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SUMMARY

The surface finish of a machined part has an important effect on friction, wear, and

aesthetics. The surface finish became a critical quality measure since 1980s mainly due to

demands from automotive industry. Visual inspection and quality control have been tradi-

tionally done by human experts. Normally, it takes a substantial amount of operators time

to stop the process and compare the quality of the produced piece with a surface rough-

ness gauge. This manual process does not guarantee a consistent quality of the surface and

is subject to human error and dependent upon the subjective opinion of the expert. Cur-

rent advances in image processing, computer vision, and machine learning have created a

path towards an automated surface finish inspection increasing the automation level of the

whole process even further than it is now. In this thesis work, we propose a deep learning

approach to replicate human judgment without using a surface roughness gauge. We used

a Convolutional Neural Network (CNN) to train a surface finish classifier. Because of data

scarcity, we generated our own image dataset of aluminum pieces produced from turning

and boring operations on a Computer Numerical Control (CNC) lathe, which consists of a

total of 980 training images, 160 validation images, and 140 test images. Considering the

limited dataset and the computational cost of training deep neural networks from scratch,

we applied transfer learning technique to models pre-trained on the publicly available Ima-

geNet benchmark dataset. We used PyTorch Deep Learning framework and both CPU and

GPU to train ResNet18 CNN. The training on CPU took 1h21min55s with a test accuracy

of 97.14% while the training on GPU took 1min47s with a test accuracy = 97.86%. We

used Keras API that runs on top of TensorFlow to train a MobileNet model. The training

using Colaboratory’s GPU took 1h32m14s with an accuracy of 98.57%. The deep CNN

models provided surprisingly high accuracy missclassifying only a few of 140 testing im-

ages. The MobileNet model allowed to run the inference efficiently on mobile devices. The

affordable and easy-to-use solution provides a viable new method of automated surface in-

xi
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CHAPTER 1

INTRODUCTION

Surface roughness is a technical requirement of manufactured parts and is a widely used

index of product quality. Achieving the desired surface quality is of great importance for

the customer satisfaction, aesthetics and the functional behavior of a part. The surface

roughness formation mechanism depends on multiple machining conditions which makes

inspecting and predicting the surface finish a complex task. The influence of cutting con-

ditions of machining operation on surface roughness, including the cutting speed, feed

rate, depth of cut, tool geometry, choice of coolant, rigidity of workbench, and fixtures,

have been reported in [1] [2]. Multiple efforts have been directed to predicting the surface

roughness and automating its inspection using computer vision, statistical methods and ma-

chine learning. The majority of the work has been focusing on steel as it is the material of

choice for a large number and very diverse industrial applications particularly, cold steel

strip surfaces which is most sensitive to customers’ requirements. Traditionally, surface

finish of flat steel products is assessed manually by cutting about 30m of a random coil

and inspected by an expert. This constitutes typically about 0.05% of the total steel surface

produced [3]. Due to human error and the amount of production, the manual inspection

process is not sufficient to guarantee a defect-free surface of steel products with reasonable

degree of confidence, and thus, the need for automated surface inspection grew. An intelli-

gent surface finish inspection system will give machine operators guidance in selecting the

best combination of cutting conditions (i.e. spindle speed, feed rate, and depth of cut) for a

specific process. From later half of 1980s, systematic research work on surface inspection

of steel products started. Automated surface inspection techniques can be categorized as

direct and indirect contact methods. The direct contact methods require a direct contact

with the surface to be investigated using stylus instruments (surface roughness profilome-
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ter). Using stylus instruments is a slow procedure and has limited flexibility in handling

the different geometrical parts. Thus, the direct contact methods are not suitable for fast

and large scale manufacturing processes. For indirect contact methods, previous research

involved a hardware system set-up composed of multiple cameras, acquisition systems and

used computer vision and image processing techniques to assess the surface finish. These

methods are not easy to deploy as they usually require particular set-up: consistent lighting,

angles of cameras, multiple sources of data and special hardware that is not resistant to the

hazardous machine shop conditions: dust, oil, coolant etc ...

In this study the aim is to make the process of automating surface finish inspection

as easy and affordable as possible using only an available tool that every mechanic has;

mobile devices. Due to unavailable dataset of surface finish images, we create our own

dataset. Two OKUMA Genos L250 CNC (Computer Numeric Controlled) Lathes were

used for production of aluminum parts with varying surface finishes using facing and turn-

ing operations. Our dataset is made of pictures of the machined parts taken using multiple

mobile devices cameras. The advances in deep learning and mainly the results shown by

Convolutional Neural Networks (CNN) in image classification and object detection allowed

for this automated surface finish quality inspection. The model is trained to perform a bi-

nary classification of the images based on the surface finish to provide a result of whether

the picture corresponds to a good or bad surface finish. Experts opinion was provided to

determine which parts corresponded to good or bad surfaces to label the dataset that is then

splitted for training, validation and testing. We use transfer learning techniques on pre-

trained models for training our CNN. ResNet18 as fixed feature extractor achieved 97.86%

accuracy on the test dataset. In order to deploy our model on mobile devices, we use a pre-

trained MobileNet model that overcomes the limitations of running such complex models

on limited computation resources, power and storage environment. We add two dense lay-

ers to the MobileNet model, and one last fully connected layer with softmax activation

to output the two classes probabilities. The first 20 layers are frozen, and the rest of the

2



model is trained to correctly classify 98.57% of the test images. The model is used to de-

velop an android app which allows for the classification of surface finish images task to run

locally on mobile devices. Our approach performs well to replicate human judgement of

surface finish, using uniquely images of the surfaces of the parts as input. This thesis work

provides thus a novel approach to automate surface finish inspection providing a cheap,

flexible and reliable system suitable for machine shop environment requiring only a mobile

device camera.

The thesis starts with a review of the literature and computer-vision based techniques

used for automated surface inspection, then gives an overview of CNNs, as well as the

transfer learning technique used in this work. Then, we describe the experimental set-up

and data collection, the training and testing of the models, and the development of an an-

droid app to perform the surface finish quality inspection locally on mobile devices. Finally

recommendations for future improvements are provided.
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CHAPTER 2

BACKGROUND

Surface Finish is a measure of the overall texture of a surface that is characterized by the

lay, surface roughness, and waviness of the surface. The surface finish is most of the time

quantified by the deviations in the direction of the normal vector of a real surface from its

ideal form. If these deviations are large, the surface is rough; if they are small, the surface

is smooth. Most surface finish requirements are noted in arithmetic average deviation of

the roughness profile from its mean line noted Ra, expressed as: Ra = 1
n

∑n
i=1 |yi| where

yi is the vertical distance from the mean line to the ith data point [4] as shown in Figure 2.1

[5].

Figure 2.1: Definition of the arithmetic average height Ra.

Consequently, most of surface finish inspection methods target measuring the Ra to

decide if the manufactured part satisfies the required quality features. Considering the

importance of surface roughness for many fundamental problems such as friction, heat

and electricity conduction, tightness and contact joints and positional accuracy etc. . ., it

has been the subject of multiple studies. Traditional stylus techniques have been used

to measure the surface roughness, however, due to the limitations of this method, many

advanced and sophisticated techniques have been developed. While some research has been

made in inspecting and measuring the surface roughness, a lot of research effort has also

4



been done in predicting the surface finish, detecting and classifying defects. The related

work in this thesis focuses on techniques based on computer vision used for inspecting

the surface finish by measuring the Ra. The most common methods in the literature are

reported below.

2.1 Indirect Contact Computer Vision Methods for Surface Finish Inspection

2.1.1 Laser Speckle Images

Earlier optical methods for surface roughness used laser images obtained through a micro-

scope for texture analysis. Speckle images are obtained when a rough surface is illuminated

with a partially coherent light forming some random patterns of bright and dark regions.

The intensity at a point is the interference of wavelets scattered from different points within

the illuminated area, with the phases randomised due to the variations of the surface. An

example of a laser speckle image is shown in Figure 2.2 [6].

Figure 2.2: Example of speckle image.

Speckle images can be used for surface roughness measurement [6]. A linear relation-

ship between the surface roughness and the standard deviations of the intensity fluctuations

of the speckle image was found in Fujii and Asakura [7].
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2.1.2 Images Matching using Distance Metrics

T. Jeyapoovan and M. Murugan [8] used the Euclidean and Hamming distances between

test images and reference images, inspired by biometric recognition, to calculate the sur-

face roughness. Six parts were machined using a milling operation with different surface

roughness ranging between 0.8− 2.6µm, which is the common range of surface roughness

values obtained in milling operations. The average surface roughness (Ra) of these parts

were measured using a stylus instrument and recorded. The corresponding surfaces were

photographed using a low-incident-angle CCD camera and polychromatic light source. The

pictures of the surfaces were normalized to get a pixel intensity in gray scale of the range

between 0 and 255, transformed to a 1-D vector and stored in a database to serve as a refer-

ence. A database of 6 reference images and their corresponding surface roughness was thus

established. To characterize the surface roughness of a new test surface, the Euclidean and

Hamming distances between the new test surface and the reference images in the database

are calculated. The Euclidean distance (DE) for an n-dimensional space is given by:

DE(p,q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pN − qN)2 =

√√√√ N∑
i=1

(pi − qi)2 (2.1)

where N is the dimension of the feature vector, pi is the ith value of the feature vector and qi

is the ith value of the reference vector. The lowest Euclidean distance between the reference

images and the test image indicates a matching and the corresponding roughness Ra in the

database is attributed to the test surface. The Hamming distance represents the number

of components that differ in value at corresponding areas of two images. The Hamming

distance (DH) is calculated as follows:

DH(p,q) =
1

N

N∑
i=1

(pi 6= qi) (2.2)
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Similarly to the Euclidean distance, the lowest Hamming distance is used to characterize

the surface roughness. Six images of parts were used for testing, and it was found that a

0.3 in the value of Hamming distance between the test image and the reference images is

a threshold; it is less than 0.30 for the correct matching, it was greater than 0.30 for the

other 5 measures. For all the six test images, the surface roughness obtained by matching

the test image with the one with the lowest Euclidean distance, is the same as the one

obtained with the Hamming distance. Thus, using the Euclidean and Hamming distances

to match a new image with an established database of different surface roughness provides

good results. It was also observed that the Hamming distance was closer to zero than the

Euclidean distance for perfect matching which indicates that using the Hamming distance

for surface roughness characterization has larger scope than the Euclidean distance.

2.1.3 Gray Level Co-occurrence Matrix

The the gray level co-occurrence matrix(GLCM) defined by Haralick et al. [9], is a widely

used method in texture analysis. The GLCM matrix is a 2-D matrix of the size the num-

ber of gray levels in an image. It is constructed by calculating how often a pixel with the

intensity (gray-level) value i occurs in a specific spatial relationship to a pixel with the

value j. This method is used in Gadelmawla [10] to characterize the surface roughness of

10 machined samples obtained by a facing operation with different feed rates to vary the

arithmetic average roughness Ra. Four parameters are calculated from the GLCM matrix

to characterize the surface roughness: (1) maximum occurrence of the matrix (MOM), (2)

maximum occurrence position (MOP),calculated by searching the GLCM for the maxi-

mum value and storing its position in the form of (x,y), (3) standard deviation of the matrix

(SDM) and (4) maximum width of the matrix (MWM), which is calculated using a search

algorithm below and above the diagonal in a direction normal to it to find the farthest points.

The pictures of the surfaces were taken under the same lightening conditions using a Je-

navert incident light microscope and a color video camera. It was found that the calculated

7



parameters MOM, MOP, SDM and MWM have a very good correlation (> 0.96) with the

arithmetic average roughness (Ra). The three parameters MOM, SDM and MWM are pos-

itively correlated with the arithmetic average roughness Ra. However, the MOP parameter

decreases by increasing Ra. Thus, all of these parameters could be used as indicators of the

surface roughness.

2.1.4 Statistical Analysis

Kiran et al.[11] used a vision system comprised of a Charge-coupled device (CCD) cam-

era and a lighting arrangement to capture images of flat surfaces obtained from different

processes: grinding, milling, sandblasting, and shaping. The images were preprocessed to

eliminate the gaussian random noise. The gray intensity distribution histograms are used

to characterize the surface finish. The variance of the intensity histogram of the images

was found to be correlated with the surface roughness Ra. Kumar et al. [12] used a Cubic

Convolution interpolation technique to enhance the images of machined surfaces (ground,

milled and shaped) captured by a CCD camera while preserving edge details. The arith-

metic average of the grey level Ga feature is then calculated as follows:

Ga =
1

n

n∑
i=1

|gi − gm| (2.3)

where gi is the gray level values of a surface image along the ith line and gm is the mean of

the gray values expressed as :

gm =
1

n

n∑
i=1

gi. (2.4)

Regression analysis were used to establish three expressions of Ra for Grinding, Milling

and Shaping as a linear combination of the speed, depth of cut and Ga. The regression

equations developed gave a maximum error of 2% in the case of grinding, 6.34% in the

case of milling and 8.2% for shaping between the estimated Ra and the Ra measured us-

ing a stylus instrument. Kamguem et al.[13] used three features extracted of the captured
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microscope images of 15 turned parts: the gradient factor of the surface which corresponds

to the variation of the material to the surface measured by the change of light, the average

cycle of texture corresponding to the number of cycles per unit area and the average gray

level Ga. A linear relationship was found between the Ra and each of the three texture

features. The models had high correlation with the Ra measured using a stylus instrument.

The approach yielded an error in Ra estimation in the range of 9− 18% for profile surface

roughness Ra in the range of 2 − 25µm. Gupta and Raman [14] used a CCD camera to

capture the scatter spectrum of the reflection of a HeNe 5mW laser light source illumi-

nating a rotating pre-machined workpiece (140rpm and 285rpm) with Ra in the range of

30 − 120µm. Twelve different features, namely, the mean intensity, standard deviation of

the grey level distribution, the root mean square height of the gray level distribution and

others were extracted from the resulting gray image. A multiple regression model showed

that the features were correlated with the actual surface finish with an accuracy (R2) ap-

proaching 95%. After conducting statistical analysis, it was noticed that the effect of the

surface roughness was more significant on two features: the ratio of the standard deviation

to the root mean square value and the square of the second moment of the light scatter

intensity distribution. Despite the high correlation between the roughness measured us-

ing a stylus-profiling instrument and the output of the regression model, the work done by

Gupta and Raman [14] presents some limitations mainly due to the surface roughness range

used (30− 120µm) which is outside the typical range of surface roughness in conventional

turning (1−10µm) and the hardware laser-based setup which requires fine adjustments and

stringent specifications particularly, of the laser parameters, and location on a vibration-free

table.

2.1.5 SVM

Liu et al.[15] evaluated the surface roughness via color information, and proposed a sur-

face roughness measurement method based on a same pixel red and green color difference
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index. These researchers also performed a comparison experiment on a group of samples

before and after surface pollution based on the support vector regression model. These

results showed that the color difference index was strongly correlated with the roughness

Ra and had such advantages as anti-pollution and a high level of robustness [16]. Wei et

al. [15] proposed a Gray Level Co-occurrence Matrix Support Vector Machine (GLCM-

SVM) method to measure the surface roughness of a deep hole. The experimental results

showed that the GLCM-SVM can have a high level of accuracy and generalization ability

to characterize the surface roughness Ra.

2.1.6 Polynomial Networks

In Dhanasekar et al. [17] and B.Y.Lee and Y.S. Tarng [18], polynomial neural networks(PNN)

models are used to estimate the Ra of a workpiece. Polynomial networks were proposed

by Ivakhnenko [19] which is a Group Method of Data Handling (GMDH) that models non-

linear relations between input and output variables. In the PNN model the nodes are a

polynomial function of the inputs. The structure of PNN is selected on the basis of the

number of input variables, the order of polynomials in each layer and a criterion that bal-

ances the model accuracy and the complexity of the fitted polynomials. The loss criterion

used is the sum of the mean squared error between the predicted output and the real output

and a penalty proportional to the number of coefficients of the polynomial. The input data

for [17] are calculated from the improved quality images of surfaces processed using a re-

construction algorithm namely the standard deviation of gray levels Ga and two spectrum

parameters (major peak frequency (F1) and principal component magnitude squared value

(F2)) obtained by performing a fast Fourier transform FFT. These three inputs are then fed

to a three layer polynomial network. In [18], the feed rate, speed and depth of cut along

with the arithmetic average of gray levels Ga of images captured by a digital camera are

used as inputs to a four layer model. The arithmetic average of the surface roughness Ra is

measured using a profilometer and used as the independent variable. For [18], the training
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dataset consisted of 57 training samples and the model was tested on 16 samples with a

reasonable accuracy: the error was no higher than 12% between the real and the predicted

Ra . In [17] the optical roughness parameter estimated for the ground and milled surfaces

had an high correlation of 0.91 with the measured Ra after applying the super resolution

reconstruction algorithm.

2.1.7 Artificial Neural Networks

Multiple prior work used Neural Networks to assess the surface roughness using different

input features (vibrations, feed rate, speed, depth of cut etc . . .). This review focuses on

the work that used computer vision combined with ANN. Tsai et al.[20] extracted five fea-

tures from the two-dimensional Fourier transform of images of parts obtained from shap-

ing and milling operations. The obtained features are used as inputs to two NN models

that will perform classification in five categories that represent known roughness values

of: 6.3, 12.5, 25, 50, 100µm for the shaped pieces and 1.6, 3.2, 6.3, 12.5, 25, 50µm for the

milled parts. The root mean squared error for the shaped specimens was 1.3177µm and

0.8311µm for the milled ones which shows the good results of applying such model to as-

sess the surface roughness. Palani and Natarajan [21] also used a two dimensional Fourier

to get the major peak frequency and the squared principal component magnitude. These two

features as well as the cutting speed, feed, depth of cut, andGa are used as input to an ANN

to predict the roughness of the end milled parts. The error between the predicted values and

stylus based surface roughness was 2.47% for the 10 test images with Ra ranging between

0.3971−0.8153µm. P. Priya and B. Ramamoorthy [22] wanted to treat the problem of pre-

vious models sensitivity to the inclination angle of the images. They used surface images

of samples with different inclination angles. The effect of the inclination angle was elimi-

nated by using a shadow removal algorithm. Five designed frequency domain indexes and

sample inclination angles were fed to an ANN. The obtained experimental results showed

that machine vision combined with an artificial neural network could achieve high predic-
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tive accuracy [22]. In [23], Natarajan et al. used differential evolution algorithm (DEA)

as optimisation algorithm for training an ANN to predict surface roughness in turning op-

erations. The DEA is a heuristic method for optimizing nonlinear and non differentiable

continuous space functions. For training the ANN, it is applied to global searches within

the weight space to minimize the learning error. The cutting speed, feed rate, depth of cut,

and average gray level Ga of the surface image of the workpiece were taken as the input

parameters and the surface roughness as the output parameter. The results obtained from

the DEA-based ANN model were compared with the backpropagation (BP)-based ANN. It

is found that the average absolute percentage error is very close 0.62% for the DEA-based

ANN and 0.41% for the BP-based ANN. However, the DEA-based is shown to be faster at

convergence speed, simpler and more robust at numerical optimization than the BP-based

model.

2.2 Challenges and Limitations

The state of the art faces many challenges to perform contact-free automated visual surface

finish quality inspection. Among the main difficulties encountered are:

• Hazardeous site: the place for installation of the required equipment for example

cameras, illumination, signal processing equipment . . . is very hazardous. The il-

lumination systems and cameras require protection from the dust, the high ambient

temperature, oil, water, shock and vibration. Thus, there is a necessity for appropriate

physical and environmental protection.

• Operational Speed: the speed for the inspection process is very high during pro-

duction. For flat steel products, speed at the end of rolling, where the inspection

equipment has to operate, is typically 20m/s. Real-time operation at such high speed

requires special image processing equipment and software with small execution time.

• Variety of surface finish and defects: for surface roughness measurements, there is
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a lack of standards that define which surface roughness values are acceptable. This

depends on the material, the parts, the applications and human judgement of what is

aesthetic for customers.

The previously mentioned approaches to perform indirect surface finish inspection

show multiple limitations. The laser scattering and speckle techniques are limited by the

wavelength of visible light. These techniques are not physically capable of measuring sur-

faces whose root mean square roughness is greater than the wavelength of light (400− 700

nanometers, nm)[24]. Since the typical roughness range Ra for conventional machining

processes (turning, milling, shaping, drilling) is generally between 0.5 and 10 micrometers

(µm) [25], these approaches are more suitable for measurement of precision, sub-micron

(< 1µm) and ultraprecision (< 50nm) surface finish, for example those obtained from

ultra precision polishing and diamond turning.

An additional restriction in the state of the art is related to the hardware set-up. The

special hardware systems as well as stringent and consistent lightning conditions and angles

made the suggested systems not easily usable in machine shops. Haralick et al. [9], [13] and

[10] used microscopes and frame grabbers to capture the images under consistent lightening

conditions. [8] fabricated an adjustable table to hold the specimen and to have the camera

at 45◦ to the surface of the part with constant settings. All images were obtained with the

same settings and position of the camera. Uniform illumination of the surface was ensured

by using a diffuse light source. These consistent and very specific conditions restrict the

use of the proposed solutions and undermine the feasibility of the system in machine shop

conditions.
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CHAPTER 3

PROBLEM STATEMENT

Surface finish inspection is currently, in most cases, still done the traditional way; an expert

rotates the part under the light to see if it is shiny, and touches it to see if it is smooth. In

order to automate this process using a contact free method and overcome the limitations

mentioned in the previous section, we investigate a new approach to replicate the visual

human judgement of which surfaces have a good or a bad surface finish. The solution

has to be affordable, resistant to hostile machine shop conditions and requiring no special

hardware. The first step towards our model consisted in investigating if we can use only

images of surfaces, and if based only on the pictures as input, we can see the difference

between a good and a bad surface finish. The cameras used to capture parts images are

mobile devices cameras considering the availability of these for each mechanic in the ma-

chine shop factory. The problem is then assigning a label from a fixed set of categories

(bad surface, good surface) to an image. This is an image classification problem, which

is one of the core problems in computer vision that has a large variety of practical appli-

cations. In this work, we have two labels: good and bad. This problem is thus a binary

classification problem (2 classes). In the two images below in Figure 3.1, an image clas-

sification model, takes a single image as input and assigns probabilities to the two labels,

{bad surface, good surface}.
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Figure 3.1: Good surface finish image to the left, bad surface image to the right

The image is represented for the computer as one large 3-dimensional array of integers

from 0 to 255, of size Width × Height × 3. For example, The Figure 3.2 of the surface

of a yo-yo is 281 pixels wide, 500 pixels tall, and has three color channels Red,Green,Blue

(RGB). Therefore, the image consists of 281×500×3 numbers, or a total of 421, 500 num-

bers. Each number is an integer that ranges from 0 (black) to 255 (white). Our approach’s

task is to map these four hundred thousand numbers to a single label: good surface.

Figure 3.2: This image is a 3-dimensional array of integers between 0 and 255 of size
281× 500× 3 (Width×Height× 3). The 3 represents the RGB color channels

The model that performs this image classification task has to be invariant to the chal-

lenges listed below:
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• Angle variation: the angles from which the image is taken can vary a lot which

changes the orientation of the object. In previous works, this limitations was over-

come by fixing the camera angles.

• Scale variation: the objects in the images can have different sizes on the images and

in real life.

• Shape: the parts subject of the surface finish inspection can have different shapes

while belonging to the same class: good surface for example.

• Occlusion: sometimes the full object is not present in the picture and only a portion

of it is visible.

• Illumination conditions: the variations of illumination have a big impact on the pixel

level. Under different illumination conditions, the 3-D matrix representing the image

can be very different.

• Background: the background can vary a lot from an image to another and sometimes

it is hard to distinguish the objects from their background.

The approach taken to solve this problem is a data-driven approach. We provide the model

with labeled data which will serve as a training dataset to help the algorithm that looks

at these examples learn about the visual appearance and particularities of each class. The

pipeline to develop this model consists of 3 main steps as shown in Figure 3.3:

Figure 3.3: Pipeline of performing image classification

• Input: Training dataset comprised of labeled images.
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• Learning: We train the classifier using the training dataset to learn the features of

each of the two classes.

• Evaluation: Testing the model on new images that haven’t been used before. An

accuracy measure is then used to assess how well the model predicted the classes of

the test dataset compared to the true known labels.

Once the model is trained and tested, an android app is developed to allow the auto-

mated surface finish inspection using only mobile devices.
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CHAPTER 4

CONVOLUTIONAL NEURAL NETWORKS (CNN) FOR IMAGE

CLASSIFICATION

Convolutional Neural Networks CNN is a class of deep feed-forward artificial neural net-

works that are very popular, well adapted and effective for visual imagery related problems.

One of the first successful applications of CNNs to solve a real-world problem was LeNet

for handwritten digits recognition [26], by the computer scientist Yann LeCun. CNNs are

multilayer neural networks that are able to automatically learn the important features from

labeled data and are also computationally effective thanks to the convolution operation,

from which the name is inspired, parameters sharing and the pooling operation. In this

section, we will have an overview of how CNNs work.

4.1 Layers

4.1.1 Input Layer

In the case of a fully connected multi-layer neural networks, the input layer is a vector. An

image represented as a 3-dimensional array of integers from 0 to 255, of size Width ×

Height × 3 would be transformed to a 1-D vector of size: Width × Height × 3. For

example, the Figure 3.2 would be transformed from a 3-D array of size 281× 500× 3 to a

1-D vector of size: 281× 500× 3 = 421, 500. The input of CNNs are Width×Heigh if

the images are in grayscale, otherwise Width×Height× 3 for RGB.
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Figure 4.1: CNN input as 3-D array

4.1.2 Linear or Fully Connected Layer

For an input Matrix X ∈ RN×D , where N is the number of input vectors in a batch, a row

vector xi represents a single input vector with size D. In this case, we are considering that

xi is an input tensor flattened as a 1-D vector. In the case of a classification operation where

we have K classes, the linear layer acts as a score function that performs a linear mapping

operation fromRD → RK of the form: f(xi,W, b) = Wxi+bwhereW , the weight matrix

of size [K × D], and b, is the bias vector of size [1 × K], are learnable parameters. The

output of this operation is a 1-D vector of size [1×K] where each entry is interpreted as a

score for the corresponding class. This linear layer is loosely motivated by the connectivity

pattern in the brain cells called neuron.

4.1.3 Activation Layer or Non Linearity

The activation function is inspired by the biological neurons that fire when the weighted

sum is above a certain threshold. It takes a single number and performs a certain fixed

mathematical operation on it ensuring that the output cannot be reproduced by a linear

combination of the inputs. This non linearity is crucial and makes the neural network
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perform complex tasks. There are three main activation functions:

• Sigmoid: the sigmoid function is expressed as : σ(x) = 1
1+exp(−x) . The graph of the

sigmoid function is shown in Figure 4.2 [27] on the left. This function squashes any

real value between−∞ and +∞ to be between 0 and 1. The sigmoid activation func-

tion shows a major drawback because of saturation at both ends 0 and 1 which zeroes

out the gradient and makes its usage unadaptable to the backpropagation algorithm.

• Tanh: the hyperbolic tangent function takes any real value as input and outputs a

value between −1 and 1. It is a scaled version of the sigmoid function: tanh(x) =

2σ(2x)− 1. In practice, the tanh is more used than the sigmoid function. The graph

of the tanh function is shown in Figure 4.2 [27] on the right.

Figure 4.2: Sigmoid function on the left. Tanh function on the right.

• ReLU: The Rectified Linear Unit is the most widely used activation function. It gives

an output x if x is positive and 0 otherwise: f(x) = max(0, x). The ReLU function

is shown in Figure 4.3. ReLU activations are adapted to multilayer neural networks

since a combination of ReLUs is also non linear. The ReLU is computationally

efficient due to the fact that it doesnt involve any expensive operation and also yields

a sparse output meaning that fewer neurons are firing since any negative value is set

to 0. However, because of zeroing any negative number, the gradient will be 0 and

the corresponding weights will not be updated during the optimization process. This

problem is referred to as dying ReLU problem.
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Figure 4.3: ReLU function

The mathematical model of a neuron performing a linear operation followed by an

activation function is shown in Figure 4.4 below:

Figure 4.4: Mathematical model of a neuron

4.1.4 Convolution Layer

The ANN models are typically organized into multiple fully-connected layers of neurons

in which neurons between two adjacent layers are fully pairwise connected, but neurons

within the same layer don’t share any connections. These networks are only made of linear

and activation layers which don’t scale for high dimensional inputs such as images. For a

224× 224× 3 image, we will need 150, 528 parameters for a single neuron in the first fully

connected layer. An example of a 3-layer Neural Network is shown in the Figure 4.5.
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Figure 4.5: A 3-layer neural network with four inputs, two hidden layers of 5 neurons each
and one output layer with 2 neurons.

CNNs overcome the scaling limitations by exploring the spatial structure of their input

(images). The weights of a CNN have the same depth as the input, called input feature

maps, meaning if the input is an RGB image, the weights in the first layer are 3-D arrays of

dimension fw × fh × 3, with fw being the weight’s size along the width dimension, and fh

being the weight’s size along the height dimension. Usually fw = fh = k. As opposed to

the fully connected neural networks, each neuron in the CNN is only connected to a small

region in spatial dimensions of the input. The region of the feature maps is covered by

a convolution filter, which is a stack of spatial kernels of size k × k. The kernels in the

filter are usually not the same, but all of them cover the same spatial ”column” of the input

tensor. During the forward pass, the layer computes a convolution operation between the

region of the input and the convolution filter, producing a single element of output, then

slides through the entire image to perform the same operation again and again, from left

to right, from top to bottom. A stack of such neurons form a convolutional layer. So the

weights of the layer form a 4-D tensor with dimensions that correspond to spatial kernels,

input feature size, and output feature size.

Convolutional layers have several important parameters. One of them is the stride S

that represents the step-size by which the filter slides over the input. It is typical to use
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a stride of 1 or 2. Figure 4.6 shows this convolution operation which is an element-wise

multiplication with a stride S = 1.

Figure 4.6: Convolution operation between image input and filter with stride S = 1

Another one is the padding P , which represents how many rows and columns, and

sometimes whole input features, will be added to the edges of the input volume. Usually,

zero padding is used, meaning that all the values that are added to original input feature

maps are zeros.

The output of the convolution with an input image of dimension h × w × d, is a

( (h−fh+2P )
S

+ 1) × ( (w−fw+2P )
S

+ 1) × 1 tensor. The figure 4.7 shows this convolution

operation and the size of the output.

Figure 4.7: Convolution operation between an image input and a filter

The output of the convolution operation between an input volume and a filter corre-

sponding to a single neuron is a 2-D tensor called activation map. In one convolution
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layer, there are multiple neurons along the output channel dimension. These 2-D activation

maps from every neuron are stacked together to form a volume output of the same depth

as the number of filters used. As mentioned before, the convolution layer is a volume, and

the neurons are organized in depth. At each depth slice, the neurons will share the same

weights per the assumption that if a filter is useful to detect features at some position, then

it should be relevant to detect others at another position. This weight sharing reduces con-

siderably the number of parameters learned compared to a regular neural networks. Thus a

convolutional layer can be defined by the number of filters, their dimensions, the stride and

the zero padding.

4.1.5 Pooling Layer

Pooling layers, also referred to as downsampling layers, serve to reduce the dimensions of

the activation maps by only retaining the most relevant information. The pooling operation

can be Max pooling, Average pooling or Sum pooling. The most widely used operation is

the Max pooling operation applied on every depth slice of the activation map, as the max

operation avoids cancellation of negative elements and prevents blurring of the activation

maps. The Max filter slides through the input with a stride, retaining only the highest value

of the covered region, Figure 4.7 shows the pooling operation with a filer of size 2× 2 and

a stride S = 2. It is common to periodically insert pooling layers between convolution

layers in order to reduce the amount of parameters, control the size of the neural network

and limit overfitting.
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Figure 4.8: Pooling operation on a single slice depth input with a 2 × 2 filter and a stride
of 2

4.1.6 Batch Normalization

Batch normalization layer has been shown to speed up convergence [28]. It consists of ad-

justing and scaling the activations to have a zero mean and unit variance by subtracting the

batch mean and dividing by the batch standard deviation. It also helps reducing overfitting

since it has a regularization effect on the hidden layers.

4.1.7 Dropout

Dropout, introduced by Srivastava et al. [29], is a very simple and effective regularization

technique that consists in randomly setting the neurons in each layer to zero with a certain

probability during training.

4.2 CNN Architectures

Most CNNs are a stack of a convolutional layer, followed by a ReLU and optionally a

Pooling layer. A fully connected layer is found at the end to output the class scores. Many

CNN architectures have been developed since 1990’s. The most widely used ones are
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mentioned below.

4.2.1 LeNet

LeNet was developed by Yann LeCun [26] to recognize hand written digits. This model

constitutes the first successful application of CNNs and an inspiration for more recent CNN

architectures. The LeNet architecture is shown in Figure 4.9 from the original paper [26].

Figure 4.9: Architecture of LeNet-5 used for digits recognition

LeNet has a total of 7 layers: 3 convolutional layers, 2 pooling layers and one fully

connected layer followed by the output layer (fully connected layer that outputs the class

scores). The input for LeNet are 32× 32× 1 images normalized using mean and standard

deviation. The activation function used is tanh.

4.2.2 AlexNet

AlexNet was developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton [30]. This

CNN competed in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

2012 [31] achieving top-5 error with 15.3% compared to 26.2% achieved by the second po-

sition model. AlexNet is deeper and more complex than LeNet using 5 convolutional layers,

3 max pooling and 3 fully-connected layers for a total of 60 millions parameters. AlexNet

was trained on the ImageNet benchmark dataset which contains 10Million labeled images

from 10, 000+ categories.The model was implemented in CUDA using two GPUs to make
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training faster. A dropout, is used on the fully connected layers as regularization technique

to reduce overfitting. A novelty introduced in this model is stacking multiple convolutional

layers each followed by a non-linearity without having a pooling layer in between. The

graph 4.10 from the original paper [30] illustrates AlexNet architecture and the distribution

of computation between the two GPUs.

Figure 4.10: Architecture of AlexNet used showing the distribution of responsibilities on
the two GPUs

4.2.3 ZF Net

ZF Net designed by Matthew Zeiler and Rob Fergus[32] won the ILSVRC 2013 with 11.2%

error rate. The ZF Net is heavily inspired by AlexNet wih few changes mainly reducing the

stride and the filter size from 11 × 11 to 7 × 7 on the first layer and expanding the middle

convolutional layers. ZF Net has almost 140 million parameters.

4.2.4 VGG Net

VGG Net developed by Karen Simonyan and Andrew Zisserman [33] is a very deep 16

layer CNN that was a runner-up in the ILSVRC 2014. The idea of VGG Net is to simplify

the structure using only 3× 3 filters with stride and pad of 1 and 2× 2 max pooling layers

with stride 2 but explore the depth. The idea is that a combination of two 3 × 3 filters in

each convolution has an effective receptive field of a 5× 5 filter and a combination of 3 has

a receptive field of 7× 7. This decreases the number of parameters used. The model uses a
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total of 140 million parameters. This model achieved 7.3% error rate proving that the depth

of the CNN is critical for good performance. The Figure 4.11 from the original paper [33]

shows the architecture of VGG Net.

Figure 4.11: The different VGG Net architectures with architecture D showing the best
performance

4.2.5 GoogLeNet or Inception

GoogLeNet by Szegedy et al.[34] from google is a 22 layer CNN that won ILSVRC 2014

with 6.7% error rate. This paper introduces the inception module where, as opposed to

previous models where everything happens sequentially, some parts of this network are

computed in parallel. The parts of the network that are parallel are called the inception

modules where instead of making a choice of whether to have a pooling operation or a

convolution, we perform all of these operations in parallel. This parallel method leads to

many outputs, that were limited by applying a 1×1 convolution before the 3×3 and the 5×5

layers. Inception is considered among the very deep CNNs with 100 layers and 9 inception

modules. The model reduced significantly the number of parameters by eliminating fully
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connected layers and using average pooling to have a total of 4 million parameters; 12×

less than AlexNet. There are many versions of Inception CNNs, the most recent one is

Inception-v4.

4.2.6 ResNet

Residual Networks ResNet developed by Kaiming He et al.[35] is a class of very deep

152 layers CNNs that won LSVRC 2015 with an error rate as low as 3.6%. The main

idea of ResNet comes from the authors belief that simply stacking layers in order to in-

crease the depth in network architectures results in an increase in training and testing er-

rors. In ResNet, instead of feeding the output of a sequence of convolution-ReLU to the

next convolution-ReLU unit, the residual block has the input x go through a convolution-

ReLU-convolution series which gives an output F (x). This output F (x) is then added to

the input x to get H(x) = F (x) + x which is passed to the next layer. This means that

instead of trying to fit an underlying mapping between the input x and some output H(x)

through stacked layers, it is easier to fit a slightly altered representation of the input x since

F (x)+x can be seen as adding a ∆ to the original input x. The Figure 4.12 from [35] shows

the residual bloc. ResNet is also different from the previous architectures by using batch

normalization, and similar to Inception, the architecture uses only one fully connected layer

at the end of the network to output the class scores. ResNet became the default architecture

for current image classification problems.
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Figure 4.12: Residual Block

4.3 Training CNNs

4.3.1 Loss Functions

During training a Neural Network, we define a loss function that will quantify the error

of the model with respect to a target. This loss function is crucial for the learning as

it is used during training to help tune the weights in a direction that minimizes the loss

function (reducing error) at a rate of ∂L
∂w

where L is the cost function and w is the weight.

For classification problems, mean squared error(MSE) and cross entropy loss are the most

widely used loss functions.

• Mean squared error (MSE): MSE is commonly used in regression and classification

problems. For a classification problem MSE = 1
n

∑n
i=1(yi − ŷi)

2 where n is the

number of training samples, yi is the true vector output that will have 1 at the index

of the correct class and 0 elsewhere, and ŷi is the output vector of predictions of the

model.

• Cross entropy L=loss: is another commonly used loss function. The cross entropy

is more sensitive to the accuracy of classification models. A small difference in the

confidence of prediction can be shown in cross entropy while MSE might give the

same result in some cases. The cross entropy function between an input x and the
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target output class scores vector y where the ith element corresponds to the score of

the correct class is defined as: L = −log exp(yi)∑n

j
exp(yj)

, n being the number of classes.

For a training set with N inputs, the loss is the average of losses on each individual

input L = 1
N

∑N
i Li. The cross entropy function can be interpreted as the normal-

ized probability assigned to the true class, so minimizing the cross entropy loss goes

back to maximizing the likelihood of the correct label. In addition to being positive,

tending towards zero when the prediction is close to the ground truth which makes

it a good candidate for a cost function, the cross entropy loss leads also to quicker

learning through gradient descent than the MSE loss which makes it the most widely

used in classification problems.

4.3.2 Backpropagation

In regular ANN, we calculate the partial derivative of the loss function with respect to each

weight in order to adjust the weights in a way that minimizes this loss function which

constitutes the learning process. The first partial derivative is calculated at the final layer

since this is what gives the error (the loss between the output of the model and the true

result), then using the chain rule, this gradient serves to compute the partial derivative

of the loss function with respect to the weights of the previous layer. This calculation is

backpropagated till the first layer, which gradient is computed last. ∂L(w)
∂w

expresses by how

much the loss function changes if we change the weight. The Figure 4.13 from [27] lecture

4 illustrates the backpropagation operation.
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Figure 4.13: Illustration of the backpropagation of errors

4.3.3 Optimization

Once the gradients of the loss function with respect to the weights are computed, optimiza-

tion algorithms are used to perform the weights update in order to minimize the objective

function. The training of a neural network consists in performing many iterations of for-

ward pass to compute the output of the model on the training dataset, compute the loss

between the output and the real value, then we use backpropagation to compute the gradi-

ents of the loss with respect to the weights and finally preform the weights update using

optimization algorithms until convergence or achieving the desired accuracy.

• Stochastic Gradient Descent (SGD): SGD is a computationally lighter version of

the original gradient descent algorithm. At each iteration, instead of computing the

gradient of the objective function across all training data, the SGD randomly selects

one training instance, computes the gradient of the objective function with respect

to the weights using only the ith training sample (xi, yi). At the jth iteration, the

weights are updated simultaneously to get the new weights as follows: Wj+1 :=

Wj − α∇L(Wj, xi, yi), where∇L(wj, xi, yi) is the gradient of the loss function and

α is called the learning rate which defines the step size taken in the direction of
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the gradient descent. The choice of the learning rate α affects convergence. It is

usually set to a small value in order to avoid stepping over the minimum and never

converging.

• Mini batch Gradient Descent: in practice, each parameter update in the SGD is com-

puted using a small batch of the training dataset instead of a single one. This uses

matrix operations which are in most libraries optimized, reduces variance and en-

sures a more stable convergence.

• Momentum: when the surface of the objective function curves more steeply in one

dimension than another forming a long shallow ravine, the SGD oscillates between

the two steep sides and makes very small progress along the ravine towards the local

minima [36]. The momentum method [37] multiplies the previous weights with a γ

factor < 1 during the update as follows. We define a momentum which is a moving

average of the gradients

Vt = γVt−1 + α∇L(W,x, y)

and use it to update the weights as follows:

W := γW − Vt

The γ term is usually set to 0.9. The momentum helps accelerate gradients and

reduces oscillations solving the ravine problem of the SGD.

• Adaptive learning algorithms: in previous gradient descent algorithms, the learning

rate parameter is fixed in advance and is applied to update all the weights. Algorithms

such as Adagrad, Adadelta, RMSprop, Adam provide an adjusted learning rate for

each parameter and are referred to as adaptive gradient descent algorithms.
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4.3.4 Regularization

Considering the large number of parameters and the complexity of neural network models,

it is easy to overfit meaning modeling very closely the training dataset while being unable to

generalize well on new data. In order to control overfitting, some regularization techniques

are used. Among the most widely used ones are:

• L2 regularization: L2 regularization is a very common regularization method that

penalizes the squares of the parameters by adding a regularization parameter λ
2
‖W‖

to the loss function where W represents all the weight matrices of the networks and

λ is a positive arbitrary number. During the update of the parameters using gradi-

ent descent, the regularization term adds a penalization to restrict the values of the

individual parameters from being too high.

• L1 regularization: is very similar to L2 regularization but uses norm-1 for regular-

ization by adding a term λ|W | to the loss function. L1 regularization leads to a more

sparse weight vectors. It is possible to use both L1 regularization and L2 regulariza-

tion by adding λ1|W |+ λ
2
‖W‖ to the cost function.

• Early stopping: is usually done using a validation dataset and an upper bound on the

generalization error. The training is done as usual on the training dataset, and at the

end of each epoch(full pass of the dataset) an error is measured using the validation

dataset. If the error for the current model is better than the best one so far, the model

is saved. The goal is to prompt the training and keep the model with the lowest

validation error.

4.3.5 Weights Initialization

If the neural network is trained from scratch, all the parameters have to be initialized. All

the weights are initialized with random small numbers in a way that each of them is unique

in the beginning in order to learn different features during the training. At each layer,
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the parameters are sampled from a multidimensional gaussian distribution with zero mean

and standard deviation of 1
N

with N : the number of inputs. This initialization preserves

the variance of the inputs and thus the pixel intensities are obtained after normalizing by

substracting the mean and dividing by the standard deviation.

Training deep CNNs from scratch with random initialization requires a lot of computational

resources, a very large labeled dataset for supervised models and a lot of tuning efforts. In

practice, pre-trained models are used, in which case, the weights are kept and their mean

and standard deviation would be the same as their original dataset.

4.4 Transfer Learning

Traditionally, Neural Networks were problem specific and could only solve the particular

task they were trained for. When the feature space distribution changes, the NN had to

be trained from scratch again with random initialization. Transfer learning aims at reusing

models that were trained on a particular dataset to perform new tasks on a similar new

dataset. A CNN is usually pre-trained on a very large dataset like ImageNet [38] that has

1.2 million training images with 1000 classes, and that learning is then leveraged to solve a

different task using a smaller training dataset. Transfer learning is widely used for computer

vision related tasks, since low level features such as detecting shapes, edges and intensities

are well transferable and can be used to detect the generic features in images. There are

typically two types of transfer learning:

• Feature extractor: as the CNN is formed of layers where the first ones detect generic

features and one last usually fully connected layer that performs the specific task of

outputting the 1000 class scores of ImageNet, it is possible to use all the layers but

the final one as fixed feature extractor for other tasks. The weights of one or more

layers are frozen i.e are not updated and are used as generic feature detector. This

frozen CNN outputs the activations that are thresholded in the same way as during

the training on ImageNet. A final linear classifier layer is then added and trained for
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the new dataset. This method although only replaces the last fully connected layer

works very well in practice.

• Finetuning pre-trained CNNs: in this technique, the pre-trained weights are used for

initialization, and then get updated during backpropagation using the new training

dataset. It is possible to not finetune all the layers of the CNN and freeze some layers

(the weights are not updated during backpropagation) while others are retrained, and

their weights are updated to fit the new task. It is common to freeze the first k layers

that learn more high level features in order to reduce overfitting, and only retrain the

last layers to learn more task specific features.

Many pre-trained models are available to download through many deep learning frame-

works such as TensorFlow and PyTorch. It is common to use small learning rates during

transfer learning compared to random initialization since the weights already learned some

features. Transfer Learning showed good performance and is widely used for NLP, Au-

dio/speech and computer vision.
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CHAPTER 5

PROPOSED FRAMEWORK FOR SURFACE FINISH INSPECTION

In order to automate the surface finish inspection using a contact-free affordable and robust

method, a CNN is used to classify images of surfaces in good and bad surfaces. The goal

is to have the CNN perform a mapping between the image and the class, each image is

assigned 0: bad surface and 1: good surface. Because of the lack of publicly available

dataset of metal surfaces, during this thesis work, a dataset is created and is made publicly

available. The images were labeled using an expert’s opinion on the surface finish of the

corresponding parts. The dataset is made of images of aluminum parts produced using a

CNC machine.

5.1 Experimental Set-up and Data Collection

The images of the dataset were taken of multiple parts mainly made of two operations:

cylinders from facing operation and yo-yos production in addition to few other shapes. The

processes of making the cylinders from the facing operation and the yo-yos are described

below:

5.1.1 Facing Operation

Two OKUMA Genos L250 CNC (Computer Numeric Controlled) Lathes shown in Fig-

ure 5.1 were used for production of aluminum parts. Motion was CNC controlled in two

axes; the Z-axis, parallel to the axis of rotational symmetry at the center of rotation, and

the X-axis, perpendicular to the Z-axis.
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Figure 5.1: Two OKUMA Genos L250 CNC Lathes

Cylindrical aluminum stock of 2.25in in nominal diameter was faced and turned in this

process. The aluminum stock was cut into pucks of 0.75± .1 inches in length with the use

of a vertical bandsaw. Both end faces of the pucks were very rough due to the machining

marks left by the bandsaw. The pucks were mounted in the lathe spindle with aluminum

jaws.

A single point, right-handed turning tool was used for all cutting operations. A sharp

carbide insert with a titanium nitride coating was used to make all cuts. The insert was

cleaned of any built-up edge and checked for fracture or wear before each part was cut.

The machining process consisted of two operations; a roughing operation and a final

finish cut. The first roughing operation consisted of multiple facing passes, where the ex-

posed face of the puck was quickly machined to a known length. Due to the rough faces and

relatively large tolerance in initial length of the pucks, multiple facing passes were required

to make each puck consistent. This is considered rough machining because the cutting feed

rate was set relatively high to decrease overall machining time. After this roughing opera-

tion, the exposed face of each puck was consistent and provided a control from which the

finishing operations were conducted. The second finishing operation consisted of a single

facing pass with a much slower feed rate to produce the desired surface finish. The G-code

used to program the machine is included in the appendix A for reference. Figure 5.2 shows

pictures of parts resulting from this process.
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(a) Good surface (b) Bad surface

Figure 5.2: Two parts from facing operation

5.1.2 Yo-yo Production

Two OKUMA Genos L250 CNC (Computer Numeric Controlled) Lathes were used for

production of yo-yo halves. Motion was CNC controlled in two axes; the Z-axis, parallel

to the axis of rotational symmetry at the center of rotation, and the X-axis, perpendicular

to the Z-axis.

Cylindrical aluminum stock of 2.25in in nominal diameter was faced and turned in this

process. The aluminum stock was cut into pucks of 0.75±0.1 inches in length with the use

of a vertical bandsaw. Both end faces of the pucks were very rough due to the machining

marks left by the bandsaw. These initial cylindrical pucks were used as stock pieces to

manufacture the yo-yos. The pucks were mounted in the lathe spindle with aluminum

jaws and a single point, right-handed turning tool was used for all cutting operations. A

sharp carbide insert with a titanium nitride coating was used to make all cuts. The insert

was cleaned of any built-up edge and checked for fracture or wear before each part was cut.

Machining process on both machines consisted of two operations; a roughing operation and

a final finish cut. Rough machining passes were used to removed large amounts of material

in a short amount of time and reveal the general shape of the yoyo. Finishing passes were
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employed to precisely modify the geometry to match the final part specifications. These

operations were completed across two Genos L250 CNC Lathes.

Operations conducted on Genos Lathe #1:

The first roughing operation consisted of multiple facing passes, where the exposed face

of the puck was quickly machined to a known length. Due to the rough faces and relatively

large tolerance in initial length of the pucks, multiple facing passes were required to make

each puck consistent. This is considered rough machining because the cutting feed rate was

set relatively high to decrease the overall machining time. After this roughing operation, the

exposed face of each puck was consistent and provided a control from which the finishing

operations were conducted. The second finishing operation consisted of a single facing

pass with a much slower feed rate to produce the desired surface finish.

After the puck was faced to the proper length, an insert drill measuring 0.75in in diam-

eter was used to drill the initial hole in the outward face of the yo-yo half. A boring bar was

used to widen the hole to the appropriate inner diameter. Finish profile passes, aesthetic

fillets, and final slow passes to achieve the desired surface finish were conducted with the

same tool used to complete the initial roughing passes, and 80◦ right handed turning tool.

After this process was completed, the aluminum puck was moved to Okuma Genos #2 for

machining operation on the other side of the part.

Operations conducted on Genos #2:

The backside of the aluminum puck also needed to be faced in the same manner as the

first operation on Genos #1. After the finishing facing pass was completed, the aluminum

yo-yo half was at its final length. Following the facing passes, a center drill and a small drill

were used to make the initial hole in the backside of the yo-yo, which is ultimately used

with a ground steel dowel in a press-fit the yo-yo halves together. This hole was precisely

machined to its final press-fit diameter with a small 0.25in diameter boring bar. A 0.001in

interference diameter was used for the press-fit. The final profile of the backside of the

yo-yo was machined with an 80 ◦ turning tool, and appropriate aesthetic fillets were added.
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A final finishing pass was used to achieve the desired surface finish of the yo-yo. After

all machining passes were completed, the yo-yo was removed from the second machine,

checked for dimensional accuracy within specified tolerances, and cleaned of cutting fluid.

The G-code used to program the machine is included in the appendix B for reference.

Figure 5.3: Cross section view of the Yo-yo produced from aluminum cylindrical pucks.
Features on the right side of the cross-section were completed on Genos #1. Features on
the left side of the cross-section were completed with Genos #2.

5.2 Data Acquisition

Once all the parts are made, pictures have been taken of these different parts from different

smartphone cameras under varying lightening conditions, orientations and backgrounds. A

total of 1280 images were captured. An expert’s judgement of the surface finish of the parts

resulted in labeling the corresponding images. Two directories of 640 images each are thus
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created, one for good surface and one for bad surface.

5.3 Splitting the Data

Splitting the data into training, validation and testing data is very important for the model

performance. The test and the validation dataset are chosen randomly from the same dis-

tribution. In order to train the CNN model, the data has to be splitted in training, validation

and testing datasets. It is custom to allocate 70 − 80% of the original data for training,

10− 15% for validation and 10− 15% for testing. Among the ways to perform this split is

to have 3 directories: one for training, one for validation and one for testing. Each of these

directories contains two sub-directories: one for images corresponding to a good surface

finish and one for bad surface finish. A python script in Appendix C is used to randomly

shuffle the data and perform the split into 490 images per class for the training dataset, 80

images per class for validation, and 70 images per class for testing. Once the script to split

the data is run, the data is organized in folders as shown in Figure 5.4.
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Figure 5.4: Splitting the dataset

5.4 Training and Testing Results using Resnet18 as Fixed Ferature Extractor and

PyTorch

5.4.1 PyTorch

PyTorch is a Python package aimed at accelerating deep learning applications, building on

the Torch library. PyTorch provides a Numpy-like abstraction for representing tensors, or

multiway arrays, and it can take advantage of GPUs for performance. PyTorch provides

various tools to load and preprocess the data in an easy way by using the Dataset class

and the transforms methods. The models subpackage of PyTorch contains multiple models
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pre-trained on ImageNet. A pre-trained model is created by calling its constructor from

torchvision.models and setting the parameter pretrained to True.

5.4.2 Preprocessing using PyTorch Dataset and Transforms

CNNs require in general few pre-processing. Since the size of the images in the dataset is

not consistent, the first pre-processing applied on the dataset is to resize all the samples to

256×256×3 and then crop the resized image in the center, since most of the images contain

the part in the center, in order to have an image of size 224× 224× 3. A random horizontal

flip is used on the training dataset for data augmentation. The images are then normalized

using the means [0.485, 0.456, 0.406] and standard deviations of [0.229, 0.224, 0.225]. Fig-

ure 5.5 shows a sample (6 images) randomly selected from the training dataset with their

corresponding labels.

Figure 5.5: Sample of the training dataset

5.4.3 ResNet18 as Fixed Feature Extractor

ResNet18 model is one of the Residual Networks that became very popular after winning

ILSVRC 2015 classification competition with top-5 error rate of 3.57%. ResNet architec-

tures have shown faster convergence and higher accuracy than its counterparts. ResNet18

is 18 layers deep and takes as input an image of size 224 × 224 × 3, and outputs a 1000

vector corresponding the the class scores. In order to use ResNet18 as a fixed feature

extractor, the weights are frozen by setting the parameter requires grad=False in order to

prevent the automatic differentiation package from computing the gradients with respect
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to these weights. In order to change the classifier to perform binary classification, the last

fully connected layer of the ResNet18 is reset to output a vector of 2 elements, as shown in

the snippet below.

m o d e l f t = models . r e s n e t 1 8 ( p r e t r a i n e d =True )

f o r param i n m o d e l f t . p a r a m e t e r s ( ) :

param . r e q u i r e s g r a d = F a l s e

n u m f t r s = m o d e l f t . f c . i n f e a t u r e s

m o d e l f t . f c = nn . L i n e a r ( n u m f t r s , 2 )

The Appendix D shows the architecture of ResNet18 at a layer level with the corresponding

parameters used.

5.4.4 Training

All the layers of the ResNet18 model are frozen, and thus only the weights of the last fully

connected layer get updated during the training. The mini batch size used for the training

is 64; meaning at each iteration(one forward and backward pass of each batch size), 64

samples of the training dataset are used. The cross entropy loss is used to quantify the

inaccuracy of predictions of the classifier. The optimization algorithm used is stochastic

gradient descent with momentum= 0.9 and a learning rate= 0.001. The number of epochs

(one forward pass and one backward pass of all the training samples) is set to 20. At every

epoch, the model obtained is tested on the validation set to monitor the performance of the

model. The training is done on CPU took 1h21min55s. An Nvidia GeForce GTX1080 is

also used to accelerate training to 1min47s. Figure 5.6 shows the evolution of the training

and validation loss during the training.
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Figure 5.6: Training VS Validation loss

Figure 5.7 shows the evolution of the accuracy of the model on the training and valida-

tion dataset at each epoch. Once the training is over, the model with the highest validation

accuracy is saved.

Figure 5.7: Training VS Validation accuracy

5.4.5 Test Results

The trained model is then loaded and the inference is ran on the test dataset in order to assess

the performance of the model. The accuracy, defined as as the ratio of correct predictions

out of all the predictions made, is appropriate to evaluate the robustness of the model since

the classes are balanced. The accuracy on the test dataset is equal to 137
140

= 97.86%. The

model is thus able to correctly label the surface of most of the images of the test dataset,
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misclassifying only 3 out of 140 samples. Figure 5.8 shows a sample from the test dataset,

with the model’s predicted classes on top and the actual labels in the bottom.

Figure 5.8: Sample of the test dataset with the Predicted Vs Actual labels

This result shows that the CNN model is a good candidate to automate the surface finish

inspection and replicate human judgement in a relatively accurate way.
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CHAPTER 6

ANDROID APPLICATION USING MOBILENET AND KERAS

In the goal of providing an affordable, available and robust automated surface finish in-

spection solution, an android app is designed to allow users to take a picture of a machined

part using a mobile device’s camera and run the inference to predict whether the image cor-

responds to a good or bad surface. Running such complex models on mobile devices faces

many challenges due to the limited computation resources, power and space. MobileNets

[39] overcome these challenges by proposing a small, low latency and accurate CNN for

mobile vision applications. Using MobileNet allows to perform inference locally on the

device in an efficient way regardless of internet connection.

6.1 MobileNets

MobileNets are a class of lightweight CNNs developed by a group of researchers at Google [39]

to provide an efficient solution to run inference on mobile devices. The main idea behind

MobileNets is using depthwise separable convolutions. Instead of performing the convo-

lution operation in the traditional way by multiplying the filter along the full depth of the

input and combining all the channels in one output, the MobileNet model performs the con-

volution operation on each depth slice separately by applying a single filter to each input

channel. A depth-wise convolution on a 3 channel image outputs a volume with 3 chan-

nels as well. A pointwise operation is then applied on the output volume of the depth-wise

convolution, which consists in a regular convolution but with a 1 × 1 kernel to combine

all the channels. A depthwise convolution followed by a pointwise convolution’s output is

referred to as a depthwise separable convolution. The Figure 6.1 from the original paper

shows the depthwise and pointwise convolutional filters in MobileNet compared to typical

convolutional filters in standard CNNs.
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Figure 6.1: The standard convolutional filters in (a) are replaced by two layers: a depthwise
convolution in (b) and a pointwise convolution in (c) to build a depthwise separable filter
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Separating the two operations reduces the computation and the model size. MobileNet

uses 3× 3 depthwise separable convolutions which showed a reduction of computation by

a factor of 8− 9 compared to standard convolutions with very low loss in accuracy.

6.2 Finetuning the MobileNet CNN

In this section, we use Keras to train the MobileNet CNN. Keras is an open source neu-

ral network library written in Python that runs on top of TensorFlow. TensorFlow is an

open source deep learning framework developed by Google Brain team within Googles AI

organization, that allows the acceleration of the computaion using GPUs and TPUs.

The pre-trained MobileNet model is available in the Keras applications library. The

model is imported and the weights are set to ’imagenet’ in order to use the model’s weights

pre-trained on ImageNet dataset. The include top parameter is set to False in order to

discard the last fully connected layer. We add two dense layers (fully connected layers)

with ReLU activations to fit the training dataset and a final layer with softmax activation in

order to obtain the probabilities. The full 30 layers MobileNet network and the three added

layers are shown in Appendix E.

base mode l =Mobi leNet ( w e i g h t s = ’ i m a g e n e t ’ , i n c l u d e t o p = F a l s e )

x= base mode l . o u t p u t

x= Globa lAveragePoo l ing2D ( ) ( x )

x=Dense ( 1 0 2 4 , a c t i v a t i o n = ’ r e l u ’ ) ( x )

x=Dense ( 5 1 2 , a c t i v a t i o n = ’ r e l u ’ ) ( x )

p r e d s =Dense ( 2 , a c t i v a t i o n = ’ so f tmax ’ ) ( x ) # f i n a l l a y e r wi th so f tmax a c t i v a t i o n

The first 20 layers of MobileNets are frozen to reduce overfitting and the rest of the

layers are finetuned during training.

6.2.1 Training

The dataset used for training is the same as the training dataset used in the previous section

to train ResNet18. The same pre-processing steps are followed: normalization, shuffling,

50



Figure 6.2: Training VS Validation loss

Figure 6.3: Training VS Validation accuracy

random horizontal flipping for the train dataset, resizing to 256×256×3 and center cropping

to obtain a 224× 224× 3 input tensor. The data is loaded in batches of 64. The categorical

cross-entropy is used as the loss function. In order to update the weights, Adam optimizer

is used with an initial learning rate = 0.0001. The training is done using 10 epochs. The

environment used to perform the training is the online editor Colaboratory, which provides

a GPU in order to accelerate the training. The training took 1h32min14s using 10 epochs.

The hyperparameters are manually tuned in order to get the best model. Figure 6.2 shows

the loss on the training and validation datasets of the model at every epoch.

Figure 6.3 shows the accuracy of the trained model at every epoch on the training and

the validation dataset.
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6.2.2 Test Results

The trained model is saved and the inference is ran on the test dataset. We define here

positive as being labelled good surface and negative as bad surface. TP stands for True

Positive, FP: False Positive, TN: True Negative and FN: False Negative. We use the test

dataset to assess the goodness of the model trained. The results obtained are:

• Accuracy = 98.57%

• True positive(good surface) rate = TP
TP+FN

= 68
70

= 79.14%

• True negative(bad surface) = TN
TN+FP

= 70
70

= 100%

The two test images that were misclassified are:

Figure 6.4: Predicted: bad surface
Actual: good surface

6.3 Android Application

6.3.1 Developing the Android App

The Android app consists of two major components. The MainActivity is responsible for

taking the photo and the ImageClassifier uses the pretrained model (in form of protobuf

file) to classify the photo.

The workflow of the Android App is shown in Figure 6.5:
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Figure 6.5: Workflow of the Android app

The Android app takes a photo then using the onActivityResult() we make a call to

classify it. The interface method takes a Bitmap parameter as input which is our image and

returns a Result. The Result class has two attributes: a result string (Good Surface or Bad

Surface) and a confidence vector (the output scores of the softmax function of the model as

probabilities of both classes). Once the inference is done, we use the probabilities vector

to decide which class has the highest probability and attribute the corresponding label.

ImageClassifierFactory is created inside the createClassifier() function of the MainActivity

class. The assets parameter is an AssetManager instance. The other parameters are placed

in the Constants class.

The app uses two files which paths are provided as inputs: the labels file and the protobuf

(the model) file.

• GRAPH FILE PATH: the path to our classifier file in the assets folder which has our

saved neural network graph/model. (output graph.pb)

• LABELS FILE PATH: the path to our labels file in the assets folder. The labels for

us are just ’good surface’ and ’bad surface’. (output.txt)

• GRAPH INPUT NAME: the name of the input layer of our graph. (input 10)

• GRAPH OUTPUT NAME: name of the output layer of our graph. (k2tfout 0)
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• IMAGE SIZE: the model was trained with image pixels 224 × 224.

• COLOR CHANNELS: 3 (RGB).

Once the image is captured by the device’s camera, the image pixels are passed to the

classifyPhoto() method. Inside this method, we crop the bitmap to fit 224× 224× 3 pixels.

After this operation we call recognizeImage() method on our classifier instance and we

get the results. To crop the image, we use ImageUtils.getCroppedBitmap(). The Factory

creates the instance of the classifier. We pass the following parameters from the Activity

class:

• Labels: FileUtils class is used to provide the list of strings representing the labels. In

our case, as we are performing a binary classification, we have 2 labels.

• ImageBitmapPixels: the array that we allocate based on the image size.

• ImageNormalizedPixels: based on the image size and color channels needed for the

inference, we allocate the array. In our app, the dimensions are 224× 224× 3.

Results: Classifier will assign the probability to each of the classes.

The classification process consists of three steps:

Step 1: feed the classifier’s feed() Method: We pass three parameters namely input name,

array with normalized values and dimensions of the input.

Step 2: feed the classifier’s therun() method: We pass two parameters: an array with two

possible outputs and a flag to enable stats.

Step 3: get Results using the fetch() method: The output name from which we want to

take the results and the float array which has probabilities assigned to the class.

6.3.2 Testing the Android App

The Android app is tested on a Nexus 7 tablet with android version 6.0.1. The layout of

the app is shown below in Figure 6.6. When the app is launched, the camera starts and the
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layout on the left-side is seen. The small camera logo in the center bottom of the screen

allows to capture the image. Once the image is taken and the user is ready to classify it, the

check button can be clicked to process the image.

(a) Camera on to capture the image (b) Validate and proceed to classify

Figure 6.6: Android App

The inference takes in average 1.90±0.27 seconds to output the result of the classifica-

tion method, which confirms the inference speed of MobileNet models on mobile devices.

The Figure 6.12 shows the output of the app for a bad surface image on the left, and a good

surface on the right.
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(a) Bad Surface (b) Good Surface

Figure 6.7: Android App

Varying the angles:

Using the same Nexus 7 tablet, we take pictures of parts from different angles. The results

are shown below:
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Figure 6.8: Bad surface finish detected from different angles
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Figure 6.9: Good surface finish detected from different angles

These tests show that the app is, in most cases, resistant to varying the angles and the

positions of the parts.

Varying the lighting:

We vary the shadows and the lighting conditions under which the pictures are taken to test

to app.
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Figure 6.10: Bad surface finish detected under different lighting conditions
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Figure 6.11: Good surface finish detected under different lighting conditions

These tests show that the app is able to correctly classify the images of the surfaces in

most of the cases under varying lighting conditions. However, in some cases, if the surface

is bad but it looks shiny on the camera the probability of it being a bad surface drops and is

sometimes misclassified. The two images below show that the probability is low when the

surface is bad, but is put in an angle where it appears shiny, and is misclassified when it is

reflecting light and seems like a shiny surface.
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Figure 6.12: Bad surface finish parts misclassified under bright light
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CHAPTER 7

CONCLUSION AND RECOMMENDATIONS

In this thesis work, we propose a framework to automate the surface finish inspection of

aluminum parts. The CNN models used ResNet18 as well as MobileNet show the power

of CNN to classify images and perform a surface finish inspection with only pictures of

the surfaces as input. Our approach doesn’t require any special hardware or data collection

from the manufacturing process. Both models achieved a high classification accuracy and

were resistant to variations in lightening conditions, backgrounds, shapes, sizes, angles and

positions. The framework proposed in this work overcomes the limitations of the manual

approach: not consistent, subject to human errors, not adapted to fast-paced and mass

production environments; as well as the current automated surface inspections methods:

not limited to a range of surface roughness, requires no special hardware set-up, resistant

to hostile machine shop environment. A camera of a mobile device is sufficient to capture

an image and perform the classification locally with no need for internet connection. This

work thus aims at providing an affordable and easy solution to use in machine shops.

Some of the limitations of this work are related to the restricted dataset used to train

and test. The dataset can be enriched to include more complex shapes of parts and tested

on a variety of surfaces to ensure the model’s robustness. Based on the high accuracy

achieved by the current models on this dataset, we presume that the model can be success-

fully transferable to richer datasets. All the parts used in this work are aluminum, surface

finish inspection of other materials can be included as a future direction. This work can

be carried further to assigning the exact surface roughness Ra to the corresponding images

instead of simply performing a binary classification. A feedback loop can be used to opti-

mize the manufacturing process based on the surface finish inspection of the manufactured

parts.
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APPENDIX A

G-CODE OF THE FACING OPERATION

1 (FACING OPERATION)

2

3 G50 S3000 (RPM, MAX SPINDLE SPEED)

4 G0X[VPVLX]

5 Z [VPVLZ]

6

7 (CHANGE TO TOOL 5)

8 T050505

9

10 G95 ( SET FEED UNITS FOR MM/REV)

11

12 G96 S250 M3 ( SET CONSTANT SURFACE SPEED ON)

13

14 FCTA=0.05

15

16 (COOLANT ON)

17 M8

18

19 (APPROACH)

20 G0 X80 Z15

21

22 M1 (OPTIONAL STOP , VERIFY LOCATION)

23 G0 Z5

24 M1 (OPTIONAL STOP , VERIFY LOCATION)

25

26 (BEGIN AT Z=5 MM AWAY FROM PART)

27 (FACE TO Z=−2MM INTO PART)

28 (CUT DEPTH = 1MM PER PASS )

29 (VARY CUTTING FEED IF NEEDED)

30

31 (APPROACH)

32

33 G1 Z0 . 2 5 F [FCTA]

34 G1 X−1 F [FCTA]

35 G0 Z1 . 2 5
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36 X80

37

38 G1 Z0 F [FCTA]

39 G1 X−1 F [FCTA]

40 G0 Z1

41 X80

42

43 G1 Z−0.25 F [FCTA]

44 G1 X−1 F [FCTA]

45 G0 Z0 . 7 5

46 X80

47

48 G1 Z−0.5F [FCTA]

49 G1 X−1 F [FCTA]

50 G0 Z0 . 5

51 X80

52

53 (MOVE AWAY FROM PART)

54 G0 X150

55 Z50

56

57 (GO TO HOME POSITION )

58 G0 X[VPVLX]

59 Z [VPVLZ]

60

61 M30

62 (END OF PROGRAM)
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APPENDIX B

G-CODE OF THE YO-YO PRODUCTION

1 (OKONEV. MIN)

2 ( T00 D=0 . CR=0 . − ZMIN=−11.75 − BORING TURNING)

3 ( T01 D=0 . CR=0 . − ZMIN=−11.75 − GENERAL TURNING)

4 ( T04 D=0 . CR=0 . − ZMIN=−11.496 − BORING TURNING)

5

6 G0 Z [VPVLZ]

7 X[VPVLX]

8

9 G50 S3000

10

11

12 (FACE5)

13 M1

14 G0 Z [VPVLZ]

15 X[VPVLX]

16

17 T050505

18

19 M8

20 G95

21 G50 S3000

22 G96 S200 M3

23 G0 X77 . 1 5 Z5 . 9

24 G0 Z2 . 3 1 4

25 G1 X59 . 9 7 8 F0 . 3

26 X57 . 1 5 Z0 . 9

27 X−2.381

28 X0. 4 4 7 Z2 . 3 1 4

29 G0 X77 . 1 5

30 Z1 . 8 1 4

31 G1 X59 . 9 7 8 F0 . 3

32 X57 . 1 5 Z0 . 4

33 X−2.381

34 X0. 4 4 7 Z1 . 8 1 4

35 G0 X77 . 1 5
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36 Z1 . 5 1 4

37 G1 X59 . 9 7 8 F0 . 3

38 X57 . 1 5 Z0 . 1

39 X−2.381

40 X0. 4 4 7 Z1 . 5 1 4

41 G0 X77 . 1 5

42 Z5 . 9

43

44 G0 Z [VPVLZ]

45 X[VPVLX]

46

47

48 ( DRILL1 )

49 M1

50 G0 Z [VPVLZ]

51 X[VPVLX]

52 T070717 ( T7 DRILL OFFSET )

53

54 G95

55 G97 S1000 M3

56 G0 Z13 . 9

57 X0 .

58

59 G0 Z5 . 9

60

61 G74 X0 . Z−11.75 D1 . L1 . K4 I0 F0 . 1

62

63 Z13 . 9

64

65 G0 Z [VPVLZ]

66 X[VPVLX]

67

68 ( PROFILE1 )

69 M1

70 G0 Z [VPVLZ]

71 X[VPVLX]

72 T020202

73

74 M8

75 G95

76 G50 S3000
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77 G96 S300 M3

78

79 G0 X23 . 8 Z5 . 9

80 G0 Z1 . 8 6 4

81 G1 X23 . 9 1 4 F0 . 1

82 X25 . 8 Z0 . 1

83 Z−11.496

84 X23 . 8

85 G0 Z1 . 5 1 4

86 X24 . 9 7 2

87 G1 X27 . 8 Z0 . 1 F0 . 1

88 Z−11.496

89 X24 . 8

90 G0 Z1 . 5 1 4

91 X26 . 9 7 2

92 G1 X29 . 8 Z0 . 1 F0 . 1

93 Z−11.216

94 X28 . 6 9 6 Z−11.496

95 X26 . 8

96 X23 . 9 7 2 Z−10.082

97 G0 Z1 . 5 1 4

98 X28 . 9 7 2

99 G1 X31 . 8 Z0 . 1 F0 . 1

100 Z−10.709

101 X28 . 8 Z−11.47

102 X25 . 9 7 2 Z−10.055

103 G0 Z1 . 5 1 4

104 X30 . 9 7 2

105 G1 X33 . 8 Z0 . 1 F0 . 1

106 Z−10.202

107 X30 . 8 Z−10.963

108 X27 . 9 7 2 Z−9.548

109 G0 Z1 . 5 1 4

110 X32 . 9 7 2

111 G1 X35 . 8 Z0 . 1 F0 . 1

112 Z−9.695

113 X32 . 8 Z−10.456

114 X29 . 9 7 2 Z−9.041

115 G0 Z1 . 5 1 4

116 X34 . 9 7 2

117 G1 X37 . 8 Z0 . 1 F0 . 1
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118 Z−9.188

119 X34 . 8 Z−9.949

120 X31 . 9 7 2 Z−8.534

121 G0 Z1 . 5 1 4

122 X36 . 9 7 2

123 G1 X39 . 8 Z0 . 1 F0 . 1

124 Z−8.681

125 X36 . 8 Z−9.442

126 X33 . 9 7 2 Z−8.027

127 G0 Z1 . 5 1 4

128 X38 . 9 7 2

129 G1 X41 . 8 Z0 . 1 F0 . 1

130 Z−8.174

131 X38 . 8 Z−8.935

132 X35 . 9 7 2 Z−7.52

133 G0 Z1 . 5 1 4

134 X40 . 9 7 2

135 G1 X43 . 8 Z0 . 1 F0 . 1

136 Z−1.1

137 G2 X43 . 4 9 2 Z−1.9 L2 . 1 5 4

138 G1 Z−7.745

139 X40 . 8 Z−8.427

140 X37 . 9 7 2 Z−7.013

141 G0 Z1 . 5 1 4

142 X42 . 9 7 2

143 G1 X45 . 8 Z0 . 1 F0 . 1

144 Z0 . 0 0 8

145 G2 X43 . 4 9 2 Z−1.9 L2 . 1 5 4

146 G1 X40 . 6 6 4 Z−0.486

147 G0 Z1 . 5 1 4

148 X43 . 0 6 9

149 G1 X43 . 3 7 2 F0 . 1

150 X46 . 2 0 1 Z0 . 1

151 G2 X44 . 8 Z−0.354 L2 . 1 5 4

152 G1 X41 . 9 7 2 Z1 . 0 6

153 G0 X23 . 8

154 Z5 . 9

155 G0 Z [VPVLZ]

156 X[VPVLX]

157

158 (BORE−F )
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159 M1

160 G0 Z [VPVLZ]

161 X[VPVLX]

162

163 T020202

164

165 G95

166 G50 S3000

167 G96 S200 M3

168 G0 X0 . Z5 . 9

169 G0 Z1 . 4 1 4

170 X42 . 0 1 2

171 G1 X54 . 3 0 2 F0 . 0 9

172 X57 . 1 3 Z0 .

173 X47 . 8

174 G2 X44 . Z−1.9 L1 . 9

175 G1 Z−7.901

176 X28 . 8 1 8 Z−11.75

177 X0 .

178 G0 Z5 . 9

179

180 G0 Z [VPVLZ]

181 X[VPVLX]

182

183 ( PROFILE6 )

184 M1

185 G0 Z [VPVLZ]

186 X[VPVLX]

187

188 T050505

189

190 G95

191 G50 S3000

192 G96 S250 M3

193 G0 X77 . 1 5 Z5 . 9

194 G0 Z1 . 4 1 4

195 X58 . 4 1 9

196 G1 X54 . 2 5 1 F0 . 3

197 X51 . 4 2 3 Z0 .

198 G3 X56 . Z−2.291 L2 . 2 9 1 F0 . 1

199 G1 Z−6.191
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200 X58 . 8 2 8 Z−4.776 F0 . 3

201 X60 .

202 G0 X77 . 1 5

203 Z5 . 9

204

205 G0 Z [VPVLZ]

206 X[VPVLX]

207

208 M9

209

210 M30

211 %

1 ( 1 0 0 1 .MIN)

2 ( T01 D=0 . CR=0 . − ZMIN=−14.148 − GENERAL TURNING)

3 ( T02 D=6.325 CR=0 . − ZMIN=−2. − REAMER)

4 ( T08 D=0 . CR=0 . − ZMIN=−16.647 − GENERAL TURNING)

5

6 G0 Z [VPVLZ]

7 X[VPVLX]

8

9 G50 S3000

10

11

12 (ROUGHFACE)

13 M1

14 G0 Z [VPVLZ]

15 X[VPVLX]

16

17 T060606

18

19 M8

20 G95

21 G50 S3000

22 G96 S250 M3

23

24 G0 X77 . 1 5 Z7 . 4 3

25 G0 Z2 . 8 3 2

26 G1 X58 . 5 6 4 F0 . 3 5

27 X57 . 1 5 Z2 . 1 2 5

28 X−2.381

29 X−0.967 Z2 . 8 3 2
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30 G0 X77 . 1 5

31 Z1 . 8 3 2

32 G1 X58 . 5 6 4 F0 . 3 5

33 X57 . 1 5 Z1 . 1 2 5

34 X−2.381

35 X−0.967 Z1 . 8 3 2

36 G0 X77 . 1 5

37 Z0 . 8 3 2

38 G1 X58 . 5 6 4 F0 . 3 5

39 X57 . 1 5 Z0 . 1 2 5

40 X−2.381

41 X−0.967 Z0 . 8 3 2

42 G0 X77 . 1 5

43 Z7 . 4 3

44

45 G0 Z [VPVLZ]

46 X[VPVLX]

47

48 (CENTERDRILL)

49 M1

50 G0 Z [VPVLZ]

51 X[VPVLX]

52

53 T101010

54

55 M8

56 G95

57 G97 S2400 M3

58

59 G0 X0 . Z17 . 4 3

60

61 G0 Z7 . 4 3

62

63 G1 Z−2. F0 . 1 5

64

65 G0 Z7 . 4 3

66

67 G0 Z [VPVLZ]

68 X[VPVLX]

69

70 ( DRILL2 D DRILL )
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71 M1

72 G0 Z [VPVLZ]

73 X[VPVLX]

74

75 T080808

76

77 G95

78 G97 S2400 M3

79

80 G0 X0 . Z17 . 4 3

81 G0 Z7 . 4 3

82

83 G74 X0 . Z−5.5 D2 L1 K4 I0 F0 . 0 6

84

85 G0 Z7 . 4 3

86

87 G0 Z [VPVLZ]

88 X[VPVLX]

89

90 (ROUGHPROF)

91 M1

92 G0 Z [VPVLZ]

93 X[VPVLX]

94

95 T060606

96

97 G95

98 G50 S3000

99 G96 S300 M3

100

101 G0 X77 . 1 5 Z7 . 4 3

102 G0 Z2 . 9 1 6

103 X60 . 1 7 4

104 G1 X57 . 5 6 4 F0 . 3

105 X56 . 1 5 Z2 . 2 0 9

106 Z−11.088

107 G3 X57 . 1 5 Z−12.025 L3 . 9 7 6

108 G1 X58 . 5 6 4 Z−12.732

109 G0 Z3 . 1 2 2

110 X56 . 5 6 4

111 G1 X55 . 1 5 Z2 . 4 1 5 F0 . 3
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112 Z−10.518

113 G3 X56 . 6 5 Z−11.482 L3 . 9 7 6

114 G1 X58 . 0 6 4 Z−12.189

115 G0 Z3 . 1 3 7

116 X55 . 5 6 4

117 G1 X54 . 1 5 Z2 . 4 3 F0 . 3

118 Z−10.118

119 G3 X55 . 6 5 Z−10.776 L3 . 9 7 6

120 G1 X57 . 0 6 4 Z−11.483

121 G0 Z3 . 1 3 7

122 X54 . 5 6 4

123 G1 X53 . 1 5 Z2 . 4 3 F0 . 3

124 Z−9.83

125 X53 . 2 9 5 Z−9.867

126 G3 X54 . 6 5 Z−10.302 L3 . 9 7 6

127 G1 X56 . 0 6 4 Z−9.594

128 G0 Z3 . 1 3 7

129 X53 . 5 6 4

130 G1 X52 . 1 5 Z2 . 4 3 F0 . 3

131 Z−9.576

132 X53 . 2 9 5 Z−9.867

133 G3 X53 . 6 5 Z−9.962 L3 . 9 7 6

134 G1 X55 . 0 6 4 Z−9.255

135 G0 Z3 . 1 3 7

136 X52 . 5 6 4

137 G1 X51 . 1 5 Z2 . 4 3 F0 . 3

138 Z−9.323

139 X52 . 6 5 Z−9.703

140 X54 . 0 6 4 Z−8.996

141 G0 Z3 . 1 3 7

142 X51 . 5 6 4

143 G1 X50 . 1 5 Z2 . 4 3 F0 . 3

144 Z−9.069

145 X51 . 6 5 Z−9.45

146 X53 . 0 6 4 Z−8.742

147 G0 Z3 . 1 3 7

148 X50 . 5 6 4

149 G1 X49 . 1 5 Z2 . 4 3 F0 . 3

150 Z−8.816

151 X50 . 6 5 Z−9.196

152 X52 . 0 6 4 Z−8.489
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153 G0 Z3 . 1 3 7

154 X49 . 5 6 4

155 G1 X48 . 1 5 Z2 . 4 3 F0 . 3

156 Z−8.562

157 X49 . 6 5 Z−8.943

158 X51 . 0 6 4 Z−8.235

159 G0 Z3 . 1 3 7

160 X48 . 5 6 4

161 G1 X47 . 1 5 Z2 . 4 3 F0 . 3

162 Z−8.309

163 X48 . 6 5 Z−8.689

164 X50 . 0 6 4 Z−7.982

165 G0 Z3 . 1 3 7

166 X47 . 5 6 4

167 G1 X46 . 1 5 Z2 . 4 3 F0 . 3

168 Z−8.055

169 X47 . 6 5 Z−8.436

170 X49 . 0 6 4 Z−7.728

171 G0 Z3 . 1 3 7

172 X46 . 5 6 4

173 G1 X45 . 1 5 Z2 . 4 3 F0 . 3

174 Z−7.802

175 X46 . 6 5 Z−8.182

176 X48 . 0 6 4 Z−7.475

177 G0 Z3 . 1 3 7

178 X45 . 5 6 4

179 G1 X44 . 1 5 Z2 . 4 3 F0 . 3

180 Z−7.548

181 X45 . 6 5 Z−7.928

182 X47 . 0 6 4 Z−7.221

183 G0 Z3 . 1 3 7

184 X44 . 5 6 4

185 G1 X43 . 1 5 Z2 . 4 3 F0 . 3

186 Z−7.295

187 X44 . 6 5 Z−7.675

188 X46 . 0 6 4 Z−6.968

189 G0 Z3 . 1 3 7

190 X43 . 5 6 4

191 G1 X42 . 1 5 Z2 . 4 3 F0 . 3

192 Z−7.041

193 X43 . 6 5 Z−7.421
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194 X45 . 0 6 4 Z−6.714

195 G0 Z3 . 1 3 7

196 X42 . 5 6 4

197 G1 X41 . 1 5 Z2 . 4 3 F0 . 3

198 Z−6.788

199 X42 . 6 5 Z−7.168

200 X44 . 0 6 4 Z−6.461

201 G0 Z3 . 1 3 7

202 X41 . 5 6 4

203 G1 X40 . 1 5 Z2 . 4 3 F0 . 3

204 Z−6.534

205 X41 . 6 5 Z−6.914

206 X43 . 0 6 4 Z−6.207

207 G0 Z3 . 1 3 7

208 X40 . 5 6 4

209 G1 X39 . 1 5 Z2 . 4 3 F0 . 3

210 Z−6.281

211 X40 . 6 5 Z−6.661

212 X42 . 0 6 4 Z−5.954

213 G0 Z3 . 1 3 7

214 X39 . 5 6 4

215 G1 X38 . 1 5 Z2 . 4 3 F0 . 3

216 Z−6.027

217 X39 . 6 5 Z−6.407

218 X41 . 0 6 4 Z−5.7

219 G0 Z3 . 1 3 7

220 X38 . 5 6 4

221 G1 X37 . 1 5 Z2 . 4 3 F0 . 3

222 Z−5.774

223 X38 . 6 5 Z−6.154

224 X40 . 0 6 4 Z−5.447

225 G0 Z3 . 1 3 7

226 X37 . 5 6 4

227 G1 X36 . 1 5 Z2 . 4 3 F0 . 3

228 Z−5.52

229 X37 . 6 5 Z−5.9

230 X39 . 0 6 4 Z−5.193

231 G0 Z3 . 1 3 7

232 X36 . 5 6 4

233 G1 X35 . 1 5 Z2 . 4 3 F0 . 3

234 Z−5.267
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235 X36 . 6 5 Z−5.647

236 X38 . 0 6 4 Z−4.94

237 G0 Z3 . 1 3 7

238 X35 . 5 6 4

239 G1 X34 . 1 5 Z2 . 4 3 F0 . 3

240 Z−5.013

241 X35 . 6 5 Z−5.393

242 X37 . 0 6 4 Z−4.686

243 G0 Z3 . 1 3 7

244 X34 . 5 6 4

245 G1 X33 . 1 5 Z2 . 4 3 F0 . 3

246 Z−4.76

247 X34 . 6 5 Z−5.14

248 X36 . 0 6 4 Z−4.433

249 G0 Z3 . 1 3 7

250 X33 . 5 6 4

251 G1 X32 . 1 5 Z2 . 4 3 F0 . 3

252 Z−4.506

253 X33 . 6 5 Z−4.886

254 X35 . 0 6 4 Z−4.179

255 G0 Z3 . 1 3 7

256 X32 . 5 6 4

257 G1 X31 . 1 5 Z2 . 4 3 F0 . 3

258 Z−4.253

259 X32 . 6 5 Z−4.633

260 X34 . 0 6 4 Z−3.926

261 G0 Z3 . 1 3 7

262 X31 . 5 6 4

263 G1 X30 . 1 5 Z2 . 4 3 F0 . 3

264 Z−3.999

265 X31 . 6 5 Z−4.379

266 X33 . 0 6 4 Z−3.672

267 G0 Z3 . 1 3 7

268 X30 . 5 6 4

269 G1 X29 . 1 5 Z2 . 4 3 F0 . 3

270 Z−3.746

271 X30 . 6 5 Z−4.126

272 X32 . 0 6 4 Z−3.419

273 G0 Z3 . 1 3 7

274 X29 . 5 6 4

275 G1 X28 . 1 5 Z2 . 4 3 F0 . 3
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276 Z−3.492

277 X29 . 6 5 Z−3.872

278 X31 . 0 6 4 Z−3.165

279 G0 Z3 . 1 3 7

280 X28 . 5 6 4

281 G1 X27 . 1 5 Z2 . 4 3 F0 . 3

282 Z−3.238

283 X28 . 6 5 Z−3.619

284 X30 . 0 6 4 Z−2.912

285 G0 Z3 . 1 3 7

286 X27 . 5 6 4

287 G1 X26 . 1 5 Z2 . 4 3 F0 . 3

288 Z−2.985

289 X27 . 6 5 Z−3.365

290 X29 . 0 6 4 Z−2.658

291 G0 Z3 . 1 3 7

292 X26 . 5 6 4

293 G1 X25 . 1 5 Z2 . 4 3 F0 . 3

294 Z−2.731

295 X26 . 6 5 Z−3.112

296 X28 . 0 6 4 Z−2.405

297 G0 Z3 . 1 3 7

298 X25 . 5 6 4

299 G1 X24 . 1 5 Z2 . 4 3 F0 . 3

300 Z−2.478

301 X25 . 6 5 Z−2.858

302 X27 . 0 6 4 Z−2.151

303 G0 Z3 . 1 3 7

304 X24 . 5 6 4

305 G1 X23 . 1 5 Z2 . 4 3 F0 . 3

306 Z−2.224

307 X24 . 6 5 Z−2.605

308 X26 . 0 6 4 Z−1.898

309 G0 Z3 . 1 3 7

310 X23 . 5 6 4

311 G1 X22 . 1 5 Z2 . 4 3 F0 . 3

312 Z−1.971

313 X23 . 6 5 Z−2.351

314 X25 . 0 6 4 Z−1.644

315 G0 Z3 . 1 3 7

316 X22 . 5 6 4
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317 G1 X21 . 1 5 Z2 . 4 3 F0 . 3

318 Z−1.717

319 X22 . 6 5 Z−2.098

320 X24 . 0 6 4 Z−1.391

321 G0 Z3 . 1 3 7

322 X21 . 5 6 4

323 G1 X20 . 1 5 Z2 . 4 3 F0 . 3

324 Z−1.464

325 X21 . 6 5 Z−1.844

326 X23 . 0 6 4 Z−1.137

327 G0 Z3 . 1 3 7

328 X20 . 5 6 4

329 G1 X19 . 1 5 Z2 . 4 3 F0 . 3

330 Z−1.21

331 X20 . 6 5 Z−1.591

332 X22 . 0 6 4 Z−0.884

333 G0 Z3 . 1 3 7

334 X19 . 5 6 4

335 G1 X18 . 1 5 Z2 . 4 3 F0 . 3

336 Z−0.957

337 X19 . 6 5 Z−1.337

338 X21 . 0 6 4 Z−0.63

339 G0 Z3 . 1 3 7

340 X18 . 5 6 4

341 G1 X17 . 1 5 Z2 . 4 3 F0 . 3

342 Z−0.703

343 X18 . 6 5 Z−1.084

344 X20 . 0 6 4 Z−0.377

345 G0 Z3 . 1 3 7

346 X17 . 5 6 4

347 G1 X16 . 1 5 Z2 . 4 3 F0 . 3

348 Z−0.45

349 X17 . 6 5 Z−0.83

350 X19 . 0 6 4 Z−0.123

351 G0 Z3 . 1 3 7

352 X16 . 5 6 4

353 G1 X15 . 1 5 Z2 . 4 3 F0 . 3

354 Z−0.196

355 X16 . 6 5 Z−0.577

356 X18 . 0 6 4 Z0 . 1 3 1

357 G0 Z3 . 1 3 7
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358 X15 . 6 8 9

359 G1 X14 . 2 7 5 Z2 . 4 3 F0 . 3

360 Z0 . 0 2 5

361 X15 . 6 5 Z−0.323

362 X17 . 0 6 4 Z0 . 3 8 4

363 G0 Z3 . 1 3 7

364 X14 . 8 1 4

365 G1 X13 . 4 Z2 . 4 3 F0 . 3

366 Z0 . 2 4 7

367 X14 . 7 7 5 Z−0.101

368 X16 . 1 8 9 Z0 . 6 0 6

369 G0 Z0 . 8 3 2

370 G1 X14 . 8 1 4 F0 . 3

371 X13 . 4 Z0 . 1 2 5

372 Z−0.538 F0 . 0 9 7

373 X52 . 6 6 2 Z−10.491

374 G3 X56 . 2 5 Z−13.412 L3 . 2 7 6

375 G1 Z−13.441

376 X57 . 6 6 4 Z−14.148 F0 . 3

377 X59 . 9 9 1

378 G0 X77 . 1 5

379 Z7 . 4 3

380

381 G0 Z [VPVLZ]

382 X[VPVLX]

383

384

385 ( FINFACE )

386 M1

387 G0 Z [VPVLZ]

388 X[VPVLX]

389 T040404

390

391 G95

392 G50 S3000

393 G96 S250 M3

394

395 G0 X87 . 1 5 Z7 . 4 3

396 G0 Z0 . 7 0 7

397 G1 X58 . 5 6 4 F0 . 3 5

398 X57 . 1 5 Z0 .
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399 X−0.794

400 X0 . 6 2 Z0 . 7 0 7

401 G0 X87 . 1 5

402 Z7 . 4 3

403

404 G0 Z [VPVLZ]

405 X[VPVLX]

406

407

408 ( FINPROF )

409 M1

410 G0 Z [VPVLZ]

411 X[VPVLX]

412

413 G95

414 G50 S3000

415 G96 S500 M3

416

417 G0 Z7 . 4 3

418 X77 . 1 5

419 Z1 . 4 1 4

420 X15 . 6 4 4

421 G1 X14 . 8 2 8 F0 . 1 2

422 X12 . Z0 .

423 Z−0.021

424 G3 X12 . 1 0 4 Z−0.043 L0 . 3 9 7

425 G1 X53 . 4 1 8 Z−10.517

426 G3 X56 . Z−12.619 L2 . 3 5 7

427 G1 Z−16.547

428 G3 X55 . 9 9 3 Z−16.647 L1 . 4 9 7

429 G1 X58 . 8 2 2 Z−15.233

430 X60 .

431 G0 X77 . 1 5

432 Z7 . 4 3

433

434 G0 Z [VPVLZ]

435 X[VPVLX]

436

437 (HOLE BORING OPERATION)

438 M1

439 G0 Z [VPVLZ]
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440 X[VPVLX]

441

442 T121212

443

444 M8

445 G96 S200 M3

446 G95

447

448 (APPROACH)

449 G0 X6 . Z15 .

450 G0 Z2 .

451 G0 X6. 4 7 3 (BORE DIAMETER = .2489 IN )

452 M1 (CHECK BORE PLACEMENT)

453

454 G1 Z1 F0 . 0 2

455

456 (BORE PRESSFIT DIA )

457 G1 Z−4.5 F0 . 0 2

458

459 (MOVE SLIGHTLY INWARD BEFORE RETRACT)

460 X6 . 3 5

461

462 G0 Z2 (CHANGE TO RAPID OUT)

463

464 G0 Z [VPVLZ]

465 X[VPVLX]

466

467 M9

468 M30

469 %
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APPENDIX C

PYTHON SCRIPT FOR SPLITTING THE DATA

1 i m p o r t os

2 i m p o r t random

3 from PIL i m p o r t Image

4

5 # O r i g i n a l d i r e c t o r y wi th two s u b f o l d e r s :

6 # g o o d s u r f a c e : c o n t a i n i n g a l l 640 images o f good s u r f a c e s

7 # b a d s u r f a c e : c o n t a i n i n g a l l 640 images o f bad s u r f a c e s

8 o r i g d i r = ” o r i g i n a l ”

9 g o o d d i r = os . p a t h . j o i n ( o r i g d i r , ’ g o o d s u r f a c e ’ )

10 b a d d i r = os . p a t h . j o i n ( o r i g d i r , ’ b a d s u r f a c e ’ )

11

12 g o o d s u r f a c e f i l e s = os . l i s t d i r ( g o o d d i r )

13 b a d s u r f a c e f i l e s = os . l i s t d i r ( b a d d i r )

14 random . s h u f f l e ( g o o d s u r f a c e f i l e s )

15 random . s h u f f l e ( b a d s u r f a c e f i l e s )

16

17 # t e s t d a t a s e t

18 t e s t g o o d = g o o d s u r f a c e f i l e s [ : 7 0 ]

19 t e s t b a d = b a d s u r f a c e f i l e s [ : 7 0 ]

20

21 # v a l i d a t i o n d a t a s e t

22 v a l g o o d = g o o d s u r f a c e f i l e s [ 7 0 : 1 5 0 ]

23 v a l b a d = b a d s u r f a c e f i l e s [ 7 0 : 1 5 0 ]

24

25 # t r a i n d a t a s e t

26 t r a i n g o o d = g o o d s u r f a c e f i l e s [ 1 5 0 : ]

27 t r a i n b a d = b a d s u r f a c e f i l e s [ 1 5 0 : ]

28

29 d e f save ( s u r f a c e , d a t a s e t , l i s t f i l e s ) :

30 s o u r c e = os . p a t h . j o i n ( ’ o r i g i n a l ’ , ’{} s u r f a c e ’ . f o r m a t ( s u r f a c e ) )

31 t a r g e t p a t h = os . p a t h . j o i n ( ’ da t a ’ , d a t a s e t )

32 t a r g e t = os . p a t h . j o i n ( t a r g e t p a t h , ’{} s u r f a c e ’ . f o r m a t ( s u r f a c e ) )

33 i f n o t os . p a t h . e x i s t s ( t a r g e t ) :

34 os . mkdir ( t a r g e t )

35 f o r f i l e n a m e i n l i s t f i l e s :
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36 image = Image . open ( os . p a t h . j o i n ( sou rce , f i l e n a m e ) )

37 image . s ave ( os . p a t h . j o i n ( t a r g e t , f i l e n a m e . s p l i t ( ’ / ’ ) [−1]) )

38

39 s ave ( ’ good ’ , ’ t e s t ’ , t e s t g o o d )

40 s ave ( ’ bad ’ , ’ t e s t ’ , t e s t b a d )

41 s ave ( ’ good ’ , ’ va l ’ , v a l g o o d )

42 s ave ( ’ bad ’ , ’ va l ’ , v a l b a d )

43 s ave ( ’ good ’ , ’ t r a i n ’ , t r a i n g o o d )

44 s ave ( ’ bad ’ , ’ t r a i n ’ , t r a i n b a d )
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APPENDIX D

RESNET18 LAYERS

ResNet (

( conv1 ) : Conv2d ( 3 , 64 , k e r n e l s i z e = (7 , 7 ) , s t r i d e = (2 , 2 ) ,

padd ing = (3 , 3 ) , b i a s = F a l s e )

( bn1 ) : BatchNorm2d ( 6 4 , eps =1e−05 , momentum = 0 . 1 , a f f i n e =

True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( maxpool ) : MaxPool2d ( k e r n e l s i z e =3 , s t r i d e =2 , padd ing =1 ,

d i l a t i o n =1 , c e i l m o d e = F a l s e )

( l a y e r 1 ) : S e q u e n t i a l (

( 0 ) : B a s i c B l o c k (

( conv1 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 ,

1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn1 ) : BatchNorm2d ( 6 4 , eps =1e−05 , momentum = 0 . 1 , a f f i n e

=True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( conv2 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 ,

1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 6 4 , eps =1e−05 , momentum = 0 . 1 , a f f i n e

=True , t r a c k r u n n i n g s t a t s =True )

)

( 1 ) : B a s i c B l o c k (

( conv1 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 ,

1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )
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( bn1 ) : BatchNorm2d ( 6 4 , eps =1e−05 , momentum = 0 . 1 , a f f i n e

=True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( conv2 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 ,

1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 6 4 , eps =1e−05 , momentum = 0 . 1 , a f f i n e

=True , t r a c k r u n n i n g s t a t s =True )

)

)

( l a y e r 2 ) : S e q u e n t i a l (

( 0 ) : B a s i c B l o c k (

( conv1 ) : Conv2d ( 6 4 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 2 , 2 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn1 ) : BatchNorm2d ( 1 2 8 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( conv2 ) : Conv2d ( 1 2 8 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 1 2 8 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( downsample ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 6 4 , 128 , k e r n e l s i z e = (1 , 1 ) , s t r i d e = (2 ,

2 ) , b i a s = F a l s e )

( 1 ) : BatchNorm2d ( 1 2 8 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)

)
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( 1 ) : B a s i c B l o c k (

( conv1 ) : Conv2d ( 1 2 8 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn1 ) : BatchNorm2d ( 1 2 8 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( conv2 ) : Conv2d ( 1 2 8 , 128 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 1 2 8 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)

)

( l a y e r 3 ) : S e q u e n t i a l (

( 0 ) : B a s i c B l o c k (

( conv1 ) : Conv2d ( 1 2 8 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 2 , 2 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( conv2 ) : Conv2d ( 2 5 6 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 2 5 6 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( downsample ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 1 2 8 , 256 , k e r n e l s i z e = (1 , 1 ) , s t r i d e = (2 ,

2 ) , b i a s = F a l s e )

( 1 ) : BatchNorm2d ( 2 5 6 , eps =1e−05 , momentum = 0 . 1 ,
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a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)

)

( 1 ) : B a s i c B l o c k (

( conv1 ) : Conv2d ( 2 5 6 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( conv2 ) : Conv2d ( 2 5 6 , 256 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 2 5 6 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)

)

( l a y e r 4 ) : S e q u e n t i a l (

( 0 ) : B a s i c B l o c k (

( conv1 ) : Conv2d ( 2 5 6 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 2 , 2 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( conv2 ) : Conv2d ( 5 1 2 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( downsample ) : S e q u e n t i a l (
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( 0 ) : Conv2d ( 2 5 6 , 512 , k e r n e l s i z e = (1 , 1 ) , s t r i d e = (2 ,

2 ) , b i a s = F a l s e )

( 1 ) : BatchNorm2d ( 5 1 2 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)

)

( 1 ) : B a s i c B l o c k (

( conv1 ) : Conv2d ( 5 1 2 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

( r e l u ) : ReLU( i n p l a c e )

( conv2 ) : Conv2d ( 5 1 2 , 512 , k e r n e l s i z e = (3 , 3 ) , s t r i d e

= ( 1 , 1 ) , padd ing = (1 , 1 ) , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e−05 , momentum = 0 . 1 ,

a f f i n e =True , t r a c k r u n n i n g s t a t s =True )

)

)

( avgpoo l ) : AvgPool2d ( k e r n e l s i z e =7 , s t r i d e =1 , padd ing =0)

( f c ) : L i n e a r ( i n f e a t u r e s =512 , o u t f e a t u r e s =2 , b i a s =True )

)
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APPENDIX E

MOBILENETS LAYERS

0 i n p u t 2

1 conv1 pad

2 conv1

3 conv1 bn

4 c o n v 1 r e l u

5 conv dw 1

6 conv dw 1 bn

7 c o n v d w 1 r e l u

8 conv pw 1

9 conv pw 1 bn

10 c o n v p w 1 r e l u

11 c o n v p a d 2

12 conv dw 2

13 conv dw 2 bn

14 c o n v d w 2 r e l u

15 conv pw 2

16 conv pw 2 bn

17 c o n v p w 2 r e l u

18 conv dw 3

19 conv dw 3 bn

20 c o n v d w 3 r e l u

21 conv pw 3

22 conv pw 3 bn
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23 c o n v p w 3 r e l u

24 c o n v p a d 4

25 conv dw 4

26 conv dw 4 bn

27 c o n v d w 4 r e l u

28 conv pw 4

29 conv pw 4 bn

30 c o n v p w 4 r e l u

31 conv dw 5

32 conv dw 5 bn

33 c o n v d w 5 r e l u

34 conv pw 5

35 conv pw 5 bn

36 c o n v p w 5 r e l u

37 c o n v p a d 6

38 conv dw 6

39 conv dw 6 bn

40 c o n v d w 6 r e l u

41 conv pw 6

42 conv pw 6 bn

43 c o n v p w 6 r e l u

44 conv dw 7

45 conv dw 7 bn

46 c o n v d w 7 r e l u

47 conv pw 7

48 conv pw 7 bn

49 c o n v p w 7 r e l u
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50 conv dw 8

51 conv dw 8 bn

52 c o n v d w 8 r e l u

53 conv pw 8

54 conv pw 8 bn

55 c o n v p w 8 r e l u

56 conv dw 9

57 conv dw 9 bn

58 c o n v d w 9 r e l u

59 conv pw 9

60 conv pw 9 bn

61 c o n v p w 9 r e l u

62 conv dw 10

63 conv dw 10 bn

64 c o n v d w 1 0 r e l u

65 conv pw 10

66 conv pw 10 bn

67 c o n v p w 1 0 r e l u

68 conv dw 11

69 conv dw 11 bn

70 c o n v d w 1 1 r e l u

71 conv pw 11

72 conv pw 11 bn

73 c o n v p w 1 1 r e l u

74 conv pad 12

75 conv dw 12

76 conv dw 12 bn
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77 c o n v d w 1 2 r e l u

78 conv pw 12

79 conv pw 12 bn

80 c o n v p w 1 2 r e l u

81 conv dw 13

82 conv dw 13 bn

83 c o n v d w 1 3 r e l u

84 conv pw 13

85 conv pw 13 bn

86 c o n v p w 1 3 r e l u

87 g l o b a l a v e r a g e p o o l i n g 2 d 2

88 d e n s e 5

89 d e n s e 6

90 d e n s e 7
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