
Georgia Institute of Technology, Technical Report, GT-GOLEM-2011-004, 2011

Efficient Opening Detection
Martin Levihn and Mike Stilman

Abstract—We present an efficient and powerful algorithm for
detecting openings. Openings indicate the existence of a new path
for the robot. The reliable detection of new openings is of great
relevance for the domain of moving objects [2] as a robot typically
needs to detect openings for itself to navigate through. It is also
especially relevant to the domain of Navigation Among Movable
Obstacles in known [8] as well as unknown [3] environments.
In these domains a robot has to plan for object manipulations
that help it to navigate to the goal. Tremendous speed-ups
for algorithms in these domains can be achieved by limiting
the considerations of obstacle manipulations to cases where
manipulations create new openings. The presented algorithm can
detect openings for obstacles of arbitrary shapes being displaced
or moving by themselves, in arbitrarily directions in changing
environments.

To the knowledge of the authors, this is the first algorithm to
achieve efficient opening detection for arbitrary shaped obstacles.

I. INTRODUCTION

Efficiently detecting openings is a vital requirement for mul-
tiple domains. In the domain of moving objects [2] a robot
has to navigate to a goal configuration in an environment with
moving objects. To reach the goal the robot has to navigate
through openings. Efficiently detecting when new openings
appear is essential for this domain.

Detecting openings is also crucial for algorithms in the
domain of Navigation Among Movable Obstacles (NAMO)
[8]. Planners developed for the NAMO domain drastically
improve a robot’s navigation capabilities by allowing it to
reason about its environment and manipulating it in order to
reach a goal configuration, just as humans do. However, this
domain’s state space is exponential in the number of objects
and therefore difficult to handle. Consequently all state-of-the-
art planners for this domain, whether for known or unknown
environments, ([8], [9], [3], [1], [5]) are relying on techniques
to reduce the searched portion of the state space. An obvious
and effective approach, used by all the aforementioned NAMO
planners, is to only consider obstacle manipulations where
the resulting displacement of the obstacle is creating a new
opening, and therefore potentially a new path to the goal.

Besides being a vital part of almost all algorithms of the
NAMO domain, there is no simple, general and efficient
algorithm to detect such new openings.

To simplify the following discussions and to pay tribute to
the complexity of the domain, we will just focus on the NAMO
domain. The reader may keep in mind that the following
discussions can be modified readily to suit the domain of
moving obstacles.

We propose an algorithm that can detect openings not just
for a specific scenario but in general. Our proposed method

The authors are with the Robotics and Intelligent Machines Center in the
Department of Interactive Computing, Georgia Institute of Technology, At-
lanta, GA 30332, USA. email: levihn@gatech.edu, mstilman@cc.gatech.edu

(a) Original configuration, leading to matrix BA.

(b) Configuration after manipulation leading to matrix BAs.

Fig. 1. Example setup. The robot is moving the couch to the right and checks
for new openings. Gray: the extended object.

detects openings for arbitrarily shaped objects, being displaced
in arbitrary directions in discretized known or unknown envi-
ronments in an efficient manner.

The algorithm is based on the idea of tracking areas that
prevent the robot from passing the currently manipulated
obstacle over multiple displacements. The area tracking is
done by simple operations on matrices. To ensure the algo-
rithms applicability to the domain of NAMO in unknown
environments without sacrificing efficiency, these areas are
constructed without requiring all known objects to be repre-
sented in configuration space. This eliminates the necessity to
constantly recompute the configuration space representations
of obstacles, as the shape and size of obstacles typically
changes frequently for the domain of NAMO in unknown
environments.

However, the proposed algorithm only considers the local
neighborhood of the currently manipulated obstacle. This
might result in false positives as the global path may still be
blocked in latter sections of the path. This is inherent in all
opening detection algorithms that do not repeatedly construct
full paths to the goal. Nevertheless, our algorithm will not
produce false negatives in reference to the global path, making
it applicable for optimal planners.

This work assumes that the robot is circular, as in all
NAMO planning papers known to the authors. Extensions
of the algorithm presented here for non-circular robots are
possible.

Our contributions are a general, efficient and simple algo-

1

2

rithm for opening detection that can be used in a variety of
domains and algorithms along with a formal definition of a
new opening.

The remainder of the paper is organized as follows. First
Section II will provide on overview of related work. After
formally defining openings in Section III, Section IV will
provide an overview of the algorithm. Section V guides the
reader through a detailed implementation of the algorithm
accompanied by the example shown in Fig. 1. Usage of the
proposed algorithm in the most challenging NAMO domain
known the authors is presented in Section VI prior to con-
cluding the paper in Section VII.

II. RELATED WORK

Opening detection is a vital part of all NAMO applications as
the manipulation of obstacles is just considered because it can
create new openings and therefore new paths to the goal. We
will consequently provide an overview of methods that have
been used for different NAMO domains and algorithms.

Stilman, et.al. presented an algorithm in [8] that is capable
of detecting openings for the domain of NAMO in known
environments. The algorithm relies on local search after each
considered object manipulation. An A∗ [7] call is triggered for
each manipulation action to check if two free-space regions
have been combined. This is highly inefficient. Given that
checking for openings is done for each possible manipulation
of an obstacle this results in frequent searches within the
NAMO search itself.

Wu, et.al. utilized opening detection in [3] for the domain
of NAMO in unknown environments. The algorithm did not
rely on search but simply observed the amount of adjacent free
spaces on corners of the manipulated obstacle. While efficient,
this algorithm is only applicable for world configurations
populated with simple rectangular shaped static and movable
obstacles. This is not realistic.

In [5] NAMO in unknown environments was implemented
on an HRP-2. Opening detection was again performed through
repeated calls to the motion planner. In contrast to [8], the
motion planner attempted to actually construct a full path
to the goal for each manipulation. This is intractable for
realistically sized scenarios as it, again, performs frequent
searches within a search itself.

Our algorithm can be used on all the aforementioned works
without modification and is expected to introduce substantial
runtime savings. It could further be used on extensions of these
works, as for example arbitrarily shaped obstacles in [3].

III. DEFINITIONS

Prior to discussing our algorithm in the following sections,
we will provide a formal definition of a new opening. The
definition is based on the notion of homotopic paths, which
will be defined below following general definitions.

A. General Definitions

We consider a world W as a 2D-workspace populated with:
• Static obstacles: O = {O0, O1, ..., Ok}

• Movable obstacles: M = {M0,M1, ...,Mn}
• Robot: R
A world configuration at time t (qt

W) is defined as:

qt
W = {qt

R, q
t
0, q

t
1, ..., q

t
n}

where qt
R and qt

i denotes R and Mi positions at time t,
respectively. We assume R to be circular.

Definition 1 (Path). Given a robot’s start configuration qs
r ∈

qt
W and goal configuration qg

r ∈ qt
W a path τ is a continuous

function τ : [0, 1] → qr ∈ qt
W that follows τ [0] = qs

r and
τ [1] = qg

r .

This definition is adopted from [6]. Note that the term path
is used in reference to the start and goal, in comparison to a
general path.

Definition 2 (Set of Paths). T t is the set of all paths in qt
W .

B. Opening Definition

Definition 3 (Homotipc Paths). Two paths τ1, τ2 ∈ T t are
homotopic if and only if there exists no known obstacle in the
area enclosed by the paths. Otherwise they are ahomotopic.

This definition is adopted from [4]. Based on this definition
the definition of a new opening can be given.

Definition 4 (New Opening). A new opening at time t + 1
exists if and only if the set T t+1 has at least one path that is
ahomotopic to all the paths in T t.

C. Discussion

Definition 4 is given in accordance to the set T and as such
in relation to the goal. Every opening detection algorithm
used for any NAMO domain is expected to return openings
according to Def. 4.

No false negatives should occur as this will potentially
influence properties of the NAMO planner such as optimality.
False positives on the other side, while ideally kept at a
minimum, are of limited impact. The optimality of a NAMO
planner itself is generally not influenced by false positives, as
the planer would typically detect that no lower cost plan can
be constructed [3]. Additionally, false positives could always
be rejected in a verification step that checks if a new path to
the goal was actually created.

IV. ALGORITHM

A. Outline

The inputs to the following algorithm are
1) an occupancy grid map G of the workspace W
2) a movable obstacle Mi and
3) a single or set of manipulation actions AM .
The explicit definitions are dependent on the NAMO planner

utilizing the algorithm and are not necessary for the following
discussion.

The output of the algorithm is a simple binary variable
indicating if executing AM on Mi inW creates a new opening
or not.

3

(a) 2D world W. (b) Blue: M ′1, red: intersecting ar-
eas BA.

(c) Saved information. (d) Configuration after manipulation.
Red: BAs

(e) Areas successfully tracked, no
new opening. Red: BA, orange:
BA−1

s

Fig. 2. Example of opening detection

The core idea of the proposed opening detection algorithm
is to track areas that prevent the robot from passing the
currently manipulated obstacle over different configurations
of that obstacle. If, as a consequence of a manipulation, such
an area disappears then a new opening is reported.

B. Detecting Blocking Areas

As the proposed algorithm is intended as a general framework
for NAMO planners, minimum assumptions about the planner
itself are made. For example, no representation of the configu-
ration space is required. Planners for the domain of NAMO in
unknown environments may not plan in configuration space
and consequently may not be able to provide our algorithm
with such a representation. This is due to the fact that for
the domain of NAMO in unknown environments the obstacle
shapes, as perceived by the robot, may change frequently as
more information becomes available. Constantly maintaining
an accurate configuration space representation would therefore
be computationally expensive.

To find the blocking areas we extend the obstacle Mi by
the robots diameter, yielding M ′i . Note, we extend Mi not by
the radius. This is not the typical Minkowski sum. However,
by extending Mi by the robots diameter we do not need

to incur the computational overhead of constructing the full
configuration space or to reason about which portion of the
configuration space is relevant for the algorithm. Informally
speaking, we can now simply overlay M ′i onW . Intersections
yield the areas that are blocking the robot from passing Mi.

Fig. 2(a)-2(b) show this concept. Fig. 2(a) shows a 2D setup
for which the algorithm is trying to detect new openings for
manipulations of M1. Fig. 2(a) shows M ′1 in blue as M1 is
being extended by the robots diameter (robot not shown). The
red areas are the blocking areas BA. These areas are now
saved, Fig. 2(c).

C. Tracking Areas and Detecting Openings

Once the initial blocking areas are determined, the obstacle is
shifted according to AM . The shifted M ′1 is again intersected
withW . The resulting blocked areas BAs are determined, Fig.
2(d). The areas BAs are now shifted back according to A−1

M ,
yielding BA−1

s . This allows us to directly compare the areas
that block the robot from passing the obstacle, eliminating
the offset. BA and BA−1

s can now simply be compared, Fig.
2(e). If every area in BA has an intersection with an area in
BA−1

s , no new opening is detected, otherwise a new opening
is reported. This is because a new opening occurs if at least
one area that prevented the robot from passing the robot prior
to the manipulation disappeared after the manipulation.

These steps can be easily and efficiently implemented as
the next section will show.

D. Discussion

The presented algorithm works by observing the local space
adjacent to Mi for the manipulation action AM . This is
sufficient in finding all true positives according to definition
4. However, as the full world is not taken into account, this
introduces the risk of false positives.

The authors nevertheless followed this approach because of
• the computation time advantages of only considering the

local space,
• the resulting independence of the actual world size,
• the limited impact of false positives on a NAMO planner

and
• the option of a post verification step for false positives

rejection if desired.

V. IMPLEMENTATION AND EXAMPLE

This section will provide implementation details, Algorithm
1, and use Fig. 1 to demonstrate each step. We assume that
W is represented by an occupancy grid G and M ′i as a binary
matrix M . M has the size of the bounding box of M ′i and
uses unity valued entries to represent parts of Mi. This allows
for arbitrarily shaped obstacles to be treated equally by the
algorithm below. M only needs to be constructed once and
can be saved for later use in all NAMO domains. However, in
the NAMO in unknown environments domain, M has to be
recomputed if more information about Mi becomes available.
This is summarized in the function GET-M ′i -Matrix in line 1.

4

Algorithm 1: CHECK-NEW-OPENING(G, Mi, AM)
1: M =GET-M ′i -MATRIX(Mi);
2: x offset = Mi.x;
3: y offset = Mi.y;
4: BA =GET-BLOCKING-AREAS(x offset, y offset)
5: x offset =GET-NEW-X-POS(AM , Mi);
6: y offset =GET-NEW-Y-POS(AM , Mi);
7: BAs =GET-BLOCKING-AREAS(x offset, y offset)
8: BA∗s = [0][0]; {0-Matrix; dim()=dim(M)}
9: for i = 0→ |BA∗s| do

10: for j = 0→ |BA∗s[i]| do
11: x = (x offset−Mi.x) + i;
12: y = (y offset−Mi.y) + j;
13: if 0 < x < |BA∗s| AND 0 < y < |BA[

sx] ∗ | then
14: BA∗s[x][y] = BAs[i][j];
15: end if
16: end for
17: end for
18: Z =COMPARE(BA, BA∗s);
19: if Z ≡ [0][0] then
20: return false;
21: end if
22: return true;

Function GET-BLOCKING-AREAS(x off , y off)

1: index = 1;
2: BA = [0][0]; {0-Matrix; dim()=dim(M)}
3: for x = 0→ |M | do
4: for y = 0→ |M [x]| do
5: if M [x][y] 6= 0 AND G[x+ x off][y+ y off] 6= 0

then
6: ASSIGN-NR(BA, x, y, index);
7: end if
8: end for
9: end for

10: return BA;

A. Blocking Areas

To determine the blocking areas, an empty matrix BA with
dimensions equal to M is constructed and initialized, line 2.

The algorithm now iterates over M , line 3-4. For all indices
that show a non-zero entry in M , the corresponding index in
G is checked for blockage. This is done by simply adding the
offset for the object to the indices, line 5. If this is the case, a
number unequal to zero is assigned to the corresponding entry
in BA. The number is assigned based on algorithm 3.

Assignment is performed based on the 3× 3 neighborhood
of the currently to assign entry in BA. If a number has already
been assigned within this neighborhood, the same number is
assigned. In case no number has been assigned yet, a number
not used in BA so far is assigned. This encodes the blocking
areas. For the example in Fig. 1(a) the following matrix is
obtained:

Function ASSIGN-NR(BA, x, y, index)
1: for i = −1→ 1 do
2: for j = −1→ 1 do
3: if BA[x+ i][y + j] 6= 0 then
4: BA[x][y] = BA[x+ i][y + j];
5: return;
6: end if
7: end for
8: end for
9: BA[x][y] = index;

10: index = index+ 1;
11: return;

Function COMPARE(BA, BA∗s)
1: del num := ∅;
2: for x = 0→ |BS| do
3: for y = 0→ |BS[x]| do
4: if BA[x][y] ∈ del num then
5: BS[x][y] = 0;
6: end if
7: if BA[x][y] 6= 0 AND BA∗s[x][y] 6= 0 then
8: del num = del num ∪BS[x][y];
9: BS[x][y] = 0

10: end if
11: end for
12: end for
13: return BA;

BA =

266664
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0

377775
The offsets are now updated according to AM , line 5-6

and BSs obtained. For the example in Fig. 1(b) the following
matrix is constructed:

BSs =

266664
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

377775
B. Opening Detection

Openings are then detected by shifting BAs according toA−1,
resulting in line 9-17.

BA∗s =

266664
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

377775
BA∗s and BS are then compared using the function 4, which

checks for non-zero entries in both matrices. If such an entry is
detected, all entries in BS having the same number as detected

5

Fig. 3. Execution example of the used simulator. Grayed out objects are not
known to the robot.
are set to 0. This is done because if a part of a previous
blocking area is detected, the robot is still blocked by the
same cause, no matter how much of the area still exists.

Let Z denote the resulting matrix. For the example in Fig.
1 the following Z is obtained:

Z =

26664
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

37775
If Z equals the zero-matrix after this operation, no new

openings were detected, as all blocking areas are still ac-
counted for after the manipulation. If Z does not equal the
zero matrix, one intersecting area could not be found anymore
and the possibility of an opening is returned. Since the matrix
Z obtained for example Fig. 1 is not equal to the zero-matrix,
an opening is detected.

C. Discussion

The provided description above is intentionally very detailed.
An actual implementation can summarize many of these steps.
Additionally, BS can be saved for repeated calls to the
function with different manipulation actions as long as the
local environment around Mi and Mi itself does not change.

Note that the algorithm does not make any assumptions
about the shape of Mi, or the manipulation direction of AM .

VI. EVALUATION

In order to verify the effectiveness of our algorithm, we did
implement it in the most challenging NAMO domain we are
aware of: NAMO in unknown environments, allowing arbitrary
displacements of arbitrarily shaped obstacles. Note that no
opening detection algorithm exists for this domain so far.

The NAMO algorithm reasons about objects by iterating
over the objects, evaluating possible manipulations of each
object and finally executing the lowest cost plan. This pro-
cedure is repeated whenever the currently executed plan is

being intercepted by newly detected obstacles. This is an
extension of [3]. Fig. VI shows an execution example of the
simulator. Grayed out objects are not known to the robot. The
robot constantly receives information about the part of the
environment that is within its sensor range, indicated by the
red circle around the robot. The robot continuously updates its
internal map. Based on that map it reasons about the obstacles.

Our experiments were performed on 50 randomly generated
environments, with complexity ranging from simple maps
with only two obstacles to complex maps with more than
70 obstacles. We ran the algorithm both with our opening
detection algorithm and without.

We measured:
1) the overall runtime savings,
2) the savings in obstacle evaluations, and
3) the savings in navigation planner calls.
As the algorithm reasons about obstacles in the environ-

ment, (2) measures whether the amount of obstacles that are
being reasoned about are affected at all by our algorithm. (3)
measures how frequently the navigation planner is called. In
general, the navigation planner is called if the NAMO planner
considers a different path to the goal and needs to determine
its actual cost.

The effect of opening detection depends on the map con-
figuration. For maps where the robot hardly encounters any
obstacles on its path to the goal, the NAMO planner will not
reason about obstacle manipulations frequently. The opening
detection algorithm can therefore not take strong affect. For
denser maps, in contrast, the NAMO planner will frequently
reason about obstacle manipulations and opening detection can
introduce substantial savings.

Consequently, we evaluated the opening detection algorithm
in relation to the ratio between navigation actions and ma-
nipulation actions that are being executed by the robot while
navigating to the goal. If the ratio is low, this indicated that
the environment was dense and the robot had to frequently
manipulate objects to reach the goal, and therefore reason
about the obstacles. The opposite is true for a high ratio.

Fig. 4 shows the results. The graph is interpolated and
bezier-smoothed to allow a clearer observation of the ten-
dencies. We can clearly see that for world configurations
with a higher ratio the savings introduced by our algorithm
decrease. However, for more dense environments, yielding
a lower ratio, our algorithm introduces substantial savings.
The runtime savings tend to be lower than the navigation
planner calls. This is due to the computations performed by
the opening algorithm itself.

The number of obstacle evaluations proved to not be af-
fected by our algorithm.

VII. CONCLUSION

We presented a simple opening detection algorithm and
demonstrated it for the NAMO domain. Additionally, a formal
definition of a new opening based on the concept of homoptic
paths was provided.

The presented algorithm is capable of handling arbitrarily
shaped obstacles, being displaced in arbitrary directions. At

6

-10

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200 220

%
Sa

vi
ng

s

Navigation-Action/Manipulation-Action

Runtime
Obstacle Evaluations

Navigation Planner calls

Fig. 4. savings if opening detection is used

the same time the algorithm is easy to understand, implement
and is directly applicable to the domain of NAMO with known
environments as well as unknown environments. The algorithm
does not require a representation of the configuration space, as
not always present for NAMO planner in unknown environ-
ments. Rather, the algorithm is simply creating a representation
of the currently considered obstacle increased by the robots
diameter. This representation is intersected with the occupancy
grid map of the world and intersecting areas, which would
block the robot from passing the obstacle, are tracked. Upon
the disappearance of such an area a new opening is reported.
While this may result in false positives, it will not cause false
negatives. We also demonstrated a simple implementation of
the algorithm.

The algorithms applicability was shown for the most com-
plex NAMO domain currently considered in research, NAMO
in unknown environments with arbitrarily shaped obstacles
being displaced in arbitrarily directions. The results showed
substantial savings for environments that require frequent
manipulations.

The presented algorithm can be used in all NAMO planners
the authors are aware of.

REFERENCES

[1] Salvatore Candido, Yong-Tae Kim, and Seth Hutchinson. An improved
hierarchical motion planner for humanoid robots. In Proceedings of the
IEEE-RAS Internation Conference on Humanoid Robots, Daejeon, Korea,
December 2008.

[2] K. Fujimura and H. Samet. A hierarchical strategy for path planning
among moving obstacles [mobile robot]. Robotics and Automation, IEEE
Transactions on, 5(1):61 –69, feb 1989.

[3] H.Wu, M. Levihn, and M. Stilman. Navigation among movable obstacles
in unknown environments. In IEEE/RSJ Int. Conf. On Intelligent Robots
and Systems (IROS 10), October 2010.

[4] Takeo Igarashi and Mike Stilman. Homotopic path planning on manifolds
for cabled mobile robots. In David Hsu, Volkan Isler, Jean-Claude
Latombe, and Ming Lin, editors, Algorithmic Foundations of Robotics
IX, volume 68 of Springer Tracts in Advanced Robotics, pages 1–18.
Springer Berlin / Heidelberg, 2011.

[5] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba. Working
with movable obstacles using on-line environment perception reconstruc-
tion using active sensing and color range sensor. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
1696 –1701, oct. 2010.

[6] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.

[7] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[8] M. Stilman and J. Kuffner. Navigation among movable obstacles: Real-
time reasoning in complex environments. In Proceedings of the 2004
IEEE International Conference on Humanoid Robotics (Humanoids’04),
volume 1, pages 322 – 341, December 2004.

[9] Mike Stilman and James J. Kuffner. Planning among movable obstacles
with artificial constraints. I. J. Robotic Res., 27(11-12):1295–1307, 2008.

	Introduction
	Related Work
	Definitions
	General Definitions
	Opening Definition
	Discussion

	Algorithm
	Outline
	Detecting Blocking Areas
	Tracking Areas and Detecting Openings
	Discussion

	Implementation and Example
	Blocking Areas
	Opening Detection
	Discussion

	Evaluation
	Conclusion
	References

