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SUMMARY 

Expression QTL (eQTL) detection has emerged as an important tool for unravelling 

the relationship between genetic risk factors and disease or clinical phenotypes. Most 

studies focus on analyses predicated on the assumption that only a single causal variant 

explains the association signal in each interval.  This greatly simplifies the statistical 

modeling, but is liable to biases in scenarios where multiple linked causal-variants are 

responsible. Here in this thesis, my primary goal was to address the prevalence of 

secondary cis-eQTL signals regulating peripheral blood gene expression locally, utilizing 

two large human cohort studies, each greater than 2,500 samples with accompanying whole 

genome genotypes.  The CAGE dataset is a compendium of Illumina microarray studies, 

and the Framingham Heart Study (FHS) is a two-generation Affymetrix dataset. I firstly 

describe performing simulation to reveal the potential interference of causal variants in LD 

regions. I then also describe a Bayesian co-localization analysis of the extent of sharing of 

cis-eQTL detected in both studies as well as with the BIOS RNA-seq dataset. Stepwise 

conditional modeling demonstrates that multiple eQTL signals are present for ~40% of 

over 3,500 eGenes in both microarray datasets, and that the number of loci with additional 

signals reduces by approximately two-thirds with each conditioning step. Although fewer 

than 20% of the peak signals across platforms fine-map to the same credible interval, the 

co-localization analysis finds that as many as 50%~60% of the primary eQTL are actually 

shared. Subsequently, co-localization of eQTL signals with GWAS hits detected 1,349 

genes whose expression in peripheral blood is associated with 591 human phenotype traits 

or diseases, including enrichment for genes with regulatory functions such as protein kinase 
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activity and DNA binding.  Just one quarter of these co-localization signals are replicated, 

further highlighting the technological and methodological barriers to reconciliation of 

GWAS and eQTL signals. My results are provided as a web-based resource for 

visualization of multi-site regulation of gene expression and their association with human 

complex traits and disease states. In addition to the cis-eQTL study, as a member of the 

eQTLgen consortium, I also conduct trans-eQTL detection in multiple cohorts, including 

FHS, which contains related individuals, and performed cis-trans eQTL mediation 

analysis, which I will report as a side project.  This thesis provides novel insights into the 

complexity of gene regulation and the low consistency of fine mapping across studies, and 

introduces new software, PolyQTL, for co-localization of genetic signals in structured 

populations. 
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CHAPTER 1.  

INTRODUCTION 

1.1 Background of eQTL analysis 

Despite low levels of nucleotide diversity in humans, and less than 0.5% amino acid 

sequence divergence for orthologous proteins between human and chimpanzee 

(International Human Genome Sequencing Consortium, 2005), there are  obvious profound 

differences across a broad spectrum of phenotypes between these two species.  These and 

other observations highlight the importance of gene regulation (Jacob and Monod 1961), 

instead of protein function, for phenotypic evolution. Moreover, heritability analysis with 

twin-studies in the past half century has demonstrated that for many human traits, half or 

more of the phenotype variance can be explained by genetic factors (Polderman et al. 2015) 

(Gusev et al. 2014). Over 90% of GWAS hits locate in non-coding regions, indicating that 

these regions likely manifest their effects through regulation of gene expression (Manolio 

et al. 2009), consistent with further evidence that variants in the vicinity of DNaseI 

hypersensitive sites (DHS) capture most of the heritability. In parallel, evolutionary studies 

of cis-regulatory regions have illustrated that regulatory elements seem to contribute 

substantially to both adaptive substitutions and deleterious polymorphisms. Thus, 

understanding the mechanisms that regulate human gene expression is not only crucial for 

basic biology but also for the interpretation of which polymorphisms at human disease loci 

are causal (Torgerson et al. 2009).  
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Currently, the most direct genome-wide approach to dissect the effect of genetic 

variation on gene expression is expression Quantitative Trait Locus (eQTL) analysis 

(GTEx Consortium 2015), as illustrated in Figure 1.1.  Expression of gene B is regulated 

by two regulatory elements, one of which (green rectangle) is a transcription factor binding 

site, which is bound by a transcription factor in a sequence-specific manner. In a population 

of individuals, if a site in the TFBS (red star) has two alleles, C and T, then individuals 

with T, on average, may for example have a higher expression than C. Once the genotype 

and expression levels for samples from the population have been obtained, we can perform 

association or linkage analysis to verify the relationship between phenotype and biomarker. 

With the advance of next generation sequencing technology, personalized medicine 

or precision medicine is becoming increasingly prevalent in human health studies. These 

approaches assume that patients are unique, having their own characteristics and distinct 

responses to disease or drugs.  The goal is to assign patients into different groups according 

to genetic or genomic biomarker information, which is then used to guide doctors’ medical 

recommendations. I hypothesize that the application of eQTL studies will not only greatly 

broaden our understanding of personal transcriptomes, but can also be used to improve the 

Figure 1.1 Diagram of eQTL and eQTL detection. 
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accuracy of personalized medicine. Although current application of personalized medicine 

is still immature, some studies have already demonstrated the usefulness in personalized 

medicine by integrating eQTL with GWAS to predict phenotype trait and disease. TWAS 

predicts gene expression with detected eQTL sites, and regression of these predictions onto 

phenotype traits may provide greater accuracy than previous genetic risk score methods. 

Also, in the Gibson lab, an approach named Transcriptional Risk Score (TRS) analysis has 

been developed in which causal genes for the phenotype trait are first evaluated for joint 

GWAS and eQTL associations, and then expression levels for the significant genes are 

summed in order to measure the risk of disease. It has been shown to provide greater 

prediction power than previous methods for autoimmune diseases such as Crohn’s disease 

(Marigorta et al, 2017). 

1.2 Definition of eQTL 

eQTL are genomic regions which contain variants contributing to variance in gene 

expression. Heritability studies partition the sources of phenotype variance in a population 

into contributions from two broad categories, environmental and genetic factors.  

Environmental factors, like food resource, life style, development stage, influence all 

individuals, while micro-environmental stochastic effects are also recognized.  Genetic 

variation is due to all of the DNA sequence polymorphisms occurring on one individual 

genome. There are multiple kinds of genetic variants, including single nucleotide 

polymorphism (SNP), copy number variation (CNV), and structural variation (SV).  

Recently, the importance of epigenetic modifications, namely heritable factors that do not 

change the DNA sequence but do alter chromatin function, have been recognized as a third 

important  source of variability.  Interactions between these categories also contribute, but 
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are more difficult to detect.  eQTL are polymorphisms or mutations that affect regions on 

the chromosome that are crucial for control of transcript abundance, and hence are 

identified as regulatory variants. They alter regulatory elements such as promoters and 

enhancers, influencing the rate of transcription, or affect splice sites leading to alternative 

splicing, and some mutations change the folding characteristics of transcripts and hence 

mRNA stability.  

1.2.1 Classification of eQTL 

Based on biological characteristics, eQTLs can be further classified. According to 

the distance to the target gene, they may be trans-eQTL or cis-eQTL.  Trans-eQTL are 

located at a different locus, operationally defined as being on a different chromosome than 

the target gene, or on the same chromosome but a long distance (>1 Mb) from the target 

gene. cis-eQTL lie in the neighborhood of the target gene, where they are thought to affect 

gene expression by directly modulating RNA transcription and processing.  Technically, 

cis-eQTL are on the same chromosome of a diploid pair, so the definition based on location 

within 1 Mb of the Transcription Start Site (TSS) more correctly defines local-eQTL, but 

the term cis-eQTL is more commonly used in the literature. 

A limitation of eQTL detection is the study design. Although the expense of next 

generation sequencing has greatly reduced, most studies only consist of several hundred 

individuals.  By collecting samples from different cohorts, statistical power can largely be 

increased, and reduce the incidence of false positives. However, it is almost unavoidable 

that samples are included from different populations, including perhaps some from 

European and some from Asian populations. The existence of population structure results 
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in false positives and in some cases may suppress signals. Control for population structure 

has become a standard statistical procedure utilizing principal component analysis. Mixed-

linear modeling is widely used, and has been shown to be statistically optimal (Loh et al., 

2018). 

Considering statistical properties of the influence of SNPs on gene expression, there 

are several ways to classify eQTLs.  Most common are additive eQTL, which function in 

an additive manner where each of the two allele increases or decreases transcript abundance 

by the same amount. For example, suppose that an eQTL A, which for simplicity I assume 

to be a bi-allelic variant with alleles M and m, where the M allele increases the gene 

expression, affects a neighboring gene B. The average increase due to each M allele carried 

by an individual is fixed, and is called the allelic effect size, or substitution effect.  

Homozygotes MM have twice as much expression as heterozgygotes relative to mm, 

irrespective of other alleles.  Dominant or recessive eQTL effects are thought to be rare, 

since each chromosome contributes independently to the total gene expression.  Recently, 

another form of eQTL has also been explored: variance or v-eQTL, in which, instead of 

increasing mean expression, the allele changes the variance of expression among 

genotypes.  For example, the expression variance of individuals with MM is different from 

that of individuals with Mm and/or mm genotypes (Metzger et al. 2015; Gusev et al. 2016; 

Yang et al. 2016). There may be different sources of v-eQTL effects, one of which is 

epistasis, where the effect of a specific allele is conditional on the allele type at other sites, 

and this is now thought to be a potential source of unexplained human phenotypic variation. 

Another one is that variants may work independently to affect the variability of gene 

expression, perhaps by disrupting the stability of the transcription process. Metzger et al 
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(2015) investigated how mutation contributes to variance of gene expression in yeast by 

experimentally determining the effects of polymorphisms segregating in a gene promoter.  

They found that selection on expression noise resulting from v-eQTL has as large an impact 

on allele frequency variation as selection on mean expression level. 

1.2.2 Detection of eQTL 

Current application of cis-eQTL for GWAS interpretation generally requires that 

the individuals who are genotyped and phenotyped are from the same selected population. 

Based on the genotyping data (e.g. obtained with SNP arrays) one has to select informative 

markers, i.e. markers that are polymorphic in the study population. Expression data from 

DNA microarrays should undergo pre-processing (including background estimation and 

correction, probe set summary, and normalization) to be suitable for use in the subsequent 

steps. If other platforms for the expression measurements are used, appropriate pre-

processing and data summarization procedures should also be performed prior to eQTL 

mapping. For the defined cis-region of a specific gene, all variants are associated against 

the gene’s expression in a univariate fashion, and the statistical signals are then compared 

with GWAS. In cis-eQTL detection, the number of explored variants is hundreds to 

thousands, and the burden of multiple test correction is relatively small, so the statistical 

power is still high even with the most conservative correction method, Bonferroni 

correction. However, trans-eQTL detection requires testing of millions variants, so 

multiple test correction may obscure all signals, especially if the data set is limited to a few 

hundred individuals because of the expense and logistical difficulty of acquisition. So, most 

studies to date have concentrated on mapping cis-acting eQTLs (local to the gene region).  



 7 

1.3 History of eQTL analysis in humans  

The idea of eQTL detection, merging expression with genomic variation, dates back 

to 2001 (Jansen and Nap, 2001) who called the strategy “genetical genomics”. Just one 

year later, in 2002, the first eQTL study in yeast was published in Science (Brem et al. 

2002), and in the same year, the first eQTL on human lymphoblastoid cell lines (LCL) was 

also published (Yan et al. 2002). A year later, Schadt et al. and Cheung et al. explored the 

genetic regulation of gene expression using variance component decomposition, 

demonstrating significant expression similarity among family members and inferring the 

existence of widespread contributions of genetic variation (Cheung et al. 2003; Schadt et 

al. 2003). The breakthrough paper in the human eQTL field was published in 2005 by 

Cheung et al., in which genome-wide high density SNP variants were linked to gene 

expression levels measured with microarray technology (Cheung et al. 2005).  The first 

true genome-wide eQTL association study was reported by Stranger et al in 2007, and 

included comparison of multiple populations. 

Since then, eQTL analyses have become prevalent in human genetics and by 2017, 

more than 100 eQTL studies have been published on human tissues. As shown in Table 1, 

the main tissues have been whole blood or LCL. In the early stage of eQTL analysis, the 

studied subjects were gathered from public data repositories such as CEPH, HapMap, or 

1000 Genomes, and usually limited samples were available for analysis (usually <300 

individuals). Eager to obtain more detailed information about gene expression and human 

complex traits, researchers have recently conducted more and more eQTL studies in non-

blood tissues, including liver and brain, or under different environmental circumstances 

and across diverse populations. Since 2015, RNA-seq and whole-genome sequencing 
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technology have enabled new levels of resolution. Here I review eleven breakthrough 

studies detecting eQTL in human samples, highlighting the main results. All of the studies 

support the conclusion that genetic components account for a substantial proportion of gene 

expression variation in humans, and allow me to extrapolate some trends to be expected in 

human eQTL studies in the coming years.  

 

1. In the year that the idea of eQTL was proposed, the first eQTL linkage study in 

yeast was published (Brem et al. 2002). In this study, the genetic basis of expression 

differences between two strains was explored for 6,215 genes, and although only one 

quarter of the genes were found to be under overall genetic control, 570 genes were 

regulated by at least one eQTL. Furthermore, a dozen hot-spots regulating many genes in 

a trans-manner were described.  Results from this study clearly revealed that at the 

transcriptome level, gene expression is globally regulated by genetic variants.  

2. The first study in humans to explore local genetic contributions to gene 

expression variation was conducted in LCL with the CEPH family data (Yan et al. 2002). 

These are pedigrees of European-ancestry living in Utah with grandparents, parents, and 

Figure 1.2 Breakthrough eQTL studies in human tissues 
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up to eight children. Yan et al focused on 13 target genes for which 17-37 heterozygous 

individuals were available, and measured the relative expression of two alleles in the same 

individual. Their results showed significant differences in allelic variation for 6 of the 13 

genes, revealing expression patterns in humans consistent with Mendelian inheritance, and 

anticipating later allele-specific expression (ASE) research.  

3. In 2003, Schadt et al. performed a comparative analysis of gene expression 

genetics in mouse, maize and human (Schadt et al. 2003). Linkage analysis was performed 

to detect eQTL for 23,574 transcripts measured in livers of 111 mice from the F2 generation 

of a laboratory cross, and approximately 100 microsatellite markers were used to discover 

that 9-16% of the explored genes have eQTLs with LOD scores > 4.3. Similarly, eQTL 

analysis of the maize ear leaf identified 26% of transcripts harboring ≥ 1 eQTL with a LOD 

score > 3.0. Although genotypic data was lacking, Schadt et al. also studied a small number 

of human LCLs of 56 subjects through variance components analysis and identified 

differential expression for 11% of the genes assayed, of which about a third had detectable 

heritability. Overall, these findings provided the first hint of the complexity of the genetic 

architecture of gene expression across species.  

4. Up to this point, human eQTL studies had been performed with only limited 

genetic markers (≤1000), and were mainly based on linkage analysis. Cheung et al carried 

out association analysis with dense sets of single-nucleotide polymorphism (SNP) markers 

from the HapMap Project. For 27 of 374 molecular phenotypes, analysis of genome-wide 

association was performed with >770,000 SNPs. The association analysis confirmed 

previous results from linkage studies, and narrowed down the candidate regions, greatly 

increasing the fine-mapping resolution (Cheung et al. 2005).  
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5. To explore the characteristics of gene regulation in different human populations, 

Stranger et al. (Stranger et al. 2007b), investigated LCL from four populations in the 

HapMap project: 30 Caucasian (CEU) trios, 30 Yoruba (YRI) trios from Nigeria, 45 

unrelated Chinese (CHB) and 45 unrelated Japanese (JPT). Analysis of 14,456 transcripts 

revealed that 10% and 13% of molecular phenotypes in CEU and YRI had heritability           

> 0.2, respectively, and 958 of the eQTL were discovered in both populations. Furthermore, 

6% of explored transcripts had significant eQTLs in at least 1 population at p < 0.001; 2% 

in at least two populations, and 0.4% in all four populations. In order to further characterize 

the population specificity of gene expression regulation, Spielman et al compared gene 

expression in three major population groups, and found that at least 25% of the gene were 

differentially expressed among populations (Spielman et al. 2007), although this result was 

later found to be largely confounded by batch effect, so the divergence estimate had been 

much inflated (Akey et al. 2007). Idaghdour et al evaluated the eQTL regulation in whole 

blood from Arab and Amazigh, and found that most of the eQTLs had consistent signals, 

verifying the shared cis-genetic influences on gene regulation (Idaghdour et al. 2010b). 

Despite the small sample size, these eQTL results coherently demonstrated the sharing of 

genetic factors in gene expression regulation across different human populations.  

6. Revealing the genetic component of gene expression across human tissues, 

Grundberg et al (2012) presented a comprehensive analysis of gene expression in LCL, 

skin, and adipose.  They calculated heritability and evaluated the genetic and non-genetic 

contributions to expression with a large sample of mono- and dizygotic twins, concluding 

that at least 40% of the total heritable cis effect on expression may originate from rare 
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variants, while a substantial proportion of gene expression heritability must be due to trans-

acting genetic factors. 

7. In contrast to previous eQTL studies mainly exploring contributions of SNPs, 

Stranger et al investigated the effects of another type of genetic variation, copy number 

variants (CNVs), on gene expression levels. They performed association for 14,925 

transcripts with CNVs in the HapMap populations and determined that there were 

significant CNV associations that replicate across ethnic groups as well as some that are 

unique to single populations (Stranger et al. 2007a). Most CNV associations were 

independent of proximal SNPs, highlighting the importance of structural variants in 

addition to SNPs in the regulation of gene expression.  

8. Recently, several groups have begun to investigate the genetic basis for 

differences among individuals in gene expression in different contexts, such as the immune 

response to stimulation.  These effects have been termed response-eQTL, and were first 

explored in the nematode, Caenorhabditis elegans (Li et al. 2006).  The first human 

response-eQTL study described by Lee et al using dendritic cells (DCs) derived from 

monocytes of healthy individuals, with 295 Caucasians, 122 African Americans, 117 East 

Asians.  The DC were stimulated ex vivo with lipopolysaccharide (LPS), influenza virus, 

or the cytokine interferon-β (IFN-β) (Lee et al. 2014). Common variants were genotyped 

and correlated with gene expression from each condition, and then synthetic promoter 

constructs and genome engineering were applied to experimentally confirm some of the 

detected associations. A nanostring array was used to measure 1,598 molecular 

phenotypes, of which 264 were shown to be regulated by genetic variants associated with 

gene expression in human DCs.  Signals from 121 of the loci were uniquely influenced by 
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stimuli. Co-localization analysis also revealed that 35 of the eQTLs were likely to affect 

autoimmune phenotypes through alteration of gene expression. 

9. Most large human eQTL studies have been performed with healthy subjects 

rather than directly in the context of disease.  Ongen et al conducted an RNA-sequencing 

experiment involving 103 matched tumor and normal colon mucosa samples from Danish 

colorectal cancer (CRC) patients, of which 90 were germline-genotyped (Ongen et al. 

2014). Correlation of genotypes with gene expression found 1,693 and 948 eQTLs in 

normal samples and tumor samples, respectively. They estimated that 36% of the tumor 

eQTLs are cancer-specific, partially driven by altered expression of specific transcription 

factors and changes in methylation patterns. The authors also found that tumor-specific 

eQTLs were more enriched for low CRC genome-wide association study (GWAS) P values 

than shared eQTLs, which implies that some of the GWAS variants are tumor specific 

regulatory variants. Importantly, compared to genes with shared eQTLs, genes with tumor-

specific eQTL tended to accumulate more allele-specific expression, indicating that 

somatically-derived mutations may constitute cancer regulatory drivers.  

10.  To assign the contribution of cis- and trans-eQTL to overall expression 

variance, Lloyd-Jones et al analyzed the mRNA levels for 36,778 probes in 2,765 

individuals, and investigated the genetic architecture of gene expression in peripheral blood 

(Lloyd-Jones et al. 2017). 11,204 cis and 3,791 trans independent expression quantitative 

trait loci (eQTL) were detected. For expressed probes (15,966), 66% had a non-zero 

narrow-sense heritability, the mean estimate of which was 0.192, 31% of which was 

assigned to detected eSNPs, while 69% remained missing. The evidences suggests that 

approximately half the genetic variance for gene expression is not tagged by common 
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SNPs, possibly indicating a crucial role for rare variants on gene expression.  This also has 

implications for the likely evolutionary origin of the variance that is tagged by common 

SNPs, a large proportion of which can be attributed to identifiable eQTL of large effect, 

typically located in cis. Limited by the small statistical power and great burden of multiple 

test correction, trans-eQTL analysis remains challenging. Westra et al (2013) performed 

expression quantitative trait locus (eQTL) meta-analysis in 5,311 individuals with 

replication in 2,775 individuals. 233 were SNPs associated with complex traits from 103 

independent loci and replicated as trans-eQTL.  Among these trans effects, an excess of 

variants associated with cholesterol metabolism and type 1 diabetes were found to alter the 

expression of multiple genes known to be associated with traits, revealing likely regulatory 

mechanisms for the downstream effect of many trait-associated variants. 

11.  Limited by the availability of tissues from humans, most studies have explored 

only two or three, if not a single, tissue. To have a broader understanding of transcriptome 

regulation across human tissues, and to elucidate the functional consequences of genetic 

variation associated with complex human disease and quantitative traits, the Genotype-

Tissue Expression (GTEx) project was launched. Ardlie et al. (2015) presented the first 

analysis of RNA sequencing data from 1641 samples derived from 43 biopsy tissues from 

175 recently deceased individuals. In this analysis, it was found that an average of 20,940 

genes were expressed in the explored tissues, highest in testis and lowest in whole blood. 

A U-shaped distribution of the number of tissues expressing each gene was observed, 

meaning that most genes are expressed either in most or just a few tissues.  eQTL analysis 

was performed on 9 tissues with largest sample size.  A total of 10,130 eQTLs were 

detected, 50% of which were shared by all of the 9 tissues, showing high concordance of 
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effect directions. The detected eQTLs were enriched for trait associations, many taking 

function in a tissue-dependent manner. Co-localization analysis demonstrated that ~6% 

GWAS-SNPs were in the same LD block as the detected eSNP, suggesting that their 

influence on the trait is mediated through the eQTL effect. 

Table 1.1. eQTL studies in human tissues since 2004. 

Cohort Tissue Year Sample size Reference Note 

CEPH blood 2004 210 Monk et al(MONKS et al. 2004) 346 markers explored 

CEPH LCL 2004 94 Morley et al(MORLEY et al. 2004) 2,756 autosomal SNPs 

CEPH LCL 2005 57 Cheung et al(CHEUNG et al. 2005) 
 

Hapmap LCL 2005 60 Stranger et al(STRANGER et al. 2005) 
 

Hapmap LCL 2007 238 Stranger et al(STRANGER et al. 2007a) 
 

Hapmap LCL 2007 270 Stranger et al(STRANGER et al. 2007b) 
 

SAFHS LCL 2007 1,280 Göring et al(GÖRING et al. 2007) 
 

Hapmap_CEU LCL 2007 30 Stranger et al(STRANGER et al. 2007b) 
 

Hapmap_CHB LCL 2007 45 Stranger et al(STRANGER et al. 2007b) 
 

Hapmap_JPT LCL 2007 45 Stranger et al(STRANGER et al. 2007b) 
 

Hapmap_YRI LCL 2007 30 Stranger et al(STRANGER et al. 2007b) 
 

BR Brain_Cortex 2007 193 Myers et al(MYERS et al. 2007) 
 

SIGN LCL 2007 206 Dixon et al(DIXON et al. 2007) 
 

Sorbs blood 2008 948 Tönjes et al(TÖNJES et al. 2010) 
 

IFA/IFB 
blood/subcutaneous 
adipose 2008 673/1002 Emilsson et al(EMILSSON et al. 2008) 

 
Hapmap LCL 2008 269 Choy et al(CHOY et al. 2008) 

 
Hapmap_CEU/YRI LCL 2008 209 Price et al(PRICE et al. 2008) 

 
LV Liver Cell 2008 427 Schadt et a(SCHADT et al. 2008) 

 
Hapmap_CEU LCL 2008 60 Duan et al(DUAN et al. 2008) 

 
Hapmap_YRI LCL 2008 69 Duan et al(DUAN et al. 2008) 

 
InChianti blood 2009 705 Tanake et al(TANAKA et al. 2009) 

 
LOAD Brain 2009 765  Webster et al(WEBSTER et al. 2009) 

 
3C LCL 2009 75 Dimas et al(DIMAS et al. 2009a) 

 
3C Fibroblast 2009 75 Dimas et al(DIMAS et al. 2009a) 

 
3C T_cell 2009 75 Dimas et al(DIMAS et al. 2009a) 

 
Morocco blood 2010 203 Idaghdour et al(IDAGHDOUR et al. 2010a) 

 
DILGOM blood 2010 631 Inouye et al(INOUYE et al. 2010) 

 
Hapmap LCL 2010 69 Pickrell et al(PICKRELL et al. 2010) 

 
GHS  Monocyte 2010 1490 Zeller et al(ZELLER et al. 2010) 
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Hapmap_CEU LCL 2010 60 Montgomery et al(MONTGOMERY et al. 2010) 
 

Hapmap_YRI LCL 2010 69 Pickrell et al(PICKRELL et al. 2010) 
 

BR2 Cerebellum 2010 150 Gibbs et al(GIBBS et al. 2010) 
 

BR2 Frontal_cortex 2010 150 Gibbs et al(GIBBS et al. 2010) 
 

BR2 Temporal_cortex 2010 150 Gibbs et al(GIBBS et al. 2010) 
 

BR2 Pons 2010 150 Gibbs et al(GIBBS et al. 2010) 
 

Psoriatic Skin 2010 57 Ding et al(DING et al. 2010) 
 

 
Liver 2010 960 Musunuru et al(MUSUNURU et al. 2010) rs12740374 

 
Subcutaneous fat 2010 433 Musunuru et al(MUSUNURU et al. 2010) rs12740374 

 
Omental fat 2010 520 Musunuru et al(MUSUNURU et al. 2010) rs12740374 

Fehrmann blood 2011 1469 Fehrmann et al(FEHRMANN et al. 2011) 
 

LV2 Liver cell 2011 266 Innocenti et al(INNOCENTI et al. 2011) 
 

 
trabecular bone 2011 113 Grundberg et al(GRUNDBERG et al. 2011) 

 

 
Liver 2011 266  Innocenti et al(INNOCENTI et al. 2011) 

 

 
brain 2011 269 Colantuoni et al(COLANTUONI et al. 2011) 

 
SHIP-Trend blood 2012 653 Mehta et al(MEHTA et al. 2013) 

 
BSGS blood 2012 962 Powell et al(POWELL et al. 2012) 

 
IM Monocyte 2012 288 Fairfax et al(FAIRFAX et al. 2012) 

 
IM B_cell 2012 288 Fairfax et al(FAIRFAX et al. 2012) 

 
MuTHER LCL 2012 160/856 Grundberg et al(GRUNDBERG et al. 2012) 

 
MuTHER Skin 2012 160/856 Grundberg et al(GRUNDBERG et al. 2012) 

 
MuTHER Adipose 2012 160/856 Grundberg et al(GRUNDBERG et al. 2012) 

 

 
Lung 2012 1111 Hao et al(HAO et al. 2012) 

 

 
Cortex, cerebellum 2012 400 Zou et al(ZOU et al. 2012) 

 
Rotterdam blood 2013 881 Hofman et al(HOFMAN et al. 2013) 

 
EGCUT blood 2013 734 Metspalu et al 

 
KORA F3/F4 blood 2013 322/740 Mehta et al(MEHTA et al. 2013) 

 
GEUVADIS LCL 2013 462 Lappalainen et al(LAPPALAINEN et al. 2013) 

 
MRCA, MRCE LCL 2013 405/950 Liang  et al(LIANG et al. 2013) 

 
E-GEUV LCL 2013 373 Lappalainen et al(LAPPALAINEN et al. 2013) 

 
E-GEUV LCL 2013 89 Lappalainen et al(LAPPALAINEN et al. 2013) 

 
Cardiology blood 2014 338 Kim et al(KIM et al. 2014) 

 
Bangladeshi blood 2014 1800 Pierce et al(PIERCE et al. 2014) 

 
CHDWB blood 2014 189 Preininger et al(PREININGER et al. 2013) 

 
SIGN blood/neutrophil 2014 114 Andiappan et al(ANDIAPPAN et al. 2015) 

 
ALSPAC blood 2014 869 Bryois et al(BRYOIS et al. 2014) 

 
NTR-NESDA blood 2014 2752 Wright et al(WRIGHT et al. 2014) 

 
BLD  blood 2014 1387 Tigchelaar et al(TIGCHELAAR et al. 2015) 

 
DGN blood 2014 922 Battle et al(BATTLE et al. 2014) 

 
ImmVar CD4+ 2014 407 Raj et al(RAJ et al. 2014a) 
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ImmVar Monocyte 2014 401 Raj et al(RAJ et al. 2014a) 
 

ImmVar 
CD14+CD16lo 
monocytes 2014 534 Lee et al(LEE et al. 2014) 

 

ImmVar 

LPS induced 
CD14+CD16lo 
monocytes 2014 534 Lee et al(LEE et al. 2014) 

 

ImmVar 
induced by 
influenza virus 2014 534 Lee et al(LEE et al. 2014) 

 

ImmVar 

CD14+CD16lo 
monocytes induced 
by IFN-b 2014 534 Lee et al(LEE et al. 2014) 

 

ImmVar CD4+  4h α328 2014 348 Ye et al(YE et al. 2014) 236 gene explored 

ImmVar CD4+  48h α328 2014 348 Ye et al(YE et al. 2014) 
 

ImmVar CD4+  4h IFNβ 2014 348 Ye et al(YE et al. 2014) 
 

ImmVar 
CD4+  48h IL-6, 
TGFβ 2014 348 Ye et al(YE et al. 2014) 

 

 
colorectal cancer  2014 103  Ongen et al(ONGEN et al. 2014) 

 

 
breast cancer 2014 415/407 Li et al(LI et al. 2013) 

 
HGVD blood 2014 298 Narahara et al(NARAHARA et al. 2014) 

 

 
Dendritic Cell 2014 534 Lee et al(LEE et al. 2014) 1598 transcriptional profile 

 

Stimulated 
monocytes 2014 432 Fairfax et al(FAIRFAX et al. 2014) 

 

 
Heart 2014 129 Koopmann et al(KOOPMANN et al. 2014) 

 

 
10 brian regions 2014 134 Ramasamy et al(RAMASAMY et al. 2014) 

 

 
skeletal muscle  2014 45 Lindholm et al(LINDHOLM et al. 2014) 

 

 
islets 2014 89 Fadista et al(FADISTA et al. 2014) 

 
PRAX1 platelet 2014 154 Simon et al(SIMON et al. 2014) 

 
YoungFinns blood 2015 1428 Turpeinen et al(TURPEINEN et al. 2015) 

 
LIFE blood 2015 2107 Burkhardt et al(BURKHARDT et al. 2015) 

 
Framingham blood 2015 5626 Huan et al(HUAN et al. 2015) 

 
GTEX blood/other tissue 2015 420 GTEx Consortium(CONSORTIUM 2015a) 

 

 
prostate 2015 565 Thibodeau et al(THIBODEAU et al. 2015) 

 
CartaGene blood 2015 521 Hussin et al(HUSSIN et al. 2015) 

 

 
Islets  2015 118 Bunt et al(VAN DE BUNT et al. 2015) 

 

 
6 immune cell type 2015 91/46/43 Peters et al(PETERS et al. 2016) 

 

 
skeletal muscle  2016 267 Scott et al(SCOTT et al. 2016) 

 
TwinsUK LCL/adipose/skin 2016 845 Hore et al(HORE et al. 2016) 

 

 
macrophage 2016 168 Nédélec et al(NÉDÉLEC et al. 2016) 

 

 
Monocyte  2016 200 Quach et al(QUACH et al. 2016) 

 

 
Whole blood 2016 377 Walsh et al(WALSH et al. 2016) 

 

 
LCL 2016 786 Peterson et al(PETERSON et al. 2016) 

 
METSIM Adipose  2017 770 Civelek et al(CIVELEK et al. 2017) 

 
  CD4+/CD8+ 2017 293/283 Kasela et al(KASELA et al. 2017)   
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1.4 Interpretation of eQTL 

The primary detection of eQTL is methodologically straightforward: gene 

expression is measured from hundreds of individuals usually by microarray or RNA-seq, 

genotypes are obtained and imputed by reference to an appropriate population of known 

haplotypes, and then statistical analysis, either association or linkage studies, are conducted 

to evaluate the relationship between the variance of phenotype (expression) and the 

identities of the genotypes. For a given statistical confidence interval, either based on 

conservative Bonferroni adjustment or at a False Discovery Rate threshold, a variant is 

determined to be associated with the phenotype (Figure 1). However, the interpretation of 

eQTL results is generally not so simple. In biology, a cis eQTL is usually expected to be a 

regulatory element that contributes to gene expression, while, for real data, what is 

discovered is just an interval on the chromosome within which it is inferred that a causal 

variant exists. Because of the existence of extensive LD structure in human populations, it 

is hard to distinguish which variant is causal, or whether or not there are multiple causal 

variants in a single region.  It should be appreciated that eQTL performs association 

analysis, and association doesn’t always imply causality. Additionally, whole blood, the 

most widely used tissue, is actually a mixture of various cell types, and the estimation of 

cell-type-specific eQTL is unavoidably highly biased. 

The general and parsimonious assumption is that functional variants are sparsely 

distributed, and hence that their precise localization or estimation of effect sizes is not 

affected by interference due to confounding of statistical signals.  However, as genome-

wide association studies have increased in size it has become clear that multi-site effects 

are not uncommon.  For example, the latest meta-analysis of height suggests that over one 
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third of the more than 400 identified loci have multiple independent signals (Wood et al. 

2014), and similarly in the transcriptome literature, the expression of a large proportion of 

genes in lymphocyte cell lines has been shown to be regulated by two or more locally-

acting variants (cis-eQTL) (Liang et al. 2013).  Gusev et al (Gusev et al. 2013) observed 

that all SNPs at known GWAS loci can explain 1.29-fold more heritability than GWAS-

associated SNPs on average, and Lloyd-Jones et al (2017) revealed that in peripheral blood 

~23% transcripts are regulated by multiple independent eQTLs. The same situation exists 

in eQTL analysis as well, and lies behind the strategy of predicting gene expression from 

all SNPs within 1 Mb of each gene (Mancuso et al. 2017). Thus, determining the effect of 

these multiple variant SNPs on target transcript levels gives considerably more detail 

concerning the complex regulatory interactions at a locus. Including epigenetic markers 

and enhancer-gene interaction information, Corradin et al (2014) revealed specific cases 

where several variants in LD simultaneously affect gene expression. Applying Bayesian 

methods and incorporating genomic annotations, Wen et al (2015) identified multiple cis-

eQTL signals for ~12% genes with eSNP. Since linkage disequilibrium within a locus can 

be extensive, the potential for mis-estimation of eQTL effects due to interference between 

signals from tightly linked polymorphisms is high. 

Researchers have also found enrichment for cell type-specific eQTLs among 

disease susceptibility alleles. Dimas et al (2009b) detected 69 to 80% of regulatory variants 

operating in a cell type–specific manner. Raj et al found ~40% eQTL functioning in a cell-

specific manner, and documented over-representation of T cell–specific eQTLs among 

susceptibility alleles for autoimmune diseases and of monocyte-specific eQTLs among 

Alzheimer’s and Parkinson’s disease variants (Raj et al. 2014b). Using gene expression as 
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a proxy for cell count percentage, Westra et al (2015) inferred cell-type specific effects 

from whole blood data, also demonstrating that SNPs associated with Crohn’s disease 

preferentially affect gene expression within neutrophils.  

1.5 Interpreting GWAS with eQTL results 

Since the first GWAS results were published in 2005 (Klein et al. 2005), several 

thousand genetic regions on human chromosomes have been found to be associated with 

human phenotypes including disease states. Since it is now assumed that the majority of 

SNP-trait associations identified by GWAS can be attributed to effects on gene expression, 

precise estimation of the location and effect sizes of regulatory polymorphisms has become 

important for understanding the relationship between genetic and phenotypic variation 

(Maurano et al. 2012a; Farh et al. 2015).  Expression quantitative trait locus analysis and 

related functional genomic strategies are thus now a standard component of genetic fine 

mapping (Nicolae et al. 2010).  The minimal expectation is that they can identify the gene 

within a locus that accounts for a GWAS signal, although even this is a far from trivial 

undertaking (Chung et al. 2014; Pickrell 2014).  Many investigators make the stronger 

assumption that co-localization of eSNP and GWAS signals to a tight linkage 

disequilibrium interval implies the ability to define if not the causal variant, then at least a 

credible set of SNPs that include the causal site (Trynka et al. 2013; Gaulton et al. 2015; 

Kichaev and Pasaniuc 2015; Liu et al. 2015).  The strong enrichment of chromatin marks 

such as DNAse Hypersensitive Sites (DHS) in the vicinity of eQTL validates this 

assumption (ENCODE Consortium, 2012; Roadmap Epigenomics Consortium, 2015). 
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Table 1.2. Experimentally verified GWAS hits 

Disease/Trait study Gene eQTL tissue Reference 

Asthma ORMDL3 YES LCL Moffatt et al, 2007(MOFFATT et al. 2007) 

Blood lipid level SORT1 YES Liver Musunuru et al, 2010(MUSUNURU et al. 2010) 

Blood lipid level PPP1R3B YES Liver Teslovich et al, 2010(TESLOVICH et al. 2010) 

Blood lipid level TTC39B YES Liver Teslovich et al, 2010(TESLOVICH et al. 2010) 

Breast cancer RRP1B YES PyMT-induced 
primary tumours Crawford et al, 2007(CRAWFORD et al. 2007) 

Chronic lymphatic 
leukaemia ASPM UNKNOWN 

 
Horvath et al, 2006(HORVATH et al. 2006) 

ventricular 
conduction system SCN10A UNKNOWN 

 
Sotoodehnia et al, 2010(SOTOODEHNIA et al. 2010) 

Parkinson SNCA YES Postmortem 
frontal cortex Soldne et al, 2016(SOLDNER et al. 2016) 

T2D IRX3/IRX5 YES Adipocyte Claussnitzer et al, 2015(CLAUSSNITZER et al. 2015) 

However, high resolution fine mapping eQTL results aligned with GWAS studies 

for diverse phenotypes has as yet provided only a few instance of site-specific evidence 

that variants affecting human complex traits and diseases function through their effect on 

gene expression. Table 1.2 lists nine experimentally verified GWAS hits which have been 

validated to affect the phenotype. There are two prominent examples. The first one is a 

common SNP at 1p13, a locus associated with the risk of myocardial infarction (Musunuru 

et al. 2010).  This SNP is found to be located in the 3ʹ untranslated region of a gene, and 

the minor allele creates a binding site for a transcription factor (TF) that is preferentially 

expressed in the liver, as a consequence of which, the target gene sortilin 1 (SORT1) is 

upregulated specifically in the liver. Knockdown studies in mouse liver confirmed that 

higher expression of the sortilin protein results in lower levels of low-density lipoprotein 

cholesterol (LDL-C), which is associated with higher risk of myocardial infarction. The 

second example is the SNCA gene. Using the CRISPR/Cas9 genome editing method, 

Soldner et al (2016) identified a common Parkinson’s disease (PD)-associated risk variant 
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in a non-coding distal enhancer element that regulates the expression of alpha-synuclein 

(SNCA), a key gene implicated in the pathogenesis of PD. The results suggest that the 

transcriptional deregulation of SNCA is associated with sequence-dependent binding of a 

brain-specific TF. Both of these GWAS hits were found to be associated with gene 

expression, and affect TF binding ability, which complies with biological expectations. 

On the other hand, several recent studies have begun to question the presumed 

identity of eQTL and GWAS hits: even though there is a highly significant overlap at the 

level of the locus (Maurano et al. 2012), it is not so clear that the precise variants are the 

same.   Farh et al (2015) integrated regulatory elements and GWAS results, and estimated 

that only ~10% of the GWAS hits function as eQTL, and a more recent comprehensive 

study of autoimmune disease also argued that only one quarter of examined GWAS loci 

may act as discovered eQTL (Chun et al. 2017). Similarly, work based on GTEx gene 

expression aiming to integrate GWAS and eQTL results concluded that only a minority of 

GWAS loci match eQTL (Hormozdiari et al. 2016). These results from statistical analysis 

raise the question of why there are so many instances of discordant fine localization: are 

we simply limited by the low statistical power to detect association signals (Udler et al. 

2010); is there mis-estimation of signal strength and location in the case of multiple eQTL 

per transcript; or are regulatory effects so cell-type and context-specific that true co-

localization is often missed?  From the opposite perspective, regulatory sites may often be 

selectively neutral due to small probability of affecting phenotypes, and hence do not 

appearing in low-powered GWAS scans. 

1.6 Constraints on fine-mapping resolution due to LD 
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Linkage disequilibrium (LD) is a phenomenon whereby alleles at closely linked 

sites tend to be inherited together (Pritchard and Przeworski 2001). Several evolutionary 

factors, including demography, population structure, recombination, mutation, and natural 

selection, create, shape and modify the rate of decay of LD. Consider two loci, A and B, in 

an ancestral population, where site A is a bi-allelic variant, with M and m are the major 

and minor allele, respectively, and there is only a single allele N for B. At some specific 

time or place, a mutation happens in site B in a person with M in site A, and this allele 

spreads into the population.  Initially the new site n is only found on the M chromosome, 

so there is complete LD between M and n.  As time goes by, recombination occurs, forming 

the haplotype with m and n.  Eventually, n is just as likely to be on the M and the m 

chromosomes, at which point linkage equilibrium is reached.  Also, admixture between 

two populations creates temporary LD at loci throughout the genome.  By definition, a 

straightforward method to measure the LD strength is to evaluate D = PMPN-PMN, where 

PM is the allele frequency of allele M in site A, and PN the allele frequency of allele N in 

site B, PMN, the haplotype frequency of MN. In the case of linkage equilibrium, alleles in 

different loci segregate randomly, resulting in PMN = PMPN, and D=0. In the presence of 

LD, D does not equal zero. Since D calculated with the above formula has the disadvantage 

that it is largely affected by allele frequencies, making it difficult to compare the level of 

linkage disequilibrium between different pairs of loci, two alternative measures of LD have 

been devised to correct this: D’ and r2. D’ is a normalized D divided by the theoretical 

maximum difference between the observed and expected allele frequencies as follows: D’= 

D/Dmin, Dmin=max(-PMPN, -(1-PM)(1-PN)), when D<0, and Dmin=min(PM(1-PN), (1-PM)PN), 

when D>0. Before recombination, D’ is always 1, and in the presence of recombination, 
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D’ decays gradually. An alternative to D' is the correlation coefficient between pairs of 

loci, r=D/sqrt(PM(1-PM)PN(1-PN)) (Hill and Robertson 1968). 

In the human genetics field, the Out of Africa hypothesis is the most prominent 

model used to explain the evolutionary history of anatomically modern humans. According 

to this model, modern humans dispersed from East Africa to the Eurasian landmass and 

other continents starting 100,000~60,000 years ago (Mellars 2006; Mallick et al. 2016). 

Consequently, populations of European- and Asian-ancestry are much younger than 

African ones.  There has been less time to break down LD resulting from sub-sampling of 

a fraction of human diversity during the population bottleneck that occurred during 

dispersal. Consequently, Europeans and Asians tend to have longer segments of LD than 

Africans, and non-causal variants typically locate in long LD blocks along with causal 

ones. Consider the scenario where a causal variant, C, affects a continuous phenotype, and 

assume a minor allele frequency PC, and allelic effect size βC. When performing an 

association study to evaluate the relationship between each genetic variant and the 

phenotype, for non-causal variants in LD with a causal variant, the effect size estimate is 

β̇=r* βC, where r is the correlation coefficient between causal and non-causal variants. In 

the presence of extensive LD in the study population, r tends to be large for tens to hundreds 

of linked sites, and consequently estimation for causal and non-causal variants is similar, 

greatly reducing fine-mapping resolution. Even more disturbing, when multiple causal 

variants exist, interference between these variants will bias the estimation. Considering 

another scenario, where two causal variants affect the phenotype together, estimation for 

any variant will be β̇= r1* βC1+ r2*βC2, where r1 is the genotypic correlation of the explored 

variant to causal variant 1, and r2 to causal variant 2. When the causal variants function in 
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opposing directions, there is a strong chance that β̇ equals or is near to 0, which means the 

causal variant will be mis-labelled as non-causal.  When the causal variants function in the 

same direction, it is possible that  β̇ for the non-causal site is greater than the true βc for 

either causal site, and the incorrect inference will be made that there is a single eSNP, 

whose location and effect size will be mis-specified. 

1.7 Comparison of Frequentist and Bayesian tools for eQTL estimation 

Assuming that multiple eQTL contribute to expression variance at a locus, diverse 

methods have been developed to detect multiple independent eQTLs. Conditional analysis 

is the most widely used method to detect independent signals in GWAS (Yang et al. 2012). 

It performs step-wise detection, namely, the novel signal is found conditioning on the 

effects of previously detected signals. In the scenario that multiple causal variants locate 

in different LD blocks, conditional analysis selects one variant as a tag for each LD block. 

In contrast, Bayesian-based methods are designed to perform association and fine-mapping 

simultaneously. In the Bayesian framework, to select variables as causal, the approach is 

to comprehensively survey the causal status space under a set of prior assumptions, and 

then use posterior probability values to evaluate the importance of each combination of 

variants. Several Bayesian methods have been developed, and there are two categories: one 

is used when individual genotype and phenotype are available, and the other one is applied 

when only marginal summary results are available. FMQTL (Wen et al. 2015) and DAP 

(Wen et al. 2016) use each individual’s genotype and phenotype to detect multiple eQTL. 

FMQTL applies the Metropolis Hasting algorithm in the MCMC method to sample the 

causal states, and calculates a posterior inclusion probability from the marginal sampled 
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causal states. To reduce the computational burden, Wen et al developed DAP, in which 

only the causal status associated with high-probability variants were explored instead of 

sampling. Another package, CAVIAR (Hormozdiari et al. 2014), was developed to deal 

with summary statistics. In CAVIAR, the marginal statistical association results and LD 

structure are used to explore the probability of each causal status. CAVIAR-BF (Chen et 

al. 2015), PAINTOR (Kichaev et al. 2014), and FINEMAP (Benner et al. 2016) were 

developed with similar logical models. One disadvantage of most of these Bayesian 

methods is that they output a list of SNPs with a specific confidence that causal variants 

are included or a set of causal statuses with high probability, but there is no estimation for 

the parameters of the underlying causal variants, such as effect size betas. To estimate these 

parameters, we need to choose the causal status with the largest probability, and perform 

multiple-variable regression to estimate the allelic effect sizes. 

In this thesis, I first describe simulation studies which reveal that in the scenario of 

multiple eQTL regulation, interference between causal variants results in greatly biased 

estimation, and then develop a statistical model to identify multiple regulatory variants 

affecting gene expression, combining both frequentist and Bayesian methods. To integrate 

eQTL signal to interpret GWAS results, I then develop a new joint mapping method to 

evaluate the co-localization of eQTL-GWAS signal, and use it to identify causal genes and 

causal variants for human complex traits and disease. In addition, as a member of Prof 

Lude Franke’s eQTLgen consortium (University of Groningen, The Netherlands), I also 

report on methods that I used for trans-eQTL detection, comparing results across gene 

expression platforms. 
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1.8 Thesis Structure 

Specific Aims:     Statistical Dissection of the Regulation of Gene Expression and its 

application in interpretation of GWAS findings 

In this thesis, on the assumption that multiple regulatory variants are present per 

locus, I conduct a systematic evaluation of whether and how transcription is affected by 

combinations of SNPs in two or more regulatory intervals.  Based on the resultant 

regulatory signals, I then describe how to use this information to interpret GWAS results, 

and reveal potential biological mechanisms. My approach is to perform a Bayesian 

statistical assessment of causal variants and causal genes for human complex phenotypes 

and disease states. Two large eQTL datasets have been analyzed in order to develop 

statistical methods that control for population and family structure, and perform 

simultaneous multi-site eQTL detection in the presence of variable levels of linkage 

disequilibrium. With the available ~1,300 GWAS summary results, I also conducted co-

localization analysis to evaluate the potential causal variants, and causal genes. 

Aim 1. Establish limits to fine-mapping imposed by interference among linked sites 

at a single locus. 

The first objective of my thesis was to explore sources of error in estimating joint 

eQTL effects. Empirical analysis of the CAGE dataset of 2,800 whole blood profiles 

generated statistical evidence that 2, 3 or even more sites regulate the expression of a gene 

is common.  I used simulations to explore the effect of untagged variants and multi-site 

regulation on the localization of, and effect size estimation of, statistical peaks. I also 

showed that under plausible parameters there is a non-trivial likelihood that discovered 

eQTL credible intervals do not actually include the causal variant. To reveal the limitations 
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of current frequentist and Bayesian methods, I then performed simulations to compare 

sequential conditional and Bayesian joint mapping methods for eQTL detection in 

scenarios where multiple eQTL regulation is prevalent, and compared the advantages and 

pitfalls of the two methods. 

Aim 2. Development of a novel pipeline, PolyQTL, for fine mapping eQTL effects. 

In Aim 1, it became apparent that conditional mapping is fast and efficient for 

detection of independent eQTL in low LD, while the Bayesian methods are more 

computationally demanding but have increased resolution of multiple eQTL within high 

LD blocks.  In this Aim I present a new pipeline, PolyQTL, which combines the two 

approaches while also accounting for population and pedigree structure and can incorporate 

functional and evolutionary information into the fine mapping. The method was applied to 

contrast multi-eQTL profiles in the CAGE and Framingham Heart Study (FHS) whole 

blood datasets.  The results indicate that the Illumina and Affymetrix platforms yield 

similar numbers of eQTL, but have very different fine mapping results for more than half 

of all expressed genes.  I discuss the reasons for the discrepancy, and have generated a 

public database that provides joint mapping profiles and summary statistics suitable for co-

localization studies.   

Aim 3. Application of eQTL to interpret GWAS results. 

Since in previous studies, only a limited proportion of GWAS hits were 

demonstrated to influence traits through gene expression, I inferred that there are two major 

limitations: first, the assumption of single-causal variant in one locus may not hold since 

there are multiple local causal variants influencing regulation of the transcript, and second, 
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sample size.  In this aim, I tested whether additional secondary eQTLs can be used to 

discover novel co-localization signals. I extended the previously developed PolyQTL 

method to evaluate whether or not the eQTL statistical signals overlap with GWAS signals. 

A significant degree of overlap indicates a co-localization, and my method can be used to 

refine both causal variants, and causal genes.   

Aim 4. Trans-eQTL detection in structured populations. 

Although eQTL analysis has become prevalent in human genetics and is widely 

used to interpret GWAS results, most eQTL studies focus only on cis-eQTL effects. The 

detection of trans-eQTL may provide additional, more detailed information regarding gene 

expression networks, and elucidate potential biological mechanisms for the regulation of 

transcript abundance. Dr. Lude Franke launched the eQTLgen Consortium in order to focus 

on trans-eQTL, by applying meta-analysis with more than 30,000 samples collected from 

labs around the world. As a member of this consortium, I was responsible for detection of 

trans-eQTL in the highly family-structured Framingham Heart Study, and for comparison, 

using a pipeline provided by eQTLgen, of results for three cohorts collected in Professor 

Gibson’s lab. In this aim, I provide a detailed description of my method of trans-eQTL 

detection, and explore the likely relationship between trans- and cis-eQTL. 
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CHAPTER 2 

Interference between causal variants in LD Constrains eQTL 

fine mapping  

ABSTRACT: In this chapter, I explore the interference between causal variants when they 

locate in a region of high linkage disequilibrium. Widely used to interpret genetic risk 

factors associated with disease or clinical phenotypes by GWAS, most of which locate in 

non-coding regions, expression quantitative trait locus (eQTL) detection has emerged as 

an important tool for elucidating detailed biological mechanisms. Most eQTL studies apply 

univariable linear regression to discover primary signals, and then conduct sequential 

conditional modeling to detect additional genetic variants affecting gene expression. 

However, this approach assumes that functional variants are sparsely distributed and that 

close linkage between them has little impact on estimation of their precise location and the 

magnitude of effects. Here, I describe a series of simulation studies designed to evaluate 

the impact of linkage disequilibrium (LD) on the fine mapping of causal variants with 

typical eQTL effect sizes. In the presence of multisite regulation, even though between 80 

and 90% of modeled eSNPs associate with the normally distributed traits, up to 10% of all 

secondary signals could be statistical artifacts, and at least 5% but up to one-quarter of 

credible intervals of SNPs within r2 ≥ 0.8 of the peak may not even include the causal site. 

The Bayesian methods eCAVIAR and DAP (Deterministic Approximation of Posteriors) 

provide only modest improvement in resolution. With the results from simulations, I 

conclude that fine mapping of causal variants needs to be adjusted for multisite influences, 

but ultimately experimental verification of individual effects is needed. Presumably similar 

conclusions apply not just to eQTL mapping, but to multisite influences on fine mapping 
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of most types of quantitative trait loci. Contents in this chapter have already been published 

in the journal G3, as Zeng et al., 2017. 

2.1 Background 

Biological and statistical evidence imply that many SNP-trait associations 

identified from genome-wide association studies can be attributed to effects on gene 

expression.  Consequently, fine-mapping to precisely estimate the effect size and define 

the location of causal variant(s) has become crucial for our understanding of the 

relationship between genetic risk and phenotypic variation (Maurano et al. 2012; Farh et 

al. 2015), and eQTL analysis now has become a standard component for GWAS studies 

(Nicolae et al. 2010). However, investigators tend to expect that it is simple to identify the 

causal genes at each locus, but even this is a far from trivial undertaking (Chung et al. 2014; 

Pickrell 2014). Further, when integrating eQTL signals into the GWAS interpretation, 

many researchers make the stronger assumption that co-localization of eSNP and GWAS 

signals to a tight LD interval implies the ability to define if not the causal variant, then at 

least a credible set of SNPs that include the causal site (Trynka et al. 2013; Gaulton et al. 

2015; Kichaev and Pasaniuc 2015; Liu et al. 2016). Studies across a wide range of 

organisms including yeast, mice, and several plant species, reviewed by Albert and 

Kruglyak (2015) and Cubillos et al. (2012), show that individual regulatory substitutions 

can be experimentally defined and linked to visible phenotypes. Similarly, the SORT1 

example in humans (Musunuru et al. 2010) showed how dissection of the path from 

regulatory variant to tissue-specific expression can define causal influences on (heart) 

disease. However, this is painstaking work that relies on strong prior statistical or 

functional prediction of likely credible intervals. The enrichment of chromatin marks such 
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as DNAse hypersensitive sites in the vicinity of eQTL validates the assumption that many 

credible intervals encompass regulatory SNPs (ENCODE Project Consortium 2012; 

Roadmap Epigenomics Consortium 2015), but conversely raises the question of why there 

are so many instances of discordant fine localization (Huang et al. 2015; Chun et al. 2017); 

does this reflect biochemistry (regulatory sites do not always map to ENCODE elements), 

or simply limits to the statistical resolution of association signals (Udler et al. 2010)? 

It is generally assumed that functional variants are sparsely distributed across 

genomic loci, and that the statistical estimation of effect size and localization isn’t hindered 

by the confounding of statistical signals stemming from LD. However, as GWAS have 

increased in size, it has become clear that multisite effects are not uncommon. For example, 

a recent meta-analysis of height suggests that over one-third of the 400 identified loci have 

multiple independent signals (Wood et al. 2014), and that the expression of a large 

proportion of genes in lymphocyte cell lines is regulated by two or more locally acting 

variants (cis-eQTL) (Liang et al. 2013). Human chromosomes have extensive LD often 

over more than 100kb, and thus the potential for mis-estimation of eQTL effects due to 

interference between signals from tightly linked polymorphisms could be high. In this 

chapter I describe a combination of simulation studies designed to address this concern. 

Heritability analyses have shown that, on average, up to half of the variance of 

phenotypic traits, or of transcript abundance, can be explained by genetic factors, mostly 

acting in an additive manner (Powell et al. 2013; Wright et al. 2014). In contrast to GWAS 

for visible phenotypic traits, in which the identified genetic variants only explain a subtle 

proportion of phenotypic variance (<1%), an important difference in eQTL is that one or a 

few SNPs are often found to explain a large proportion (>10%) of the genetic variance. 
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These variants usually lie within 1 Mb of the transcript and are defined as cis-acting 

regulatory polymorphisms. Expression heritability results by Lloyd-Jones et al. (2017) 

showed that 35% of all expressed genes in peripheral blood have narrow sense heritability 

>0.1, with a median of 0.3, and the primary cis-eQTL, which has the strongest association 

signal at a locus, typically explains 85% of the locally acting variance, which is two-thirds 

of that attributed to all detected eQTL. The majority of the genetic variance is generally 

actually due to trans-acting polymorphisms of small effect.  

The largest blood eQTL study reported to date, assembled from meta-analysis of 

over 5,000 individual Illumina microarray samples (Westra et al. 2013), reported single 

site local associations that are genome-wide significant for 6418 genes (44% of those 

tested) with a 5% false discovery rate. However, the blood eQTL browser only provides 

single site (unconditional) estimates for all local SNPs at each locus. A more powerful 

cross-population Bayesian method (Gusev et al. 2014), applied to just 420 lymphocyte cell 

lines in the Geuvadis dataset (Lappalainen et al. 2013), found a very similar number of 

genes with evidence for regulation by a local eQTL (eGenes), 14% of which had strong 

evidence for secondary association signals in a multisite analysis (Wen et al. 2015). 

One of the major factors constraining our understanding of eQTL regulation is the 

limited availability of human samples. Increased sample size should not only reveal more 

specific instances of multisite regulation, but also provide the opportunity to more 

accurately define effect sizes in the presence of multiple sites that have varying degrees of 

LD. Figure 2.1 illustrates the reasoning for a hypothetical case. Five true eSNP effects are 

indicated by red lines with increasing effects above the horizontal and decreasing below it, 
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while single site unconditional estimates at common variants across the locus are indicated 

as black lines.  

Where two sites in high LD have effects in the opposite direction (green circle), 

they will either cancel each other out or substantially bias the effect size estimates.     Where 

two sites act in the same direction (blue circle), their effects will tend to be added together, 

and hence the strongest association will overestimate the effect while the secondary site 

will be underestimated or not detected. Weaker associations (brown circle) may be 

undetected if they are influenced by even low levels of LD. In theory, if the location of the 

functional sites is known a priori, these difficulties can be resolved by multisite linear 

regression simultaneously fitting all of the identified SNPs. In practice, the identities of the 

functional sites are unknown, and exhaustive multisite modeling is impractical, so 

Figure 2.1 Schematic of multi-site regulation of gene expression.  Black bars indicate 
univariate estimates of allelic effects of minor alleles increasing (above the horizontal) 
or decreasing (below the horizontal) gene expression without conditioning on other 
sites.  Red bars show the actual effects at 5 SNPs in this locus, which has a linkage 
disequilibrium profile with two large and one small block of elevated LD (pink 
squares).  Dotted horizontal lines indicate a statistical significance threshold, which is 
only exceeded in the univariate modeling by the two left-hand sites (blue circle).  Since 
these two sites act in the same direction, they reinforce one another, leading to over-
estimation of their effect sizes, whereas the two at the right (green circle) interfere 
with one another antagonistically, leading to under-estimation of their effects.  The 
effect at the fifth site (brown circle) may only be identified following conditional 
analysis. 
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sequential conditional analyses are used to find secondary, tertiary, and so forth 

associations that are independent of the primary signal. In the presence of strong LD, this 

approach is expected to miss independent associations, which will remain confounded with 

the primary signal. 

Several Bayesian methods have recently been introduced to improve localization 

of linked causal variants. CAVIAR (Hormozdiari et al. 2014) enumerates all possible 

causal states for one or more sites in a short interval of 100 SNPs, but to control the 

computational burden, the maximum number of causal variants is typically set to two. It is 

claimed to improve identification of causal variants by 20%–50% over existing methods 

such as BIMBAM (Servin and Stephens 2007). The eCAVIAR extension for combined 

eQTL and GWAS analysis (Hormozdiari et al. 2016) uses a greedy method to find a subset 

of SNPs with a specific confidence (95% by default) that causal variants are identified as 

candidates. PAINTOR (Kichaev et al. 2014) uses a similar algorithm, whereas FM-QTL 

(Wen et al. 2015) applies an MCMC algorithm to explore the causal status space, utilizing 

a posterior inclusion probability to choose the causal variant credible interval. DAP 

software was then developed (Wen et al. 2016) to explore high probability causal intervals 

with reasonable runtime. FINEMAP (Benner et al. 2016) uses a logical schema that is 

similar to that of CAVIAR, but adopts a Shotgun Stochastic Search method to restrict the 

search space and focus on combinations of high probability intervals. 

In this study, I aimed to explore the sources of error in estimating eQTL effects by 

using simulations to ask how multisite regulation influences (i) the number of independent 

peaks detected by stepwise conditional analysis, (ii) the accuracy of localization of true 

causal variants, and (iii) the effect size estimation of discovered causal variants. I also 
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address the question of what proportion of discovered peaks may be driven by 

undocumented variants in LD with the genotyped sites, and conclude with a comparison of 

the performance of two recently developed Bayesian joint localization methods, eCAVIAR 

and DAP.  Only minor improvements in detection of linked causal variants was obtained, 

and this has little impact on fine mapping, particularly in regions of high LD or if sample 

sizes are small. 

2.2 Material and methods 

2.2.1 Consortium for the Architecture of Gene Expression (CAGE) dataset 

My simulations utilize genotypes obtained from the CAGE dataset, which consists 

of Illumina HT12 microarray-based gene expression profiles, as well as whole-genome 

genotype information from five research studies: the Brisbane Systems Genetics Study 

(BSGS, N = 926) (Powell et al. 2012), the Atlanta-based Centre for Health Discovery and 

Well-Being (N = 439) (Wingo and Gibson 2015) and Emory Cardiology Genebank (N = 

147, Kim et al. 2014), the Estonian Genome Centre, University of Tartu study (N = 1065, 

Schrammet al. 2014), and the Morocco Lifestyle study (N = 188, Idaghdour et al. 2010), 

for a total of 2765 individuals. Since the BSGS sample includes twins, it was removed to 

avoid complications of relatedness, leaving a set of 1839 European- ancestry unrelated 

individuals. IRB approval was obtained for the combination of data into a mega-analysis, 

both by the University of Queensland and for each participating site. 

Genotype imputation for the CAGE cohort was performed jointly on the five 

contributing studies by collaborators at the University of Queensland, to ensure uniformity 

of assignment of strand identities of SNPs. It was described in detail in Lloyd-Jones et al. 
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(2017) and at https://github.com/CNSGenomics/impute-pipe. Briefly, the pipeline 

involved: (1) pre-imputation quality control and data consistency checks; (2) imputation to 

the 1000G reference panel with Impute2 (Howie et al. 2012); (3) post imputation quality 

control (filtering on various data features); and (4) merging datasets on common SNPs. 

2.2.2 Simulation studies  

I conducted four different simulation studies. In all cases, the terminology uni-site 

(univariable) is used to refer to models where a single causal variant is modeled as a fixed 

effect, and multisite (multivariable) where two or more variants are modeled, also as fixed 

effects. The term multi-variate modeling is used for situations where there are two or more 

dependent variables, whereas in these models I assess the joint effects of two or more causal 

variables, hence perform multivariable modeling. Some models also incorporate random 

effects of covariates such as a genetic relationship matrix. 

The first set of simulations assessed the power and accuracy of two site regressions 

assuming that the identities of the two causal variants are already known. I modeled the 

influences of effect size, minor allele frequency (maf), LD, and sample size. Environmental 

variance was randomly generated as a z-score (mean 0 and SD 1) and genotype effects (b) 

were added in SD units (sdu) multiplied by 0, 1, or 2 according to genotype so as to account 

for from 2% to 30% of the phenotypic variance, computed as 2P(1-P)β2. Thus, an allele 

with β = 0.8 is expected to explain 20% of the variance if maf P = 0.2, or 32% of the 

variance if P=0.5.The influence of LD was assessed at r2 = 0.1, 0.5, or 0.9, noting that as 

LD increases, high r2 values are not obtained for combinations of a rare and a common 
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allele. For each combination of parameter values, I generated 1000 randomizations of the 

environmental variance, and assessed (i) the univariate estimate at each genotype, (ii) the 

mean conditional estimate of the second SNP, and (iii) the joint effect estimates with both 

SNPs. From these values, I computed the mean absolute value of the deviation between the 

observed estimate and the true effect size from the univariate, conditional, and joint (two 

site) models. The univariate estimates agree extremely well with expectations from the 

analytical solution described in the Results.  

The second simulation study asked whether unimputed variants influence the 

localization of eSNP signals. Since non-imputed SNPs are not present in the CAGE data, 

I approximated their identities by randomly sampling from a set of CAGE-imputed SNPs 

weighted to have the same frequency distribution shown in Figure 2.3C and assigning 

effect sizes from 2% to 10% of the variance explained for normally distributed pseudogene 

expression traits using the CAGE (without BSGS samples) genotypes. I then removed the 

SNP and all other SNPs with r2 ≥ 0.8, and performed stepwise conditional regression, 

documenting instances of primary and secondary signals at P ≤ 10-5, as plotted in Figure 

2.3E. The cumulative proportion of spurious secondary signals was computed by summing 

the detection rate by the size of the maf bin of the unimputed SNPs. 

The third set of simulations were performed to evaluate the difference in effect size 

estimates using the multisite linear regression method for parameter estimation from data 

representative of the LD structure in the CAGE dataset. For each of 500,000 iterations, 

four sites were chosen at random from a window extending from 200 kb upstream of the 

transcription start site to 200 kb downstream of the transcription termination site of a 

randomly picked gene in the CAGE cohort (excluding the BSGS data, since it includes 
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twins), and assigned an effect size from a uniform distribution of variance explained (VE) 

relative to environmental noise ranging between 0.02 and 0.1. The effect size β for an allele 

with maf p is computed as �VE/[2p(1 − p)] . Subsequently, each phenotype was 

simulated as βi* genoi + N(0,1), whereβi is the simulated allelic effect size for a SNP i, and 

genoi is the dosage of minor allele at the simulated SNP for a given sample. The 

significance threshold for sequential conditional detection of the variants in a sample of 

1839 CAGE individuals was set at P ≤10-5, since simulations indicated a ≤ 1% false 

discovery rate for null variants at this level. I evaluated (i) how many of the four SNPs 

were significant in sequential conditional modeling, (ii) the mean LD between each SNP 

and the other three SNPs in the model, (iii) the effect size estimates from the conditional 

and joint multisite models, (iv) the difference between these two estimates as a function of 

the mean LD, and (v) the rank of the discovered SNP for each peak eSNP and the modeled 

sites, which were assumed to be the causal variants for some trait. 

The fourth set of simulations was performed to evaluate the influence of two 

Bayesian methods for fine mapping that is sensitive to the LD structure at a locus. First, 

eCAVIAR was used to also assess the accuracy of co-localization of eQTL and GWAS 

signals. Summary statistics were generated for normally distributed traits where either one, 

two, or three sites chosen at random from contiguous intervals of 100 SNPs in the full 

sample of 1835 CAGE genotypes were assigned to explain between 2% and 10% of the 

variance. Effects were assigned in the same direction for each minor allele. Marginal single 

site estimates were generated by uni-variable regression, and then eCAVIAR was used to 

combine the Posterior Probabilities, which were multiplied together to yield the Co-
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Localized Posterior Probabilities (CLPP) with a significance threshold of 0.001 as 

recommended (Hormozdiari et al. 2016). Owing to the high computational burden, only 

4000 simulations were performed. GWAS variants are in general unlikely to explain this 

amount of variance, but the statistical evidence is approximately equivalent to that expected 

for typical trait associations where a SNP explains ≤ 0.1% of the variance in a sample of 

20,000 individuals. The effect of sample size was evaluated by fitting a single eQTL effect 

to just 200 individuals in each simulation. Second, the DAP simulations were performed 

using the adaptive algorithm, which estimates the number of causal variants from the data 

and also generates a list of possible sites that could explain the effect(s). Again, owing to 

the high computational burden, only 130 simulations were performed, using the same 

parameters as for the sequential conditional analyses with four assigned causal variants. A 

final set of simulations designed only to fine map three causal sites in a single moderate to 

high LD block extracted contiguous sets of 100 SNPs, and randomly assigned effects only 

on the condition that three sites selected from the set each had r2 ≥ 0.3 with one another. 

2.3 Results  

2.3.1 Underestimation of allelic effects by sequential conditional analysis  

 My basic simulation framework utilizes the current standard mapping approach of 

sequential conditional analysis, in which the residuals from discovery of each SNP are 

taken forward as the dependent variable in a new scan for an independent SNP (Yang et al. 

2012). To explore the performance of this strategy in the context of four causal regulatory 

variants in the vicinity of a typical gene, 500,000 simulations were carried out by randomly 

picking four SNPs within 200 kb up- or downstream of the TSS and TES ends of a 
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randomly chosen gene, from the imputed whole-genome genotypes of 1839 unrelated 

European ancestry individuals. I assigned each SNP an allelic effect size so as to explain 

between 2 and 10% of the variance of a trait otherwise uniformly distributed with a mean 

of 0 and SD of 1. Power to detect individual univariate effects of this magnitude is close to 

100% at the significance level P≤10-5. The sampling was performed across all genes so as 

to sample from the typical LD structure in the European ancestry human genome. 

Furthermore, effects were randomly assigned under three scenarios, with either four 

positive (4:0), three positive and one negative (3:1), or two positive and two negative (2:2) 

effects of the minor allele on the trait. For the eQTL detection, once the sequential 

conditional detection was completed, I determined which of the four causal variants was 

in high LD (r2 ≥ 0.8) with one of the discovered sites. If a peak was in high LD with more 

than one causal variant, it was assumed that it tagged the highest effect site. 

Table 2.1. Tagging Efficiency of Detection of Causal Variants with r2 cutoff 0.8 

            

        Number of                       Scenario (Positive: Negative effects)*  

Detected Causal Variants            4:0                3:1           2:2  

             

1                              0.6% (0.84)             1.4% (1.00)       1.2% (0.62) 

2                              5.7% (0.69)           10.4% (0.91)       12.8% (0.86) 

3                            28.2% (0.78)          24.3% (0.85)    22.5% (0.76) 

4              55.5% (0.89)      59.0% (0.92)   60.2% (0.90) 

             >4                            10.0% (0.63)           5.0% (0.66)     3.3% (0.56) 
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*  % indicates the percent of cases with the indicated number of independent discovered variants; numbers 

in brackets are the proportion of discovered variants that are in LD (r2 > 0.8) with one of the simulated causal 

variants. 

Table 2.1 summarizes the “tagging efficiency”, namely the percent of simulations 

in which the indicated number of significant independent sites was detected, as well as the 

proportion of the discovered variants that are in high LD (r2 ≥ 0.8) with one of the simulated 

causal variants. Across all three scenarios, at least three independent peaks are detected in 

90% of the simulations, and at least four independent peaks in two thirds of the simulations. 

Notably, in the scenarios where all four minor alleles influence expression in the same 

direction, 10% of the simulations detected five or more independent peaks, at least one of 

which must be a spurious association, despite a ≤ 1% false discovery rate for univariate 

associations of the same magnitude. The proportion of credible intervals (r2 ≥ 0.8 regions 

around each discovered variant) that contain the actually simulated site ranges between 

85% and 90% in each scenario, again indicating relatively poor localization of the causal 

variant.   

Table 2.2. Detected true causal variants in simulations with 4, 3 and 2 causal variants 

              

Detected                             4 SNP Scenario           3 SNP Scenario           2 SNP Scenario 

               variants                4:0     3:1        2:2    3:0        2:1                     2:0      1:1 

             

0   1.1%   1.2%   1.4%   2.1%   1.9%   5.5%   6.3% 

1   5.5%   6.0%   6.0% 12.1% 15.1%   9.4%   9.1% 

2 18.4% 22.3% 23.7% 17.6% 17.9% 85.1% 84.6% 

3 23.7% 23.4% 22.1% 68.2% 65.0% 

4 51.3% 47.1% 46.7%     



 42 

             

Similar results are reported in Table 2.2 for the reciprocal measure of what fraction 

of simulated variants is captured by discovered variants. It includes results for simulations 

with just two or three causal variants, and reports the percentage of cases where the causal 

variant was within the r2 ≥ 0.8 credible interval for a discovered peak. Across the sets of 

500,000 simulations, at least two variants are detected > 85% of the time, but the power to 

detect all of the multiple eSNPs is a function of the number of sites operating in the same 

direction. It is highest for the case where the minor alleles for all four variants have effects 

in the same direction and least where two are in one direction and two in the opposite 

direction. In the 4:0 scenario, three or more of the four eSNPs are detected three-quarters 

of the time, whereas this proportion drops toward two-thirds with the simulations for 2:2. 

No variants are detected in just over 1% of the simulations, and just one variant in ~6% of 

them, while 80% of the variants are detected overall. This proportion rises to 90% for the 

two-variant simulations, illustrating how multisite interactions reduce the discovery of 

independent eQTL peaks.   
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Another way to consider the power of multisite detection is to ask how much of the 

variance explained by the four SNPs is captured by the discovered variants. Box and 

whisker plots in Figure 2.2 shows that, under all three scenarios, on average 85%–90% of 

the variance is captured, namely in these simulations ~15%–20% of the transcript 

abundance. Although effect sizes of all SNPs were drawn from the same distribution, the 

first discovered SNP (rightmost box in each panel) typically explains between one-third 

Figure 2.2 Proportion of variance explained by detected eSNPs in simulations. Box 
and whiskers show median, interquartile range, and 95% C.I. for the proportion of 
variance explained under three scenarios for 500,000 simulations of four sites 
affecting gene expression. From left to right in each simulation, Simu is the variance 
explained by the known sites, Multi is the result fitting discovered eSNPs jointly, Uni 
is the result of summing the effects from sequential conditional modeling, and Single 
is the effect of the peak detected eSNP. The y-axis shows the proportion of variance 
explained. Scenarios are 4:0, all four minor alleles with effects in same direction; 3:1, 
one minor allele effect in the opposite direction; 2:2, two minor alleles on one direction 
and the other two in the opposite direction. eSNP, expression single nucleotide 
polymorphism. 
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and one-half of the expected variance, suggesting that it often tags some of the effect of 

another site. Since the primary SNP captures on average more than two thirds of the 

heritability at each locus in actual peripheral blood data (Lloyd-Jones et al. 2017), it is 

likely that secondary and tertiary SNP effects are, in reality, smaller than primary SNP 

effects. As expected, summation of the independent contributions from the sequential 

conditional models, or fitting all of the discovered variants simultaneously in a 

multivariable model, explains very similar proportions of the variance overall. Similar 

results are seen with two or three simulated causal variants. 

2.3.2  Estimation of the proportion of secondary associations that are false positives 

The detection of more association peaks than the number of simulated sites implies 

that some fraction of peaks are false positives that arise due to sampling artifacts in the 

presence of high LD, whereby an imperfectly tagged site is split into two or more spurious 

signals. An example is shown in Figure 2.3A and B, contrasting the local Manhattan 
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profiles for a single causal variant that splits into two associations when the peak SNP, 

rs9806753, is excluded from analysis.   

Figure 2.3 False multiple eQTL detection due to unimputed variants. (A, B) example 
showing multi-eQTL due to poor tagging. (A) SNP rs9806753 (European-ancestry 
maf = 0.23) was simulated to generated an eSNP effect, but removal of this variant 
and all SNPs within r2 > 0.5 in analysis, (B) results in the effect captured by a primary 
(rs62010876, maf = 0.10) and secondary (rs1974961, maf = 0.13) signals. (C) Empirical 
maf distribution of 1.4 M unimputed 1000G (red) and 8.3 M imputed 1000G variants 
in CAGE (blue), showing shift to lower frequencies for variants not tagged. (D) 
Tagging efficiency as a function of maf based in mean r2 for the strongest correlated 
SNP for 10,000 randomly selected variants in the CAGE. (E) Corresponding signal 
detection rate at P < 10-5 for randomly assigned effect sizes, explaining between 2% 
and 8% of a simulated gene expression trait for primary (red) and secondary (blue) 
signals when the simulated variant is excluded from the analysis. (F) Cumulative 
proportion of sites expected to generate a false multiple eQTL detection. 
Multiplication of this proportion by the number of unimputed SNPs in genic regions 
and the actual proportion of SNPs that have effects (unlikely to be >1%) yields up to 
400 possible false positive secondary associations. 
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To explore the frequency with which this occurs, I conducted simulations assuming a single 

causal variant based on the genotypes measured in 1839 European ancestry samples from 

the CAGE cohorts (see Methods). Randomly assigning causal effects resulted in the 

appearance of a secondary signal at P ≤ 10-5, conditioned on the causal site, at 0.3% of the 

loci. This is approximately as expected given 8.3 million imputed SNPs at 22,000 loci, and 

is also the same as the false discovery rate of primary signals in the absence of any 

simulated causal locus; that is to say, the random expectation is for 0.3% of transcripts to 

have a false eQTL discovery at P ≤ 10-5 in the CAGE dataset. However, this ignores the 

possibility that the causal variants are not present in the imputed genotypes. Of the 9.7 

million SNPs, indels, and CNV with maf ≥ 0.01 in the European populations in the 1000G 

database, 1.9 million are not imputed in the CAGE samples. Figure 2.3C shows that the 

maf distribution for these variants is strongly shifted toward rarer alleles relative to the 

imputed SNPs, and is centered at a maf ≥ 0.02. Consistent with Yang et al. (2015), the 

average tagging efficiency (r2 value) of these SNPs is a function of maf, being >0.7 for maf 

>0.05, but dropping to <0.5 for maf = 0.01, as seen in Figure 2.3D.   

Since I cannot simulate effects at nonimputed SNPs, I approximated such alleles 

by randomly simulating a causal variant from the CAGE SNPs with the same frequency 

distribution, but excluding it from the analysis along with all variants that would tag it at 

the typical level observed for the nonimputed SNPs of the same maf. I then asked how 

often the effect is captured by multisite signals, as a function of residual tagging efficiency. 

I allowed for increased effect sizes with lower maf by simulating effects in the constant 

range of 2%–10% of the variance explained. The proportion of such pseudo unimputed 
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SNPs that generate primary signals is reduced with lower maf, due in part to the smaller 

proportion of variance explained by the less common variants that partially tag them. For 

common variants, there is almost always a second site in high enough LD to capture most 

of the causal signal in the absence of genotypes at the causal variant, but rare variants are 

insufficiently tagged to generate a signal at all, 90% of the time. In the presence of tagging 

SNPs with r2 ≥ 0.5 to the “unobserved” causal variant, false secondary associations are 

observed ~40% of the time. At the other end of the spectrum, rare variants (maf ≤ 0.01) 

that produce a primary signal at a tagging SNP with 0.1 ≤ r2 ≤ 0.3 also produce a secondary 

signal but less frequently. The blue curve in Figure 2.3E indicates the inferred fraction of 

unimputed variants that could induce secondary signals as a function of maf, and Figure 

2.3F shows that the cumulative proportion of such spurious eQTL weighted by observed 

maf proportions approaches 20%. Approximately 14% of the 1.9M unimputed variants are 

located within 200 kb of a gene, and assuming that 0.1% of these actually have an eQTL 

effect, this suggests the potential for ~250 such effects.   

These computations argue that up to 10% of the observed 2300 multisite 

associations reported by Lloyd-Jones et al. (2017) have the potential to be false signals 

driven by inefficient tagging of unimputed variants in CAGE. The proportion could be 

greater if the fraction of functional SNPs is higher, as suggested for example by Tewhey et 

al. (2016), who used a very sensitive MPR assay to implicate 3% of regulatory sites in 3642 

eQTL regions (842/32,373 tests) as capable of modulating transcript abundance. However, 

the proportion of sites with detectable signals capable of explaining > 2% of the variance 

is certainly lower, and 1 in 1000 (0.1%) is a reasonable estimate given that there are of the 
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order of 1300 documented variants in the vicinity of each gene and no more than 30% of 

expressed genes have a secondary eQTL signal.  

Synthetic associations due to even rarer variants may be expected to generate split 

associations as well (Dickson et al. 2010; Zhu et al. 2012). Yang et al. (2015) found that 

~20% of the variance for height can be explained by SNPs with maf ≤ 0.1, in part due to 

larger effect sizes of prevalent very rare SNPs, many of which are likely secondary 

associations. We also found that there is an excess of rare variants (maf ≤ 0.01) influencing 

extremes of gene expression, also with a slightly larger distribution of effect sizes than 

common variants (Zhao et al. 2016). Too many unknown parameters need to be evaluated 

to give a good estimate of the number of false positive secondary associations due to 

synthetic effects of very rare alleles, but it may be another few percent. 

Figure 2.4.  The single causal variant assumption biases fine mapping of causal 
variant locations. Each curve represents the cumulative probability distribution for 
RTC scores for the primary causal variants under a model with a single causal 
variant (purple), or with four causal variants under scenarios 4:0, 3:1, and 2:2 (blue, 
green, red curves, respectively). RTC scores close to one imply equivalence of the 
significance values of the eQTL and causal variant. eQTL, expression quantitative 
trait locus; RTC, Regulatory Trait Concordance. 
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2.3.3 Effect of multisite modeling on accuracy of localization of associations 

A possibly more important measure of estimation bias is the location of the peak 

SNP relative to the causal site. The most straightforward measure of co-localization is the 

Regulatory Trait Concordance (RTC) score (Nica et al. 2010), which is intuitive and easily 

implemented on the scale of the simulations. It is essentially a ranking of the significance 

of the detected eQTL P-value relative to the casual site, RTC = (NSNPs - Rankcausal 

SNP)/NSNPs, where a value of one indicates identity, and zero that the two sites are in the 

same locus but highly unlikely to be capturing the same signal. Figure 4 plots the 

cumulative frequency distribution for RTC scores for the primary eQTL signals relative to 

the largest effect causal variant in each simulation, contrasting the 4:0, 3:1, and 2:2 

scenarios. For comparison, under a single variant model, RTC is always close to one as 

expected [note that, since we do not simulate the GWAS signal as well, these values are 

inflated relative to data where the identity of the actual causal variant is unknown (Nica et 

al. 2010). For 10% of simulations in the presence of multiple regulatory variants, the RTC 

score of the primary SNP drops below 0.9, again with greater tendency toward mis-

estimation of the eQTL location in models with opposing effect directions of the minor 

alleles. This analysis confirms the results in Table 2.2, indicating that up to 15% of all 

detected SNPs are not in high LD (r2 > 0.8) with a simulated variant in the imputed panel 

of SNPs.  

Localization of tertiary and quaternary signals is affected more strongly, but 

intriguingly, considering just associations within r2 > 0.8 of a simulated SNP, the secondary 

signal is slightly more likely to be the first or second ranked SNP for one of the causal 
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variants than is the primary signal. This is true under all three scenarios, which have very 

similar profiles to that shown for the 3:1 scenario in Figure 2.5 (since there is wide variance 

in the number of SNPs in each region, we simplified the analysis by reporting just the SNP 

ranks in this figure, rather than RTC). It should be noted that there is not strong 

concordance between the relative proportion of variance explained by the causal variants 

and whether they are the primary through quaternary association, since LD has a strong 

influence on detection power. Although the vast majority of discovered sites are within 

three or four SNPs of at least one of the four causal variants when they are in high LD with 

one of them, it cannot be concluded that the order of discovery corresponds to the true 

order of effect sizes. 

2.3.4 Joint fitting pairs of known causal variants accurately estimates effect sizes 

Before addressing the accuracy of effect size estimation following stepwise 

conditional analysis, it is worth noting that in the case where the identities of two causal 

Figure 2.5. Signal ranks of simulated causal variants. The number of simulations in 
which a discovered variant was the indicated rank (left to right) for the first through 
fourth discovered variant (front to back). Rank refers to the number of SNPs with a 
smaller p-value than the modeled causal variant, where 1 implies the causal and 
discovered are the same SNP, 2 that one other SNP in the LD region had a smaller p-
value, and so forth. Only cases where the discovered variant was within r2 >0.8 of the 
causal variant are shown. 
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variants are known a priori, joint fitting of the two SNPs in a single regression on transcript 

abundance always results in more accurate effect size estimates given a large sample size.  

The bias in estimation due to linkage disequilibrium between pairs of SNPs is a function 

of the two effect sizes (β1 and β2), the correlation between the SNPs (r), and the ratio of the 

square root of the product of their allele frequencies (Yang et al. 2012):  

                       Ê(β1) - β1 = rβ2 �𝑝𝑝1(1 − 𝑝𝑝1)/[𝑝𝑝2(1 − 𝑝𝑝2)]           

This is maximized for pairs of SNPs at the same frequency, increases with high LD, 

and can be either positive or negative depending on whether the signs of the minor allele 

effects are coupled or not.  Figure 2.6 provides a visual summary of the biases, compared 

with the effect of jointly fitting the two SNPs with a sample size of 2,000, which uniformly 

improves the effect size estimates.   

Three results deserve highlighting. First, for each combination of allele frequencies, 

increasing the allelic effect size results in more severe biases, in the most severe cases over- 

or under-estimating the effects by as much as 50% of the variance explained. Second, the 

first picked SNP (with the larger effect size) has the greater deviation between the estimated 

and true effect size.  This makes intuitive sense as the larger effect will generally be the 

first detected one and absorbs much of the effect of the other SNP, which will typically be 

under-estimated in the conditional analysis, but to a lesser extent.  If the deviation is 

computed simply on the uni-site unconditional values, the opposite result is obtained: the 

deviation is greatest for the smaller effect site.  Third, the mis estimation is greatest for 

lower allele frequencies, which is particularly noteworthy since most eQTL have maf in 

the range of 0.1 to 0.3.  
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Figure 2.6. Simulation of the influence of minor allele frequency and β on allelic effect 
size estimation. Left side, sequential conditional modeling; right side joint multi-site 
modeling, with n= 2,000.  Top row LD r2 = 0.5, Middle row, LD r2 = 0.1, Bottom row 
LD r2 = 0.9. The 25 sectors on each panel show results for combinations of two alleles 
with maf from 0.1 to 0.5 (left to right, top to bottom), within which each circle 
represents the average of 100 replicate simulations for allelic effects explaining from 
2% to 30% of the expression variance (left to right, bottom to top). Circle size and 
color is proportional to the absolute value of the deviation between the estimated and 
actual effect size β in standard deviation units. Transition from white to red 
represents greater deviation for allele 1; larger circles represent greater deviation 
from the simulated β for allele 2.  Empty fields arise because the indicated level of LD 
is not possible for the corresponding allele frequencies. 
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I also considered the power to detect joint effects in the presence of LD.  As the p 

value cutoff for detection becomes more stringent, the bias in estimation becomes more 

severe, since the first picked SNP absorbs the effect of both alleles into the same estimate, 

leaving the statistical power of the other allele, conditioned upon the first one, close to zero.  

With a sample size of 2,000 and intermediate LD, when both alleles are modeled jointly, 

power to detect both effects remains high across the plausible parameter space once the 

effect size exceeds 5% variance explained, and the estimation for the beta value is still 

accurate. Down-sampling suggests that in order to estimate effects within 0.1 standard 

deviation units, for pairs of variants with LD r2 ~ 0.9, each explaining 10% of the variance 

(namely having effect sizes of at least a half a standard deviation unit), a sample size of at 

least 900 is required.  

Consequently, most small sample eQTL studies will fail to resolve linked sites into 

two effects.  These results indicate how the typical assumption that an eQTL effect is due 

to a single variant in a set of credible SNPs in high LD is potentially highly biased.  Similar 

conclusions apply to the situation where two SNPs operate in opposite directions, with the 

additional dilemma that they will not be detected at all and consequently strongly under-

estimate the regulatory variance at a locus. 

2.3.5 Mis-estimation of allelic effects sizes by sequential conditional analysis 

Even though the sequential conditional and multisite models capture essentially 

equivalent proportions of the variance tallied across sites, biases in estimation of individual 

site effects ought to be reduced by the multisite modeling. To quantify this difference, I 
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computed the deviation between the observed and true simulated effect sizes (β in sdu) for 

each discovered peak located within r2 >0.8 of an independent causal variant, and evaluated 

the absolute value of these deviations as a function of the mean LD between the causal 

variant SNP and the other three causal variants in the model. Figure 2.7A plots the 

difference between the models in Figure 2.7C and D, which show the average absolute 

value of the deviation for SNPs with the indicated true effect size and LD, for the sequential 

conditional estimates, and for multivariable models fitting all discovered variants jointly, 

respectively. The figure shows results for the 4:0 scenario where all minor alleles operate 

in the same direction. The scale from dark blue to yellow indicates mis-estimation of effect 

sizes ranging from less than 0.5 sdu to more than three units, where each pixel is averaged 

over the number of simulations with the indicated allele effect sizes and average LD in 

Figure 2.7B. 

Several results are noteworthy. First, for causal variants in low LD, as expected, 

neither model results in appreciable estimate bias, but once the average LD rises above 0.5, 

effects can be misestimated by more than the effect size. For example, for β = 0.5, the 

absolute value of the difference between the observed and true effect is typically between 

1 and 2 sdu, which depending on the allele frequency may correspond to at least 2% of the 

total gene expression variance. Second, for large effect alleles, the mis-estimation is 

appreciable even at intermediate levels of LD, and it is not unusual for estimates to be off 

by as much as 4 sdu under either model. 
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Third, overall, the multisite modeling corrects some of the sequential conditional 

analysis bias. The difference in performance of the two estimation procedures shown in 

Figure 2.7A, where most values are pale green, indicates close similarity of the estimates, 

but bluish-tinged bands imply that the multisite model gives a better approximation to the 

true effect size for LD centered 0.1, 0.4, and 0.8. Mis-estimation without multivariate 

estimation can be twice as severe for very large effect alleles, although these only account 

for a very small fraction of all simulated alleles. 

Figure 2.7. Biases in effect size estimation from conditional and joint analysis. All 
panels refer to 500,000 simulated data points where effect sizes were sampled from a 
uniform distribution to explain from 2% to 10% of the expression at a locus for each 
of 4 SNPs picked at random from 400kb intervals of the CAGE genotype data. Panel 
(A) compares estimates from joint and conditional modeling, as a heatmap of the 
average difference in panels C and D, where yellow indicates that joint modeling 
produces a larger estimated effect size, and blue a lower estimate with three bands of 
negative values indicating greater bias in the conditional estimates. Panel B shows the 
density distribution on the log2 scale of the number of simulations with alleles for each 
pixel with the indicated b (in standard deviation units, sdu) on the x-axis, and average 
LD with the other 3 sites at the locus on the y-axis. Panels C and D show the average 
absolute value of the deviation between the observed and known effect size for sites 
under the multi-site model where all discovered sites are fit jointly (C) or from single 
site estimates after each step of sequential conditional analysis (D), for the 4:0 scenario 
where all minor alleles have effects in the same direction.  
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Similar trends are seen for the 3:1 scenario, where one of the minor alleles operated 

in the opposite direction to the other three, as well as in the 2:2 scenario (Figure 2.6), and 

simulations with just two or three causal variants yield similar conclusions (Figure 2.9 and 

2.10 respectively). The advantage of joint modeling is reduced in the presence of opposing 

allelic effects, but still prevalent in the region with high allelic effect size and low LD; and, 

as noted above, a large proportion of causal sites are not discovered in the 2:2 scenario, so 

are not included in the estimation. 

 

Figure 2.8. Effect size estimation bias under the three scenarios with 4 causal variants. 
Each scenario includes 90,000 simulations and panels from left to right in each row 
show the average absolute value of the difference between the estimated multisite β 
and true β, the absolute value of the difference between the estimated sequential 
conditional β and true β, and the average difference between these values. Top row is 
results for four sites where the minor alleles have the same sign of effect, bottom row 
for two sites each with the same sign, middle row a mixture of three in one direction 
and one in the other. 
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In summary, stepwise conditional eQTL discovery is expected to discover between 

70% and 80% of eQTL within realistic effect size ranges typical of those reported in the 

literature. Once discovered, multi-locus estimation of effect sizes provides slightly more 

Figure 2.9. Effect size estimation bias under the two scenarios with 2 causal variants. 
Each scenario includes 90,000 simulations and panels from left to right in each row 
show the average absolute value of the difference between the estimated multisite β 
and true β, the absolute value of the difference between the estimated sequential 
conditional β and true β, and the average difference between these values. Top row 
is results for two sites where the minor alleles have the same sign of effect, bottom 
row for two sites with the same sign. 

Figure 2.10. Effect size estimation bias under the two scenarios with 3 causal variants. 
Each scenario includes 90,000 simulations and panels from left to right in each row 
show the average absolute value of the difference between the estimated multisite β 
and true β, the absolute value of the difference between the estimated sequential 
conditional β and true β, and the average difference between these values. Top row is 
for three sites, all with the same sign, and bottom row is one site operating in the 
opposite direction to the other two. 
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accurate estimates than the estimates from sequential conditional models, but for large 

effect alleles in high LD the corrections can be substantial. 

2.3.6 Bayesian modeling only slightly improves mapping of multisite associations 

Recently, a number of Bayesian approaches have been introduced that are designed 

to improve fine-mapping of eQTL effects (Giambartolomei et al. 2014, Zhou et al. 2013). 

One of these is eCAVIAR (Hormozdiari et al. 2016), which reports a Colocalization 

Posterior Probability (CLPP) based on the combined likelihood that a variant influences 

both the abundance of a transcript and a phenotype given the LD structure at a locus. The 

authors proposed a CLPP cutoff of 0.001 (for example, a posterior probability of 0.1 for 

the eQTL and 0.01 for a disease association), which corresponds in the simulations (Table 

2.3) to discovery of 80.7% of single variants sampled at random from contiguous blocks 

of 100% SNPs in the CAGE European ancestry cohort genotype data. The computational 

burden of evaluating all possible four site combinations is too large for this model to be 

applied in genome-wide scans. Instead, I performed 4000 simulations of 1835 individuals 

in the presence of two or three regulatory variants, as well as a normally distributed 

phenotype, and evaluated the CLPP distributions. In the case of two causal variants, just 

94.7% generated CLPP > 0.001, and for three causal variants, 84.9%. Figure 2.11 shows 

the cumulative distribution functions of the CLPP scores as a function of the number of 

causal variants, clearly documenting the trend for reduced confidence in joint localization 

as the degree of multisite regulation increases. Similar trends were seen with a more 

conservative CLPP cutoff of 0.01, confirming that interference among tightly linked sites 

reduces the power to detect independent causal variants. The upper red curve also indicates 

that the power to detect co-localization is greatly reduced with sample sizes of just 200 for 
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the eQTL sampling: in fact, just 60% of simulations with a single causal site yielded a 

CLPP > 0.001.  

Since eCAVIAR is not designed to cover intervals encompassing all of the 

regulatory regions of a typical gene and hence is not directly comparable with the stepwise 

conditional regression, I also evaluated the DAP algorithm (Wen et al. 2016). DAP is 

designed to identify independent credible intervals and report candidate SNPs across a 

locus, incorporating priors that weight likely functional or evolutionary evidence. Using 

the adaptive DAP procedure, which does not make any prior assumptions about the number 

of causal variants at a locus, I performed 130 simulations of four variants with effect sizes 

drawn as before to explain between 2 and 10% of the variance, all operating in the same 

Figure 2.11.  Co-localization with eCAVIAR in the presence of multiple regulatory 
sites. Cumulative Distribution Functions summarize CLPP scores for 4000 
simulations each with one, two, or three assigned causal sites within a contiguous 
block of 100 SNPs. Green, purple, and teal curves show progressive degradation of 
evidence as the number of modeled causal variants increases, for simulations with 
1835 subjects. The red curve shows that more than half of the simulations with just 
200 subjects for the eQTL component have CLPP < 0.01, and just one-quarter >0.1, 
compared with one quarter >0.98 with 1835 subjects. CLPP, Combined Likelihood 
Posterior Probabilities; eQTL, expression quantitative trait locus; SNP, single 
nucleotide polymorphism. 
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direction. The average number of detected variants was 3.76, which included 3.52 of the 

four simulated sites (88%) in the candidate list. Due to different statistical thresholds, it is 

difficult to compare this result with the stepwise conditional model, but it appears to be an 

improvement on the 80% reported in Table 2.2. As expected, DAP fails to detect true causal 

variants in the presence of high LD. 

Figure 2.12A shows the dependency of the number of discovered variants on the 

mean LD between the four simulated sites in each simulation, while Figure 2.12B shows 

how many of the true causal variants are detected. Notably, if all four variants are in a 

Figure 2.12. Fine mapping with DAP in the presence of multiple regulatory sites. (A–
C) Results for simulations with four causal sites drawn at random from 200 kb 
upstream and downstream of each gene. (D–E) Results for simulations with three 
causal sites drawn from 100 continuous SNPs, each in LD with r2 > 0.3. (A and D) 
show the estimated number of sites as a function of the mean LD between the sites, 
showing that as LD increases, detection of independent intervals decreases. (B and E) 
show the number of modeled (true) causal sites in the candidate lists, as a function of 
mean LD, which in this case increases for high LD. (C and F) show that the number 
of candidate sites increases with high LD, sometimes with 20 or more candidates 
defining a credible set for each true site. DAP, Deterministic Approximation of 
Posteriors; LD, linkage disequilibrium. 
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single block of high LD, no sites are detected since the posterior probabilities are dispersed 

across all of the variants. Across the full extent of up to 500 kb at most loci there are usually 

multiple LD blocks, so DAP, like stepwise conditional modeling, is quite efficient at 

detecting independent credible intervals. However, it consistently over reports the number 

of candidate variants and Figure 2.12C shows that this number also increases with LD. To 

confirm that DAP is still able to resolve multiple causal variants in the presence of high 

LD, I also ran 400 simulations with the constraint that three sites must be within r2 > 0.3, 

using the DAP-k algorithm with k = 3 (assuming three sites), showing the results in Figure 

2.12D–F. In this case, the number of detected independent associations dropped to 1.95, 

namely 65% of the simulated number. Although 79% of the simulated variants were among 

the candidate lists, these can become very large with a ratio of ten-to-one candidates for 

each true causal variant. Stepwise conditional analyses on the same simulations with a 

cutoff of P ≤ 10-5 discovered on average 1.5 (52%) of the three simulated effects and 

included 2.29 (76%) of the sites within the credible interval. Consequently, DAP does 

appear to improve performance, at the cost of a considerably higher computational burden.  

 

2.4 Discussion 

Studies of the genetic regulation of gene expression are making a meaningful 

contribution to the interpretation of GWAS results, as they provide functional insight into 

the nature of the causal genes.  Efforts to fine map causal variants are, however, 

complicated by the limits of statistical resolution as it is not uncommon for tens, if not 

hundreds, of polymorphisms in a credible set to have similar statistical support (Gaulton et 
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al. 2015; Kichaev and Pasaniuc 2015).  Inclusion of experimental evidence from epigenetic 

marks or signatures of evolutionary conservation into scores such as CADD ((Kircher et 

al. 2014) and CATO (Maurano et al. 2015) may improve resolution, along with methods 

such as RTC (Nica et al. 2010) and PICS (Farh et al. 2015) which prioritize variants based 

on the structure of linkage disequilibrium at a locus.  In general these approaches assume 

parsimony, namely that there is a single variant that is responsible for the major GWAS or 

eQTL signature. Although it has become increasingly clear that many loci harbor multiple 

independent regulatory variants, I argued above that if the parsimony assumption is relaxed 

and it is assumed that multiple sites in strong linkage disequilibrium commonly account 

for a signature that is compounded into a single significant association, then the estimates 

from sequential conditional analysis can be highly biased.   

To summarize, I find that over 5% of primary sites and more than a quarter of all 

causal sites are unlikely to be tagged at all; that in the presence of multi-site regulation at 

least 15% of all mapped sites are not in strong LD with any of the multiple imputed causal 

variants at a locus; and that another 10% of the associations are plausibly due to splitting 

of the signal due to an unimputed site.  Taken together with the confirmation that over a 

third of all eGenes have two or more independent eSNPS, these results suggest that at least 

5% and perhaps as many as a quarter of mapped credible intervals may not include the 

actual causal variant.  

When choosing methods to perform multiple eQTL detection, I first used a 

conditional analysis method. Although multiple methods, like FMQTL, DAP, CAVIAR, 

PAINTOR, FINEMAP (Wen et al., 2015; Wen et al., 2017; Hormozdiari et al., 2014; 

Kichaev et al. 2014; Benner et al., 2016) have been developed to detect multiple QTLs, 
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most of these methods have been used to explored the confidence intervals for the causal 

variants, but  there has not been any estimation of effect size parameters, such as β. 

CAVIAR, which is based on summary statistical association results, uses a greedy method 

to find a subset SNPs with a specific confidence (95% by default) that causal variants are 

included. PAINTOR uses a similar algorithm. CAVIAR enumerates all possible causal 

status, and to reduce the computational burden, a maximum number of causal variants must 

be chosen (default is 2, according to the newest version). FMQTL applies the MCMC 

method to explore the causal status space, and uses a posterior inclusion probability to 

choose the confidential interval containing possible causal variants.  To reduce the 

computational burden, DAP was developed to explore high probability causal sites. 

FINEMAP uses similar a logical framework as CAVIAR, but uses a Shotgun Stochastic 

Search method to only explore the causal status with high probability.   

Theory and simulation both indicate that if two linked sites both influence a trait, 

including gene expression, then multi-site models will uniformly outperform sequential 

uni-site ones with regard to estimation of the true effect size.  When the identities of the 

variants are known, sample sizes of several thousand individuals are sufficient to jointly 

estimate their effects with high accuracy even in the presence of high levels of linkage 

disequilibrium with r2 up to or even exceeding 0.9.  The problem is that the identities of 

the variants are generally not known, and there are no established methods for 

comprehensive screening transcriptome-wide for localization of multi-locus local eQTL 

effects.  The two exhaustive search algorithms, PAINTOR (Kichaev et al. 2014) and 

CAVIARBF (Chen et al. 2015) hold promise for detailed dissection of multi-site models 

at individual loci, along with the Bayesian shotgun stochastic search algorithm, FINEMAP 
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(Benner et al. 2016).  This and the deterministic approximation of posteriors (DAP) 

approach to iterative refinement of multi-SNP models (Wen et al. 2016) should be 

evaluated for their ability to identify and estimate more of the multi-site effects than those 

obtained with the sequential conditional approach.  I also caution that it is likely that single 

site effects may sometimes be artificially split into two or more linked contributions under 

each of these strategies.  Consequently, for this study I adopted the existing standard 

approach of sequential conditional analysis. 

I then estimated the bias in the estimates from the conditional analysis, by fitting 

multi-locus linear models to all of the discovered eSNPs at each locus.  This revealed only 

modest improvements in accuracy for most of the discovered sites, but the modesty is in 

part an artefact of the discovery bias introduced by the sequential conditional process.  The 

simulations assuming 2 to 4 effective sites per locus across a wide and representative range 

of linkage disequilibrium, show that in a sample size of 2,000, in general no more than 

85% of the simulated causal sites are tagged by discovered associations that explain 

typically observed magnitudes of effect and would almost always be detected if a single 

site explained the variance.  Similarly, Lloyd Jones et al. (2016) estimated that in the CAGE 

dataset, on average between 50% and 75% of the heritability due to locally acting 

regulatory polymorphism can be attributed to discovered variants.  Multi-site modeling re-

adjusts the remaining estimates typically by between 0.1 and 0.5 standard deviation units, 

which depending on the allele frequency accounts for between 2% and 5% of the variance 

explained, and only rarely more than 10%.    

However, any variants with effect sizes greater than 1 sdu, and whose average r2 

with the other 3 SNPs is greater than 0.9, will be mis-estimated in both the single site and 
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joint models, typically by 1.5 sdu or more.  The mis-estimation is on average the greatest 

where all of the effects are in the same direction, but is consistently observed also in the 

presence of associations with alternate signs. Since the number of loci with 2, 3, 4 and so 

forth discovered variants approximately halves for each additional variant, it seems 

reasonable to infer that at least 10% of loci actually have four or more eSNPs (two or three 

of which are discovered), and that perhaps one quarter have three or more eSNPs (of which 

one or two are discovered).  I conclude that the sequential conditional estimates of eQTL 

effects are actually highly biased for a considerable proportion of variants.   

Although this does not impact the total amount of variance explained by the 

discovered variants, it is likely to greatly impact fine mapping efforts, particularly where 

two or more effects are collapsed into one site in a credible interval. Thus, while large 

datasets have very good power for detection of complex regulatory contributions for 

individual genes, there are a host of technical and statistical reasons why fine mapping of 

causal variants remains a challenge.  There are two immediate strong implications of these 

results.  One is that even though the majority of identified eSNPs are expected to map to 

credible intervals that include the causal variant (Gusev et al. 2014; Finucane et al. 2015), 

there will also be many instances where incongruence between the statistical interval and 

chromatin or other functional evidence (Huang et al. 2015) is to be expected.  The causal 

variant may simply be poorly mapped due to interference among linked functional sites.   

This effect may also influence the fine mapping of pleiotropic associations (Fortune et al. 

2015).  

The second implication of the high frequency of multi-site regulation is to 

emphasize caution in using univariate statistical support for an eSNP effect as sufficient 
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evidence that an association between a SNP and a trait is evidence for causation.  At a 

minimum it is imperative that the full spectrum of eSNP effects across the locus be 

evaluated to confirm that the site is not simply in LD with higher likelihood eSNPs that are 

not themselves associated with the trait. Experimental validation of individual sites seems 

warranted in situations where establishment of the identity of the causal variant(s) is 

desired. 
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CHAPTER 3 

PolyQTL: Bayesian multiple eQTL detection with control for population structure 

and sample relatedness 

ABSTRACT: Expression quantitative loci (eQTL) are being used widely to annotate and 

interpret GWAS hits. Recent studies have demonstrated that individual gene expression is 

often regulated by multiple independent cis-acting eQTL. Diverse methods, frequentist and 

Bayesian, have already been developed to simultaneously detect and fine-map such 

multiple eQTL, but most of these ignore sample relatedness and potential population 

structure.  This can result in false positives and disrupt the accuracy of fine-mapping. Here 

I introduce PolyQTL software for identifying and estimating eQTL effects.  The package 

incorporates a genetic relatedness matrix to remove the influence of population structure 

and sample relatedness, while utilizing a Bayesian multiple eQTL detection pipeline to 

identify the most plausible candidate causal variants at one or more independent loci 

influencing abundance of a transcript. Most of contents in this chapter have published in 

Bioinformatics, as Zeng and Gibson, 2018 “PolyQTL: Bayesian multiple eQTL detection 

with control for population structure and sample relatedness”. 

3.1 Background 

The idea of performing eQTL detection by genome-wide association combining genomic 

biomarkers and gene expression measurement was first reported in 2005 (Cheung et al., 

2005). Stimulated by the great success of genome-wide association studies (GWAS) 

(Visscher et al., 2017; Albert and Kruglyakk, 2015), more than 100 genome-wide eQTL 
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studies have been performed on a variety of human tissues. Despite its great success in 

identifying regulatory effects, and widespread application in interpretation of GWAS 

results, new evidence reveals that only a limited proportion of GWAS hits seem to fine 

map to credible eQTL intervals. Part of the reason is that most eQTL studies are performed 

with a limited number of samples, usually fewer than 1,000, resulting in constrained 

statistical power. Owing to this low statistical power, only a limited number of genes will 

have significant signals, the winner’s curse will lead to over-estimations of effect sizes, 

and non-causal variants will often have the strongest signal. To overcome these limitations, 

some studies, such as the eQTLGen consortium, have collected study samples from many 

labs around the world, and performed meta-analysis to discover cis- and trans-eQTL 

signals. In this type of analysis, a common procedure is to conduct principal component 

analysis on the genotypes and extract several PCs (usually 4), which are treated as 

covariates when conducting the association study. However, control for population 

structure with PCA may not be sufficient to rule out the influence of potential population 

structure or cryptic relatedness, especially when samples are collected from diverse 

ancestries. A more powerful strategy is to perform mixed linear modeling. 

An implicit assumption of eQTL studies is that each region parsimoniously 

contains a single eQTL, and most of the available packages have been developed with this 

in mind. However, most genes are regulated by numerous regulatory elements, including 

promoter, enhancer and suppressor elements. These can be located several hundred kilo-

bases from the transcription start site, yet still contain polymorphisms that contribute to the 

variance in gene expression.  
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A common approach to finding multiple causal variants is to first calculate marginal 

association statistics for each variant, and then perform stepwise conditional analysis 

including lead associations as covariates in each successive model (Yang et al., 2014).  

Investigators can then focus on the top ranked independent variants for follow-up studies. 

Bayesian method have also been shown to be powerful for performing association analysis 

and fine-mapping, and multiple packages are available, including CAVIAR (Hormozdiari 

et al., 2014), CAVIARBF (Chen et al., 2015), FINEMAP (Benner et al., 2016), FMQTL 

(Wen et al., 2015), and DAP (Wen et al., 2016). However, a major caveat that precludes 

their use on many datasets is that they use only summary statistics (CAVIAR, CAVIARBF, 

FINEMAP), ignoring any population structure and relatedness, or require external ancestry 

information to control for population structure in meta-analysis.  

Here I present PolyQTL, a statistical approach to association analysis and fine 

mapping that addresses the limitations of these existing methods. The novelty of PolyQTL 

lies in that it provides a full powerful Bayesian framework for fine mapping of causal 

variants that can also be used with cohorts that include samples from related individuals.  

3.2 Method 

3.2.1 Remove influence of polygenic background 

Suppose that the expression of a given gene is under partial control of a polygenetic 

background, expressed as y=Xβ+ε, where y is a vector of transcript abundance phenotypes 

with length n, X is a genotype matrix, βis a vector of random genetic effects distributed 
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normally N(0, 𝑉𝑉𝑔𝑔2/M), M is the number of causal variants, and ε is a random factor with a 

normal distribution N(0, 𝑉𝑉𝑒𝑒2). Covariance between two samples can be described as (1/m 

∑ 𝑋𝑋𝑖𝑖𝑖𝑖 ∗ 𝑋𝑋𝑗𝑗𝑗𝑗𝑚𝑚
𝑘𝑘=1 )*  𝑉𝑉𝑔𝑔2  +  𝑉𝑉𝑒𝑒2𝐼𝐼, where i and j index individuals, m is the number of total 

variants, and I is the identity matrix. When there is no population structure or relatedness 

present, the covariance will be almost identical to ( 𝑉𝑉𝑔𝑔2  + 𝑉𝑉𝑒𝑒2 ) 𝐼𝐼 ,  and a standard 

regressionmethod can be applied safely (Joo et al., 2016). However, when there is 

population structure or relatedness among individuals, the non-diagonal elements in the 

covariance matrix largely depart from zero, and estimation will be biased.  Figure 3.1A 

illustrates these properties as an n x n matrix of genetic covariance where the bottom left 

to top right diagonal represents siblings, and the bottom left and top right quadrants imply 

increased similarity among individuals in two sub-populations. 

Figure 3.1 Pipeline of PolyQTL. A illustrates the complexity of simulation of related 
individuals and population structure. Green shading represents the correlation 
between pairs of samples, with twins represented by the top-left to bottom right 
diagonal in the bottom left quadrant, and population structure represented by the 
closer similarity of individuals within the bottom left and top right quadrants.  B 
shows transformation of the phenotype and genotype with the square root of the 
covariance, and (C) a Bayesian method is used to compute a posterior inclusion 
probability (PIP) for each variant, ranking candidate variants. 
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In PolyQTL, I first estimate the covariance parameters 𝑉𝑉𝑔𝑔2 and 𝑉𝑉𝑒𝑒2 with Restricted 

Maximum Likelihood (REML), and to remove the influence of population structure, I then 

transform the phenotype and genotype by dividing by the square root of the phenotype 

covariance, which results in independent multivariate normal distributions (Figure 3.1B) 

(Abney et al., 2002). After this transformation, a Bayesian method extending previous 

methods is used to compute a posterior inclusion probability (PIP) for each variant, leading 

to a ranking of candidate causal variants (Figure 3.1C). PolyQTL can be used to estimate 

multiple regulatory variant effects simultaneously, which is computationally burdensome, 

or run in conditional mode estimating effects at each independent eQTL separately. 

3.2.2 Conditional analysis 

In eQTL analysis, a cis-region may be defined as 100kb, 200kb or even 1Mb around 

the transcription start site (TSS), usually containing hundreds or thousands variants to 

explore. Evaluation of all possible variants in such an interval is constrained by 

computational burden. To overcome this limitation, and assuming that causal variants are 

sparsely distributed, I provide the option of conditional analysis, in which newly detected 

signals are included in the regression model, allowing detection of independent signals at 

each locus. In each step, the covariance matrix is re-estimated, and used to control for the 

population structure and relatedness, by implementing the mixed linear regression 

component of GEMMA (Zhou and Stephens, 2012). 

3.2.3 Parallelization 
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I utilized the C++ OpenMP library to compute causal state posterior probabilities, 

running the computations in parallel on the Georgia Tech Biocluster when multiple CPUs 

are available.  

3.3 Simulation 

3.3.1 Population structure 

Two subpopulations were simulated, with ancestral allele frequencies x for causal 

variants uniformly distributed on [0.1,0.9], and subpopulation allele frequencies were 

sampled from a beta distribution with parameters x(1– Fst)/Fst and (1–x)(1– Fst)/Fst, where 

Fst is the population differentiation index (Yang et al., 2014). To mimic the LD structure 

in real data, 100 variants in the 400kb cis-regions of randomly chosen genes in the 1,843 

1000G non-African individuals (Auton et al., 2015) were used to simulate single eQTL 

explaining 5% of the phenotype variance. A parameter representing the maximum number 

of causal variants was set to be 1 both in DAP and my method for each tested interval. 

To evaluate the performance in the scenario of multiple causal variants at a locus, 

I also conducted similar simulations, except that two causal variants were simulated, with 

effect sizes ranging from 4%~8%. The parameter of the maximum number of causal 

variants in this case was set to be 2. 

3.3.2 Genetic relatedness 

A complex family structure may exist in real data. In this simulation, I adopted a 

simplified family structure design in which I set 400 individuals to be identical twins in 

one of the two sub-populations.  These individuals have identical genotypes, and hence 
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relatedness equal to 1.  Since real-world datasets often include family members with lesser 

degrees of relatedness, I also simulated situations where 20% of the individuals were set 

as sibling pairs, namely with 50% allele sharing across the 5,000 simulated causal variants.   

3.3.3 Large-effect eQTL and polygenic background 

To mimic the LD structure in real data, 100 variants in the 400kb cis-regions of 

randomly chosen genes in the 1,843 1000G non-African individuals (Auton et al., 2015) 

were used to simulate two eQTL, each explaining 4%~8% of the phenotype variance, 

respectively.  600 simulations were performed in each parameter setting, each involving a 

different randomly selected gene.  Some simulations result in both causal variants lying in 

the same LD block, others separate them into smaller blocks between which r2 < 0.3.  In 

the modeling step, the parameter representing the maximum number of causal variants 

assumed per interval was set to be 2 both in DAP and PolyQTL. 

To evaluate the performance in the scenario of single causal variants, I conducted 

simulations in which a single causal variants was simulated, with effect size 5%. The 

parameter of the maximum number of causal variants was set to be 1. 

For simulation of the polygenic background, 5,000 variants were chosen to be 

causal, and the genetic relationship matrix (GRM) was estimated from the genotypes of 

4,500 of these causal variants. The genetic contribution was calculated with the GRM and 

the simulated heritability. 

3.3.4 Control of the False Positive Rate 
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To evaluate how well PolyQTL controls the type 1 error (false positive rate), I 

performed simulations as before, except that causal variants were modeled as having a null 

contribution.  Population structure (Fst =0.05, and 0.1) was simulated as in previous 

simulations in PolyQTL, and the results were compared with DAP (which ignores it in the 

computations). I used a conserved criterion, the Bayesian False Discovery Rate, as 

described in Wen, 2016.  This is calculated as 1- ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the posterior 

inclusion probability (PIP) score for variant i in the explored region containing n variants, 

and ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=1  is a summation of PIP score of variants in one region.  It is thus a 

measurement of the support that there is a causal variant in that region.  

3.4 Results 

3.4.1 PolyQTL improves statistical power to find the true causal variants.  

For all simulations, I compared the performance of PolyQTL and an established 

method, DAP. I explored the influence of three factors: heritability of gene expression (0.3, 

0.6), population structure modeled with Fst (0.1, 0.2) and relatedness (0%, 20% of samples 

related as identical twins), resulting in a grid of eight different scenarios. For each scenario, 

I performed 600 simulations. The PIP score of the modeled causal variant was used as a 

measurement of the statistical power to find true causal variants, and different PIP cutoffs 

(0.1, 0.3, 0.5) were used to evaluate the fine-mapping resolution. The PIP score from DAP 

was compared with results from PolyQTL, where improved statistical power is evident 

where the PIP value of causal variants is greater with one method relative to the other. 
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First, I evaluated the performance of PolyQTL in estimating covariance parameters. 

From Figure 3.2, the estimation of genetic components is consistent with the simulated 

values. Simulation results reveal that PolyQTL has performance than DAP. Taking the PIP 

cutoff at 0.1 as an example, in the case of multiple causal variants (n=2), when there is a 

severe population structure (Fst =0.2), if the phenotype has a relatively low genetic 

contribution (heritability=0.3), 73.5% of the PIP scores computed with PolyQTL were 

larger than the cutoff, compared with 66.8% in DAP (Figure 3.3A).  Increasing the 

polygenic contribution (heritability=0.6), PolyQTL had a slightly greater advantage, 75.0% 

vs 65.5% (Figure 3.3C). Furthermore, in the presence of a high proportion of related 

individuals in the samples (20% of samples related), control for relatedness brought 

additional power to find the causal variants, 75.1% vs 63.8% (Figure 3.3D). Similar 

patterns were observed with more conservative PIP cutoffs (0.3 and 0.5). When there is 

Figure 3.2 The parameter estimation of genetic components 
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only a single causal variant, the advantage of PolyQTL is limited, but performance 

improvement relative to DAP is in the range of 1%~5%. 

In the presence of subtle population structure (Fst=0.1), I found that PolyQTL had 

improved performance under conditions of high heritability (0.6), obtaining an 

improvement of 1.0% to 4.7% (Figure 3.4C). Reduction of the heritability to 0.3 resulted 

in weaker improvement, less than 1% (Figure 3.4A,B).  

Even in this case of the absence of population structure or relatedness in the sample, 

PolyQTL has a better performance than DAP and with the increase of heritability, the 

advantage of PolyQTL is more obvious (Figure 3.5). This is because that PolyQTL applied 

a mixed-linear model to estimate the genetic component, and reduced the estimation noise. 

 

Figure 3.3. Comparison of power to detect causal variants between DAP and 
PolyQTL when there are 2 causal variants affecting the phenotype and Fst=0.2. The 
X axis is PIP ranging from 0 to 1, and Y axis is the cumulative distribution quantile 
(Read for DAP, and Blue for PolyQTL). Three PIP cutoff values (0.1, 0.3, 0.5) were 
chosen to compare the rate of discovery of causal variants. (A), (B) are low heritability 
(0.3), and (C), (D) are high heritability (0.6), and 20% of samples were set to be 
identical twins in (B), (D). 
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Figure 3.4. Comparison of power to detect causal variants between DAP and 
PolyQTL when there are 2 causal variants affecting the phenotype and Fst=0.1. The 
X axis is PIP ranging from 0 to 1, and Y axis is the cumulative distribution quantile 
(Read for DAP, and Blue for PolyQTL). Three PIP cutoff values (0.1, 0.3, 0.5) were 
chosen to compare the rate of discovery of causal variants. (A), (B) are low heritability 
(0.3), and (C), (D) are high heritability (0.6), and 20% of samples were set to be 
identical twins in (B), (D). 
 

Figure 3.5. Comparison of power to detect causal variants between DAP and 
PolyQTL when there are 2 causal variants affecting the phenotype and Fst=0. The X 
axis is PIP ranging from 0 to 1, and Y axis is the cumulative distribution quantile 
(Red for DAP, and Blue for PolyQTL). Three PIP cutoff values (0.1, 0.3, 0.5) were 
chosen to compare the rate of discovery of causal variants. (A), (B), (C) to (D) are the 
results for gradient heritability, ranging from 0.6 to 0.01. 
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3.4.2 PolyQTL has a good control for false positive rate. 

Except for power, another important character of a statistical method is the control 

for false positive rate. To evaluate the performance of the false positive rate control, I 

performed 600 simulations, setting the effect size of causal variant to be 0%, and use a 

measurement, regional PIP, to evaluate the false detection rate. 

Table 3.1 Control of type 1 error in PolyQTL. 

Heritability 
Regional PIP 

cutoff 

Fst 

0.05 0.1 

PolyQTL DAP PolyQTL DAP 

0.3 
0.9 2/600 6/600 4/600 6/600 

0.8 6/600 10/600 10/600 12/600 

0.6 
0.9 0/600 8/600 2/600 20/600 

0.8 2/600 20/600 2/600 36/600 

The table below (Table 3.1) indicates that both PolyQTL and DAP control type 1 

error well, with an advantage for PolyQTL which becomes stronger both as heritability 

increases and the level of population structure increases. For example, if I choose regional 

PIP 0.9 as the cut-off, on average across the four scenarios only 2 out of 600 null causal 

variants generate a false positive signal, compared with 10 out of 600 with DAP, a five-

fold improvement.     

3.5 Conclusion 
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In this study, I developed a Bayesian multiple eQTL method, named as PolyQTL, 

which can be used to find multiple eQTL regulation in structured populations. I performed 

dense simulations to demonstrate that PolyQTL controls population structure and 

relatedness, improving statistical power to include true causal variants in the list of high 

probability eQTL SNPs.  Meanwhile, PolyQTL also has a reduced false positive rate 

compared with the method ignoring the potential population structure of relatedness. 
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CHAPTER 4 

Comprehensive Multiple eQTL Detection and its Application 

in GWAS Interpretation 

ABSTRACT: Expression QTL (eQTL) detection has emerged as an important tool 

for unravelling the relationship between genetic risk factors and disease or clinical 

phenotypes. Most studies focus on analyses predicated on the assumption that only a single 

causal variant explains the association signal in each interval. This greatly simplifies the 

statistical modeling, but is liable to biases in scenarios where multiple linked causal-

variants are responsible. Here, my primary goal was to address the prevalence of secondary 

cis-eQTL signals regulating peripheral blood gene expression locally, utilizing two large 

human cohort studies, each greater than 2,500 samples with accompanying whole genome 

genotypes.  The CAGE dataset is a compendium of Illumina microarray studies, and the 

Framingham Heart Study is a two-generation an Affymetrix dataset. I also describe 

Bayesian co-localization analysis of the extent of sharing of cis-eQTL detected in both 

studies as well as with the BIOS RNA-seq dataset. Stepwise conditional modeling 

demonstrates that multiple eQTL signals are present for ~40% of over 3,500 eGenes in 

both microarray datasets, and that the number of loci with additional signals reduces by 

approximately two-thirds with each conditioning step. Although fewer than 20% of the 

peak signals across platforms finemap to the same credible interval, the co-localization 

analysis finds that as many as 50%~60% of the primary eQTL are actually shared. 

Subsequently, co-localization of eQTL signals with GWAS hits detected 1,349 genes 



 81 

whose expression in peripheral blood is associated with 591 human phenotype traits or 

diseases, including enrichment for genes with regulatory functions such as protein kinase 

activity and DNA binding, and I found that adding non-primary cis-eQTL to conduct co-

localization analysis improves our chance to detect co-localized signals, and contribute to 

10%~40% of significant co-localized results. Just one quarter of these co-localization 

signals replicated, further highlighting the technological and methodological barriers to 

reconciliation of GWAS and eQTL signals. The results are provided as a web-based 

resource for visualization of multi-site regulation of gene expression and is association with 

human complex traits and disease states. 

 

4.1 Background 

Since the first GWAS results were published in 2005 (Klein et al. 2015), thousands 

of genetic regions in human chromosomes have been found to be associated with human 

phenotypes including disease states (Visscher et al. 2017). Since it is now assumed that the 

majority of SNP-trait associations identified by GWAS can be attributed to effects on gene 

expression, precise estimation of the location and effect sizes of regulatory polymorphisms 

has become important for understanding the relationship between genetic and phenotypic 

variation (Maurano et al. 2012; Farh et al. 2015).  The minimal expectation is that eQTL 

analysis can identify the gene within a locus that accounts for a GWAS signal, although it 

has become clear that even this goal is a far from trivial (Chung et al. 2014; Pickrell et al. 

2014).  Many investigators make the stronger assumption that co-localization of regulatory 

variants (eSNPs) and GWAS signals to a tight linkage disequilibrium interval implies the 
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ability to define if not the causal variant, then at least a credible set of SNPs that include 

the causal site(Trynka et al. 2013; Gaulton et al. 2015; Kichaev and Pasaniuc 2015; Liu et 

al. 2015).   

However, high resolution fine mapping eQTL results aligned with GWAS studies 

for diverse phenotypes has as yet provided only a few instances with unambiguous 

evidence that a specific variant affects a human complex trait or diseases through its affect 

on gene expression. Several recent studies have begun to question the presumed identity of 

eQTL and GWAS hits: even though there is a highly significant overlap at the level of the 

locus, it is not so clear that the precise variants are the same. For example, Farh et al (2015) 

estimated that only ~10% of the GWAS hits take function as eQTL despite the vast 

majority of those hits mapping to non-coding DNA.  Similarly, two recent studies of 

autoimmune disease have also argued that only approximately one quarter of examined 

GWAS loci may act as eQTL in the profiled immune cells (Chun et al. 2017; Huang et al. 

2017). Furthermore, work based on GTEx gene expression profiling aiming to integrate 

GWAS and eQTL results found that only a minority of GWAS loci match precisely to 

eQTL, while the diversity of regulatory effects across tissues can complicate interpretation 

(Hormozdiari et al. 2016; Gamazon et al. 2018). These results raise the question of why 

there are so many instances of discordant fine localization: are we simply limited by the 

low statistical power to detect association signals (Udler et al. 2010), is there mis-

estimation of signal strength and location in the case of multiple eQTL per transcript (Zeng 

et al. 2017), or are regulatory effects so cell-type and context-specific that true co-

localization is often missed? In this studies, I will focus on the first two issues by addressing 

the concordance of signals in two large eQTL datasets where the expectation was that, 
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despite technical differences between the platforms, shared cis-eQTL signals at the gene 

level would map to the same credible intervals.  

The detection of eQTL is dependent on the accuracy of two technologies designed 

to estimate transcript abundance (gene expression) and to genotype or impute genetic 

variants. Genotype calling, whether based on gene chip platforms or whole-genome 

sequencing, is thought to be highly accurate and robust (1000 Genome Project Consortium, 

2015), and methods for imputation of missing genotypes are now generally accepted to be 

valid for minor allele frequencies of 0.01 or lower. Constraints on gene expression 

measurement are more problematic, being subject both to the properties of the detection 

method and of the algorithms use to statistically analyze the data. Microarrays, principally 

Illumina- and Affymetrix- based for human studies, have been used widely to measure 

gene expression and have supported the development of expression QTL (eQTL) analyses.  

By far the largest published study is the 12,000 sample Blood eQTL compendium 

assembled by Lude Franke and colleagues (Westra et al. 2013), now approaching 30,000. 

However, the nature of microarray probes provides incomplete coverage of the exons 

within genes, and there are analytical limitations due to dynamic range of quantitative 

detection of expression, with the result that estimates of transcript abundance are strongly 

platform-specific. eQTL artefacts are also known arise due to linkage disequilibrium 

between regulatory variants and  SNPs located with transcript probes.  Nevertheless, well-

powered studies have detected primary eQTL for over half of all expressed genes in blood, 

providing ample opportunity to compare the fine-mapping of these signals (Lloyd-jones et 

al. 2016). 
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A small number of studies have argued for high replicability of eQTL detected on 

the same platform. Genotype-Tissue Expression (GTEx) project discovered eQTLs from 

post-mortem analysis of over 40 tissues, finding extensive sharing of promoter-proximal 

signals for around half the loci. Zhernakova et al (2017) found that 84% of previous cis-

eQTL genes detected with Illumina platform replicated in an RNA-seq data set, the vast 

majority showing the same direction of allelic effect.  Multiple Illumina-based peripheral 

blood studies carried out on different cohorts by different groups have also reported in 

excess of 70% shared signals for eQTL detected at 5% false discovery rates (Zeller et al. 

2010; Lloyd-jones et al. 2016).  However, differences between platforms seem to be much 

larger than expected; for example,  Liang et al found that only between one quarter and one 

third of eQTL association signals in the MRCE Illumina-based study replicated in a 

companion MRCE Affymetrix study (Liang et al. 2013). The differences may in part be 

due to the differential effects of alternative splicing on transcript abundance detected with 

probes that cover one or a few exons (Illumina) or more of the extent of each gene 

(Affymetrix), or to the effects of the normalization and other statistical procedures that are 

used to associate genotypes with transcript abundance estimates. It is also important to 

recognize that what is described as a shared signal based where a genotype associates with 

gene expression in two studies may often simply reflect linkage disequilibrium between 

two independent signals. 

Consequently, methods have been developed to evaluate and fine-map co-

localization signals, whether across gene expression platforms, or between eQTL and 

GWAS signals. Most of the current methods seek to distinguish true co-localization from 

“shared” signal due to linkage disequilibrium. COLOC was one of the first Bayesian 
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methods which evaluates the relative statistical support of each eQTL-GWAS co-

localization hypothesis contingent on LD (Giambartolomei et al. 2014). However, COLOC 

assumes the default model that a single-causal eQTL exists, which implies a strong prior 

that variants taking function as eQTL (or associated with a trait), also affect the trait (or 

expression), potentially leading to false positive co-localization. SMR, or Summary 

Mendelian Randomization, jointly evaluates the strength of eQTL and GWAS signals 

using a procedure known as HEIDI to filter heterogeneity of GWAS and eQTL signals in 

the presence of LD (Zhu et al. 2016). However, SMR is strongly dependent on the accuracy 

of LD inference from a reference panel, and the HEIDI test has been reported to be 

conservative. Another Bayesian method, eCAVIAR, calculates a posterior probability of 

eQTL-GWAS co-localization while allowing for multiple signals in the interval 

(Hormozdiari et al. 2016). The dependencies of all these methods on sample size has not 

been well characterized, and it is found only around 50% agreement between them in 

evaluation of causal variants in a Crohn’s disease study (Marigorta et al. 2017).  

Furthermore, lack of control for population structure or relatedness requires further 

modification when applied to data sets with large sample size.  

In this study, I collected cis-eQTL results from three data sets, and developed a 

statistical pipeline to achieve the following goals: (a) to evaluating the prevalence of 

multiple cis-eQTL regulation in human peripheral blood; (b) to estimate the extent of eQTL 

signal sharing across three expression platform; and (c) to detect co-localization of eQTL 

signals with GWAS hits contingent on the LD at each locus, revealing the possible 

biological regulatory mechanisms linking genetic variants to complex human phenotypes.  

4.2 Materials and Methods 
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4.2.1 Datasets 

I analyzed three different peripheral blood eQTL data sets. The Consortium for the 

Architecture of Gene Expression, CAGE dataset consists of Illumina HT12 v3 microarray-

based gene expression profiles, as well as whole genome genotype information, from five 

research studies: the Brisbane Systems Genetics Study (BSGS, N=926) (Powell et al. 

2012), Atlanta-based Centre for Health Discovery and Well-Being (CHDWB, N=439) 

(Wingo and Gibson 2015) and Emory Cardiology Genebank (N=147, Kim et al. 2014), 

Estonian Genome Centre - University of Tartu (EGCUT) study (N=1065, Schramm et al. 

2014), and the Morocco Lifestyle study (N=188, Idaghdour et al. 2010), for a total of 2,765 

individuals.  IRB approval was obtained for the combination of data into a mega-analysis 

both by the University of Queensland and for each participating site.   

The second dataset from the Framingham Heart Study (FHS) (Huan et al. 2015) 

contains two-generation data generated on Affymetrix genechips. A total of 5,075 

participants with both genotype and gene expression information from the offspring (N = 

2,119, 8th examination) and third-generation (N = 2,956, 2nd examination) cohorts were 

included in this study. Raw genotype and gene expression data were downloaded from 

dbGAP (phs000007.v25.p9) with IRB approval.   

The BIOS RNA-seq summary data was derived from a meta-analysis of results for 

a total of 2,100 participants from four cohorts (Zhernakova et al. 2017): the Cohort on 

Diabetes and Atherosclerosis Maastricht (CODAM, 184 individuals included); LifeLines-

DEEP (LLD, 626 individuals included); the Leiden Longevity Study (LLS, 654 individuals 

included); and the Rotterdam Study (RS, 652 individuals included). I downloaded the 
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summary results of cis-eQTL signals from https://genenetwork.nl/biosqtlbrowser/, so were 

unable to perform the sequential stepwise regression analyses to detect secondary signals. 

4.2.2 Genotype Imputation  

Genotype imputation for the CAGE cohort was performed jointly for the five 

contributing studies to ensure uniformity of assignment of strand identities of SNPs, and is 

described in detail in Lloyd-Jones et al. (2016) and at 

https://github.com/CNSGenomics/impute-pipe. Briefly, the pipeline involved pre-

imputation quality control, and data-consistency checks, imputation to the 1000G reference 

panel with Impute2 (Howie et al. 2012), post-imputation quality control (filtering on 

various data features), and merging of the datasets on common SNPs.  

For the Framingham Heart Study data, there were a total of 6,950 individuals before 

imputation, from which 29 individuals with genotype missing rate ≥5% were removed.  

Subsequently any SNPs with genotype missing rate ≥5% were also removed along with 

SNPs with Hardy-Weinberg test P ≤10-6. Prior to imputation, the genotypes were pre-

phased using shapeit2 (Delaneau et al. 2013) using the “duohmm” parameter to account 

for pedigree information. Each chromosome was divided into 5Mb chunks, incorporating 

the centromere-adjacent region (acen region) into the neighboring chunk, and similarly 

joining any chunk with <200 SNPs into a neighboring chunk. Imputation was performed 

with Impute2 (Howie et al. 2012), using qctool to convert gprobs to gen file format, and 

only SNPs with info value larger than 0.3 were retained for subsequent analyses. The gen 

file was converted to plink file format, and SNPs with multiple information and InDel 

variants were filtered out. The remaining SNPs were further reduced to ~6 million SNPs 

https://genenetwork.nl/biosqtlbrowser/
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with >95% call rate across all 5,075 individuals represented by both genotype and gene 

expression data. 

4.2.3 Probe Re-annotation  

Since SNP imputation for the CAGE cohort was based on hg19/GRCH37, whereas 

the Illumina probe annotation was based on hg18/GRCH36, Ire-annotated the probe 

information by mapping the probe sequences to hg19/GRCH37 with BWA (Li and Durbin 

2009), retaining only the uniquely mapped probes. All probe sequences were secondarily 

mapped to the reference genome with BLAT (Kent 2002), and only probe sequences 

uniquely mapped with both methods were determined to be high confidence and 

subsequently used for eQTL detection.  Of a total of 45,931 probes mapped to the reference 

genome, 7,349 probe sequences mapped to multiple regions or remained unmapped, 

leaving 38,582 probes taken forward for the eQTL analyses.  See Table S1 for summary 

statistics. Since it is well-known (Walter et al. 2007) that SNPs in a probe influence 

microarray hybridization, I also discarded 3,856 Illumina probes containing SNPs with maf 

>1% in the 1000 Genomes European sample (Lappalainen et al. 2013). Similarly, SNPs in 

the Affymetrix probesets were also converted to positions in the hg19 assembly by 

applying liftOver (UCSC Genome Browser) to the GPL5188 annotation file downloaded 

from dbGAP, and annotated to the 1000 Genomes.  Any SNP with a maf >1% in the 1000 

Genome European population and located within a probeset was deemed to be potentially 

unreliable, and was included as a covariate during the eQTL estimation steps. Among the 

280,000 core probesets, 35,000 have such SNPs, and 15,368 transcripts contain at least one 

SNP in a probe. 
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4.2.4 Gene Expression Normalization  

The gene expression normalization strategy for CAGE required aggressive 

procedures to account for study-specific biases, as described in detail in Lloyd-Jones LR 

et al. (2017). It consisted of 5 steps: (1) Variance stabilization using the vsn package (Lin 

et al. 2008); (2) Quantile normalization forcing the intensity distribution across all probes 

to have the same shape for all samples; (3) Batch effect correction via linear regression to 

account for known technical effects, such as RNA extraction date, and physical batch; (4) 

Batch effect correction (via principal component analysis, removing the first 10 PC to 

account for unknown confounding procedural, or population-based influences); and (5) 

Rank normal transformation, namely a final transformation of each probe to a normal 

distribution with mean 0 and variance 1. 

For the FHS data, raw gene expression processed by Affymetrix APT software 

(version 1.12.0) was downloaded from dbGAP, log2 transformed, and surrogate variable 

analysis (SVA) (Leek et al. 2012) was used to remove confounding factors, fitting a total 

of 62 surrogate variables by a linear regression model.  Note that the FHS gene expression 

study (Huan et al. 2015) reported results of a different normalization that included fitting 

blood cell counts, which I chose to avoid since a similar procedure was not applied to the 

CAGE data, and because the blood counts were also removed by the SVA fitting. 

4.2.5 Multi-site eQTL Detection  

For this study, local SNPs were stringently defined as SNPs located within 200 kb 

upstream or downstream of the gene (defined as the first TSS and last TES listed in the 

hg19 annotation) containing the probe. Sequential conditional analyses were performed for 
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each probe, and the genes with significant eSNPs were called eGenes. Since both the 

CAGE and FHS cohorts contain family-based data (the former for a quarter of the samples, 

from the BSGS twin study (Powell et al. 2012); the latter for all participants), a mixed 

linear model was used for eQTL detection in GEMMA (Zhou and Stephens 2012), which 

fits a genetic relatedness matrix (GRM) as a covariate alongside fixed genotype effects.  

The multiTrans tool (Joo et al. 2016), which accounts for family structure, was used to 

specify a study-wise false discovery rate of 5% for genes with multiple independent eSNPs, 

which was empirically observed to be approximately P < 10-5.  After first scanning for 

evidence of at least one local eSNP at this threshold, the residuals after fitting the sentinel 

SNP were used for a sequential conditional scan for an independent secondary eSNP. This 

process was iterated until no more signals were observed below P = 10-5.  SNPs in high LD 

with each previously detected signal (r2≥0.9) were also filtered out of each sequential 

analyses.  The effect sizes of each discovered SNP were recorded as the sequential 

conditional estimates.  Subsequently, for the multi-site effect size estimates, all discovered 

independent peak SNPs were fit with the GRM in one mixed model.  However, since the 

GEMMA software does not report the effect sizes of all fixed effects simultaneously, I fit 

the multi-site models with one SNP specified as the target effect, including the other 

significant SNPs, as well as the GRM, as covariates.  This estimation procedure was 

repeated for each included SNP, recording the effect size of the target SNP as the multi-

site effect, noting that the amount of variance explained by each gene’s model is the same 

for all such models. To control the influence of SNPs located in probes in the FHS data, I 

incorporated in-probe SNPs with an LD r2 cutoff 0.75 as covariates during the multi-site 

modeling step. 
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4.2.6 Fine-mapping with PolyQTL  

Fine-mapping to localize causal variants influencing gene expression was 

performed using PolyQTL (Zeng and Gibson, 2018), a modification of DAP (Wen and 

Pique-Regi, 2016) which I developed to account for population structure and ancestry 

during Bayesian localization in the presence of multiple linked cis-acting variants.  I 

incorporated an option for first performing sequential stepwise regression, using the mixed 

linear regression component of GEMMA (Zhou and Stephens, 2012) as above to isolate 

independent QTL. PolyQTL also offers the option to estimate posterior probabilities for all 

eQTL at a locus simultaneously, but this was not performed here owing to the 

computational burden.  

PolyQTL assumes that there is a single causal variant associated with each 

independent QTL, and evaluates the posterior probability, given the LD structure at the 

locus, that each variant in the interval is causal, such that the sum of the posterior 

probabilities for each independent QTL is between 0 and 1. Genes were modeled as being 

under partial control of local genotypes as well as the polygenetic background, expressed 

as y = Xiβi + G + ε, where y is a vector of transcript abundance phenotypes, G represents 

the influence of the polygenic background, Xi and βi are the genotype and effect of the 

explored variant, and ε is a random environmental factor also normally distributed N(0, 

𝑉𝑉𝑒𝑒2). PolyQTL uses REML to estimate genetic and environmental variances, 𝑉𝑉𝑔𝑔2 and 𝑉𝑉𝑒𝑒2 

given the estimated GRM, K (Yang et al, 2010). To remove the influence of population 

structure, we transform the phenotype (y) and genotype (Xi) with the square root of the 
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covariance of the phenotype, (𝑉𝑉𝑔𝑔2�K + 𝑉𝑉𝑒𝑒2�I), where I is the identity matrix, as this results in 

independent multivariate normal distributions. We then compute a posterior inclusion 

probability (PIP) for each variant, leading to a ranking of candidate causal variants (Zeng 

and Gibson, 2018). 

4.2.7 eQTL sharing across expression platforms  

Despite the expectation that expression platform influences eQTL detection, I 

reasoned that cis-eQTL results can complement one another leading to enhanced detection 

of shared signals by overcoming false negative results from single studies.  To this end, I 

performed joint analysis of the cis-eQTL signals obtained on all three platforms, namely 

Illumina, Affymetrix, and RNA-seq. I devised a new method based on the eCAVIAR 

strategy (Hormozdiari et al. 2016), named DPolyQTL, which explores the signal sharing 

for two phenotypes (either molecular traits or phenotype traits) even where the collected 

samples are family-based or from diverse ethnicities. DPolyQTL calculates a posterior 

probability that the causal variants are shared for two phenotype traits, such as expression 

of a gene measured on two platforms, by multiplying the two posterior probabilities 

together to generate a colocalization posterior probability (CLPP: Hormozdiari et al. 2016). 

Since interpretation of the calculated posterior probability as a shared causal 

variants is confounded by the complex LD structure in human genome, I conducted 

permutations to obtain the null distribution of the posterior probability given that a true 

eQTL is detected in one of the datasets, the discovery dataset, is replicated in the other one, 

the replication dataset. To do so, the phenotype was permuted in the replication dataset, 
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and the posterior probability was re-calculated.  On this basis the co-localization signal was 

determined to be true if the CLPP ≥ 0.001 and permutation P-value ≤0.05.  

4.2.8 eQTL and GWAS co-localization analysis   

Summary results were downloaded for 1,263 phenotype traits or disease from 

eQTLgen Consortium. For each trait or disease, I defined candidate independent candidate 

regions as all variants within 100kb of a peak association signal at P ≤5×10-8. To reduce 

the computational burden, I excluded all variants in the interval with P ≥0.05.  

Co-localization of the eQTL and GWAS signals was then assessed for all genes 

located within 1Mb of the peak GWAS signal.  Similar to the analysis of eQTL sharing 

between expression platforms, I conducted DPolyQTL on the GWAS and eQTL summary 

statistics to identify regulatory influences of gene expression on complex phenotypes or 

disease. 

4.3 Results  
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4.3.1 Multiple eQTL regulation is ubiquitous in human blood 

Our first objective was to estimate the proportion of loci that have multi-site 

regulation in the two large cohort studies, CAGE and FHS. Since both datasets include 

siblings, I used GEMMA (Zhou and Stephens 2012) to perform sequential conditional 

eQTL analysis deploying a genetic relationship matrix based on all measured and imputed 

genotypes to model family structure and population structure.  Applying sequential 

conditional analysis to CAGE, I detected 5,974 eGenes (37.8% of 15,812 tested genes) 

with at least one significant eSNP at P < 10-5. Of these eGenes, 2,187 (36.6%) contain 

probes influenced by more than one eSNP and hence appear to be regulated by multiple 

enhancers. (Note that in the case of genes with multiple probes on the Illumina platform, 

Ionly required that at least one probe was associated with an eQTL, and for multi-SNP 

regulation included only the probe with the largest number of significant independent 

eSNPs).  Similarly, in the FHS data, I detected 5,597 (35.3% of 15,853 tested genes), 2,098 

(37.5%) of which were regulated by multiple eQTLs.  In CAGE, the average variance 

Figure 4.1 Detected independent cis-eQTL in CAGE and FHS cohort. 
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explained by detected eSNPs was 6.1%, the same as in FHS, 6.1%, and in both cases these 

estimates account for more than half of the previously estimated cis heritability (Lloyd-

Jones et al, 2017). For those genes with multiple eQTL regulation in CAGE, which have a 

mean explained variance of 7.2%, the newly detected secondary eSNPs typically explained 

20% more variance than the peak SNP alone, namely ~1.2% of the phenotypic variance 

(6.0% vs 7.2%), also in line with estimates from Lloyd-Jones et al. (2017). For eGenes 

with multiple eQTLs in FHS, the mean explained variance is 6.3%, and the secondary 

signals increase the explained variance from 6.5% to 8.3%, an ~28% increase.  

 

Table 4.1. Cross-platform comparison of eSNP detection after adjustment for 
probe SNPs 

             

                                           With SNPs-in-Probes             Without SNPs-in-Probes 

No.         CAGE  FHS    Both_any       CAGE FHS  Both_any    Both_highLD# 

             

≤ 1 3175 3874 1330 3787 3499 1186   474 

≤ 2 5571 5989 1685 5246 4699 1442   616 (34) 

≤ 3 6113 6929 1777 5733 5182 1518   669 (7) 

≤ 4 6280 7327 1805 5881 5407 1539   686 (1) 

> 0 6383 7713 1812 5974 5597 1565   689 (0) 

             

# Cumulative number of eGenes with at least 1 eSNP localized within r2 > 0.8 in both CAGE and FHS, 

number in brackets indicates cases with 2, 3, or 4 eSNPs all in high LD between datasets. 

      Figure 4.1 shows frequency histograms for the number of detected eQTL per 

gene after each sequential step in both studies: the number of loci with additional 
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independent sites reduces by approximately two thirds with each additional SNP in both 

CAGE and FHS, up to half a dozen variants, and a few loci have 10 sites. This reduction 

likely reflects the true prevalence of multi-site effects as well as reduced power to detect 

SNPs that explain less of the variance than the primary signal.  A detailed example of multi-

site association is shown for the HBZ locus in CAGE (Figure A4.1), where from left to 

right, and top to bottom are the results of stepwise conditional analysis yielding 9 

independent eQTL signals. The total explained variance is 39.8%, one third more than the 

28.4% explained by the highest single-site signal.  An example from the FHS is ABHD2 

where I detect 5 independent eQTLs explaining 9.3% of the variance, compared with 5.6% 

for the peak eSNP (although the Affymetrix probeset contains a common variant, 

rs2283435, that is in linkage equilibrium with each of the five regulatory signals). All of 

the multiple eQTL results can be downloaded both in tabulated format and as locuszoom 

plots from Prof. Gibson’s lab server at given URL. 

      I also computed the difference between the estimates fitting all discovered 

variants jointly and the conditional single-site estimates following eSNP sequential 

conditional discovery.  The average change in estimated beta was 0.04 sdu, plus or minus 

0.06 due to a long tail of large deviations.   

To compare directly the degree of signal replication from cohorts based on a same 

platform, I also evaluated the level of replication between the contributing studies in 

CAGE.  For examples, contrasting eQTL detection for chromosome 1 genes between 

the CHDWB and EGCUT cohorts at FDR<=0.01, I detected 665 significant independent 

eQTL in EGCUT, and 364 in CHDWB, 315 of which (86.5% of the peak eSNPs) located 
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in the same credible interval (genotype r2>=0.8).  This result further validates the mega-

analysis strategy of combining the different CAGE study cohorts into one large study. 

4.3.2 A Bayesian fine-mapping approach increases the power to detect cis-eQTL sharing 

4.3.2.1 The r2 criterion results in poor overlap of cis-eQTL between CAGE and FHS. 

      Direct comparison of primary results from the CAGE and FHS analyses 

suggests a disappointingly low level of replication. Primary peaks in CAGE were detected 

for 53.0% of the eGenes represented in the FHS, and reciprocally 56.5% of the FHS eGenes 

had primary signals in CAGE, very similar to the proportions reported for eSNPs at P < 

10-8 across four peripheral blood studies (Zeller et al. 2010) that also had a variety of 

technical differences.  However, the overall overlap between CAGE and FHS for eSNPs 

within credible intervals defined by LD r2>0.8 is just 29.1%. Furthermore, only 41.5% of 

the primary signals in FHS are in LD (r2>0.8) with the primary eSNP in CAGE, suggesting 

that different largest-effect regulatory variants are tagged in the two datasets. This overall 

eSNP replication rate was slightly higher (47.2%) when mapping to 1,314 probesets which 

map directly to the same exon and have an eQTL signal on both platforms.   

     The replication rate of secondary, tertiary, and quaternary signals in FHS 

irrespective of LD was just 19.0%, 11.3%, and 11.0%, indicating successive decay, likely 

due to reduced power for weaker signals.  The reasons for the discrepancies between the 

studies may have to do with collapsing of probe-level data down to gene-level signals 

losing information on splice isoforms, the different normalization strategies (which alone 

can double discovery rates (Qin et al. 2012)), and cross-study biological heterogeneity. 

Comparison of the percent variance explained by discovered SNPs on the two platforms in 
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Figure A4.3 shows that effect sizes for many genes are disproportionately tagged by eQTL 

in the two studies, implying platform effects.   Among 139 genes with more than 20% of 

the variance explained by cis-eSNPs, the replication rates are 64.7% for the primary signal, 

34.8% for the secondary, 14.4% for the tertiary, and 8.5% for the quaternary. The 

subsequent panels confirm that all of these replication rates are proportional to the percent 

variance explained overall, confirming that statistical power is a major source of low 

replication. 
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For the HT12 v3 Illumina probes, 10% of the uniquely mapping probes contain at 

Figure 4.2 An example of shared cis-eQTL signals in CAGE and FHS. I detected 
two cis-eQTL for ORMDL3 in both CAGE and FHS. For CAGE, two independent 
rs12936231, and rs17608925 were found to be associated with expression abundance. 
In FHS, rs17608925 was detected to be independent peak signal, while another 
independent peak variant, rs8067378 was detected. The genotype r2 is 1 between 
rs12936231 and rs8067378. 

Figure 4.3 An example of rank-changed cis-eQTL signals in CAGE and FHS. I 
detected two cis-eQTL for ORMDL3 in both CAGE and FHS. For CAGE, two 
independent rs2158799, and rs498475 were found to be associated with expression 
abundance (Panel A). In FHS, I detected a primary signal, rs849333, which locates in 
high LD with the secondary signal rs498475 in CAGE (genotype r2=0.90), while 
another independent peak variant, rs563289 was also detected (Panel B). 
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least one SNP with MAF>1% in 1000 genome European population.  The prevalence of 

eQTL was twice as great for these probes (59% versus 30% of 23,681 “clean” probes), so 

Ijust removed the Illumina probes containing SNPs in order to control the false discovery 

rate. However, since most of the Affymetrix probesets contain at least one SNP, this was 

not practical for the FHS dataset and instead I employed a conditional analysis strategy 

incorporating SNPs in probes as covariates.  For ~15,000 detected eSNPs, one third of the 

association signals were abrogated by conditioning on the SNPs in probes, and the number 

of eGenes correspondingly reduced by 25%.  Table 1 contrasts the eQTL results from both 

platforms before and after controlling for the SNP-in-probe effects.  The first three data 

columns show the cumulative number of eGenes with at least 1, 2, 3, 4, or more detected 

eSNPs before SNP-in-probe removal, and the next three show the cumulative numbers 

after.  The proportion of overlapping signals is not greatly affected.  The last column shows 

that the number of eGenes where at least one detected signal is likely capturing the same 

variant is around 44% (689/1565), and that the number where all of the multiply detected 

signals are within r2 > 0.8 is very small.  There are 214 genes with at least two signals in 

high LD with one another. 

4.3.2.2 DPolyQTL increases the proportion of cis-eQTL sharing across different 

expression platforms 

Next, I used DPolyQTL to enhance the power to detect shared cis-eQTL credible 

intervals in the CAGE, FHS, and BIOS datasets. I extracted each locus by considering 

variants locating in high LD with the reported peak variants in each eQTL study, and 

calculated a posterior probability to demonstrate the the likelihood that each variant 

influences the trait controlling for LD at the locus. Since the available BIOS dataset only 
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consists of summary results, it was used solely as a discovery dataset. Where genes in 

CAGE and FHS contained multiple probes or probe-sets, replication is reported where at 

least one probe in each dataset contains a signal. 

Table 4.2 Sharing of cis-eQTL among expression platforms. 

Platform Discovery 

Replicate 

CAGE FHS 

Illumina CAGE - 62.60% 

Affymetrix FHS 53.30% - 

RNA-seq BIOS 44.70% 54.50% 

Tables 4.2 reports the cis-eQTL sharing among CAGE, FHS, and BIOS datasets. 

Shared signals are indicated for 62.6% of the detected cis-eQTL of CAGE in FHS, and for 

53.3% of the FHS eGenes in CAGE. For the detected cis-eQTL in BIOS, I found a similar 

replication rate, namely 53.6%, and 54.7%. Considering that BIOS only reports the eGenes 

and that for some genes no expression information available in CAGE and FHS, the 

replication rate considering all genes is 44.7% in CAGE, and 54.5% in FHS.  Since 

DPolyQTL is statistically flexible, it allows multiple eQTL signals to be explored 

simultaneously. On this basis, 43%~49% of primary eSPNs showed evidence for 

replication, but the rate was considerably lower, only ~10%, for secondary eSNPs. 

Taken together these results indicate greater than 50% cross-platform replication of 

eGenes across platforms, with evidence that the majority of primary eQTL detected on one 
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platform are also eQTL on another.  However, the primary regulatory variant maps to a 

different credible interval in more than a third of the cases, and replication of secondary 

variants is strongly reduced by low statistical power in the presence of multisite regulation. 

4.3.3 Biological Annotation of detected multiple eQTLs 

Since chromatin marks are often used to enhance fine-mapping, on the basis that 

peak eSNPs are enriched in the vicinity of ENCODE features such as DNAse 

hypersensitivity, methylation, and histone modification, I asked whether there is a 

difference in functional attributes of primary and secondary eQTL.  The CADD and 

deltaSVM scores are two commonly used annotation tools that summarize multiple types 

of functional evidence. For the CADD score, to determine the significance of enrichment, 

I created a list of background SNPs with similar allele frequency in the neighboring regions 

and compared the annotation of eQTLs with that of background SNPs. The distribution of 

CADD scores was significantly higher for the reported-peak variants, suggesting elevated 

Figure 4.4 Biological annotation for the detected cis-eQTL signals. 

C D 
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likelihood that they are pathogenic and typically selected against (figure 4.2A for CAGE, 

2B for FHS).  However, although significant, the magnitude of the effect is small relative 

to the variance in CADD scores and the positive predictive value for each SNP is low.  

Similarly, potential causal variants defined with the fine-mapping step have slightly 

elevated probability of locating to regulatory enhancers in human genome defined by the 

deltaSVM score.  Setting any variant with a posterior probability ≥0.8 as a causal variant, 

I found that there is a significant positive relation between the reported beta value and 

deltaSVM (P ≤10-6 in both CAGE and FHS, figure 4.2C, 4.2D), though again the overall 

correlation is weak. 

4.3.4 Interpretation of GWAS results 

4.3.4.1 eGenes associated with phenotypes are enriched for certain molecular functions  

In this section, I aimed to identify genes whose expression also associates with 

phenotypic traits reported in dbGaP. I combined the full summary statistics of 1,263 

GWAS results with eQTL signals from CAGE, FHS, BIOS, maximizing statistical power 

Figure 4.5. Replication of eQTL-GWAS co-localization with different expression 
platform 
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by performing co-localization analysis based on cis-eQTL detected on all three platforms. 

This co-localization analysis resulted in 1,349 genes associated with 591 human complex 

phenotype traits or disease (49. 8% of explored).  The highest single platform discovery 

rate was for the CAGE data on the Illumina platform, and the replication rate across 

platforms ranged from 24% to 30% (Figure 4.5).  

Enrichment analysis with the PANTHER database (Mi et al, 2016) revealed that 

genes annotated to protein kinase activity or to DNA binding activity were over-

represented. PANTHER Pathway analysis further showed that genes involved in  

Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade (4.2 

fold enrichment, 8.5×10-4), VEGF signaling pathway (3.2 fold enrichment, 4.4×10-4), 

Interleukin signaling pathway (3.1 enrichment, 8.6×10-5), Ras Pathway (2.7 fold 

enrichment, 2.4×10-3), PDGF signaling pathway (2.3 fold enrichment, 6.0×10-4), 

Gonadotropin-releasing hormone receptor pathway (2.0 fold enrichment, 7.2×10-4), and 

Inflammation mediated by chemokine and cytokine signaling pathway (1.92 fold 

enrichment, 1.1×10-3), were enriched. Furthermore, these 1,349 detected genes were 

enriched for association with several disease, 327 causing Mendelian diseases (1.4 fold 

enrichment to background, p=8.6×10-7), providing further evidence that genes defined by 

highly penetrant mutations also harbor quantitative regulatory variants that influence 

disease.  

4.3.4.2 Co-localization detects known and novel eGenes affecting phenotype and disease  

The co-localization results highlight a number of genes that have been reported to 

affect phenotypic traits through gene expression. For example, I found 5 genes associated 
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with coronary artery disease, PSRC1, IL6R, LIPA, SWAP70, and VAMP8 (Figure 4A) in 

the CAGE dataset. Four of these genes have previously been reported to be associated with 

coronary artery disease. PSRC1 encodes a cysteine protease which has been associated 

with HDL and LDL levels (Kathiresan et al, 2008), and its expression in mouse liver is 

significantly associated with plasma LDL cholesterol level (Schadt et al, 2008). LIPA 

encodes lipase A, which catalyzes the hydrolysis of cholesteryl esters and triglycerides, 

and in previous studies, it is associated with CAD, where the lead CAD risk allele correlates 

with increased expression of LIPA mRNA in monocytes (Zeller et al, 2010) and liver 

(Coronary Artery Disease Genetics Consortium, 2011). SWAP70 encodes a signaling 

molecule involved in the regulation of filamentous-actin networks in cell migration and 

adhesion. An intronic SNP has been reported to be a cis-eQTL in naïve and challenged 

monocytes (Nikpay et al, 2015). Notably, rheumatoid arthritis has been associated with 

cardiovascular disease prevalence, yet there is little genetic support for this relationship. I 

found that expression of the IL6R gene is associated with both rheumatoid arthritis and 

coronary artery disease. I also found that co-localization signals from different expression 

platforms complement one another, and can capture more biological insights. Thus, with 

FHS gene expression, there are 11 genes also associated with CAD: ADAMTS7, CARF, 

CDKN2A, GGCX, HECTD4, IL6R, LIPA, PCSK9, PSRC1, USP39, VAMP8, including 

four of the CAGE genes (IL6R, LIPA, VAMP8, and PSRC1). Of the remaining genes, 

manual review of the literature finds that 5/7 have been reported to be associated with 

CAD.  

Our co-localization analysis also identified genes relevant to multiple linked traits 

or diseases. In previous studies, IKZF3 was reported to affect the autoimmune diseases 
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Crohn’s disease, ulcerative colitis and rheumatoid arthritis. These findings are replicated 

in my data, and enhanced further by associations with the additional autoimmune diseases, 

type 1 diabetes, and primary biliary cirrhosis as well as with asthma (Figure 4.4B). 

Expression of IKZF3 is also associated with neutrophil cell and white blood cell counts.  

Most of these co-localization signals are replicated in FHS or BIOS data. 

 

4.3.4.3 Gene expression regulated by non-primary cis-eQTL mediates genetic effect to 

phenotype and disease 

In previous co-localization studies, it is reported that only limited proportion of 

GWAS variants take function as eQTL (Farh et al. 2013; Chun et al. 2017). However, those 

studies mainly focus on primary cis-eQTL. I expect that co-localization analysis based on 

additional eQTL should increase our chance to find the co-localized eQTL-GWAS signal. 

For each expression-phenotype pair with at least significant co-localized signal, I first find 

variants showing sign of colocation in the credible interval of primary cis-eQTL, and if 

Figure 4.6 Two examples of eQTL-GWAS co-localization. One example is that 
IKZF3 is previous reported to be associated with diverse auto-immune diseases. In 
my analysis, I not only replicated previous findings, and also found the association 
with other auto-immune diseases and some immune-associated phenotype traits. 
Another is for the detected genes whose expressions were demonstrated to affect 
CAD.  
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variants are found, I assert that the co-localization results from primary cis-eQTL. If none 

variant is found, then switch to secondary cis-eQTL, tertiary signals, so on and so forth 

until no cis-eQTL remains. 

For 2,138 co-localized signals in CAGE, I detected 82.0% of the co-localized 

signals are from primary eQTL, and 11.0% from secondary signals, 3.9% from tertiary 

signals. In FHS, there are 958 co-localized eQTL-GWAS, 69.5% are from primary signals, 

and 15.1% from secondary signals, and 11.9% from tertiary signals. For instance, like 

shown in Figure 4.3, I detected two independent cis-eQTL, rs2158799 and rs498475 for 

JAZF1 in CAGE, and the secondary cis-eQTL, rs498475 locates in high LD (r2=0.92) with 

a type 2 diabetes GWAS hit, rs849135, and co-localization analysis does find a significant 

signals. The co-localization results indicate a great contribution of non-primary cis-eQTL. 

4.3.5 eQTLHub: A R application based on shiny package to visualize the multiple cis-

eQTL results, and the co-localization signals of eQTL-GWAS. 

To present the multiple eQTL results, I developed eQTLHub, a website based on 

the shiny package for visual exploration of eQTL signals in human blood tissue. There are 

four components, eQTL signal, candidate list for causal variants, eQTL sharing, and 

GWAS-eQTL Co-localization. 

Figure 4.7 Interface of eQTLHub providing access to multiple eQTL results and 

eQTL-GWAS co-localization. 
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4.4 Discussion 

In summary, I find extensive evidence for secondary and tertiary cis-eQTL 

associations explaining gene expression variation in peripheral blood. At least a third of all 

highly expressed genes display such effects, consistent with recent evidence from very 

large-scale GWAS that at least one quarter of loci harbor multiple associations within a 

Mb interval. However, the fine mapping of eQTL across platforms is considerably lower 

than expected and accordingly replication of co-localization with visible phenotypes and 

disease risk is also modest, despite the large sample size of my two cohorts. Since 

secondary and tertiary effect sizes are generally smaller than primary ones, statistical power 

remains a major detriment to the joint fine mapping of regulatory variants to GWAS 

credible intervals. 

Resolution of GWAS associations to single causal variants is a major current 

objective of human genetics.  Four general strategies are being deployed: very large GWAS 

and eQTL studies, including cross-population analyses, intended to narrow peaks; 

sophisticated co-localization approaches; filtering on functional attributes associated with 

SNPs; and high-throughput experimental validation.  The first objective is to define 

credible intervals that are highly likely to contain the causal variant or variants within a 

linkage disequilibrium block.  However, several recent studies have reported that as few as 

one third of disease associations map to the same credible interval as the lead eQTL, even 

in cases such an autoimmune Crohn’s disease where the eQTL mapping is carried out in 

the presumably relevant peripheral blood tissue consisting of immune cells (Huang et al. 

2017; Chun et al. 2017). 
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Two classes of explanation may account for this discrepancy between expectation 

and observation: biological and technical.  The obvious biological explanation is that the 

causal variant detected by GWAS for some phenotypic trait does not directly regulate gene 

expression.  It may for example influence chromatin structure, preparing the locus for 

induction under conditions not sampled in the transcriptomic study (Alasoo et al. 2018), 

and indeed there is some evidence for greater overlap of methylation QTL than expression 

QTL with Crohn’s disease associations (Huang et al. 2017).  A corollary would be that the 

influence on gene expression would only be seen if the appropriate tissue (or the most 

important cell type within a mixture of cell types, such as peripheral blood) is sampled, or 

under more appropriate conditions of stimulation either ex vivo or in vivo (such as inflamed 

tissue-resident immune cells).  The prevalence of response-eQTL provides good evidence 

in support of this claim (Fairfax et al. 2014). 

Technical explanations relate to statistical methodology and power, as well as 

platform effects.  It is remarkable in my study that both the Illumina and Affymetrix 

datasets yielded very similar proportions of eGenes, as well as distributions of secondary 

and tertiary signals.  Yet the overlap between these signals was only approximately one 

half for the primary eSNPs, and less than 20% for conditional associations.  

Implementation of DPolyQTL provided evidence that statistical power is a major source 

of failure to replicate, both by enhancing the detection of shared primary signals between 

the datasets and showing that detection rates drop as effect sizes of secondary, tertiary and 

quaternary associations reduce.  Nevertheless, it is also clear that platform effects result in 

major differences in blood cis-eQTL detection.  These are only partially ameliorated by 
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focusing on probes that capture the same exon within a transcript, implying that detection 

of alternate splicing and isoform usage is just one aspect of the platform effect. 

Irrespective of the causes of differential localization of primary eSNPs, an 

important practical implication of my findings is cautioning against the common use of 

summary eQTL statistics as evidence that a GWAS hit acts as an eQTL.  Given the 

extensive linkage disequilibrium typically observed over long stretches of regulatory DNA, 

it is not uncommon for the GWAS variant to be included in a list of eQTL highly significant 

summary statistics listed on browsers such as the Blood eQTL browser.  Visual inspection 

of the profile of association across the locus will often be sufficient to illustrate that the 

eQTL and GWAS peaks are not actually the same.  Formal tests of the hypothesis of 

equivalence are provided by software tools such as COLOC, but these are designed for 

supervised analysis locus-by-locus and may be biased by the assumption that a single 

causal variant is responsible for each eQTL effect.  The HEIDI test in SMR attempts to 

adjust the inference that an eQTL mediates the phenotypic association for local LD, 

providing genome-wide estimation of cases of heterogeneity of effects.  Alternatively, the 

Bayesian eCaviar approach, implemented here in DPolyQTL to adjust for population 

structure and familial relatedness, more directly adjusts for LD in the derivation of 

posterior probabilities of joint association.  I recommend using a combination of these 

approaches to explore the likelihood that eQTL explain GWAS effects, and to this end have 

developed a web browser which for the first time allows users to explore the profile of 

primary and secondary signals in peripheral blood. 

Contrary to the expectation that mega-analysis of large eQTL studies would 

improve the resolution of eQTL signals, I instead find levels of complexity that complicate 
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the ability to reduce genetic associations to single causal variants.  Most clearly, it is 

apparent that multiple regulatory variants affect the expression of the majority of 

transcripts expressed in peripheral blood.  Similarly, meta-analysis of GWAS including 

hundreds of thousands of individuals increasingly find secondary associations at individual 

loci (Wood et al. 2014; GIANT Consortium, 2018). I have previously shown by simulation 

that the presence of multiple variants in LD blocks typical of human genes biases both the 

localization of eSNPs and the estimation of their effect sizes, with as many as 20% of 

effects potentially located outside detected credible intervals (Zeng et al. 2017).  While 

functional data collected by the ENCODE project and measures of evolutionary 

conservation are often used to filter or adjust eQTL estimation, my analyses only confirm 

a modest enrichment of such marks at eQTL peaks.  Elsewhere it is shown that this is in 

large part due to the high correlation of functional scores within credible intervals (Liu et 

al. 2018).  Consequently, functional assays will continue to provide the gold standard for 

demonstration that specific SNPs associate with trait function through gene regulation. 
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CHAPTER 5  

Trans-eQTL detection in the FHS cohort and cis-trans eQTL mediation 

analysis 

ABSTRACT: Although cis-eQTL have been demonstrated to be powerful in interpretation 

of GWAS results, it can only provide local regulation information, while trans-eQTL can 

be used to find downstream genes and perform gene network analysis. However, trans-

eQTL detection has been blocked by the fact that trans-eQTL have smaller effect size, and 

also the huge burden of multiple test correction. In this analysis, I applied a statistical 

strategy based on mixed linear model to conduct trans-eQT detection. Results reveal that 

the method has a good control for false positive, and the detected trans-eQTL have a 

consistent estimation with other results based on large sample size studies. Comparisons 

of eQTL signals among expression platform found that cis-eQTL detection is more easily 

affected by platform-specific factors than trans-eQTL.  Co-localization analysis reveals 

that most trans-eQTL take function as cis-factor on the local genes to affect downstream 

gene expression.  

 

5.1 Background 

The advance of high-resolution genotyping technology has led to a wave of 

genome-wide association studies (GWAS) of hundreds of phenotypes relevant to human 

health and disease. Yet, the vast majority of detected hits from GWAS significantly 
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associated with clinical traits and disease states locate in non-coding regions, and are 

assumed to function as regulatory factors instead of changing protein function. Thus, to 

improve understanding of biological mechanisms, exploring the relationship between 

genetic variants and RNA expression abundance is a critical step toward ultimate 

improvements in diagnosis, prevention, and treatment of disease. This endeavor begins 

with analysis of variation in messenger RNA (mRNA) expression levels associated with 

genotypic variation to identify expression quantitative trait loci (eQTLs) across the human 

genome.  

Statistical methods in eQTL detection are similar to those used in GWAS, and the 

statistical strategies developed for GWAS can be directly applied for eQTL studies. 

However, eQTL detection involves thousands of genes and hundreds of thousands variants, 

or even millions of variants after imputation. For cis-eQTL, analysis is simplified because 

only several hundred or thousand variants are used and effect sizes tend to be large, while 

for trans-eQTL, there is not only a greater computational burden, but control for multiple 

test correction reduces statistical power. For these reasons, currently only cis-eQTL are 

widely explored, and trans-eQTL detection has lagged behind. A consortium of researchers 

is needed to collect a large sample size to gain statistical power for trans-eQTL analysis.  

In contrast to cis-eQTLs, analysis of trans-eQTLs is vastly more computationally 

challenging and reported trans-eQTLs have proven to be less replicable across studies. 

Therefore, many eQTL studies focus only on cis-eQTLs or a subset of variants associated 

with phenotypic traits or important biological functions. However, according to results 

from studies estimating gene expression heritability (Lloyd Jones et al, 2017), at least half 

of expression heritability can be accounted for by trans-eQTL factors. When SNPs at a 
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trans-eQTL locus affect the expression of multiple genes, the region is usually referred to 

as a trans-eQTL hotspot. Cis-eQTLs typically reside close to transcription start sites 

(TSSs), suggesting that they directly impact gene expression. The mechanisms by which 

trans-eQTLs alter transcription of their linked trans-eGenes are largely unknown and likely 

often reflect indirect or cryptic regulation. For example, it has been proposed that 

expression of trans-eGenes could be mediated by transcription factors encoded by genes 

located close to the corresponding trans-eQTLs. This phenomenon suggests that cis-eQTLs 

might influence the expression of master regulators for a large number of trans-eGenes, in 

the manner of biological networks.  

In this chapter, I report results of an Affymetrix microarray-based genome-wide 

eQTL study, considering both cis and trans elements, in whole blood samples from over 

5000 participants in the Framingham Heart Study (FHS), a multi-generational community-

based prospective study. In this analysis, I aimed to ascertain to what extent SNPs affect 

genes in cis and in trans and to determine whether eQTL mapping in peripheral blood could 

identify downstream pathways that might be drivers of disease processes. 

5.2 Material and methods 

5.2.1 Study cohort 

The Framingham Heart Study (FHS) is a cohort study initiated in 1948, with the 

aim of identifying risk factors for heart disease. Starting in 1971, the offspring and 

offspring spouses (N = 5,124) of the original FHS cohort participants were recruited and 

they have been examined approximately every 4 years since. From 2002 to 2005, the adult 

children (third generation cohort, N = 4,095) of the offspring cohort participants were 
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recruited and are also being examined in an ongoing manner. For this study, a total of 5,075 

participants who provided both genotype and gene expression information from the 

offspring (N = 2,119) and third-generation (N = 2,956) cohorts were included. Whole blood 

samples were collected at the eighth examination of the offspring cohort and the second 

examination of the third generation cohort. Fasting peripheral whole blood samples (2.5 

ml) were stored in PAXgeneTM tubes (PreAnalytiX, Hombrechtikon, Switzerland) and the 

Affymetrix Human ExonArray ST 1.0 (Affymetrix, Inc., Santa Clara, CA) was utilized to 

measure mRNA expression levels. Genotyping was performed with the Affymetrix 500K 

mapping array and the Affymetrix 50K gene-focused MIP array. Genotype imputation was 

conducted using impute2 against 1000 Genomes Phase 3 reference. 

5.2.2 Trans-eQTL Detection Pipeline for FHS 

Imputation results were converted to bgen format with genotype dosage as 

independent variables. A genetic relatedness matrix was constructed using all of the 

imputed genotypes using GEMMA (Zhou et al., 2012). For the gene expression data, the 

first 20 non-genetic PCs of gene expression were regressed out, and residuals were used as 

adjusted phenotypes for the association studies.  

Prior to trans-eQTL detection, cis-eQTL were first detected by stepwise sequential 

conditional analysis. Variants located within a distance of less than 1Mb from either the 5’ 

or 3’ ends of the explored gene coding region were deemed to be cis, and only SNPs with 

a minor allele frequency (MAF) of >0.01 and a Hardy-Weinberg equilibrium P value of 

>0.001 were included in the analyses. In each iteration of the conditional analysis, the peak 

signal with a P value<10-6 also computed using the GEMMA package, was determined to 
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be an independent eSNP. The residuals from discovery of each SNP were then taken 

forward as the dependent variable in a new scan for additional independent SNP(s).  

After cis-eQTL detection, residuals removing all cis-eQTL effects at each gene 

were used as the phenotype, and trans-eQTL detection was performed on 10,562 variants 

previously shown to be associated with phenotypic traits.  The signal was evaluated with a 

mixed linear model in GEMMA, controlling for population structure and relatedness. To 

obtain the null distribution by permutation, the covariance component was firstly estimated 

by REML, and the square root of the covariance matrix was used to transform the 

phenotype and genotype matrices (Abney et al., 2002), after which, the transformed 

phenotype is exchangeable, and can be safely used to conduct permutation analysis. The 

false discovery rate was controlled relative to 10 phenotype permutations, retaining the co-

expression structure by permuting the sample IDs which were used in common for all 

expression phenotypes. 

5.2.3 Effective Population Size Estimation 

As one of the cohorts in the eQTLGen consortium, my trans-eQTL results were 

integrated into the final meta-analysis results. The Framingham Heart Study was the only 

dataset in the study which did not consist of unrelated individuals but was instead a family-

based cohort. Although the analysis strategy took family relationship into account, I needed 

to determine the effective sample size to use the proper weight for this dataset in the 

weighted Z-score meta-analysis. For a specific variant, the effective population size can be 

calculated with the formula:  
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Neff =  𝑣𝑣𝑣𝑣𝑣𝑣
(𝑦𝑦)−2𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)𝛽𝛽𝑖𝑖

2

2𝑝𝑝(1−𝑝𝑝)∗𝑣𝑣𝑣𝑣𝑣𝑣(𝛽𝛽�) ,  in which, p is the minor allele frequency of the explored variant, 

and 𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽) is the variance of the estimator. The effective population size of one gene can 

be estimated with the mean or median Neff of genome-wide variants by:  

Formula 1: 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ [𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦)−2𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)𝛽𝛽𝑖𝑖
2]/[2𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖)𝑆𝑆𝑖𝑖

2]𝑚𝑚
𝑖𝑖=1

𝑚𝑚
    or 

Formula 2: 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦) − 2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝛽𝛽𝑖𝑖2]/[2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝑆𝑆𝑖𝑖2), i ∈{1,2,…,m}     

is the SNP index. 

I selected 20 random genes and used eQTL effects for genome-wide SNPs to 

estimate the effective sample size (𝑁𝑁eff). 

5.2.4 Trans-cis eQTL Co-localization Analysis 

I used cis-eQTL results from 31,684 blood samples and a subset of variants that are 

associated from the trans-eQTL data for the 4,339 FHS samples to evaluate the co-

localization between cis-eQTL and trans-eQTL signals. A total of 4,397 independent trans-

eQTLs were each treated as a single eQTL. As to the cis-eQTL signals, cis-eQTL genes 

were only included in the coloc analysis if they had more than 200 variants shared with 

tested trans-eQTL. Next, I used eQTLGen meta-analysis Z-scores, allele frequencies and 

sample sizes to estimate beta and var(beta), using equations outlined in the Supplementary 

Text of (Zhu et al., 2016). In the formula, approximate sample sizes of 31,000 for cis-

eQTLs and 4,300 for trans-eQTLs, together with minor allele frequencies from eQTLGen 

(without Framingham Heart Study cohort) were used. To test for co-localization, the coloc 

v3.1 package (Giambartolomei et al., 2014) was used with default priors (1×10-4 for both, 
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cis- and trans-eQTL, and 1×10-5 for sharing of eQTL signals). As cis-eQTLs were 

regressed out from expression matrices prior to trans-eQTL mapping, I expected that co-

localization signals would be unlikely to reflect spurious correlation between cis- and trans-

eQTL genes caused by unknown confounders. 

I downloaded curated Gene Ontology gene sets (2018. year version) (Ashburner et 

al., 2000; The Gene Ontology Consortium, 2017) from the Enrichr web site (Chen et al, 

2013; Kuleshov et al, 2016). Those gene sets were used to conduct hypergeometric over-

representation analyses as implemented into the R package ClusterProfiler (Guangchuang 

et al., 2012), while using all the cis-eQTL genes showing co-localization with any trans-

eQTL (coloc PH4>0.8) as a test set and all the cis-eQTL genes included to the co-

localization analysis as the background.  

5.3 Results 

5.3.1 Most of trans-eQTL variants affect neighboring genes. 

Co-localization was tested between the subset of 10,683 cis-eQTL genes and 2,950 

trans-eQTL genes. In summary, 181,821 co-localization tests were conducted between a 

cis-eQTL and a GWAS locus with a trans-eQTL, of which 2,776 resulted in H4>0.8 (Coloc 

hypothesis 4, posterior probability of one causal SNP explaining both the eQTL and 

GWAS signals), suggesting that the cis-eQTL gene mediates the trans-effect in 1.5% of all 

such comparisons.  

418 of the cis-eQTL genes (4%) have at least one downstream gene co-localizing 

with H4>0.8, suggesting cis-trans co-localization for an average of 6.6 such targets per cis- 
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eQTL (compared with 0.26 per all tested cis-eQTLs).  Some of the cis-eGenes have as 

many as 100% of the potential targets significant.   1,528 of the trans-eQTL genes (52%) 

have at least one cis-eQTL gene with a colocalizing eQTL effect (H4>0.8), strongly 

suggesting possible cis-trans co-localization, an average of 1.8 cis-mediators per trans-

eQTL (compared with 0.9 per tested trans-eQTLs). No more than 33% of the potential 

mediators for any given trans-eQTL were significantly co-localizing (H4>0.8). 

GO enrichment analysis found that trans-eGenes are enriched for transcription 

factors, but clearly not all trans-eGenes encode transcription factors. 

5.3.2 Conditional analysis based on GEMMA controls the false positive rate 

Figure 5.1 Manhattan plot of trans-eQTL for DNTTIP2 on Chromosome 1. 
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Most of the samples in the FHS are genetically related with other samples, so to 

control for the relatedness and the potential population structure, I applied GEMMA’s 

mixed linear model. GEMMA is a widely used method in mixed linear modelling. 

Compared with other MLM-based methods, GEMMA is an efficient exact method, 

estimating variance components for each variant resulting in a better control for false 

positive and also a large statistical power. 

To evaluate the control of the false positive rate, I randomly chose 20 genes, and 

conducted eQTL detection with genome-wide variants. Analysis of genomic inflation 

factors for the 20 chosen genes shows that all these genes have a lambda around 1 (Table 

5.1), indicating good control of the false positive rate. Figure 5.1 and Figure 5.2 show the 

Manhattan plot for one trans-eQTL signal, and corresponding Q-Q plot, for quality 

evaluation of a randomly chosen gene, DNTTIP2.  Despite the excess of small P-values 

greater than NLP4 at target trans-eQTL, there is no genome-wide inflation. 

Figure 5.2   QQ-plot for the DNTTIP2 gene. 
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Table 5.1 Genomic inflation factor for 20 random genes in FHS. 

Gene Heritability Lambda 

DNTTIP2 0.032 1.001 
HELLS 0.322 0.947 
PTPN11 0.049 1.001 
PARP4 0.205 0.970 

ZFYVE26 0.057 0.994 
LPCAT2 0.213 0.997 
SNX20 0.062 1.009 
VPS4A 1E-05 0.996 
PNMT 0.007 0.997 
OR7G2 1E-05 0.968 
CBLN4 1E-05 0.993 
DHX35 0.079 0.988 
CELSR1 0.036 1.000 
LAMP3 0.055 1.007 
NSUN3 0.420 1.000 
CASP3 0.180 0.990 
THAP6 0.034 1.003 

POM121L12 1E-05 0.967 
CDKL5 0.105 0.997 
TAF7L 0.023 1.005 

 

5.3.3 Effective sample size estimation. 

As the effective sample size was not dramatically different from the actual sample 

size (mean 𝑁𝑁eff over all 20 genes was 4,837; median 𝑁𝑁eff=4,865 as compared to actual 𝑁𝑁 = 

5,075; Table 5.2), relatedness is not likely to influence the results of integrated meta-

analysis considerably, so I opted to use the actual sample size as a weight in the meta-

analysis. 

Table 5.2 Effective sample size of random 20 genes in FHS. 
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Gene N1eff N2eff 

DNTTIP2 4907 4976 
HELLS 4383 4829 
PTPN11 4850 4970 
PARP4 4506 4445 

ZFYVE26 4835 5033 
LPCAT2 4500 4600 
SNX20 4828 5024 
VPS4A 5026 4900 
PNMT 4999 4977 
OR7G2 5026 4984 
CBLN4 5031 4971 
DHX35 4769 5073 
CELSR1 4901 4744 
LAMP3 4837 4810 
NSUN3 4336 4519 
CASP3 4559 4648 
THAP6 4900 4813 

POM121L12 5027 4828 
CDKL5 4702 4593 
TAF7L 4938 5005 

 

5.3.4 Comparison with trans-eQTL estimates in the eQTLgen Consortium 

With the strategy developed to detect trans-eQTL in structured populations, I 

conducted trans-eQTL in the FHS data set. I applied the criteria that any variant was 

determined to be significant, if there is no absolute Z-score from permutations larger that 

in real data, which was demonstrated to be enough to have a FDR control below 0.05 

(Westra et al., 2013). After eQTL detection, I compared my results with other data in the 

eQTLgen Consortium. 
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Before the detection of trans-eQTL, I first conducted cis-eQTL detection, and a 

total of 7,274 associations were found to be significant. Cross-validation with other 

platform data indicated a platform-bias. For FHS cis-eQTL, the best concordance was 

found in NTR-NESDA, which is also an Affymetrix platform: among the explored 6,388 

(87.8%) FHS associations, 50.1% replicated in NTR-NESDA, and 97.2% of the shared 

signals had same direction of effect (Figure 5.3).  By contrast, in an Illumina data set, 4,510 

(62.0%) of the FHS associations could be tested, and 74.6% of the tested associations were 

replicated with only 89.7% showing consistent direction of effect (Figure 5.4). Similarly, 

replication in an RNA-seq dataset was also less than for the same platform. These results 

serve as a further reminder for researchers to be aware of platform-specific biases in eQTL 

analysis. 

 

Figure 5.3 Cis-eQTL comparison between FHS and Affymetrix data set. 
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 By contrast, trans-eQT results are free of plat-form bias, and shown high replicate 

rate. In summary, I detected a total of 4,422 significant associations in FHS dataset. To 

validate the accuracy of my trans-eQTL detection, I performed comparisons with trans-

eQTL results based on other data set in eQTLgen Consortium (Figures 5.5, 5.6). Cross-

comparison demonstrates that trans-eQTL results in FHS have similar concordance levels. 

 

Figure 5.4 Cis-eQTL comparison between FHS and Illumina (left) and RNA-seq 
(right) data sets. 

 

Figure 5.5 Trans-eQTL comparison between FHS and Affymetrix data set. 
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Comparing with meta-analysis results of 1,7000 individuals on the Illumina 

platform, I contrasted 3,977 (89.9%) associations, and 60.5% of the tested associations 

from FHS replicated, with 98.1% of these showing the same direction of effect size. 

Similarly, I measured the replication rate in RNA-seq trans-eQTL results, and all of the 

significant trans-eQTL in FHS could be tested, of which 65.9% replicated, 98.8% showing 

the same direction (Figure 5.6). I thus did not detect a higher concordance with NTR-

NESDA based on Affymetrix U291 array, since even though (because of the smaller 

sample size (2,767)), only a third could be evaluated, 99.5% had the same direction of 

effect (Figure 5.5). 

5.4 Conclusion 

In this chapter, I mainly described the trans-eQTL method in a structured 

population. In trans-eQTL detection, the major hindering factor is that millions of variants 

are tested, so multiple test correction reduces statistical power. To overcome the limitation 

and improve the statistical power to find trans-eQTL signals, I applied a mixed linear model 

Figure 5.6 Trans-eQTL comparison between FHS and two Illumina (left) and 
RNA-seq (right) data sets 
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method, also utilizing a well-designed permutation method. My association strategy has 

good control of the false positive rate, and the detected signals have good consistency with 

results based other datasets. Unexpectedly, the comparisons of detected eQTL signals in 

different platforms revealed that the detection of cis-eQTL is more vulnerable to platform 

bias than trans-eQTL. This phenomenon may result from the fact that the design strategy 

difference: in Illumina platform, the expression abundance is measured by the 

hybridization signals of 50 bp probes, while in Affymetrix, expression is measured by a set 

of probes targeting most of the exon region, and in RNA-seq, the expression was measured 

by the mapped sequenced reads.  



 127 

 

CHAPTER 6  

CONCLUSION AND DISCUSSION 

In this dissertation, I have mainly focused on solving two problems in current 

human genetics: 1. Whether or not the expression of genes tends to be regulated by multiple 

eQTL; 2. Why GWAS hits are not more commonly found to co-localize with eQTL. My 

conclusion is that there are two reasons for the low co-localization level, one is the limited 

statistical power, and the other is regulation by multiple-causal variants.  

To address these two problems, I collected two datasets with large sample sizes to 

improve the statistical power to detect true, biological eQTL signals, and also developed a 

statistical method to perform multiple eQTL detection with control for relatedness and 

population structure. In Chapter 2, to demonstrate the idea of constraints brought by 

multiple eQTL regulation in current QTL analysis, I performed massive simulations based 

on real data to demonstrate that currently used methods have low power to detect co-

localization signals in the presence of multiple eQTL regulation. In Chapter 3, I described 

a method named PolyQTL, which I developed to solve the potential problem of relatedness 

and population structure, which may be common when combining samples from diverse 

populations. In Chapter 4, I applied my method to real data, explored the eQTL signals 

overlapping between three expression platforms, and also used it to evaluate GWAS-eQTL 

co-localization.  I used it to find causal genes and causal variants thought to function as 
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eQTL which affect human complex traits or diseases. In Chapter 5, I described my work 

as a member of the eQTLgen Consortium. 

Power is defined as the likelihood that a study will detect an effect when there is an 

effect, and can be calculated as 1- 1
√2𝜋𝜋

∫ 𝑒𝑒−1/2𝑥𝑥2𝛷𝛷−1�1−𝛼𝛼2�−𝜆𝜆

𝛷𝛷−1�𝛼𝛼2�−𝜆𝜆
dx, in which, α is the significance 

level, λ is the non-centrality parameter, calculated as beta/(sqrt(variance)/n) with beta the 

allelic effect size, n is the sample size, and the variance is the phenotype variance. From 

this formula, for a given significance level, we can see that the larger the value of λ, the 

larger power we have.  In order to attain a large λ, we require either large beta, small 

variance or large sample size n. Because of the limited availability of samples in current 

eQTL applications (most published studies contain less than 1000 samples), low power 

hampers the possibility to detect subtle effect eQTL. In addition, the phenomenon of 

winner’s curse further complicates the situation, since non-causal variants with an 

overestimated effect size are often chosen.  Although in this study, my colleagues and I 

collected an unusually large set of samples to detect cis-eQTL, only half of the genes were 

found to be regulated by eQTL, and the replication rate is still low for secondary cis-eQTL. 

It is thus necessary to continue to gather more samples. Currently, the sample size used in 

my studies is too small to consistently support detection of significant secondary signals in 

human cis-eQTL studies. Vosa et al (in preparation) show by meta-analysis that with more 

than 30,000 samples, we can detect cis-eQTL for almost all explored genes in human blood, 

demonstrating the prevalence of genetic regulation of gene expression. If I could extend 

the analysis to a larger cohort, I would have more power to detect the secondary signals, 

and reveal their role in traits and disease.  
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When gene expression is regulated by multiple eQTL, estimation of the effect sizes 

of explored variants will be influenced by the combination of multiple causal variants, 

depending on the LD structure at the locus. My results do reveal that gene expression in 

human blood tissue are largely regulated by multiple eQTL, and that cis-eQTL are to some 

extent shared when measurement of transcript abundance is performed on different 

expression platforms. Co-localization based on multiple-eQTL does find that for as many 

as 15% of genes, it is secondary cis-eQTL, instead of primary signals, that co-localize with 

GWAS hits.  These secondary signals may be the ones that function as expression 

regulatory factors to affect human complex traits and diseases, raising the question of why 

the primary signals are not GWAS hits.  

This result is puzzling, and leads me to consider potential biological mechanisms. 

There are two main possibilities. One is that if there are two causal variants that affect 

phenotypic traits through expression, due to low power in GWAS detection, the variant 

with the smaller effect size may finally be chosen and reported, while in eQTL detection, 

both of the two causal variants are found with conditional statistical analysis. The second 

possibility is that only certain specific cell types are associated with phenotypic traits or 

diseases, and the secondary cis-eQTL only functions in these cell types.  Since I have 

measured gene expression abundance in whole blood consisting of a mixture of over a 

dozen common cell types, the influence of secondary eQTL causal variant is diluted. 

Although some studies based on cell type specific expression have revealed that only a 

limited proportion of GWAS hits co-localize with cell eQTL signals, I anticipate that if I 

could collect more cell-specific samples (for example by single cell RNA-seq of peripheral 
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blood), and perform cell-specific eQTL, I could resolve more co-localized eQTL-GWAS 

variants. 

  In my studies, biological annotation information has not been used. Apart from the 

statistical association signals between genotype and phenotype, it is also possible to obtain 

information from biological and functional genomic contexts. For example, as shown in 

my eQTL-GWAS co-localization analysis, transcription factors are enriched to affect 

phenotype through gene expression. By integrating these kinds of biological information 

into the statistical model, I should be able to further enhance the power to find causal 

variants and genes. Some developed methods (Yang et al., 2017) implicitly make the 

assumption that variants associated with one trait, should also affect other traits.  For 

instance, COLOC chooses the default prior that a variant affects either expression or 

phenotype to be 10-4, while the prior that the variant affects both traits is 10-5, which 

indicates an enrichment of 1000 fold (10-5/(10-4*10-4)). Although this kind of assumption 

is now still controversial, some studies reveal that integrating biological annotation into 

the model may increases power (Yang et al., 2017). Results from the ENCODE and 

ROADMAP Consortia (2015) have provided a rich atlas of functional information, so 

extension of my PolyQTL method to jointly integrate functional and association data 

should improve the accuracy of fine mapping. 
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