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NOMENCLATURE

a Film inlet to outlet ratio (hi/ho).

A Porous area in contact (solid and fluid).

Aj Grűnwald-Letnikov coefficient.

B(ω) Dynamic damping.

C(t) Compliance modulus.

d(t) Bearing displacement.

D(t) Displacement.

E Elastic modulus.

E(t) Viscoelastic relaxation modulus.

Ė(t) Time derivative of relaxation modulus.

E∞ Rubbery (equilibrium) modulus.

En Viscoelastic spring term.

E ′(ω) Storage modulus.

E ′′(ω) Loss modulus.

E∗(ω) Complex modulus.

Eα(t) Mittag-Leffler function.

erfc Complementary error function.

F (t) Force.

Fi Force in individual soil grain.

F Fourier domain.

Gij Shear modulus.

gi Viscoelastic constant used by ABAQUS.

H Porous pad height.

H ′ Biot poroelastic constant.

h Fluid film thickness.
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hi Inlet fluid film thickness.

ho Outlet fluid film thickness.

H1 Effective film thickness.

i Imaginary unit.

J(t) Viscoelastic creep modulus.

J̇(t) Time derivative of creep modulus.

K(t) Stiffness modulus.

K ′(ω) Storage modulus.

K ′′(ω) Loss modulus.

K∗(ω) Complex modulus.

Kij Bulk modulus.

k Permeability.

K Hydraulic conductivity.

ki Viscoelastic constant used by ABAQUS.

L Laplace domain.

L PVE pad length.

M Biot poroelastic constant.

p Pore pressure.

P Fluid film pressure.

Pm Mean fluid film pressure.

R′ Biot poroelastic constant.

s Laplace variable.

S Distributed load of the solid grains.

Sσ Sum weighted history of stress.

Sε Sum weighted history of strain.

t Time.

∆t Time increment.

xiii



u, v, w Fluid velocity in x,y,z-directions, respectfully.

u′, v′, w′ Filter velocity in x,y,z-directions, respectfully.

U1 Bearing velocity in x-direction.

Ux Filter velocity in x-direction.

V1 Bearing velocity in y-direction.

Vy Filter velocity in y-direction.

W Bearing load.

∆W Incremental change to bearing load.

Greek symbols.

α Fractional derivative constant.

αB Beavers-Joseph slip coefficient.

αBiot Biot poroelastic constant.

βn Complementary error function model material constant.

δij Kronecker delta.

∆ PVE pad deformation.

ε(t) Strain.

η Viscoelastic time constant.

ε̇(t) Time derivative of strain.

γn Ratio of moduli in viscoelastic model.

Γ Gamma function.

λn Prony viscoelastic constant.

µ Lubricant viscosity.

µn Complementary error function model material constant.

ν Poisson’s ratio.

ρ Fluid density.

xiv



σ(t) Stress.

σV E(t) Viscoelastic stress in solid grains.

σ′(t) Effective stress.

ω Frequency (rad/s).

τ Viscoelastic time constant.

ξ Porous film thickness modifier.

ζ Poroelastic fluid strain.
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SUMMARY

Triboelements are ubiquitous in modern society. They exist in countless ap-

plications from locomotion (both human and mechanical) to magnetic recording. Bil-

lions of dollars are lost from tribological inefficiencies per year, and at the same time,

the state-of-the-art is pushing triboelements toward greater capabilities such as load

support and longevity. A potential advancement comes from including a porovis-

coelastic material in triboelements. It is hypothesized that poroviscoelasticity can

improve triboelement dynamic properties such as loss and wear resistance without

sacrificing significant load support. A poroviscoelastic material has multiple features

that make it interesting for study: porous structure for lubricant storage, a built-in

dissipation mechanism, and adaptive storage and loss characteristics. The current

poroviscoelastic models are traditionally based on a Zener-type material structure;

however, a novel model for viscoelasticity will be introduced. This model is based

on fractional calculus that simplifies the description of viscoelasticity while retain-

ing model robustness. The fractional calculus poroviscoelastic model will be imple-

mented in ABAQUS, a commercially available finite element analysis (FEA) software.

ABAQUS allows for external interfacing, and broad application, of the poroviscoelas-

tic model. These applications are numerous and include: mechanical seals, biome-

chanical joint replacements, flexible rotordynamic bearings, and biomimetic dampers,

among others. To establish the aforementioned principles, the proposed constitutive

material model will be coupled with a hydrodynamic bearing. This work will serve as

the theoretical foundation for the study of poroviscoelastic hydrodynamic lubrication

and its applications.
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CHAPTER I

INTRODUCTION

As the state-of-the-art pushes triboelements toward greater capabilities and longevity,

the need for evolving triboelement technology exists. The following work explores a

novel coupling of phenomena inspired by biomimetics. A poroviscoelastic substrate,

coupled to a fluid film load is modeled and compared to its rigid counterpart. It

is hypothesized that poroviscoelasticity can improve triboelement properties such as

damping and wear resistance, and have utility in certain applications where flexibility

is desired (e.g. biomechanical joint replacements, flexible rotordynamic bearings, and

mechanical seals). This study provides the framework for the analysis of flexible,

porous viscoelastic materials and hydrodynamic lubrication.

Biomimetics is emerging as an avenue for new tribological technology. A material

of particular interest is articular cartilage. This load bearing material is a phenomenal

facilitator of motion and has low friction and high wear resistance [1, 2]. Cartilage is

a flexible, porous collagen (solid) matrix permeated with synovial fluid. It is desired

to mimic this mechanism for application in mechanical systems.

Porous bearings are already commonplace in engineering applications. These sin-

tered, or self-lubricating, bearings consist of a metal matrix impregnated with a lu-

bricant. The interface of the journal and the bearing surface is virtually rigid, and

the bearings operate in the mixed lubrication regime. However, if the bearing sur-

face is made compliant, then deformation occurs in the bearing substrate, potentially

leading to operation in the full film regime. The mechanism by which deformation

occurs can be modeled in a number of ways (e.g. elastic, viscoelastic, elastic-plastic,

etc.). Poroviscoelasticity (PVE) is one such constitutive model for a flexible, porous

1



material. Certain engineered materials, like polyurethane foams and hydrogel scaf-

folds, display poroviscoelastic character. It is desired to explore PVE materials in

applications such as bearings and dampers.

The objective of the current work is to couple a fully saturated poroviscoelastic

bearing material with a hydrodynamic (HDL) fluid load. The fluid mechanics of thin-

films are well-defined for conventional, rigid, triboelements by the Reynolds equation.

However, the traditional Reynolds equation assumes no-slip conditions occurring be-

tween rigid plates. With a porous and flexible interface, the boundary conditions of

the Reynolds equation are modified to allow vertical flow in and out of the substrate

material, as well as effective slip in the horizontal direction. The implications of the

coupled HDL/PVE problem are studied as they relate to triboelement performance.

Poroviscoelastic materials have two time-dependent mechanisms, giving rich fre-

quency domain characteristics (i.e stiffness and damping). The properties of stiffness

and damping are assessed relative to an steady-state. This work is fundamental to

understanding the transient behavior of a coupled HDL/PVE triboelement.

1.1 Applications for Research

There are health, infrastructure, and industrial applications for the proposed research.

One such application is artificial joint technology, where an estimated 27 million

people suffer from osteoarthritis in the United States alone [3]. The estimated cost

of this disease is $128 billion annually [4]. Another example is in infrastructure

protection, where poroviscoelastic bearings and dampers could be used to mitigate

fatigue or one-off events (e.g. seismic activity). Such elements could be introduced

retroactively in existing designs to improve longevity [5]. Other research targets

include rotordynamic system property modification. These concepts are discussed in

the following sections.
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1.1.1 Biomechanics

The genesis for the current work comes from the study of articular cartilage. In

previous research, it is shown that articular cartilage displays viscoelastic behav-

ior [1, 2]. This behavior is only phenomenological; however, the viscoelastic models

undeniably capture cartilage behavior in stress-relaxation. To separate the solid and

fluid phases of a biphasic material like cartilage, an additional mechanism is required.

Poroviscoelasticity allows for that mechanism, and is often used in cartilage mod-

eling [6, 7]. Cartilage mechanics is an active area of research in the biomechanics

community. In part, this is due to the prevalence of osteoarthritis and a need for bet-

ter mitigation or joint replacement technologies. Patients suffering the minor effects

of osteoarthritis experience discomfort when moving, and those suffering severe cases

often require joint replacement or invasive surgery. Unfortunately, joint replacements

are prohibitively expensive for many, and require significant recovery and rehabilita-

tion periods. The poroviscoelastic model has the potential to serve as a robust, but

succinct, model for evaluating healthy or damaged cartilage.

1.1.2 Biomimetic Dampers

The flexible, biphasic mechanism of cartilage could be introduced in biomimetic ap-

plications. Poroviscoelastic materials could have application in dampers for bridges

and structures, where conventional bearings are subject to loadings that cause surface

contact and wear. In particular, transportation bridge failure [8] is a particular area of

interest for biomimetic dampers, which includes both impulse and vibration dampers.

Transportation alone is an over 400 billion dollar annual expense in the US [9], and

mitigation strategies have the potential to prevent some failures in infrastructure.

The proposed modeling approach allows for poroviscoelasticity to be included in

large-scale system modeling. This gives structural designers a more accurate assess-

ment of the value of biomimetic dampers. The fractional calculus poroviscoelastic
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model simplifies certain modeling aspects of such an analysis. The use of fractional

calculus maintains modeling robustness, and viscoelastic behavior is captured over

many frequency decades. Therefore, many practical applications for biomimetic ma-

terials can be explored.

1.1.3 Flexible Bearing Supports

The performance of many vibratory and rotordynamic components can be improved

by modifying the system’s stiffness and damping characteristics [2, 10–12]. This is

often done with tuned materials. Poroviscoelasticity is a probable material option

for such dynamic systems, as the stiffness and damping properties are frequency

dependent. This is in contrast to traditional dynamic systems, where the stiffness

and damping coefficients are invariant. Poroviscoelasticity allows for tuning of the

stiffness and damping characteristics of rotordynamic systems. Such material tuning

could prevent failure of rotating systems as they operate at, or pass through, critical

speeds. The traditional application point for such a material is in the supporting

bearings [2, 13], where porovisoelasticity could be introduced. This may prevent

catastrophic and fatigue failures.

1.1.4 Fluid Loaded Soils

One of the dominant reasons for developing poroelastic and then poroviscoelastic

theory is for soil mechanics [14–17]. The current work considers fluid loads on poro-

viscoelastic materials. This is analogous to a saturated soil under a lake, or a reservoir

contained by a dam. Also, the current work can be modified to determine the im-

pingement of drilling fluid into porous soil during drilling operations, or to study the

impact of resource extraction from a reservoir. Such work is of particular importance

in the current regulatory environment [18–20].
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1.2 Problem Statement

The proposed work simulates the coupled interactions of two complex systems, namely

a poroviscoelastic material and a hydrodynamically lubricated bearing. ABAQUS,

a commercially available finite element software, is used as a platform to model a

poroviscoelastic material that interfaces with a hydrodynamically lubricated (HDL)

bearing. The poroviscoelastic and HDL components are coupled; therefore, each com-

ponent influences the behavior of the other component. The system’s total response

is likewise dependent on each component and their interactions. The coupled system

is iteratively simulated to access performance.

A novel model for porovisoelasticity is given herein, based on fractional calculus.

This model is reduced to a specific case when the fractional derivative is equal to 1/2.

The reduced model is known as the complementary error function fractional model,

or CERF. Numerical techniques to simulate CERF viscoelasticity are discussed in

relation to FEA software packages.

A porous, hydrodynamic lubrication model is developed that allows for fluid flow

at the permeable boundary. This is based on the Beavers-Joseph slip condition. The

HDL problem is simulated using a finite difference/finite volume approach, and it

interacts with ABAQUS as a time-dependent loading condition. This model will

be developed in Fortran and Python to comply with ABAQUS. Guidelines for the

numeric routines will be available for analysis of the aforementioned applications, and

others that share similar characteristics.

1.3 Scope

The scope of this work is to provide an analysis tool for coupled poroviscoelasticity and

HDL problems. The physics of each component of the system are derived in general

terms such that broad applicability is possible; however, the goal of the proposed

work is not to explore every application discussed. Rather, the work provides a
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toolbox so that the aforementioned applications, and others, can be studied. A thrust

bearing with a poroviscoelastic pad will be simulated to validate the approach, while

the framework for more complicated bearings and mechanical seals is established.

In addition, skeleton code listings are provided for use in additional studies and

applications.

The specific goals of this work are: 1) to develop a fractional calculus repre-

sentation of poroviscoelasticity, 2) to develop a numerical scheme that can simulate

fractional calculus viscoelasticity in the time domain, 3) to determine the feasibility

of a poroviscoelastic material as a bearing substrate in a hydrodynamic lubrication

application, and 4) to develop a set of analysis tools to evaluate the coupled porovis-

coelastic/hydrodynamic lubrication system.

The proposed work is novel in three major areas: 1) the use of fractional calculus

in poroviscoelasticity, 2) the development of a reduced fractional model by use of

the CERF, and 3) the coupling of poroviscoelasticity with a rotating triboelement

(through HDL). The coupled system has a diverse range of applications that corre-

spond to the current state-of-the-art research. The proposed work addresses concepts

such as numerical approximation of fractional derivatives and coupling disparate phe-

nomena. The goal is to develop a robust model that can be applied to a large number

of engineering problems. Such a tool is proposed to advance the understanding of

complex material and triboelement interactions.
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CHAPTER II

LITERATURE SURVEY

The following is a survey of the literature relevant to the topic of poroviscoelasticity

and hydrodynamic lubrication. These subjects encompass two or more fields that

are relatively unrelated; therefore, efforts are made to synthesize the literature in

a manner that builds towards the final goal of coupling poroviscoelasticity and hy-

drodynamic lubrication. The chapters that follow provide in-depth discussion of the

individual mechanisms, including constitutive relations and numerical treatment.

2.1 Poroelasticity

Poroelastic theory is historically used in the field of soil mechanics [21]. The principle

use for poroelastic theory is to determine deformation and settling between man-made

structures and the earth. A famous example of this soil contraction is the Tower of

Pisa, which is partially constructed on a creek bed. Over time, the weight of the

tower caused consolidation that resulted in the tower leaning. Consolidation is the

contraction of soil caused by fluid exodus from a porous medium.

In 1923, Terzaghi [22] provided the constitutive foundation for the consolidation

mechanism, launching the field of modern soil mechanics. Rendulic [23] extended

Terzaghi’s 1D consolidation model to three dimensions in 1936, but Biot [24, 25] is

credited with developing the theory of linear poroelasticity. Biot’s poroelastic theory

considers the same consolidation mechanism as proposed by Terzaghi, but Biot’s

theory is generalizable beyond soil mechanics. At its core, poroelasticity describes

biphasic (or triphasic) materials, and many solid-fluid interactions are governed by its

mathematical relations. These include biomechanics [26–30], soil mechanics [21, 31],

and even oncology [32]. The generality of linear poroelasticity is due in part to
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its robust formulation, which is based on linear elasticity, Navier-Stokes equations,

and Darcy’s law for flow through a porous medium. Poroelasticity depends on four

material parameters: two well-known elastic properties, and two properties related

to the porosity and fluid in the medium.

Poroelasticity has a temporal component due to fluid influx or exodus (governed

by Darcy’s law). This flow manifests as a dissipation when the porous matrix is

compressed. Permeability of the porous matrix and the effective pressure gradient

on the matrix govern the rate of dissipation. It should be noted that dissipation

refers to the exodus of fluid, and not to a thermodynamic process. In that respect,

poroelasticity does not have an internal dissipation mechanism and the process of

deformation is thermodynamically reversible.

At its roots, poroelasticity is a simple model; however, a number of modifications

to the linear theory are used for more complex materials. Biot [14–17, 33–39] added

transverse isotropy, anisotropy, and viscoelasticity (discussed later) to poroelastic

theory. Additional mechanisms are considered with non-linear phenomena such as

finite strains [40,41] and varying porosity [42]. These properties are particularly useful

in tissue mechanics, where large deformations are common [43,44]. The current work

targets linear poroviscoelasticity, which is the coupling of linear poroelasticity and

viscoelasticity. Biot [14–16] introduces poroviscoelasticity in broad terms, which will

be discussed after viscoelasticity is vetted in the following section.

2.2 Viscoelasticity

Unlike the poroelastic theory discussed previously, viscoelasticity does contain a mech-

anism for dissipating energy. Viscous heating is the predominant mechanism for this

loss, although viscoelastic theory can incorporate many internal losses. The charac-

teristic behavior of viscoelasticity is hysteresis, like that shown in Fig. 1. In essence,

a viscoelastic material cannot return the same energy that was required to perform
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Figure 1: Loading/unloading cycle for a linear viscoelastic material

an action. This distinguishes viscoelastic behavior from poroelastic behavior, and

indicates that the two materials be combined without overlapping mechanisms.

The temporal dissipation of viscoelasticity appears in many biological materials [1,

45–47]. The hallmark of this dissipation is a rich frequency dependent behavior. This

behavior can be used in earthquake dynamics [5], rotordynamics [10, 11, 13, 48], and

many other applications. If correctly harnessed, this frequency dependent dynamic

stiffness and damping may also be desired for tribological applications. Much of the

current work centers around this concept.

A number of formulations exist to constitutively describe viscoelasticity. A few

of these models are discussed herein and are classified by type: integer order or

fractional. Both types of viscoelasticity are permissible in a thermodynamic sense,

and both models enjoy certain advantages. The constitutive relations for a number

of configurations are provided herein, and the choice of model is usually made with

respect to fit. Fractional calculus viscoelasticity is still an area of active research [2,49–
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57], and the current work addresses techniques for expediently simulating fractional

models in the time-domain. This remains a large challenge, and one that may hinder

further progress for fractional calculus viscoelasticity.

Viscoelastic materials contain simultaneous elastic and dissipative mechanisms.

These mechanisms are analogous to springs and dashpots, respectively. The combi-

nation of springs and dashpots gives a strong time and frequency domain response.

Many real materials are viscoelastic, and their use is often intentional for tunable

dissipation purposes. In the current study, the viscoelastic mechanism is developed

in the solid skeleton of the porous matrix. The viscoelastic action, combined with the

porous action, makes for a unique coupled system. To couple the porous matrix and

viscoelastic theory, poroviscoelasticity is introduced.

2.3 Poroviscoelasticity

The development of poroviscoelasticity is the synthesis of poroelasticity and vis-

coelasticity. Biot [14] pioneered the approach by utilizing the correspondence princi-

ple, which allows for straightforward conversion from elastic to viscoelastic behavior.

Biot’s 1954 paper described a very broad way to include viscoelasticity into porome-

chanics, specifically soil mechanics. Later refinements from Biot and others [15–17]

allowed for the viscoelasticity to be included in targeted areas, such as the solid com-

ponents (e.g. the shear and bulk properties). In doing so, the poroviscoelastic model

was given a straightforward framework in that the viscoelasticity is contained in the

“traditional” material response, not in the porosity. Therefore, the elastic portions

from poroelasticity are replaced with viscoelastic components in poroviscoelasticity.

Four material parameters are required to define a poroviscoelastic response: two time-

dependent relaxation moduli corresponding to their elastic counterparts (e.g. bulk

and shear relaxation moduli), and two properties related to porosity and the fluid

component (retained from poroelasticity).
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Proper formulation of the viscoelastic component is critical in poroviscoelasticity.

The most common models used are the Kelvin-Voigt model and the standard linear

solid model (SLS). Both models contain springs and dashpots, but the location of

these elements is altered between the two models. Setton et al. [58], Wilson et al. [6,7]

and Liu and Ovaert [59] use a SLS poroviscoelastic formulation for articular cartilage,

and Abousleiman et al. [60], uses the Kelvin-Voigt model for soil mechanics. Both

models are capable of describing creep and stress-relaxation, and both are robust

models for poroviscoelasticity. An infinite number of spring-dashpot hierarchies exist

as viscoelastic models, but the Kelvin-Voigt and standard linear solid are the most

widely used in poroviscoelasticity [42].

The porous and viscoelastic components of poroviscoelasticity give two unique

mechanisms for dissipative effects. The synthesis of these phenomena are found in

natural systems, where they operate very effectively. For instance, articular cartilage

is a poroviscoelastic material. When healthy, cartilage is a durable, load facilitating

material that lasts for many decades and millions of cycles. Cartilage also adapts

as the body changes (weight, gait, etc.). A component of this is biological, but

the structure and composition of cartilage is also designed in a favorable manner.

Therefore, it is desired to understand the physics of poroviscoelasticity for use in

biological and traditional systems. A natural use for poroviscoelastic materials is

envisioned in tribological applications, which is discussed in the following section.

2.4 Hydrodynamic Lubrication

To this point, the literature survey has focused only on the porous pad. The goal of

the current study is to couple the porous pad to a tribological system; therefore, a

discussion of hydrodynamic lubrication is relevant.

The study of thin lubricant films, and their ability to sustain loads, is over a

century old [61]. The well-known Reynolds equation, which is a reduction of the
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Navier-Stokes equations combined with conservation of mass, is ubiquitous in tribol-

ogy. However, less research has focused on the Reynolds equation interfacing with a

porous boundary. Works that do interface hydrodynamic lubrication and porous pads

include Wu [62], who considered the squeeze-film effects in a porous disk, Prakash and

Vij [63], who looked at porous journal bearing operation, and Etsion and Michael [64],

who considered a porous mechanical face seal. These works maintained a rigid profile

in the porous pad. Bujurke et al. [29,30,65,66] and Elsharkawy et al. [12,67] are some

of the first to incorporate a flexible boundary at the fluid film/porous pad interface.

These works provide the foundation for the current study, where the additional com-

ponent of viscoelasticity is introduced. The critical aspect of porous hydrodynamic

lubrication is that a boundary condition of the Reynolds equation is modified to al-

low fluid diffusion across the porous interface. This is discussed in further detail in

Chapter 5.

2.5 Summary

The literature surveyed in this chapter establishes a theoretical foundation for the

work performed herein. At its essence, the goal of the current work is to combine well-

established theories and models in a novel way. At the time of writing, there is almost

no body of work established in the fields of fractional calculus porovisoelasticity, or

coupled poroviscoelasticity and hydrodynamic lubrication. The current work aims to

develop these fields, and provide implementable information for the numerical and

finite element aspects of the coupled processes. The constitutive and numerical details

of poroviscoelasticity and hydrodynamic lubrication are addressed in their respective

chapters.
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CHAPTER III

POROVISCOELASTIC MODEL

The concepts introduced in Chapter 2 are now explored in-depth. The constitutive

framework of poroviscoelasticity is built by developing viscoelasticity, poroelasticity,

and then combining the two. The poroviscoelastic formulation is discussed relative

to a finite element approach, and then provided within the framework required by

ABAQUS. From there, a hydrodynamic load is coupled to the poroviscoelastic pad,

and the resulting system is simulated in time.

3.1 Viscoelastic Background

Viscoelasticity is a material type that describes many common engineering materi-

als like polymers, elastomers, and many alloys. The hallmark of these viscoelastic

materials is a time-dependent behavior caused by considerable energy dissipation

(hysteresis). The dissipation of energy manifests as heat, sound, and/or rearrange-

ment of molecular structure, and occurs temporally. This means that the stress/strain

relationships are time (and conversely, frequency) dependent. The stress/strain rela-

tionship for a viscoelastic material is traditionally defined by one of two mechanisms:

creep or stress relaxation. Both mechanisms describe the relationship between stress

and strain, depending on the choice of independent variable. For instance, if a fixed

force (stress) is applied to a viscoelastic material, creep will occur as time progresses.

Conversely, if a fixed displacement (strain) is applied, stress relaxation occurs. Both

creep and stress relaxation are shown in Fig. 2 for a uniaxial experiment. The time-

dependent viscoelastic behavior is clear. This is in contrast to an elastic material,

which is time-invariant. The time history must be accounted for when modeling

viscoelastic materials.
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(a) (b)

(c) (d)

Figure 2: Viscoelastic material behavior during stress-relaxation and creep (a) strain
during stress-relaxation; (b) stress during stress-relaxation; (c) strain during creep;
(d) stress during creep
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As discussed herein, viscoelasticity is constitutively defined by a relaxation mod-

ulus or a creep modulus. These mechanisms correspond to the behavior exhibited in

Figs. 2b and 2c, respectively. This designation is based on the independent variable

(strain or stress). The relaxation modulus is often used because finite element studies

are displacement driven, and the goal of the current work is to be compatible with

finite element analysis. In either formulation, the temporal energy dissipation of a

viscoelastic material corresponds to simultaneous elastic and dissipative mechanisms.

These elastic and dissipative mechanisms are clearly viewed in the frequency domain,

where the elastic component corresponds to a real part, and the dissipative compo-

nent to an imaginary part. For a relaxation modulus, these parts are known as the

storage and loss moduli, as shown in Fig. 3. These moduli are primarily considered

in the frequency domain, giving a clear picture of the simultaneous mechanisms of a

viscoelastic material.

Two additional definitions are classic in viscoelasticity: the glassy and rubbery

moduli. These definitions are based on two common viscoelastic materials. For

example, glass displays viscoelastic behavior: at room temperature, glass acts like a

brittle material, and will fracture if brought to failure accordingly. However, at high

temperatures, glass acts like rubber when acted upon. The glassy modulus occurs

about time t = 0, which corresponds to the highest frequencies or lowest temperatures,

as shown in Fig. 3. The rubbery modulus is at the opposite end of the spectrum from

the glassy modulus. At large time-scales (low frequencies), or high temperatures, a

viscoelastic material acts like a rubber. While the rubbery modulus can be zero, most

viscoelastic materials have a non-zero rubbery modulus. For behavior between the

glassy and rubbery modulus, the material is in a transition region, seen in Fig. 3.

Notably, higher energy dissipation (indicated by the loss modulus) occurs in the

transition region.

Proper formulation of the viscoelastic constitutive model is critical. Many common
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(a) Storage moduli of sample viscoelastic material (semi-log scale)

(b) Loss moduli of sample viscoelastic material (semi-log scale)

Figure 3: Storage and loss moduli of sample viscoelastic material
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models like the Kelvin-Voigt model and the standard linear solid model (SLS) are

used to describe viscoelasticity. Both models are capable of describing creep and

stress-relaxation, and both have mechanical analogues. However, any number of

formulations can be envisioned, as long as they are thermodynamically permissible,

as discussed in the following section.

3.2 Viscoelastic Constitutive Equations

Previously, viscoelasticity was described heuristically as a time-dependent material

phenomena. In practice, a mathematical formulation must be constructed. The

following work provides a model of viscoelasticity, and explores efficient algorithms

to simulate viscoelastic behavior in practical applications.

Gurtin and Sternberg [68] propose a convolution type definition of linear vis-

coelasticity. The uniaxial model relates stress, strain and a relaxation modulus using

Boltzmann’s superposition principle:

σ (t) = ε (0)E (t) +

∫ t

0

ε̇ (τ)E (t− τ) dτ. (1)

where σ (t) is the stress, ε (t) is the strain, and the relaxation modulus is denoted

by E (t). Typically, σ(t) and ε(t) are either set or measured during experimentation,

while E (t) is obtained from a fixed strain input ε = εstep, such that E(t) = σ(t)/εstep.

The parameters of stress, strain, and relaxation modulus in Eq. 1 are time-dependent.

Boltzmann’s superposition principle simply states that each increment makes an in-

dependent contribution to the total response. Therefore, the entire history is rep-

resented by the convolution integral. The superposition principle also describes the

linear response of stress and strain. To relate strain and stress, the creep modulus

J(t) is used:

ε (t) = σ (0) J (t) +

∫ t

0

σ̇ (τ) J (t− τ) dτ. (2)

Both formulations (Eqs. 1 and 2) describe viscoelastic behavior, and the choice of
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independent variable dictates which moduli (relaxation or creep) is used. A the-

oretical relationship exists between the creep and the relaxation moduli; however,

many constitutive formulations of E(t) and J(t) do not directly translate (a note-

worthy exception is the Zener viscoelastic material model). It is common to choose

one formulation based on the type of problem encountered. For displacement driven

simulations, the relaxation modulus is used. When both formulations are necessary,

numerical interconversion techniques are used to convert stress relaxation to creep,

and vice versa.

The uniaxial expressions in Eqs. 1 and 2 illustrate the linear relationship between

strain and stress; however, they are not general to a three-dimensional material de-

scription. The full material description for a viscoelastic material is analogous to a

three dimensional linear elastic material, except the convolution operation persists

in the viscoelastic model. To further illustrate this concept, the elastic-viscoelastic

correspondence principle is introduced.

The elastic-viscoelastic correspondence principle is mathematically simple, but

phenomenologically important. The viscoelastic models (Eqs. 1 and 2) are transferred

to the Laplace domain:

σ (s) = sE (s) ε (s) , (3)

ε (s) = sJ (s)σ (s) . (4)

The viscoelastic terms (sE (s), sJ (s)) act like linear terms (similar to Hooke’s Law)

in the Laplace domain. The traditional elastic elements, E and J , have simply been

replaced with viscoelastic elements. This is a powerful formulation because no con-

dition has been placed on the relaxation and creep moduli, except that they must be

thermodynamically permissible. A variety of such models can theoretically be used.

Therefore, one modulus, either creep or relaxation, describes the complete uniaxial

transient properties of a viscoelastic material.
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The relationship between creep and relaxation is apparent in the Laplace domain:

s2J (s)E (s) = 1. (5)

Certain formulations of the relaxation and creep moduli are conveniently related by

Eq. 5. This is further discussed in Chapter 4.

The relationship between the Laplace and frequency domains allows for a straight-

forward transformation of the relaxation modulus to the frequency domain. The

analytical forms of the Laplace and Fourier domains show the relationship between

Laplace variable s and frequency variable iω:

L{g(t)} = G(s) =

∫ ∞
0

g(t)e−st dt. (6)

F{g(t)} = G(ω) =

∫ ∞
−∞

g(t)e−iωt dt. (7)

When the system is causal (g(t) = 0, ∀ t < 0), the s can be replaced with iω, where

i is defined as
√
−1 and ω is the frequency in rad/s. Hence, applying s → iω, Eq. 3

becomes:

σ (ω) = (iω)E (ω) ε (ω)
4
= E∗(ω)ε(ω) (8)

where:

E∗ = (iω)E (ω) (9)

E∗ is the complex modulus, which has two components- a real and an imaginary:

E∗(ω) = E ′(ω) + iE ′′(ω) (10)

The real component (E ′) is the aforementioned storage modulus, while the imaginary

component (E ′′) is the loss modulus. The storage and loss moduli are represented

in Figs. 3a and 3b, respectively. The power of the correspondence principle is clear:

one constitutive formulation determines the amount of modulus retained (stored) or

lost (loss) as a function of frequency. These properties are particularly important in

a dynamic analysis, as they are analogous to the properties of stiffness and damping.
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3.3 Models with a Mechanical Analogue

The constitutive formulation presented in the previous section depends on the accu-

rate formulation of the relaxation or creep modulus. The traditional way to determine

the relaxation modulus, E(t), or the creep modulus, J(t), is to use spring and dashpot

hierarchies. Spring and dashpot models have both elastic and dissipative mechanisms

simultaneously [39, 68–70]. These dissipative mechanisms are rate dependent, like a

viscoelastic material. Multiple arrangements of springs and dashpots are commonly

used: Maxwell, Kelvin-Voigt, and any number of combinations of the two. Spring

and dashpot arrangements are traditionally robust in their description of viscoelastic

materials; however, they can require many terms (degrees of freedom) to accurately

describe viscoelastic behavior. Complex models are prohibitive in regards to simu-

lation time, extrapolation to a wide range of subjects, and cohesion between model

and material behavior.

One popular mechanical model for viscoelasticity is the Prony series. Shown in

Fig. 4a, the Prony series accurately describes creep and stress relaxation mechanisms.

The Prony series model is composed of a free spring and an infinite series of Maxwell

elements in parallel. Each Maxwell element is an individual spring and dashpot in

series. The Prony series captures a wide spectrum of behavior- at high frequencies (or

short times) the dashpots “lock,” and become rigid. Here, only the springs contribute

to the mechanical response. At low frequencies (long time periods), the individual

Maxwell elements have no contribution to the overall load support (the dashpots in

the Maxwell elements transmit a negligible force). Therefore, the only load support

comes from the free spring, E0. For stress relaxation, the functional form of the Prony

series combines multiple exponentially decaying functions:

E(t) = E0 +
∞∑
n=1

Ene
−λnt, (11)

where λ is related to the spring and damper constants by λn = En/ηn. The infinite
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(a) Prony series

(b) Fractional model

Figure 4: Mechanical interpretation of Prony series and fractional calculus phe-
nomenological models
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sum in Eq. 11 allows for different decades of relaxation. Although the Prony series is

a robust model, it may require a large number of Maxwell elements to fully capture

material behavior. If a large number of terms are required, then the subsequent eigen-

value problem is expanded. In practice, this is computationally expensive and can

make extrapolation more difficult. For simplicity, a Zener material is often utilized,

where n = 1 in the Prony series.

3.4 Fractional Calculus Viscoelastic Model

Fractional calculus is a departure from the familiar integer-order calculus. The utility

of fractional calculus is that it provides unlimited flexibility in the description of

physical phenomena. However, there is additional mathematic complexity that is

assumed with fractional calculus. For example, consider the function:

y = t2. (12)

The derivative is computed as:

dy

dt
= 2t. (13)

The fractional derivative is given as:

dαy

dtα
=

Γ(3)

Γ(3− α)
t2−α, (14)

where Γ in the gamma function: Γ(t) = (t−1)!. Equation 14 displays a hybrid behav-

ior between integer derivatives. This is shown in Fig. 5, where the fractional derivative

is bound by the integer derivatives α = 0 and α = 1. For any fraction between zero

and one, a hybrid behavior is found. The example shows the applicability of fractional

calculus for physical behavior that does not conform to an integer-order calculus rep-

resentation. Viscoelastic materials often display such characteristics [50–55,71–73].

Many times, fractional calculus is used to describe viscoelasticity because it re-

duces modeling complexity (i.e the number of unique elements needed to model a

viscoelastic material) [50–55, 71–73]. Fractional elements, or “spring-pots,” yield a
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Figure 5: Example of fractional derivatives relative to integer-order derivatives

hybrid material response between a spring and a dashpot. In fact, fractional ele-

ments are often represented by complicated spring-dashpot hierarchies [74–76]. An

example of one such hierarchy, or ladder model, is shown in Fig. 6.

While fractional calculus is a departure from conventional integer-order calculus,

the mathematics are actually simplified [77] because the fractional formulation for

viscoelasticity requires fewer elements [2]. This is advantageous compared to the

standard viscoelastic models [57,78]. The compactness of the fractional model leads to

many viscoelastic applications from biomimetics to geophysics to molecular dynamics

[49, 50, 79]. Discussed herein, the challenge is to simulate fractional calculus models

numerically.

Shown in Fig. 4b, fractional calculus replaces the damper in the Prony series with

a “spring-pot.” Mathematically, the spring-pot describes a hybrid spring and dashpot

behavior:

σP = η
dαεp
dtα

. (15)

The spring-pot is regulated by the parameter α, which interpolates between spring

and dashpot behavior, giving the fractional model more flexibility than the Prony
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Figure 6: Example of fractional elements relative to integer-order elements

model:

E(t) = E0 +
∞∑
n=1

EnEα

(
−En
ηn
tαn

)
, (16)

where Eα is the Mittag-Leffler function [80]:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
. (17)

Typically, the flexibility of the fractional model means that fewer elements are needed

to fully characterize relaxation behavior. The fractional model has clear utility in

modeling applications. However, due to the Mittag-Leffler function, the fractional

model is challenging to implement in the time-domain without modification (al-

though numerical routines are available from Podlubny [56] that allow for evaluation

of the Mittag-Leffler function). A unique case of the fractional calculus model, when

α = 1/2, yields an unambiguous time-domain representation. This is known as the

complementary error function fractional calculus model (CERF) [69]:

E(t) = E0 +
∞∑
n=1

Ene
(µn2t)erfc (µn

√
t), (18)
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where En and µn are material properties and µn = En/ηn. In Eq. 18, the comple-

mentary error function (erfc) decays at a faster rate than the exponential increases,

giving a relaxation behavior. The CERF model is thermodynamically permissible in

general [81], and incorporates the flexibility of fractional calculus and the simplicity

of integer order derivative models. Previous work [2] shows the CERF model’s utility

in modeling viscoelastic behavior.

The complementary error function can be computed by most engineering soft-

ware packages; however, the function can be reduced with an expansion given by

Abramowitz and Stegun [82]:

erfc(t) = (a1y + a2y
2 + a3y

3 + a4y
4 + a5y

5)e−t
2

(19)

y =
1

1 + pt
(20)

where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 =

−1.453152027, a5 = 1.061405429. The maximum error of this expansion is 1.5 · 10−7.

Substituting the expansion into Eq. 18 results in a polynomial expression for the

relaxation modulus:

E(t) = E0 +
∞∑
n=1

En(a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5) (21)

where

x =
1

1 + p
(
µn
√
t
) . (22)

With Eq. 21, the time-domain relaxation modulus is straightforward. The CERF

model has the advantages of the fractional model, with a clear time-domain analogue.

In the frequency domain, the CERF model has the following storage and loss moduli:

25



E ′(ω) = E0 +
∞∑
n=1

En

[(√
2ω
2

)
µn + ω

]
µ2
n + µn

√
2ω + ω

(23)

E ′′(ω) =
∞∑
n=1

En

(√
2ω
2

)
µn

µ2
n + µn

√
2ω + ω

. (24)

The storage modulus contains the free term E0 and as ω approaches infinity (ω →∞),

the storage modulus becomes the sum of all of the “spring constants.” The loss

modulus approaches zero as ω approaches zero (ω → 0) and infinity (ω → ∞). In

the transition region, the loss modulus provides effective positive damping.

Both the Prony series and CERF models are monotonically decreasing in the time-

domain, and thermodynamically permissible in general [69]. However, the one-term

fractional model is perfectly smooth over the entire frequency domain, which is an

advantage it has over the higher-term Prony models. The storage and loss moduli are

shown for the fractional fit in Fig. 7. As expected, the storage and loss moduli show

the rubbery, transition, and glassy regions of viscoelastic behavior. The seemingly

additional mathematical complexity of the fractional model is tolerated because fewer

fractional elements are typically required to characterize viscoelasticity, as compared

to the Prony model. More elements can be used with the CERF model; however, it

is typically not necessary and mitigates an advantage of using fractional calculus. A

compact viscoelastic model is desired for implementation in numerical packages. The

CERF model is well-suited for this application.

The utility of the CERF model is apparent in the frequency domain, where a

one-element function is used to model relaxation. This yields a completely smooth

function, which is indicative of the actual material behavior. A one-element model

is advantageous for future dynamic analysis and modeling as well. Therefore, it is

proposed that the one-element CERF model is a better suited model for viscoelasticity
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Figure 7: Representative storage and loss moduli of a one-term fractional model

than the traditional mechanical models. The challenge remains to simulate fractional

calculus in finite element studies. Numerical routines exist for the Prony series, and

the objective of the current work is to develop similar routines for the CERF model.

3.5 Poroelasticity

Poroelasticity is a general constitutive behavior that describes a triphasic material.

The roots of poroelasticity are derived from soil mechanics; therefore, the typical de-

scription of poroelasticity includes a porous matrix of solid soil particles, permeating

fluids, and trapped air in the porous matrix. Equilibrium and continuity equations

govern each phase of the poroelastic material, as well as the overall behavior. In

fully saturated soils, poroelasticity is biphasic, consisting of solid soil particles and

a permeating fluid. The typical mechanics of poroelasticity (incompressible fluid

and homogeneous pore structure) are such that Darcy’s law is used instead of Navier-

Stokes to describe linear momentum in the fluid phase [24,25,31,83]. The constitutive

framework for poroelasticity is attributed to Biot [24, 25, 31]. Biot’s poroelasticity is

given in many equivalent forms [21]; however, the material response is characterized
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by four variables: stress (σij), strain (εij), pore pressure (p), and incremental fluid

content (ζ). In poromechanics, stress (σij) refers to total stress, which is the combi-

nation of solid and fluid stresses. Strain retains the same definition as it does for an

elastic solid [31,84]. Pore pressure (p) is the fluid pressure in the porous subspace, and

the incremental fluid content (ζ) describes the increment of fluid entering or leaving

a control volume. A set of constitutive equations is required to characterize the solid

and fluid interactions. The dependent and independent variables are determined by

the analysis type.

3.5.1 Poroelastic Constitutive Equations

The poroelastic constitutive equations are defined by four material properties. These

are loosely grouped by poroelastic solid and fluid properties (two material parame-

ters per phase). A number of material properties are available [31, 37]; however, a

representative grouping is chosen for illustration. Herein, the drained bulk (Kij) and

drained shear modulus (Gij) are used to describe the solid properties, and the Biot

moduli H ′ and R′ are used for the fluid properties. Equations 25 and 26 relate strain

and stress in a poroelastic medium (using Einstein’s notation):

εij =
σij

2Gij

−
(

1

6Gij

− 1

9Kij

)
δijσkk +

1

3H ′
δijp, (25)

ζ =
σkk
3H ′

+
p

R′
. (26)

The linear relationship between strains (εij, ζ) and stresses (σij, p) is apparent, and

if the pore pressure is negated, Eq. 25 degenerates to the linear elastic relationship

(Hooke’s law). Poroelasticity is a compact theory that describes many biphasic ma-

terials like soil [14, 15, 17, 21, 25, 31, 33–37, 39, 42], articular cartilage [29, 65], and

bone [26,28]. Effective dissipation occurs by fluid exodus in the porous matrix; how-

ever, poroelasticity is a thermodynamically reversible process. If internal dissipation

is observed, an additional mechanism is required. This is the impetus for porovis-

coelastic theory.
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3.6 Poroviscoelasticity

Poroviscoelasticity requires the merger of poroelasticity and viscoelasticity. The afore-

mentioned models of poroelasticity and viscoelasticity are combined via the elastic-

viscoelastic correspondence principle. Essentially, the correspondence principle al-

lows for a simple substitution of terms to convert an elastic material to a viscoelastic

material. The following section describes the procedure used to develop the porovis-

coelastic constitutive model.

3.7 Poroviscoelastic Constitutive Equations

Biot was the first to extend the poroelastic theory to poroviscoelasticity by use of the

correspondence principle [14]. Biot used operational calculus to replace the elastic

coefficients (e.g. G) from poroelasticity with viscoelastic operators [39]. The opera-

tors are based on a spectrum of Maxwell-type relaxation elements, which correspond

to internal dissipation mechanisms. Each of the four poroelastic terms has a corre-

sponding operator. Biot’s formulation is derived from spring and dashpot models,

and uses Onsager’s theorem and the thermodynamics of irreversible processes. The

operator formulation accounts for a relaxation spectrum that results from a finite

number or continuous distribution of individual relaxation mechanisms, e.g. physical-

chemical interfacial effects. Biot describes these interactions as “hidden coordinates”

and accounts for them with a relaxation spectrum that can appear in any of the

four material constants. While this approach allows for a wide range of viscoelastic

behavior to exist in a material, the use of spring and dashpot models is not required

(although it is popular).

In poroviscoelasticity, the viscoelastic action is traditionally applied to the solid

material properties only (e.g. G and K) [6, 7, 85, 86]. Whereas poroelastic theory

requires the definition of two properties associated with the permeating fluid and two

elastic properties (such as bulk and shear modulus), poroviscoelastic theory requires
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definition of two fluid properties and two time-dependent material properties. These

time-dependent moduli can be given in terms of creep or relaxation. A key consider-

ation is to properly model the viscoelastic component of poroviscoelasticity. A novel

approach to poroviscoelastic theory is presented in the next section.

3.8 Development of CERF Poroviscoelastic Model

The poroelastic model given in Eqs. 25 and 26 is rearranged so that stress is in terms

of strain (adapted from [25]):

σij = 2Gεij +

(
K − 2G

3

)
εkkδij −

K

H ′
δijp, (27)

ζ =
K

H ′
εkk + p

(
1

R′
− K

H ′2

)
. (28)

Equation 27 is the form more commonly required for finite element analysis, specif-

ically in ABAQUS. The following two substitutions simplify the poroelastic descrip-

tion:

αbiot =
K

H ′
, (29)

1

M
=

1

R′
− K

H ′2
. (30)

Biot’s poroelastic formulation then takes the following form:

σij = 2Gεij +

(
K − 2G

3

)
εkkδij − αbiotδijp, (31)

ζ = αbiotεkk + p

(
1

M

)
. (32)

Using Gurtin and Sternberg’s [68] definition of viscoelasticity, Biot’s poroelastic model

is transformed to a poroviscoelastic model via the correspondence principle. Note

that viscoelasticity is introduced in the two solid parameters, G and K, and the

dependence on time is made explicit:

σij(t) = 2 (G ∗ ε̇ij) (t) +

[
(K ∗ ε̇kk) (t)− 2

3
(G ∗ ε̇kk) (t)

]
δij − [αbiotp(t)] δij, (33)
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ζ(t) = αbiotεkk(t) +

(
1

M

)
p(t), (34)

where (∗) denotes convolution. Assuming causality, the convolution integrals are

expressed as:

(G ∗ ε̇ij) (t) =

∫ t

0

ε̇ij (τ)G (t− τ) dτ, (35)

(K ∗ ε̇kk) (t) =

∫ t

0

ε̇kk (τ)K (t− τ) dτ, (36)

(G ∗ ε̇kk) (t) =

∫ t

0

ε̇kk (τ)G (t− τ) dτ, (37)

The remaining step is to define the viscoelastic bulk and shear moduli. This is done

with the fractional calculus representation given in Eq. 18 for n = 1 (the CERF

counterpart to a Zener/Prony model):

G(t) = G0 +G1e
(µ2t)erfc (µ

√
t), (38)

K(t) = K0 +K1e
(β2t)erfc (β

√
t), (39)

Here, K(t) and G(t) have simply been substituted for the relaxation modulus E(t)

used previously. At this point, the CERF poroviscoelastic model is defined and

can be incorporated into the coupled analysis. Eight total material parameters are

required for the constitutive poroviscoelastic equations- three for each viscoelastic

term (e.g. G0, G1, µ), and two fluid parameters (αbiot, M). These parameters are

material and application dependent, and will be explored in the analysis of coupled

PVE/HDL problems.

3.9 Effective Stress

The analysis of poromechanics is often centered around the concept of effective stress.

Terzaghi [22] stated that for fully saturated soils, the total stress (σ) is carried by

the soil and the pore water pressure. In saturated soils, the pore pressure and stress

in the solid act in tandem to support a load. Figure 8 illustrates this principle. The
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Figure 8: Force balance on representative elementary volume (modified from [83])
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contacting solid grains have an effective stress of:

s′ =

∑
Fi
A

. (40)

Although s′ does not represent the exact contact stress, it carries the distributed

load borne by the solid grains. The pore water pressure fills the remaining (non-

contacting) portion of the porous body. Therefore, a force balance performed at the

porous interface yields:

sA = s′A+ p

[
A−

n∑
i=1

ai

]
. (41)

The contact area is assumed to be small relative to the total area [83]; therefore, the

effective stress principle becomes:

A ≈ A−
n∑
i=1

ai, (42)

sA = s′A+ pA. (43)

or:

s = s′ + p. (44)

Using the convention of ABAQUS [87], compressive stresses are negative (s = −σ,

s′ = −σ′) and pressures (also acting in compression) are positive. Therefore, the

effective stress principle is:

σ = σ′ − p. (45)

The effective stress principle is a significant simplification in Biot’s poroelastic/

poroviscoelastic theory, but the experimental results (for soil mechanics) justify its

use [31,83,87]. When fully saturated conditions exist and the solid grains are likewise

incompressible, αbiot = 1 and M →∞. Equations 31 and 32 become:

σij = 2Gεij +

(
K − 2G

3

)
εkkδij − δijp, (46)

ζ = εkk. (47)
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Equation 46 indicates that the pore pressure and solid grain response are independent

contributors to the overall response, and Eq. 47 shows that changes in the solid

structure are offset by corresponding changes in the fluid content. Therefore, the

effective stress principle is obtained:

σ′ij = 2Gεij +

(
K − 2G

3

)
εkkδij, (48)

and

σij = σij
′ − pδij. (49)

The extension to poroviscoelasticity is made naturally because of the effective stress

principle. When the viscoelasticity is applied only to the solid grains of the porous

medium, the effective stress becomes:

σij = (σij
′)V E − pδij, (50)

where:

(σij
′)V E = 2 (G ∗ ε̇ij) (t) +

[
(K ∗ ε̇kk) (t)− 2

3
(G ∗ ε̇kk) (t)

]
δij. (51)

Effective stress distinguishes the role of the solid and fluid components in a porous

material. This concept is useful when analyzing the physics of a coupled-type simula-

tion. In addition, effective stress is supported by the FEA package used in this work.

For that reason, the effective stress principle represents a large advantage over the full

poroviscoelastic simulation. The trade-off in accuracy for fully saturated materials is

small [25, 31, 83, 87]. However, if the full poroviscoelastic solution is desired, a user-

defined material (UMAT) will be required in the construction of the finite-element

software. In addition, a user-defined element (UEL) may also be required, depending

on the specification of pore pressure.

3.9.1 Conservation Laws and Solution

Applying momentum conservation and continuity to the solid and fluid phases allows

for simulation of the poroelastic problem. To fully specify the poromechanics problem,
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boundary and initial conditions are required on the material domain. This includes

pore pressure boundary and initial conditions. A number of boundary conditions

and loading configurations are discussed in Chapter 6. Commercial FEA packages

ensure that force equilibrium and continuity are enforced, and provide expedient solu-

tion routines for complicated material and geometric models. Within poromechanics,

ABAQUS is able to simulate poroviscoelastic behavior by utilizing effective stress.

The solution is strongly coupled to a hydrodynamic loading scenario, which is the

subject of a later chapter.

3.10 Poroviscoelastic Model Validation

It is desired to use the herein developed PVE model in triboelement simulations. In

order to prove feasibility of the PVE model, two validations are performed. The first is

to confirm that the fluid pressure in a porous body agrees with established theory. The

second comparison is made with experimental data obtained from articular cartilage.

3.10.1 Validation of FEA solution with Laplace’s PDE

Pore pressure over a fixed domain is governed by Darcy’s law and continuity. Mathe-

matically, a partial differential equation (PDE) is constructed that specifies the pres-

sure in the porous pad. In Cartesian coordinates, this PDE describes the pressure in

a porous body (p) as a function of three spatial dimensions (x, y, z):

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
= 0 (52)

Eq. 52 is known as Laplace’s equation, which is an elliptic PDE. For validation pur-

poses, the following 2D boundary value problem is constructed (neglecting the z-

direction): the leading and trailing edges of the pad (x-direction) are exposed to

atmospheric (gauge) pressure, which allows fluid flow across the boundary. The bot-

tom boundary is fixed, and the top boundary has a constant pressure, pmax, along its

edge. The pressure gradient in the porous pad facilitates fluid flow throughout the
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Figure 9: Boundary conditions on porous pad

pad. The pressure boundary conditions are defined mathematically:

p(0, y) = p(L, y) = 0 (53)

∂p

∂y
(x,−H) = 0 (54)

p(x, 0) = pmax (55)

The solution of the boundary value problem is obtained from potential theory. The

same problem is posed in ABAQUS (Table 1), and the results are simulated for com-

parison. Fig. 10a shows the pressure over the porous domain from the analytical

solution, and Fig. 10b shows the pressure obtained from ABAQUS. By comparison,

there is excellent qualitative agreement between the solutions, and the FEA solu-

tion averages less than 1.5% error with the theoretical solution. This indicates that

ABAQUS is capable of solving for the fluid pressure in a porous pad. Characterizing

the pressure in a porous pad is an important aspect of the PVE model validation. In

the following section, a real PVE material is compared to the full PVE formulation

in ABAQUS.
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(a) Laplace solution over 2D domain

(b) ABAQUS solution over 2D domain

Figure 10: Comparison of analytical pressure solution to FEA solution
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Table 1: ABAQUS parameters for Laplace’s PDE validation

Parameter Symbol Value (units)

Element type CPE8RP
Porous pad length L 25.0 (cm)
Porous pad height H 12.5 (cm)
Pore pressure pmax 1000 (Pa)
# of elements 1250
Configuration Plane strain
CPU time 8.8 (s)

3.10.2 Articular Cartilage Experimentation

Articular cartilage is recognized as a poroviscoelastic material [6,58,88,89], and serves

as a test platform for understanding the physics of coupled solid-fluid interactions in

flexible porous bodies. In previous work [1, 2], articular cartilage was experimentally

tested in stress-relaxation. The details of the experimental work are found in [47].

In short, articular cartilage explants were harvested from recently deceased equine

cadavers. 10 mm plugs were created from the stifle joint (analogous to the human

knee), and submerged in a biological medium for testing. Stress-relaxation was per-

formed with a CETR UMT3 Tribometer, shown in Fig. 11. After the relaxation

tests concluded, thickness measurements were performed on the cartilage plug with

a needle probing technique (Fig. 12). These measurements characterize the uniaxial

stress/strain relationship of saturated cartilage, and provide a test bed for multiphase

materials.

3.10.3 PVE Model in ABAQUS

The experimental results obtained previously are uniaxial because the original re-

search path was different from the current work. In the original research, a phe-

nomenological model of articular cartilage was presented. This model looked at the

conglomerate behavior of cartilage, and did not separate the solid and fluid compo-

nents. Therefore, additional parameters for the permeability and permeating fluid
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Figure 11: UMT Tribolometer used to test cartilage plug [47]

Figure 12: Needle probe techniques used to determine cartilage plug depth

39



Table 2: ABAQUS parameters used in PVE model validation

Parameter Symbol Value (units)

Element type CAX8RP
Configuration Axisymmetric
# of elements 1650
Poisson’s ratio [90] ν 0.2
Elastic modulus E 0.405 (MPa)
PVE pad radius ro 5.00 (mm)
PVE pad height H 3.296 (mm)
Strain/displacement ε0 7.58%/ 0.250 (mm)

Prony constant (bulk)

k1 0.13
k2 0.1
k3 0.11
k4 0.035

Prony constant (shear)

g1 0.13
g2 0.1
g3 0.11
g4 0.035

Prony time constant

τ1 13.889 (s)
τ2 0.5 (s)
τ3 2.1277 (s)
τ4 83.333 (s)

Hydraulic conductivity (from [91]) K 10−13(m/s)
CPU time 100.4 (s)

viscosity (synovial fluid) are needed to specify a poroviscoelastic material. In addi-

tion, Poisson’s ratio is required to expand beyond uniaxial study. These parameters

are obtained from literature as general inputs for analysis [90, 91]. The goal of com-

paring the experimental results to the PVE model is to verify that the physics of the

PVE model are consistent with real material behavior. The PVE model is designed

in ABAQUS with the specifications listed in Table 2. The parameters in Table 2 are

presented as they would be input into ABAQUS. The dimensions used in Table 2

mimic the geometry of a test from [1, 2, 47]. The values of permeability, viscosity,

and Poisson’s ratio are obtained from relevant literature [90, 91], and the remaining

parameters are fit to the experimental data.
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The PVE simulation is designed to duplicate the experimental protocols used in

previous work [47]. A transient (relaxation) analysis is simulated in time, and the

mean pressure from the simulation is compared to experimental results. The domain

is considered axisymmetic, and Figure 13 shows the following boundary and initial

conditions on the fluid and solid phases of the material:

∂p

∂r
(0, z, t) = 0 (56)

p(ro, z, t) = 0 (57)

∂p

∂z
(r, 0, t) = 0 (58)

∂p

∂z
(r,H, t) = 0 (59)

p(r, z, 0−) = 0 (60)

εr(0, z, t) = 0 (61)

σ(ro, z, t) = 0 (62)

ε(r, 0, t) = 0 (63)

εz(r,H, t) = −ε0 (64)

σ(r, z, 0−) = 0 (65)

Fluid is only allowed to flow in the radial direction, as enforced by rigid platens in

the vertical directions. Figure 14 shows the deformation and pore pressure in the

cartilage body during stress relaxation. The cartilage plug remains affixed to the

bone substrate at the lower boundary (z = 0), which explains the radial pinching

that occurs at y = 0, r = r0. Figure 15 shows the lateral flow of permeating fluid

from the body at the atmospheric boundary (r = r0, t = 30 s). Finally, Fig. 16 shows

the model and experimental data in stress-relaxation (mean pressure at top boundary

z = H). Excellent agreement exists between experiment and simulation, indicating

that the PVE model used herein is capable of simulating real biphasic interactions.
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Figure 13: Boundary conditions imposed in cartilage plug simulation

The nature of cartilage is porous and compliant, and the PVE model is adept at

describing the physics of such materials [6].

The PVE model is capable of describing complex solid-fluid interactions on the

macroscale. The model developed herein is validated in uniaxial stress/strain, and

similar formulations are capable of describing full material specifications [6,58,88,89].

In the following chapter, special attention is paid to the viscoelastic formulation used

to model the solid contributions of the poroviscoelastic material description.
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(a) Vertical deformation in the cartilage plug (t = 30 s)

(b) Pore pressure in the cartilage plug (t = 30 s)

Figure 14: ABAQUS rendering of deformation and pore pressure in the cartilage plug
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Figure 15: Volumetric flux across free boundary (r = ro, t = 30 s)

Figure 16: Comparison of PVE model to cartilage experiment in stress-relaxation
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CHAPTER IV

SIMULATION OF FRACTIONAL CALCULUS

VISCOELASTICITY

The principle of viscoelasticity was introduced in Chapter 3, and the advantages of

fractional calculus model were discussed. What remains is to develop algorithms

to model fractional calculus viscoelasticity in a time-dependent, displacement driven

simulation. The ideal algorithm is accurate and expedient, regardless of the material’s

strain history. Mathematically, the problem is to solve the convolution integral:

σ (t) = ε (0)E (t) +

∫ t

0

ε̇ (τ)E (t− τ) dτ. (1)

where the relaxation modulus, E(t) is defined as the n = 1 CERF model (the frac-

tional calculus counterpart to a Zener/Prony model [69]):

E(t) = E0 + E1e
(µ12t)erfc (µ1

√
t), (66)

The uniaxial case is used for development purposes, and is extended to three-dimensions

when necessary.

In the following sections, five techniques to simulate fractional calculus viscoelas-

ticity will be explored. Two techniques require the full strain history of a material,

while the remaining three techniques use a limited strain history to expedite the

simulation. The five techniques are summarized below:

Full-length techniques

1. Convolution

2. Mechanical analogue
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Expedited techniques

3. Truncated mechanical analogue

4. Fit with Prony series

5. Historic approximation with Prony series

4.1 Convolution

The traditional definition of a viscoelastic material involves the convolution integral.

Two formulations based on superposition exist to relate stress and strain. These are

given in Eqs. 1 and 2. The choice of independent variable dictates which equation

to use. For displacement driven simulations (e.g. those performed with ABAQUS),

the relaxation modulus is employed. In section 3.4, the CERF model was developed.

A benefit of the CERF model is a simple time-domain representation. This is useful

in determining model parameters from experimental data. The CERF relaxation

modulus is placed directly in the convolution integral. Performing the integration

gives precisely the stress. Unfortunately, the entire strain history is required in the

convolution integral. For large-scale simulations, this is a computationally expensive

model. Each integration point of each element must be tracked for the entire time

history of the simulation. Not only does this represent a large storage burden, but

evaluating the convolution integral is likewise computationally expensive. The benefit

of this direct method is that the solution is exact according to the definition of

viscoelasticity. For example, consider the step input of a relaxation test:

ε(t) = ε0, t ≥ t0. (67)

The solution is known for this case, as it is simply the relaxation modulus. The

numerical method is verified from this known solution, as shown in Fig. 17. For

different strain histories, convolution will be used as a baseline for comparison with

the expedited methods developed herein.
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Figure 17: Verification of convolution integral and analytical stress relaxation

The storage requirement to evaluate the convolution integral cannot be circum-

vented. However, the convolution integral can be evaluated in an optimized way.

Many numerical packages (e.g. Matlab) evaluate the full convolution integral, which

has a length of (2n− 1) for a strain history with length (n). However, only the point

at the forward time increment is needed; therefore, many unneeded calculations are

performed with the convolution function. Either a user-written program or targeted

use of built-in functions reduces the numerical cost. In Matlab for example, the con-

volution integral can be specified in the ’valid’ region only. This returns a single

value corresponding to the forward time step. The result is a more efficient algorithm

for calculating the stress/strain relationship, and the answer is exact. However, the

shortcoming is still simulation time and storage requirements, particularly for large

(element wise) studies.

4.2 Mechanical analogue

A second method that uses the full time history is the mechanical analogue. Consider

the fractional model shown in Fig. 4b. A differential equation relating stress, strain,
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and the fractional derivative of stress and strain is constructed:

(
1 +

E0

E1

)
dαεT
dtα

+
E0

η
εT =

1

E1

dασT
dtα

+
1

η
σT (68)

To simulate this differential equation, numerical schemes (e.g. backward difference)

are employed. Consider the backwards difference routine for a integer derivative:

dnf(t)

dtn
= lim

N→∞

[(
t

N

)−n N−1∑
j=0

(−1)j
(
n

j

)
f

(
t− j t

N

)]
, (69)

where t/N = ∆t and n is an integer. To evaluate non-integer derivatives, the biono-

mial coefficient must be expanded [92]:

(−1)j
(
α

j

)
=

Γ(j − α)

Γ(−α)Γ(j + 1)
. (70)

Taking the Grűnwald-Letnikov (left-sided) definition of the fractional derivative, the

fractional derivative is approximated using a backward difference scheme [92,93] where

α has replaced n and is no longer required to be an integer. The only stipulation is

that α exists as a real number. Substituting Eq. 70 in Eq. 69, the backwards difference

fractional derivative is approximated:

dαf(t)

dtα
' lim

N→∞

[(
t

N

)−α N−1∑
j=0

Γ(j − α)

Γ(−α)Γ(j + 1)
f

(
t− j t

N

)]
, (71)

Defining the Grűnwald-Letnikov coefficient as:

Aj+1 =
Γ(j − α)

Γ(−α)Γ(j + 1)
, (72)

the recursive formula is obtained [93]:

Aj+1 =
j − 1− α

j
Aj, A1 = 1. (73)

Therefore, the numerical approximation of the Grűnwald-Letnikov fractional deriva-

tive is:

dαf(t)

dtα
= lim

N→∞

[(
t

N

)−α N−1∑
j=0

Aj+1f

(
t− j t

N

)]
, (74)

48



Note that to evalutate the fractional derivative, the entire history of the function is

required. Evaluating the fractional derivatives in Eq. 68:

dασ(t)

dtα
' ∆t−αGL [σ(t) + Sσ] , (75)

dαε(t)

dtα
' ∆t−αGL [ε(t) + Sε] , (76)

where:

∆tGL =
t

N
, (77)

Sσ =

Nh−1∑
j=1

Aj+1σ (t− j∆tGL) , (78)

Sε =

Nh−1∑
j=1

Aj+1ε (t− j∆tGL) , (79)

and Nh = Int(t/∆tGL) + 1. Substituting Eqs. 75 and 76 into Eq. 68, the fractional

differential equation is solved for stress at time t:(
1 +

E0

E1

)
∆t−αGL [ε(t) + Sε] +

E0

η
ε(t) =

1

E1

∆t−αGL [σ(t) + Sσ] +
1

η
σ(t) (80)

Equation 80 gives another method to evaluate the fractional calculus viscoelastic

model, and in this case, the model is not limited to the constraints of the CERF model.

Therefore, the fractional derivative can take any value between zero and one (0 < α <

1). The mechanical analogue for α = 1/2 is compared to the convolution integral for

a stress relaxation and a sinusoidal strain history test, as shown in Figs. 18a and 18b,

respectively. The mechanical analogue is clearly suitable for simulating fractional

calculus viscoelasticity. However, the numerical simulation has the same limitations

as the convolution method: namely the storage requirements are expensive for large

element models and long simulations.

The two methods described above are suitable for small-scale simulation where

modeling accuracy is critically important. The trade-off is that the storage and

calculation requirements are cumbersome. To alleviate some of the computational
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expense, three methods are proposed. Each method represents an approximation of

the fractional calculus model.

4.2.1 Truncated mechanical analogue

To expedite the numerical process, the first method is a reduction of the aforemen-

tioned fractional differential equation. Recall that Eq. 74 evaluates the fractional

derivative by considering the entire history of the function f(t). By recognizing that

0 < α < 1, the Grűnwald-Letnikov coefficient has a fading memory behavior [92].

This is depicted in Fig. 19, and can be used to expedite the simulation by truncating

the summation in Eqs. 78 and 79. Therefore, only the most recent historical infor-

mation is used. Figure 19 shows vector Aj for a representative sample. Clearly, the

recent history is most important for the evaluation of the fractional derivative, and

as j increases, the fading memory contributes less to the response. By retaining a

limited history of the most recent values, the computation burden of the fractional

derivative is reduced. The length of history that must be stored depends on the

strain itself and the desired accuracy of the solution. Examples of varying accuracy

and strain types are provided in Figs. 20a and 20b, based on the percentage of the

strain history stored.

The method proposed to evaluate the fractional differential equation is a hybrid

method that reduces the full computation burden of evaluating the fractional deriva-

tive. However, a significant amount of information must still be stored with this

technique. One advantage is that the storage space is pre-allocated based on the

desired length of history. A disadvantage is that the error tolerance is not known a

priori, and depends on the strain history itself.

The three methods discussed to this point require significant storage space, and

are computationally handicapped because of the number of file calls that must be

made at each iteration in time. Two methods that do not require the same storage
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(a) Stress relaxation

(b) Sinusoidal stress

Figure 18: Comparison of full-history models
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Figure 19: Aj visualized vectorially to show fading memory principle

requirements are presented next. Each utilizes integer-order derivatives to approxi-

mate fractional calculus derivatives.

4.3 Fit with Prony series

The fractional calculus viscoelastic models are often used in modeling applications

because they require fewer terms to accurately characterize material behavior. Un-

fortunately, fractional calculus, unlike integer-order calculus, is strongly historic in

numerical applications. While this proves to be advantageous for modeling viscoelas-

ticity (as it has a historic component), fractional calculus is very computationally ex-

pensive to simulate in finite element models. Therefore, a technique that is employed

to approximate fractional calculus VE models is to replace them with high fidelity

integer order models. For example, the one-term CERF model is fit with a four term

Prony series. The fit is shown in Fig. 21. The proposed approximation blends the

advantages of both fractional and integer-order calculus. For example, the one-term

fractional calculus model is completely smooth in the frequency domain [2], while the

Prony series is portable in FEA simulations. The consequence of approximating a
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(a) Stress relaxation comparing truncated mechanical analogues

(b) Sinusoidal strain input comparing truncated mechanical analogues

Figure 20: Comparison of truncated mechanical analogue models
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Figure 21: CERF relaxation fit with 4-term Prony series

fractional calculus model with a integer-order model is that additional complexity is

introduced on the front end of a simulation.

If the fractional calculus model is approximated with a Prony series, simulation of

the material behavior does not require historic information beyond state variables that

describe the current time step. Consider the aforementioned convolution definition

of a viscoelastic material (uniaxial):

σ (t) = ε (0)E (t) +

∫ t

0

ε̇ (τ)E (t− τ) dτ. (1)

If causality is assumed, ε(t ≤ 0) = 0, Eq. 1 becomes:

σ (t) =

∫ t

0

ε̇ (τ)E (t− τ) dτ. (81)

Recalling the Prony series (Eq. 11), the stress is rewritten as:

σ (t) = ET

[
ε (t)−

∞∑
n=1

γnεn (t)

]
, (82)

where

ET = E0 +
∞∑
n=1

En (83)
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and

γn = En/Et. (84)

The viscous strain is defined as [87]:

εn (t) =

∫ t

0

[
1− e−λn(t−τ)

]
ε̇ (τ) dτ. (85)

For the forward time increment, Eq. 82 is defined as:

σ (t+ ∆t) = ET ε (t+ ∆t)−
∞∑
n=1

Enεn (t+ ∆t) , (86)

and the viscous strain (Eq. 85) becomes:

εn (t+ ∆t) =

∫ t+∆t

0

[
1− e−λn(t+∆t−τ)

]
ε̇ (τ) dτ. (87)

The integral in Eq. 87 is split into two parts:

εn (t+ ∆t) =

∫ t

0

[
1− e−λn(t+∆t−τ)

]
ε̇ (τ) dτ +

∫ t+∆t

t

[
1− e−λn(t+∆t−τ)

]
ε̇ (τ) dτ. (88)

The preceding equation now has two components: one that accounts for historic

effects, and one that considers the forward time increment. Considering the forward

integral, a fundamental assumption is made that the strain over the increment ∆τ is

small enough to be approximated as linear:

ε̇(τ) =
dε

dτ
=

∆ε

∆τ
. (89)

where

∆ε = ε(t+ ∆t)− ε(t). (90)

Therefore, ε̇(τ) can be pulled out of the forward time integral

εn (t+ ∆t) =

∫ t

0

[
1− e−λn(t+∆t−τ)

]
ε̇ (τ) dτ

+
∆ε

∆t

∫ t+∆t

t

[
1− e−λn(t+∆t−τ)

]
dτ. (91)
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The second integral is now readily evaluated:

εn (t+ ∆t) =

∫ t

0

[
1− e−λn(t+∆t−τ)

]
ε̇ (τ) dτ

+
∆ε

∆t

(
∆t− 1

λn
+
e−λn∆t

λn

)
. (92)

The properties of exponentials allow for the expedient evaluation of the first integral

as well:

εn (t+ ∆t) = ε(t)−
∫ t

0

[
e−λn∆te−λn(t−τ)

]
ε̇ (τ) dτ

+
∆ε

∆t

(
∆t− 1

λn
+
e−λn∆t

λn

)
. (93)

Pulling the exponential out gives:

εn (t+ ∆t) = ε(t)− e−λn∆t

∫ t

0

[
e−λn(t−τ)

]
ε̇ (τ) dτ

+
∆ε

∆t

(
∆t− 1

λn
+
e−λn∆t

λn

)
. (94)

The remaining integral term shares similarities with Eq. 85, which is used to remove

the integral (significantly reducing the computationally expensive portion of the sim-

ulation):

εn (t+ ∆t) = ε(t)− e−λn∆t (εn(t)− ε(t))

+
∆ε

∆t

(
∆t− 1

λn
+
e−λn∆t

λn

)
. (95)

After some rearranging and algebra, the forward increment of viscous strain is:

εn (t+ ∆t) =
(
1 + e−λn∆t

)
ε(t)− e−λn∆tεn(t)

+
∆ε

λn∆t

(
e−λn∆t − 1

)
+ ∆ε, (96)

ε (t+ ∆t) = ε(t) + ∆ε. (97)

Equations 96 and 97 are in terms of known quantities. Therefore, the stress (Eq. 86)

is determined. The viscous strain, εn(t), must be stored for each n, corresponding to
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Table 3: Fit parameters of Prony series to CERF model

CERF Prony

E0 2.0 MPa 2.0502 MPa
E1 1.0 MPa 0.1977 MPa
E2 - 0.2507 MPa
E3 - 0.2844 MPa
E4 - 0.1204 MPa

µ1|λ1 1.0 s−1/2 0.1884 s−1

λ2 - 8.1853 s−1

λ3 - 1.0453 s−1

λ4 - 0.0286 s−1

each Maxwell element in the Prony series. These state variables are the only storage

requirement to determine the forward stress increment.

The properties of exponentials are fundamental in evaluating the t+ ∆t relation-

ship. The unique nature of exponentials makes the Prony series ideal for time stepping

algorithms. The fundamental assumption that strain is linear over the ∆t increment

is critical to the execution of the algorithm. The validity of that assumption must be

ascertained as the simulation is performed.

The advantage of the Prony series representation is apparent in simulation speed.

Therefore, approximating the CERF model with a four-term Prony series is a viable

option for the numerical simulation of a viscoelastic material. Returning to the fit

shown in Fig. 21, the Prony series constants are determined. These properties are

given in Table 3. The four-term Prony series is compared to the CERF model (deter-

mined by full convolution) in Figs. 22a and 22b. Figure 22a shows the Prony series in

stress relaxation, and Fig. 22b shows a sinusoidal strain. The Prony fit can be used

when simulation efficiency is paramount.
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(a) Stress relaxation

(b) Sinusoidal stress

Figure 22: Comparison of fractional and Prony fit (n=4)
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4.4 Historic approximation with Prony series

The algorithm developed for the Prony series is extended to the CERF model. The

definition of viscous strain changes to:

εn (t) =

∫ t

0

[
1− eµ2n(t−τ)erfc(µn

√
t− τ)

]
ε̇ (τ) dτ. (98)

The forward time increment of Eq. 98 is:

εn (t+ ∆t) =

∫ t+∆t

0

[
1− eµ2n(t+∆t−τ)erfc(µn

√
t+ ∆t− τ)

]
ε̇ (τ) dτ. (99)

Following the process used for the Prony series, the integral is split and a linear strain

increment is assumed:

εn (t+ ∆t) =

∫ t

0

[
1− eµ2n(t+∆t−τ)erfc(µn

√
t+ ∆t− τ)

]
ε̇ (τ) dτ

+
∆ε

∆t

∫ t+∆t

t

[
1− eµ2n(t+∆t−τ)erfc(µn

√
t+ ∆t− τ)

]
dτ. (100)

The second integral is evaluated analytically:

εn (t+ ∆t) =

∫ t

0

[
1− eµ2n(t+∆t−τ)erfc(µn

√
t+ ∆t− τ)

]
ε̇ (τ) dτ

+
∆ε

µ2
n∆t

[
1− eµ2n(∆t)erfc(µn

√
∆t)− 2µn

√
∆t√
π

]
. (101)

The problem that arises is that the first integral cannot utilize the same expedient

properties of exponentials that the Prony model uses. Namely, the (t + ∆t) term

cannot be split up. Therefore, the integral must either be evaluated in full (which

is essentially a convolution operation), or approximated. It is desired to expedite

the simulation by using state variables, as was done for the viscous strain term in

the Prony model. One technique that seemingly supports this is to expand the first

integral about time t. A Taylor series is performed on the integral expression in
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Eq. 101, truncating terms with order equal or higher than (∆t)2

∫ t

0

[
1− eµ2n(t+∆t−τ)erfc(µn

√
t+ ∆t− τ)

]
ε̇ (τ) dτ ≈∫ t

0

[
1− eµ2n(t−τ)erfc(µn

√
t− τ)

]
ε̇ (τ) dτ

+

∫ t

0

[
∆t

(
µn√

π
√
t− τ

− µ2
ne
µ2n(t−τ)erfc(µn

√
t− τ)

)]
ε̇ (τ) dτ. (102)

Simplifying: ∫ t

0

[
1− eµ2n(t+∆t−τ)erfc(µn

√
t+ ∆t− τ)

]
ε̇ (τ) dτ ≈

(
1 + ∆tµ2

)
(εn(t)− ε(t)) + ε(t) +

∫ t

0

[
∆t

(
µn√

π
√
t− τ

)]
ε̇ (τ) dτ. (103)

Therefore, returning to the viscous strain at the forward increment:

εn (t+ ∆t) = ε(t) +
(
1 + ∆tµ2

)
(εn(t)− ε(t)) +

∫ t

0

[
∆t

(
µn√

π
√
t− τ

)]
ε̇ (τ) dτ

+
∆ε

µ2
n∆t

[
1− eµ2n(∆t)erfc(µn

√
∆t)− 2µn

√
∆t√
π

]
,

(104)

ε (t+ ∆t) = ε(t) + ∆ε. (105)

Equation 104 highlights a challenge associated with the CERF model. That is, there

is a singularity in the derivative of the CERF model at t = τ . If performing the

entire convolution routine, this singularity can be handled, but the desire is to avoid

a full convolution operation. The technique for simulating the viscous strain in the

Prony series is not applicable for the CERF model. Therefore, another approach

must be taken. Some techniques that were considered to remedy this problem in-

clude: approximation of the erfc as an exponential series, integration by parts on the

term with a singularity, and replacing the singularity with a delta dirac function and

evaluating analytically. Unfortunately, each of these methods accumulates significant

error as time progresses.
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The singularity in Eq. 104 occurs when τ = t. When evaluating the integral, it

is clear that the singularity occurs at the most recent time history point. Therefore,

the most important historical point is also the most troublesome point. A proposed

remedy around the singular point is to approximate the historic component with a

Prony model. In Eq. 100, the historic component is replaced with a Prony series,

while the forward strain increment is retained as the CERF component. Using a

known viscoelastic model ensures thermodynamic consistency, and allows for use of

the convenient properties of the Prony series. Mathematically, εn(t+ ∆t) becomes:

εn (t+ ∆t) =
(
1 + e−λn∆t

)
ε(t)− e−λn∆tεn(t)

+
∆ε

µ2
n∆t

[
1− eµ2n(∆t)erfc(µn

√
∆t)− 2µn

√
∆t√
π

]
. (106)

The stress relaxation behavior of the hybrid model is compared to the fractional

model in Fig. 23a. The hybrid model clearly deviates from the fractional model in

stress relaxation. This is not surprising considering that stress relaxation negates

the forward term (the second term of Eq. 101) because the change in strain is zero,

∆ε = 0. Therefore, the hybrid model becomes identically the one-term Prony model.

However, considering a more realistic strain profile, like that shown in Fig. 23b,

the hybrid model tracks the fractional model realistically. This indicates that the

forward strain increment is the more important component of the stress calculation.

The advantage of the hybrid model is that the storage requirement is exactly the

same as the one-term Prony model, but it approximates fractional viscoelasticity.

This represents a progressive step forward for the expedient simulation of fractional

calculus viscoelasticity. However, the trade-off is that fidelity is lost with the hybrid

model, and that up-front effort is expended to fit the correct Prony model to the

desired fractional model. If the utility of simulation speed is paramount, the hybrid

model is a viable option.
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(a) Stress relaxation

(b) Sinusoidal stress

Figure 23: Comparison of fractional and historic Prony fit
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Table 4: Comparison of simulation techniques and simulation times

Simulation
Time (s)

Eff. (%)

Max Error
Relative to
Max Stress
(%)

Full convolution 426.0 (s) - -
Mechanical analogue 199.6 (s) 53 (%) 0.69%
Truncated mechanical (n=50%) 136.0 (s) 68 (%) 0.73%
Fit with Prony series 3.1 (s) 99 (%) 0.09%
Historic approx. with Prony 3.0 (s) 99 (%) 14.3%

4.4.1 Summary

A number of algorithms are presented for the simulation of a fractional calculus vis-

coelastic model. A clear trade-off exists between model fidelity and simulation time.

The five techniques discussed are compared side-by-side in Table 4. Each technique

was simulated on the same machine 30 times and the simulation time was averaged.

The efficiency metric is determined relative to the full convolution simulation (e.g.

there is a 99% reduction in simulation time between the full convolution and the

Prony series fit).

The specifics of the finite element analysis will determine which model is appro-

priate; however, a number of options are available. During the development of the

aforementioned algorithms, a number of additional methods were considered. These

include: exponential expansion of the CERF function, Guyan reduction to eliminate

certain degrees of freedom, series expansions, representation of fractional calculus

with smooth functions (to avoid the singularity present in the CERF), and approxi-

mation of the fractional derivative with integer-order derivatives, among others. Such

techniques should be explored if the proposed models do not meet speed and accuracy

thresholds determined from the displacement driven simulations. The threshold de-

pends on the problem being solved, and likely cannot be accessed a priori. Therefore,
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the end user must remain aware of the requirements of each simulation.

Fractional calculus is employed in the current work because it provides a succinct

characterization of viscoelasticity, particularly in the frequency domain. The routine

used to model fractional calculus in the time-domain should likewise be efficient.

Fitting the fractional model with a four-term Prony series accomplishes this goal,

and has the additional benefit of being supported by ABAQUS. Therefore, a separate

user material file is not written. In the following section, the CERF viscoelastic

model is verified in ABAQUS, and compared to the analytical solution obtained from

evaluating the full convolution integral.

4.5 Validation of Viscoelastic Models in FEA

The aforementioned methods to simulate viscoelasticity are validated in FEA by test-

ing single-element models. A single-element model is directly compared to available

analytical solutions. Three tests are performed: stress relaxation, creep, and sinu-

soidal strain control. The first validation is for the Prony series, which is supported

by ABAQUS. The fractional model (unsupported) follows.

4.5.1 Prony

ABAQUS has built-in functionality for viscoelasticity in its material library. All sup-

ported elements can be described by the Prony series. However, manipulation of the

constitutive equations is necessary to conform to the requirements of ABAQUS. Table

5 gives the parameter conversion from the constitutive model to that of ABAQUS.

The mechanics are governed by the elastic modulus and Poisson’s ratio, and the shear

and bulk modulus ratios and time constant. The uniaxial case is considered to isolate

the stress/strain relationship.

Stress relaxation and creep are useful for validation because the relaxation and

creep moduli are known analytically in the one-term Prony series:
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Table 5: Input parameters for Prony validation in ABAQUS

Symbol Value (units)

Free spring Prony term E0 0.667 (MPa)
Maxwell spring Prony term E1 0.333 (MPa)
Prony time term λ 0.5 (1/s)
Free spring Prony term J0 1 (1/MPa)
Maxwell spring Prony term J1 0.5 (1/MPa)
Prony time term τ 3 (s)

Instantaneous elastic modulus Ei 1.00 (MPa)
Instantaneous Poisson’s ratio ν 0.30
Prony constant (bulk) k1 0.33
Prony constant (shear) g1 0.33
Time constant τ1 2 (s)

E(t) = E0 + E1e
−λt, (107)

J(t) = J0 + J1

(
1− e−t/τ

)
. (108)

Fixing the respective independent variable leads to simple expressions for the stress/strain

relationship:

σ(t) =
(
E0 + E1e

−λt) ε0, (109)

ε(t) =
[
J0 + J1

(
1− e−t/τ

)]
σ0. (110)

In ABAQUS, stress relaxation is formed by applying a fixed displacement boundary

condition in time, and tracking the resulting stress. Creep is determined from a fixed

stress (or pressure) in time, and tracking the resulting strain. The results of this are

shown in comparison to the analytical results in Fig. 24. The results clearly indicate

agreement between the single element test in FEA and the analytical solution. A

sinusoidal strain pattern is also tested for completeness, as shown in Fig. 25. Here,

the analytical solution is formed by taking the convolution of the relaxation modulus

and the rate of change of strain. Once again, the FEA simulation tracks the analytical

identically. The results of the single element tests indicate that ABAQUS accurately
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Table 6: Input parameters for ABAQUS

Symbol Value (units)

Element type C3D8R
Instantaneous elastic modulus Ei 2.903 (MPa)
Instantaneous Poisson’s ratio ν 0.3

Prony constant (bulk)

k1 0.0681
k2 0.0863
k3 0.0980
k4 0.0415

Prony constant (shear)

g1 0.0681
g2 0.0863
g3 0.0980
g4 0.0415

Time constant

τ1 5.3079 (s)
τ2 0.1222 (s)
τ3 0.9567 (s)
τ4 34.9650 (s)

represents linear viscoelastic behavior described by the Prony series. This allows for

a more complicated viscoelastic model to be built.

4.5.2 Complementary Error Function Model

The same tests used to validate the one-term Prony series are used for the CERF

model. The CERF model is constructed from a best fit (in a least squares sense)

four-term Prony series (refer to Table 3 for fit coefficients). These values are sent

to ABAQUS in the manner discussed in Table 6. The four-term Prony series is an

approximation of the CERF model, but is compared to the full CERF model in stress

relaxation, creep, and sinusoidal strain. Figure 26 shows the stress relaxation and

creep comparison. The stress relaxation result is analytical based on the relaxation

modulus. Unlike the one-term Prony series, the CERF model does not have an elegant

creep modulus. Therefore, the creep data is converted from the stress relaxation data

using interconversion, discussed herein. In both creep and stress relaxation, the CERF

approximation (simulated by ABAQUS) has qualitative and quantitative agreement
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(a) Stress relaxation

(b) Creep

Figure 24: Stress relaxation and creep validation of Prony viscoelastic model in
ABAQUS
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Figure 25: Validation of Prony viscoelastic model in ABAQUS from sinusoidal strain
input

with the analytical solution. The sinusoidal strain case shows similar quality of fit,

as seen in Fig. 27.

ABAQUS uses the techniques discussed in Section 4.3 to simulate viscoelastic

behavior. The validation indicates that the ABAQUS results are consistent with

the full, analytical solution. Therefore, the current study will use a Prony fit of the

CERF model to simulate the time-domain behavior of viscoelastic materials. The

viscoelastic model is included in the poroviscoelastic formulation of the substrate

material.

4.5.3 Interconversion

The viscoelastic models presented in Chapter 3 are employed as constitutive models

to characterize the storage and loss of the coupled HDL/PVE simulation. The Prony

series and CERF models are well-defined in the time and frequency domains, with

analytical expressions for the storage and loss moduli based on the time-domain fit of

the simulation data. The disadvantage of using the Prony series and CERF models is
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(a) Stress relaxation

(b) Creep

Figure 26: Stress relaxation and creep validation of CERF viscoelastic model in
ABAQUS
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Figure 27: Validation of CERF viscoelastic model in ABAQUS from sinusoidal strain
input

that there is not a known creep modulus formulation (with the exception of a Prony

series with one Maxwell element). Therefore, to use these models, the creep data

must be intercoverted to stress-relaxation data. Interconversion uses the theoretical

relationship of the creep and relaxation modulus to translate between moduli without

imposition of a constitutive model. The stress/strain formulations for viscoelasticity:

σ (t) = ε (0)E (t) +

∫ t

0

ε̇ (τ)E (t− τ) dτ, (1)

and

ε (t) = σ (0) J (t) +

∫ t

0

σ̇ (τ) J (t− τ) dτ, (2)

are directly related in the Laplace domain:

σ (s) = sE (s) ε (s) , (3)

and

ε (s) = sJ (s)σ (s) (5)

70



by substituting Eq. 5 into Eq. 3:

1 = s2J (s)E (s) , (111)

leading to the direct relationship between creep and relaxation modulus in the Laplace

domain:

E (s) =
1

s2J (s)
. (112)

The inverse Laplace transform is applied to Eq. 111, giving a convolution of the creep

and relaxation moduli:

t =

∫ t

0

E(t− τ)J(τ)dτ, (113)

which can be differentiated to give a convenient relationship between the creep and

relaxation moduli:

1 = E(0)J(t) +

∫ t

0

Ė(t− τ)J(τ)dτ. (114)

The initial condition is determined at t = 0:

E(0)J(0) = 1, (115)

and then the convolution integral is evaluated numerically, leading to a recursive

relationship for the creep modulus [94,95]:

J(tn) = −J(tn−1)+

4tn −
∑n−1

i=1 (J(ti) + J(ti−1))(E(tn − ti−1) + E(tn − ti−1))(ti − ti−1)

(E(0) + E(tn − tn−1))(tn − tn−1)
,

(116)

where n ≥ 2. When n = 1,

J(t1) =
3− E(t1)/E(0)

G(0) +G(t1)
. (117)

Likewise, the relaxation modulus is interconverted with the same algorithm (n ≥ 2):

E(tn) = −E(tn−1)+

4tn −
∑n−1

i=1 (E(ti) + E(ti−1))(J(tn − ti−1) + J(tn − ti−1))(ti − ti−1)

(J(0) + J(tn − tn−1))(tn − tn−1)
,

(118)
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Table 7: Input parameters for interconversion

Description Symbol Value (units)

Viscoelastic relaxation constants
E0 8 (MPa)
E1 10 (MPa)

Relaxation time constant λ 0.25 (1/s)

Viscoelastic creep constants
J0 0.125 (1/MPa)
J1 0.0694 (1/MPa)

Creep time constant τ 9 (s)

and

E(t1) =
3− J(t1)/J(0)

J(0) + J(t1)
. (119)

Interconversion is a powerful tool because it allows the user to control the independent

variable in a stress/strain or force/displacement simulation. In situations such as the

coupled PVE/HDL problem, there is only one choice of independent variable that is

physically realizable. However, the fitting functions from the correspondence principle

are better suited for the opposite analysis. Interconversion links the two moduli, and

allows for convenient fitting in the time-domain. Ultimately, interconversion is a tool

that gives the user additional avenues for constitutively modeling the storage and loss

properties of a system. In addition, the applications for viscoelasticity are apparent

as well.

Figures 28 and 29 show the interconversion process for a known analytical solution.

The parameters used in this example are given in Table 7. Interconversion of creep

to relaxation and vice versa is an important step in specifying viscoelastic models.

Additionally, interconversion is used to evaluate storage and loss properties of the

coupled PVE/HDL problem.
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(a) Relaxation modulus from 1-term Prony series

(b) Creep modulus from analytical and interconversion solutions

Figure 28: 1-term Prony series interconversion from relaxation to creep modulus
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(a) Creep modulus from 1-term Prony series

(b) Relaxation modulus from analytical and interconversion solutions

Figure 29: 1-term Prony series interconversion from creep to relaxation modulus
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CHAPTER V

POROUS REYNOLDS EQUATION

The fluid mechanics of thin-films are well-defined for conventional, rigid, triboele-

ments. The resulting Reynolds equation, which is derived from the Navier-Stokes

equations and continuity, is ubiquitous in tribological applications. However, the tra-

ditional Reynolds equation assumes no-slip conditions occurring between rigid plates.

With a porous and flexible interface, the boundary conditions must be modified. This

is accomplished in a number of ways, with a popular method attributed to Beavers

and Joseph [96]. This chapter addresses the governing fluid mechanics of a thin film

on a porous substrate. The results are compared to the rigid case for a range of

substrate permeability values.

5.0.4 Derivation of Porous Reynolds Equation

Consider the geometrically simple design of a thrust bearing, as shown in Fig. 30a.

The surface plates have no-slip at the rigid interface, leading to the well-known iso-

viscous and incompressible Reynolds equation [97]:

∂

∂x

(
∂P

∂x
h3

)
+

∂

∂z

(
∂P

∂z
h3

)
= 12µ

[
∂

∂x

(
−U1h

2

)
+ U1

∂h

∂x
+
∂h

∂t

]
. (120)

Now consider allowing one of the rigid surface plates to be flexible and porous, as

shown in Fig. 30b. At the lower boundary of the film, flow is allowed to permeate into

(or out of) the porous medium. In addition, pressure generated in the fluid can cause

deformation of the porous substrate. It is desired to describe the fluid mechanics

in this configuration in a similar manner to the rigid case. Mathematically, this is

accomplished by modifying the boundary condition on the lower surface, and solving

for new fluid velocities in the film channel.

75



(a) Thrust bearing with rigid interfaces

(b) Thrust bearing with porous interface on bot-
tom boundary

Figure 30: Thrust bearings in the rigid and porous cases

Figure 31: Boundary layer approximated by the Beavers-Joseph boundary condition
(modified from [96])
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The introduction of a porous and flexible boundary, shown in Fig. 30b, modifies the

boundary conditions of the Reynolds equation. A popular porous boundary condition

is attributed to Beavers and Joseph [96]. Beavers and Joseph provide a slip-flow

condition for the porous interface, which is based on experimental findings. Fig. 31

represents the fluid velocity profiles in the fluid channel and the porous filter. At

the no-slip interface (y = h), the fluid velocity is U , and at the porous interface

(y = 0), the fluid velocity is uB. The porous filter velocity (from Darcy’s law) is Ux.

The Beavers and Joseph boundary condition relates the interface velocity to the filter

velocity. In effect, the slip-flow boundary condition approximates the boundary layer

shown in Fig. 31. Mathematically, the slip-flow condition is given as [96]:

∂u

∂y

∣∣∣∣
y=0

=
αB√
k

[uB − Ux] (121)

where αB is a slip-coefficient, and k is the permeability of the porous structure.

Beavers and Joseph show that this ad hoc boundary condition reasonably captures

experimental results for a range of materials. In reality, it is unlikely that slip is

actually occurring at the interface; however, the slip-coefficient helps to rectify the

results from experiments and the theory. Therefore, the slip coefficient is a useful

parameter for the designer to retain. The porous interface is incorporated in the

Reynolds equation by modifying one of the rigid boundary conditions.

Following the usual assumptions of the Reynolds equation, the fluid velocity terms

are defined as:

∂2u

∂y2
=

1

µ

∂P

∂x
(122)

∂2v

∂y2
= 0. (123)

∂2w

∂y2
=

1

µ

∂P

∂z
(124)
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The Beavers-Joseph slip condition is applied as a boundary condition at y = 0:

∂u

∂y

∣∣∣∣
y=0

=
αB√
k

[u (x, 0, z)− Ux (x, 0, z)] (125)

v (x, 0, z) = −V0 (x, 0, z)− V ′ (x, 0, z) . (126)

∂w

∂y

∣∣∣∣
y=0

=
αB√
k

[w (x, 0, z)−Wz (x, 0, z)] , (127)

where Ux, V0, and Wz are Darcy flow terms (filter velocities):

Ux = k
∂P

∂x

∣∣∣∣
y=0

(128)

V0 = k
∂P

∂y

∣∣∣∣
y=0

(129)

Wz = k
∂P

∂z

∣∣∣∣
y=0

. (130)

At the no-slip boundary (y = h):

u (x, h, z) = −U1 (131)

v (x, h, z) = −V1, (132)

w (x, h, z) = 0. (133)

Equations. 125-133 define the boundary of the fluid film channel. Returning to

Eq. 122, and integrating with respect to y yields:

∂u

∂y
=

1

µ

∂P

∂x
y + C1, (134)

and integrating again for the u velocity:

u (y) =
1

2µ

∂P

∂x
y2 + C1y + C2. (135)

With reference to the boundary conditions, at y = 0, Eq. 135 equals:
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u (0) = C2, (136)

which is inserted into Eq. 125:

∂u

∂y

∣∣∣∣
y=0

=
αB√
k

[C2 − Ux (x, 0, z)] , (137)

and rearranged:

C2 =

√
k

αB

∂u

∂y

∣∣∣∣
y=0

+ Ux (x, 0, z) . (138)

The derivative term is found naturally from Eq. 134:

∂u

∂y

∣∣∣∣
y=0

= C1, (139)

which gives C1 and C2 in terms of each other:

C2 =

√
k

αB
C1 + Ux (x, 0, z) . (140)

The second boundary condition at y = h allows for C1 and C2 to be solved:

u(h) = −U1 =
1

2µ

∂P

∂x
h2 + C1h+ C2. (141)

It remains an exercise in algebra to arrive at the simplified equation for fluid velocity

in the x direction:

u(y) =
1

2µ

∂P

∂x

[
y2 −

(
y +

√
k

αB

)(
h2 − 2k

h+
√
k/αB

)
− 2k

]

−
(

U1

h+
√
k/αB

)(
y +

√
k

αB

)
.

(142)

Equation 142 describes the fluid velocity in the x-direction as a function of geometry

(h), fluid viscosity (µ), pressure gradient (∂P/∂x), bearing velocity (U1), and the two
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porous parameters permeability (k) and slip coefficient (αB). From these parameters,

two nondimensional groupings are created to simplify Eq. 142:

ξ0 =

√
k/αB

h+
√
k/αB

(143)

ξ1 =
3 [h (

√
k/αB) + 2k]

h (h+
√
k/αB)

(144)

Equations 143 and 144 effectively modify the film thickness, based on the properties

of the porous substrate. With those groupings, the velocity profile in the x-direction

is determined:

u(y) =
1

2µ

∂P

∂x
(y − h)

(
y +

1

3
hξ1

)
− U1

h
[y (1− ξ0) + hξ0] . (145)

As the permeability approaches the non-porous case (k → 0), the film modifiers

approach zero (ξ0 → 0 , ξ1 → 0), and Eq. 145 agrees with the conventional fluid

velocity of the Reynolds equation. The w velocity follows an identical derivation as

u, except that Couette flow in the z-direction is not considered in this work:

w(y) =
1

2µ

∂P

∂z
(y − h)

(
y +

1

3
hξ1

)
(146)

The velocity profiles u and w describe the lateral flow of lubricant in the fluid channel.

Applying continuity in the fluid channel:

∂(ρv)

∂y
= −∂(ρu)

∂x
− ∂(ρw)

∂z
− ∂ρ

∂t
, (147)

and inserting the fluid velocities (Eqs. 145 and 146):

∂(ρv)

∂y
= − ∂

∂x

{
ρ

2µ

∂P

∂x
(y − h)

(
y +

1

3
hξ1

)
− U1

h
[y (1− ξ0) + hξ0]

}
− ∂

∂z

{
ρ

2µ

∂P

∂z
(y − h)

(
y +

1

3
hξ1

)}
− ∂ρ

∂t
.

(148)

The continuity equation is integrated with respect to y using the following boundary

conditions at the bearing interface:

v(y = 0) = V0 + V ′ (149)
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v(y = h) = V (150)

where V0 is the fluid velocity entering or leaving the porous medium (governed by

Darcy’s law). V ′ is the velocity of the flexible interface due to deformation, and V is

the conventional squeeze term:

V =
∂h

∂t
. (151)

These boundary conditions are retained after Eq. 148 is integrated across the film

(with respect to y):∫
d(ρv)dy = −

∫ h

0

∂

∂x

{
ρ

2µ

∂P

∂x
(y − h)

(
y +

1

3
hξ1

)}
dy

+

∫ h

0

∂

∂x

{
ρU1

h
[y (1− ξ0) + hξ0]

}
dy

−
∫ h

0

∂

∂z

{
ρ

2µ

∂P

∂z
(y − h)

(
y +

1

3
hξ1

)}
dy

−
∫ h

0

∂ρ

∂t
dy.

(152)

The integrals of Eq. 152 are integrated using Leibniz’s theorem:∫ u1(υ)

u0(υ)

∂

∂υ
f(φ, υ)dφ =

∂

∂υ

∫ u1(υ)

u0(υ)

f(φ, υ)dφ

−f(u1, υ)
∂u1

∂υ
+ f(u0, υ)

∂u0

∂υ
.

(153)

For example, if the following substitutions are made:

υ = x, φ = y, u0(x) = 0, u1(x) = h(x),

f1(y, x) =
ρ

2µ

∂P

∂x
(y − h)

(
y +

1

3
hξ1

)
f2(y, x) =

ρU1

h
[y (1− ξ0) + hξ0] ,

then Eq. 153 is used for the terms that correspond to the x-direction:∫ h

0

∂

∂x

{
ρ

2µ

∂P

∂x
(y − h)

(
y +

1

3
hξ1

)
− ρU1

h
[y (1− ξ0) + hξ0]

}
dy =

∂

∂x

∫ h

0

ρ

2µ

∂P

∂x
(y − h)

(
y +

1

3
hξ1

)
dy −�����f1(h, x)

∂h

∂x
+ f1(0, x)

�
�
�∂0

∂x
−

∂

∂x

∫ h

0

ρU1

h
[y (1− ξ0) + hξ0] dy +

ρU1

h

∂P

∂x
[h (1− ξ0) + hξ0]

∂h

∂x
+ f2(0, x)

�
�
�∂0

∂x

(154)
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Assuming the the density and viscosity of the fluid do not depend on spatial coordi-

nates (ρ 6= ρ(x, y, z), µ 6= µ(x, y, z)), the integrals in Eq. 154 are readily evaluated:∫ h

0

∂

∂x

{
ρ

2µ

∂P

∂x
(y − h)

(
y +

1

3
hξ1

)
− ρU1

h
[y (1− ξ0) + hξ0]

}
dy =

∂

∂x

{
ρ

12µ

∂P

∂x

[
−h3 (1 + ξ1)

]}
− ∂

∂x

[
ρU1

h (ξ0 + 1)

2

]
+ ρU1

∂h

∂x

(155)

The same process is used for the z-direction:∫ h

0

∂

∂z

{
ρ

2µ

∂P

∂z
(y − h)

(
y +

1

3
hξ1

)}
dy =

∂

∂z

{
ρ

12µ

∂P

∂z

[
−h3 (1 + ξ1)

]}
,

(156)

and the density term: ∫ h

0

∂ρ

∂t
dy = h

∂ρ

∂t
. (157)

Combining the results of Eqs. 155 - 157, and performing the simple integration on the

left hand side of Eq. 152 with the boundary conditions given in Eqs. 149-150 yields

the modified Reynold’s equation:

∂

∂x

{
∂P

∂x

[
h3 (1 + ξ1)

]}
+

∂

∂z

{
∂P

∂z

[
h3 (1 + ξ1)

]}
=

12µ

{
∂

∂x

[
−U1h (ξ0 + 1)

2

]
+ U1

∂h

∂x
+
h

ρ

∂ρ

∂t
+ (V + V0 + V ′)

}
.

(158)

Equation 158 is further simplified by assuming the density does not change with

respect to time:

∂

∂x

{
∂P

∂x

[
h3 (1 + ξ1)

]}
+

∂

∂z

{
∂P

∂z

[
h3 (1 + ξ1)

]}
=

12µ

{
∂

∂x

[
−U1h (ξ0 + 1)

2

]
+ U1

∂h

∂x
+ (V + V0 + V ′)

}
.

(159)

Equation 159 is the Reynolds equation with a porous boundary. As the permeability

of the substrate decreases, ξ0 and ξ1 approach zero, and Eq. 159 degenerates to the

conventional Reynolds equation presented in Eq. 120.

k → 0, ξ0 → 0, ξ1 → 0
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∂

∂x

(
∂P

∂x
h3

)
+

∂

∂z

(
∂P

∂z
h3

)
=

12µ

[
∂

∂x

(
−U1h

2

)
+ U1

∂h

∂x
+ (V + V ′)

]
.

(160)

The previous exercise leads to the definition of an effective film thickness that

considers the contribution of permeability of the substrate:

H3
1 = h3 (1 + ξ1) . (161)

Conversely, as the permeability of the substrate increases, the effective film thickness

increases approximately with the square root of k:

k & O(h2), ξ0 → 1, H3
1 ∝
√
k.

Increasing the permeability of the substrate means that the fluid can move more freely

through the porous medium. Therefore, the effective fluid film thickness is increased

compared to the rigid case. Some example results are presented for a porous interface

in the following section.

5.0.5 Implications of Porous Boundary on Reynolds Equation (Left Hand
Side)

The Beavers-Joseph boundary condition is considered for its effect on the velocity

profile in the fluid channel (Eq. 145). Figure 32 shows the apparent slip at the

porous boundary (y = 0) for a virtually parallel channel (as shown in Fig. 31). The

parameters used for Fig. 32 are given in Table 8. At the top interface (y = h), no slip

occurs, and the fluid moves with the journal’s velocity U1, while the lower, porous

interface experiences non-zero velocity, ub. This is in contrast to the rigid, no-slip

case, where u/U1 = 0 at y = 0 (also shown in Fig. 32). Beavers and Joseph indicate

that real materials have slip coefficients between αB = 0.001 and αB = 10. The

implications of a porous boundary are to change the relative fluid velocity between

the two plates. In cases where αB is large (e.g. lattice foametals), there is a large

effect on the velocity profile. This can even cause a negative velocity at the interface if
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Figure 32: Velocity profile in fluid channel for rigid and slip cases

Table 8: Parameters for Beavers-Joseph slip analysis

Parameter Symbol Value (units)

Permeability k 10−10 (m2)

Pressure gradient dP
dx

0.50 (kPa/µm)

Channel height h 100 (µm)

Fluid viscosity µ 1 (Pa · s)

Bearing velocity U1 0.1 (m/s)

the Poiseuille flow is large enough and acts counter to the Couette flow. In the case of

the Poiseuille flow acting counter to the Couette flow, there is a unique combination

of αB and k that replicates the no-slip condition.

Permeability plays an important role in the left hand side (LHS) of the porous

Reynolds equation. Consider the previously defined effective film thickness, H1, and

its dependence on permeability. Figure 33 shows the effective film thickness for vari-

ous materials, normalized by the geometric film thickness dimension (corresponding

to the rigid case). The consequence of permeability is very large over a range of
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Figure 33: Effective film thickness relative to permeability

realistic materials. Figure 33 shows that the effective film thickness is proportional

to the square root of permeability, as discussed previously. A permeable boundary

changes the nature of hydrodynamic lubrication. It is desired to understand these

changes, and try to shape them in a beneficial way. To accomplish this, the hydro-

dynamic lubrication problem must be solved in an accurate and expedient manner.

The following section addresses the numerical aspects of simulating the HDL problem

with a porous interface.

5.0.6 Numerical Solution of the Porous Reynolds Equation

The porous Reynolds equation is solved with a finite volume/finite difference tech-

nique [98]. The aforementioned substitution of H1 (Eq. 161) is made in the porous

Reynolds equation (Eq. 159):

∂

∂x

(
H3

1

∂P

∂x

)
+

∂

∂z

(
H3

1

∂P

∂z

)
=

12µ

{
∂

∂x

[
−U1h (ξ0 + 1)

2

]
+ U1

∂h

∂x
+ (V + V0 + V ′)

}
.

(162)
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Figure 34: Numerical discretization of hydrodynamic lubrication problem, reproduced
from [98]

Then, the bearing domain is discretized according to Fig. 34:[
∂

∂x

(
H3

1

∂P

∂x

)]
i,j

+

[
∂

∂z

(
H3

1

∂P

∂z

)]
i,j

=

12µ

{
∂

∂x

[
−U1h (ξ0 + 1)

2

]
+ U1

∂h

∂x
+ (V + V0 + V ′)

}
i,j

.

(163)

The derivatives are evaluated with a central difference numerical method, the de-

tails of which are given in Appendix A. With the known and calculated terms, the

Reynolds equation is solved for pressure at each step:

Pi,j = (a1Pi,j+1 + a2Pi,j−1 + a3Pi+1,j + a4Pi−1,j + a0) (164)
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The constants, ai, are also given in Appendix A. Various numerical techniques, such

as Jacobi’s or Gauss-Seidel iteration, can be used to solve for Pi,j. Convergence and

local and global error tolerances are accessed at the same time. Depending on the

bearing type and geometry, relevant boundary conditions are applied. In the current

work, the pressure at the boundary is atmospheric:

P (0, z, t) = P (L, z, t) = P (x, 0, t) = P (x,D, t) = 0. (165)

However, in other triboelement types, the boundary conditions may need to reflect

more complex arrangements, such as cavitation. This might be of particular interest

if lubricant is drawn from the porous pad in such regions. Such work is left for future

study.

The numerical solution is validated for the non-porous case with the works of

Pinkus [99], Green [98], and the known long and short bearing solutions [97]. In

addition, the porous HDL solution is qualitatively shown in agreement with Prakash

and Vij [63] and Etsion and Michael [64], although the application of their studies is

different.

5.1 Implications of Porous Boundary

In the case where rigid/porous boundaries exist in triboelements, the physics can

sometimes be solved analytically. A long or short bearing approximation must be used

for the Reynolds equation, and the porous solution (Laplace’s equation) is coupled

to the fluid dynamics. Prakash and Vij [63] and Etsion and Michael [64] use this

approach. However, the solution to Laplace’s equation is an infinite sum of harmonic

equations, lessening the advantage of solving the problem analytically. The numerical

solution to Laplace’s equation is straightforward, and can also be coupled to the

HDL problem by sharing pressure information at the porous/fluid boundary. In

addition, the full 2D Reynolds equation can be used. Therefore, the numeric solution
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Table 9: Parameters for pressure profile comparison at various permeabilities

Parameter Symbol Value (units)

Bearing length L 25 (mm)

Bearing depth D 0.5 (m)

Inlet film thickness hi 40 (µm)

Ratio of inlet/outlet films a 2.2

Fluid viscosity µ 0.1 (Pa · s)

Bearing velocity U1 0.02 (m/s)

Beavers-Joseph Slip Coefficient αB 0.1

Bearing velocity U1 0.1 (m/s)

Maximum pressure Pmax 38.7 (kPa)

Load support (per unit depth) W 606 (N/m)

of Laplace’s equation will be used to determine the pressure in a porous body. This

naturally couples with the porous Reynolds equation at shared nodes.

Although the porous Reynolds equation differs from the rigid case in principle,

the pressure profile that is generated by solving the porous Reynolds equation has

a similar shape to that of the traditional Reynolds equation, as shown in Fig. 35.

Therefore, the character of the pressure profile remains similar for the porous and

non-porous cases. In Fig. 36, the geometry of the bearing is held constant while the

permeability is varied. Essentially, the bearing is operating at steady-state, and the

vertical flow of fluid into the bearing is neglected (V = V0 = V ′ = 0). Table 9 gives

the simulation parameters. The resulting pressure profiles are shown in 1D. Although

greater permeabilities erode the pressure magnitude, and therefore the load support,

the shape of the pressure profile does not significantly change.

When film thickness is fixed, the sensitivity to permeability is apparent, as shown

in Fig. 37. The range of permeabilities shown in Fig. 37 span many orders of
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Figure 35: Representative 2D pressure profile from porous Reynolds equation

Figure 36: 1D pressure profile from porous Reynolds equation for various permeabil-
ities
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Figure 37: Normalized load support relative to permeability

magnitude, but also encompass many promising materials, from articular cartilage

(k ≈ 10−14 [m2]) to polyurethane foams (k ≈ 10−9 [m2]). To sustain appreciable

loads, a relatively low permeability is required. However, coupled with an elastic

or viscoelastic action, the PVE pad can significantly influence triboelement perfor-

mance. Like a sintered bearing, lubricant availability from the porous substrate is an

operational advantage [100]. It is hypothesized that these bearing types could have

use in harsh operating environments, where shock loads or lubricant loss are possible.

The geometry of the porous substrate is a design consideration; however, it proves

to be less influential for the example parameters chosen. This is shown in Fig. 38

for various pad length to width ratios (at the said fixed inlet film thickness, and

k = 10−14). The influence of the porous pad’s depth on load support capacity is

marginal except for extremely shallow or deep pads. For permeabilities low enough

to support fluid film loads, the pressure gradient at the interface does not appear to be

significantly influenced by the pad’s dimensions. The pad depth is larger than the film

thickness by at least one order of magnitude in this simulation. Larger pressures may

alter the sensitivity to pad geometry; however, general bearing pad configurations
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Figure 38: Load support versus permeability for different pad length to height ratios

will not see a large variation in load support (or film thickness for fixed loads) due to

the pad dimensions.

Permeability and the slip coefficient are important considerations on the LHS of

the Reynolds equation. Another strong coupling phenomenon is the vertical flow of

lubricant into (or out of) the bearing substrate. This manifests as the Darcy flow term

on the RHS of the Reynolds equation. To solve the Reynolds equation, the pressure

in the substrate must be known, and visa versa. Practical limits on permeability and

geometry are obtained with the aforementioned figures.

The rigid/porous case allows for analysis of the fluid coupling terms in the porous

Reynolds equation. In these simulations, the substrate is not allowed to deform.

It will be shown in the following chapters that deformation of the substrate is a

significant consideration. In many applications, the PVE pad deformation becomes

the dominant mechanism for consideration in the coupled HDL/PVE simulations.
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CHAPTER VI

COUPLING OF HYDRODYNAMIC LUBRICATION AND

POROVISCOELASTICITY

The individual components of the poroviscoelastic model and the accompanying

porous Reynolds equation have been developed in the previous chapters. What re-

mains is to couple these phenomena and simulate the resulting behavior. This dis-

cussion is centered around the finite-element program ABAQUS; however, efforts are

made to generalize the solution techniques of coupled solid-fluid interactions.

Two solution approaches for coupling the PVE/HDL mechanisms are discussed in

this chapter. Both techniques are used to arrive at steady-state; however, one method

proves superior in determining the dynamic properties of storage and loss.

6.1 Model Specifications

A two-dimensional (x, y) porous pad is hydrodynamically loaded from a sliding bear-

ing that generates fluid pressure by means of a converging gap. The 2D case is

specified as a test bed for understanding the physics of a coupled PVE/HDL bearing

design. ABAQUS is used as the analysis tool for the coupled phenomena. This is

done for two predominant reasons: prevalence in academia and industry, and support

of pore-pressure elements. A number of pore pressure elements exist in the ABAQUS

element library. The element chosen for the current study is CPE8RP. These ele-

ments are plane strain, 8 node elements with biquadratic displacement and bilinear

pore pressure. In addition, reduced integration is supported. The CPE8RP element is

a 2D element that is compatible with a coupling fluid pressure from the long bearing

(L >> D) solution of the Reynolds equation (neglecting pressure gradients in the
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z-direction).

The FEA model of the porous pad is designed in a generic manner, so that a

variety of boundary conditions and loads can be tested. A number of these boundary

conditions are explored in the following chapter. In general, the boundary conditions

must be specified for both phases of the material. Therefore, fluid pressure and

solid stresses/strains must be specified at the boundary of the porous pad. The

top boundary of the porous pad interfaces with the HDL load; therefore, the fluid

boundary condition must be matched at this boundary. Flow into and out of the

porous pad is naturally enforced by the pressure gradient in the pad, meaning that

lubricant is assumed available in excess at the pad boundary (flooded conditions). In

the ABAQUS pore pressure elements, flow only occurs at the pore pressure nodes. By

matching meshes and grids between the PVE and HDL problems, the pore pressure

is naturally coupled at the boundary. The nodal results are interpolated to give a

smooth flow profile for analysis purposes.

6.1.1 Simulation Description

The coupled PVE/HDL problem is solved with a combination of finite elements and

finite volume/finite difference methods. The HDL solution acts as a continuously

updating load on the substrate. ABAQUS uses a variable time marching technique to

expedite the solution procedure when possible. The time incrementation is controlled

according to the solution history. A fixed time step can be specified if a uniform time

step is desired; however, this greatly reduces simulation efficiency.

The solution to the coupled problem is performed in multiple steps to alleviate

convergence issues. The first step places a hydrodynamic load on the surface of the

poroviscoelastic pad, and reaches a fluid pressure equilibrium in the porous body.

This is defined in ABAQUS as a geostatic step, which iterates until the initial stress

state of the model is in equilibrium with the boundary conditions/loads. The use
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of a geostatic step is necessary for model convergence, particularly for simulations

with large pressures, and relatively fast deformations in the porous medium. After

the geostatic step, the subsequent steps “release” the pad to deform according to the

physics of the material, subjected to a fluid pressure load (obtained from the porous

Reynolds equation). The simulation is run to steady-state, where certain system

properties are obtained. After reaching steady-state, the simulation can be continued

to determine the properties of storage and loss (outlined in Chapter 7).

6.2 Simulation to Steady-State

Two methods were developed to obtain the steady-state response of the coupled

PVE/HDL problem. Steady-state is the normal operational condition for the bearing

configuration, and represents a baseline for performance metrics. The properties of

storage and loss are obtained relative to the steady-state solution, and indicate the

bearing’s performance due to a system disturbance. Figure 39 diagrams the general

control schematic for the coupled simulation, as steady-state is obtained.

6.2.1 Method I: Separation of Convergence Mechanisms

The first method is driven externally to ABAQUS with a script procedure written

in the programming language Python. The poromechanics are defined and solved by

ABAQUS while the fluid mechanics are solved by Python. Figure 40 displays the flow

of information when this approach is used. Essentially, the Python script applies an

initial fluid load on the solid material and begins the simulation in ABAQUS. The

simulation progresses in time (causing deformation) to a specified time increment,

where the pertinent results are stripped from the output database (.odb). The results

are used to modify the Reynolds equation by assessing a new film profile and the

vertical diffusion into the porous substrate. The new pressure profile becomes an

updated boundary condition on the solid mechanics, and the process is repeated until

steady-state is achieved.

94



Figure 39: Schematic of coupling between HDL and PVE problems, including initial-
ization
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The advantage of this method is that ABAQUS is manipulated externally, and the

results are retrieved naturally from the ABAQUS user interface. Python has built-

in features that allows for the evaluation of the Reynolds equation numerically, as

described in Chapter 4. Python is the scripting language of ABAQUS; therefore, a full

complement of features are available and supported by ABAQUS. This is particularly

useful for parametric studies, as Python routines can be used to vary parameters and

geometries. Additionally, the ABAQUS graphical user interface can be used to modify

the geometry, load, and boundary conditions. An example is given in Appendix B

for the coupling procedure used with Method I.

The disadvantage of the aforementioned method is that two time scales are used

to solve the problem: one for the FEA simulation, and one for the HDL solution.

Therefore, the path taken to steady-state is not physical, although the state is. To

access dynamic properties from steady-state, a different method is used; however, to

arrive at steady-state efficiently, Method I can be used. A second method is proposed

to alleviate the different time scales used in Method I.

6.2.2 Method II: Coupled Convergence Mechanisms

The second method to couple the solid and fluid mechanics is to track the solid

mechanics, and at each increment update the load case. This is accomplished with

user subroutines in ABAQUS. Four primary subroutines are needed to strip data

from the simulation, update and solve the fluid mechanics, and apply the new fluid

load to the solid mechanics. The flow of information for this case is shown in Fig. 41.

In contrast to Method I, the solution of the solid and fluid mechanics is updated

at each increment with Method II. This leads to a physically meaningful path to

steady-state from the initial conditions, and likewise allows for the determination

of storage and loss relative to a steady-state position. One proposed advantage of

the poroviscoelastic substrate is the transient response to a disturbance; therefore,
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Figure 40: Flow of information schematic for Method I
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Method II is required to determine these characteristics.

In Method II, the solid and fluid mechanics are evaluated at each time step. The

flow of information is given in Fig. 41. At each time step, simulation results are

queried from the .fil file, which is accessed with the ’URDFIL’ subroutine. Internal

subroutines are all written in FORTRAN, and called directly by ABAQUS. The .fil

file contains field variables (e.g. displacements, stresses, pore pressures) relative to

node or element identifiers. The pertinent results are stripped and rearranged in an

array that is common to all of subroutines. The interface displacement is obtained

and combined with the fixed bearing geometry to create a film thickness profile for

the bearing. This film thickness is an input to the Reynolds equation solver, which is

another FORTRAN subroutine. The Reynolds equation subroutine takes geometric,

material, and state variables (∂p
∂y

) and returns the updated pressure profile. This

information is used to modify the film thickness in time (using the squeeze term,

V ). The film thickness changes are made over time so that the film thickness is a

continuous function. This is consistent with the physics of an incompressible fluid.

After the solution of the Reynolds equation converges, the pressure is determined

at the nodal points of the porous material. The fluid routine can have the same or a

different mesh from the solid mechanics; however, if different meshes are chosen, then

interpolation is used to determine the nodal pore pressures. These pore pressures are

imposed as a boundary condition in ABAQUS by use of the ’DISP’ subroutine. Addi-

tionally, the solid phase of the PVE material is loaded with the ’CLOAD’ subroutine

(σ = −P ). This load and boundary condition is appropriate for fluid loaded materi-

als [31, 83]. Examples of the FORTRAN subroutines and input files are presented in

Appendix B.
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Figure 41: Flow of information schematic for Method II

6.2.3 Comparison to Methods I and II

The two methods outlined herein represent different approaches for arriving at steady-

state for the coupled HDL/PVE problem. In addition to the convergence mechanism

differences of Methods I and II, there is a fundamental difference in the parent/child

relationship. ABAQUS is the child in Method I and the parent in Method II. However,

both Methods reach the same steady-state solution for identical simulations (geome-

try, mesh, load support, etc.). Figure 42 shows the path to steady-state for Method

I and Method II, respectively. In Figure 42a, the displacement of the middle node

(x = L/2) from the top edge of the porous pad is tracked versus time. Figure 42b

shows a zoomed-in portion of the same simulation as Figure 42a, which highlights the

different solution techniques. Method I and Method II do not have the same transient

response, although the paths are very similar. Method II more accurately simulates

the behavior of an actual material; however, Method I reaches an identical steady

99



state. Figure 43 shows the deformation of the porous substrate at steady-state. Both

methods have converged to the same solution (with a maximum of 0.01% difference

in the example problem).

Method I is more user-friendly, and allows for full Python functionality. This

is particularly useful for parametric studies, and for modifying accuracy tolerances,

time-steps, etc. In cases where the initial conditions are not close to the equilibrium

solution, Method I can provide a smoothing effect in the early stages of the solution.

This reduces the chances of the solution diverging, and/or small time increments

causing spurious oscillations in the poromechanics solution [87]. If the time increment

used in Method I is reduced to the time increment used by ABAQUS, Method I will

take the same solution path as Method II; however, the storage space and simulation

time will balloon to unrealistic requirements.

Method II is less user-friendly, requiring modifications to the input (.inp) and user-

subroutine (.for) files for any simulation changes. However, Method II is superior for

modeling transient behavior, as the coupling forces from the fluid film are updated at

every increment. In addition, example problems indicate that Method II is actually

a more compact simulation in terms of output file sizes and simulation time. It is hy-

pothesized that Method II is more computationally efficient because it makes smaller

changes to the poromechanics boundary conditions between iterations. Therefore,

the simulation is able to use larger time steps while maintaining simulation accuracy.

As the primary driver of simulation time is due to the poromechanics (not the fluid

mechanics), Method II solves the coupled simulation more efficiently. In addition,

accessing the .fil file (Method II) is more efficient than the .odb file (Method I). The

additional programming burden of Method II makes distribution and modification of

the developed codes challenging; however, the input file (.inp) for Method II can be

generated in part with the Python script of Method I. This improves the usability

and distribution of Method II substantially.
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(a) Entire simulation path

(b) Zoom in portion showing offset between methods

Figure 42: Path of node deforming with respect to time, comparing Method I and
Method II
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Figure 43: Steady-state solution showing pad deformation solved by Methods I and
II

The two methods developed herein provide a framework for solving coupled solid/fluid

problems. In the current application, Method II is deemed superior for determining

the desired quantities, particularly storage and loss. However, both methods give a

routine that can be used to solve problems from similar classes. A skeleton code for

each method is listed in Appendix B in hopes that it will be useful for those trying

to couple disparate phenomena. While the provided framework gives a technique for

modeling triboelement performance, the numerical models must be tested in relation

to mesh density, fidelity, and simulation time. These considerations are addressed in

the following section.

6.3 Mesh Convergence

Simulating both the fluid and solid mechanics requires a discretization of the physical

domain. To verify that the discretization chosen for each mechanism is appropriate,

a mesh convergence study is performed. A benchmark with prescribed conditions

(geometric and material) is assessed for the individual mechanisms. For the Reynolds
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Table 10: Parameters for mesh convergence

Parameter Symbol Value (units)

Permeability k 10−14 (m2)

Load per depth W 600 (N/m)

PVE pad length L 25.00 (mm)

PVE pad height H 12.50 (mm)

Fractional elastic modulus E0 9.5 (MPa)

Fractional elastic modulus E1 10 (MPa)

Fractional dissipative constant µ1 4 (s−1/2)

Poisson’s ratio ν 0.25

equation, a fixed height slider bearing is studied. For the poroviscoelastic material,

a fixed fluid pressure is imposed on a material face. Both of these cases are varied

relative to the grid density, and the solutions provide some guidance on acceptable

grid fidelity moving forward. The computational expense of solving the finite element

model is significantly greater than that of solving the Reynolds equation. This is in

part because the Reynolds equation contains one fewer spatial dimensions. Therefore,

the mesh size and density of the finite element analysis is the primary driver of

simulation time.

6.3.1 ABAQUS Mesh Convergence

A mesh convergence study is performed for a specified example geometry and loading.

The parameters used in this analysis are presented in Table 10. The displacement

and fluid flux at the top edge of the porous pad are the quantities of interest.

The results of the mesh convergence study give insight into PVE/HDL simula-

tions. Figures 44a and 44b show that higher loads demand finer meshes to maintain

pore pressure tolerances. In fact, the minimum number of elements required to com-

plete the simulation depends on the loading condition. A usable minimum number of
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elements must be established depending on the parameters of the simulation. In addi-

tion, more compliant materials also require finer meshes, as time-dependent changes

to the model cause the largest deviations to the pressure profile generated from the

HDL solution. These large changes potentially translate to model divergence issues.

The primary metrics of interest in the porous pad are deformations in the top surface,

and pressure gradients across the same boundary. Figures 44a and 44b indicate that

the displacements of the top edge are relatively insensitive to mesh density, once a

minimum threshold is met to ensure that the model solves. A delicate balance exists

between model fidelity and solution time, and the mesh density should be examined

for each set of parameters chosen to study. In general, models that meet the solution

tolerances set forth will be converged for the displacement and pressure gradients at

the porous interface. In the current study, 1250 elements are used to simulate the

PVE pad, with a deformation tolerance less than 0.2% of the densest mesh tested.

The following section discusses the mesh convergence of the fluid film load which

couples to the PVE simulation.

6.3.2 Reynolds Mesh Convergence

The Reynolds equation is solved in accordance to the methods outlined in Chapter

5. Equivalent mean pressure loads are chosen for the lower pressure (∼ 1MPa)

and higher pressure (∼ 10MPa) cases taken from the ABAQUS simulation. Figures

45a and 45c show the lower load mesh convergence for load and mean pressure,

respectively. The load and mean pressure have different convergence rates because

a Simpson’s 1/3 integral rule is used to determine the load support, while the mean

pressure is determined as the average pressure across the bearing’s length.

Figures 46a and 46c show the higher load mesh convergence for load and mean

pressure, respectively. Clearly, the 1D Reynold’s equation does not require a very fine

grid to converge at the tested pressures. It is advantageous to match the grid of the
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(a) Mesh convergence for low pressure load

(b) Mesh convergence for high pressure load

(c) CPU time for simulation (low pressure)

Figure 44: Mesh convergence study of FEA solution
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Table 11: Example parameters used for Reynolds mesh convergence study

Parameter Symbol Value (units)

Bearing length L 25 mm
Inlet film thickness hi 30 µm
Outlet/inlet film thickness ratio a 2.2
Viscosity µ 0.5 Pa · s
Slip coefficient αB 0.1
Permeability k 0.0 m2

Mean pressure (low) Pm 1 MPa
Bearing velocity (low) U 0.094 m/s
Mean pressure (high) Pm 10 MPa
Bearing velocity (high) U 0.94 m/s

ABAQUS simulation to that of the pressure profile (so that nodal pressures can be

applied directly). At the fidelities needed for convergence of the solid mechanics, the

Reynolds equation is appropriately converged as well. This is true for the low and high

load situations. Therefore, the lateral mesh density required by the poromechanics

is an appropriate mesh for the fluid mechanics as well. In the cases tested, the finite

element grid is approximately twice as fine as is required by the discrete Reynolds

equation. However, there is not an appreciable difference in the Reynolds equations

solution times (course vs. fine); therefore, the Reynolds mesh is matched to the FEA

mesh for convenience.

The effect of permeability is negligible to the results of the mesh convergence.

Like the other inputs to the Reynolds equation, permeability changes the pressure in

a fluid film; however, it does not influence the mesh convergence at a designated load

or geometry. The loads tested herein are specific to the simulation parameters chosen

for study. A mesh convergence study should always be re-preformed for pressures

that deviate greatly from the examples shown.

Having the same spatial grid between the solid and fluid materials is advantageous

when defining the loading and boundary conditions. This allows for solutions at the

nodes of each simulation to be directly imposed and coupled. As discussed, the
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(a) Load support versus number of nodes

(b) Load support versus discrete step size

(c) Mean pressure versus number of nodes

Figure 45: Mesh convergence study of discrete Reynolds equation (Pm = 1 MPa)
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(a) Load support versus number of nodes

(b) Load support versus discrete step size

(c) Mean pressure versus number of nodes

Figure 46: Mesh convergence study of discrete Reynolds equation (Pm = 10 MPa)
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computational burden of solving the Reynolds equation is significantly smaller than

that of the poroviscoelastic problem. Therefore, the grid used by ABAQUS will be

the default grid for the fluid film solution as well. The pore pressure magnitudes

and specified tolerances are the primary considerations for mesh convergence and

simulation time in ABAQUS.

6.3.3 ABAQUS Mesh Optimization

The results of the mesh convergence study in Section 6.3.1 are useful for understand-

ing the grid size needed to simulate PVE behavior subjected to a pore pressure load.

However, the results are not optimized for simulation time. For instance, in areas of

the substrate body where large pressure gradients are not present (e.g. near the im-

permeable boundary), the element sizes can be increased. The nature of the problem

suggests that the top layer of elements is the most important; therefore, high fidelity

meshes should be used in that area. However, significant computational savings occur

with mesh optimization.

An example problem is posed to explore an optimized mesh design. Figure 47

shows three meshes with varying degrees of manipulation. The number of nodes on

the top surface of the PVE pad is consistent for all meshes; however, the number

of elements comprising the PVE pad is different, as given by Table 12. The mesh

with square elements (Fig. 47a) is used as a benchmark. The results of an example

simulation are compared to the benchmark for simulation time and results.

The nodes at the top of the PVE pad are the most significant for the current

study, so results are shown with those points (Fig. 48). Figures 49 and 50 show the

pore pressure and displacement in the PVE body. The local significance of the top

edge of the PVE pad, where the HDL solution is coupled, allows for larger element

sizes in the PVE body as you move away from the top edge. This means that mesh

optimization can supply CPU time savings, especially if the simulation is extended
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Table 12: Example mesh optimization parameters

Mesh Elements CPU Time (s) Max Disp. (µm)

Square (Benchmark) 5000 196.20 1.01
Refined Mesh I 1609 69.7 1.01
Refined Mesh II 594 26.9 1.01

to three dimensions. The current study prioritizes the nodes nearest to the hydro-

dynamic fluid load; however, if flow through the porous pad is important in future

work, then the mesh optimization will be revisited.

6.4 Summary

The methods developed herein give equivalent solutions at steady-state. This is im-

portant for simulating the operating condition of a given triboelement. In addition,

these techniques are useful for solving similar coupled-type problems. The mesh con-

vergence study likewise gives guidelines for similar problems. In future work, mesh

optimization may become a critical aspect of the solution technique if a full, 3D,

simulation is performed. Rectangular elements are used to replicate the benchmark

created herein. These elements can be optimized accordingly in future studies. In

the following chapter, the Method II will be used to obtain the transient properties

of storage and loss.
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(a) Benchmark mesh of PVE pad

(b) Refined mesh I of PVE pad

(c) Refined mesh II of PVE pad

Figure 47: Meshes used in optimization study
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(a) Deformation at top edge of PVE pad

(b) Reaction volumetric flux (per unit depth)

Figure 48: Comparison of mesh optimization(s) to benchmark for important metrics
at the top edge of the PVE pad
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(a) Pore pressure in benchmark mesh of PVE pad

(b) Pore pressure in optimized mesh of PVE pad

(c) Pore pressure in finely optimized mesh of PVE pad

Figure 49: Pore pressure in the PVE pad
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(a) Deformation in benchmark mesh

(b) Deformation in optimized mesh

(c) Deformation in finely optimized mesh

Figure 50: Deformation in the PVE pad (magnified for clarity)
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CHAPTER VII

APPLICATION OF MODEL TO DETERMINE DYNAMIC

PROPERTIES

The preceding chapters provide the necessary prerequisites for building a coupled

PVE/HDL simulation. What remains is to simulate example problems, and make

comparisons between the traditional rigid case and PVE/HDL case. A number of

loading and boundary conditions will be discussed herein. First, the simulations will

be compared at steady-state, and then the transient behavior will be assessed.

7.1 Test Configurations

Two cases are proposed to explore the performance of triboelements with flexi-

ble/porous interfaces. A thrust bearing, like that of Fig. 30, is analyzed in a “long

bearing” configuration (corresponding to plane strain in the poromechanics). The

geometry and specifications of the problem are given in Table 13 (the fractional cal-

culus parameters are retained from Table 6). Each case has identical geometric and

tribological characteristics. The difference between the cases are the boundary con-

ditions.

The first case is “glued” at the lateral edges (x = 0 and x = L) of the PVE

pad. In this application, glued means that the PVE pad is fixed at the edges, and no

strain occurs at the boundary. However, fluid is still allowed to permeate across the

porous boundary. Figure 51 shows the boundary conditions imposed on the porous

pad. Assuming a submerged bearing, the leading and trailing edges of the pad are

exposed to atmospheric pressure (gauge), which allows fluid flow across the boundary.

The bottom boundary is fixed and rigid, and the top boundary is flexible and the
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Table 13: Parameters for PVE/HDL analysis

Parameter Symbol Value (units)

Permeability k 10−14 (m2)
Load per depth W 600 (N/m)
PVE pad length L 25 (mm)
PVE pad height H 6.25 (mm)
Bearing velocity U1 0.02 (m/s)
Fluid viscosity µ 0.1 (Pa · s)
Slip coefficient α 0.1
Inlet film thickness (if fixed) hi 40 (µm)
Film thickness ratio (if fixed) a 2.2
Fractional elastic modulus E0 2 (MPa)
Fractional elastic modulus E1 1 (MPa)

Fractional dissipative constant λn 1 (s−1/2)
Poisson’s ratio ν 0.30

pressure, p, is equal to the fluid film pressure, P . The pressure gradient in the porous

pad facilitates fluid flow throughout the pad. The pressure boundary and initial

conditions are defined mathematically:
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p(0, y, t) = p(L, y, t) = 0 (166)

∂p

∂y
(x,−H, t) = 0 (167)

p(x, 0, t) = P (x, 0, t) (168)

p(x, y, 0) = 0 (169)

εx(0, y, t) = εx(L, y, t) = 0 (170)

εy(0, y, t) = εy(L, y, t) = 0 (171)

εx(x,−H, t) = εy(x,−H, t) = 0 (172)

σx(x, 0, t) = 0 (173)

σy(x, 0, t) = −P (x, 0, t) (174)

σx(x, y, 0) = σy(x, y, 0) = 0 (175)

Equations 166-168 enforce the fluid pressure boundary conditions, while Eqs. 170-174

are placed on the solid matrix. Equation 167 enforces no flow across the rigid bound-

ary at y = −H. Figure 51a shows the boundaries where flow exists, and these values

are determined from the fluid pressure gradients. Pressure boundary conditions are

enforced to maintain continuity with the HDL solution from the Reynolds equation.

The second case is not glued at the lateral edges (x = 0 and x = L), shown

in Fig. 52; however, strains in the x-direction are restricted. This means that the

PVE pad can deform in the y-direction at the boundaries x = 0 and x = L, but not

laterally. Mathematically, the boundary and initial conditions are:
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(a) Fluid pressure boundary conditions on the PVE pad

(b) Solid boundary conditions on the PVE pad

Figure 51: Fluid and solid boundary conditions on porous pad (Case I)
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p(0, y, t) = p(L, y, t) = 0 (176)

∂p

∂y
(x,−H, t) = 0 (177)

p(x, 0, t) = P (x, 0, t) (178)

p(x, y, 0) = 0 (179)

εx(0, y, t) = εx(L, y, t) = 0 (180)

εx(x,−H, t) = εy(x,−H, t) = 0 (181)

σx(x, 0, t) = 0 (182)

σy(x, 0, t) = −P (x, 0, t) (183)

σx(x, y, 0) = σy(x, y, 0) = 0 (184)

Both cases are solved with “Method I” developed in Chapter 6. The 2D (x,y)

case is used as test bed and to explore the physics of this coupled system. Additional

simplifications are made to the solution routine: shear loads on the porous pad (from

the fluid film) are neglected, and the nodal points of the HDL problem remain evenly

spaced. Testing indicates that shear stresses (tractions on the porous body) are small

compared to the normal stresses (approximately 1-2%). Shear stresses also do not

create volumetric changes, so the pore pressure in the PVE body does not change due

to shearing action. Therefore, these stresses are neglected for the time being. The

cases are solved in time until a steady-state is obtained.

7.2 Results at Steady-State

The paths to steady state for Case I and Case II are shown in Figs. 53 and 54,

respectively. Both cases have equivalent loads and starting configurations; however,

the steady-state is for each case is qualitatively and quantitatively different. Table
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(a) Fluid pressure boundary conditions on the PVE pad

(b) Solid boundary conditions on the PVE pad

Figure 52: Fluid and solid boundary conditions on porous pad (Case II)
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Table 14: Results from the simulations in Fig. 55

Case Parameter Value

Rigid

hi 40.2 µm
ho 18.3 µm
Pmax 38.3 kPa
Uy 0

Case I

hi 36.3 µm
ho 14.5 µm
Pmax 36.6 kPa
Uy 0.0068 mm2/s

Case II

hi 33.3 µm
ho 15.5 µm
Pmax 36.5 kPa
Uy 0.0062 mm2/s

14 contains information about the steady-state pressure profiles and film thicknesses

for each case.

At steady-state, the system transients have been expended; therefore, no addi-

tional consolidation and viscoelastic dissipation is occurring. During the simulation

to steady-state, the film profile and corresponding pressure profile in the bearing are

tracked in time. Initially, the porous pad is undeformed. As the porous and viscoelas-

tic mechanisms respond to a HDL load, deformation occurs. In a viscoelastic sense,

this relates to the transition from the glassy (t = 0+) to rubbery modulus (t = ∞).

The pressure profiles also evolve in time, as the maximum pressure increases and

changes lateral location in the bearing. The time-dependent action of the bearing

gives storage and loss character in the frequency domain as well [2, 69].

The flexible/porous cases are compared to the rigid case as performance bench-

marks. The flexible/porous film thickness is smaller than its rigid counterpart. Con-

sidering the porous Reynolds equation (Eq. 159), the V0 term acts in opposition to the

“wedge” term; therefore, the film thickness must be reduced to sustain an equivalent

load in the porous case. The permeability of the porous pad strongly influences this

effect, and must be carefully designed with the desired application.
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(a) Film thickness over time

(b) Pressure profile over time

Figure 53: Film thickness and pressure profile evolution with time (Case I)
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(a) Film thickness over time

(b) Pressure profile over time

Figure 54: Film thickness and pressure profile evolution with time (Case II)
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The comparisons shown in Fig. 55 as t → ∞ indicate that the flexible/porous

cases are different than the rigid case in a realizable way. The flexible/porous inter-

face influences the location of the center of pressure, and the amount of fluid flow

that crosses the porous interface. At the same time, the flexible/porous case is still

capable of supporting loads in the vicinity of what the completely rigid case can sup-

port. Therefore, the additional capacities of the flexible/porous bearing design will

be considered in relation to the rigid case. In particular, the dynamic storage and

loss properties are sought for the flexible/porous configurations.

7.2.1 Pressure in the Porous Pad

Within the PVE pad, the pressure is highest at the film interface, and decays through-

out the body to the zero pressure boundaries. The lower, rigid interface also experi-

ences a pressure load from the fluid in the body. Figure 57 shows the pressure in the

body for Case I and Case II.

7.3 Determination of Storage and Loss

The steady-state solution of the coupled PVE/HDL problem gives insight into the op-

erational configuration of a flexible/porous bearing. These solutions indicate that the

PVE/HDL combination is possible in a tribological application; however, the benefit

of such a configuration is unproven. A hypothesized advantage of the flexible/porous

case is its dynamic response to a change in operating conditions. In particular, the

properties of storage and loss are of interest. Therefore, a model that yields these

properties is developed.
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(a) Comparison of film thickness required to sustain load (t→∞)

(b) Pressure profile obtained from above film profile

(c) Normalized flow in the rigid/porous and flexible porous cases

Figure 55: Comparison of rigid, rigid/porous, and flexible pad designs at t→∞
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(a) Pore pressure in the porous pad for Case I

(b) Pore pressure in the porous pad for Case II

Figure 56: Comparison of pore pressure in PVE pad for Cases I and II at steady-state
(t→∞)
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(a) Deformation in the porous pad for Case I

(b) Deformation in the porous pad for Case II

Figure 57: Comparison of PVE pad deformation (magnified) Cases I and II at steady-
state (t→∞)
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7.3.1 Correspondence Principle

Following the techniques of Miller and Green [101, 102] for gas film bearings, a

correspondence principle is introduced for coupled PVE/HDL problems. The cor-

respondence principle follows the techniques highlighted in Chapter 3 for a vis-

coelastic material. Retaining the convolution integral from linear viscoelasticity, a

force/displacement relationship is proposed:

F (t) = D (0)K (t) +

∫ t

0

Ḋ (τ)K (t− τ) dτ, (185)

and

D (t) = F (0)C (t) +

∫ t

0

Ḟ (τ)C (t− τ) dτ. (186)

In Eqs. 185 and 186, F (t) is force, D(t) is displacement, K(t) is the stiffness modulus,

and C(t) is the compliance modulus. The stiffness and compliance moduli are anal-

ogous to the relaxation and creep moduli, respectively. Equations 185 and 186 are

analogous to the stress/strain relationships given for linear viscoelasticity (Eqs. 1-2),

where stress is translated to force, and strain to displacement.

The physical significance of Eqs. 185 and 186 is that the storage and loss charac-

teristics of a system are obtained with a single experiment, either by controlling load

support or film thickness. This is done by imposing an instantaneous displacement in

the film thickness and tracking the corresponding load support over time, or imposing

an instantaneous change in load support and tracking the change in film thickness.

The correspondence principle gives a mechanical impedance, from which storage and

loss are found.

In the current study, the fluid and solid are considered incompressible; therefore,

an instantaneous displacement is impossible for the proposed cases (that are later-

ally constrained). This dictates that a relaxation experiment is not ideally suited to

determine the storage and loss of the coupled PVE/HDL simulation. Realistically, a
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sufficiently fast displacement may be imposed on the body in order to simulate relax-

ation. However, the alternative to relaxation is creep, which is physically possible in

the model. Here, a change in the load support is imposed, and the corresponding film

thickness required to sustain this load is determined. Utilizing creep is a departure

from the work of Miller and Green [101,102], who studied gas film lubrication. Miller

and Green imposed an instantaneous displacement on the gas film because the gas

is compressible, and the equation of state for the ideal gas law allows for pressure

calculations at t = t0. This is not possible in the HDL/PVE case.

7.3.2 Mechanical Impedance

Equation 185 relates force (F (t)), displacement (D(t)), and stiffness (K(t)) in the

time-domain. Using the same method as the elastic-viscoelastic correspondence prin-

ciple, a simple expression is generated in the Laplace domain:

F (s) = sK(s)D(s). (187)

Analogous to the complex modulus from viscoelasticity, sK(s) is effectively a spring in

the Laplace domain. Transferring from the Laplace domain to the frequency domain,

sK(s) has real and imaginary components:

K∗(ω) = (iω)K(ω) = K ′(ω) + iK ′′(ω) (188)

The real part (K ′) is defined as the storage and the imaginary part (K ′′) as the loss.

These properties are used to compare the PVE/HDL and rigid cases. For the current

work, storage and loss are the critical metrics used to assess performance. In future

work, other performance characteristics are considered.

7.3.3 Mechanical Impedance Models

To determine the mechanical impedance of the coupled PVE/HDL problem, a creep-

like experiment is performed. First, the bearing is simulated to steady-state. Then,
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from steady-state, the load support is perturbed and held, and the bearing’s resulting

travel is tracked. This creates a time-dependent force/displacement relationship.

The force/displacement relationship is either translated into the frequency domain to

determine storage and loss, or fit in the time-domain with a constitutive model. Using

a known constitutive model is advantageous because it provides fit parameters that

can be easily compared between configurations and simulations, and there are often

direct correlations between the time-domain fit and the frequency domain storage

and loss moduli.

There is an analogous relationship between mechanical impedance and the com-

plex modulus from viscoelasticity. Therefore, the spring-dashpot and fractional mod-

els used in viscoelasticity can also model the force/displacement relationship. While

the relaxation modulus is primary considered in the definition of viscoelasticity, the

mechanical impedance is determined from a creep-like test. An integer-order and

fractional model are proposed as suitable models. The integer-order model is the

well known Kelvin-Voigt model, shown in Fig. 58a. The fractional model emulates

the Kelvin-Voigt model, replacing the dashpot with a fractional spring-pot of order

α (Fig. 58b). The compliance of the Kelvin-Voigt model is [52]:

C(t) =
1

K

[
1− e−t/τ

]
, (189)

where the time constant, τ , relates the model parameters K and η:

τ =
η

K
. (190)

The compliance of the fractional Kelvin-Voigt model is [52]:

C(t) =
1

K

{
1− Eα

[
−
(
t

ν

)α]}
, (191)

where ν relates the model parameters K and β:

ν =
β

K
, (192)
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(a) Kelvin-Voigt viscoelastic model

(b) Fractional representation of the Kelvin-Voigt
viscoelastic model

Figure 58: Mechanical analogy for the compliance models used to determine force/
displacement relationship
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and takes the units of seconds (s). When α = 1, the fractional calculus model reverts

to the Kelvin-Voigt model, and when α = 1/2, the complementary error function

reappears. The integer-order and fractional models are capable of a creep-like behav-

ior (fixed load with changing displacement), while incapable of stress-relaxation like

behavior (instantaneous displacement is not possible). This mimics the physics of the

coupled simulation with incompressible constituents. The models can be generalized

by stacking additional elements in series [52]:

C(t) =
∞∑
n=0

1

Kn

{
1− Eαn

[
−
(
t

νn

)αn
]}

. (193)

The constitutive model for compliance is related to sK(s) as follows:

sK(s) =
1

sC(s)
, (194)

which leads to storage and loss in the frequency domain:

iωK(ω) = K∗(ω) =
1

iωC(ω)
. (195)

Equation 193 is converted from the time domain to the Laplace domain:

C(s) =
∞∑
n=0

1

Kn

[
1

s
−
(

1

s(1 + ansαn)

)]
, (196)

with

an =

(
1

νn

)αn

. (197)

sC(s) is then:

sC(s) =
∞∑
n=0

1

Kn

[
1− 1

(1 + ansαn)

]
. (198)

From Eq. 194 and Eq. 198, the storage and loss properties of the coupled PVE/HDL

system are expediently obtained from the compliance data. The physics of the integer

and fractional Kelvin-Voigt models suggests that the storage and loss values trend to

infinity at high frequencies. This is consistent with the coupled HDL/PVE problem,

in that an instantaneous displacement (ω → ∞) is not possible in the system. If
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compressibility is allowed, or the solid is not confined as described above, the storage

and loss values will not approach infinity as ω →∞.

Compared to the rigid case, the flexible interface of the poroviscoelastic pad poses

a unique challenge in the description of the film profile because of deformation. In the

rigid case, the film profile can be determined by knowing the initial geometry and one

point along the bearing’s interface. For the flexible case, it is not sufficient to know the

coordinates of a single point in the film, as the deformation of the porous pad dictates

the film thickness. Therefore, some ambiguity exists in describing the time-history

of the film thickness. For the purposes of the current work, the bearing’s location

at steady-state serves as “zero” (see Fig. 59). A point on the bearing is chosen as

the tracking point, and all displacements are measured relative to this position. The

displacement, D(t), is the magnitude of the bearing’s response from steady-state:

D(t) = |d(t)− d(t0)| , (199)

and recalling that steady-steady is defined as d(t0) = 0:

D(t) = |d(t)| . (200)

This definition of displacement is a “triboelement centric” view of the system dynam-

ics, and it serves as a platform for comparing the different cases. The aforementioned

models are fit to the displacement time history when subjected to a set load per-

turbation. From the fit, analytical expressions exist to determine the mechanical

impedance in the Laplace domain, leading to the properties of storage and loss in the

frequency domain.

7.4 Dynamic Storage and Loss

In order to obtain a transient response in the coupled PVE/HDL problem, a per-

turbation in the load support is introduced. This occurs from steady state, and is

equivalent to a weight being added to the bearing at time t = t0. The magnitude of
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Figure 59: Tracking bearing’s path after added load

the fluid film’s response is tracked in time, as shown in Fig. 60. The information in

Fig. 60 gives displacement of the bearing versus time for a known incremental load.

The compliance modulus is fit to this data. With the compliance modulus, the dy-

namic properties of storage and loss are obtained. A number of cases are explored

herein to understand the dynamic effects of the porous and viscoelastic contributions.

7.4.1 Rigid and Impermeable Case

The rigid and impermeable case is a benchmark example, and is given for comparison

purposes. The displacement path is shown in Fig. 61a is fit with the fractional calculus

Kelvin-Voigt model. The fit parameters are given in Table 15, and the frequency

dependent storage and loss properties are shown in Fig. 61b. For the rigid case, the

fractional derivative is nearly one (α ≈ 1), which indicates that the fractional element

is essentially a damper and the model is nearly the traditional Kelvin-Voigt model.

In this case, the storage is virtually constant, and the loss is virtually linear. Defining

the dynamic property damping as the loss modulus divided by frequency:

B(ω) =
K ′′(ω)

ω
, (201)
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Figure 60: Change in bearing height due to a 2% (12 N/m) load perturbation

the damping in the rigid/impermeable case is practically linear. This translates to

constant stiffness and damping, exactly like a spring and dashpot in parallel. These

results are consistent with a viscous response.

7.4.2 Rigid and Permeable Case

The effect of permeability on storage and loss is studied in the rigid case (no material

deformation). The permeability is varied from the rigid case to a value of k = 10−13.

Increasing the permeability beyond this point is not suitable for the example pa-

rameters given (the bearing cannot support the load requirements). The compliance

results are shown in Fig. 62 for various permeabilities. The results given in Table 15

show that the K term decreases with an increase in permeability, while ν increases

with permeability. The trade-off in storage and loss follows trends and the discussion

presented in Chapter 5 on the “effective film thickness.” However, the character of

the storage and loss is relatively unchanged by the permeability. This is indicated by

the fractional derivative value not changing significantly from the rigid to the most

permeable cases (α ≈ 1). Therefore, the storage properties of the system stay nearly
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(a) Compliance in the rigid/non-porous case, with fit given in Table 15

(b) Storage and loss in the rigid/non-porous case

Figure 61: Compliance and storage and loss in the rigid/non-porous case
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Figure 62: Compliance in the rigid/porous cases

constant with frequency, and the loss properties are practically linear with frequency,

as shown in Fig. 61b.

In the permeable region where triboelement operation is possible (k . 10−13 (m2)),

the effect of permeability alone is not significant enough to change the storage and loss

character (α remains approximately 1). This is indicated in Table 15 and Figs. 61b

and 62, where the response is shown to effectively be a spring and damper in par-

allel. However, the mechanism of permeability is still influential in the bearing’s

performance, as the storage decreases with an increase in permeability, and the loss

increases with increasing permeability. Discussed herein, the combination of per-

meability and flexibility gives rich frequency dependent behavior. This is because

permeability changes the action of deformation in the porous pad. In likelihood, the

permeability does change the storage and loss characteristics significantly, but this

occurs outside of the operational region for the considered case.
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Table 15: Storage and loss fit to simulation data (rigid configuration)

k (m2) K (N/m) ν (s) α ho (µm)

Non-porous 6.64× 107 1.363 0.991 18.1

10−16 6.67× 107 1.363 0.993 18.0

10−15 6.67× 107 1.363 0.993 17.8

10−14 6.49× 107 1.365 0.993 16.9

10−13 4.93× 107 1.888 0.988 12.1

7.4.3 Flexible Cases

The boundary conditions of Case I are used to compare the rigid/non-porous case

to the flexible cases. This fixes the PVE pad at the lateral edges, but still allows

for deformation in the PVE body due to fluid exodus. The Case I boundary condi-

tions provide the best platform for comparison purposes with the rigid cases. The

flexible/porous case has two additional material mechanisms compared to the rigid

case- permeability and viscoelasticity. A representative set of viscoelastic parameters

is used in ABAQUS (Table 16).

Figure 65a shows the compliance of the flexible/non-porous and rigid/non-porous

cases. Two important differences exist between the flexible/non-porous and rigid/non-

porous cases: 1) the flexible/non-porous case has significantly more compliance than

the rigid/non-porous case, and 2) the flexible/non-porous case cannot be fit with a

single fractional order model. Rather, a two element chain of fractional Kelvin-Voigt

elements is required (Fig. 63). The implications of this are significant because it

shows the impact of the viscoelastic/permeable component.

Figure 65b shows the dynamic storage and loss of the rigid/non-porous and
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Figure 63: Two element chain of fractional Kelvin-Voigt elements
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Table 16: ABAQUS inputs for viscoelastic component

Parameter Symbol Value (units)

Poisson’s ratio (instantaneous) ν 0.3
Elastic modulus (instantaneous) E 15.0 (MPa)
PVE pad length L 25.00 (mm)
PVE pad height H 6.25 (mm)
Perturbation ∆W (0.02)W

Prony constant (bulk)

k1 0.152
k2 0.135
k3 0.310
k4 0.217

Prony constant (shear)

g1 0.152
g2 0.135
g3 0.310
g4 0.217

Prony time constant

τ1 7.682 (s)
τ2 0.238 (s)
τ3 2.229 (s)
τ4 5.617 (s)

flexible/non-porous cases. The flexible/non-porous case shows that the viscoelas-

tic action manifests in the storage and loss results. The flexible/non-porous case has

a higher loss across the frequency spectrum versus the rigid/non-porous case. At low

frequencies, the flexible/non-porous case has lower storage than its rigid/non-porous

counterpart. However, as the frequency increases, the storage in the flexible/non-

porous case increases beyond the rigid/non-porous case. This is due to the frequency

dependent portions of the fractional spring-pots that are associated with the storage

modulus. The viscoelastic case has a larger component attributed to the frequency-

dependent storage modulus (i.e. αn < 1) than the rigid case. Physically, this increase

in storage is attributed to the reduced film thickness in the flexible cases (Fig. 64a).

Tables 15 and 17 indicate that the flexible cases generally have smaller film thick-

nesses than their rigid counterparts. The smaller film thickness generates higher

storage values, but viscoelasticity also influences the storage properties. Therefore,

the total response is a combination of these effects. Viscoelasticity also changes the
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character of the response. This differentiates the rigid and flexible cases, and means

that there is a region of the frequency response that may be tunable by control-

ling the viscoelastic and/or permeable action. The impact of permeability when the

viscoelastic mechanism is included is explored next.

An example of the flexible and porous case is shown in Fig. 66. Here, the viscoelas-

tic and porous actions occur simultaneously. The fit parameters in Table 17 indicate

what is happening in Fig. 66. In the flexible/porous cases, the fractional derivatives,

αn, deviate dramatically from the rigid/non-porous and flexible/non-porous cases,

where α ≈ 1. As α approaches 1/2, the viscoelastic response is clearly seen. Figure

66 shows this clear viscoelastic response at low frequencies, followed by a viscously

dominated response at higher frequencies. Combining permeability and viscoelastic-

ity changes the character of the response appreciably from the rigid/non-porous case

and flexible/non-porous cases. The combined permeability and viscoelasticity play

a governing role in the storage and loss characteristics. Essentially, the time-scale

of the path that the triboelement takes after a perturbation is changed, and the re-

sulting storage and loss character is altered. Without the viscoelastic action, the

permeability has a relatively small effect on the triboelement’s dynamic performance;

however, with the coupled viscoelasticity, the dynamic performance is significantly

altered. This is apparent in the fit parameters given in Table 17, where the K, ν, and

α values are tangibly different for the flexible/porous and flexible/non-porous cases.

7.5 Tunable Dynamic Performance

It has been shown that the dynamic performance of a triboelement is changed with

the introduction of a porous substrate. From a design standpoint, a number of degrees

of freedom exist in the triboelement characteristics. These include geometric changes

in the bearing (inclination, etc.) and in the porous pad (pad length, depth, etc.), as

well as material changes (permeability, viscoelastic properties, etc.).
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(a) Film thicknesses of the rigid/non-porous and flexible/non-porous cases

(b) Pressure profiles of the rigid/non-porous and flexible/non-porous cases

Figure 64: Final steady-state results of rigid/non-porous and flexible/non-porous
solutions
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(a) Compliance in the rigid/non-porous case vs. the flexible/non-porous case

(b) Storage and loss in the rigid/non-porous case vs. the flexible/non-porous case

Figure 65: Compliance and storage and loss in the rigid/non-porous case

143



(a) Compliance in the flexible/porous cases

(b) Storage and loss in the flexible/porous cases

Figure 66: Compliance and storage and loss in the flexible/porous cases
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Table 17: Storage and loss fit to simulation data

k (m2) K (N/m) ν (s) α ho (µm)

Flexible/non-porous
1.59× 108 2.568 0.968

9.06

3.68× 108 23.764 0.934

10−15
1.86× 108 8.32× 10−6 0.5367

6.01

5.19× 107 176.93 0.6278

10−14
1.46× 108 5.17× 10−6 0.5125

5.08

5.56× 107 29.60 0.9779

The HDL/PVE system has two important mechanisms that influence the storage

and loss: the permeability and the viscoelastic action. In particular, as the per-

meability drops in the coupled HDL/PVE system, the viscoelastic flexibility in the

porous pad still acts to change the dynamic properties of the triboelement. Having

two mechanisms that influence the dynamic storage and loss gives a great deal of

flexibility in triboelement design.

The takeaway of this analysis is that there exists a trade-off between the storage

and loss properties of a flexible/porous bearing. The porous cases presented are able

to sustain loads comparable to the rigid case. Therefore, the penalty of using a flex-

ible/porous bearing is likely not prohibitive. Loss is increased in the flexible/porous

triboelements. In certain applications, this is a preferable operating condition. Some

additional benefits are hypothesized too. These include: lubricant availability in the

porous pad if a loss of lubricant occurs, increased ability to mitigate shock events,

and potential operation in a full film regime for longer compared to the rigid case.
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7.6 Region of Applicability

The storage and loss results given herein are determined from a 2% load perturbation.

In the small region around the operating load, the results are assumed linear with

the load perturbation. Therefore, the perturbation magnitude does not influence

the storage and loss results. In limited testing, this assumption has proven to be

correct, and the load perturbation has been tested up to approximately 5% before

the simulation fails to converge.

146



CHAPTER VIII

CLOSURE

The stated goals of this work were to develop a fractional calculus representation of

poroviscoelasticity and simulate it in the time domain. This was accomplished with

the CERF model of viscoelasticity, and a number of numerical routines were provided

for simulation purposes. Ultimately, the poroviscoelastic formulation was desired for

application in tribological applications. A test case was proposed to determine the fea-

sibility of poroviscoelastic materials as bearing substrates in HDL problems. Finally,

analysis tools were developed to quantify the impact of this proposed configuration.

Chapters 3-4 provide the basis for a fractional calculus PVE material. Fractional

calculus is desirable in viscoelasticity because of its modeling simplicity (number of

elements required). The trade-off is that the computational burden is large with frac-

tional calculus, as the fractional elements are strongly historic. Efficient simulation

algorithms are lacking. In this work, a method of bypassing the strong historic nature

of fractional elements is utilized. The results are promising for the applications tested.

An efficient algorithm allows for the analysis of PVE materials in novel applications.

The Reynolds equation is modified from the rigid case to describe the fluid me-

chanics of a thin film interacting with a porous substrate. Permeability is shown to

have a strong coupling effect on the porous Reynolds equation. In order to simulate

the transient behavior of the PVE/HDL system, continuously updating numerical

schemes are required. This is discussed in Chapters 5 and 6.

The results presented in Chapter 7 are promising in a number of ways. First,

the simulations prove that a coupled PVE/HDL problem is feasible in a tribological

sense. Specifically, a porous/flexible pad can sustain a load that is comparable to
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its rigid counterpart (see Figs. 55a-55b). However, the load support of the triboele-

ment is strongly influenced by the permeability of the porous pad [63, 64]. Ideally,

a trade-off exists between permeability and the dynamic properties of interest. In

the rigid/porous cases, Fig. 62 indicates that the compliance changes with respect

to permeability. This has the effect of changing the storage and loss values for the

triboelement. However, the character of the storage and loss (i.e. the frequency de-

pendent shape) is relatively unchanged by the permeability. This is noted by the fit

value α remaining nearly 1, meaning that the fractional spring-pot is a simple viscous

damper. This indicates that permeability alone will not give the user a great deal

of control over the dynamic properties of the triboelement. A flexible interface is

considered for this purpose.

Figure 65 compares the compliance of a rigid/non-porous and flexible/non-porous

design. The viscoelastic action changes the compliance relative to the viscous action

of the rigid case. In the flexible case, there exists a coupled response that is par-

tially viscous (from the fluid) and partially viscoelastic (from the pad). A second

modeling element (fractional Kelvin-Voigt) is required to adequately capture this re-

sponse. The flexible case displays additional loss in the frequency domain compared

to the rigid/non-porous case. This is due to the secondary dissipation mechanism

of the porous pad. However, the character of the loss modulus is essentially un-

changed, while the storage modulus picks up a frequency dependent component from

the complex stiffness modulus. The real component of the fractional spring-pot ele-

ment contributes to the storage modulus and is multiplied by ω, which explains its

trend as ω grows.

When the flexible and permeable cases are combined, the dynamic properties

take a new shape relative to the previously discussed cases. Figure 66b shows the

effect of the coupled dissipation mechanisms, particularly when those mechanisms

have different time-scales. Here, there appears to be an element of user control,
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or tunability, in the dynamic properties. This can be seen between the permeability

cases k−14 and k−15. The application of the loss modulus, which is related to damping,

could be tuned to mitigate vibrations in a particular band of frequencies. This is one

goal of the current study, and the results indicate that there is promise in the unique

coupling of PVE/HDL.

The ”big-picture” view of this work is that it proves the feasibility of a coupled

flexible/porous material with a hydrodynamic fluid load. Not only can bearing designs

of this nature support tribological loads, the material properties can be manipulated

to change the dynamic storage and loss characteristics. The importance of this should

not be understated. The current work provides both insight into how certain natural

systems work, and also a toolbox for exploring tribological applications.

The genesis of coupled PVE/HDL comes from biomimetics, where biological so-

lutions exist for many tribological problems. With biological materials, the engineer

cannot control the material properties; however, the physics can be described. The

proposed PVE/HDL model describes the physics of a flexible/porous material inter-

acting with a fluid film load. Potentially, the model has use in the study of biological

mechanisms, as well as biomimetic tribological applications. Articular cartilage is of

particular interest in biomimetics because of its adaptability and longevity. Coupling

mechanisms like a fluid film and porous pad helps to translate from biomechanical to

tribological applications.

New demands in triboelement performance require innovative technology. A cou-

pled HDL/PVE bearing is a feasible configuration for certain applications. These

include biomechanics, flexible bearing technology, and sealing elements. In addi-

tion, PVE materials have strong dissipation characteristics, making them suitable

for shock absorption and damping elements. The results of the coupled HDL/PVE

simulation indicate that flexible, porous substrates can promote tunable triboelement
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performance. While the current work shows improved loss at low frequencies, differ-

ent material combinations could give more dissipation at other frequency spectrums

(e.g. frequencies experienced in an internal combustion engine). This can potentially

improve tribological considerations, especially wear and damping. Additional study

is required to quantify this performance.

8.1 Future Work

The current work addresses the mathematics of coupling unique mechanisms, and

merging solid and fluid mechanics of triboelements. What is accomplished in this work

is the foundation for study of these coupled solid/fluid mechanisms. The framework

presented herein is portable across many applications, and could be used as a starting

point for additional tribological study. This includes flexible/porous journal bearings,

squeeze film dampers, seismic and abutment dampers, and many other applications.

Specific recommendations for the future path of this work include: exploring non-

uniform permeability patterns in the PVE pad, geometric tailoring of the PVE pad,

flexibly mounting the porous pad, and new confining boundary conditions on the

PVE pad, among others. Unique geometries or configurations (e.g. porous region

followed by an impermeable region) could be employed to create effective converging

gaps. Etsion and Michael [64] propose a similar concept for the rigid/porous case,

with special consideration for sealing applications.

Although the work herein exclusively deals with incompressible solids and fluids,

a similar analysis could be performed with compressible fluids. It is hypothesized

that the stiffness and damping characteristics would be drastically changed in the

compressible case. Based on Miller and Green’s work [70, 101, 102], the compressible

component would likely act in series with the porous and/or viscoelastic mechanisms.

The correspondence principle could be used to assemble a network of viscoelastic

elements, creating rich dynamic characteristics.
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Extending the analysis to three dimensions is another goal for future work. The

extension will add significant computational time; therefore, optimization techniques,

like those discussed in Chapter 6, will almost certainly be needed.

Additional performance metrics are readily obtained from the completed work.

These include: determination of fluid shear, friction, and leakage (both in the fluid

channel and the porous pad). Other metrics will require additional consideration and

experimentation. These include: wear, frictional heating, and longevity studies. Non-

dimensional groupings of parameters should also be sought to describe the physics of

the studied system. For example, a permeable Sommerfeld-type number might have

use in the description of a PVE/HDL system in a journal bearing.

Numerical improvements to the current simulations are also proposed. These in-

clude: changing the unit system (bringing deformation and pressure to the same order

of magnitude), addressing the sensitivity to initial conditions, developing an adaptive

code that terminates upon completion of certain goals, and seeding the steady-state

with the elastic solution. The proposed improvements fall under the category of

“optimization.” In a design situation, a robust (less sensitive) and optimized code

will aid the user in expediently obtaining results. These concepts are left for future

developments.
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APPENDIX A

NUMERICAL SCHEME FOR SOLVING POROUS

REYNOLDS EQUATION

The numerical routine used to solve the porous Reynolds equation is presented herein.

Recalling the discretized Reynolds equation:[
∂

∂x

(
H3

1

∂P
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)]
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[
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The partial derivatives are distributed in Eq. 163, and the product rule is analytically

evaluated:
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Enforcing a uniform grid in the x and z directions, respectively, allows the central

difference method to be utilized. The first and second derivative terms involving
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pressure are evaluated:(
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and the terms involving film thickness (or effective film thickness) are likewise evalu-
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The squeeze terms are calculated from the triboelement-dependent kinematic quanti-

ties. Therefore, the rate of change of the flexible interface (V ′), the traditional squeeze

term (V ), and the fluid flow across the porous boundary (V0) must be tracked at each

instance in time.
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Groupings of values from the right hand side of Eq. 203 are solved for as well:

(R1)i,j = −6µh
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(206)

(R3)i,j = 12µ(V + V0 + V ′)i,j

The following substitutions are made to simplify the analysis:
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[
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[
3 (H2
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Di,j =
(H3

1 )i,j
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.

The discrete porous Reynolds equation then takes the following form:

Ai,j (Pi,j+1 − Pi,j−1) +Bi,j (Pi,j+1 − 2Pi,j + Pi,j−1) +

Ci,j (Pi+1,j − Pi−1,j) +Di,j (Pi+1,j − 2Pi,j + Pi−1,j) =

(R1)i,j + (R2)i,j + (R3)i,j .

(208)
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One more set of constants leaves a simple expression for the pressure at location (i, j):
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2

[
R1 +R2 +R3

B +D

]
i,j

(a1)i,j =
1

2

(
A+B

B +D

)
i,j

(a2)i,j =
1

2

(
B − A
B +D

)
i,j

(209)
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,

Pi,j = (a1Pi,j+1 + a2Pi,j−1 + a3Pi+1,j + a4Pi−1,j + a0) . (210)
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APPENDIX B

EXAMPLE CODE SEGMENTS

Skeleton codes for Methods I and II are presented here to show the critical coding

aspects that must be employed to interface with ABAQUS.

B.1 Python Code Listing- Method I

# Import ABAQUS Packages

from part import *

from material import *

from section import *

from assembly import *

from step import *

from interaction import *

from load import *

from mesh import *

from optimization import *

from job import *

from sketch import *

from visualization import *

from connectorBehavior import *

import os

import visualization

# Import ‘‘numpy’’ to solve the Reynolds Equation

import numpy

import numpy.matlib

from fractions import Fraction

# Create function to solve porous Reynolds equation

def P_finder(x,z,hi,ho,U,mu,k,alpha):

### Solve Reynolds equation within function

return (W,P)
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#############

# Define constants

hi, ho, W, etc.

session.journalOptions.setValues(replayGeometry=COORDINATE,

recoverGeometry=COORDINATE)

# Create the Model

mdb.models.changeKey(fromName=’Model-1’, toName=’Model’)

mdb.models[’Model’].ConstrainedSketch(name=’__profile__’, sheetSize=1.0)

mdb.models[’Model’].sketches[’__profile__’].rectangle(point1=(x1, y1),

point2=(x2, y2))

mdb.models[’Model’].ConstrainedSketch(name=’Rectangle Sketch’,

objectToCopy=mdb.models[’Model’].sketches[’__profile__’])

mdb.models[’Model’].Part(dimensionality=TWO_D_PLANAR, name=

’Example Part’, type=DEFORMABLE_BODY)

mdb.models[’Model’].parts[’Example Part’].BaseShell(sketch=

mdb.models[’Model’].sketches[’__profile__’])

del mdb.models[’Model’].sketches[’__profile__’]

# Assign the Material

mdb.models[’Model’].Material(name=’Material Model’)

mdb.models[’Model’].materials[’Material Model’].

Elastic(moduli=INSTANTANEOUS, table=((E0, nu), ))

mdb.models[’Model’].materials[’Material Model’].

Viscoelastic(domain=TIME, time=PRONY, table=((k1, g1, tau1), ))

mdb.models[’Model’].materials[’Material Model’].

Permeability(inertialDragCoefficient=0.142887,

specificWeight=, table=((k, void ratio), ))

# Create a Section

mdb.models[’Model’].HomogeneousSolidSection

(material=’Material Model’, name=’Section’, thickness=1.0,)

# Create a part instance

mdb.models[’Model’].rootAssembly.Instance

(dependent=ON, name= ’Instance’, part=mdb.models

[’Model’].parts[’Example Part’])

# Assign Element Type

mdb.models[’Model’].parts[’Example Part’].
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setElementType(elemTypes=(ElemType(elemCode=

element type, elemLibrary=STANDARD), ElemType

(elemCode=element type,elemLibrary=STANDARD)),

regions=(mdb.models[’Model’].parts[’Example Part’].faces.findAt(((

x, y, z), )), ))

# Mesh

mdb.models[’Model’].parts[’Example Part’].seedPart(deviationFactor=

value, minSizeFactor=value, size=value)

mdb.models[’Model’].parts[’Example Part’].generateMesh()

p = mdb.models[’Model’].parts[’Example Part’]

s = p.edges

side1Edges = s.findAt(((x, y, z), ))

p.Surface(side1Edges=side1Edges, name=’Pressure Surface’)

# Assign Sets

p = mdb.models[’Model’].parts[’Example Part’]

n = p.nodes

nodes =

p.Set(nodes=nodes, name=’TOPNODES’)

p = mdb.models[’Model’].parts[’Example Part’]

n = p.nodes

nodes =

p.Set(nodes=nodes, name=’BOTTOMNODES’)

mdb.models[’Model’].parts[’Example Part’].Set(name=’ALLNODES’, nodes=

mdb.models[’Model’].parts[’Example Part’].nodes[0:10000000])

p = mdb.models[’Model’].parts[’Example Part’]

n = p.nodes

nodes =

p.Set(nodes=nodes, name=’LEFTNODES’)

p = mdb.models[’Model’].parts[’Example Part’]

n = p.nodes

nodes =

p.Set(nodes=nodes, name=’RIGHTNODES’)

p = mdb.models[’Model’].parts[’Example Part’]

f = p.faces

faces = f.findAt(((x, y, z), ))
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region = p.Set(faces=faces, name=’Face Set’)

p.SectionAssignment(region=region, sectionName=’Section’, offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField=’’,

thicknessAssignment=FROM_SECTION)

# Assign Steps

mdb.models[’Model’].GeostaticStep(name=’Pore Loading’,

previous=’Initial’,timeIncrementationMethod=AUTOMATIC,

minInc=, maxInc=, utol=utol, description=

’Initialize Pore Pressure’, nlgeom=ON)

mdb.models[’Model’].SoilsStep(cetol=None, description=’Iteration’,

end=None, initialInc=, maxInc=, maxNumInc=, minInc=, name=

’Iteration_0’, previous=’Pore Loading’, timePeriod=t, utol=utol)

mdb.models[’Model’].steps[’Iteration_0’].Restart

(frequency=1, overlay=ON)

# Initial Void Ratio

mdb.models[’Model’].VoidsRatio(distributionType=UNIFORM, name=

’Initial Void Ratio’, region=

mdb.models[’Model’].rootAssembly.instances[’Instance’].

sets[’ALLNODES’], variation=CONSTANT_RATIO, voidsRatio1=)

a = mdb.models[’Model’].rootAssembly

region = a.instances[’Instance’].sets[’BOTTOMNODES’]

mdb.models[’Model’].DisplacementBC(name=’Fixed Bottom’,

createStepName=’Pore Loading’, region=region, u1=0.0, u2=0.0,

ur3=UNSET, amplitude=UNSET, fixed=OFF,

distributionType=UNIFORM, fieldName=’’,localCsys=None)

# Left and Right Edge BC

mdb.models[’Model’].PorePressureBC(amplitude=UNSET,

createStepName=’Pore Loading’, distributionType=UNIFORM,

fieldName=’’, fixed=OFF, magnitude=0.0, name=

’Zero Pore Pressure Right’, region=mdb.models[’Model’].

rootAssembly.instances[’Instance’].sets[’RIGHTNODES’])

mdb.models[’Model’].PorePressureBC(amplitude=UNSET,

createStepName=’Pore Loading’, distributionType=UNIFORM,

fieldName=’’, fixed=OFF, magnitude=0.0, name=

’Zero Pore Pressure Left’, region=mdb.models[’Model’].

rootAssembly.instances[’Instance’].sets[’LEFTNODES’])
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# Apply Loads

a = mdb.models[’Model’].rootAssembly

region = a.instances[’Instance’].sets[’TOPNODES’]

mdb.models[’Model’].PorePressureBC(name=’Pore_Pressure_Load’,

createStepName=’Pore Loading’, region=region, fixed=OFF,

distributionType=USER_DEFINED, fieldName=’’, magnitude=1.0,

amplitude=UNSET)

# Repeat for solid load (sigma)

mdb.models[’Model’].fieldOutputRequests[’F-Output-1’].setValues(

variables=(’S’, ’E’, ’U’, ’POR’, ’PFL’,’RVF’,’SAT’))

# History Output

mdb.models[’Model’].HistoryOutputRequest(createStepName=

’Iteration_0’, name=’H-Output-2’, rebar=EXCLUDE, region=

mdb.models[’Model’].rootAssembly.allInstances[’Instance’].

sets[’TOPNODES’]

, sectionPoints=DEFAULT, variables=(’U1’, ’U2’))

# Create and Execute Job

jobName = ’Soil_Example_0’

myJob = mdb.Job(name=jobName, model=’Model’,

userSubroutine=’Path\User_subroutine.for’,

description=’Model Example Run’)

myJob.submit()

myJob.waitForCompletion()

myOdb = visualization.openOdb(path=jobName + ’.odb’)

session.viewports[’Viewport: 1’].

setValues(displayedObject=myOdb)

session.viewports[’Viewport: 1’].

odbDisplay.display.setValues(plotState=CONTOURS_ON_DEF)

session.viewports[’Viewport: 1’].

odbDisplay.commonOptions.setValues(renderStyle=FILLED)

#Create Path for Top edge and create XYData of that path

topPath = session.Path(name=’Top Edge’, type=EDGE_LIST, expression=
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u=((’U’,NODAL,((COMPONENT, ’U2’ ),)),)

session.XYDataFromPath(path=topPath,includeIntersections=False,

shape=DEFORMED,labelType=TRUE_DISTANCE,

name=’Deformation’,variable=u)

# Strip necessary data from the .odb file (e.g. deformation,

pressure gradient, etc.)

#Write XY Report to file (get deformation)

xyObjects = session.xyDataObjects[’Deformation’]

session.writeXYReport(fileName=’ScriptXYReport.txt’,

xyData=xyObjects,appendMode=OFF)

xyData = numpy.genfromtxt(’Path\file.txt’,

dtype=float, skip_header=2, autostrip=True)

arr1d = numpy.array(xyData)

reversed_xyData = numpy.fliplr([arr1d])[0]

z1 = -reversed_xyData[:,1]

f1 = open("z1.txt", "a")

z1text = str(z1)

f1.write(z1text)

f1.close()

#########

count = 0

it_count = 0

iteration = ’Iteration_0’

jobName = ’Example_0’

while count < :

it_p1 = str(it_count)

it_p2 = str(it_count+1)

jcount = str(count)

jcount_1 = str(count+1)

iteration = iteration.replace(it_p1,it_p2)

iteration_m = iteration.replace(it_p2,it_p1)

jobName = jobName.replace(jcount,jcount_1)

jobName_m = jobName.replace(jcount_1,jcount)

mdb.models[’Model’].setValues(restartJob=jobName_m,

restartStep=iteration_m)
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mdb.models[’Model’].SoilsStep(cetol=None, description=’Iteration’,

end=None, initialInc=, maxInc=, maxNumInc=, minInc=, name=

iteration, previous=iteration_m, timePeriod=, utol=, amplitude=RAMP/INST)

mdb.models[’Model’].steps[iteration].Restart(frequency=1, overlay=ON)

# Call Reynolds equation and process the data as needed

# Create and Execute New Job

myJob = mdb.Job(name=jobName, model=’Model’, type=RESTART,

userSubroutine=’Path\fortran.for’,

description=’Model Example Run’)

myJob.submit()

myJob.waitForCompletion()

count += 1

it_count += 1

# Repeat stripping of data from .odb file (deformation, pore pressure,

pressure gradients, etc.)

myOdb.close()

import os

os.system(’abaqus restartjoin originalodb=Example_0.odb

restartodb=Example_1.odb history’)

# Repeat as needed to combine all jobs

B.2 Fortran Subroutines- Method II

SUBROUTINE URDFIL(LSTOP,LOVRWRT,KSTEP,KINC,DTIME,TIME)

C

INCLUDE ’ABA_PARAM.INC’

C

INTEGER N, K1, K2, K3, M

PARAMETER(M=101)

DIMENSION

EQUIVALENCE (ARRAY(1),JRRAY(1,1))

REAL*8

C

C Allocate variable space

C

COMMON B, C

C

C Assign the original height of the porous pad for reference
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Y_orig = height of PVE pad

C Assign the Nodes to the Node Sets (TN- Top Nodes,

C STN- Sub Top Nodes)

C

C Values are compatible with data that is read from .fil file.

C These values will change if the mesh changes!

C

C End of node set definition

C

C This block calls the .fil file to read the x,y coordinates,

C node numbers, and pore pressure.

C Data is stored in array A (x-coord,y-cord,node number)

C and array A2 (node number, pore pressure)

CALL POSFIL(KSTEP,KINC,ARRAY,JRCD)

K2 = 1

K3 = 1

DO K1=1,M*2

A(1,K1) = 0

A(2,K1) = 0

A(3,K1) = 0

END DO

DO K1=1,999999

CALL DBFILE(0,ARRAY,JRCD)

IF (JRCD .NE. 0) GO TO 110

KEY=JRRAY(1,2)

C

C KEY 107 gives the nodal coordinate data,

C ARRAY(4) is the x-coord, ARRAY(5) is the

C y-coord, and JRRAY(1,3) is the node number

C

C KEY 108 gives the pore pressure data,

C ARRAY(4) is the pore pressure, and

C JRRAY(1,3) is the node number

C

IF (KEY.EQ.107) THEN

A(1,K2) = ARRAY(4)

A(2,K2) = ARRAY(5)

A(3,K2) = JRRAY(1,3)

K2 = K2 + 1

ELSEIF (KEY.EQ.108) THEN

A2(1,K3) = JRRAY(1,3)

A2(2,K3) = ARRAY(4)

K3 = K3 + 1

END IF

END DO
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110 CONTINUE

C All of the information is stripped from the .fil file

C at this point

C

C Now, the arrays A, A2 are separated and

C combined by Node Set

C The following loop takes the top node information

C from array ’A’ and places it in array ’B’

C

K4 = 1

DO K1=1,M*2

DO K2=1,M

IF (A(3,K1).EQ.TN(K2)) THEN

B(1,K4) = A(1,K1)

B(2,K4) = A(2,K1)

B(3,K4) = A(3,K1)

K4 = K4 + 1

END IF

END DO

END DO

C

C The following loop takes the "sub" top node information

C from array ’A’ and places it in array ’C’

C

K5 = 1

DO K1=1,M*2

DO K2=1,M

IF (A(3,K1).EQ.STN(K2)) THEN

C(1,K5) = A(1,K1)

C(2,K5) = A(2,K1)

C(3,K5) = A(3,K1)

K5 = K5 + 1

END IF

END DO

END DO

C

C The following loop takes the top node information from

C array ’A2’ (pore pressure) and places it in array ’B’ (4th row)

C

DO K1=1,M*2

DO K2=1,M

IF (A2(1,K1).EQ.B(3,K2)) THEN

B(4,K2) = A2(2,K1)

END IF

END DO
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END DO

C

C The following loop takes the "sub" top node information from

C array ’A2’ (pore pressure) and places it in array ’C’ (4th row)

C

DO K1=1,M*2

DO K2=1,M

IF (A2(1,K1).EQ.C(3,K2)) THEN

C(4,K2) = A2(2,K1)

END IF

END DO

END DO

C

C Reorganize the information in array ’B’ from smallest

C to largest x-coordinate (row1 - x coord, row2 - y coord,

C row3 - node #, row4 - pore pressure)

C

DO K3=1,M-1

DO L = K3+1,M

IF (B(1,K3).GT.B(1,L)) THEN

TEMP1 = B(1,K3)

TEMP2 = B(2,K3)

TEMP3 = B(3,K3)

TEMP4 = B(4,K3)

B(1,K3) = B(1,L)

B(2,K3) = B(2,L)

B(3,K3) = B(3,L)

B(4,K3) = B(4,L)

B(1,L) = TEMP1

B(2,L) = TEMP2

B(3,L) = TEMP3

B(4,L) = TEMP4

END IF

END DO

END DO

C Reorganize the information in array ’C’ from smallest

C to largest x-coordinate

C (row1 - x coord, row2 - y coord,

C row3 - node #, row4 - pore pressure)

C

DO K3=1,M-1

DO L = K3+1,M

IF (C(1,K3).GT.C(1,L)) THEN

TEMP1 = C(1,K3)

TEMP2 = C(2,K3)
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TEMP3 = C(3,K3)

TEMP4 = C(4,K3)

C(1,K3) = C(1,L)

C(2,K3) = C(2,L)

C(3,K3) = C(3,L)

C(4,K3) = C(4,L)

C(1,L) = TEMP1

C(2,L) = TEMP2

C(3,L) = TEMP3

C(4,L) = TEMP4

END IF

END DO

END DO

C

C Evaluate Darcy flow into substrate (dp/dy).

C More exact evaluation would be to interpolate x,y,P,

C data first to account for lateral movement of the nodes

C

DO K1=1,M

dp_dy(K1) = (B(4,K1)-C(4,K1))/(B(2,K1)-C(2,K1))

END DO

C

C YOU MUST BE CLOSE TO EQUILIBRIUM TO SOLVE

C THIS CORRECTLY!!!! B_PRE MUST BE SET

C

N = 1

IF (KINC.EQ.N .AND. KSTEP.EQ.2) THEN

HI = 40D-6

C Enforces same profile regardless of starting point

HO = HI - (40D-6 - 40D-6/2.2D0)

HI_old(1) = HI

DO K1=1,M

dh_PVE_dt(K1) = 0D0

END DO

H_t1(M+1) = 1D0

H_t2(M+1) = 0D0

dh_dt = 1D-10

ELSE

C

C Read historic data from previous iteration

C

OPEN(105,FILE=’Path\dh_dt_test.txt’)

READ(105,*) dh_dt

CLOSE(105)

OPEN(105,FILE=’Path\HI.txt’)
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READ(105,*) HI_old(1)

CLOSE(105)

OPEN(105,FILE=’Path\H_t1.txt’)

READ(105,*) H_t1

CLOSE(105)

OPEN(105,FILE=’Path\H_t2.txt’)

READ(105,*) H_t2

CLOSE(105)

END IF

Z(M+1) = TIME(2)

dt = Z(M+1) - H_t1(M+1)

C

DO K1=1,M

Z(K1) = Y_orig-B(2,K1)

X(K1) = 0.00025D0*(K1-1.0D0)

P(K1) = 1.0D0

dh_PVE_dt(K1) = (Z(K1)-H_t2(K1))/(Z(M+1)-H_t2(M+1))

END DO

C Assign parameters for the Reynolds Equation

W_load, U_velo, AMU, AK, ALPHA, HD, W

C

C This is where the perturbation is introduced (t_0)

C Depending on the step, a fast ramp may be required

C for ABAQUS to converge

C

IF (TIME(2).GT.t_0) THEN

W = value

END IF

C

HI = HI_old(1) + dh_dt*DTIME

HO = HI-HD

dh_dt_old = dh_dt

C

dh_dt_0 = -1D-5

dh_dt_1 = 1D-5

C

C The following loop iterates the Reynolds equation

C to find the rate of change of the film thickness

C that matches the load. A bisection method is used

C to find the appropriate film thickness rate (dh_dt).

DO K1=1,999999

C The solution tolerance is governed by the

C term on the right of the "greater
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C than" symbol (.GT.). The value is determined

C relative to the actual load (e.g. stop the loop when

C W_load is within 0.01\% of W).

C

IF (ABS(W_load-W) .GT. 0.0001D0*W) THEN

dh_dt = (dh_dt_1+dh_dt_0)/2.0D0

CALL REYNOLDS(X,HO,HI,Z,U_velo,AMU,AK,ALPHA,P,

1 H,W_load,dp_dy,dh_dt,dh_PVE_dt,du_dy)

C An algorithm must be developed to change the film thickness

C Can be done instantaneously on h, or smoothly (e.g. on dh_dt)

END DO

C

DO K1=1,M

H_text(K1) = H(K1)

P_text(K1) = P(K1)

END DO

H_text(M+1) = TIME(2)

P_text(M+1) = TIME(2)

C

C Output all relevant data to the text files

C (excluded for brevity)

C

RETURN

END

C

SUBROUTINE REYNOLDS(X,HO,HI,Z,U_velo,AMU,AK,ALPHA,

1 P,H,W_load,dp_dy,dh_dt,dh_PVE_dt,du_dy)

INTEGER M

PARAMETER(M=101)

REAL*8 Allocate variables

C

C INITIALIZE ARRAYS

C DEFINE PARAMETERS AND CREATE

C DOUBLE PRECISION CONSTANTS

C DEFINE CONVERGENCE METRICS

C

C Define big H (effective film thickness)

C Evaluate derivatives dh_dx, dH1_dx, dU1_dx

C Create all of the constants for grid point values A,B,

C stretch term, wedge term, squeeze term.

C Iterate for nodal pressure until global and local

C convergence is obtained

C Evaluate load support (integrate pressure profile)

C
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C Evaluate performance metrics, side leakage, shear, etc.

END SUBROUTINE REYNOLDS

C

SUBROUTINE DISP(U,KSTEP,KINC,TIME,NODE,NOEL,JDOF,COORDS)

C

INCLUDE ’ABA_PARAM.INC’

C

INTEGER M

PARAMETER(M=101)

DIMENSION U(3),TIME(2),COORDS(3)

REAL*8 C(4,M), B(4,M), B_0(M), B_pre(4,M)

COMMON B, C

INTEGER N KINC

C

C Initialize values for first iteration (pull values from file,

C must be close to equilibrium to work).

C Load the pore pressure nodes with the fluid pressure from

C the Reynolds equation

C

DO K1=1,M

IF (NODE.EQ.B(3,K1)) THEN

U(1) = B(4,K1)

END IF

END DO

C

END

SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,

1 COORDS,JLTYP,SNAME)

C

C This subroutine provides the load on the solid grains

C of the PVE pad

C

INCLUDE ’ABA_PARAM.INC’

C

DIMENSION TIME(2), COORDS (3), ELE_SET(50)

CHARACTER*80 SNAME

C

INTEGER M N KINC NPT

PARAMETER(M=101)

REAL*8 B(4,M)

COMMON B

C
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C Put zero load on the two corner nodes (x = 0, x= L)

C

C Place the solid load on the integration points of interest

C

END

B.3 Input File- Method II

*Heading

Coupled Example Run

** Job name: Example_0 Model name: Substrate Model

** Generated by: Abaqus/CAE 6.14-1

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name="Substrate Example Part"

*Node

*Element, type=elements

*Nset, nset="Face Set", generate

*Elset, elset="Face Set", generate

*Nset, nset=TOPNODES

*Nset, nset=BOTTOMNODES

*Nset, nset=ALLNODES, generate

*Nset, nset=LEFTNODES

*Nset, nset=RIGHTNODES

*Nset, nset=LEFTNODES_CORNER

*Nset, nset=RIGHTNODES_CORNER

*Nset, nset=STN

*Elset, elset=_Pressure_Surface_S3, internal, generate

*Surface, type=ELEMENT, name=Pressure_Surface

_Pressure_Surface_S3, S3

** Section: Substrate Section

*Solid Section, elset="Face Set", material="Substrate Material Model"

1.,

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name="Substrate Instance", part="Substrate Example Part"

*Nset, nset=TOPNODES_PP_, internal
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*Nset, nset=LEFTNODES_PP_, internal

*Nset, nset=RIGHTNODES_PP_, internal

*Nset, nset=LEFTNODES_EXTRA_PP_, internal

*Nset, nset=RIGHTNODES_EXTRA_PP_, internal

*Nset, nset=Sub_Bottom_Nodes

*End Instance

**

*End Assembly

**

** MATERIALS

**

*Material, name="Substrate Material Model"

*Elastic, moduli=INSTANTANEOUS

*Permeability, specific=.

**** ABAQUS uses hydraulic conductivity

**** Make sure to convert

*Viscoelastic, time=PRONY

**

** PREDEFINED FIELDS

**

** Name: Initial Void Ratio Type: Void ratio

*Initial Conditions, TYPE=RATIO

"Substrate Instance".ALLNODES, value

** ----------------------------------------------

**

** STEP: Pore Loading

**

*Step, name="Pore Loading", nlgeom=YES

Initialize Pore Pressure

*Geostatic, utol=

**

** LOADS

**

** Name: Pressure_Load Type: Pressure

*Dsload

"Substrate Instance".Pressure_Surface, PNU, 1.

**

** BOUNDARY CONDITIONS

**

** Name: Fixed Left Type: Displacement/Rotation

*Boundary

"Substrate Instance".LEFTNODES_PP_, 1, 1

"Substrate Instance".LEFTNODES_EXTRA_PP_, 2, 2

** Name: Fixed Right Type: Displacement/Rotation

*Boundary
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"Substrate Instance".RIGHTNODES_PP_, 1, 1

"Substrate Instance".RIGHTNODES_EXTRA_PP_, 2, 2

** Name: Fixed Bottom Type: Displacement/Rotation

*Boundary

"Substrate Instance".BOTTOMNODES, 1, 1

"Substrate Instance".BOTTOMNODES, 2, 2

** Name: Pore_Pressure_Load Type: Pore pressure

*Boundary, user

"Substrate Instance".TOPNODES_PP_, 8, 8, 1.

** Name: Zero Pore Pressure Left Type: Pore pressure

*Boundary

"Substrate Instance".LEFTNODES_PP_, 8, 8

** Name: Zero Pore Pressure Right Type: Pore pressure

*Boundary

"Substrate Instance".RIGHTNODES_PP_, 8, 8

**

** OUTPUT REQUESTS

**

*Restart, write, frequency=0

**

** FIELD OUTPUT: F-Output-1

**

*Output, field

*Node Output

POR, RVF, U, V

*Element Output, directions=YES

E, S, SAT

*Contact Output

PFL,

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step

** ----------------------------------------------------------------

**

** STEP: Iteration_0

**

*Step, name=Iteration_0, nlgeom=YES, inc=100000

Iteration

*Soils, consolidation, end=PERIOD, utol=.

*CONTROLS, PARAMETERS=TIME INCREMENTATION

,,,,,,,100

**

** BOUNDARY CONDITIONS
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**

** OUTPUT REQUESTS

**

**

** FIELD OUTPUT: F-Output-1

**

*Output, field

** Critical output required for URDFIL to work

** (have to specify that the FIL file is created)

*Node Output

COORD, POR, RVF, U, V

*Element Output, directions=YES

E, S, SAT

*Contact Output

PFL,

**

** HISTORY OUTPUT: H-Output-2

**

*Output, history

*Node Output, nset="Substrate Instance".TOPNODES

U1, U2, U3, UR, UR1, UR2, UR3, UT,

V1, V2, V3, VR, VR1, VR2, VR3, VT,

WARP

*NODE FILE, FREQUENCY = 1, nset ="Substrate Instance".TOPNODES

U,

V,

COORD,

POR,

*NODE FILE, FREQUENCY = 1, nset ="Substrate Instance".Sub_Bottom_Nodes

U,

V,

COORD,

POR,

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step

**** Add Steps as needed
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