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SUMMARY 
 
 
 

Models of high-temperature seafloor hydrothermal systems require that heat is 

transferred from an underlying magma body across a conducting boundary layer to 

the hydrothermal system. Because magma is typically at or near its liquidus, heat 

transfer will result in crystallization and cooling of the magma itself. In previous 

models of magma cooling and solidification, solidification was assumed to occur from 

the top downwards. Consequently, the conducting thermal boundary layer between the 

hydrothermal system and magma body rapidly thickened, resulting in a rapid decay in 

hydrothermal heat output and vents temperature.  

In this thesis, I present a simple time-dependent model of heat transfer 

between a turbulently convecting and crystallizing magma body and the overlying 

hydrothermal circulation. Most of the known seafloor hydrothermal sites on 

faster-spreading ridges are dominated by basalt. The hydrothermal fields within parts 

of the Lau Basin in the Southwest Pacific are driven by andesite. To determine the 

different characteristics of magma-driven hydrothermal systems, two types of magma 

materials, basaltic and andesitic magma are considered. Two different crystallization 

scenarios are considered—crystals in suspension and crystals settling. In either case, I 

assume that large-scale convection within the magma chamber is homogenous. Also, 

the effect of crystallinity and water content-dependent magmatic viscosity is 

considered.  

Based on the proposed models, the total heat output from the upper surface of 
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the magma chamber and the temperature in hydrothermal system are derived. The 

simulation results show that without magma replenishment, the heat output and 

hydrothermal temperature decay rapidly within about ten years. For two different 

crystallization distribution cases, such rapid decay is not consistent with observations. 

The conflict between the simulation results and the field observations 

motivates the development of more accurate magma convection models. Different 

from the existing modeling methods, I propose to model the magma convection with 

replenishment. The replenishment model can be classified into two categories in terms 

of status of magma chamber size. To replenish the magma system without changing 

the magma chamber size, the heat flux decaying rate is slowed down and 

hydrothermal system lifetime is extended for a little longer. Although this model is 

more accurate than existing ones in terms of slow decaying rate of heat flux, it does 

not achieve a steady state as that is observed. This leads us to model replenishment 

with variant magma chamber size. I model the replenishment rate to be a constant and 

exponential decay, respectively. Thus, I assume that the magma chamber size is 

time-varying. Simulation results show that magma heat flux approaches a steady state 

over a time scale of decades. This result is consistent with the observations, which 

indicates the effectiveness of proposed modeling methods.      
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CHAPTER 1  

INTRODUCTION 
        
 
 

Seafloor hydrothermal systems play a significant role in the transport of 

energy between the solid Earth and the ocean floor. Circulation of seawater through 

the oceanic crust along the mid-ocean ridge is the principal process responsible for the 

formation of submarine hydrothermal systems by which heat flux is transferred from 

seafloor to the ocean. Nearly 25% of Earth’s global heat flux, and approximately 33% 

of the heat flux through the ocean floor, is transferred by hydrothermal advection 

[Williams and Von Herzen, 1974; Stein and Stein, 1994]. 

In 1977, the first active fields of hot springs were discovered at the Galapagos 

Spreading Center [Corliss et al., 1979]. The discovery of vent sites discharging fluids 

is the best evidence of hot hydrothermal activity at ridge crests. In 1979, the first high 

temperature (~380 °C) sulfide-laden black smokers at 21ºN site on the East Pacific 

Rise (EPR) were discovered [Spiess et al., 1980]. Since that time, about 280 sites of 

hydrothermal activities have been discovered and explored on the ocean floor [Baker, 

2004]. The most spectacular manifestations of seafloor hydrothermal circulation are 

the high-temperature "black smokers "(250 °C ~ 400 °C), and the "smoke" consists of 

tiny metallic sulfide particles that precipitate out of hot vent fluid as it mixes with the 

cold oxygen seawater near 2 °C [Tivey and Delaney, 1986]. Buoyant plumes from 

such vents can be traced in the ocean for hundreds of meters upwards and hundreds of 

kilometers horizontally [Baker et al. 1995]. 
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The style of hydrothermal venting varies with the spreading rate. On the 

slow-spreading Mid-Atlantic Ridge, for example, the Transatlantic Geotraverse (TAG) 

hydrothermal field has black smokers on the top of a large single large deposit 200 m 

in diameter and about 50 m in height [Becker et al., 1996]. TAG hydrothermal activity 

is driven by periods of rapid magma supply and has been episodic over relatively long 

periods (105 years) [Rona, 1984; 1995]. On the intermediate-spreading Juan de Fuca 

Ridge, the most common structures are the large multi-flanged irregular sulfide 

mounds (up to 18-20 m tall) that host multiple vigorously venting black smoker 

chimneys on their summits [Tivey and Delaney, 1986; Delaney et al., 1997]. On the 

fast-spreading East Pacific Rise, black smokers typically occur through discrete 

individual chimneys and chimney clusters. The sulfide chimney is rarely more than 15 

m tall [Kelley et al., 2002].  

Studies from a number of hydrothermal sites show that the total heat output 

from high-temperature hydrothermal systems at oceanic spreading centers typically 

ranges between 108 and 109 Watts [Lowell and Germanovich, 2004; Ramondenc et al., 

2006]. These values usually come from water column measurements of integrated 

heat flux. The high-temperature component measured at individual vents is around 

107 Watts. Observed heat output and vent temperature data are summarized in Table 1 

(see corresponding reference for details).  
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Table 1.1 Vent flow characteristics for some seafloor hydrothermal systems 
 

Reference Location 
Vent 

temperature 
(°C) 

Vent Heat 
Flux 

(MW) 

Integrated 
Heat Flux 
Ht (GW) 

Rona and Trivett [1992] Axial Volcano 
(JdFR) 108 - 326 2.4 - 6.4  

Rosenberg et al. [1988] Endeavour 
(JdFR) up to 400   1 - 5 

Schultz et al. [1992] Endeavour 
(JdFR) 7 - 13 53.5 – 

62.9  

Veirs et al. [2006] Endeavour 
(JdFR)  8 - 42  

Ginster et al. [1994] Endeavour 
(JdFR) 296 - 374 3.6 - 87.3 0.29 - 0.44 

Baker and Massoth 
[1986] 

South Cleft 
(JdFR)   0.29 - 0.87 

Baker and Massoth 
[1987] 

Endeavour 
(JdFR)   0.6 - 2.8 

Baker et al. [1993] North Cleft 
(JdFR) 104 - 324 161 - 319 0.48 - 0.96 

Baker [1994] North Cleft 
(JdFR)   0.38 - 0.94 

Gendron et al. [1994] North Cleft 
(JdFR)   1.4 - 4 

Stein and Fisher [2001] Middle Valley 
(JdFR) 180 - 276 0.13  

Lonsdale and Becker 
[1985] 

Southern 
Trough (GB) 270 - 314 86 - 201  

Ramondenc et al. [2006] 9°50′ N (EPR) 345 - 388 40  
McConachy et al. [1986] 11°N (EPR) 347 3.0 - 25  
Macdonald et al. [1980]  21°N (EPR) 344 - 356 0.2 - 0.3  
Converse et al.  [1984] 21°N (EPR) 275 - 350 140 - 300  
Rudnicki and Elderfield 
[1992] TAG (MAR) 360 - 364  0.5 - 0.9 

Rona et al. [1993] TAG (MAR) 365 200 - 250  
Rudnicki and German 
[2002] Kairei (CIR) 360  0.07 - 0.12 

 

Notes: In this table, JdFR stands for Juan de Fuca Ridge, GB for Guaymas Basin, 
EPR for East Pacific Rise, MAR for Mid-Atlantic Ridge and CIR for Central Indian 
Ridge. Modified from [Lowell et al., 2007]. 
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High-temperature hydrothermal circulation is often associated with differences 

in subsurface magma supply [e.g. Macdonald et al., 1984; Macdonald et al., 1992]. 

Seismic reflections from magma chambers have been observed along the 

fast-spreading ridges, such as East Pacific Rise [Detrick et al., 1987; Kent et al., 1990, 

Singh et al., 1999] and the intermediate-spreading Valu Fa Ridge [Collier and Sinha, 

1990; Sinha 1995; Turner et al., 1999]. Sub-axial reflections also exist beneath the 

intermediate-spreading Juan de Fuca Ridge (JDFR) [Rohr et al., 1988; Canales et al., 

2005; Canales et al., 2006] and the slow-spreading Mid-Atlantic Ridge (MAR) 

[Calvert, 1995; Sinha et al., 1998; Singh et al., 2006]. Moreover, observations from 

the 21°N sites on EPR have indicated that the considerable stability of hydrothermal 

venting last for more than two decades [Campbell et al., 1988; Von Damm et al., 

2002]. The steady state character of seafloor hydrothermal systems has been linked to 

magma replenishment [Lowell and Germanovich, 1994; Humphris and Cann, 2000]. 

They argue that magma replenishment at rates similar to those observed at basaltic 

volcanoes could sustain hydrothermal output on decade long time scales. 

A new hydrothermal field, Lost City, was discovered in December 2000, 

which represents the first observation of the low-temperature venting (40 °C~75 °C) 

[Von Damm, 2001]. It is distinctly different from all other known sea floor 

hydrothermal fields. It is located about 15 km away from a mid-oceanic ridge and on 

1.5 million years old ocean crust. Seafloor hydrothermal fluids derived from 

serpentinization reactions, rather than by the heat of magma [Kelley et al., 2001]. Lost 

City is characterized by massive white structures, up to 60 m high, rather than sulfide 
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structures typical of black smokers. This is the first major occurrence of active 

carbonate chimneys at a vent site [Kelley et al., 2001]. 

The discovery of seafloor hydrothermal systems more than three decades ago 

has revolutionized our understanding of biological processes [Jannasch, 1995; Shank 

et al., 1998] and the Earth’s thermal and geochemical budgets [Edmond et al., 1979]. 

Given the global importance and diversity in the processes, a large number of 

mathematical models have been developed. However, relatively few of these models 

have addressed the link between the high-temperature hydrothermal system and 

magma supply or provide a basis for understanding heat transport from a convecting 

magma chamber to the overlaying hydrothermal system. The objective of this work is 

to find out how a magma chamber can maintain a high-temperature venting steady 

state for decades.   

The thesis is organized as following. In chapter 2, I will discuss the existing 

models in the literature for the seafloor hydrothermal process, magma chamber 

convection systems, and the interaction between them. Chapter 3 presents the 

fundamental theory for magma convection and hydrothermal circulation. Moreover, 

the comparison between basaltic and andesitic magma is discussed. The numerical 

simulation results of a magma convection system without replenishment model are 

given in Chapter 4, which demonstrates the inconsistency between theoretical models 

and on-site observations. In Chapter 5, I develop theoretical models of magma 

convection with replenishment and present the relevant simulation results and 

discussion. Chapter 6 includes the conclusion and suggestions for further work.  
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CHAPTER 2  

A REVIEW OF THERMAL CONVECTION MODELS 
 
 
 

2.1 Models of hydrothermal convection 

      Even before the discovery of submarine hydrothermal venting, a comparison 

of conductive heat flow data with models of global heat loss from cooling, spreading 

lithosphere suggested that hydrothermal heat loss was an important component of 

Earth’s energy budget (Figure 2.1). Stein and Stein [1994] compare theoretical and 

observed heat flow data to parameterize hydrothermal circulation and find that the 

advected heat flux caused by hydrothermal circulation is significant. About 33% of 

the total oceanic heat flux occurs by advection and approximately 30% of the 

advected portion of the flux occurs in younger crust than 1 Ma. Early models of 

single-pass tried to explain the low conductive heat flow values measured on young 

crust and in terms of hydrothermal heat loss [Bodvarsson and Lowell, 1972; Lowell, 

1975], whereas early models of cellular convection attempted to explain heat flow 

anomaly patterns observed in young sedimented lithosphere [Williams et al., 1974; 

Ribando et al., 1976; Green et al., 1981; Fehn et al., 1983]. Once high temperature 

vents were discovered, however, the importance of magmatic heat became apparent 

[Strens and Cann, 1982,1986; Lister, 1983; Cann et al. 1985; Lowell and Rona, 1985; 

Lowell and Burnell, 1991; Lowell and Germanovich, 1994]. 
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Figure 2.1: Observed and predicted heat flow versus age of the ocean basins. Figure (a) 
is summary of earlier results from [Anderson and Skilbeck, 1981, Figure 6]. The 
predicted curved is schematic. (b), (c) and (d) are results from Stein and Stein [1994] 
compared to predictions of reference models GDH1 [Stein and Stein, 1992] and PSM 
[Parsons and Sclater, 1977]. The symbols for observed heat flow are shown in (a). 
Similar sealing ages for all the oceans are indicated, in contrast to the earlier 
compilation which showed sealing at younger ages in the Pacific [From Stein and 
Stein, 1994]. 
 

 

In general, hydrothermal convection models can be classified into three 

categories: cellular convection (porous medium) models, single-pass (pipe) models 

and downward cracking models. Reviews of various models of hydrothermal systems 

can be found in Lowell [1991a], Lowell et al. [1995] and Lowell and Germanovich 

[2004]. 

Cellular convection models were initially developed by Horton and Rogers 
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[1945] and Lapwood [1948] to investigate the condition for the onset of convection in 

a water-saturated porous material layer. Their stability analysis served as a starting 

point for studying geothermal convection problems. Those papers considered a 

homogeneous porous layer which is heated from below. The upper and lower 

boundaries were considered impermeable and isothermal. For this configuration, the 

Rayleigh number Ra, a dimensionless parameter that determines onset of convection, 

must be greater than 4π2, although different boundary conditions yield different values 

of the critical Rayleigh number Rac [Lapwood, 1948]. Cellular convection models of 

finite amplitude (Ra >>Rac) have been applied to off-axis convection [Lowell, 1980; 

Fisher et al., 1990; Fisher and Becker, 1995] and the ridge-axis convention (e.g., 

Brikowski and Norton [1989]; Wilcock [1998]; Rabinowicz et al. [1999]). Schoofs and 

Hansen [2000] investigated the depletion of brine layer at the base of a vigorously 

convecting system. Jupp and Schultz [2000] argued that the thermodynamic properties 

of water may control black smoke at 400 °C.  

Single pass or pipe models examine the general behavior of the hydrothermal 

system without considering details of the temperature and velocity distribution. They 

consist of a recharge, discharge zone and heat transfer zone. These models arose 

initially in the study of warm springs in Iceland [e.g., Bodvarsson, 1950; 1961]. In the 

context of ocean ridge hydrothermal processes, they offer a useful conceptual model, 

in which cold seawater penetrates downward to an axial magma body and is heated 

near the interface between solidified intrusive rocks and magma. Then the fluids 

transfer thermal energy out of the ocean crust during rapid, buoyant rise and discharge 
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at the ocean floor (Figure 2.2). The pipe models can be viewed as a special case of the 

cellular convection models, in which an extremely heterogeneous distribution of 

permeability restricts the flow paths to pipe-like zones. As a result of their simplicity, 

pipe models have been applied to many seafloor hydrothermal problems such as 

conductive heat flow anomalies [Bodvarsson and Lowell, 1972; Lowell, 1975], the 

temporal evolution of heat transfer from solidifying magma to black smokers [Lowell 

and Germanovich, 1994], and the formation of catastrophic event plumes associated 

with dike injections [Lowell and Germanovich, 1995], and other applications of pipe 

models to a number of seafloor hydrothermal problems were discussed in [Lowell and 

Germanovich 2004]. 

 
 

 
 
Figure 2.2: Cartoon of a single-pass hydrothermal circulation cell at a mid-ocean 
ridge. Here single-pass refers to the deep circulation system in which fluid circulates 
downward into the ocean crust, flows more or less horizontally near the top of the 
magma chamber at the base of the sheeted dikes, and ascends back to the surface. 
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Focused high-temperature flow is thought to occur in the main single-pass limb; 
diffuse flow may occur as a result of mixing of the deep circulation with shallower 
circulation in the extrusive layer, here as pillow lavas [from Germanovich et al., 
2000]. The diagram of a liquid magma chamber is given in Figure 3.1. 
 

 

The downward cracking models were initially provided by Lister [1974, 1983]. 

He assumed that tensile thermal stresses, provided by temperature differences, could 

cause fracture propagation, so that hydrothermal circulation would migrate downward 

and extract heat from the cracked hot rock. Lister’s original model is now viewed as 

being incorrect because it neglected the effect of rock compressive stresses as cracks 

propagate through the crust. Lowell and Germanovich [1994] suggested that thermal 

stresses associated with dike emplacement and cooling may be preferable to Lister’s 

original mechanism. In consequence, as magma crystallizes the hydrothermal system 

migrates downwards and high heat flux is maintained. The downward cracking 

concept is still prevalent in the literature (e.g. [Wilcock and Delaney, 1996; Kelley et 

al., 2002]).  

2.2 Models of Magma Convection 

It has been widely appreciated that convection plays an important dynamical 

role in nucleation, growth and redistribution of crystals in magma chambers. The 

characteristics of these processes have been investigated for different types of 

boundaries such as the roof, the floor and the side-wall of the magma chamber. 

Huppert and Sparks [1988] implicitly assumed that crystals grew in suspension within 

the interior of magma and were immediately swept away by the convection. Worster 
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et al. [1990] argued that for a small body of magma (e.g. thin sill), the crystals grew 

predominantly at the roof; whereas for a large magma body (hundreds of meters in 

height), crystallization at the floor is increasingly important, even though the cooling 

is only from above. Hort [1997] investigated a model of the solidification of magma 

cooling from above and found that the vigor of convection was strongly dependent on 

the kinetics of crystallization inside of the magma chamber. Hort [1997] assumed a 

linear relationship between magma temperature and the fraction crystallized.  

Typically, there are two types of magma convections determined by the 

driving forces: compositional convection and thermal convection. Compositional 

convection results from compositional variations either because of injection of a new 

composition into a chamber, partial melting or fractional crystallization. The 

compositional variations within a chamber provide buoyancy forces that may drive 

convective flow. Comparatively, the convection caused by the temperature variation 

and heat flux out through surrounding rocks is usually called thermal convection. First 

models of thermal-compositional convection in magma chambers describe the mixing 

of incompressible homogeneous magma [Oldenburg et al., 1989]. Convection is 

driven by compositional buoyant magma release during floor crystallization [Jellinek 

and Kerr, 1999]. Multiphase convection of crystal-bearing magma associated with 

vertical density gradients was considered by Bergantz [2000].  

In this thesis, I will neglect the effects of compositional convection and use a 

theoretical model of magma thermal convection based on the one developed by 

Huppert and Sparks [1988] for the physics of crystallization and melting at the 
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chamber roof. It is helpful to introduce their model first, and to point out the key 

differences between their model and the one used in this thesis. According to their 

model, heat transfer from a vigorously convecting basaltic magma emplaced into cold 

continental crust results in melting in the solid chamber roof to form a silicic magma, 

while at the same time crystallizing and cooling occur within the basaltic magma. 

They assumed the crystals are suspended within the interior of the convecting magma. 

Huppert and Sparks [1988] construct a simple 0-dimensional heat balance to relate 

the heat loss in the vigorously convecting magma body to the heat loss through the 

roof of the magma chamber. To describe crystallinity as a function of time I will use 

both the linear relationship given by Hort [1997] and the reciprocal function between 

magma temperature and crystal content given by Huppert and Sparks [1988]. 

The first distinction between the Huppert and Sparks [1988] model and the 

model presented in the thesis lies in the upper boundary layer. My model links the 

heat transfer from the magma chamber to the overlying hydrothermal circulation 

system. Consequently, the temperature of upper boundary of the convecting magma, 

Ts is constant. Because hydrothermal circulation rapidly removes heat from the crustal 

rocks, there is no induced melting at the chamber roof. Second, the thermal 

conductive boundary layer between the magma chamber and overlaying hydrothermal 

system remains thin. However in the Huppert and Sparks [1988] model, the silicic 

magma upper boundary layer grows with time. 

2.3 Linked Models of Magma and Hydrothermal Convection 

The first models linking magmatic heat transfer to an overlying hydrothermal 
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system [e.g., Lowell and Rona, 1985; Lowell and Burnell, 1991] recognized that heat 

transfer from magma must result in crystallization of the magma body. These models 

assumed that crystallization occurred at the roof of the magma. Consequently, heat 

loss from the magma decreased with time and the temperature and heat output of the 

hydrothermal systems did also. Despite the deficiencies of these models, studies of 

temporal evolution in hydrothermal processes [Haymon et al. 1991, 1993, 1996; 

Embley et al. 1995; Von Damm et al. 1995; Wright et al. 1995], indicate that there is a 

close coupling between magma supply and hydrothermal processes on individual 

ridge segments. However, the details of the connection between ridge axis 

hydrothermal flux and subsurface magma chamber processes are far from clear. 

It is important to point out that in studies of the hydrothermal convection at 

mid-ocean ridges, the boundary condition at the base of the hydrothermal system 

typically has two forms. In the most common situation, the temperature is fixed at the 

bottom, Ts. This condition assumes that magma serves as an infinite reservoir of heat. 

Consequently, the hydrothermal system controls how much heat is taken out. The 

higher the value of Ra, the more vigorous the convection and the greater the 

hydrothermal heat transport.  If a constant heat flux is assumed at the base of 

hydrothermal system then hydrothermal heat output is controlled by the rate at which 

heat is conducted from the magma body. The more vigorous the convection, the 

cooler the temperature of the hydrothermal fluid will be. Realistically, heat transfer 

from a convecting mid-ocean ridge magma body will cause it to cool and crystallize. 

The heat reservoir is not only finite, but will decay in time. Hence the hydrothermal 
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circulation above a convecting magma body is expected to be time dependent.      

In the following chapters, I link magma and hydrothermal models at oceanic 

spreading centers more realistically than in the past by including turbulent convection 

and crystallization of magma. I consider two scenarios of crystal distribution within a 

magma chamber. Similar to Huppert and Sparks [1988], the model assumes the 

convective motions in the magma chamber are sufficiently vigorous to keep crystals 

in suspension and well mixed within the interior of the magma. This assumption is 

counter to traditional models in which crystals settling can occur at the boundary layer 

of a magma chamber and accumulate on the floor [Martin, 1990; Martin and Nokes, 

1989; Worster et al., 1990]. This assumption permits us to calculate an upper bound of 

the rate of heat transfer from the magma to the hydrothermal system because if 

crystals are settling during magma solidification as in some models, the thermal 

boundary layer would rapidly thicken [Lowell and Germanovich 2004]. This would 

result in lowering the rate of heat transport between the magma chamber and 

hydrothermal system. However, homogeneous crystallization of a well-mixed magma 

is considered only possible in the early stages of magma convection processes 

because of the larger density with increasing crystal content [Brandie and Jaupart, 

1986]. Therefore, I consider another extreme case that assumes crystals instantly fall 

out of suspension and settle onto the chamber floor as they form within the magma. 

The lower boundary layer grows with time resulting in the depth of liquid magma 

decrease as time. This assumption allows us to calculate the maximum lifetime of the 

magma convection since the magma convection is driven only by the liquid magma. 
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CHAPTER 3  

THE BASIC THEORY OF A COUPLED MAGMA-HYDROTHERMAL 
SYSTEM MODEL 

 
 
 

Meaningful mathematical models must be constrained by observational data 

and also incorporate realistic rock and fluid physical parameters. Consequently, 

information on the temperature and thickness of subsurface magma bodies, along with 

data on the vent field provide useful modeling constraints. The density of melts ranges 

from 2500 kg/m3 to 2700 kg/m3 at magmatic temperature (~1200 °C) for basaltic 

magma from 2 wt% to dry at lower pressure. I select typical densities of ρb = 2700 

kg/m3 for basaltic, ρa = 2500 kg/m3 for dry andesitic and ρaw = 2400 kg/m3 for 3 wt% 

andesitic magma, respectively [Trial and Spera, 1990; Spera, 2000]. The shape and 

size of magma body are the most important parameters during the heat transfer. I 

consider a rectangular-shaped magmatic sill with planar area Am and thickness D (D 

<< Am). The liquid magma layer D is typically several tens of meters [Kent et al., 

1990; MacLeod and Yaoyancq, 2000]. In this model, D is assumed to be 100 m thick. 

Although the magma lens may extend for tens of kilometers along the axis at fast 

spreading ridges [Sinton and Detrick, 1992], the magma lens is 1 – 4 km in width 

across-axis [Collier and Sinha, 1990; Kent et al., 1990; Singh et al., 2006] and the 

vent field spaces 1 – 3 km along-axis [Gente et al., 1986; Kelley et al., 2002]. The 

heat uptake area Am is thus estimated to be ~ 106-107 m2. Magma temperature depends 

on the pressure. Select the typical liquidus temperature TL for basaltic magma to be 

1200 °C [Sinton and Detrick, 1992], and the solidus basaltic magma temperature TbS 
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to be 1070 ºC at lower pressure. The detailed reason will be given in section 4.3. For 

simplification, the values of other parameters for three magma types, such as latent 

heat and thermal diffusivity, etc., are assumed to be the same. These experimental and 

field data will be used in all simulation results.   

Figure 3.1 depicts a scenario of the basic model, a layer of vigorously 

convecting basaltic (andesitic) magma underlying a hydrothermal system with all 

crystals in suspension. The hydrothermal circulation system is similar to Figure 2.2, in 

which cold seawater penetrates into the oceanic crust where it is heated and modified 

to a hydrothermal fluid at a temperature Th. Because the hydrothermal fluid is much 

cooler than the magma solidus temperature TS (the temperature at the top of the 

magma chamber), heat is transferred from the convecting magma at temperature Tb,a 

across a thermal conductive boundary layer δ(t) at a time-dependent heat flux Fb,a, 

where the subscripts a and b refer to andesite and basalt, respectively. Then the 

buoyant fluids rise rapidly, and discharge into the ocean through hydrothermal vents. 

As a result, the magma chamber cools down and crystallizes. As a consequence of the 

magma heat decay, the heat transferred to hydrothermal system is expected to 

decrease, resulting in the decrease of the hydrothermal temperature and heat output. 

Models are run until the crystallinity χ(T) of the magma chamber reaches 60%, 

because at which point the kinematic magma viscosity ν(T) approaches infinity 

[Marsh, 1981]. The symbols used in this thesis are all given in the LIST OF 

SYMBOLS beginning on page ix.   
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Figure 3.1:  A convection magma chamber model with crystals in suspension. This is 
the liquid magma chamber part in Figure 2.2. The turbulent convection magma acts as 
a source of heat to power the overlying the hydrothermal system, at the same time the 
underlying mush zone provide new heat source to the magma chamber. Details of 
magma dynamics are neglected in this model. 
 

 

In the following sections, the mathematical model is presented to describe the 

interactive characteristics of both the magma convection system and the hydrothermal 

system. Specifically, Section 3.1 develops the basic model with all crystals in 

suspension, but without magma replenishment; Section 3.2 describes the 

hydrothermal circulation; Section 3.4 develops a somewhat different model from the 

one in Section 3.1. Therefore, it is assumed that all crystals fall out of liquid magma 

and accumulate on the chamber floor. It is worth pointing out that, the proposed 

model in Section 3.4 does not consider the magma replenishment either. 
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3.1 Convection of magma system without replenishment 

3.1.1 Thermal convection in magma at an oceanic spreading center 

When magmas rise from the Earth’s upper mantle and pond as a magma 

chamber, heat will be transferred by conduction between the cold county rock with 

temperature TS and hot magmas with temperature Tb,a. The magmatic sill initially at 

its liquidus temperature TL cooled by an overlying hydrothermal system. As shown by 

Huppert and Sparks [1988], Martin and Nokes [1989], Huppert and Turner [1990], 

Worster et al. [1990], Jaupart and Tait [1995] and Jellinek and Kerr [1999], such a 

magma body would undergo vigorous convection at a Rayleigh number Ra >> Rac 

(the critical value).  

For this system, the dimensionless parameter Ra is a measure of the strength 

of the convection, which is defined as the ratio of thermal buoyancy force to the 

viscous and thermal resistance: 

 

))((
)(

,

3

tTv
tTgDRa

abκ
α Δ

=                                                     (1) 

 

where α is the coefficient of thermal expansion, g is the acceleration due to gravity, D 

is the thickness of the magmatic layer, κ is the thermal diffusivity, andν is the 

kinematic viscosity, respectively. The temperature difference ΔT(t) = Tb,a(t)-TS. The 

Rayleigh number is proportional to the third power of thickness of magmatic layer; 

hence the size of the system is the most important parameter concerning the existence 
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and vigor of convection. Because ΔT(t) and kinematic viscosity ν(Tb,a(t)) are 

functions of time, then Ra is a function of time for this situation.  

Following Huppert and Sparks [1988] we express the heat flux from the 

convecting magma body in terms of the Nusselt number Nu, which is defined as the 

ratio of the heat transport as a result of convection Fb,a(t), to the heat flux conducted 

across the layer of thickness D in the absence of convection.  
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where ρb,a is the magma density and Cp is the specific heat of magma, respectively.  

The classical relationship between the Nusselt number and the thermal 

Rayleigh number is given by [Jarvis and Peltier, 1989]: 

 

3
1)/( cRaRaNu ≈                                                     (3) 

 

Upon substituting equations (1) and (3) into equation (2), we obtain the heat flux 

transferred as a result of convection in the magma chamber ([Turner, 1973]): 
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As a result of the heat flux Fb,a(t) transferring through the top boundary of area 

Am, the magma body cools, and crystals begins to form, provided the temperature 

Tb,a(t) < TL (the liquidus temperature). In this section, we assume all the crystals are 

suspended interior of magma. The latent heat of crystallization is released as crystals 

form. The simple heat content of a mass of magma M is then given by:  

 

( )( ) abababp LtTMtTMCtH ,,, )(1)()( χ−+=                                   (5) 

 

where Lb,a is the latent heat of crystallization of basaltic (andesitic) magma, χ(Tb,a(t)) 

is the crystal content of magma at temperature Tb,a(t), respectively. Because the mass 

conservation for this case without replenishment, M is the mass of liquid-crystal 

mixture, M = ρb,aV = ρb,aDAm, and volume of chamber V is constant. We ignore the 

density difference between liquid magma and crystals. The negative time derivative of 

the heat content is equal to the heat flow output from the magma chamber. Equation 

(5) can be modified by:  

 

mab AtF
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tdH )()(
,−=                                                   (6) 

 

Combining equations (5) and (6), the heat conservation equation in the magma liquid 

layer across the interface is obtained [Huppert and Sparks, 1988]: 
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where χ΄(Tb,a) indicates the first order derivative of crystallinity. The calculation will 

be discussed in the following section. In the equation (7), the first term on the left 

hand side represents the rate at which temperature varies in convecting magma and 

the second term represents the latent heat released at the top of magma chamber, the 

right hand side represents the heat flux by conduction. From equation (7), the rate of 

magma temperature change can be expressed as: 
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Substitute equation (4) into (8), we obtain: 
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3.1.2 Crystallization in magma 

In this modeling system, assume the crystals formed within the interior of 

magma are small enough to remain suspended in the turbulently convective magmas. 

Generally, the crystal content of magma is dependent on the magma temperature. Two 

ways to calculate the crystal content of magma are taken into account. The first one 

assumes that the crystal content of magma is proportional to the reciprocal of magma 

temperature, which is only suitable for basaltic magma and described as [Huppert and 

Sparks, 1988]: 
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The second one assumes a linear relationship between the crystal content of magma 

and magma temperature [Hort, 1997]. 
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Equation (11) can be used for both basaltic and andesitic magmas. For both of the 

modeling methods, it can be seen that the crystal content of magma grows as the 

magma temperature Tb,a(t) decreases. To further calculate equation (8), taking the first 

order derivative of χ(Tb,a(t)) in (10) and (11) with respect to the magma temperature 

Tb,a(t) lead to 
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3.1.3 The relationship between crystallization and viscosity 

From equation (4), the heat flux Fb,a(t) is affected by the magma viscosity. 

Also, it has been found that the magma viscosity is dependent on the crystal content 

of magma [Roscoe, 1952; Lejeune and Richet, 1995]: 
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where χc is the critical crystal fraction, beyond which flow is prevented (i.e., ∞=ν ), n 

is a constant.  

Equation (13) reflects magma viscosity is a function of crystal content. As the 

mean temperature in the magma chamber moves towards the solidus temperature, the 

magma viscosity will increase greatly when crystallization is sufficient in the magma 

chamber. When crystal content approaches to the critical crystal fraction around χc, 

the viscosity approaches infinity. The final phase occurs when the basaltic/andesitic 

magma layer cools to a temperature at which there are sufficient crystals so that the 

magma viscosity becomes very large and resulting in convection ceases in the magma 

chamber. Therefore, the convection in magma system ceases when crystallinity 

reaches χc in this model.  

Based on experimental and empirical evidence in [Marsh, 1981], the basic 

model selects χc = 60% and n = 2.5 as typical values. By this case, the viscosity 

becomes infinity as χc approaches 60%. For different types of magma, equation (13) 

can be reduced to [Shaw, 1980; Marsh, 1981] 

 

5.2)67.11(1.0 −−= bbv χ                                               (14.a) 

5.2)67.11(5.1 −−= aav χ                                               (14.b) 

5.2)67.11(3.0 −−= awawv χ                                             (14.c) 
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The relationship between the magma viscosity and the crystal content is 

shown in Figure 3.2, in which three different types of magmas are taken into account: 

basaltic magma, dry andesitic magma, and 3 wt% H2O andesitic magma. It is the 

water content and the temperature of magma that lead to different viscosity properties. 

Water has the most dominant effect on the physical properties of the magma. 

Therefore, the determination of the water content of magma is vital to understanding 

the behavior of melts. In equation 12.c high water content decreases viscosity. In 

general, basaltic magmas are dry (i.e. H2O less than 0.5 wt%) while andesites have 

higher water content. Basically, for a specific certain crystal content, the less water 

content and the lower temperature, the higher viscosity the magma has.  
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Figure 3.2:  The relationship between magma viscosity and crystal content. 
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In Figure 3.2, with increasing of crystallinity the viscosity moderately 

increases but when a critical solid content is reached at ~ 60%, the viscosity increases 

so rapid that over a short range of crystallinity the magma behaves essentially as a 

solid. The vertical dash line at 60% shows the viscosity becomes infinite.  

3.1.4 Crystals instantly settle on the floor of the magma chamber 

In this section, I consider a somewhat different model from that of Huppert 

and Sparks [1988]. Here I assume that as the magma cools and crystallizes, crystals 

come out of suspension and accumulate on the chamber floor [Figure 3.3]. Denote by 

the initial depth of liquid magma D0, Db,a(t) the depth of liquid magma at time t. The 

remaining magma is considered to be only liquid. Therefore, the viscosity of 

remaining magma vb,a,aw in convecting magma chamber is assumed to be a constant.  
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Figure 3.3:  A convection magma chamber model with crystals settling. 

  25



The mass of liquid magma decreases with time as crystallization. Considering 

the mass of magma chamber is time-invariant, the mass of liquid magma is obtained:  

 

)()()()( ,,,, tVVtVtMMtM SSabababSab ρρρ −==−=                         (15) 

 

where Mb,a, MS are the mass of liquid magma and mass of crystal; Vb,a and VS are the 

volume of liquid magma and crystal, respectively. It is worth pointing out, all these 

quantities are time varying. 

Taking the first order derivative of equation (15) leads to: 
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Combining equations (5) and (6), the new heat conservation equation in the magma 

liquid is obtained in this case: 
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Substitute equations (15) and (16) into (17), we obtain: 
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Therefore, the rate of magma temperature change can be finally expressed as: 
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3.2 Hydrothermal circulation 

The temperature of the hydrothermal fluid near the top of the magma body is 

much less than the melting point of magma. With heat transfer from the magma, it 

causes the magma to cool and crystallization inside of the magma chamber. As a 

result, the heat flux transport from the magma chamber decreases with time. Likewise, 

the temperature of hydrothermal system and heat flux decline with respect to time.  

To express conservation of energy with a magma heat flux boundary condition, 

assume heat is transferred from a subsurface magma body with a horizontal area Am to 

the base of the hydrothermal system by conduction across an impermeable thermal 

boundary layer δ(t). And the heat conducted from the magma through this conductive 

boundary layer is transferred by hydrothermal circulation to the seafloor, without 

conductive heat loss, where it discharges through the vent field area Ad. The heat 

balance equation can be written by [Lowell and Germanovich, 2004]: 
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where λ is thermal conductivity factor. Therefore, equation (20) simply states that the 

heat conducted from the turbulently convecting magma body (Am) into the base of the 

hydrothermal system equals to the heat carried to the bottom of the discharge zone (Ad) 

by hydrothermal advection. 

Assume the hydrothermal system is operated at temperature Th(t). The heat 

flux in hydrothermal system can be obtained: 

 

)()( tuTCtF hffh ρ=                                                   (21) 

 

Where ρf is fluid density, Cf is fluid specific heat and u is the Darcian upflow velocity.     

  For simplicity, assume the recharge zone temperature is zero and the flow 

resistance is dominated by the discharge zone [described more detail in Lowell and 

Germanovich, 2004]. Then this velocity is driven by buoyancy and expressed as:  
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Where αf is the coefficient of thermal expansion of fluid, k is permeability, vf is the 

kinematic viscosity of fluid, respectively. Substitution equation (22) into (21) leads to: 
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Combing equations (20) and (23), we obtain the heat flux in magma transferred out by 

hydrothermal circulation: 
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Correspondingly, the total heat output can be expressed as: 
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where
f

dfff

v
gkAc αρ

γ = is proportionality coefficient of hydrothermal temperature. 

So far, I have discussed the theoretical basis for modeling the interaction 

between magma convection and hydrothermal circulation and introduced the heat flux 

activity driven by thermal convection in two cases, which are crystal in suspension 

and crystal settling, crystallization as a function of magma temperature and 

relationship between crystal content and viscosity. Fundamental equations are derived 

to describe the heat flux Fb,a(t), total heat output Fb,a(t)Am and hydrothermal 

temperature Th(t) of these systems. Corresponding simulation results will be given in 

the following chapter. 
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CHAPTER 4  

MODEL RESULTS AND DISCUSSION 
 
 
 

4.1 Magma convection without replenishment 

Figure 4.1 shows the total heat output Fb,a(t)Am from the convecting basaltic 

magma assuming two different formulas for the relationship between magma crystal 

content and temperature, respectively, as well as for two different areas Am. Figure 4.2 

also shows the total heat output, only for the different model, in which all crystals 

settle onto the chamber floor. The dotted lines in both figures located at 109 Watts and 

107 Watts denoting the range of total hydrothermal heat output measured in 

hydrothermal systems at oceanic spreading center (see Table 1.1).  
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Figure 4.1:  Total heat output from the convecting magma for crystals in suspension 
model without magma replenishment.  
 

 

From Figure 3.2, crystallinity and viscosity increase as the magma temperature 

decreases. The Rayleigh number Ra also decreases and the amount of heat transferred 

into the hydrothermal system decreases correspondingly. In Figure 4.1, it is seen that 

the heat output from the magma chamber decreases rapidly in ten-year period. Two 

simulations show that the lifetime of the magma based on the Hort [1997] formula 

(equation (11)) is shorter than that using the Huppert and Sparks formula (equation 

(10)) for the relationship χ(Tb,a) because it has lower final magma temperature when 

magma convection ceases as crystal approach to 60%. Area Am only plays a role in 

determining the total amount of heat flux but has no influence on the lifetime of 
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magma convection. This is also indicated in equation (4).  

From the model described in Section 3.1.4, all crystals come out of the liquid 

magma and settle onto the magma chamber floor. Compared with Figure 4.1, Figure 

4.2 has the higher initial total heat output and the lower decay rate of hydrothermal 

system for both formulas. In this case, the lifetime of hydrothermal system is 

increased by several decades. For larger surface area Am the lifetime approaches 70 

years with a heat output more than 107 Watts.  
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Figure 4.2:  Same as Figure 4.1, except using crystals settling model for seventy 
years. 
 

 

From Equation (1), the thickness of magma layer is the most significant 
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parameter affecting Ra. All crystals accumulate on the lower boundary layer in this 

case, which cause the available liquid magma depth decrease with time. Heat 

transport from the magma chamber decrease accordingly resulting in the slower decay 

of magma temperature and extend the lifetime of magma convection. However, the 

heat output still drop rapidly between 109 Watts and 108 Watts.    

4.2 The behavior of the hydrothermal system  

To further emphasize the implications of the heat output results given in 

Figure 4.1and 4.2, Figure 4.3 and 4.4 show the hydrothermal temperature with respect 

to time for different values of permeability k (i.e. different values of factor γ in 

equation (24) by changing other parameters). With increasing permeability k, the 

hydrothermal mass transport increases; but the temperature of hydrothermal system 

decreases because the total heat output is fixed. Thus although permeability k, which 

can be regard as a poorly known parameter, exerts significant control on hydrothermal 

vent temperature during this time interval, the most important feature of Figure 4.3 

and 4.4 are that the hydrothermal temperature still decreases significantly. 
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Figure 4.3:  Hydrothermal system temperatures as a function of time for crystals in 
suspension model with different permeability k. 

 

The temperature Th = 250 °C denotes the lower limit for observed black 

smoker vent temperature. We notice that the temperature of hydrothermal system 

drops very quickly during the entire eighteen-year lifetime in Figure 4.3. Although in 

Figure 4.4, magma convection system is not dead within a hundred years because 

convection is driven only by liquid magma, the hydrothermal temperature still drops 

to a lower temperature rapidly in the first ten years.  
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Figure 4.4:  Same as Figure 4.3, except using crystals settling model. 
 

 

Such rapid decay of a seafloor hydrothermal system is not commonly 

observed in long-lived system that are driven by basal magmatic heat sources; rather 

heat transport from the magma chamber maintains relatively steady vent temperatures 

and heat output. The basic model presented here suggests that magma convection 

alone may not be sufficient to maintain high hydrothermal temperature and heat 

output for decadal time scales. The inconsistency of above simulation results with the 

observations provides the motivation to develop magma convection models with 

replenishment. These will be introduced in Chapter 5. 
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4.3 Effect of magma solidus temperature  

When the crystal content approaches to 60%, the magma convection ceases, at 

which the magma temperature is at 1092 ºC for Huppert and Sparks [1988] and 1123 

ºC for Hurt [1997], respectively. The solidus temperature should be lower than those 

of two final magma temperatures, which allow magma system convection stop at that 

time. Different solidus temperatures of magma will affect the lifetime of magma 

convection. From equations (4) and (9), higher TbS has lower amount of heat flux and 

lower decay of the magma chamber temperature. It can be seen that the convective 

activity lasts longer given higher temperature TbS. If the TS very close to these two 

values, magma temperatures drop very slowly and magma convections take very long 

time to cease. If choose a lower Ts (e.g 1040 ºC), the magma convection system 

decays very quickly. To keep the magma convection system functioning for a 

reasonable period the temperature 1070 ºC serves as a reasonable solidus temperature 

in this thesis. Moreover, from the results of Maclennan [2007], most of the latent heat 

is released before crystal fractions reaches 60%. Therefore, from the perspective of 

heat transport, the exact value for the solidus temperature is of little importance.  

Figure 4.5 shows the influence of the solidus magma temperature TbS on the 

lifetime of basaltic magma convection. Figure 4.6 shows the result at the beginning of 

hydrothermal system lifetime for the first 10 years. Figure 4.7 shows the similar result 

with different crystal content and magma temperature function. 
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Figure 4.5:  Effect of TbS on the lifetime of magma convection during the entire 
period. 
 

 

Figure 4.5 shows that magma system with higher Tbs gives hydrothermal 

system longer lifetime. However, if one considers 107 Watts as the lower value of 

hydrothermal heat flux, the temperature TS will have slightly affection for the lifetime 

of magma convection. 
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Figure 4.6:  Effect of TbS on the lifetime of magma convection over the first ten years 
using the same crystallinity function as in Figure 4.5. 
 

 

From Figure 4.6, the lowest Tbs gives the highest total heat output at the 

beginning of one year. However, with the most rapidly decay of the magma chamber 

temperature, hydrothermal system with the highest initial heat output transport will 

have the shortest lifetime. 
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Figure 4.7:  Same as Figure 4.5, except using the linear crystallinity expression as a 
function of magma temperature. 
 

 

Compared with results shown in Figure 4.5, all hydrothermal systems with 

different Tbs in this case have a lower total heat output and shorter lifetime since the 

magma convection stops earlier due to rapid approach to 60% crystal content. 

4.4 Comparison between basaltic and andesitic magma 

One of the most active hydrothermal fields in the Lau back-arc basin was 

discovered in 1989 [Fouquet et al., 1991]. High-temperature hydrothermal systems 

distributed along the Eastern Lau Spreading Center have characteristics that strongly 

contrast with those was found at normal mid-ocean ridges. One of the main 

differences results from the fact that some of the hydrothermal systems are hosted on 
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andesite [Fouquet et al., 1991] and are driven by andesitic magma chambers [Collier 

and Sinha, 1992].    

Andesitic magma has lower liquidus and solidus temperatures than those of 

basaltic magma [Spera, 2000]. Moreover, because andesite has higher water and SiO2 

content, andesitic magma has a greater viscosity and lower density than that of 

basaltic magma [Spera, 2000]. These factors affect the convective properties of the 

magma and hence may affect the heat output to the overlaying hydrothermal system.  
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Figure 4.8:  Comparison the total heat output among basaltic, dry and wet andesitic 
magma. 

 

Figure 4.8 shows that the hydrothermal systems driven by the greater viscosity 
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of andesitic magma might undergo a slower decline than basaltic ones, however, the 

magma convection system lifetime about ten years. Since higher viscosity andesitic 

magma has convections less vigorously than basaltic magma does in the same 

dimensioned magma chamber, it provides slower heat transport and slower rate of 

vent temperature decay. 
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CHAPTER 5 

 MAGMA CHAMBER REPLENISHMENT  
 
      
 

As the magma begins to cool and crystallize, the volume occupied by the 

magma decreases because the crystals have greater density than liquid magma. If the 

elastic response of the surrounding rock is neglected, the internal pressure declines, 

which would result in magma transport from the underlying mushy zone into the 

magma chamber. The additional heat supply from magma replenishment may help 

maintain heat transport from the convecting magma to the hydrothermal system 

[Lowell and Germanovich, 1994; Humphris and Cann, 2000]. Two cases are taken 

into account in this Chapter. In the first scenario, the overall magma chamber volume 

will remain unchanged; in the second scenario, the magma volume is assumed to 

grow as the fresh magmas are added. 

5.1 Fixed Volume of Magma chamber  

Let ρS be the density of gabbro (crystal); VL the volume of liquidus magma at 

the initial stage. Define Vm(t) to be the volume of the magma-crystal mixture during 

the cooling and crystallization. Thus, at time t, the volume of the crystal is 

Vm(t)χ(Tb,a(t)), while the volume of the liquidus magma is Vm(t)(1-χ(Tb,a(t))). From the 

law of mass conservation, we obtain: 

 

( ) ( )( ) LabababmSabm VtTtVtTtV ,,,, )(1)()()( ρρχρχ =−+                          (26)  
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Recalling a rectangular magma body of area Am, depth D and VL = DAm, the volume of 

the magma-crystal mixture is obtained:  
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Correspondingly, the rate of the magma-crystal mixture volume change at time t can 

be expressed as: 
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ab

abS

,

,

ρ
ρρ
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= . 

Assuming fresh and crystal-free liquidus magma with temperature TL fills up 

the free space in the magma chamber generated by crystallization of original magma. 

The additional heat flux input resulting from magma replenishment is defined as:  
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Taking into account the heat input resulting from magma replenishment given by 

equation (29), the heat balance equation (7) is modified as:               
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Compared with equation (7), the second term on the right hand side of equation (30) 

represents the magma replenishment as a new heat source. Equation (30) assumes that 

the fresh magma is immediately fully mixed with the existing magma. The factor ξ ≥ 

0 is introduced to indicate the amount of magma replenishment. Specifically, ξ = 0 

indicates no replenishment, at which point equation (30) is reduced to equation (7). 

When ξ = 1, the amount of replenishment compensates the exactly same amount of 

decrease in volume of magma-crystal mixture due to crystallization.  

Combing equations (29) and (30), the rate of temperature change of the magma 

becomes:  
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From equations (4) and (31), we get a new replenishment model for the magma 

temperature and heat output that drives the hydrothermal system. 

5.2 Magma chamber grows upon replenishment 

In this section, the volume of chamber is allowed to increase during the 
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magma replenishment process. Assume the thickness of magma chamber remains 

constant, which results in a time-varying area of magma chamber. Let Am(t) denote the 

area of magma chamber at time t, the corresponding volume of magma chamber is 

represented by: 

 

)()( tDAtV m=                                                      (32) 

 

Now the volume of magma chamber is time varying. The heat content of a volume of 

magma is described:  

 

)())1(()( ,,, tVLTCtH ababbpab ρχρ −+=                                  (33) 

 

In contrast to the previous section, the heat flux due to the magma replenishment is 

described as: 

 

)()( ,,, tuLTCF ababLpabr ρρ +=                                           (34) 

 

where u(t) denotes the velocity of the incoming magma, which is assumed to be 

crystal-free magma at its liquidus temperature. Assume the magma enters from below 

across an area Ab(t). In analogy to equation (6), the heat conservation in the magma 

liquid layer across the interface leads to 
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where the second term on the right hand side of equation (35) represents the heat 

transfer due to magma replenishment, in which the area terms increase with magma 

replenishment as a time function.   

Expanding the derivative terms on the left hand side of equation (35) leads to 
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To solve equation (36), an expression for Am(t) is necessary. From mass conservation, 

one obtains: 

                                  

)()(,, tutA
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babab ρρρ =+=                                     (37)   

 

In contrast to the model in the preceding section, the term dV
dt
ρ can be neglected 

because the mass of magma added to the magma chamber is much more than is 

needed to maintain the magma chamber volume, such that the density changes is 

ignorable. Assuming that magma replenishment occurs over the whole area, so that 

Ab(t) = Am(t), then equation (37) can be rewritten as : 
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Assuming that the fresh replenished magma mixes into the magma chamber rapidly, 

the rate of the magma temperature changing can be obtained by substituting equations 

(32) and (38) into (36): 
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In the following, two different models of replenishment velocity are proposed. First, 

magma replenishment occurs at a constant velocity for certain time period: 
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The area of magma can be obtained by integrating equation (38) 

 

D
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where Am0 is the initial area of the magma chamber. 

Alternatively, the velocity of replenishment is modeled as an exponential decay: 

 

bteutu −= 0)(                                                        (42) 
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where u0 is the initial velocity. Similarly, the area of magma is obtained as:  
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With modeling of magma area Am(t), the magma temperature and heat flux of magma 

system can be obtained through equation (39). 

5.3 Numerical results 

5.3.1 Fixed volume of magma chamber  

The lifetime of magmatic heat transfer (Figure 4.1 and 4.2) and the 

high-temperature hydrothermal system (Figure 4.3 and 4.4) are significantly shorter 

than observed. Moreover, the heat output decays rapidly with time throughout the life 

of the system. Consequently, I consider whether magmatic heat replenishment from 

the underlying mush zone will significantly extend the life of the system.  

In section 5.1, the volume of magma chamber was assumed to be constant. 

However, the volume of magma decreases due to the cooling and crystallization. The 

pressure of magma chamber decreases correspondingly, because the density of 

crystals is greater than that of liquid magma. The decrease of pressure drives new 

magma into the chamber from the underlying mush zone, thus maintaining the heat 

and pressure in the magma chamber. Rather than address this complicated dynamical 

process, for simplicity, I assume new liquid magma is simply added at a fixed rate.   
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Basaltic magma (with crystal in suspension):  

Figure 5.1 depicts the total heat output Fb,a(t)Am as a function of time for two 

different replenishment rates controlled by the parameter ξ. Case 1 is for full 

replenishment, in which the rate of magma replenishment is the same as the rate of 

magma volume decrease resulting from crystallization. In case 2, higher rate 

replenishment is taken into consideration. ξ = 10 indicates that the rate of 

replenishment is ten times the rate of magma volume decrease. As before, Figure 5.1 

also considers two different formulas for the relationship between the crystal content 

and magma temperature.  
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Figure 5.1:  Total heat output at different rates of magma replenishment without 
magma chamber volume changing.  
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Figure 5.1 shows that full replenishment can not extend the lifetime of magma 

significantly compared to that without replenishment (Figure 4.1). Moreover, even in 

the optimum case of higher rate replenishment where the lifetime is only extended for 

few years longer.  

Andesitic magma: Based on the theoretical analysis, if andesite and basalt 

with the same replenishment rate, the cooler andesitic magma with larger viscosity 

causes additional magma volume to be less than that required by a basaltic magma for 

a given chamber size. Figure 5.2 shows that andesitic magmas-driven hydrothermal 

systems have lower peak of heat output than basaltic magmas.  
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Figure 5.2:  Total heat output with the replenishment factor ξ = 10 for three types of 
magma without magma chamber volume changing. 
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However, it is hard to say if andesitic magma has a longer lifetime because 

their higher viscosity makes andesitic magma more difficult for replenishment from 

the underlying mush zone. From the observation, Vigorous high-temperature black 

and white smokers were discovered at Vai Lili field on the northern section of the 

central VFR [Fouquet et al., 1991, 1993]. However, the latest survey showed the 

hydrothermal activity here had declined significantly since the last survey in 1989 and 

most of hydrothermal vent field were covered by the eruption volcanism [Fretzdorff et 

al., 2006]. It is possible that it is in a state where melt from the magma chamber has 

mostly crystallized (e.g., <30% melt) or it has not yet received a new replenishment of 

fresh magma or the lava covered all hydrothermal venting, however, these hypotheses 

need to be tested against observations.  

5.3.2 Magma chamber volume increases with time 

From the above simulation, we find that with even a ten fold volume increase 

of magma replenishment into the magma chamber does not significantly affect the 

lifetime of hydrothermal activity. Moreover, the model appears erroneous because it is 

unlikely for the magma chamber to remain constant if it is replenished at a rate 10 

times greater than the rate of magma volume decrease from crystallization. In other 

words, the magma chamber should not be able to accommodate ten times amount of 

mass of magma initially in the chamber. If the hydrothermal activity is to maintain a 

steady state for twenty or thirty years as seems to be observed at many sites, the rate 

at which magma is filled into the magma chamber to provide enough heat flux and 

maintain hydrothermal system must be greater than assumed in the previous section. 
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Then the volume of the magma chamber must increase with time. 

First, I assume the magma chamber is replenished with a constant velocity as 

in equation (40). Since black smokers with stable high temperature and heat output 

last for decades, we stop the simulations at thirty years. Simulations will show the rate 

curve of hydrothermal temperature and total heat output during this time interval. 

Figure 5.3 depicts the total heat output of magma system with different constant 

replenishment velocity.  
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Figure 5.3:  Total heat output with constant replenishment velocities for thirty years 
with magma chamber volume changing. 
 

 

With velocity of 10-7 m/s and 10-8 m/s, the heat output of magma system is 
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between 107 Watts and 109 Watts, which is in the range of heat output typically 

observed. However, the velocity of 10-6 m/s and 10-9 m/s results in total heat output 

going out of the observation range, which indicates the unrealistic selection of 

velocity. Given a lower velocity, it cannot help to maintain hydrothermal system; 

while given a higher velocity, it will cause a magma eruption. Given an appropriate 

velocity, the model can effectively maintain a near steady heat output and the activity 

of hydrothermal system on the order of decades. 

From another perspective, the observed magma chamber size is commonly 

less than 2x103 m across-axis and often ~ 103 m along-axis [Kent et al., 1990; Detrick 

et al., 1993; Collier and Sinha, 1990]. For this reason, I carry out simulations with the 

chamber size as the stopping condition. Figure 5.4 shows the heat output of magma 

system with a constant replenishment velocity and with the magma chamber allowed 

to grow from 106 m2 to 2x106 m2. Similarly, two models of relationship between 

crystal content and magma temperature are adopted. The lifetime of magmatic activity 

in both cases can be extended to about 25 years with the chamber replenishment.  
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Figure 5.4:  Total heat output with constant replenishment velocity 10-7 m/s until 
magma chamber volume equals 2x106 m2.   
 

 

Combination of Figure 5.3 and 5.4 illustrate with appropriate model parameter 

(velocity to be 10-7 m/s in our example, while for velocity to be10-8 m/s, the magma 

chamber area is never larger than 2x106 m2), we can extend the lifetime of magma 

chamber activity to around 25 years. By this case, the heat output of hydrothermal 

system is between 107 Watts and 109 Watts, and the maximum of chamber size reaches 

2x106 m2, which justifies the effectiveness of our magma replenishment modeling.     
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For the magma replenishment modeling in section 5.3, exponential decaying 

velocity can be also applied besides the constant velocity. Figure 5.5 shows the output 

of hydrothermal system with certain parameter sets. The lifetime of the hydrothermal 

activity can be extended to the desired value for both of the Huppert and Sparks 

[1988] and Hort [1997] formulas for χ(T). Moreover, the choice of formulas for χ(T) 

has a little influence on the lifetime of hydrothermal system. 
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Figure 5.5:  Same as Figure 5.4, except use the exponential replenishment velocity.  
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Figure 5.6:  Total heat output with various exponential replenishment velocities. 
 

 

Figure 5.6 also depicts the effects of parameter selection on the characteristics 

of hydrothermal system activity. It can be seen that different parameter selections can 

lead to different rate of heat output decrease. Therefore, the exponential decaying 

velocity modeling can effectively serve as the purpose of describing the hydrothermal 

system, and different parameter can be chosen to meet to requirement of different real 

systems. 

5.4 Discussion 

An improved model of convective magma heat transport has been 

demonstrated by simulation results in previous sections. With modeling the magma 
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replenishment process, the lifetime and heat transport of magma convection is 

extended to the value consistent with the observations. Although the model 

simulations suggest that magma replenishment coupled with magma chamber growth 

can help maintain a quasi-steady-state hydrothermal system, the models invoke a 

number of simplifications that need to be examined.  

1. Magma chamber growth is assumed to be simple. The imaged seismic 

structures of the axial magma chamber are not taken into account when the magma 

chamber size grows across the axis. In reality, it appears that the magma chamber 

growth is closely related to the elasticity and stress field of the surrounding rock. 

Moreover, the magma chamber growth and pressurization of the magma cavity could 

lead to failure and magmatic eruption.  

2. In the proposed model, I simply assume heuristic models for magma 

replenishment rate, which is justified by meeting the requirements of magma volume 

changes due to the crystallization. During the magma replenishment procedure, 

magma may not be transported from mush zone to the magma chamber at a constant 

velocity or according to any simple mathematical function. Pressure of magma 

chamber plays a significant role to determine the rate changes. To obtain a more 

realistic model of magma replenishment, the replenishment rate models need to link 

to geodynamics of magma chamber.  

3. The effects of replenishment on magma chamber dynamics are greatly 

oversimplified. When the new crystal-free magma replenishes from underlying mush 

zone and mixes with the original magma, I assume instantaneous mixing regardless of 
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the mixing process. This also leads to instant equilibration. However, the replenished 

magma is composed of different temperature and chemical compositions compared 

with the magma present at the chamber at any given time. The chemical and physical 

differences may have an impact on the magma convection and crystal settling.  

4. Magma chamber dynamics that do not incorporate replenishment are also 

greatly oversimplified. First, in addition to thermal convection, compositional 

convection can also affect crystal settling processes. However, in the 0-D thermal 

convection model, the complex convection dynamics is not considered. Second, after 

the magma crystallized, crystal suspension or instant settling is assumed without 

considering crystal attachment to roof. Actually, models need to be more complex and 

include details of crystal growth, settling, and the feedback on viscosity. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 
 

     
 

In this thesis, I linked high-temperature seafloor hydrothermal systems to heat 

transfer from the underlying layer of vigorously convecting basaltic or andesitic 

magma. I considered a homogeneous thermal convection model in which crystals 

either stay suspended in the magma as they form, or alternatively, instantly settle 

down to the floor of the magma chamber. During the magma crystallization, the 

crystal content accepts two models in term of magma temperature. Moreover, a 

different viscosity model is assumed for different magma systems as a function of the 

water content of magma. Two models of the magma convection system with and 

without magma replenishment are considered. 

By examining the magma convection system modeling without replenishment, 

the results of the numerical simulations show that systems were short-lived and heat 

output declined rapidly with time. However, real observations of seafloor 

hydrothermal systems indicate stable heat output and temperatures which remain near 

constant for decades. Therefore, I investigated the role of magma chamber 

replenishment.  

To model the magma replenishment with all crystal suspension interior of 

magma, two schemes of magma chamber size assumption were adopted. First, the 

magma chamber is assumed to be fixed and the new magma fills at a constant rate. 

The amount of magma replenishment is selected to be the same as or ten times of the 
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magma volume decrease. Simulation results show that both cases do not significantly 

extend the lifetime of turbulent magma convection and the hydrothermal system heat 

output.  

Second, I consider the case in which the volume of magma chamber is 

considered to grow during the stage of magma replenishment. The chamber depth is 

assumed to be constant, thus the growing chamber volume is due to the growing 

chamber area. I proposed two models to describe magma replenishment rate, a 

constant and exponential decay. The simulations show that both of the methods have 

been justified by simulation to extend the heat output and the lifetime of the 

hydrothermal systems are reasonable values. Hydrothermal systems driven by 

andesitic magma with the same rate of magma replenishment tend to have somewhat 

lower heat output than systems driven by basaltic magma because andesitic magma 

has greater viscosity (three times for dry andesite and fifteen times for 3 wt% 

andesite). 

As discussed in Chapter 5, the models developed in this thesis are highly 

oversimplified. Future work would entail removing these simplifications. These 

include (1) mechanics of magma growth, (2) mechanics of magma flow and 

replenishment, (3) magma chamber dynamics. Actually, either the convecting magma 

body or the hydrothermal system circulation consists of complicated dynamics. 

Hydrothermal system with magma replenishment extends the lifetime by buffering the 

heat loss, depending on the fluid properties and dynamics of the magmas involved. To 

develop more realistic replenishment model for the homogeneous magma chamber by 
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the rapid injection of hot, relatively less dense, fresh magma, it is necessary to 

understand additional complexities of the process of magma transfer within the lower 

crust and how this transfer is linked to the evolution and replenishment of the melt 

lens.  

In addition, the model makes predictions that can be tested by field 

observations. Repeated seismic surveys would help test whether the model of magma 

chamber growth is reasonable. Seismologic data reveals the geological structure of 

axis magma chamber. It provides the estimation about the crystal content, distribution, 

and its seismic properties derived from composition and microstructure of a melt body. 

From different microstructure, it can tell whether crystals suspend in the melt or form 

a crystallized floor. More realistic models of replenishment might also predict how 

compositions of eruptive lavas might change over time. Geochemical data illustrates 

short and long-term changes in magma composition, shallow magma transfer and 

eruptive behavior. It entails more details about how the new hot magma mixes with 

primitive cold magma mixture and more information about the new mixture 

composition and temperature variation. 

It is clear that the study of seafloor hydrothermal systems creates more critical 

questions which remain to be answered. The details of connection between the 

subsurface magma heat supply and ridge axis hydrothermal venting activity are far 

from clear. All of these issues need to be studied in further research. 
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