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Introduction 

Recent electrophysiology research has made significant advancements toward revealing 

the neural basis of early visual processing.  The brain is optimized to draw conclusions 

from natural scenes, and models of the human visual system may uncover principles by 

which to develop better automated vision systems.  In turn, the neuroscience community 

would benefit from deeper understanding of human vision through the implementation 

and testing of models of this neural system. 

While many neural coding models have been proposed for the primary visual cortex 

(V1), it remains an open question as to which model best describes the diversity of 

observed response properties. For instance, the canonical linear-nonlinear model (LN) 

partially explains some fundamental mechanistic and phenomenological properties of V1, 

but is unable to explain many nonlinear response properties that are likely associated with 

the keys to efficient and robust human vision. 

Surround suppression is one such nonlinear response property in which visual stimuli 

extending beyond the classical receptive field (CRF) selectively diminish neural 

responses.  This property has been studied through electrophysiology experiments with 

synthetic stimuli (e.g., gratings).  Surprisingly, high level sparse coding models 

implemented in a biologically plausible dynamical system have been shown to produce 

surround suppression effects that match individual and population observed responses. 

More recently, surround suppression has been investigated experimentally using natural 

stimuli, and these experiments have shown an increase in the sparsity of measured 

responses.  Despite these findings, it remains unclear whether a functional sparse coding 

model is sufficient to produce the types of surround suppression observed with natural 
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stimuli.  This thesis demonstrates that the surround suppression effects recently observed 

with natural stimuli are also emergent properties of a sparse coding model.  First, relevant 

literature in human vision and signal processing will be reviewed.  The methods for 

implementing the model and the results from simulations will then be presented followed 

by discussion of implications of these results and future work.  

 



 

1 

Literature review 

Human vision and neuroscience 

A full understanding of the computations underlying human vision has yet to be 

established.  Studies of human vision have accelerated in recent years due to 

advancements in hardware and software used to acquire neural signals during 

electrophysiology experiments.  In addition, the computational modeling community has 

grown in the attempt to develop hypotheses that explain the neural activity collected from 

electrophysiology and psychophysics studies.  The first part of this literature review will 

summarize findings relevant to research on the primary visual cortex (V1). 
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Classical receptive fields 

 

Figure 1. A. Stimulation of the surround with the classical receptive field induces a response 

that is smaller than stimulation of the classical receptive field alone. Stimulation of the 

surround only has no effect.  B. Firing rate decreases with increasing stimulus size beyond the 

classical receptive field. 
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The classical linear-nonlinear (LN) model of early vision presumes that each neuron 

responds independently to a specific stimulus in a localized area of the visual field. The 

stimulus (image) and corresponding location in the visual field are collectively called 

the classical receptive field, which resembles a Gabor filter in its canonical form.  The 

traditional model of V1 treats each neuron as a filter where the representation scheme 

used by the network is a linear combination of the filters weighted by each neuron’s 

response level (firing rate). 

Surround suppression 

Not all effects can be explained by this idea of independent filters. Surround suppression 

is one of several effects in which neurons do not behave according to the classical model. 

These effects are collectively called non-classical receptive field effects and have 

recently become a substantial research area in vision and other sensory systems. 

During surround suppression, neurons are inhibited by a stimulus outside their classical 

receptive field, in an area deemed the 'surround’ (Figure 1).  The characteristics, 

mechanisms, and perceptual consequences of this phenomenon are of potential interest to 

many communities including neurobiology, computational neuroscience, psychology, 

and computer vision. 

Electrophysiology studies have been used to characterize the surround suppression effect. 

Vision researchers that record neural activity in V1 have seen that spike rates, or neural 

responses, can be suppressed in as many as 90% of neurons [1,2] by stimuli outside of 

their surround. In these cells, the spike rates are reduced by as much as 70% [3]. 
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Stimulus dependence 

The suppressive effect is often dependent on the contrast, orientation, and direction of 

motion of the stimulus stimulating the surround. These properties are highly dependent 

on the brain area and the individual neuron being studied. In MT, for instance, cells can 

be sensitive to the direction and velocity of stimuli up to 50 to 100 times the area of their 

classical receptive fields [4].  The statistical properties of the stimuli used to probe these 

neurons affect the properties of the surround as well. Because these areas are so highly 

interconnected, stimulation of one cell can affect the response properties of other cells, 

and therefore researchers have become increasingly aware of the choice of stimuli they 

use in these experiments. In addition to studies with simple stimuli (dots, bars, sinusoidal 

gratings) [3,5,6], recent studies have used more realistic stimuli (natural scenes) to study 

these effects [7]. Stimuli that better represent natural scenes tend to induce higher levels 

of suppression, indicating this effect is tied closely to the properties of natural scenes 

such as textures and local context. 

Systems involved 

Surround suppression was formally discovered in the visual pathway, and noticed first by 

Hubel and Wiesel [5] while mapping receptive fields. Parts of the visual pathway, 

including V1 and MT, are among the most well-studied. 

Surround suppression has also been seen in sensory systems other than vision. One 

example in somatosensation is surround suppression in the barrel cortex of mice, in which 

bending one whisker can suppress the response of a neuron responding to a whisker 

nearby [10].  It has even been seen in the frequency response properties 

of electoreception in electric fish [11].
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Biological mechanisms 

The biological mechanisms behind surround suppression have remained a point of 

contention [10]. 

Several theories have been proposed for the biological basis of this effect. Based on the 

diversity of the stimulus characteristics that cause this effect and the variety of responses 

that are generated, it seems that many mechanisms may be at play (Figure 2). 

 

Lateral connections are connections between neurons in the same layer. There are many 

of these connections in all areas of the visual system, which means that a neuron 

representing one piece of the visual field can influence a neuron representing another 

piece. Even within lateral connections, there are potentially different mechanisms at play. 

Monocular mechanisms, requiring stimulation in only one eye, may drive this effect with 

stimuli with high spatial frequency. When the stimulus frequency is lowered, however, 

binocular mechanisms come into play, where neurons from different eyes may suppress 

each other [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The differences between lateral, feedforward, and recurrent connections. 
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It has been posited that lateral connections are too slow and cover too little of the visual 

field to fully explain surround suppression [13].  Feedback from higher areas may explain 

the discrepancies seen in mechanism for surround suppression based purely on lateral 

connections. There is evidence that inactivation of higher order areas results in reduced 

strength of surround suppression [13].
  
At least one model of excitatory connections from 

higher levels has been formed in the effort to more fully explain surround suppression 

[14].
 
 However, recurrent feedback is difficult to determine using electrophysiology, and 

the potential mechanisms at play are not as well studied as feedforward or lateral 

connections. 

Perceptual advantages 

Surround suppression likely participates in context-dependent perceptual tasks. Some 

specific tasks in which surround suppression may aid include: (1) Motion [3] and velocity 

[15] detection: In areas such as MT and even V1, the selectivity of neurons to the motion 

of contrasts may play a potential role in representing the structure of moving objects. (2) 

Contour integration[16]: Detecting continuity of curved and/or 'broken' edges. (2) 

Texture segregation [17]  (3) Perceptual constancies [2]: Recognizing continuity in 

objects despite changes in lighting, color, or size. (4) Figure-ground segmentation [14]: 

In this process, local contrast must be used to identify and assign borders.(5) Depth 

perception (through motion parallax) [2]. 

These tasks require the use of inputs over wide regions of visual space, meaning that 

independent responses to small parts of the visual field (a classical linear model of V1) 

would not be able to produce these effects. There is evidence that surround suppression 

participates in these tasks by either adjusting the representation of the classical receptive 
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field or representing entirely different features that include both the classical receptive 

field and the surround. Direct comparison between physiology and psychophysical 

experiments have been done on several perceptual effects. These include: (1) the reduced 

apparent contrast of a grating texture embedded in a surrounding grating, (2) target 

identification when flanked by other features, (3) saliency of broken contours surrounded 

by edge segments of different orientations, and (4) orientation discrimination when 

surrounded by features of different orientations and spatial frequencies [19]. 

Information theoretic advantages 

It has recently been shown that stimulation of the surround may support the efficient 

coding hypothesis proposed by Horace Barlow in 1961 [20].  This hypothesis suggests 

that the goal of the sensory system is to create an efficient representation of the stimulus. 

Recently, this has intersected with the idea of a 'sparse' code, one that is represented using 

the fewest units possible. It has been shown that surround suppression increases the 

efficiency of transmitting visual information, and may form a sparse code [21]. If many 

cells respond to parts of the same stimulus, for instance, a lot of redundant information is 

encoded [22]. The cell needs metabolic energy for each action potential it produces. 

Therefore, surround suppression likely helps to produce a neural code that is 

more metabolically efficient. There are additional theoretical advantages, including the 

removal of statistical redundancy inherent in natural scene statistics, as well 

as decorrelation of neural responses [7] which means less information to process later in 

the pathway. 
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Efficient coding models and modern signal processing 

Recent developments in modern signal processing share the goal of uncovering efficient 

methods for encoding signals.  Many of these methods formulate efficiency by imposing 

a sparsity constraint on the representation scheme.  Sparsity is the idea that as few 

coefficients as possible should be used to represent a given signal. 

A landmark paper by Olshausen and Field revealed that if a dictionary is learned by 

imposing a sparsity constraint on their responses to natural scenes, the filters that emerge 

resemble the receptive fields measured in V1 [23].  This could imply that V1 is using a 

sparse representation scheme for encoding images.  The Locally Competitive Algorithm 

(LCA) was developed as an efficient way to solve for the optimal representation given a 

sparsity constraint [24].  Surprisingly, high level sparse coding models implemented in a 

biologically plausible dynamical system have been shown to produce surround 

suppression effects that match individual and population observed responses with bars 

and gratings [25]. Despite these findings, it has remained unclear whether a functional 

sparse coding model is sufficient to produce the types of surround suppression observed 

with natural stimuli. 

 

Methods 

Simulated electrophysiology experiments were carried out using MATLAB stimulations 

to investigate whether the LCA model can explain surround suppression effects with 

natural scenes input. 
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Stimulus 

Natural scenes were obtained from a natural movie stimulus set used in electrophysiology 

experiments by Charles Cadieu at Berkeley.  10,000 successive images were cropped and 

then blurred and subsampled to form 32x32 pixel image patches the size of V1 receptive 

fields.  A mask was then applied to each stimulus set, revealing inside circles of radii 0.5 

through 3 times the classical receptive field (CRF) size.  Each mask was centered on the 

CRF of the filter, or neuron, being tested (Figure 3). 

 

 

Figure 3. A. Receptive field of a sample neuron.  B. Masked stimulus, radius 2xCRF, 

centered on the receptive field of the sample neuron. C. LCA model’s representation of 

the stimulus at threshold 0.07. 

Model 

Locally Competitive Algorithm (LCA) 

The Locally Competitive Algorithm (LCA) was implemented in MATLAB.  The LCA is 

one method for generating sparse representations.  This algorithm uses a network of 

linear filters where each filter, , is weighted by a coefficient,  (Figure 4).  Through 

converging network dynamics, the system minimizes the following cost function [24]: 
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 The mean-squared error term ensures accurate representation and the sparsity term 

penalizes the amount of active coefficients.  Only the filters that best represent the image 

retain non-zero coefficients.  The LCA is an ideal implementation because (1) it is 

tunable by a single parameter , the weight of the sparsity term, and (2) recent work that 

shows it can be implemented in real-time hardware [26]. 

 

Euler’s method was used to find an iterative solution to this optimization using the 

following update equations: 

 

 

Figure 4. LCA representation.  Each input image I(t) is represented in the network as 

linear combination of dictionary elements  Φ weighted by a set of sparse responses a(t). 
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The variable u(t) is an internal variable representing the excitability of the neuron.  The 

thresholding function Tλ is a linear thresholding function in which everything below λ is 

set to 0 and everything above it is set to u(t)-λ.  This not only enforces the sparsity 

constraint but also ensures that all neurons in the population have nonnegative firing rates 

a(t).  The simulation parameters Δ (time step) and n (number of iterations) were chosen 

so that 1/(Δ·n), the number of frames per second, matched the physiologically-relevant 

30 frames per second of the retina.  The LCA converges appropriately when Δ/τ≈0.1, so 

the parameters chosen for the simulation were τ=60, Δ=1, n=35.  The threshold, λ, was 

set to 0.07 based on empirical testing for discernible image representation and reasonable 

population sparsity in comparison with electrophysiology data. 

Receptive fields: Learned dictionary 

The dictionary Φ of filters, or receptive fields, is a collection of 1024 filters of 1024 

(32·32) pixels each (Figure 5).  This dictionary was learned using the method described 

in Olshausen and Field [23].  It was optimized for a separate natural scene training set 

and was provided courtesy of Charles Cadieu. 
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Figure 5. 100 out of 1024 dictionary elements are depicted.  Each box is a 32x32 pixel 

image of the receptive field of a given neuron in the population. 

Simulation and output 

28 cells, or dictionary elements, were chosen for simulated stimulation.  They were 

chosen because their receptive fields are localized within the center of the patch so that 

edge effects of expanding the stimulus would not be a confounding factor.  Each cell was 

fitted using an automated Gabor fit routine, describing its center and radius (Figure 6). 
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Figure 6. Gabor fitting of a sample receptive field.  The estimated center and radius are 

marked in red. 

 

 The entire neural population ‘viewed’ the stimulus centered on the cell’s CRF, and the 

response of the selected neuron was stored.  These simulations were repeated for all 8 

stimulus sizes (0.5 through 3x CRF size) for each of the 28 cells.  The output of the 

simulation for each test neuron were 8 time series responses, a(t), of 10,000 firing rates or 

coefficients (one for each frame), from that neuron (Figure 7). 

 

Figure 7. Overview of the LCA.  A dictionary of receptive fields is learned from natural 

scenes, the cells in the network then compete to represent the image by forming a 

solution to an optimization function, and a time series of responses is formed for each cell 

based on its response to the input image sequence. 
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Results 

Suppression in time series responses 

 
Figure 8. A. Neural responses are suppressed as stimulus size increases in a V1 neuron in 

response to natural scene stimuli [21].  B.  A sample neuron from the LCA model shows 

response suppression as stimulus size increases in response to natural scenes.  C. The 

same neuron does not show surround suppression in response to white noise stimuli. 
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Tuning curves 

Tuning curves were plotted for each neuron and averaged over all sampled neurons.  

These tuning curves plot the average response for each size stimulus.  Each tuning curve 

is normalized (maximum value set to 1) for better comparison and averaging.  The LCA 

model shows a decreasing trend beyond the stimulus size similar to that seen in 

electrophysiology (Figure 9). 

 

Figure 9. Population 

averages of mean 

spike rate with 

increasing stimulus 

size. A. Mean spike 

rate decreases as 

stimulus size increases 

beyond the CRF in V1 

neurons.  Mean spike 

rate across the 

sampled neurons 

decreased by 59% 

from 1x to 3xCRF in 

this study [21].  B. 

Mean spike rate 

similarly decreases in 

the LCA model in 

response to natural 

scene input.  The 

radius of the CRF 

(1xCRF) is the 

optimal stimulus size.  

The suppression from 

1x to 3xCRF was a 

20% reduction in 

mean response level, 

smaller than that seen 

in electrophysiology.   

C. Mean spike rate 

does not show the 

same suppression 

beyond the CRF. 



 16 

Lifetime sparsity 

Lifetime sparsity was calculated for each time series of neural responses, a, of length n.  

This metric is based on a metric used to determine the selectivity of neurons given [27]: 

 

S can take values between 0 and 1, where 0 represents low lifetime sparsity (constant 

firing rate) and 1 represents maximal lifetime sparsity (non-zero for only one frame of the 

stimulus).  With natural scene input, 23 of 28 cells showed increased lifetime sparsity as 

the stimulus size tripled.  With white noise input, however, less than half of the cells (13 

of 28) showed the same trend (Figure 10). 

 

Figure 10. A. Lifetime sparsity S increases when the stimulus is expanded to 4x the CRF (CRF 

+ nCRF) [7].  B. Lifetime sparsity similarly increases as stimulus size is expanded to 3x the CRF 

with natural scene input.  C.  Lifetime sparsity shows no definitive trend as stimulus size 

increases with white noise input (less than half of the points lie above the unity line). 
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Discussion 

It has been shown that the LCA model is able to reproduce several recent results in 

natural scene surround suppression studies of primate V1 neurons.  The similar effects 

seen in time series suppression, tuning curves, and lifetime sparsity support the 

hypothesis that a high-level objective of V1 may be to encode visual information in a 

sparse way. 

An important result from these studies is that the natural scene statistics of the input 

images were crucial to seeing the same trends in surround suppression effects.  By using 

the same model with both white noise and natural scene stimuli, it is made clear that a 

representation scheme optimized for natural stimuli will likely not produce the same 

effects when given artificial stimuli.  This result supports recent efforts in neuroscience to 

have subjects perform tasks with natural scenes rather than bars, gratings, or white noise. 

While the LCA model qualitatively shows the same effects, these effects are not 

quantitatively as drastic compared to those reported in electrophysiology.  There are 

several potential explanations for this.  First, the threshold was empirically chosen to 

ensure the representation was visually recognizable; if this constraint had been loosened, 

a larger threshold would have been used that would have created more drastic effects.  It 

is likely that there is more redundancy in V1 filters than was in our dictionary, especially 

since the dictionary was complete rather than overcomplete (the number of neurons 

equaled the number of dimensions of the input image).  Second, in electrophysiology 

there is an inherent selection bias toward neurons that respond selectively to stimuli, as 

their receptive field must be mapped in the visual space before performing the surround 

suppression experiments.  This selection process likely increases the perceived average 
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surround suppression effects.  The model has no such selection bias based on selectivity 

of neural responses because the receptive fields of the neurons are already known. 

Future directions 

There are several unanswered questions left to be explored.  A deeper, low-level 

understanding of the root cause of these effects in LCA would help determine what 

mechanisms may be at play within V1.  At a higher level, establishing links between 

surround suppression and perception could reveal what the purpose of this effect is as 

well as whether reproducing this effect in machine vision systems would lead to benefits 

in perception.  The hope is that if there are significant perceptual advantages to this type 

of system, a hardware implementation of the LCA could lead to improved performance 

and efficiency in encoding and interpreting high-dimensional visual data.  Finally, other 

non-classical effects beyond surround suppression could be explored with the LCA 

model in response to natural scenes. 
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