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SUMMARY

This dissertation discusses the Sparse Physics-Informed Discovery of Empirical Re-

lations (SPIDER) algorithm, which is a technique for data-driven discovery of governing

equations of physical systems. SPIDER combines knowledge of symmetries, physical con-

straints like locality, the weak formulation of differential equations, and sparse regression

to construct mathematical models of spatially extended physical systems. SPIDER is a

valuable tool in synthesizing scientific knowledge as demonstrated by its applications.

Data-driven model discovery is a three-step process. First, libraries of terms are con-

structed using available physical fields. The symmetries of a system allow libraries to be

projected into independently transforming spaces, known as irreducible representations.

This breaks relations down into their indivisible parts; each minimal physical relation is

learned independently to reduce implicit bias. A library of nonlinear functions is con-

structed for each irreducible representation of interest.

Second, each library term is evaluated in the weak formulation. SPIDER is aimed at

experimental systems with inherently noisy data making accurate estimation of derivatives

difficult. The weak formulation solves this problem: library terms are integrated over

spacetime domains with flexible weight functions. Integration by parts can avoid numerical

differentiation in many situations and increases robustness to noise by orders of magnitude.

Clever weight functions can remove discontinuities and even entirely remove unobserved

fields from analysis. Third, a sparse regression algorithm can find parsimonious relations

ranging from dominant balances to multi-scale quantitatively accurate relations.

Applications to direct numerical simulation of 3D fluid turbulence and experimental 2D

active nematic turbulence are presented. SPIDER recovered complete mathematical models

of both systems. The active nematic system is of particular interest; SPIDER identified a 2D

description contradicting widely accepted theoretical descriptions used for over a decade.

SPIDER facilitated the discovery of a new physical constraint on the fluid flow.

xii



CHAPTER 1

INTRODUCTION

The natural world cannot help but be described by mathematics. Kepler’s breakthrough

work on planetary motion in the early 1600’s heralded a revolution in mathematical mod-

eling the physical world. The development of calculus allowed the description of contin-

uous change in space and time through the derivative operator. Newton showed that basic

physics can be described by relations between derivatives, known as differential equations.

Differential equations lie at the foundation of almost every physical theory. Various differ-

ential equations capture chemical reactions [1], population dynamics [2], fluid dynamics

[3], cosmology [4], the spread of epidemics [5], and countless other phenomena. Differen-

tial equations are particularly apt at describing change in time, and therefore predicting the

future.

Obtaining a differential equation describing a real physical system is no small feat.

There is always some approximation being made and some small effects being ignored.

A model is first made that captures the dominant processes. The typical evolution of this

mathematical model is then via a feedback loop. Observations are made and compared

to current predictions. If the predictions agree, more data is taken. If the predictions do

not agree, then the model is updated to account for new processes until there is agreement

between experiment and theory.

A primary difficulty of this approach is many nonlinear differential equations do not

have general analytic solutions; a computer is required to find approximate solutions via

direct numerical integration. Perhaps the most well-known example of such a system is

the three body problem of celestial mechanics investigated by Poincaré [6]. Some short

closed orbits of the three-body problem can be seen in Figure 1.1. Making predictions for

high-dimensional systems, in particular fluid dynamics and numerical astrophysics, can be
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incredibly expensive. Full 3D simulations of black hole binaries can take days to a month

to complete [7]. Further, models usually depend on a number of physical parameters such

as viscosity, heat capacity, or density. Model predictions can be extremely sensitive to

the values of these parameters, such that small changes completely change the qualitative

behaviour of solutions via bifurcations [8, 9].

-2 -1 0 1 2

-2

-1

0

1

2

(a)
-2 -1 0 1 2

-2

-1

0

1

2

(b)

Figure 1.1: Periodic numerical solutions to the three body problem. The bodies have
equal masses and units such that m = |H| = G = 1. These solutions were converged with
Newton-Krylov iteration until the equations of motion were satisfied in spectral form to
machine precision.

There has been a paradigm shift in recent years to develop methods that take the hu-

mans out of the feedback loop. The process is short-circuited to find qualitatively and

quantitatively accurate models directly from the experimental data. Numerous approaches

have now been developed to infer equations, which vary in sensitivity to noise, computation

time, constraint-enforcement, and explored equation space.

Perhaps the most common data-driven approach to modeling is to train a neural network

to fit some physical measurement. Examples include fitting the Reynolds stress anisotropy

in Reynolds-averaged turbulence simulations [10], learning closures to projections of the

Boltzmann equation [11], extracting critical exponents by learning the renormalization

2



group [12], or forecasting system dynamics with physics-informed neural networks [13]. In

recent years, emphasis has been placed on neural networks exactly preserving symmetries

[14, 10, 11]. While neural networks can be trained efficiently and fit the data convinc-

ingly, they lack interpretability. There is not a clear means of communicating new physics

learned by a neural network, although effective network weight sparsification is a natural

step towards this [15, 16]. One path to interpretability is symbolic regression via genetic

algorithms. Early work showed that genetic algorithms can learn the dynamics, Hamilto-

nian, and Lagrangian equations for low-dimensional systems without imposing any physics

knowledge [17, 18]. Recent genetic programming has learned 100 relations from the Feyn-

man lectures on physics from Compton scattering to the Friedman equation [19].

The genetic algorithms can find arbitrarily complex nonlinear relations by modeling

relations as trees. However, genetic programming struggles to find equations that are sums

of more than 2 complex terms because of complexity considerations; such relations will

be found very late into a search. Many relations are more straightforwardly represented as

a linear combinations of nonlinear terms: c1f1 + c2f2 + · · · + cnfn = 0. The automated

determination of fn and values of coefficients cn has been of significant interest [20, 17,

21, 22]. A common problem is the determination of the state dynamics ∂tzi. The time

derivatives are fit to a linear combination of ad hoc candidate functions {z1, z2, ln(1 +

|z3|), · · · } specified by the modeler. The library terms and the time derivative are evaluated

at various points in time to create an over-determined system of equations.

g =


|

∂tz1

|

 =


| | |

z1 z2 ln(1 + |z3|) · · ·

| | |





c1

c2

c3
...


= Gc (1.1)

Perhaps the most common algorithm for coefficient determination is the Sparse Identifica-

tion of Nonlinear Dynamics (SINDy) [23]. Solutions with sparse c are found by sequential
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thresholding, where the system is iteratively solved numerically and small values of c are

set to zero. While simplistic, SINDy showed the power of data-driven sparse regression for

rapidly and robustly deducing evolution equations in the form of ODEs, especially for low-

dimensional systems [24]. Many modifications have been proposed in the literature. An

incomplete list is Weak-SINDy for learning the weak-formulation of differential equations

[25, 26, 27], SINDy-PI for learning implicit and rational dynamics [28], and Ensemble-

SINDy for learning in the low data limit [29]. SINDy is ultimately a linear regression

algorithm with no knowledge of physics. Its deficiencies are its susceptibility to noise and

lack of guidance on library construction: coefficient determination will only work if the

correct terms are present in the library. This is a generic feature of regression, but it can be

helped by a systematic library construction.

This dissertation explores the symbolic regression method Sparse Physics-Informed

Discovery of Empirical Relations (SPIDER), which uses physics domain knowledge of lo-

cality and symmetry to constrain the model discovery process. This builds on a body of ma-

chine learning literature devoted to spatially extended nonequilibrium systems [30, 31, 32,

33, 34, 35, 36]. The symmetries of the physical system are combined with the experimen-

tal measurements to identify a complete set of interpretable quantitatively accurate physical

relations including evolution equations and spatial constraints. SPIDER is a fundamentally

physics-constrained scheme for the identification of partial differential equations and alge-

braic relations. Figure 1.2 provides a visual map to the SPIDER algorithm. SPIDER has

several distinguishing characteristics compared to other model discovery algorithms. It is

the combination of these that gives SPIDER its versatility and power.

• Many model discovery algorithms fit a single term g, usually a time derivative, to a

evaluations of a library of termsG. This coefficient problem encourages unwarranted

assumptions about governing equations. For example, spatial constraints cannot be

learned if they involve no time derivative. SPIDER seeks to instead solve the homo-

geneous problem Gc = 0; all library terms are put on equal footing. This is partially

4



solved by SINDy-PI where each library term is effectively independently fit via the

inhomogeneous problem [28], but this is computationally expensive.

• Many model discovery algorithms usually consider a single library [35, 36]. For a

collection of fields containing scalars, vectors, and higher rank tensors, each tensor

space can be considered independently and contains independent physics. An ensem-

ble of libraries can be constructed where each irreducible representation of system

symmetries (up to some cutoff) has a symbolic library. Assumptions of symmetry

can be relaxed if needed, but even general symmetry assumptions are useful in re-

ducing library size.

• SPIDER explicitly uses the weak formulation of differential equations, in which li-

brary terms are integrated against weight functions with compact support. The weak

formulation of differential equations has been shown to significantly increase noise

robustness [25, 26].

These three principles of homogeneous regression, irreducible representations, and weak

evaluation of library terms are the pillars of SPIDER. This manuscript is organized in the

following way. Chapter 2 discusses tensor libraries and some low rank irreducible rep-

resentations of common symmetry groups. Chapter 3 will discuss the weak formulation

and sparse regression techniques that have been used with SPIDER. Chapter 4 will discuss

specific results from applying SPIDER to numerical 3D turbulence and a 2D experimental

active nematic suspension.
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Figure 1.2: A schematic of the SPIDER algorithm from [37]. Tree tensors are con-
structed from tensor products of tensors and their gradients. All possible contractions of
tree tensors are taken to produce prelibraries. Symmetry constructed projection operators
project prelibraries into irreducible representations, such that there is one library per irre-
ducible representation. These are then evaluated in the weak form to construct coefficient
equations Gc = 0, which are then solved by a sparse regression algorithm to produce
parsimonious empirical relations.
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CHAPTER 2

SYMMETRY-COVARIANT TENSOR LIBRARIES

2.1 Justification

The general goal of model discovery via sparse regression is to search through a library of

functions of observables L = {Fn} and find a sparse vector cn such that

∑
n

cnFn ≈ 0. (2.1)

By finding interpretable relations of this form, machine learning accelerates human learn-

ing. This task becomes more difficult as the size of library L grows: more comparisons

must be performed and more data is needed to meaningfully distinguish correlated terms.

Symmetry considerations can help fight this scaling of complexity. Suppose a particle in

3D moves in a spherically symmetric potential such that the underlying dynamics take the

form

ẍ = −∇V (r). (2.2)

Attempting to fit the components of the right hand side in Equation 2.2 naively with poly-

nomials up to cubic order in coordinates gives a system of equations with 54 unknowns.

ẍ = c1 + c2x+ c3y + c4z + c5x
2 + c6xy + c7y

2 + c8yz + · · ·

ÿ = c19 + c20x+ c21y + c22z + c23x
2 + c24xy + c25y

2 + c26yz + · · ·

z̈ = c37 + c38x+ c39y + c40z + c41x
2 + c42xy + c43y

2 + c44yz + · · · (2.3)

This is a linear system of equations for ci, which can be numerically solved once a set of

observations is made. Each component can be fit independently to solve for 18 coefficients
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at a time. If noise is present in the measurements, it is unlikely that any of the cn will natu-

rally be zero from the least-squares solution. Note however that most of the terms in these

equations violate the rotational symmetry of Equation 2.2. Enforcement of the rotational

symmetry forces one to fit all three components simultaneously, since the dynamics of one

component determine the other two uniquely. Up to cubic order there are only two possible

terms on the right hand side that transform like vectors.

ẍ = c̄1x+ c̄2r
2x (2.4)

This example demonstrates two typical features of enforcing symmetry. (i) The library size

has been reduced by more than an order of magnitude. (ii) There are now three times as

many measurements that can inform the determination of the coefficients.

A further reason to enforce symmetry is to split up independent information contained

in a relation. Consider the Navier-Stokes equation describing the evolution of a flow field

u.

∂tu+ (u · ∇)u+∇p = ν∇2u (2.5)

One can take the gradient of this equation to see the dynamics of the flow gradient matrix

E = ∇u.

∂tE+ (u · ∇)E+ E2 +∇∇p = ν∇2E (2.6)

While this system is rotationally symmetric (since it is written in terms of vectors, ma-

trices, and dot products), it contains three independent physical statements. If the flow is

incompressible such that TrE = ∇ · u = 0, then the trace of the dynamics gives a spatial

constraint on the pressure.

Tr
(
E2

)
+∇2p = 0 (2.7)

If E is traceless, it can be written as the sum of a symmetric traceless matrix A = AT

and an antisymmetric matrix W = −WT . Taking the antisymmetric part of ∂tE gives the
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vorticity equation.

∂tW + (u · ∇)W +AW +WA = ν∇2W, (2.8)

which is notably independent of the pressure. Lastly, the symmetric trace-free part of ∂tE

gives the dynamics of the strain-rate tensor.

∂tA+ (u · ∇)A+ P̂TF (A
2 +W2 +∇∇p) = ν∇2A, (2.9)

where P̂TF subtracts the trace. This equation is independent of the Laplacian of the pres-

sure. A 9 component PDE has been projected into three independent PDEs with 1, 3, and

5 components, respectively. It is advantageous for machine-learning algorithms to identify

these relations independently, regardless of the fact they can be added together to recover

Equation 2.6. Learning these equations separately reduces bias and further shrinks the

number of unknown coefficients.

2.2 Index Notation

Bad notation is often the barrier to mathematical progress. The common vector notations

u⃗ and u are obtuse because they do not naturally distinguish vectors from different vector

spaces, and the rank of a tensor is not clear from inspection. A critical step forward for

linear algebra is index notation. Each vector space is assigned a unique set of indices, so

that the space each vector lives in is obvious by inspection.

ui, vj, wk ∈ U

rA, sB, tC ∈ V

aα, bβ, cγ ∈ W (2.10)
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The immediate utility of this notation is the presentation of dual vectors. The dual space

U∗ of a real vector space U is the set of linear maps from U to R. Dual vectors can be

written with lowered indices: ui ∈ U∗. The action of a dual vector ui ∈ U∗ on vi ∈ U is

the dot product of their components.

ui[v
i] =

∑
i

uiv
i ≡ uiv

i (2.11)

To simplify tensor equations, one often appeals to the Einstein summation convention:

repeated indices imply a sum. Distinct indices imply the tensor product.

uiv
j ≡ u⊗ v =



u1v
1 u1v

2 u1v
3 · · ·

u2v
1 u2v

2 u2v
3 · · ·

u3v
1 u3v

2 u3v
3 · · ·

...
...

... . . .


(2.12)

The tensors with arbitrary upper and lower indices can be generated with a sum of tensor

products of U and U∗. An alternative to index notation is the diagrammatic notation of

Penrose and Cvitanović, where upper/lower indices are replaced with directed lines, and

different vector spaces have distinct line styles [38, 39, 40]. This is a standard representa-

tion for the elementary differentials in Runge-Kutta schemes, where tensors can be linked

together via contraction to form trees [41, 42]

The infamous quip “a tensor is anything that transforms like a tensor” arises from the

fact that if the elements of U are acted on by a matrix Gi
j representing a symmetry opera-

tion, then a tensor has the induced transformation

T ij···
kl··· → Gi

mG
j
n · · ·Tmn···

op···Gk
oGl

p · · ·

where Gi
j is the matrix inverse of Gi

j: Gi
kGj

k = δij . Upper indices are often called

contravariant and lower indices covariant [43]. The rank of a tensor is (p, q) where p is the
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number of contravariant indices and q is the number of covariant indices. There are four

important tensor manipulations.

1. Tensor spaces of the same rank form a vector space regardless of index ordering,

since different ordered tensor spaces are trivially isomorphic. For example, Ujk
i ≡

T i
jk + Sj

i
k.

2. Tensor products produce a tensor of higher rank. For example, T i
jk ≡ viωjωk.

3. A tensor can be contracted, where a sum is performed over a pair of indices from

the contravariant and covariant spaces. For example, ti ≡ T j
ji. Contraction maps a

tensor of rank (p, q) → (p− 1, q − 1).

4. Indices of a tensor can be permuted. From a tensor Tij one can construct a second

tensor Tji. Contravariant indices cannot be exchanged with covariant indices as these

come from different vector spaces.

Tensors are foundational to modern physics because they ensure covariance under a

set of linear transformations (system symmetries). The “Principle of General Covariance”

states that if a tensor equation is true in one frame of reference, then it is true in all frames

of reference [43, 44]. SPIDER searches for physical relations as linear combinations of

consistently transforming objects with a specific focus on tensors. Given a set of tensor

observables {ui, ϕ, · · · }, tensor libraries of various ranks can be constructed. Feature ma-

trices can then be evaluated by sampling data and relations found with sparse regression.

The precise rules for constructing tensor libraries depends on the symmetry group under

consideration, and a number of examples will be considered.

As shown in the previous section, it is possible that a tensor equation contains multi-

ple independent physical statements. A guiding principle of SPIDER is that tensor laws

should be stated exclusively in irreducible representations of the symmetry group so that

each learned equation corresponds to a single irreducible statement. An irreducible repre-

sentation R is not isomorphic to the Cartesian product of two independently transforming
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sets R ̸= R1 × R2. Representations do not have to have vector space structure, but those

considered here will. Examples of irreducible representations are the trace, antisymmetric,

and symmetric trace-free tensor spaces we used in the previous section.

The most general projections which will always be relevant are those arising from index

permutations. Tensors are free to have their indices permuted, and irreducible representa-

tions can be constructed via the Young Tableau [38]. Rank-2 tensors can be split into their

symmetric and antisymmetric parts.

Tij T[ij] =
1
2
(Tij − Tji)

T(ij) =
1
2
(Tij + Tji)

This decomposition is unique, and the original tensor can be recovered: Tij = T[ij] +

T(ij). Further splitting requires the existence of invariant tensors determined by the con-

sidered symmetry group. While there is much literature on the existence of irreducible

representations of various symmetry groups, we concern ourselves with representations we

can construct from available data and differential operators. This constructional paradigm

leads us to construct projection operators. Projection operators are symmetry invariant

matrices P such that P2 = P.

It is useful to carry out some of this analysis in the diagrammatic notation. Let the

identity matrix δij be denoted by a directed line.

δij ≡

Symmetrization and antisymmetrization operators δ(ikδj)l and δ[ikδj]l acting on rank 2 ten-

sors can be denoted by white and black boxes, respectively.

= 1
2

+ 1
2

12



= 1
2

- 1
2

These are operators acting on rank-2 objects, and it can be checked they are projection

operators: P2 = P.

=

=

Symmetrized and antisymmetrized tensors have no intersection, as the application of both

projection operators always results in zero.

= = 0

These projection operators have been constructed out of the identity δij , but other symmetry-

invariant tensors like the symmetric rank 3 tensor dijk of the E6 family or metric gij of

Euclidean space should be included when such symmetries are being considered [38]. In

fact, any matrix M one can construct out of the fundamental tensors of the symmetry group

will have invariant subspaces determined by its spectrum. Assuming M is diagonalizable

with eigenvalues λi, projection operators can be constructed explicitly as

Pi =
∏
j ̸=i

M− λjI

λi − λj
(2.13)

where I is the identity matrix. These projection operators are unique if all invariant matrices

of a system are diagonalizable and commute. The presence of non-commuting invariant

tensors destroy uniqueness, but are still useful in projecting relations. An example of this

is the index permutation decomposition of rank 3 tensors, where two of the four projection

operators are not unique. Symmetrization and antisymmetrization of rank 2 tensors are the
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projection operators built from the matrix M corresponding to index exchange.

M =

Since M2 = I, the eigenvalues are λ = ±1. Only tensor equations up to rank 2 will

be considered in this work. Rank (1,1) tensors (also known as matrices) can be split by

the trace operator T(A) = Tr(A)I where A = Ai
j is a matrix and Tr(A) = Ai

i. One

can check that T2 = nT, where n is the dimension of the contravariant vector space. The

eigenvalues are λ1 = 0 and λ2 = nwith projection operators P1 = I−T/n and P2 = T/n,

respectively.

Ai
j P1A

i
j = Ai

j − 1
n
δijA

k
k

P2A
i
j =

1
n
δijA

k
k

Library generation for SPIDER consists of three steps. This process can be done by hand

for small numbers of observables and common symmetry groups. Shortcuts exist for some

symmetry groups, and these will be explained in later sections. The general procedure is

as follows.

1. From the symmetry invariant tensors, differential operators, and observables,

compute all tree tensors up to some cutoff motivated by complexity or physical

considerations. A tree tensor is a tensor with no internal contractions. For exam-

ple, let a system have O(n) symmetry so the invariant tensors are {gij, gij} and an

observable vector {vi}. Suppose this is a time-independent system so that the only

differential operator is the spatial gradient {∇i}. Any derivatives of products can be

expanded with the Leibniz rule: ∇(FG) = (∇F)G+F(∇G). Without loss of gen-

erality, we can then take derivatives to act on individual fields. We will assume that
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∇igjk = ∇ig
jk = 0, which is a standard assumption in Riemannian geometry[45].

Tree tensors need only be computed up to index permutation. T(i,j) is the set of tree

tensors with i upper and j lower indices. The tree tensors up to quadratic order with

p, q ≤ 3 are

T(0,0) = {1} T(0,2) = {gij}

T(1,0) = {vi} T(1,1) = {∇iv
j} T(1,2) = {vigjk}

T(2,0) = {vivj, gij} T(2,2) = {gijgkl}

T(3,0) = {vigjk} (2.14)

Although 1 never appears explicitly in the building blocks of tree tensors, it can al-

ways appear as a trivial tree tensor as a matter of convention. For some fundamental

tensors, there are identities that can be used at the tree tensor stage to simplify sub-

sequent libraries. For example, in SO(3) the Levi-Civita tensor satisfies a quadratic

identity.

εijkε
lmn ∝ δ[liδ

m
jδ

n]
k (2.15)

2. Compute all possible contractions of tree tensors to produce prelibraries P(i,j).

Recall that contraction (or trace) is a map Tr that reduces the rank of tensors: (i, j) →

(i− 1, j − 1). These sets of contracted objects form pre-libraries. For example, con-

sider the contractions leading to scalars.

P(0,0) = T(0,0) ∪ Tr T(1,1) ∪ Tr Tr T(2,2) = {1,∇iv
i, gijg

ij} (2.16)

P(0,0) has an identity since gijgij = n. This is a general feature of library construc-

tion. Identities among the building blocks will be embedded in the libraries, and it

is possible to recover them and prune them in the same way as nontrivial physical

relations. Two options for finding identities are sparse regression on synthetic data or
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symbolic manipulation if corresponding algorithms are implemented with sufficient

care.

3. Project the pre-libraries into irreducible representations to obtain libraries Lr.

Use the projection operators built from your symmetry group (especially including

index permutation) to project the prelibaries into libraries of irreducible representa-

tions. There will sometimes be redundancy in representations: for instance P2 acting

on (1, 1) tensors will produce scalar equations multiplying δij. No new relations can

be found in this (1, 1) subspace that would not have been found in the scalar library.

This (1, 1) subspace can be safely ignored for the purposes of model discovery.

In the following sections, some examples of symmetry groups will be considered and ex-

plicit constructions of low rank irreducible representations will be presented.

2.3 The Diffeomorphism Group and GL(n,R)

Many tensors considered in physics are constructed from the tangent space of a manifold.

Examples include flow velocities, the electric and magnetic fields, and the gravitational

field (both as a metric and Riemannian curvature) [45, 44]. Even the gauge bosons of the

electroweak and strong nuclear forces are tensors with one component from the cotangent

space [46, 47].

For this reason, a review of the definition of the tangent space will be given in the

context of library generation. Let M be a n-dimensional manifold and p be a point on M .

The tangent space TpM is the set of directional derivatives of scalar functions at point p. A

vector v in the tangent space acts on a scalar function and produces a single real number.

v[ϕ] =
n∑

i=1

(
vi

∂

∂xi
ϕ

)∣∣∣∣
p

(2.17)

A tangent vector is completely specified by its components vi. While v is an abstract ge-

ometric object with no dependence on coordinates, the values of vi will be completely
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determined by the choice of coordinates. The cotangent space T ∗
pM is the dual space of

TpM , and will have lowered indices. The basis of T ∗
pM will be the adjoint basis dxi, which

is a canonical map of partial derivatives.

dxi
[
∂

∂xj

]
≡ δij (2.18)

A general dual vector ω ∈ T ∗
pM will have components defined by ω = ωidx

i. The action

of a dual vector on a vector becomes a dot product of their components.

ω[v] = ωidx
i
[
vj∂j

]
= ωiv

jdxi [∂j] = ωiv
jδij = ωiv

i (2.19)

Higher rank tensors can be constructed in the standard way. Tensor fields of a manifold are

linear representations of invertible coordinate transformations x′(x), which is effectively

the diffeomorphism group – the group of smooth maps from a manifold to itself. The chain

rule can be used to obtain the new components of v.

vi
∂

∂xi
=

(
vi
∂x′j

∂xi

)
∂

∂x′j
→ v′j = vi

∂x′j

∂xi
, (2.20)

with dual vectors transforming via the inverse Jacobian. At each point, the Jacobian will be

some element of GL(n,R), the group of invertible linear transformation of n elements. This

group has no invariant tensors outside of the identity. Without specific knowledge of the

manifold M , the only guaranteed projections are those accomplished by symmetrization

and trace-subtraction.

The partial derivative ∂i of a non-scalar is generally not a tensor [43]. If a non-

degenerate metric gij exists, the Levi-Civita connection defines a covariant derivative1 that

can be used instead [44]. If no natural metric or connection field is present, the only allowed

differential operators are the exterior derivative and the Lie derivative [44]. The exterior

1In Cartesian coordinates with a Euclidean metric, ∇i = ∂i.

17



derivative2 acts on totally antisymmetric covariant tensors dω = ∂iωj − ∂jωi and increases

the covariant rank by 1. The Lie derivative Lv generalizes the directional derivative along a

contravariant vector vi: it acts on any tensor. For example, Lvωi = vj∂jωi +ωj∂iv
j . These

are the only differential operators one is guaranteed on a general manifold that can be used

in library construction. The representations up to rank 2 that warrant study are in Table 2.1.

Table 2.1: Low-dimensional representations of the diffeomorphism group of a general
manifold. Without an invertible quadratic form, there is no natural bijection from covariant
to contravariant spaces. For a total rank less than 2, there are 8 distinct irreducible repre-
sentations physics could live in.

rank irreducible representations to study redundant representations
(0,0) T None

(1,0) T i None

(2,0) T [ij] T (ij) None

(0,1) Ti None

(0,2) T[ij] T(ij) None

(1,1) T i
j − 1

n
δijT

k
k

1
n
δijT

k
k

Suppose there is a manifold with an observable vector field vi and an observable one-

form ωi. Up to cubic order in {vi, ωi, ∂i}, there are 10 classes of tree tensors.

T(0,0) = {1} T(1,0) = {vi} T(2,0) = {vivj} T(3,0) = {vivjvk}

T(0,1) = {ωi,Lvωi} T(1,1) = {viωj} T(2,1) = {vivjωk}

T(0,2) = {ωiωj, ∂[iωj]} T(1,2) = {viωjωk, v
i∂[iωj]}

T(0,3) = {ωiωjωk, ∂[iωj]ωk} (2.21)

The lack of structure leads to many sets of tree tensors, but very few elements within them.
2The exterior derivative is typically represented in index-free notation as d. For all totally antisymmetric

tensors ω, d2ω = 0.
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The only tensor derivatives available are the exterior derivative ∂[iωj] and Lie derivative

Lvωi
3. Generating the libraries is done by considering all possible contractions of tree

tensors and projecting them to irreducible representations. Contractions map tensors of

rank (m,n) → (m− 1, n− 1), which corresponds to moving diagonally ↖ in the previous

collection of equations. The libraries of representations with rank less than 2 is then

L(0,0) = {1, viωi}

L(0,1) = {ωi,Lvωi, ωiωjv
j, vj∂[jωi]}

L(0,2) antisymmetric = {∂[iωj]}

L(0,2) symmetric = {ωiωj}

L(1,0) = {vi, vivjωj}

L(1,1) trace-free = {viωj −
1

n
δijv

kωk}

L(2,0) antisymmetric = ∅

L(2,0) symmetric = {vivj} (2.22)

These libraries can comprehensively support tensor equations up to cubic in fields and

derivatives. This procedure of contraction and projection is completely general, as more

specific coordinate symmetry groups can be viewed as introducing further tensor fields

(like the metric gij) for the construction of tree tensors.

Note that the diffeomorphism group can generally be any element of GL(n,R) at a point.

If one restricts to a global GL(N,R) invariance such that there is no nonlinearity in coordi-

nate transformaions ∂i∂jx′k = 0, then the gradient operator ∂i becomes a tensor operator.

The exterior derivative and Lie derivative are no longer the only acceptable derivatives.

3Note that Lvv
i = 0 identically.
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2.4 O(n)

A theory with O(n) symmetry respects the spatial n-dimensional Euclidean metric ten-

sor: the symmetry group is the set of rotations and reflections on Rn. We will neglect

translations and focus on the consequences of invariance with respect to rotations and re-

flections. The metric tensor gij = gji and its inverse gij define the Euclidean dot product,

and provide a natural map between vectors and dual vectors. In Cartesian coordinates,

gij = gij = diag(1, 1, · · · , 1) so that two vectors u and v have a dot product.

u · v≡uivjgij = u1v1 + u2v2 + · · · (2.23)

The metric can be used to raise and lower indices in a consistent way: ui ≡ giju
j and

ui ≡ gijuj . This puts covariant and contravariant indices on equal footing, and all tensors

can be considered fully covariant without loss of generality. Notation can be relaxed to

allow for contraction on covariant indices: Tii ≡ Tijg
ij . The effect of this equivalence is

that trace-subtraction is now possible for all tensors. The irreducible representations split

to no longer have traces anywhere. Table 2.2 shows how this splits rank-2 tensors into a

triplet.
Tij T[ij]

T(ij) T(ij) − 1
n
Tkkgij

Tkkgij

(2.24)

The incompressibility condition and Navier-Stokes equations are an example of O(n)

invariance describing a constrained flow field ui and pressure p.

∇iui = 0 (2.25)

∂tui + uj∇jui +∇ip− ν∇2ui = 0 (2.26)
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Table 2.2: The irreducible tensors up to rank 2 of the O(n) symmetry group. The rank-
2 tensors split into three irreducible tensor spaces, however the representation proportional
to the metric is redundantly isomorphic to the scalar library.

rank irreducible representations to study redundant representations
0 T None
1 Ti None
2 PASTij =

1
2
(Tij − Tji)

2
n
gijTkk

PSTFTij =
1
2

(
Tij + Tji − 2

n
gijTkk

)
where ν is the kinematic viscosity and ∇2 ≡ ∇i∇i. The metric gij implicitly enters into

these equations in three places: to define a covariant derivative and therefore the divergence

of ui, to allow the dual vector ∇ip to couple to the naturally contravariant ui, and for the

existence of dissipation by ∇2. It is instructive to construct libraries for this system up to

cubic in {ui, p,∇i, ∂t}. There is never a reason to multiply by gij in tree tensor construc-

tion, since the only additional tensors this will produce will be projected into redundant

representations.

T0 = {1, p, ∂tp, ∂2t p, p2, p3, p∂tp}

T1 = {ui, pui, p2ui, ∂tpui, ∂tui, ∂2t ui,∇ip, ∂t∇ip}

T2 = {uiuj, puiuj, p∇iuj,∇iuj,∇ipuj,∇i∇jp, ∂tuiuj}

T3 = {uiujuk, ui∇juk,∇i∇juk} (2.27)

The prelibaries are computed by taking all possible contractions. P3 is ignored since we

only consider tensors of rank 2 or less for model discovery.

P0 = {p, ∂tp, ∂2t p, p2, p3, p∂tp, u2, pu2,∇iui, p∇iui, ui∇ip,∇2p, ui∂tui}

P1 = {ui, pui, p2ui, ∂tpui, ∂tui, ∂2t ui,∇ip, ∂t∇ip, u
2ui, ui(∇juj), uj∇jui,∇i∇juj,∇2ui}

P2 = {uiuj, puiuj,∇iuj, p∇iuj,∇ipuj,∇i∇jp, ∂tuiuj} (2.28)

The only projections to do for O(n) are the symmetric traceless and antisymmetric projec-
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tions on rank 2 tensors.

L0 = {1, p, ∂tp, ∂2t p, p2, p3, p∂tp, u2, pu2, p∇iui, ui∇ip,∇2p, ui∂tui}

L1 = {ui, pui, p2ui, ∂tpui, ∂tui, ∂2t ui,∇ip, ∂t∇ip, u
2ui, ui(∇juj), uj∇jui}

LAS
2 = PAS{∇iuj, p∇iuj,∇ipuj, ∂tuiuj}

LSTF
2 = PSTF{uiuj, puiuj,∇iuj, p∇iuj,∇ipuj,∇i∇jp, ∂tuiuj} (2.29)

L0 in its current form is not rich enough to discover the energy and pressure Poisson equa-

tions, which are obtained by taking the contraction of Equation 2.26 with ui and ∇i, re-

spectively:

∇2p+∇i(uj∇jui) = 0, (2.30)

∂tE + ui∇iE + ui∇ip+ ν∇2E − (ν∇iuj)(∇iuj) = 0, E =
1

2
u2. (2.31)

To this end, we introduce quartic terms from the additional rank 4 tree tensors ∇iuj∇kul

and ui∇j∇kul and a rank 0 term uiuj∇iuj corresponding to energy advection. Since these

are rank 4 tree tensors, scalars can be obtained from double contraction.

P0 → P0 ∪ {(∇iui)
2,∇iuj∇iuj,∇iuj∇jui, ui∇2ui, ui∇i∇juj, uiuj∇iuj} (2.32)

P2 → P2 ∪ {∇iuj∇kuk,∇iuk∇kuj,∇kui∇kuj,∇juk∇iuk,

ui∇j∇kuk, uk∇i∇juk, uk∇k∇iuk} (2.33)

These new elements of P2 will need to be projected into the antisymmetric and symmetric

trace-free spaces.

Note that the cross product induced by εijk is not left invariant by the O(n) group. No

cross-products are needed in any symmetries. It is instructive to show Maxwell’s equations

need no cross product to be written covariantly. One takes the magnetic field Bij ≡ εijkBk
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to be an antisymmetric tensor instead of a vector. Then Maxwell’s equations become

∇iEi = ρ, ∇iBjk +∇jBki +∇kBij = 0, (2.34)

∂tEi = ∇jBij − ji, ∂tBij = ∇jEi +∇iEj. (2.35)

In this sense, the relativistic formulation of electromagnetism in terms of a rank-2 tensor

Fµν is not a far leap from a O(3) covariant formulation.

As a final comment on O(n) symmetry, library construction proceeds exactly the same

for pseudo-orthogonal groups O(m,n), which preserve the quadratic form x21 + · · ·+ x2m −

y21 − · · · − y2n. As long as the metric tensor is invertible, all projection operators can be

constructed identically. This is of particular interest to relativistic physics with Lorenz

symmetry. There the Minkowski metric ηαβ is the invariant of O(3,1).

2.5 SO(n)

SO(n) is a subgroup of O(n) that excludes reflections. Tensors can be constructed out of

the totally antisymmetric rank-n orientation tensor εij···k. The metric gij can again be used

to keep all indices covariant. Since the rank of this orientation tensor depends on n, the

constructable projection operators will be quite different for each n. Physically, theories

with only SO(n) invariance are not agnostic to reflections: the physics may depend on the

handedness of structures.

The major tool that the orientation form introduces is the Hodge dual or Hodge star

operator ⋆ [44]. This provides a bijection between antisymmetric tensors of rank r and

n− r by contraction of all indices with εij···k. SO(2) has the orientation tensor εij with two

important consequences for tensor library construction. The first is that any antisymmetry

can be factored out of a tensor. This follows from the quadratic identity

εijεkl = δikδjl − δilδjk (2.36)
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Applying this to a tensor Fij··· = −Fji··· one sees that any tensor with antisymmetry in two

indices is proportional to εij .

Fij··· =
1

2
εijεklFkl··· (2.37)

This statement is independent of the metric and only depends on the orientation form (so

it holds in SL(2,C) as well) [48]. There is no reason to consider tensors with any anti-

symmetry under the action of SO(2). Any physical relations with antisymmetry can always

be captured instead with a lower-rank representation of the group. The second important

aspect of SO(2) is that the Hodge dual of a vector is a vector: the Hodge dual is a matrix

operator usable in projections

⋆ ⋆ vi = εijεjkvk = −vi (2.38)

The eigenvalues of the Hodge star are ±i, so projection can only be accomplished by allow-

ing coefficients to be complex. The projection operators are straightforward to construct.

v±i = vi ± i ⋆ vi ⋆ v±i = ±iv±i (2.39)

The rank 1 space is split into one-dimensional complex representations of SO(2), known as

self-dual v+i and anti-self-dual v−i representations. These spaces are more simply described

as the action of U(1) on C, where v± = vx ± ivy. Tensors of rank n transform like

Tn → exp(inϕ)Tn

when v+ → exp(iϕ)v+.One can see that complex conjugate maps tensors of rank n to rank

−n, and complex scalar multiplication is equivalent to tensor multiplication. The spatial

derivative can be promoted to a U(1) operator of rank 1 as well D ≡ ∂x + i∂y.

Library generation is amazingly simple for U(1) symmetric theories. When constructed

in the complex form, there is no need for projections or contractions. The tree tensors
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themselves are immediately the libraries. Also, no negative rank libraries need construc-

tion, since these relations will be complex conjugates of positive rank relations. Table 2.6

presents the irreducible representations to study for SO(2)∼=U(1).

Table 2.3: The irreducible tensors up to rank 2 of the SO(2)∼=U(1) symmetry group. It
is an interesting feature of this group that only one non-redundant representation exists for
each rank. Tensor multiplication for these 1D C spaces is just ordinary complex multipli-
cation.

abs(rank) irreducible representations to study redundant representations
0 T T+ ⊗ T−

1 T+ T−

2 T+ ⊗ T+ T− ⊗ T−

A well-known example of a theory with U(1) invariance is the Schrödinger equation

with the invariant ψψ̄ being associated with a probability density. Although this symmetry

is usually decoupled from spatial rotations, consider the wavefunction ψ(x, y, t) to be a

rank 1 self-dual vector under the action of U(1) induced by SO(2). The differential opera-

tors of the theory are {∂t, D, D̄} or ranks 0, 1, and -1, respectively. The only field we will

consider is ψ, which is rank 1. The tree tensors up to rank 2 are themselves the libraries

worth studying. The libraries are presented up to cubic order in operators and fields.

T0 = L0 = {1, ψψ̄, ψ∂tψ̄, ∂tψψ̄,Dψ̄, D̄ψ, ∂tDψ̄, ∂tD̄ψ} (2.40)

T1 = L1 = {ψ, ∂tψ, ∂2t ψ,DD̄ψ, ψ2ψ̄, D2ψ̄, ψDψ̄, ψ̄Dψ} (2.41)

T2 = L2 = {ψ2, ψ∂tψ,Dψ, ∂tDψ} (2.42)

For instance, the free-particle Schrödinger equation contains terms from the library L1 with

complex coefficients.

SO(3) has an orientation form εijk. For odd dimensions, the Hodge dual does not

map any tensor to a same rank tensor, so there is no notion of self-dual within a single

tensor rank. This can be overcome by considering direct sums of different tensor spaces.
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For example, Ti ⊕ Tjk with Tjk = −Tkj is closed under the Hodge dual: it interchanges

these two spaces. The dual operation can be diagonalized on this space, but there is no

demonstrable economy offered by such a formalism for model discovery.

The true benefit of SO(3) symmetry is that one no longer needs to study the antisym-

metric rank-2 space. It is redundant since its Hodge dual lives in the rank-1 space. Other

than including εijk in tree tensors, there is no subtlety in library construction for SO(3)

theories. For example, the vector library of the fluid system discussed with O(n) symmetry

will be L1 ∪ ε[LAS]:

L1 = {ui, pui, p2ui, ∂tpui, ∂tui, ∂2t ui,∇ip, ∂t∇ip, u
2ui, ui(∇juj), uj∇jui}

∪ {εijk∇juk, εijkp∇juk, εijk∇jpuk, εijk∂tujuk}. (2.43)

This addition of antisymmetric tensors contracted with εijk is equivalent to the introduction

of pseudovectors. Pseudovectors transform like vectors under rotations but change sign

under reflections. For O(n) symmetry, no such coupling is possible. Contracting εijk with

a totally antisymmetric tensor Tijk produces psuedoscalars that can now enter the scalar

library. As a further example, Maxwell’s equations can be written in vector form only

when SO(3) symmetry is assumed. Then the magnetic field Bi ≡ 1/2 εijkBjk can be used

to write the equations as

∇iEi = ρ, ∇iBi = 0, (2.44)

∂tEi = εijk∇jBk − ji, ∂tBi = −εijk∇jEk. (2.45)

Table 2.4: The irreducible tensors up to rank 2 of the SO(3) symmetry group. Like
SO(2), there is a single representation per rank warranting investigation.

rank irreducible representations to study redundant representations
0 T None
1 Ti None
2 1

2

(
Tij + Tji − 2

n
gijTkk

)
2
n
gijTkk,

1
2
(Tij − Tji)
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An important final remark is that for tree tensor construction of SO(n) theories, εij···l

only needs to be included up to once per tree tensor. This is because regardless of di-

mension, the tensor square of the orientation form is proportional to a tensor product of

identities [38].

2.6 The Homogeneous Galilean Group

Galilean invariance is the symmetry group of particles moving at nonrelativistic speeds

interacting via Newton’s laws. It is in particular the symmetry group of particles with

interactions given by the standard Hamiltonian

H(qa,pa) =
∑
a

pa · pa

2ma

+
∑
a̸=b

V (∥qa − qb∥2), (2.46)

where a is an index over particles. We will restrict our attention to the homogeneous

Galilean group, in which there is no translation in space or time [49]. An element g of the

homogeneous Galilean group G corresponds to a rotation R̂ and a boost v⃗ of the spatial

components.

g(x⃗, t) = (R̂x⃗− v⃗t, t) (2.47)

Representations of the Galilean group have been the subject of extensive investigation:

unitary representations for quantum systems have been developed [50], as well as four-

dimensional representation with a degenerate metric [51, 52] and a five-dimensional rep-

resentations with a non-degenerate metric [53]. The latter two theories are of interest to

this work as they give guidelines for constructing indexed representations from Galilean-

covariant data. Galilean covariant schemes for machine learning have been developed [11,

10], but in that work only a particular irreducible representation was considered.

The four-dimensional representation concerns itself with four-vectors xµ = (x, y, z, t)

just like special relativity. The Galilean group is the set of transformations preserving a
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dual vector ωα and a degenerate metric hαβ .

ωα = (0, 0, 0, 1) hαβ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


(2.48)

No inverse of hαβ exists, so the vector vα has no Galilean invariant norm. The inner product

is only defined for covariant indices. Indices of dual vectors in V ∗ can be raised by hαβ ,

but contravariant vectors in V have no map back to V ∗. The invariant dual vector ωα makes

the Galilean group unlike any other group discussed in this work. Note that hαβωβ = 0,

so that no projection matrix can be constructed. ωα defines an invariant subspace U =

{xα |xα ∈ V, xαωα = 0}. The subspace U consists of the vectors with vanishing time

component, and the action of the Galilean group on this subspace is simply the orthogonal

group. This space has its own dual space U∗ that is not isomorphic to the dual space

V ∗. Let vectors in U have indices labeled with Latin letters a, b, · · · . Then U has its own

invariant tensors: the Euclidean metric γab and its inverse γab providing a bijection between

U and U∗. The inclusion map ι : U → V can be defined by changing an upper Latin index

to a Greek index: ι(xa) = ιαb x
b = xα. The relations between these spaces are summarized

in Equation 2.49.

U V

U∗ V ∗

hαβγabγab

ιαb

(2.49)

General tensors can then have four kinds of indices: Tα
β
c
d. All indices can be mapped

to V and V ∗ such that all tensors have a canonical form Tα···
β···, so that library construction

only needs to concern itself with the covariant and contravariant indices. The unresolved
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problem with library construction is that projection operators cannot be constructed natu-

rally. The Galilean invariant matrix M = gαβωγωϵ acting on rank 2 tensors has the unfor-

tunate characteristic equation M2 = 0. M is not diagonalizable so Equation 2.13 fails to

produce projection operators. It is possible to get around this by introducing an observer

field vα with vαωα = 1 such that Galilean transformations induce Milne boosts [52]:

vα → vα + hαβuβ, (2.50)

where uβ is arbitrary. It is clear that (1)Pα
β = hαωβ and (2)Pα

β = δαβ − hαωβ are projection

operators, which map tensors into subspaces that transform with consistent Milne boosts.

(2)Pα
β is a projection from V to U , such that the Euclidean metric can be used. This is

a circumstance where projection may need to be done additionally before contraction of

tree tensors so the Euclidean metric can enter. In a study of Reynolds averaged turbulence,

Galilean invariance was enforced by working with tensors a priori in the spatial subspace U

to allow dot products [10]. More work is needed to define the rules for library generation,

perhaps by moving to the 5D formalism with an invertible metric where the Galilean group

is a subgroup of the pseudo-orthogonal group O(4,1) [53]. Regardless, the representations

of GL(n,R) given in Table 2.1 are good enough to discover any Galiliean invariant physics

as long as ωα and hαβ are included as observables during library construction.

2.7 SU(2) and SL(2,R) spinors

It is not the case that all physically relevant tensors are constructed from the tangent space

and its dual. One of the most important exceptions in physics is the spinor: a 2-component

complex vector ψA ∈ C2 with A = 0, 1. In fact, any theory invariant under the action

of SO(3) has a natural embedding in the language of SU(2) spinors, which can be helpful

for finding solutions in SU(2) Yang-Mills theory [54, 55]. While spinors have been used

extensively in modeling quantum systems, they have applications to classical relativistic
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fields [48].

Spinors are complex vectors, so there is a need to define its complex conjugate ψ̄A′ ,

where A′ is a conjugate index. For a linear transformation ΛA
B on spin space, there are

induced linear transformations on the conjugate and dual spaces.

ψA → ΛA
Bψ

B ϕA →
(
Λ−1

)B
AϕB

ψ̄A′ → Λ̄A′
B′ψ̄B′

ϕ̄A′ →
(
Λ̄−1

)B′

A′ϕ̄B′ (2.51)

A generic spin tensor can therefore have four kinds of indices: TA
B
A′

B′ . The indices

A and A′ are unrelated, although one can usually assume they exchange under complex

conjugation. SU(2) is defined by its invariants: the Hermitian norm δAA′ = diag(1, 1) and

the orientation form εAB = −εBA with ε01 = 1. These both have inverses δAA′δBA′
= δBA

and εACε
BC = δBA . These tensors define a natural linear bijection from an arbitrary spinor

to a spinor with a lower unconjugated index.

ψA → ψA ≡ εABψ
B

ϕA′ → ϕA ≡ δAA′ϕA′

χA′ → χA ≡ εABδ
BB′

χB′ (2.52)

These operations can be applied in parallel to an arbitrary number of indices, so that any

spin tensor can be made to have exclusively lower unconjugated indices. Only these objects

need to be studied to understand SU(2) covariant physics. Note that repeated conjugation

leads to a change in sign: ψA = −ψA. For a rank n spin tensor, repeated conjugation

will change the sign by (−1)n. The Hermitian norm δAA′ never appears in this notation

explicitly and can be discarded from our lexicon. Given a tensor with multiple indices like

TAB, a contraction can be defined by an implicit contraction with εAB.

TAA ≡ εABTAB = T01 − T10 (2.53)
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Care is required when contracting indices from distinct tensors as the order of multiplica-

tion now matters: SA···TA··· = −TA···SA···. This is an irrelevant detail from the perspective

of library generation since the order of tensors will only change the signs of coefficients in

any governing equations.

When the action of SU(2) is tied to rotations of physical space, as it is in the theory

of the electron, it is useful to establish the natural embedding of Euclidean R3 in spin

space. Rank-2 tensors TAB can immediately be split into symmetric and antisymmetric

parts: TAB = T(AB)+T[AB]. The antisymmetric tensors are simply a scalar TAA multiplying

εAB and require no further investigation [48].

T[AB] =
1

2
εABTCC (2.54)

The symmetric subspace T(AB) has no trace by symmetry T(AA) = 0, so there is no linear

projection into further complex invariant subspaces. There is however a real subspace with

respect to complex conjugation.

TAB =

T00 T01

T01 T11

 T̄AB =

 T̄11 −T̄01

−T̄01 T̄00

 (2.55)

Following Penrose, we define a world vector to be a symmetric rank-2 tensor SAB = SBA

that is equal to its conjugate SAB = S̄AB. The identification with Euclidean space can be

made using (x, y, z) ∈ R3.

SAB =

x+ iy iz

iz x− iy

 SABSAB = 2(x2 + y2 + z2) (2.56)

3D Euclidean space is therefore an invariant subspace of rank-2 spin tensors. Every vector

field v⃗ is equivalent to a world vector vAB. In fact, one can extend the gradient operator ∇⃗
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to spin space by defining ∇AB with the world vector properties.

∇AB ≡

 ∂x + i∂y i∂z

i∂z ∂x − i∂y

 (2.57)

The gradient being a rank-2 operator fundamentally changes the kinds of equations that

can exist. It is possible to take a half-divergence, such that only one of the gradient indices

is contracted. This half-divergence naturally defines the 3D divergence and curl of a vector

field simultaneously.

∇ACvCB = −(∇⃗ × v⃗)AB + (∇ · v⃗)εAB (2.58)

The usual 3D vector calculus is therefore naturally embedded in SU(2) spinor calculus. To

see library construction, consider a Weyl spinor ψA.

∂tψA +∇ABψB = 0 (2.59)

The fundamental tensors of this system are {ψA, ψ̄A} and the differential operators are

{∇AB, ∂t} of rank 2 and 0. If we allow all tree tensors up to cubic order, the maximal rank

will be rank 5.

T0 = {1}

T1 = {ψA, ∂tψA, ∂
2
t ψ

A, ψ̄A, ∂tψ̄A, ∂
2
t ψ̄

A}

T2 = {ψAψB, ψ̄AψB, ψA∂tψB, ψ̄A∂tψB, ψA∂tψ̄B, ψ̄A∂tψ̄B}

T3 = {ψAψBψC , ψ̄AψBψC , ψ̄Aψ̄BψC , ψ̄Aψ̄Bψ̄C ,∇ABψC ,∇ABψ̄C , ∂t∇ABψC , ∂t∇ABψ̄C}

T4 = {ψA∇BCψD, ψ̄A∇BCψD, ψA∇BCψ̄D, ψ̄A∇BCψ̄D}

T5 = {∇AB∇CDψE,∇AB∇CDψ̄E} (2.60)
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εAB is not needed in constructing tree tensors; if it is not killed by contraction it will lead

to a tensor in a redundant representation. Contraction reduces the rank of tensors by 2, so

L0 can be constructed from traces of T2 and T4.

L0 ={ψ̄AψA, ψA∂tψA, ψ̄A∂tψA, ψA∂tψ̄B, ψ̄A∂tψ̄A

ψA∇ABψB, ψ̄A∇ABψB, ψA∇ABψ̄B, ψ̄A∇ABψ̄B} (2.61)

Table 2.5: The irreducible tensors up to rank 2 of the SU(2) symmetry group.

rank irreducible representations to study redundant representations
0 T None
1 TA None
2 T(AB) T[AB]

Just as SU(2) spinors have a natural group action under continuous rotations of SO(3),

SL(2,C) spinors have a natural group action under continuous Lorenz transformations of

SO(3,1). SL(2,C) only leaves εAB and its inverse/complex conjugate invariant. This means

there is no map from conjugate indices to unconjugated ones, so a general spin tensor can

be projected to have all covariant indices TAB···A′B′···. One can take the complex conjugate

of an equation so that the number of unconjugated indices is greater than or equal to the

number of conjugated indices. The representations worth studying are identical to the

SU(2) case, with the addition of a mixed tensor space TAA′ . This new space contains a real

4D subspace T̄A′A = TAA′ that can be identified with Minkowski spacetime [48].

xAA′ =

 t+ z x+ iy

x− iy t− z

 xAA′xBB′εABεA
′B′

= 2(t2 − x2 − y2 − z2) (2.62)

This natural emergence of the Minkowski metric is why particle physicists prefer a time-

positive metric signature. The derivative likewise becomes a rank (1,1) object ∇AA′ .
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Table 2.6: The irreducible tensors up to rank 2 of the SL(2,C) symmetry group de-
scribing relativistic spinors.

rank irreducible representations to study redundant representations
(0,0) T None
(1,0) TA None
(0,1) None TA′

(1,1) TAA′ None
(2,0) T(AB) T[AB]
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CHAPTER 3

FEATURE MATRIX CONSTRUCTION AND SPARSE REGRESSION

Model discovery via regression requires a feature matrix1 G, which is constructed by eval-

uating a library of terms L = {x, x2, sin(x), · · · } at various spatiotemporal locations. Re-

gression then fits a vector g corresponding to the dynamics ẋ to obtain a sparse coefficient

vector g ≈ Gc. Estimating the derivative ẋ at a point with finite differences is sensitive

to noise, which is certainly present in any real world data. In Rudy et al.’s description of

the PDE-find algorithm [56], noise levels above 1% could ruin model discovery for com-

mon PDEs including Navier-Stokes in vorticity form. It has been shown that the weak

formulation is significantly more noise robust [35, 34, 25, 26] and suitable for handing real

experimental data [36, 37].

3.1 Matrix Construction

SPIDER always uses the weak formulation of differential equations, in which elements of

G correspond to numerical integrals of library terms over spacetime domains Ωi rather than

evaluations at single points. Considering now fields with spatiotemporal2 variation u(x),

the library can contain nonlinear functions L = {fj(x,u,∇u, · · · )}. The feature matrix G

is formally defined by

Gij =
1

NiSj

∫
Ωi

dV wifj (3.1)

Ni =

∫
Ωi

dV |wi| (3.2)

1This matrix has gone by many names in the literature. SINDy papers tend to use Θ and precursors of the
SPIDER papers use Q. A large amount of my time at Georgia Tech has been devoted to analyzing an active
nematic system with an observable field Qij . To avoid confusion in that case, I have introduced another
convention G.

2x is being used as a spacetime vector x = ⟨t, x, y, z, · · · ⟩
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0

1

Figure 3.1: Polynomial envelopes for representative choices of n. The higher the value
of n, the fewer grid points are effectively used in averaging.

where dV is the volume element of Ωi, wi is a weight function, and Sj is a scale associated

with fj. Discussion of the scales Sj will be delayed until a later section. The domains Ωi

are usually taken to be randomly sampled rectangular regions. The rectangular shape of Ωi

is natural for gridded data, but this restriction is not essential for the algorithm. On such

domains, it is advantageous to use weight functions

wi(t, x, y) = W (t̂)W (x̂)W (ŷ) x̂, ŷ, t̂ ∈ [−1, 1], (3.3)

W (τ) = (1− τ 2)n. (3.4)

The coordinates of x̂ have been rescaled and shifted to lie on the canonical interval [−1, 1].

Figure 3.1 shows the shape of W (τ) for a few choices of n. These weight functions and

their first n − 1 derivatives vanish on the boundaries. This means integration by parts

can be used without introducing boundary terms, allowing numerical differentiation to be

avoided in many cases. Derivatives moved onto wi can be taken analytically since wi is a

polynomial. After transferring derivatives, the integral can be evaluated from gridded data

using the trapezoidal rule.

Sometimes it is useful to add a modulating factor to the weight function like Legendre

polynomials or Fourier modes [34, 37]. These modular factors increase sensitivity to vari-
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ation in the data and using multiple weight functions increases the number of independent

measurements in G. This reduces the number of distinct domains that need to be sampled.

The product maintains the nice boundary properties of the envelopes: integration by parts

is still trivial.

If the functions fj are vectors or tensors with multiple components, each component

can be taken to be its own row of the matrix. In some scenarios, it is beneficial to consider

wi to be a tensor as well, so that G can be defined via an inner product.

Gij =
1

NiSj

∫
Ωi

dV
∑
α

wαifαj (3.5)

where α is an index over the components of fj . This was done in [36] to remove the effects

of an latent pressure field.

Integration by parts cannot remove all derivatives from physical fields in general. How-

ever, there are two extremely common scenarios where integration by parts can nonetheless

be beneficial. The first concerns a product f∂xg where f and g are distinct fields. The

weighted integral can be integrated by parts as

∫
Ω

dxwf∂xg = −
∫
Ω

dxw∂xfg −
∫
Ω

dx ∂xwfg (3.6)

where w is assumed to vanish at the boundary. This manipulation still requires a derivative

on f , but this can be advantageous if f has been measured with more precision than g. The

second scenario is when the integral is of a product of terms, each with some number ni

of derivatives acting on fields fi. Let j be the index of the maximal n such that nj ≥ ni.

If nj > ni + 1 for all i ̸= j, then it is beneficial to move one of these derivatives onto the
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other fields3.

∫
Ω

dxw
∏
i

∂ni
x fi =

∫
Ω

dxw∂nj
x fj w

∏
i ̸=j

∂ni
x fi (3.7)

= −
∫
Ω

dx ∂xw∂
nj−1
x fj

∏
i ̸=j

∂ni
x fi −

∫
Ω

dxw∂nj−1
x fj ∂x

∏
i ̸=j

∂ni
x fi (3.8)

Note that the highest power derivative appearing in the integral has been lowered by 1.

The last note on manipulating derivatives is that the product rule can sometimes simplify

integration. For example,

∫
Ω

dxwf∂xf =
1

2

∫
Ω

dxw∂xf
2 = −1

2

∫
Ω

dx ∂xwf
2. (3.9)

A combination of these tricks can be used to numerically integrate with amazing accuracy.

While these have been presented in one dimension for simplicity, they extend to arbitrary

dimension.

3.2 Introduction to Regression

Once this matrix G is constructed from the data, many sparse regression techniques can

be applied to arrive at parsimonious models. There are two approaches to regression that

deserve separate attention.

• The inhomogeneous problem. One of the elements of the library L is deemed

special (usually the time derivative of some quantity). Its associated column g of G

is separated. One then seeks an approximate sparse solution c to Gc = g where G is

now missing the column g.

• The homogeneous problem All elements of the library L are placed on equal foot-

ing. No assumptions are made about the presence of any terms. An arbitrary sparse

3Daniel Gurevich’s weak-form implementation [57] automatically detects this case and does the appro-
priate integration by parts.
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linear combination of library terms must approximately vanish. This is equivalent to

finding a sparse vector c that approximately solves Gc = 0.

The inhomogeneous problem is easier to tackle since there is an unambiguous measure of

success: can you reproduce the right hand side g? One can define the relative residual r(c).

r(c) =
∥Gc− g∥2

∥g∥2
(3.10)

There is a dense vector c∗ which uniquely minimizes r(c) assuming that G is full rank:

the least-squares solution obtained from GTGc∗ = GTg. The error of any sparse relation

must be higher than r(c∗), so one should check that r(c∗) is sufficiently small. A large

minimal residual suggests that the library is incomplete; a more general library should be

constructed until the residual is satisfactory.

The homogeneous problem has no direct generalization of r(c). For homogeneous

problems, the scale of c is arbitrary. We fix ∥c∥2 = 1 for all definitions of residuals, but we

usually use a different natural normalization (i.e. set the largest magnitude component to

1) when stating a relation in symbolic form. A natural residual for homogeneous problems

is the absolute residual ∥Gc∥2. There is an exact minimum of ∥Gc∥2 given by c∗, which is

the right singular vector associated with the smallest singular value of G. A difficulty with

this residual is that it strongly depends on the scaling of each library term (nondimension-

alization). An intelligent nondimensionalization scheme should be used when minimizing

|Gc|. A second useful residual is η(c) [36], which is normalized by the largest term in the

relation.

η(c) =
∥Gc∥2

maxn{∥cngn∥2}
(3.11)

where gn is the nth column of G. This residual is bounded from above by the ℓ0 norm of

c, which helps interpret the accuracy of a homogeneous relation. Single-term models have

η(c) = 1 always; η is only meaningful for multi-term relations.

These two residuals ∥Gc∥2 and η(c) are both important considerations for homoge-
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neous regression. A low value of ∥Gc∥2 implies quantitative accuracy assuming (i) the

data has been properly nondimensionalized and (ii) there are no small columns ofG. Small

values of η(c) are a nonnegotiable physical requirement that imply a dominant balance. The

absolute residual ∥Gc∥2 can be minimized exactly via the SVD, while η(c) is non-convex

and difficult to globally minimize. The two costs functions should be used in parallel to

make judgements during model discovery.

To test these various sparse regression schemes in the following sections, we will con-

sider a library matrix of the nematic-invariant rank-2 symmetric trace-free tensors of an

active nematic suspension [37] given by Equation 4.23. This library is interesting because

it is computed from experimental data and it contains multiple multi-term relations. The

details of this library and its evaluation can be found in section 4. One of the library terms

is ∂tQij , which we will use to investigate inhomogeneous algorithms. The lower bound of

the inhomogeneous residual of the dynamics is r(c∗) = 0.11.

3.3 Basis Pursuit Denoising and LASSO

Basis Pursuit Denoising (BPDN) is the optimization problem of finding an approximate

solution to a system of equations that is regularized by a ℓ1 penalty [58]. BPDN is formally

equivalent to the original formulation of LASSO regression [59], which aims to minimize

the cost function

f(c) =
1

2
∥Gc− g∥22 + λ∥c∥1. (3.12)

λ ∈ R+ is the regularization hyperparameter, where larger values λ encourage more ag-

gressive sparsification. The first term in f penalizes error in Gc = g, and the second term

penalizes coefficient magnitude. Minimizing this cost function with respect to c results in

a nonlinear system of equations

∂f

∂c
= GT (Gc− g) + λ sign(c) = 0, (3.13)
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which can be solved by a simple discrete search with enough computation time. sign(c)

has only 3dim(c) possible values since each element is in {−1, 0, 1}. For low dimensional

spaces, one can numerically sweep over all possibilities, solving Equation 3.13 for c and

checking that sign(c) matches the assumption. This exponential scaling makes this exhaus-

tive algorithm impractical for large libraries, but a naive serial MATLAB script can search

over the 313 cases in 211 seconds. Many efficient algorithms for BPDN have been pro-

posed in the literature such as the in-crowd algorithm [60], fixed point continuation [61],

and homotopy continuation [62] among others.

Table 3.1 shows the results of this sweep for some choices of λ. Sparsification can be

quantitatively justified, as λ = 10−1 only increases the relative residual by 10% compared

to the least squares solution c∗. While λ = 1 doubles the relative residual compared to c∗,

it produces a four term right hand side

∂tQij = P̂STF [c1uk∇kQij + c2ΩikQkj + c3Aij + c4Qij] (3.14)

with 25% error. An undesirable side effect of ℓ1 regularization is that even if the correct

subspace has been identified, the values of coefficients will be biased to minimize the over-

all cost while increasing the unregularized residual ∥Gc − g∥2. For this reason, BPDN

should be used to pick a subspace, but not the values of coefficients themselves. A modi-

fied coefficient vector c+ can be obtained by solving the least squares problem constrained

to the subspace identified by LASSO.

Table 3.1: Characteristics of some exact solutions to BPDN. λ is the regularization pa-
rameter, ∥c∥0 is the number of nonzero terms in c, r is the relative residual, and c+ is the
coefficient vector obtained from the least-squares problem in the same subspace as c.

λ ∥c∥0 r(c) r(c+)
10−2 11 0.11 0.11
10−1 7 0.12 0.11

1 4 0.25 0.16

For λ = 1, the difference between c and c+ is non-negligible. r(c+) is considerably
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lower than r(c) at no cost to sparsity. The advection coefficient c1 is expected to be -1 a

priori, and c+1 = −0.99 is much closer to this compared to c1 = −0.84. This is a system-

atic failure of LASSO in its original form. λ is responsible for both variable selection and

magnitude regularization of coefficients. The LASSO method typically struggles when the

actual count of significant coefficients is small compared to the total number of coefficients.

In such cases, the Lasso faces a dilemma: either include irrelevant variables along with the

important ones or excessively shrink the variables, resulting in a model that is appropriately

sized but lacks accuracy [63]. LASSO will certainly fail as a proxy for solving the ℓ0 reg-

ularization problem for large values of λ, although LASSO can still be useful for subspace

selection.

3.4 Sequentially Thresholded Least Squares

In the original proposal of SINDy, LASSO was not used because it is expensive for very

large data sets in strong form [23]. Instead, the computationally cheap Sequentially Thresh-

olded Least Squares (STLS) algorithm was proposed. This finds a sparse least squares

solution to the inhomogeneous problem Ax = b by computing a sequence of nested sub-

spaces In+1 ⊂ In. At each iteration, xn is found as the least squares solution to ∥Axn−b∥2

subject to xn ∈ In. The next subspace is found by hard thresholding the components of xn

with magnitude smaller than a parameter λ. This algorithm can be written in only a few

lines of MATLAB.

function x = STLS(A,b,lambda)

%Modified from Brunton 2016

x = A \ b; %initial guess: Least squares

for k = 1:10

big = abs(x) > lambda; %find large coefficients

x(not(big)) = 0; %set small values to 0

x(big) = A(:,big) \ b; %redo least-squares
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end

end
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Figure 3.2: STLS applied to the rank-2 library of active nematic data. (a) shows the
number of nonzero terms in c as a function of λ. (b) shows the relative residual r(c)
as a function of λ.

While the algorithm should halt in finitely many iterations when x is a fixed point,

a hard cutoff of 10 iterations is usually sufficient for x to converge. This algorithm is

incredibly fast, so it is possible to do a thorough sweep over λ for the active nematics

library. Such a sweep is illustrated in Figure 3.2 with 10−6 < λ < 0.5. As seen in

Figure 3.2b, the residual r(c) remains close to optimal, even up to λ = 0.5. There are only

4 nonzero terms in this parameter regime, so we take this as the optimal STLS model.

∂tQij = P̂STF [c1uk∇kQij + c2ΩikQkj + c3AklQklQij + c4Aij] (3.15)

The coefficients are O(1), and increasing λ to unity quickly leads to c = 0. Curiously, the

sparse models discovered by LASSO and STLS do not agree. Equation 3.14 is missing

AklQklQij and is using the simpler term Qij instead. This discrepancy motivates the next

section.

While STLS outperforms LASSO for the active nematic library, it does face difficulties

when small coefficients are present. Even if a small coefficient significantly improves the
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residual, thresholding will remove it. Small coefficients are not uncommon in diffusive

problems. To demonstrate this, one can integrate a library containing the Navier-Stokes

equation with high Reynolds number channelflow data from the Johns Hopkins Turbulence

database.

∂tui = c1∇j(ujui) + c2∇ip+ c3∇2ui (3.16)

A least squares solution c∗ for a library containing 12 terms results in c3 = 5.3×10−5 after

nondimensionalization, which is orders of magnitude smaller than coefficients of spurious

terms in the library. STLS will never be able to recover the correct governing equation

because of the small parameter problem.

3.5 Greedy Iterative SVD Regression

If one makes no assumptions about which terms exist in a given empirical relation, then

the problem at hand is the homogeneous one: find a sparse vector c such that Gc ≈ 0. The

error can be minimized by taking c to be the smallest right singular vector c∗ of G, that is

the right singular vector associated with the smallest singular value. c∗ is generally dense,

but it is guaranteed to minimize the ℓ2 norm of the residual.

We propose a greedy4 algorithm for obtaining sparse solutions to Gc ≈ 0, which uti-

lizes a sequence of nested sparse subspaces. Only one coefficient is set to zero at a time,

and a coefficient cannot become nonzero after it has been discarded. Since c∗ minimizes

the residual ∥Gc∥2 exactly, enforcing vanishing coefficients will only increase this residual.

It follows that any iterative sparsification procedure utilizing nested sparse subspaces must

produce a monotonically increasing residual as the number of nonzero terms goes down.

Greedy Iterative SVD Regression (GISR) iteratively removes the least informative library

term and recomputes the right singular vector after each term is discarded. A term is “least

informative” if its removal results in the least increase in residual. The algorithm is halted

when the residual increases by a multiplicative factor γ, which we usually take to be some

4Greedy algorithms choose the best immediate option without consideration of the future.
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Figure 3.3: A schematic of GISR. Terms are greedily removed from the library to obtain
a sparse approximate null vector. The SVD is recomputed after every modification of the
library.

value in the interval [1.05, 1.5].

function [C, n] = GISR( G, gamma )

m = size(G,2); %number of right hand side

idx = 1:m; %indices of used terms

C = zeros(m,m); %columns correspond to models

for i = m:-1:1

[˜,˜,V] = svd(G(:,idx)); %compute right singular vectors

C(idx,i) = V(:,end); %save last vector

if i == 1

break;

end

useless = 0; %index of the most "useless" term
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min_res = inf; %keep track of the best residual

for j = 1:numel(idx)

idx_temp = idx;

idx_temp(j) = [];

s = svd( G(:, idx_temp ) );

if( s(end) < min_res )

min_res = s(end);

useless = j;

end

end

idx(useless) = [];

end

r = vecnorm(G*C);

n = 1 + find( r(1:m-1)./r(2:m) > gamma , 1, ’last’ );

end

GISR uses multiplicative increase in residual as a halting condition. This method is not

well-suited for single term models like Gauss’s law ∇ · B = 0. While these single term

models can in principle be found by halting when a single term is reached, this is grossly

computationally inefficient. Instead, single term models can be identified by evaluating

the norms of columns and comparing them to some cutoff, e.g. if a column g has a norm

∥g∥2 < 10−3
√
m, wherem is the number of observations composing g. This comparison is

only possible because of nondimensionalization. For noisy data, a higher threshold might

be needed to identify single term relations. Regardless of the success of this hueristic

identification, GISR should still halt on single term models provided they are properly

nondimensionalized.

Multiple indpendent relations can exist within the same library matrix G, so it is useful

to have a method capable of finding them. This can be accomplished by permanently
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Figure 3.4: Residual curves for two subsequent runs of GISR applied to a rank-2
library. The first run finds a five term relation. After the largest term is discarded from the
library, a subsequent run finds a 2-term relation.

removing the largest term of an identified relation from the library, and repeating GISR.

A useful definition of largest term is maxn ∥cngn∥2, where gn is the nth column of G.

This can be repeated indefinitely until GISR no longer returns sparse relations with low

residuals. The results of GISR applied to the rank-2 active nematics library can be seen in

Figure 3.4.

3.6 Reverse Regression: a holistic approach to sparse regression

A weakness of GISR is the high number of SVD calculations it requires. Figure 3.5 shows

the computation time needed for GISR on a library matrix of size 2n × n. This size is

chosen so that G is be overdetermined, otherwise there will be a spurious right null space

that will immediately halt the algorithm. For modest libraries of size n = 256 or less,

the n4 scaling is manageable. A larger issue is the difficulty of resolving small singular

values and their associated vectors for ill-conditioned matrices. If the dense singular vector

associated with smallest singular value cannot be well resolved, then the earliest steps of

greedy sparsification cannot be trusted. These difficulties motivate Reverse Regression

(RR). RR consists of four steps.

1. Instead of initially considering the entire library (“the whole kitchen sink”), recog-
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Figure 3.5: Scaling of the GISR computation time with library size. The dashed line
shows a polynomial fit with scaling n4.

nize that a general multi-term relation will have a dominant balance. A small number

of terms, perhaps just two, will have a high correlation. One can do a cheap combina-

toric search of all pairs of terms to identify a dominant balance. Genetic algorithms

could also be useful in determining an initial dominant balance since the number of

terms is constrained. Alternatively, if one knows some of the physics a priori (possi-

bly when debugging numerical simulations), a many-term initial guess can be taken.

2. The reverse of GISR is performed. That is, terms are added to the relation greedily

to decrease the residual as much as possible. The halting condition for this step is

nontrivial. As seen in Figure 3.7, insignificant improvement is achieved in going

from N = 3 to N = 8, but then rapid improvement occurs in the next several terms.

One should halt adding terms when the residual has not meaningfully decreased for

O(10) steps.

3. Once the residual has stopped decreasing, GISR can be applied to the currently in-

cluded terms to remove any spurious terms added in step 2. Sparsification is halted

when the residual increases by some factor γ ∈ [1.05, 1.5].

4. Once a sparse relation is obtained, the dominant term can be permanently removed

from the library and RR restarted from the sublibrary. An arbitrary number of rela-

tions can be identified in this fashion.
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As an example of RR, let us consider the lambda-omega reaction diffusion equations de-

scribing two chemical concentrations u and v.

∂tu = (1− s2)u+ βs2v + σ∇2u (3.17)

∂tv = (1− s2)v − βs2u+ σ∇2v (3.18)

where s2 = u2 + v2. Numerical data is generated on a 256× 256× 512 grid with RK6 and

parameters β = 3 and σ = 0.1. The boundary conditions are n̂ · ∇u = n̂ · ∇v = 0. The

space and time coordinates are in the intervals x, y ∈ [0, 1] and t ∈ [0, 5.12]. Figure 3.6

shows the final state of integration.

0 1
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0

1

(a)
0 1

0

1

-1

0

1

(b)

Figure 3.6: Final state after integration of the lambda-omega reaction diffusion equa-
tions. (a) shows u and (b) shows v.

If no symmetry is assumed, one can expand in polynomial powers to obtain a 21-term

library.

L = {∂tu, ∂tv, u, v, u2, uv, v2, u3, u2v, uv2, v3,

∂xu, ∂
2
xu, ∂yu, ∂

2
yu, ∂x∂yu, ∂xv, ∂

2
xv, ∂yv, ∂

2
yv, ∂x∂yv} (3.19)

G is constructed to be of size 42 × 21 with 6th power weight functions and 64 × 64 ×
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Figure 3.7: Reverse regression curves of the reaction-diffusion library starting from
2-term dominant balances. The red marker indicates where no more terms need added.
The blue marker indicates where no more terms can be removed. (a), (b), and (c) start RR
with Equation 3.20, Equation 3.22, and Equation 3.24, respectively.

64 gridpoints used in each subdomain Ωi. The only weight function considered on each

subdomain is the product of polynomial weights w(τ) = (1 − τ 2)6 in each dimension. A

combinatoric search reveals that the best dominant balance is

∂tv + 4u3 ≈ 0 (3.20)

with a relative residual of 0.15. Figure 3.7 shows that RR initially finds a 12 term relation
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and then is able to remove two spurious terms before halting. The final 10 term relation is

∂tu+ 3∂tv − 3v − u+ 10u3 + 10v2u− 0.1∂2xu− 0.1∂2yu− 0.3∂2xv − 0.3∂2yv = 0.

(3.21)

Coefficients are correct to four decimal places. This is not immediately the generating dy-

namics of Equation 3.18, rather it is a linear combination of ∂tu and ∂tv that annihilates

v3 and vu2. If multiple relations exist in a library, sparse regression often leads to linear

combinations of those relations, especially if this linear combination has a lower value of

∥Gc∥2. The largest term of this relation is ∂tv, which can be removed from the library per-

manently and RR repeated. The new best dominant balance captures the leading dynamics

of u.

∂tu− 2.8 v ≈ 0 (3.22)

As seen in Figure 3.7(b), adding terms results in a 9 term relation that can have one term

removed. Unsurprisingly, the identified relation is none other than the dynamics of u with

the largest term being ∂tu. Coefficients are again correct to four decimal places.

∂tu− u− 3v3 − 3u2v + u3 + uv2 − 0.1∂2xu− 0.1∂2yu = 0 (3.23)

After removing both ∂tu and ∂tv from the library, RR can be performed again to search for

a third relation. It is possible other relations exist that capture the geometry of the attractor.

The dominant algebraic balance is a polynomial in u.

0.75u− u3 ≈ 0 (3.24)

RR does not find a sparse relation from the dominant balance. Adding terms never stops

improving the residual as seen in Figure 3.7(c). GISR likewise halts immediately at the

dense relation.
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3.7 Hyperparameter Selection

The success of sparse regression depends on making intelligent choices for weak formula-

tion hyperparameters: weight function parameters and nondimensionalization via the scales

Sj . To illustrate the effects of various choices, we will consider the Lorenz attractor.

ẋ = σ(y − x) ẏ = x(ρ− z)− y ż = xy − βz (3.25)

with σ = 10, ρ = 28, and β = 8/3. Integrating forward in time converges on the famous

butterfly attractor. The dataset used for model discovery can be seen in Figure 3.8. As a
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Figure 3.8: The Lorenz attractor. (a) A 2D projection of a numerical trajectory generated
with RK4 with dt = 1/200. The initial transient is removed so that the trajectory lies very
close to the attractor. (b) Numerical evidence that T = β−1 is a reasonable timescale for z
dynamics on the attractor.

test of hyperparameter choices, we use a library containing only the dynamics ż. Without

appealing to symmetry, a library up to quadratic order can be used.

L = {∂tz, x, y, z, x2, y2, z2, xy, xz, yz} (3.26)

This library will be used to test different nondimensionalization schemes. Here is a short

list of potential methods.
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1. Ostrich nondimensionalization (OND): The trivial choice is to do nothing. Take

Sj = 1 so that nondimensionalization is skipped and no thinking is required. This

cannot be recommended but represents a useful benchmark.

2. Unity nondimensionalization (UND): This physics-free scheme chooses Sj so that

the norm of each column of G is unity.

3. Simple nondimensionalization (SND): Nondimensionalize the fundamental vari-

ables and coordinates with their means. Sj are defined implicitly by rescaling the

variables from the data before computing any function fj ∈ L.

x′ =
x

⟨x⟩
y′ =

y

⟨y⟩
z′ =

z

⟨z⟩
(3.27)

t′ =
t

T
(3.28)

There are many choices for the timescale T which are sensible. One can either choose

T to be the timescale of a known physical process or use it to fix the velocity scale

⟨|ẋ′|⟩ to be unity. For the Lorenz system, one can take T = β−1 since β is a decay

timescale of the Lorenz system. This scheme was used in [37] by choosing the length

and time scales which set the mean flow and vorticity to unity: ⟨|u|⟩ = ⟨|∇×u|⟩ = 1.

4. Physical nondimensionalization (PND): Each scale Sj ≡ S[fj] can be determined

independently by writing fj as a product of simple terms. Here the scales of terms

are uniquely determined by the rules S[fg] = S[f ]S[g], S[v] = µ[v], and S[∂nb v] =

B−nσ[v]. Here v is a fundamental observable of the system and B is a characteristic

scale associated with the spacetime coordinate b. µ[v] and σ[v] are the mean and

standard deviation of v, respectively. Different time and length scales can be chosen

for each (possibly indexed) field f if desired.

Tf =
σ[f ]

µ[
√
∂tf · ∂tf ]

Lf =
σ[f ]

µ[
√
∇f : ∇f ]

(3.29)
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To test the efficacy of these schemes, we examine the likelihood of discovering the

correct ż with GISR from the library of Equation 3.26. We can measure the probability

of discovering the correct relation as a function of noise and the number of subdomains

(observations) d. Here each variable xi is contaminated with uniform random noise:

xnoisy
i = xi + σsiN (3.30)

where σ is the noise level, si is the standard deviation of each coordinate xi, and N is

uniform random noise from [−1, 1]. Noise is added after the estimation of Sj.

Figure 3.9 shows that the choice of scheme is important. Failing to nondimensionalize

at all via the OND scheme results in very poor noise robustness. Noise levels σ ≳ 0.1

destroy any chance of successful identification of the dynamics. The unphysical UND

scheme is an improvement, allowing noise levels up to σ ≈ 0.25. The physics-informed

nondimensionalizations SND and PND offer far superior robustness, with SND having high

success rates in all cases. This figure also demonstrates a weak dependence on the number

of sampled subdomains d once the system has been overdetermined.

Another hyperparameter that can be tuned is the envelope exponent n of Equation 3.1.

n should be larger than the highest order derivative in the library to ensure success of

integration by parts. For data on a uniform grid, the error in coefficients (stemming from

error in quadrature) scales like h−n where h is the uniform grid spacing [25, 34]. This

scaling suggests the higher the power, the better. To investigate the quadrature error of the

trapezoid rule, consider the following analytic test case integrating cos(2πτ).

In =

∫ 1

−1

dτ
(
1− τ 2

)n
cos (2πτ) =

Γ(n+ 1)Jn+ 1
2
(2π)

πn
(3.31)

rn ≡ |In − Tn|
|In|

(3.32)

where Tn is the trapezoidal rule approximation of In, Γ(n) is Euler’s Gamma function, and
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Figure 3.9: Probability of discovering the correct dynamics of z with various nondi-
mensionalization schemes, noise levels, and number of domains. Integrals for the weak
form are computed with 256 points in time and envelope power 6. This corresponds to
a nondimensional window size of βtΩ ≈ 3.4. Since the library contains 10 terms, each
matrix G is of size d × 10. To estimate the correct discovery probability, subdomains are
chosen randomly 16 times and GISR is performed independently for each sampling with
γ = 1.5. (a) OND. (b) UND. (c) SND. (d) PND.

Jn(x) is a Bessel function of the first kind. Let xn be 32 points on the interval [−1, 1]

spaced uniformly and yn be a nonuniform grid corresponding to xn with interior points

randomly shifted by uniform noise of amplitude 0.01h. As shown in Figure 3.10, this small

modification in grid location makes the error fail to converge exponentially, and raises the

noise floor by orders of magnitude.

There are circumstances where data are not available on a uniform grid without inter-

polation. For example, turbulent channel flow data from the Johns Hopkins Turbulence

Database are simulated on Chebyshev nodes. In these situations, Figure 3.10 should be re-
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Figure 3.10: Scaling of the relative residual of the trapezoid rule. The points on the
nonuniform grid have only been moved up by to 1% of the grid spacing.

produced using a nonuniform grid typical of the available data as a guideline for selecting

n. n can be chosen to minimize the error from quadrature in the uniform direction if such

a direction exists.

3.8 Data-Dependent Weight Functions

The weight functions considered so far have been polynomials and analytic modulations

that have many derivatives vanishing on the boundaries. While such a choice is convenient

for rapid integration, there are some situations where a more complex weight function is

warranted. If w = wenvelopeψ, where ψ is a data-dependent weight function, w retains the

desirable boundary properties of the polynomial factor. Integration by parts becomes more

painful since ψ will need to be numerically differentiated.

The first situation to introduce ψ is when the data contain singularities or discontinu-

ities. Such a case arose in applying SPIDER to the active nematic suspension [37], where

point defects have singularities in the derivatives of the normalized nematic tensor Qij .

The following MATLAB code demonstrates an algorithm for producing a smooth mask ψ

of unwanted data. This mask is exactly zero in regions of unwanted data and has smooth

numerical derivatives if sufficiently many iterations are performed.
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function mask = generate_mask(unwanted)

mask = ones(size(unwanted)); %initialize the mask

for k = 1:10

mask = imgaussfilt(mask,2); %blur the mask

mask(unwanted) = 0; %force the mask to vanish

mask = mask/max(mask); %normalize

end

mask = mask.ˆ10; %Take a high power to smooth

end

The mask ψ is constructed by repeatedly setting ψ to zero in regions of unwanted data,

smoothing ψ, and finally taking a high power to smooth the mask near ψ = 0. Figure 3.11

shows the typical output of this algorithm and evidence that the mask has a well-behaved

numerical derivative.
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-20
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Figure 3.11: A mask and its derivative computed with the MATLAB function gener-
ate mask. Two points at x ≈ 0.3 and x ≈ 0.7 have been flagged as ‘bad’ so that ψ = 0
exactly there. (a) shows the constructed mask and (b) shows the derivative estimated with
a centered difference. Higher derivatives should be evaluated with regularized difference
schemes given the fast variation of ψ.

Another approach that has been used is to define a positive data-dependent quantity

χ that diverges and directly compute a mask from it. In the active nematics data, the
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determinant of the gradient blows up at topological defects.

χ = |∂xnx∂yny − ∂xny∂ynx| (3.33)

A three parameter mask was constructed for the nematic data using a blurring radius σ,

scale α and power β, where all parameters are O(1). Bσ is a Gaussian convolution with

width σ, and ⟨·⟩ denotes an average over available data.

ψ = Bσ

[
tanh

(
α exp(⟨lnBσ(χ)⟩)
10−9 + Bσ(χ)

)β
]

(3.34)

This formula requires only two convolutions and some tuning of algebraic parameters to

achieve satisfactory smoothness. Figure 3.12 shows a typical frame ofQ11 from experiment

and the associated mask ψ that was constructed to remove the defects. A further difficulty

of the nematic symmetry n ≡ −n is that there will be unresolvable discontuities in n. The

resolution of these discontinuities in the weak form will be discussed in Chapter 4 (see

Figure 4.3). Practically, this means one must be careful when finite differencing the field.

Neighboring n’s can be multiplied by −1 in the finite difference stencils to minimize the

absolute value of the derivative.
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Figure 3.12: A mask constructed to mask topological defects. (a) shows a snapshot of
Q11, a component of the nematic tensor Qij . The color bar is arbitrary. Topological defects
can be identified as points with abrupt change in Q11. (b) shows a computed ψ that goes to
zero smoothly around these point-like defects.
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CHAPTER 4

APPLICATIONS OF SPIDER

An immediate application of SPIDER is the validation of numerical simulations. Any

numerical discretization, in particular approximations of derivatives, introduces error into

PDE solutions. SPIDER can independently estimate derivatives in the weak formulation

and validate that data well approximates solutions to a set of governing equations. This will

be demonstrated on numerical simulations of 3D fluid turbulence. SPIDER is primarily de-

signed to identify unknown physical relations from experimental data. This application will

be demonstrated on an experimental microtubule suspension, which exhibits self-driven dy-

namics. A complete PDE model is identified by SPIDER using a sequence of 2D images,

and some consequences of this model are considered.

4.1 Direct Numerical Simulations of Turbulence

The libraries discussed in Chapter 2 for fluid dynamics systems with O(n) symmetry can

be tested on a numerical solution of the 3D Navier-Stokes equation. We use data of a

flow through a rectangular channel from the Johns Hopkins University turbulence database

(http://turbulence.pha.jhu.edu/Channel Flow.aspx) [64]. The database provides velocity

and pressure data with periodic boundary conditions in two directions and no-slip in the

third. The channel dimensions are Lx×Ly×Lz×Lt = 8π×2×3π×26 (in nondimensional

units) and the fields are stored on a spatiotemporal grid of size 2048× 512× 1536× 4000.

The kinematic viscosity is ν = 5×10−5 and the flow is driven by a constant mean pressure

gradient of ⟨∂xp⟩ = 0.0025. The pressure can only be defined locally due to this mean

gradient, so the database stores the spatially periodic pressure with the mean gradient sub-

tracted. Note that the pressure is not essential as the governing equations can be identified

from velocity data alone [36]. Velocity and pressure data was sampled from the middle of
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the channel on a 644 gridpoints. Integration domains are 32 gridpoints on each side. Grid

spacing is uniform in every direction but wall-normal, where a Chebyshev nodes are used.

256 subdomains are sampled, and derivatives are calculated with second order finite differ-

ences where needed. As discussed in chapter 3 (Figure 3.10), the nonuniform grid spacing

changes the convergence of numerical integration. To effectively minimize integration er-

ror of a test function, we choose an envelope power of 8. Nondimensionalization is done

with PND, where the pressure and velocity are assigned separate length and time scales.

The standard deviation of pressure is computed with the periodic pressure.

The scalar library Equation 2.32 contains three single term relations: ∇iui, p∇iui, and

(∇iui)
2 all have exceptionally small magnitudes. Since these terms have been nondimen-

sionalized, they can be compared to unity. The norms of their columns divided by the

square root of the number of samples is 6 × 10−6, 4 × 10−4, and 6 × 10−4, respectively.

This justifies the incompressibility condition ∇iui = 0, which can immediately be pruned

from all following libraries. Furthermore, if a term can be evaluated nicely by adding or

subtracting ∇iui, this will be done without comment.

The application of GISR with γ = 1.5 to the scalar and vector libraries can be seen in

Figure 4.1. GISR first yields a five-term energy relation, and the largest term representing

energy advection is pruned. The second application of GISR finds a pressure Poisson

equation with a small modification (|c8| ≪ 1):

c1∂tE + c2∇i(uiE) + c3ui∇ip+ c4∇2E + c5(∇iuj)(∇iuj) = 0, (4.1)

c6∇2p+ c7∇i(uj∇jui) + c8 = 0, (4.2)

whereE = uiui/2 is the kinetic energy. Removing ∇2p from the library and running GISR

a final time produces a phenomenological transport relation for pressure: ∂tp+0.96ui∇ip+

0.002u2 = 0. The residual of this equation is two orders of magnitude higher than the

previous two, indicating that this is not a valid relation in strong form. However, this
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relation still offers physical insight into effective sources of pressure.

Applying GISR to the vector library L1 identifies a five-term momentum relation.

c9∂tui + c10uj∇jui + c11∇ip+ c12∇2ui = 0 (4.3)

Removing uj∇jui and repeating GISR does not find any physically informative relations.

Table 4.1: Table of identified coefficients. The uncertainties sn are estimated by the stan-
dard deviation of coefficients when regression is done 100 times with different integration
subdomains. The magnitude of terms χn = ∥cngn∥/max{∥cmgm∥} determines how much
each term contributes to the relation.

∂tE ∇i(uiE) ui∇ip ∇2E (∇iuj)(∇iuj)
cn 0.99339152 0.99321 1 −4.94× 10−5 4.851× 10−5

sn 2× 10−5 8× 10−6 5× 10−4 1× 10−7 2× 10−6

χn 1 1 0.07 0.006 0.001

∇2p ∇i(uj∇jui) 1
cn 1 0.999788 0.00038
sn 7× 10−5 5× 10−6 1× 10−5

χn 1 1 0.002

∂tui uj∇jui ∇ip ∇2ui
cn 0.9998556 0.999858 1 −5.003× 10−5

sn 2× 10−7 1.4× 10−6 2× 10−5 2× 10−8

χn 0.98 1 0.06 0.006

The rank-2 libraries will not be discussed for this system, but they will be used in the

case of active nematics. The values of coefficients are given in Table 4.1. The energy

equation has two terms stemming from viscosity: heat-flux ∇2E and viscous dissipation

(∇iuj)(∇iuj). The recovered viscosity coefficients c4 and c5 have 1% and 3% errors,

respectively. This is significantly less accurate than c12 with 0.06% error. The reason

for this is that all derivatives in the Navier-Stokes equation can be transferred onto the

weight function, so numerical differentiation is never used. Unfortunately this is not true
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Figure 4.1: Residual curves for the identified relations. Panel(a) shows the residual
curve for the energy equation. Panel (b) shows the residual curve of the pressure Poisson
equation. Panel (c) shows the residual curve of the phenomenological pressure transport
relation. Panel (d) shows the residual curve of the Navier-Stokes equation.

of the energy equation: the dissipation term (∇iuj)(∇iuj) must be numerically differenced.

We applied a second order centered difference to estimate the derivatives, and this likely

caused coefficient errors two orders of magnitude larger than the Navier-Stokes equation.

The power of the weak formulation is evident, because these numerical errors still do not

prevent the recovery of the governing energy dynamics.

In fact, it is no easy task to recover viscosity in Navier-Stokes when the magnitude

of associated contribution to the relation is χn = 0.0003. This displays the robustness of

GISR in discovering equations with terms over a range of magnitudes. Indeed, a small
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spurious term proportional to unity is discovered in the pressure Poisson equation with a

similar magnitude χn = 0.002 to that of viscous effects in Navier-Stokes. This spurious

term is fitting some discretization error arising from integration on non-uniform domains or

truncation error in the underlying numerical simulation. It is likely discretization error in

the nonuniform direction, since this spurious term is not present if the analysis is repeated

using data near the channel wall instead of in the middle of the domain. Furthermore, the

identified value of c8 will fluctuate if a different spacetime region is sampled from near the

middle of the channel.

Regardless, the size of this spurious term is very small. The dominant balance ∇2p +

∇i(uj∇jui) = 0 can be seen to be a good description of the system in Figure 4.1(b). In fact,

this method finds a sequence of dominant balances that describe the system in successively

coarser ways. In Figure 4.1(d), one can see the increase in the residual due to discarding

terms sequentially from the Navier-Stokes equation. Viscous effects can be neglected to

find the Euler equation ∂tui+uj∇jui+∇ip = 0, and the pressure gradient can be discarded

to find Burger’s equation ∂tui + uj∇jui = 0. The order terms are discarded is determined

by their size χn, with the smallest terms being discarded first. All of these relations are

useful physical descriptions of the sampled data identified by SPIDER at different noise

levels [64].

4.2 Active Nematics

The term “active matter” describes systems made up of self-driven units. Active matter

can display unusual emergent phenomena like spontaneous organized motion [65, 66, 67,

68, 69]. In [37], we applied SPIDER to a particular class of such systems, known as

active nematics [70]. These systems emerge from collections of many highly elongated

apolar interacting units. Examples of active nematics appear in non-biological systems

such as vibrated monolayers of cylindrical rods [71]), but our interest is primarily driven

by biological systems: actin filaments [72], microtubules [73], and bacteria [74] suspended
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in a layer of fluid.

Active nematics exhibit a range of flows featuring topological defects in the orientation

field [73, 75, 76, 77] and a number of hydrodynamic models have been proposed in an at-

tempt to understand experimental observations [78, 79, 80, 81, 82, 83, 84, 85, 70, 86, 87].

These models are variations of the locally equivalent Leslie-Ericksen model [88, 89] and

explicitly nematic Beris-Edwards model [90, 91], which provide a coarse-grained descrip-

tion of microscopic nematic molecules in three spatial dimensions. These models capture

some observed phenomena [92], but they also fail to describe a number of experimental

observations specifically for MT suspensions [76, 77]. The foremost difficulty for hydro-

dynamic models of active nematics is that they contain a dozen or so parameters, few of

which can be directly measured. This makes it difficult to distinguish the effects of using

incorrect parameter values from an altogether incorrect model.

To remedy this situation, SPIDER was applied to two observable fields: the director

field n and the flow velocity u. These observable fields can be seen in Figure 4.2. The

presence of topological defects with ±1/2 charge assures us this system is nematic invari-

ant: n ≡ −n. In Figure 4.2c, there are discontinuous lines where the director field spon-

taneously changes sign. n can be consistently oriented in any defect-free neighborhood,

but there will always be defect-induced discontinuities in any global description. This has

interesting consequences for the weak formulation, as will be discussed.

The nematic field n is extracted with coherence enhanced diffusion filtering (CEDF)

[93, 94]. Figure 4.2b shows that the extracted nematic field is unreliable near defects, so

a mask ψ is constructed to remove defects and their neighborhoods from analysis. There

are discontinuous derivatives and systematic noise in our extracted fields at these locations.

A snapshot of this mask is shown in Figure 4.2c. The numerical flow field u was ex-

tracted with Particle Image Velocimetry (PIV) using DaVis software. The flow field and its

vorticity can be seen in figure Figure 4.2d. Lengths, times, and velocities have been nondi-

mensionalized such that ⟨|u|⟩ = ⟨|∇×u|⟩ = 1. Nematic theories are usually accompanied
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Table 4.2: The summary of the model libraries and their symmetry properties. The
nematic symmetry doubles the number of representations worth studying, although two are
neglected in this work.

Libraries nematic invariant nematic covariant
rank-0 tensor (scalar) L0 L̂0

rank-1 tensor (vector) L1 L̂1

symmetric traceless rank-2 tensor LSTF
2 not studied

antisymmetric rank-2 tensor LAS
2 not studied

by a scalar order parameter. The microtubule density ϕ is the correct scalar observable, but

observations indicate it is saturated away from defects: ϕ ≈ 1. Since we are masking low

density regions, we exclude ϕ from our analysis.

The symmetry group of the system we will use for library construction is O(2)×Z2,

where O(2) is the symmetry group of spatial transformations and Z2 is the nematic trans-

formation n → −n. Since the symmetry group is a direct product, the irreducible represen-

tations are tensor products of irreducible representations of the factors. The representations

of interest for O(2) have been investigated earlier: the scalars, vectors, antisymmetric ten-

sors, and symmetric trace-free tensors. The representations of Z2 are the nematic invariant

(even powers of n) and nematic covariant (odd powers of n). The representations studied

are found in Table 4.2.

The first step of library construction is to find all tree tensors, up to a certain rank,

from the observables and differential operators. The number of tree tensors grows quickly

with rank, so a physics informed cutoff is warranted. The flow is known to be very slow,

so inertial effects are certainly negligible. With this in mind, we constrain tree tensors to

contain a single power of u and ∂t. Viscosity and elasticity will manifest as terms with two

spatial derivatives, so we also constrain tree tensors to only contain up to two gradients.

We will not be interested in terms that mix ∂t and ∇ in this analysis. n is an O(1) field, so
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Figure 4.2: Experimental snapshot and observable fields. (a) An experimental image of
the microtubules. The complete image is shown, with the blue box highlighting a −1/2
topological defect. Panel (b) shows a zoomed-in −1/2 defect and the extracted nematic
field around it. The extracted director field n (blue arrows) is clearly unreliable near topo-
logical defects. (c) Director field n (black arrows) and the mask ψ (color) used to remove
near-defect data. Panel (d) shows the flow field u (black arrows) and the corresponding
vorticity ω = (∇× u)z (color).

no limits are placed on its occurence in tree tensors. The tree tensors T(k) of rank k are

T(0) ∈ {1},

T(1) ∈ {u, ∂tn, ∂tu} ∪ {nT(0)}

T(2) ∈ {u∂tn, ∇n, ∇u} ∪ {nT(1)}

T(3) ∈ {u∇n, ∇∇n, ∇∇u} ∪ {nT(2)}

T(4) ∈ {(∇n)(∇n), (∇u)(∇n), u∇∇n} ∪ {nT(3)}

T(5) ∈ {u(∇n)(∇n)} ∪ {nT(4)}

T(k) ∈ {nT(k−1)}, for k > 5 (4.4)
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If one were to proceed with these tree tensors, a large number of identities would make it

into the final libraries L. These identities stem from the constraint n2 = 1, which eliminates

a degree of freedom from the nematic gradients:

ni∇jni = 0, ni∂tni = 0. (4.5)

This constraint allows the gradient tensor ∇n to be reduced [95], such that the gradient

information is described by a splay scalar s and bend vector bi

∇inj = −nibj + s(δij − ninj). (4.6)

The splay and bend are uniquely defined by s = ∇ · n and b = −(n · ∇)n. The splay s

is nematic-covariant, bi is nematic-invariant, and nibi = 0. The tree tensors can be signif-

icantly simplified with these objects. We define the concept of reduced tree tensors R(k),

which replace gradients ∇inj with their lower-rank projections in the case of identities.

This has the benefit of reducing the rank of tree tensors including this gradient by at least

1.

R(0) ∈ {1, s, s2}

R(1) ∈ {u, ∂tn, ∂tu, b, su, ∇s, sb, s2u} ∪ {nR(0)}

R(2) ∈ {u∂tn, ∇u, ub, ∇b, bb, sub, s∇u, u∇s} ∪ {nR(1)}

R(3) ∈ {∇∇u, ubb, b∇u, u∇b} ∪ {nR(2)}

R(k) ∈ {nR(k−1)} for k > 3. (4.7)

This reduction will not remove all identities from the library, but it eliminates many of

them and simplifies the computation of contractions. For evaluation of library terms, it is
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convenient to introduce the strain-rate Aij , vorticity Ωij , and nematic tensor Qij.

Aij =
1

2
(∇iuj +∇jui) Ωij =

1

2
(∇iuj −∇jui) Qij = ninj (4.8)

Antisymmetrization as done in Ωij will be denoted by T[ij], and the symmetric trace-free

part of a tensor can be denoted with a bar Āij = Aij − (1/2)δijAkk.

Weak-formulation and sparse regression

Integration domains Ωi are chosen with nondimensionalized side length of 2 in space and

time. The hydrodynamic length scales are ∼ 27 points in space and ∼ 32 points in time,

so each integration domain consists of 54 × 54 × 65 = 189, 540 data points, where the

entire data set consists of 128 × 128 × 530 = 8, 683, 520 data points. The number of

integration domains is taken to be 10 times the size of the library to ensure G is sufficiently

overdetermined. Four base weight functions wk were used in each domain Ωi.

w1 = ψχ
∏

(1− x̂2i )
4

w2 = ψχ cos(πx)
∏

(1− x̂2i )
4

w3 = ψχ cos(πy)
∏

(1− x̂2i )
4

w4 = ψχ cos(πt)
∏

(1− x̂2i )
4 (4.9)

where x, y, and t are nondimensionalized and x̂i are rescaled to the canonical interval

[−1, 1]. The sinusoidal weights are included to increase sensitivity to variation in the fields.

ψ is the mask shown in Figure 4.2c that masks defect neighborhoods, and χ is a topological

mask that is independently treated for each library. For nematic invariant libraries χ = 1,

and for nematic covariant libraries, χ will be an odd function of n.

Model discovery for 3D turbulence data was performed by greedy minimization of

∥Gc∥2 in sparse subspaces via GISR. For this system, we will instead use the non-convex
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relative residual Equation 3.11 to rank model performance. Physical relations ought to have

small values for both the absolute residual and the relative residual. To achieve both goals,

the SVD is used to estimate coefficients to minimize the absolute residual, but model mod-

ifications are selected by their impact on the relative residual. Since this residual definition

is not useful for single term models, a modification is made to the denominator when a

single term remains.

ηsingle-term(cn) =
∥gn∥2
∥H∥2

(4.10)

gn is the column of G associated with the single term, and the denominator has been re-

placed with a positive definite scale H, which is the weak form the Frobenius norm of the

tree tensor used in constructing Fn. For example, the normalization for incompressibility

∇iui = 0 will be the weak evaluation

Hk =
1

NkSH

∫
Ωk

√
(∇iuj)(∇iuj), (4.11)

where the normalization factors Nk and SH are identical to those of Equation 3.1. The

off diagonal components of ∇iuj are included in this scale estimation since the sum with

diagonal components alone (∂xux)2+(∂yuy)
2+(∂zuz)

2 is not a rotational scalar. If proper

nondimensionalization has been done, these single-term scales should beO(1). Regression

is halted when η(n−1) > γηn with γ = 1.15.

Nematic-invariant scalar library

There are nine nematic-invariant scalars that can be obtained from even-rank reduced fun-

damental tensors with the same nematic symmetry listed in (Equation 4.7):

L0 = {1, s2, niuis, ∇i(nis), ∇iui, Q̄ijĀij, uibi, bibi, ∇ibi} (4.12)
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Nematic invariant libraries can be integrated with χ = 1. This library contains a single

identity that is identified by GISR with low residual.

∇i(nis+ bi) = 0 (4.13)

The latter term ∇ibi is then pruned. Two parsimonious physical relations are identified via

sparse regression, the incompressibility condition (Equation 4.14) and a relation (Equation 4.15)

between the director and flow fields

∇iui = 0 (4.14)

Q̄ijĀij + c
(1)
1 = 0 (4.15)

where c(1)1 = −0.55 ± 0.3% with the relative residuals of η = 0.03 and η = 0.08, re-

spectively. Note that the coefficient c1 has units of inverse time, and it defines a timescale

comparable to the natural hydrodynamic timescale used in nondimensionalization. Since

∇iui is found to be zero in the region we are sampling, we prune it from all subsequent

libraries. One could in principal also prune Q̄ijĀij , but since this relation is nonstandard,

we keep it to see if a generalization or contradiction is found.

Nematic-covariant scalar library

There are 18 nematic-covariant scalars that can be constructed from even-rank reduced

fundamental tensors:

L̂0 ={s, niui, ni∂tui, ui∂tni, niuis
2, suibi, s∇iui, sQ̄ijĀij, uininj∇js, ui∇is,

ninjnk∇i∇juk, ni∇2ui, ni∇i∇juj, uinib
2, binjĀij, bjniΩij, uinj∇jbi, niui∇jbj},

(4.16)
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where the identity (Equation 4.13) can be used to prune the last term from the library.

All terms in the nematic-covariant scalar library L̂0 have the same branch cuts as n. Fig-

ure 4.3(a) shows the inherited branch cuts in the splay scalar in the lower half of the image.

Model discovery with discontinuous data requires special care, as discussed in section 3.7.

Luckily, these discontinuities can be removed exactly using the topological weight χ men-

tioned in Equation 4.9. We take χ = n; each term is multiplied by n to create nematic

invariant vectors. Figure 4.3(b) shows the x-component of this weight function smoothing

a line discontinuity. This definition of χ effectively embeds L̂0 as a subspace of the nematic

(a) (b)

Figure 4.3: Remedying the branch cuts of the nematic field for weak-form evaluation.
Panel (a) shows the splay scalar s around a topological defect and a visible branch cut.
Panel (b) shows snx, which is nematic invariant and no longer suffers from a line disconti-
nuity. The colorbar is arbitrary.

invariant L1. Only one relation is found in this library:

s
[
Q̄ijĀij + c

(2)
1

]
= 0, (4.17)

where c(2)1 = −0.57±1%. This relation is equivalent to Equation 4.15 as long as c(2)1 = c
(1)
1 ,
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Nematic-covariant vector library

The nematic-covariant vector library should contain the nematodynamics relation including

∂tni. Since |n| = 1, this time derivative should be orthogonal to n, so without loss of

generality, we can restrict our library entirely to vectors orthogonal to n.

L̂1 = P̂⊥{∂tni, sui, ∇is, sbi, Āijnj, Ωijnj, uj∇jni, nj∇jbi}, (4.18)

where the term njujbi has been replaced by its more familiar form uj∇jni appearing as the

advective nonlinearity of the Ericksen-Leslie equation. P̂⊥ projects vectors to be orthog-

onal to ni. The topological mask χ is taken to be the cross product with the nematic field

χ(f) = f × n, since this simultaneously resolves the branch cuts and projects the library

onto the subspace orthogonal to n. No identities are found in this library. Sparse regression

identifies a single parsimonious physical relation (Equation 4.19).

∂tni + c
(1)
2 uj∇jni + c

(1)
3 Ωijnj + c

(1)
4 P̂⊥Āijnj = 0, (4.19)

where c(1)2 = (0.99 ± 0.8%), c(1)3 = (−0.95 ± 0.7%), and c(1)4 = (−0.95 ± 1%). This

relation is formally equivalent to the evolution equation of the Leslie-Ericksen model [89,

88, 96] without relaxation of elastic energy via rotational diffusion with coefficients cr that

are very close to ±1. The relative residual η = 0.08 is quite low and comparable to that of

equation Equation 4.15.

Nematic-invariant vector library

The nematic-invariant vector library would be expected to include a momentum balance

relation, which contains divergences of various stresses. In order to allow elastic effects,

73



this library is allowed to contain divergences of rank-2 tensors ∇jσij .

L1 ={sni, ui, (njuj)ni, ∂tui, ninj∂tuj, bi, uis
2, ninjujs

2, njuj∂tni, niuj∂tnj, snjujbi,

sujbjni, nisQ̄jkĀjk, snj∇iuj, snj∇jui, sni∇juj, ni(njuj)(nk∇ks), uinj∇js,

njuj∇is, njnk∇j∇kui, njnk∇i∇juk, uib
2, b2ujnjni, ujbjbi, biĀjkQ̄jk, bi∇juj,

bj∇jui, bj∇iuj, njujnk∇kbi, ui∇jbj, uj∇ibj, uj∇jbi}

∪ ∇i{Q̄ij, s
2Q̄ij, suinj, sujni, suknkQ̄ij, (nk∇ks)Q̄ij, ni∇js, nj∇is, nisbj, njsbi,

(∇kuk)Q̄ij, (ĀklQ̄kl)Q̄ij, (∇iuk)nknj, (∇juk)nkni, Āij, Ωij, (ukbk)Q̄ij, uknkbinj,

uknkbjni, uibj, ujbi, (∇kbk)Q̄ij, (nk∇kbi)nj, (nk∇kbj)ni, ∇ibj, ∇jbi, b
2Q̄ij, bibj}

(4.20)

This is the largest library considered compared to the other irreducible representations.

Although we are including all possible stress tensors, the contribution from pressure pδij

is a latent field and was not experimentally observed. The effect of this latent field can

be removed by integrating the curl of the vector library [35, 36]. This requires one to

numerically differentiate the mask ψ at least once for every integration. This highlights the

importance of a smooth mask function.

There are a number of identities in this library that will not be listed explicitly. Symbolic

regression identified two parsimonious relations:

(ĀklQ̄kl + c
(3)
1 )sni +∇ip = 0, (4.21)

∇k

[
(ĀlmQ̄lm + c

(4)
1 )Q̄ik + δikp

]
= 0, (4.22)

where c(3)1 = −0.57± 1% and c(4)1 = −0.59± 1%. The relative residual of these relations

η = 0.28 and η = 0.38, respectively, which is due to the high number of derivatives needed

to evaluate these relations.
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Symmetric trace-free tensor library

It is not always convenient to use a bar to denote the symmetric trace-free part of a tensor.

For this section, let us override the symmetrization notation such that T(ij) denotes the

trace-free symmetric part T(ij) = 1
2
(Tij + Tji − δijTkk).

LSTF
2 ={Q̄ij, s

2Q̄ij, ∂tQ̄ij, su(inj), suknkQ̄ij, (nk∇ks)Q̄ij, n(i∇j)s, sn(ibj),

∇kukQ̄ij, (ĀklQ̄kl)Q̄ij, Āij, (ukbk)Q̄ij, uknkb(inj), (∇kbk)Q̄ij,

(nk∇kb(i)nj), (∇ibj)
′, b2Q̄(ij), Āk(iQ̄j)k, b(ibj), u(ibj)}. (4.23)

Note that symmetric trace-free tensors have two independent components (i, j) = (1, 1)

and (1,2), doubling the number of rows in G. Three symbolic identities appear in this

library. They are found with exceptionally low residuals.

Āk(iQ̄j)k = 0,

b(ibj) + b2Q̄(ij) = 0,

uk∇kQ(ij) − 2su(inj) + 2suknkQ(ij) + 2ukbkQ̄(ij) + 2u(ibj) = 0. (4.24)

We use these to discard the last two library terms. Two physical relations are found in

this library, the stress balance relation Equation 4.25 and an evolution equation for the

orientation tensor Equation 4.26.

ĀklQ̄klQij + c
(5)
1 Qij = 0, (4.25)

∂tQij + c
(2)
2 uk∇kQ̄ij + c

(2)
3 (ΩikQ̄kj − Q̄ikΩkj) + c

(2)
4 Āij + c

(2)
5 Qij(ĀklQ̄kl) = 0, (4.26)

where c(2)1 = 1±0.1%, c(2)2 = −0.96±0.1%, c(2)3 = −1.02±0.1%, and c(2)4 = 2.05±0.1%.

These relations have low residuals η = 0.1 and η = 0.09, respectively. For comparison,

the tensor balance between Āij and Q̄ij proposed in Ref. [82] has a much higher residual
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η = 0.67.

Antisymmetric tensor library

Let T[ij] = 1
2
(Tij − Tji) be the antisymmetric part of a rank-2 tensor. Again, we can con-

struct the library of antisymmetric tensors using even-rank reduced fundamental tensors:

LAS
2 ={n[i∂tnj], su[inj], n[i∇j]s, sn[ibj], nkn[i∇j]uk, Ωij, uknkb[inj], u[ibj],

n[i|nk∇kb|j], ∇[ibj]}. (4.27)

This library can be handled in the same way as the nematic-invariant scalar library. In fact,

each tensor has a single degree of freedom (also known as the pseudo-scalar) making the

construction of G completely analogous. We find a single identity

uknkb[inj] + u[ibj] = 0 (4.28)

and a single physical relation again corresponding to the nematodynamics.

n[j∂tni] + c
(3)
2 su[inj] + c

(3)
6 u[ibj] + c

(3)
3 Ωij + c

(3)
4 nkn[i∇j]uk = 0, (4.29)

where c(3)2 = 1.03± 0.2%, c(3)6 = 1.04± 0.9%, c(3)3 = −0.98± 0.5%, and c(4)4 = −1.00±

0.7%. The relative residual for relation (Equation 4.29) is η = 0.05, making it the most

accurate representation of ∂tn that was found.

Discussion

Six tensor libraries were constructed from the two vector fields u and n. Evaluating library

terms and performing sparse regression led to the discovery of nine relations, with at least

one in each tensor space investigated. Figure 4.4 shows the sparsity curves of all discovered

relations.
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Figure 4.4: The relative residual curve as a function of the number of terms in
the relation. The plots corresponding to discovered equations are (a) (Equation 4.14),
(b) (Equation 4.15), (c) (Equation 4.17), (d) (Equation 4.19), (e) (Equation 4.21), (f)
(Equation 4.22), (g) (Equation 4.25), (h) (Equation 4.26), and (i) (Equation 4.29). The red
cross indicates the corresponding parsimonious relation.
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These nine relations are equivalent to a set of three: the incompressibility condition

Equation 4.14, the nematodynamics relation Equation 4.19, and the constant extension

relation Equation 4.15. The physical interpretations of these equations is discussed in [37]

but will be briefly recapped here. The minimal set of equations are presented below for

reference. Note that this is a complete model of the fields u and n when the density is

saturated.

∇iui = 0

ĀijQ̄ij + c1 = 0

∂tni + c2uj∇jni + c3Ωijnj + c4P̂⊥Āijnj = 0

SPIDER only investigates the relations in weak form. Strong form images of these relations

can be seen in Figure 4.8. The incompressibility condition represents mass conservation,

and it is nontrivial that the 2D divergence effectively vanishes away from defects. Since

the incompressiblity condition is expected to hold for the full 3D flow, this tells us that

∂zuz is very small away from defects, and since uz ≈ 0 at the interface, the flow is truly

effectively 2D in the regions studied. However, the strong form suggests this is not the

case near defects, especially +1/2 defects. Visual inspection shows positive divergence at

the heads of such defects, which indicates ∂zuz ̸= 0 there. The flow must become 3D in

some way at these locations, and the 2D incompressibility condition must be generalized.

The nematodynamics equation has the lowest residual in its antisymmetric rank 2 repre-

sentations (equivalent to εij∂tθ) and appears to capture the evolution of the flow field well.

Results of forecasting using this equation can be seen in Figure 4.5. The strong form of

nematodynamics Figure 4.8(c-d) holds well everywhere, including near defects. It likely

does not need to be generalized near defects, although it should probably be cast in terms

of a weighted director field ϕn where ϕ is the microtubule density. It is notable that no
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Figure 4.5: Correlation between the predicted nematic field and the observed nematic
field. Q(t) is the experimentally observed field and Q̃(t) is numerically integrated via
the leapfrog method from the first two frames using the state velocity predicted by Equa-
tion 4.19 using the experimental flow field. ⟨f |g⟩ is the normalized inner product in the
sense of Dirac. The lowest correlation between numerical predictions and experiment is
0.93. This minimum lowers to 0.88 if the constant extension constraint is approximately
solved using experimental boundary conditions for the streamfunction ψ. Note that good
correlation is found even after the correlation with the initial state has completely vanished.

rotational viscosity1 is identified in our analysis in any of the three independently identified

forms of nematodynamics.

Equation 4.15 was an unexpected result with a nice physical interpretation. E = −c1

has units of s−1: it is the extension rate of the flow. In the corotating rest frame of a

point2, the flow is locally extensile with an effectively constant extension rate E . The flow

contracts perpendicular to n and expands parallel to n. This quantity is directly observable

as opposed to the activity coefficient α used to define the active stress σactive
ij = αQij .

If one uses incompressibility to define the streamfunction ψ via u⃗ = ∂yψî − ∂xψĵ, then

Equation 4.15 becomes a second order constraint on ψ.

[
2Q̄xx∂x∂y + Q̄xy(∂

2
y − ∂2x)

]
ψ = g̃ij∂i∂jψ = E (4.30)

g̃ij is an effective metric of signature (+1,−1), so this equation is a wave equation with a

1Rotational viscosity is direct coupling of ∂tn to second spatial derivatives of the director like ∇2n.
2The comoving, corotating frame is defined by xi(t) = xi − uit − Ωijxj , were ui and Ωij are the

instantaneous velocity and vorticity.
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constant source term. This is strikingly different from the usual Stokes

µ∇2ui +∇j(αQij) = 0 (4.31)

used in many effective models of the flow [81]. In the Stokes relation, the differential

operator acting on the flow is isotropic and the source term that introduces anisotropy via

the divergence of the nematic tensor. The Stokes relation when applied as an effective

2D model makes many assumptions: for example the vanishing of any anisotropic viscous

stress, which is described via Leslie viscosities [97]. Suppose n points along the x-axis

such that Qxx = 1/2 and Qxy = 0. The solution to Equation 4.30 is then

ψ(x, y) = Exy + f(x) + g(y), (4.32)

where f and g capture boundary conditions. An immediate difficulty in solving this relation

numerically for nontrivial n is that not all boundary conditions for ψ are compatible with

solutions. Even for the trivial case of uniform n, f(x) and g(y) are completely determined

by boundary conditions on two of the four walls of any rectangular domain.

Numerical solutions to Equation 4.30 with finite difference schemes lead to high fre-

quency oscillations of ψ. Overdetermining Equation 4.30 with a simultaneous regulariza-

tion condition ∇2ψ = 0 effectively minimizes the integral of |∇ψ|2 = |u|2. This regu-

larization is weighted by a small parameter λ to ensure the constant extension constraint

take numerical priority. Solving these in the least squares sense produces smooth stream-

functions that match the constant extension requirement as well as possible. Figure 4.7

shows the results of numerically solving the regularized constraint with λ = 0.001 on a

circle of radius 1 with no-slip boundary conditions. Trivially, the flow fields are consistent

with the symmetries of the driving nematic fields, although some symmetry breaking by

the numerical grid is present in Figure 4.7(b). Nontrivially, the predicted vortex structure

qualitatively matches the vortices observed in experiment for the +1/2 defect. This can be
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compared to flow fields derived by Giomi et al. with the Stokes law Equation 4.31 [79, 81].

The predicted flow for the −1/2 defect is quite different than Giomi’s, and flow pattern

nearest to the defect is not observed in experiment. Note that since there is no length scale

in our identified equations, the length scale of these simulated flows is set by the radius of

the spatial domain. However, in multi-defect configurations the average defect separation

would induce a length scale to facilitate comparison with experiment.

Another insight into these relations can be seen in Figure 4.6. The velocity gradient

∇iuj can be uniquely decomposed into four SO(2) scalars in the presence of a director field:

the divergence ∇ · u, the vorticity ∇× u, the nematic aligned extension rate n · Ā · n, and

the nematic skewed extension rate n× Ā · n. The histogram shows that while the vorticity

has an enormously wide distribution, the divergence and nematic aligned extension rate are

narrow Gaussian-like distributions. The divergence is centered at zero, while the nematic

aligned extension rate is centered around 0.55, as predicted by Equation 4.15. This nematic

aligned extension rate is the only distribution that displays explicit time-reversal symmetry

breaking, since time reversal changes the sign of the velocity gradients. The fact that

these two distributions have similar shapes implies two things. (i) They are not perfect

descriptions and need to be generalized near defects. (ii) The similarity in the width of the

distributions implies they are valid in the same amount of data, which is consistent with

their validity in the same dense nematic regions.

This analysis assumed microtubule density ϕ = 1 is constant in regions considered.

Future work must incorporate ϕ into the model. The dynamics (or constraint) of ϕ should

come from the generalization of the incompressibility condition. Since ϕ is certainly locally

conserved, generalized models should take the form of continuity equations ∂tϕ+∇iji = 0,

where ji is some density current. The constant extension rate will also be generalized,

perhaps to a non-scalar equation to allow simultaneous determination of ϕ,u,n. Work

by Daiyue Sun and myself attempted to extract the density by numerically solving the

system of equations ∂tϕ + ∇i(uiϕ) = 0 or ∂tϕ + ui∇iϕ with GMRES. The field ϕ was
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Figure 4.6: Histogram of flow gradient scalars. The boundaries in space and time have
been removed, as well as regions with ψ < 0.2. The scale of the PDF is arbitrary but
consistent.

subject to the over-determined conditions of mass conservation and proportionality to the

experimental image intensity. These efforts were unsuccessful; the resultant field had either

unphysical variation or a high residual for the continuity equation. It is an open problem

to experimentally measure the microtubule density, even in a normalized sense. Beyond

this difficulty, there are also density fields for the ATP and kinesin motor proteins that have

not been measured. In weak active turbulence with low defect density as studied here, we

believe the assumption of uniform ATP and kinesin density is a good approximation.

An independent model discovery analysis of active nematic turbulence was carried out

by Joshi et al. on an independent experimental setup [98]. Their study has a number of key

differences with my work.

1. While their library was physically motivated, rotational symmetry was not enforced.

For example, coefficients for ux∂xQ and uy∂yQ were not forced to be equal.

2. They examined multiple data sets with varying activity, while our study only focused

on a single timeseries.

3. Their models were ranked with the statistical error 1−R2, in contrast to our relative

residual η.
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4. Their library for the vector equation contained seven terms, in contrast to our O(60).

The library was constructed ad hoc and excluded all elastic effects.

5. Their analysis assumed that ∇2u played an important role in the flow dynamics. This

makes their method incapable of discovering our constant extension constraint. This

highlights the importance of homogeneous regression in model discovery.

Joshi et al. found the same nematodynamics relation Equation 4.19, which is likewise

lacking rotational viscosity. Their regression settled on the curl of Equation 4.31 as the

best momentum relation. While is not equivalent to our constant extension relation, their

results do corroborate the lack of a length scale.
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(a) (b)

(c) (d)

Figure 4.7: Predicted flow around confined topological defects. (a) An ideal +1/2 de-
fect generates two counter-rotating vortices responsible for self-driven motion. (b) An ideal
−1/2 defect generates a hexagonal flow. (c) An experimental flow field in the comoving,
corotating frame of a +1/2 defect. Two counter-rotating vortices are visible. (d) An exper-
imental flow field in the comoving, corotating frame of a −1/2 defect. Alternating vortices
are visible, although perfect hexagonal symmetry is not realized. The velocity is shown
in the comoving, corotating frame since in such a frame Aij locally dominates the flow
structure.
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Figure 4.8: Verification of rela-
tions in strong form. Panel (a)
shows the experimental frame of in-
terest. Panel (b) shows the strong
form of ∇iui, which has fluctua-
tions over small length scales but
no recognizable structure away from
+1/2 defects. Panel (c) shows the
time derivative ∂tθ = n× ∂tn com-
puted by finite differencing the di-
rector field in time, and Panel (d)
shows that same quantity, but calcu-
lated with spatial finite differencing
from Equation 4.19. Panels (e) and
(f) show c

(1)
1 Qxx and ĀklQ̄klQxx of

Equation 4.25. Panels (g) and (h)
show the corresponding xy compo-
nents.
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CHAPTER 5

CONCLUSION

Sparse regression is a powerful tool for equation discovery. SPIDER is a realization of

symbolic regression specifically designed for discovering physical laws and effective ap-

proximations of spatially extended systems. SPIDER is a systematic procedure, with the

physicist specifying symmetries of the problem and a physically-informed cutoff for library

generation. Physics domain knowledge enters into SPIDER in three ways. Assumptions of

locality, smoothness, and translational symmetry constrain PDEs to be local sums tensors

with constant coefficients. Physics knowledge will inform library cutoffs (i.e. assuming

linearity in small valued fields). Physics-informed nondimensionalization improves regres-

sion and allows terms across many scales to be identified. Knowledge of symmetry also

plays a critical role. Enforcing symmetry covariance shrinks libraries and increases the

number of available measurements for identifying each relation. Irreducible representa-

tions prevent the unknowing addition of bad physics into an otherwise accurate relations:

each idea learned about a system is learned independently to reduce bias. The weak for-

mulation of differential equations increases robustness to noise and sidesteps numerical

differentiation in many scenarios. Discontinuities can be masked from analysis, and the

effect of some unobserved fields can be completely removed. Lastly, homogeneous regres-

sion places all library terms on equal footing so that no unwarranted assumptions are made

about the form of models.

This work has explicitly demonstrated the application of SPIDER to two systems with

spatiotemporal variation: 3D fluid turbulence and 2D active nematic turbulence. SPIDER

recovered a complete description of the system in both cases and provided physical in-

sight through effective relations and dominant balances. In the case of active nematics,

the constant extension relation has not been derived from first principles, but it was found
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independently four times as the best relation in various tensor libraries. Future work should

incorporate the microtubule density into models.

SPIDER seems particularly well-poised to discover emergent hydrodynamic models of

discrete interacting units if simulations or experiments are feasible. Work is ongoing to

find PDE descriptions of flocking produced by the microscopic Vicsek model [99]. The

results of SPIDER can be compared with existing hydrodynamic predictions [100, 101,

102]. Even more fundamental systems like collections of particles interacting via Newton’s

laws should be investigated. SPIDER should be able to learn the equation of state through

momentum transport relations from a sufficient number of particles. Perhaps symmetry-

covariant corrections to Navier-Stokes can be learned in the low particle, high Knudsen

number limit. Promising work in this direction has been done on kinetic simulations of

plasmas [103] and interacting particles with Brownian noise [27].

While SPIDER was built for physics, symbolic regression on covariant tensor libraries

has direct applications to optimization. Algorithms like the Newton-Raphson method [104]

and the super-universal regularized Newton method [105] have GL(n,R) and O(n) covari-

ance, respectively. One can build libraries with these symmetries and find data-driven

accelerated optimization schemes fine-tuned to particular problems. Ongoing work with

Nissa Watkins has shown that Newton’s method can be modified with additional tensors to

accelerate convergence when near roots at the cost of lowering global convergence proba-

bility.

Many different sparse regression techniques have been proposed for model discovery,

and they widely vary in speed and robustness. There is unfortunately no silver bullet for this

problem. The SVD-based homogeneous regression techniques are robust for PDEs with

coefficients across several orders of magnitude, but it is best to use a variety of methods

and compare their results. There is no reason that good sparse regression techniques should

be based on exactly minimizing a cost function. Sparsity promoting penalties like ℓ0 and

ℓ1 regularization can introduce hyper-parameters that must be tuned carefully. Both the
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sequential thresholding of SINDy and the SVD-based regression discussed here are instead

iterative algorithms with halting conditions. The hyper-parameter γ of our SVD-based

methods is dimensionless and should always be O(1).

An open programming challenge remains to write software capable of automatically

constructing libraries from a user supplied list of tensor fields, differential operators, and

the symmetry group. Daniel Gurevich’s implementation of SPIDER [57] automates library

generation for L0 and L1 assuming O(n) covariance. In my MATLAB code [57], the library

is manually specified. This is inconvenient for libraries beyond O(20) terms, although it

allows rapid prototyping of small libraries.

A second challenge is to extend SPIDER to consider nonlocal interactions in space and

time. SPIDER could potentially learn symmetry-covariant kernels if a basis is provided.

The choice of basis for kernels is quite arbitrary, and libraries sizes would greatly increase.

Furthermore, evaluating such kernels in weak form would require numerical integration

in large dimensions. The MATLAB implementation of SPIDER [106] has computed six-

dimensional integrals for the study of conformal invariance in electromagnetism. Regres-

sion algorithms must be tuned to carefully handle these large libraries.
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Appendices



APPENDIX A

SPIDER CODE

The most significant deliverable of my work has been MATLAB code [106] for carrying

out the SPIDER algorithm. An independent Python implementation has been written by

Daniel Gurevich [57]. While the construction of libraries is left as a job for the physicist,

picking subdomains, efficient weak-form evaluations, and sparse regression have all been

packaged. I would like to thank Jason Marfey, Daiyue Sun, and Carlos Silva Filho, Daniel

Gurevich, Patrick Reinbold, and Roman Grigoriev for their direct and indirect contributions

to this code. The code is available at github.com/mgolden30/SPIDER with some example

implementations for an experimental 2D flow [36] and a 2+1D simulation of homogeneous

quantum electrodynamic turbulence.

Since any code-specific tutorial will quickly become out of date, I will provide a con-

ceptual overview. Each tensor library (scalar, vector, antisymmetric rank-2, ...) is its own

MATLAB script. Running this script will fill memory with many objects, the important

ones being

• G - the integrated library matrix used in model discovery.

• labels - a cell of strings with the LaTeX representations of each library term. It is not

important that the string be in LaTeX, this is just for convenience.

• scales - the vector of scales Sj associated with each library term fj . Since G has been

divided by Sj , the coefficient vector obtained by Gc = 0 will need multiplied by Sj

to return to physical units.

One can always write a wrapper function to return these three objects to keep memory

clean. The script sparse regression.m then has several options for regression including

combinatoric searches, GISR, and Reverse Regression.
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Another important note is there is a primary weak-form integration function: SPI-

DER integrate. This function integrates a single scalar field with an arbitrary polynomial

weight and handling arbitrary integration by parts. Integration for vectors and rank-2 ten-

sors can be done by writing wrapper functions, which just calls the scalar integration routine

on each component, and perhaps computing some weighted sum.
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