ∈ Ω1(G;g), where p ∶ G → G/H
is the natural projection. Thus, the homogeneous model for Cartan geometries of type

(G,H) is the Klein geometry (G,H). The curvature form K ∈ Ω2(P ;g) of the Cartan
geometry (P →M,ω) is defined as

K(ξ,η) ∶= dω(ξ,η) + [ω(ξ),ω(η)] = dω(ξ,η) + 1

2
[ω,ω](ξ,η), (349)

where ξ,η ∈ X(P). The Maurer-Cartan form ω̄ ∈ Ω1(G;g) is a Cartan connection for

the Cartan geometry (G, p,G/H,H) on G/H and the Maurer-Cartan equation (227)

implies that the curvature form of this geometry is zero, i.e. the homogeneous model

of a Cartan geometry is flat. Let ̟ ∶ g → g/h be the natural projection. The form

̺ ∶= ̟(K) ∈ Ω2(P ;g/h) is called the torsion of the Cartan geometry (P →M,ω).
The geometry is called torsion-free if K ∈ Ω2(P ;h).

Let G = Euc(Rn) be the group of rigid motions of Rn and let H ⊂ G denote the

20The right action of H on TP is given by Zz ⋅h ∶= Tzr
h ⋅Zz, where Zz ∈ TzP and r is the principal

right action of P →M. Also the adjoint representation Ad∣H ∶ H × g → g is a left action of H on g,
and thus Ad(h−1) ∶ g→ g, ∀h ∈H, defines a right action of H on g.
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subgroup fixing the origin. By using Table 1, we can write

G =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝

1 0

v A

⎞⎟⎟⎠ ∈ GL(R
n+1) ∶ v ∈ Rn,A ∈ SO(Rn)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (350)

H =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝
1 0

0 A

⎞⎟⎟⎠ ∈ GL(R
n+1) ∶ A ∈ SO(Rn)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
≈ SO(Rn), (351)

with the Lie algebras

g = euc(Rn) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝

0 0

v A

⎞⎟⎟⎠ ∈ gl(R
n+1) ∶ v ∈ Rn,A ∈ so(Rn)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (352)

h =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝
0 0

0 A

⎞⎟⎟⎠ ∈ gl(R
n+1) ∶ A ∈ so(Rn)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
≈ so(Rn). (353)

The pair (G,H) defined above is called the Euclidean model of dimension n. A

Euclidean geometry on manifoldM is a Cartan geometry of type (G,H), where (G,H)
is the Euclidean model. Note that this is the definition of the oriented Euclidean

geometry; the unoriented Euclidean geometry is obtained by replacing SO(Rn) with
O(Rn) in (350) and (351). One can show that a torsion-free Euclidean geometry

on M determines a Riemannian metric on M up to a constant scale factor and

thus, Riemannian geometries onM, i.e. M together with a Riemannian metric, are

equivalent (up to scale) to torsion-free Euclidean geometries on M [95]. This result

shows how Cartan geometries generalize Riemannian geometries.

3.4.3.3 Parabolic Geometries

Let g be a semisimple Lie algebra and suppose k ∈ N. A ∣k∣-grading on g is a decompo-

sition g = g−k ⊕⋯⊕gk of g into a direct sum of subspaces such that: (i) [gi,gj] ⊂ gi+j ,
where we assume gi = {0}, for ∣i∣ > k; (ii) the subalgebra g− ∶= g−k ⊕⋯ ⊕ g−1 is gen-

erated (as a Lie subalgebra) by g−1; and (iii) g−k ≠ {0} and gk ≠ {0}. A Lie algebra
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g with such a decomposition is called a ∣k∣-graded semisimple Lie algebra or sim-

ply a ∣k∣-graded Lie algebra [27]. From the above definition, we conclude that g0,

p ∶= g0⊕⋯⊕gk, and p+ ∶= g1⊕⋯⊕gk are Lie subalgebras of g. Recall the definition of

a parabolic subalgebra p of a complex semisimple Lie algebra g given in §3.4.1. If g

is a ∣k∣-graded semisimple Lie algebra, then p = g0 ⊕⋯⊕ gk is a parabolic subalgebra

of g. Conversely, for any parabolic subalgebra p of g, one can obtain a ∣k∣-grading
g = g−k⊕⋯⊕gk such that p = g0⊕⋯⊕gk [27]. The complexification of a real ∣k∣-graded
Lie algebra g is a complex ∣k∣-graded Lie algebra and thus, p ⊂ g is a real from of a

parabolic subalgebra.

Let B ∶ g × g → R be the Killing form of a ∣k∣-graded semisimple Lie algebra g

and consider the corresponding induced map B̂ ∶ g → g∗. Since g is semisimple, B

is nondegenerate and therefore, B̂ is a linear isomorphism. On the other hand, the

restriction Bi,j ∶= B∣gi×gj , where i + j = 0, is also nondegenerate21 [27]. This implies

that if i + j = 0, then dimgi = dimgj. In particular, B0,0 and Bi,−i are nondegenerate

and induce the isomorphisms g0 ≈ g∗0 and gi ≈ g∗−i. The adjoint representation of g

induces the p-modules g, p, and p+, and hence, the p-modules g/p and (g/p)∗. Using
the Killing form of g, one concludes that p+ ≈ (g/p)∗ as p-modules.

Let G be a Lie group with the Lie algebra g that is a ∣k∣-graded semisimple Lie

algebra. The Lie subgroups G0 and P22 are defined as G0 = {g ∈ G ∶ Ad(g)(gi) ⊂ gi,∀i =
−k, . . . , k}, and P = {g ∈ G ∶ Ad(g)(gi) ⊂ gi ⊕ ⋯ ⊕ gk,∀i ≤ k}. We have G0 ⊂ P ⊂ G,

and the Lie algebras of G0 and P are g0 and p, respectively. If g is simple, then

P would be to the normalizer NG(p) of p in G, i.e. P = {g ∈ G ∶ Ad(g)(p) ⊂ p}.
By definition, the subspaces gi ⊕ ⋯ ⊕ gk, for i = −k, . . . , k, are P-invariant for the

21Let V and W be finite-dimensional vector spaces over R and let f ∶ V ×W → R be a bilinear
map. The mapping f is called left nondegenerate and right nondegenerate if {v ∈ V ∶ f(v,w) =
0,∀w ∈W} = {0}, and {w ∈W ∶ f(v,w) = 0,∀v ∈ V } = {0}, respectively. The mapping f is called
nondegenerate if it is both left and right nondegenerate. If dimV = dimW , then f is nondegenerate
if it is left (or right) nondegenerate.

22We use P instead of P to emphasize that it is a Lie subgroup and not a principal bundle, in
general.
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adjoint action Ad ∶ P → GL(g). For j > i, the quotient gi ⊕ ⋯ ⊕ gk/(gj ⊕ ⋯ ⊕ gk)
is isomorphic to gi ⊕ ⋯ ⊕ gj−1 as a vector space. In particular, we obtain a left

action of P on g− ≈ g/p induced by the adjoint action. Note that above arguments

implies that P corresponding to p exists, but it is not necessarily unique. As an

example, let G = SL(Rn) and consider the real subalgebra that corresponds to the

parabolic subalgebra (330). The parabolic subgroup defined above is the stabilizer of

the first axis. This disconnected subgroup is composed of two connected components

and one can also choose the connected component containing the identity, i.e. the

stabilizer of the ray in the positive direction of the first axis, as the parabolic subgroup

corresponding to p.

Let G be a Lie group with the ∣k∣-graded Lie algebra g and suppose P ⊂ G is the

Lie subgroup that was introduced earlier. A parabolic geometry of type (G,P) on
a manifold M is a Cartan geometry (P →M,ω) of type (G,P) on M. Note that

dimM = dim(G/P) is a necessary condition for the existence of such a geometry.

Using the Cartan connection ω ∈ Ω1(P ;g), for each X ∈ g the constant vector field

ςX ∈ X(P) is defined as ςX(z) ∶= ω−1(z)(X) ∈ TzP , ∀z ∈ P . The curvature form

K ∈ Ω2(P ;g) that was introduced in (349) is P-equivariant, i.e. (rp)∗K = Ad(p−1)○K,

∀p ∈ P. A differential form (with values in R, a vector space, or a vector bundle) on a

fibered manifold is called horizontal if it vanishes for one vertical vector field argument.

Using the properties of ω, one can show that K is horizontal [27]. Since ω trivializes

TP , i.e. TP ≈ P ×g via the isomorphism ω, the curvature form can also be expressed

by the curvature function κ ∶ P → Λ2g∗⊗g defined as κ(z)(X,Y) ∶=K(ςX(z), ςY(z)),
∀X,Y ∈ g. Then, the definition of curvature form yields

κ(zx)(X,Y) = [X,Y] −ωzx([ω−1zx (X),ω−1zx (Y)]). (354)

We have ςX = ζX, ∀X ∈ p, that means ςX is a vertical vector field due to the fact
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that V P ≈ P × p via fundamental vector fields.

The homogeneous model (G, p,G/P,P) of parabolic geometries of type (G,P) is a
parabolic geometry and its constant vector fields are the left-invariant vector fields

on G. Parabolic geometries of type (G,P) form a category P(G,P): a morphism

from (P → M,ω) to (P ′ → M′,ω′) is defined to be a homomorphism Φ ∶ P → P ′
of principal P-bundles that covers a local diffeomorphism Φ ∶ M → M′ such that

ω = Φ∗ω′.23 Note that any principal P-homomorphism Φ ∶ P → P ′ that covers a

local diffeomorphism is a morphism (P →M,Φ∗ω′) → (P ′ →M′,ω′). A parabolic

geometry is flat if κ = 0, and is torsion-free if κ(z)(Z1,Z1) ∈ p, ∀z ∈ P and ∀Z1,Z2 ∈ g−.

The sets of flat parabolic geometries and torsion-free parabolic geometries and their

morphisms are subcategories of P(G,P). In the sequel, we will see that linear elasticity

can be considered as a flat parabolic geometry on G/P, where G = SL(Rn+1) and P is

a proper parabolic subgroup.

3.4.4 Associated Representations of Homogeneous Bundles and Invariant

Differential Operators

Let G be a Lie group with a parabolic Lie subgroup P ⊂ G, i.e. G has a semisimple

∣k∣-graded Lie algebra g and the Lie algebra of P is p = g0 ⊕ ⋯ ⊕ gk, and recall

that (G, p,G/P,P) is a principal bundle. Consider the left actions ℓ ∶ G × G → G,
(g, g̃)↦ g ⋅ g̃, and ℓ̄ ∶ G×(G/P)→ G/P, (g, g̃ ⋅P)↦ (g ⋅ g̃) ⋅P. Since p(g ⋅ g̃) = g ⋅p(g̃), and
ℓg(g̃ ⋅ p) = ℓg(g̃) ⋅ p, ∀p ∈ P, the principal bundle G → G/P is a homogeneous principal

bundle. Let ̺ ∶ P × V → V be a representation of P on V and consider the vector

bundle (G ×P V, p̃,G/P, V ). The projection p̃ is G-equivariant for the left actions of G

on G×PV and G/P, where ℓ̃ ∶ G×(G×PV )→ G×PV , g ⋅⟦g̃,v⟧ ∶= ⟦g ⋅ g̃,v⟧. Moreover, the

mapping ℓ̃g ∶ G ×P V → G ×P V is a vector bundle homomorphism for all g ∈ G. Thus,

the vector bundle (G ×P V, p̃,G/P, V ) is a homogeneous vector bundle. On the other

23If Φ is not a local diffeomorphism, then Φ∗ω′ cannot be a Cartan connection since Φ∗ω′(z) is
not an isomorphism.
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hand, suppose (V , π,G/P, V ) is a homogeneous vector bundle. Let o ∶= e ⋅ P ∈ G/P,
i.e. o is the orbit that passes through the unit element e. Let Vo = π−1(o) ≈ V be the

fiber of V over o. We have π(g ⋅ ν) = g ⋅ π(ν) = g ⋅P, ∀g ∈ G and ν ∈ Vo. In particular,

π(p ⋅ ν) = o, ∀p ∈ P, and therefore, the left action of G on V induces a left action of

P on Vo, which is a representation of P on Vo. One can show that Φ ∶ G ×P Vo → V ,
⟦g,ν⟧ ↦ g ⋅ ν, is an isomorphism of homogeneous vector bundles [27], i.e. Φ covers

IdG/P and is fiber-linear and G-equivariant. Also the P-modules V and (G ×P V )o are
isomorphic. A P-modules homomorphism f ∶ V → W induces the homomorphism

of homogeneous vector bundles f̂ ∶ G ×P V → G ×P W , ⟦g,v⟧ ↦ ⟦g, f(v)⟧. If V and

W are isomorphic P-modules, then G ×P V ≈ G ×PW as homogeneous vector bundles

and conversely, if V and W are isomorphic homogeneous bundles, then Vo ≈Wo as P-

modules. Thus, there is a bijection (up to isomorphisms) between finite-dimensional

representations of P and homogeneous vector bundles over G/P [27].

The space of smooth sections of G ×P V can be identified with the space C(G, V )P
of smooth P-equivariant functions G → V as follows. A mapping s ∈ C(G, V )P induces

a smooth section s ∈ Γ(G ×P V ) given by s(g ⋅ P) ∶= ⟦g, s(g)⟧. Conversely, a section

s ∈ Γ(G ×P V ), g ⋅P↦ ⟦g,vg⋅P⟧, induces a P-equivariant mapping s ∶ P → V , g ↦ vg⋅P.

This defines a bijection between C(G, V )P and Γ(G ×P V ) that allows us to identify

these spaces.

Consider the tangent bundle (T (G/P), πG/P,G/P). The left action of G on T (G/P)
is given by T ℓ̄g ∶ T (G/P)→ T (G/P). Since πG/P(Txℓ̄g ⋅zx) = g ⋅x = g ⋅πG/P(zx), ∀x ∈ G/P
and ∀zx ∈ Tx(G/P), T (G/P) is a homogeneous vector bundle. A representation of P

that corresponds to the homogeneous bundle T (G/P) is given by Toℓ̄p ∶ To(G/P) →
To(G/P). Since p ∶ G → G/P is a surjective submersion, the mapping Tep ∶ g→ To(G/P)
is surjective and kerTep = p. Let λg̃(g) = g ⋅ g̃, and ρg̃(g) = g ⋅ g̃. We have g̃ ⋅ p(g) =
g̃ ⋅ (g ⋅P) = p(λg̃(g)), ∀g, g̃ ∈ G, and therefore Toℓ̄p ○Tep = Tpp○Teλp, ∀p ∈ P. Note that

p(g) = p(g ⋅ p−1), ∀p ∈ P, that implies that Tpp = Tep ○Tpρp
−1
. Using these results, one
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can write Toℓ̄p○Tep = (Tep ○ Tpρp−1)○Teλp = Tep○(Tpρp−1 ○ Teλp) = Tep○Ad(p), ∀p ∈ P.
Let pr ∶ g → g/p be the natural projection. The mapping ι̂ ∶ g/p → To(G/P), X + p ↦
Tep ⋅X, is a linear isomorphism since null ι̂ = 0, and dim(g/p) = dimTo(G/P). Let

Âd ∶ P → GL(g/p) be the representation of P induced by the adjoint representation

of G. Since Âd(p) ○ pr = pr ○Ad(p), ∀p ∈ P, and using the fact that ι̂ ○ pr = Tep, one

obtains Toℓ̄p ○ ι̂○pr = ι̂○pr○Ad(p) = ι̂○ Âd(p)○pr. Then, the surjectivity of pr implies

that Âd(p) = ι̂−1 ○ Toℓ̄p ○ ι̂, i.e. ι̂ is also a homorphism of P-modules (g/p, Âd) and
(To(G/P), Toℓ̄p). Hence, the homogeneous vector bundle T (G/P) → G/P corresponds

to the representation Âd ∶ P → GL(g/p). Equivalently, T (G/P) corresponds to the

representation of P on g− ≈ g/p, where the representation of g− is induced by that of

g/p. These relations can be represented as in the following diagram.

Homogeneous Bundles P-modules

T (G/P)
3;

≈

#+

//

KS
≈
��

To(G/P)
uukkk

kkk
kkk

kkk
KS
≈
��

G ×P To(G/P)KS
≈
��

g/p ≈ g−
uukkk

kkk
kkk

kkk

G ×P (g/p)
The equivalence between P-representations and homogeneous vector bundles on G/P
that was mentioned earlier, is compatible with constructions in the following sense

[27]. Let V → G/P and W → G/P correspond to P-modules V and W , respectively.

Then, the homogeneous vector bundles V∗, V ⊕W , and V ⊗W correspond to P-

modules V , V ⊕W , and V ⊗W , respectively. Recall that the Killing form induces a

P-module isomorphism p+ ≈ (g/p)∗. The cotangent bundle T ∗(G/P) correspond to the

P-module (g/p)∗ or p+. More generally, the tensor bundle ⊗mT (G/P)⊗⊗nT ∗(G/P)
and SηT ∗(G/P)24 are homogeneous vector bundles that correspond to P-modules

24Note that the left action of G on ⊗d
V induced by the G-module V commutes with the right

action of Sd, i.e. [g ⋅ (v1 ⊗⋯⊗ vd)] ⋅ σ = g ⋅ [(v1 ⊗⋯⊗ vd) ⋅ σ], and thus, SηV is G-invariant. This
implies that SηV is a homogeneous vector bundle that corresponds to the P-module (SηV)o = SηVo.
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⊗m(g/p) ⊗ ⊗n(g/p)∗ and Sη(g/p)∗, respectively, where Sη is the Schur functor for

a partition η.

Given a Cartan subalgebra h and a set of simple roots S for g, let Sp = S/{α},
where α ∈ S. Then, the decomposition g = u− ⊕ l ⊕ u introduced in §3.4.1 is a ∣1∣-
grading on g, where g−1 = u−, g0 = l, and g1 = u [17]. The p-module g/p is irreducible

if and only if u− is Abelian. Thus, the parabolic subalgebra p = × ● ● defined in

(330) introduces a ∣1∣-grading on sl(C4) and the representation g/p with the Dynkin

diagram 1 0 1
× ● ● is irreducible. In general, the Dynkin diagram of the irreducible g/p

with g = sl(Cn) is 1 0 0 0 0 0 1
● ● ⋅ ⋅ ⋅ ● × ● ⋅ ⋅ ⋅ ● ● , where cross can be on any node [17]. Note

that as was mentioned earlier, since the p-module g/p is integral for g, it integrates

to an irreducible P-module as well.

Let Γ(V) be the space of smooth sections of a homogeneous vector bundle V →
G/P. One can define a left action G×Γ(V)→ Γ(V) given by (g ⋅s)(x) = g ⋅(s (g−1 ⋅ x)),
∀g ∈ G and ∀x ∈ G/P. Suppose W → G/P is another homogeneous vector bundle and

D ∶ Γ(V) → Γ(W) is a linear differential operator of order r. The linear differential

operator D is called an invariant linear differential operator if it is also G-equivariant

with respect to the above left action, i.e. D(g ⋅ s) = g ⋅D(s), ∀s ∈ Γ(V) and ∀g ∈ G.
Suppose α ∈ Γ(V ∣U) is a local section of V , where U ⊂ G/P is an open subset. Note

that the domain of g ⋅ α is g ⋅ U . Let O(V) denote the sheaf of germs of local

sections of V . We can define the left action G ×O(V) → O(V), (g, [α]x) ↦ [g ⋅α]g⋅x.
An isomorphism of homogeneous vector bundles ι ∶ V → W induces G-equivariant

isomorphism O(V) → O(W) defined by [α]x ↦ [ι ○α]x. The sheaf of germs of local

sections of G ×P V → G/P is denoted by G (V ). Clearly, if V and V ′ are isomorphic

P-modules, then G (V ) ≈ G (V ′). We do not distinguish between isomorphic classes of

homogeneous vector bundles, i.e. G (V ) also denotes O(V) if V ≈ G×PV . Any integral

weight of g that is dominant for a parabolic subalgebra p corresponds to an irreducible

representation of P. For such irreducible representations, G (V ) is also denoted by
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Dynkin diagrams. For example, let p = × ● ●. Then T (G/P) = G (g/p) = G (1 0 1
× ● ●),

and Ω0
G/P = G (C) = G (0 0 0

× ● ●), where 0 0 0
× ● ● is the trivial representation C, i.e. p ⋅ z = z,

∀p ∈ P and ∀z ∈ C.

3.4.5 The Linear Elastostatics Complex as a BGG Resolution

We are ready now to explain how the linear elasticity complex arises as a BGG

resolution. Let G = SL(Rn+1). Since SL(Rn+1) is a real form of SL(Cn+1), one can

use notations for SL(Cn+1) and its parabolic subgroup P to also denote SL(Rn+1)
and a real form of P [42, 27]. In particular, Dynkin diagrams can be used for denoting

irreducible representations of SL(Rn+1) and induced irreducible homogeneous vector

bundles. Let p = × ● ●. . .● ● ⊂ g = sl(Rn+1). As was mentioned earlier, this choice

induces a ∣1∣-grading g = g−1 ⊕ g0 ⊕ g1, where

g−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝

0 0

X 0

⎞⎟⎟⎠ ∈ sl(R
n+1) ∶X ∈ Rn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

g0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝
−trA 0

0 A

⎞⎟⎟⎠ ∈ sl(R
n+1) ∶ A ∈ gl(Rn)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

g1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝
0 ZT

0 0

⎞⎟⎟⎠ ∈ sl(R
n+1) ∶ Z ∈ Rn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

(355)

Let {X i} be the Cartesian coordinate of Rn+1 and X = (X1, . . . ,Xn+1) ∈ Rn+1. Con-

sider the standard action of G on Rn+1. There exists two choices for the parabolic

subgroup corresponding to p. The parabolic subgroup can be either the stabilizer of

the line coincide with the X1-axis, i.e.

P′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝
detB−1 ZT

0 B

⎞⎟⎟⎠ ∈ SL(R
n+1) ∶ B ∈ GL(Rn),Z ∈ Rn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (356)
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or the stabilizer of the ray in the positive direction of X1-axis, i.e.

P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎝
detB−1 ZT

0 B

⎞⎟⎟⎠ ∈ SL(R
n+1) ∶ B ∈ GL+(Rn),Z ∈ Rn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (357)

where GL+(Rn) = {A ∈ GL(Rn) ∶ det A > 0}. The set P′ is not connected; the two

connected components are determined by the sign of detB [27]. The subgroup P

is the connected component of P′ containing the identity. The homogeneous space

G/P′ is the real projective space RP n, which is an n-dimensional compact manifold

that is orientable if and only if n is odd [30]. This nonorientablity causes some

technical issues in the calculations and therefore, it is easier to work with P instead

of P′ [53, 42]. The homogeneous space G/P′ is a special case of flag manifolds, which

are homogeneous spaces corresponding to parabolic subgroups of SL(Cn+1) [17, 39].
Projective spaces and Grassmannians are examples of flag manifolds.

Consider an element Q = (Q11

W
Z̄T

Q ) ∈ G, where Q11 ∈ R. The principal right action

of P on G is given by Q ⋅ (detB−10
ZT

B ) = ((detB−1)Q11

(detB−1)W
Q11Z

T+Z̄TB

WZT+QB
). Since detB > 0, the

orbit GQ that passes through Q is determined by q = {Q11

W
} ∈ Rn+1, i.e. the orbit GQ is

determined by the ray emanating from origin in the direction of q. Let Sn be the unit

n-sphere. We have the deffiomorphism J ∶ G/P→ Sn, Q ⋅P↦ q/∥q∥, where ∥ ⋅ ∥ is the
standard norm of Rn+1 [27]. Thus, G/P is an n-dimensional orientable manifold. We

know that (G, p,G/P,P) is a homogeneous principal P-bundle. Let p̂ ∶= J ○ p. Since

P acts freely on G and the orbits of this action coincide with p̂−1(X), Lemma 10.3

of [73] implies that (G, p̂,Sn,P) is a principal P-bundle. The action G × G/P → G/P
induces the action G×Sn → Sn, g ⋅X = J(g ⋅J−1(X)), which makes the diffeomorphism

J G-equivariant. Thus, for all practical purposes, we can identify G/P with Sn and

consider G → Sn as a homogeneous principal bundle. In such a case, Sn is called the

projective n-sphere [40] and n-manifolds with parabolic geometries of type (G,P) are
called oriented projective manifolds of dimension n [27]. Note that the action of G
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on Sn is induced by the restriction of the standard action of G on Rn+1 to Sn. The

representation P × Rn → Rn corresponding to TSn25 is B̂ ⋅W = (detB)BW, with

the Dynkin diagram notation 1 0 0 1
× ● ⋅ ⋅ ⋅ ● ● . The representation of T ∗Sn is B̂ ⋅W =

(detB−T)B−TW. Let L⟨w⟩ → G/P be the bundle of project densities of weight w on

G/P that was introduced in §3.2.1.1. The line bundle L⟨w⟩ → G/P is a homogeneous

vector bundle that corresponds to an irreducible representation of P with the Dynkin

diagram w 0 0 0
× ● ⋅ ⋅ ⋅ ● ● [16, 53].

Let η = (η1, . . . , ηn), η1 ≥ ⋯ ≥ ηn ≥ 0, be a partition of v = ∑ni=1 ηi. The vec-

tor bundle S
⟨w⟩
η T ∗Sn ∶= (Sη(T ∗Sn)) ⊗ L⟨w⟩ → G/P26 is an irreducible homogeneous

vector bundle that corresponds to an irreducible representation with the Dynkin

diagram w−v−η1 η1−η2 η2−η3 ηn−1−ηn× ● ● ⋅ ⋅ ⋅ ● [42]. The numbers v and w are called the va-

lency and the projective weight of the tensor bundle S
⟨w⟩
η T ∗Sn, respectively. One

can show that S
⟨w⟩

(η1,...,ηn)
T ∗Sn ≈ S

⟨w−ηn(n+1)⟩

(η1−ηn,...,ηn−1−ηn,0)
T ∗Sn. As an example, if n = 3,

we have G ×P (c1 c2 c3× ● ●) ≈ S
⟨c1+2c2+3c3⟩

(c2+c3,c3)
T ∗S3 [41]. Let L ⟨w⟩ be the sheaf of germs

of local sections of L⟨w⟩. Using the notation introduced in §3.4.4, we can write

G (w−v−η1 η1−η2 η2−η3 ηn−1−ηn× ● ● ⋅ ⋅ ⋅ ● ) = (Sη(T ∗Sn))⊗L ⟨w⟩ ∶= S⟨w⟩η T ∗Sn.

The homogeneous vector bundle Sn × R with the G-action g ⋅ (x, c) = (g ⋅ x, c),
corresponds to the trivial representation of P on R. We can identify the sets Ω0(Sn)
and Γ(Sn ×R).27 More generally, let V be a G-module with a basis {ej} and consider

the homogeneous vector bundle ΛkT ∗Sn ⊗ (Sn × V ). Then, we have Ωk(Sn;V ) =
Γ(ΛkT ∗Sn ⊗ (Sn × V )). Note that Ω0(Sn;V ) = Γ(Sn × V ), where the right action of

Sn × V is g ⋅ (x,v) = (g ⋅ x, g ⋅ v). Suppose a ∈ T ∗
g−1⋅x
Sn. The left action G × T ∗Sn →

T ∗Sn is given by g ⋅ a = ℓ∗
g−1

a, where ℓ∗
g−1

is the pull-back with respect to ℓg−1 , i.e.

25Note that the homogeneous bundles (T (G/P), πG/P,G/P) and (TS
n,J−1 ○πSn ,G/P) are isomor-

phic.
26On an orientable n-dimensional homogeneous space, the line bundle L⟨−n−1⟩ that is isomorphic

to the bundle of 1-densities, is also isomorphic to ΛnT ∗(G/P) and therefore, it is technically easier
to work with orientable spaces [16, 53].

27Note that Sn ×R with the trivial G-action and L⟨w⟩ have isomorphic underlying sets but their
G-actions are not isomorphic, in general, and thus, they are different homogeneous bundles.
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(g ⋅ a)(X) = a(Txℓg−1 ⋅ X), ∀X ∈ TxSn. Consequently, the action of G on Ωk(Sn)
introduced in §3.4.4, reads g ⋅ η = ℓ∗

g−1
η, η ∈ Ωk(Sn). A section α ∈ Ωk(Sn;V ) can

be written as α = ∑jαj ⊗ ej, where αj ∈ Ωk(Sn). The twisted exterior derivative

d ∶ Ωk(Sn;V ) → Ωk+1(Sn;V ) is defined as d(η ⊗ v) = (dη) ⊗ v [22]. Using the facts

that ℓ∗
g−1
(η∧ξ) = ℓ∗

g−1
η∧ℓ∗

g−1
ξ, ξ ∈ Ωl(Sn), and the naturallity of the exterior derivative,

we can write

d(g ⋅α) = ∑
j

d(g ⋅ (αj ⊗ ej)) = ∑
j

d((g ⋅αj)⊗ (g ⋅ ej)) = ∑
j

d(ℓ∗g−1αj)⊗ (g ⋅ ej)
= ∑

j

ℓ∗g−1(dαj)⊗ (g ⋅ ej) = g ⋅ (∑
j

(dαj)⊗ ej) = g ⋅ dα. (358)

Therefore, we proved the following:

Theorem 3.4.1. Let V be a G-module. Then, the twisted exterior derivative d ∶

Ωk(Sn;V ) → Ωk+1(Sn;V ) is a G-invariant differential operator of order 1.

Let λ be a dominant integral weight of g and recall the definitions of the affine

Weyl action w.λ and the Hasse diagram W p introduced in §3.4.1. Suppose E(λ)
and Ep(λ) denote irreducible representations of g and p with the lowest weight −λ,

respectively, and let Gp(λ) be the sheaf of germs of local sections of G ×PEp(λ). The
following theorem holds.

Theorem 3.4.2 (Baston and Eastwood [17]). Let λ be a dominant integral weight for

g. There exists an exact resolution of constant sheaf E(λ) given by 0 Ð→ E(λ) Ð→
D●(λ), that is called a BGG resolution on G/P, where

D
k(λ) = ⊕

w∈W p, ℓ(w)=k
Gp(w.λ). (359)

This theorem is valid for any semisimple Lie group G with a parabolic subgroup

P. Using the Hasse diagram (336), we can write BGG resolutions on G/P ≅ Sn. For

190



example, the de Rham resolution (297) of the constant sheaf Sn ×R reads

0Ð→ 0 0 0 0 0● ● ● ... ● ● Ð→ G (0 0 0 0 0
× ● ● ... ● ●) Ð→ G (−2 1 0 0 0

× ● ● ... ● ●) Ð→
G (−3 0 1 0 0
× ● ● ... ● ●) Ð→ ⋯Ð→ G (−n 0 0 0 1

× ● ● ... ● ●) Ð→ G (−n−1 0 0 0 0
× ● ● ... ● ●) Ð→ 0.

(360)

The general case for n = 2 is

0Ð→ c1 c2● ● Ð→ G (c1 c2× ●) D(c1+1)ÐÐÐÐ→ G (−c1−2 c1+c2+1× ● ) D(c2+1)ÐÐÐÐ→ G (−c1−c2−3 c1× ●) Ð→ 0, (361)

where D(i) is an ith-order differential operator. Similarly, the general case for n = 3

reads

0Ð→ c1 c2 c3● ● ● Ð→ G (c1 c2 c3× ● ●) D(c1+1)ÐÐÐÐ→ G (−c1−2 c1+c2+1 c3× ● ●) D(c2+1)ÐÐÐÐ→
G (−c1−c2−3 c1 c2+c3+1× ● ● ) D(c3+1)ÐÐÐÐ→ G (−c1−c2−c3−4 c1 c2× ● ●) Ð→ 0. (362)

Differential operators of BGG resolutions are G-invariant linear differential operators.

Consequently, one can use the classification of invariant operators for explicitly writing

these operators [42]. Alternatively, as we will discuss later, it is also possible to

derive these operators from proper vector-valued de Rham complexes. The later

approach can be extended to define BGG sequences on curved parabolic geometries

[28]. Consider the Riemannian manifold (S3, g̃), where g̃ is the round metric of the

3-sphere, i.e. g̃ is induced by the standard metric of R4. This manifold has a constant

sectional curvature and the great circles of S3 are the geodesics of the Levi-Civita

connection ∇̃ of g̃. Thus, we have the Calabi complex (298) on S3. Due to the round

metric, we also have the Eastwood complex introduced in the second row of (298).

On the other hand, one can show that the Eastwood complex on S3 is equivalent to

the BGG complex associated to 0 1 0
× ● ● , which is the irreducible representation Λ2R4
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of SL(R4) [41]. Hence, the Eastwood complex on S3 is

0Ð→ 0 1 0● ● ● Ð→ G (0 1 0
× ● ●) Ð→ G (−2 2 0

× ● ●) Ð→ G (−4 0 2
× ● ●) Ð→ G (−5 0 1

× ● ●) Ð→ 0. (363)

Equivalently, using the notation mentioned earlier, one can write (363) as

0Ð→ Λ2R4 Ð→ S
⟨2⟩

(1)
T
∗S3 Ð→ S

⟨2⟩

(2)
T
∗S3 Ð→S⟨2⟩

(2,2)
T
∗S3 Ð→

S
⟨2⟩

(2,2,1)
T
∗S3 ≈ S⟨−2⟩

(1,1)
T
∗S3 Ð→ 0.

(364)

Note that the differential operators of the Eastwood complex on S3 are projectively

invariant and also G-invariant for the action of G = SL(R4). This is the consequence

of the fact that projective structures on the homogeneous space G/P ≅ Sn are equiva-

lent to parabolic geometries of type (G,P) [27]. In particular, the projective structure

arising from the round metric of R3 is equivalent to the flat homogeneous space of

parabolic geometries of type (G;P), i.e. the principal P-bundle G → G/P ≈ S3 to-

gether with the Maurer-Cartan form ω ∈ Ω1(G;g) of G [42]. The Maurer-Cartan form

induces a linear connection on irreducible homogeneous vector bundles. These vector

bundles are also called tractor bundles. Let ζ ∶ R3 → S3 be the central projection of R3

to a hemisphere of S3 given by (X1,X2,X3) ↦ (1,X1,X2,X3)/√1 +∑3

i=1
(X i)2. Let

B ⊂ R3 be an open subset and let B̃ ∶= ζ(B) ⊂ S3. The Riemannian manifold (B, ζ∗g̃)
has a constant sectional curvature. From (256) recall that ∇ζ

∗g̃ ∶= ζ∗∇̃, where ∇ζ∗g̃

is the Levi-Civita connection of ζ∗g̃. Suppose ∇ is the Levi-Civita connection of the

standard metric g of R3. A metric ĝ on B is called projectively flat if and only if

∇ĝ ∈ [∇]. Thus, the geodesics of projectively flat manifolds in R3 are lines up to pa-

rameterizations. One can show that projectively flat metrics have constant sectional

curvatures [43]. Since ζ preserves geodesics, i.e. the images of lines are great circles of

S3, ζ is a morphism of projective structures (B, [∇]) and (B̃, [∇̃]), i.e. ζ∗∇̃ ∈ [∇]. This
implies that ζ∗g̃ is projectively flat. We have the Eastwood complex for (B, ζ∗g̃) as it
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has a constant sectional curvature. The projective invariance implies that the East-

wood complexes of (B,g) and (B, ζ∗g̃) coincides [40, 42]. In particular, the curvature

operator depends on a combination of the certain part of the Riemannian curvature

called Schouten tensor. This combination vanishes for projectively flat metrics. The

Calabi complexes of (B,g) and (B, ζ∗g̃) are not the same. In particular, the density

µα,g is parallel for ∇ and not for ∇ζ
∗g̃. Alternatively, one can consider the Eastwood

complex of (B, ζ∗g̃) as the local expression of the Eastwood complex of (B̃, g̃) in the

local coordinate system introduced by ζ. In summary, we observed that the linear

elastostatics resolution (301) is equivalent to a BGG resolution on S3 in a proper

local coordinate system. Similarly, the 2D kinematic elastostatics resolution (305)

is equivalent to a BGG resolution corresponding to the irreducible representation

Λ2R3 = 0 1
× ● of G = SL(R3).

3.4.6 The twisted de Rham Complex of Linear Elastostatics

Let B ⊂ R3 be an open subset equipped with the standard metric of R3. In the previous

section, we showed that the elastostatics complex in R3 is equivalent to the expression

of the Eastwood complex of S3 in the central projection coordinate system. The BGG

resolution on S3 corresponding to the representation Λ2R4 can be constructed from

the Λ2R4-valued de Rham complex [42]. Consequently, by expressing this construction

in the central projection coordinate system, one obtains a similar construction for the

Eastwood complex and therefore, the elastostatics complex in R3. The upshot is the
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following diagram first derived by Eastwood [41].

0

��

0

��

0

��

Γ(⊗2TB) 0

��

X(B)
µ0
��

Γ(T ∗B ⊗ TB)
µ1
��

Γ(S2TB)⊕Ω1(B)
µ2
��

X(B)
µ3
��

0 // Λ2R4 α // Ω0(B; Λ2R4) d0 //

η0
��

Ω1(B; Λ2R4) d1 //

η1
��

Ω2(B; Λ2R4) d2 //

η2
��

Ω3(B; Λ2R4) //

η3
��

0

Ω1(B)
��

Γ(⊗2T ∗B) Γ(T ∗B ⊗ TB)
��

Ω1(B)
��

0 X(B)⊕ Γ(S2T ∗B)
��

0 0

0
(365)

The augmentation mapping α ∶ Λ2R4 → Ω0(B; Λ2R4) sends a vector v ∈ Λ2R4 to

the constant function β(X) = v, ∀X ∈ B. The Λ2R4-valued exterior derivates di ∶

Ωi(B; Λ2R4) → Ωi+1(B; Λ2R4) are given by di(α ⊗ v) = (diα) ⊗ v, α ∈ Ωi(B). The

components of the homomorphisms µk and ηk in the Cartesian coordinate {X i} with
the standard orthonormal basis {Ei} is as follows. The 6-dimensional space Λ2R4 has

a basis {vl} with

v1 = E1∧E2, v2 = E1∧E3, v3 = E1∧E4, v4 = E2∧E3, v5 = E2∧E4, v6 = E3∧E4. (366)

Suppose δij is the Kronecker delta and ǫijk is the alternating symbol with ǫ123 = 1. Let

τ 1 ∶= dX1∧dX2, τ 2 ∶= dX1∧dX3, τ 3 ∶= dX2∧dX3, andw ∶= dX1∧dX2∧dX3. We have

the isomorphisms Ω0(B; Λ2R4) ≈ Ω1(B)⊕X(B), Ω1(B; Λ2R4) ≈ Γ(⊗2T ∗B)⊕Γ(T ∗B ⊗
TB), Ω2(B; Λ2R4) ≈ Γ(T ∗B⊗TB)⊕Γ(⊗2TB), and Ω3(B; Λ2R4) ≈ Ω1(B)⊕X(B). Using
these identifications, the expression of the isomorphisms µi and ηi can be written as

µ0 ∶ X(B)→ Ω0(B; Λ2R4), Y q ∂

∂Xq
↦ (ǫpqrXqY r dXp, Y q ∂

∂Xq
) , (367)
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η0 ∶ Ω
0(B; Λ2R4)→ Ω1(B), (θp dXp, Y q ∂

∂Xq
)↦ (θp − ǫpqrXqY r)dXp, (368)

µ1 ∶ Γ(T ∗B ⊗ TB)→ Ω1(B; Λ2R4),
βi
q dX i ⊗

∂

∂Xq
↦ (ǫpqrXqβi

r dX i ⊗ dXp, βi
qdX i ⊗

∂

∂Xq
) , (369)

η1 ∶ Ω
1(B; Λ2R4)→ Γ(⊗2T ∗B),

(νipdX i ⊗ dXp, βi
qdX i ⊗

∂

∂Xq
)↦ (νip − ǫpqrXqβi

r)dX i ⊗ dXp, (370)

µ2 ∶ Γ(⊗2TB)→ Ω2(B; Λ2R4),
ωiq

∂

∂X i
⊗

∂

∂Xq
↦ (ǫkqrXqωjrδjiδ

kpdX i ⊗
∂

∂Xp
, ωiq

∂

∂X i
⊗

∂

∂Xq
) , (371)

η2 ∶ Ω
2(B; Λ2R4)→ Γ(T ∗B ⊗ TB),

(ξipdX i ⊗
∂

∂Xp
, ωiq

∂

∂X i
⊗

∂

∂Xq
)↦ (ξip − ǫkqrXqωjrδjiδ

kp)dX i ⊗
∂

∂Xp
, (372)

µ3 ∶ X(B)→ Ω3(B; Λ2R4), Y q ∂

∂Xq
↦ (ǫpqrXqY r dXp, Y q ∂

∂Xq
) , (373)

η3 ∶ Ω
3(B; Λ2R4)→ Ω1(B), (θp dXp, Y q ∂

∂Xq
)↦ (θp − ǫpqrXqY r)dXp, (374)

where the repetition of an index implies the summation on that index and the values

of all indices are 1,2,3. It is straightforward to check that the columns of (365) are

exact complexes. Let β ∈ Γ(⊗2T ∗B). By defining βij = Aij + Sij, where Aij ∶= (βij −
βji)/2, and Sij ∶= (βij +βji)/2, we obtain the decomposition Γ(⊗2T ∗B) ≈ Γ(S2T ∗B)⊕
Γ(Λ2T ∗B). Since Γ(Λ2T ∗B) ≈ X(B), we conclude that Γ(⊗2T ∗B) ≈ Γ(S2T ∗B)⊕X(B).
Similarly, one can write Γ(⊗2TB) ≈ Γ(S2TB) ⊕ Ω1(B). The compositions ηi ○ di−1 ○

µi−1, for i = 1,2,3, are algebraic, i.e. involve no differentiation. By removing the

isomorphisms corresponding to these compositions, one obtains the 3D elastostatics

complex (300). This is equivalent to eliminating X(B), Γ(T ∗B⊗TB), and Ω1(B) from
(365). See [41] for more details. Alternatively, if one only removes the composition
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η2 ○ d1 ○ µ1 from (365), the resulting complex reads

0 // Λ2R4 // Ω0(B; Λ2R4) // Γ(⊗2T ∗B) // Γ(⊗2TB) // Ω3(B; Λ2R4) // 0.

(375)

This complex is the Arnold-Falk-Winther elastostatics complex introduced in (302).

More details on the construction of this sequence can be found in [9] and [42]. Note

that the Arnold-Falk-Winther elastostatics complex is obtained from the Λ2R4-valued

de Rham complex and the 3D elastostatics complex (300) can be considered as a

proper restriction of this complex. However, this complex does not have a direct

physical interpretation.
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CHAPTER IV

CONCLUDING REMARKS

We presented a discrete geometric structure-preserving numerical scheme for incom-

pressible linearized elasticity. We proved that the governing equations of finite and

linearized incompressible elasticity can be obtained using Hamilton’s principle and

Hodge decomposition theorem without using Lagrange multipliers. We used ideas

from algebraic topology, exterior calculus, and discrete exterior calculus to develop

a discrete geometric theory for linearized elasticity. We considered the discrete dis-

placement field as our primary unknown and characterized the space of divergence-free

discrete displacements as the solution space. Note that instead of heuristically defin-

ing the discrete displacement field and its divergence as a discretization of a smooth

vector field and smooth divergence operator, we assume the discrete displacement

field to be a discrete primal vector field and use the definition of discrete divergence

using DEC techniques. Therefore, we preserve the geometric structure of the smooth

problem by considering discrete quantities that have the same geometric structure

as their smooth counterparts. This guarantees that the method remains free of nu-

merical artifacts as we remain in the correct discrete space unlike the standard finite

element and finite difference schemes.

Motivated by the Lagrangian structure of the smooth case, we defined a discrete

Lagrangian and used Hamilton’s principle in the space of discrete divergence-free

displacement fields to obtain the governing equations of the discrete theory. We

observed that the discrete gradient of pressure appears naturally in the governing

equations. We used the discrete Laplace-Beltrami operator to determine the pressure

field, which is assumed to be a dual 0-form. We then considered some numerical

197



examples and observed that our discretization scheme is free of numerical artifacts,

e.g. checkerboarding of pressure. Based on the rate of convergence of the results of the

numerical examples, our method is comparable with finite element mixed formulations

[58, 87]. We observed that by choosing the displacement field to be a primal vector

field, pressure is a dual 0-form; this geometrically justifies the known fact that using

different function spaces for displacement and pressure is helpful in the incompressible

regime. Also note that our method can be used for analyzing multiply-connected

bodies as well.

The smooth weak form of the incompressible elasticity is well-posed. However,

it is a well-known fact that the discretization of the weak form is well-posed if and

only if the discrete spaces for the displacement and pressure fields are compatible

[45]. For example, a P0/P1 Lagrange finite element approximation for the displace-

ment/pressure field is not well-posed. This low order approximation is not well-posed

even when using the diamond element approach [58]. Although we do not present

any proof, our numerical results suggest that the discrete weak form is well-posed for

our choices of the discrete solution spaces. This also suggests that choices that are

naturally imposed by the geometry of a problem can be nontrivial and hard to see

using other approaches.

The structure of linearized elasticity is similar to that of perfect fluids in the

sense that both need a fixed mesh. However, finite elasticity requires the material

description of motion. This means that one needs the time evolution of the initial

simplical complex of the reference configuration. However, this evolving mesh would

not remain a simplical complex, in general, and hence the extension of this work to

the case of finite elasticity is not straightforward. Also the convergence issues are

not considered in this work. Applications to fluid mechanics and finite elasticity and

studying convergence issues are open problems that will be studied later.
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We also derived various complexes for nonlinear elastostatics using some geomet-

ric methods and expressed nonlinear elastostatics in terms of differential forms. By

introducing stress functions for the Cauchy and the second Piola-Kirchhoff stress ten-

sors, we showed that 2D and 3D nonlinear elastostatics admit separate kinematic and

kinetic complexes. On the other hand, we showed that stress functions corresponding

to the first Piola-Kirchhoff stress tensor allow us to write a complex for 3D nonlin-

ear elastostatics that similar to the complex of 3D linear elastostatics contains both

the kinematics an kinetics of motion. We studied linear and nonlinear compatibility

equations for curved ambient spaces and motions of surfaces in R3. We also studied

the relationship between the linear elastostatics complex and the de Rham complex.

Our derivations have important consequences as follows. There are standard meth-

ods for calculating cohomology groups of the de Rham complex. The relations be-

tween the linear and nonlinear elastostatics complexes with the de Rham complex

enable us to calculate cohomology groups of the elastostatics complexes. In particu-

lar, we can study the compatibility equations and stress functions on non-contractible

bodies. On the other hand, the nonlinear elastostatics complex may allow us to intro-

duce a stable numerical scheme for nonlinear elastostatics. To this end, first we need

to study a weak formulation of nonlinear elastostatics in terms of stress functions.

Developing an exact theory for moving shells is another extension of this work. By

exact theory we mean a 2D theory for shells which is not obtained by approximating

the 3D theory of elasticity. Our discussions in this work suggest that for developing

such an exact theory, in addition to the Green deformation strain tensor, we also need

to consider other strain tensors. These extensions will be the subject of our future

research.
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