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SUMMARY 

 

 

 

Establishing and maintaining successful communication stands as a critical 

prerequisite for achieving the goals of inducing and studying advanced computation in 

small-scale living neuronal networks.  The following work establishes a novel and 

effective method for communicating arbitrary “sensory” input information to cultures of 

living neurons, living neuronal networks (LNNs), consisting of approximately 20 000 rat 

cortical neurons plated on microelectrode arrays (MEAs) containing 60 electrodes.  The 

sensory coding algorithm determines a set of effective codes (symbols), comprised of 

different spatio-temporal patterns of electrical stimulation, to which the LNN consistently 

produces unique responses to each individual symbol.  The algorithm evaluates random 

sequences of candidate electrical stimulation patterns for evoked-response separability 

and reliability via a support vector machine (SVM)-based method, and employing the 

separability results as a fitness metric, a genetic algorithm subsequently constructs 

subsets of highly separable symbols (input patterns).  Sustainable input/output (I/O) bit 

rates of 16–20 bits per second with a 10% symbol error rate resulted for time periods of 

approximately ten minutes to over ten hours.  To further evaluate the resulting code sets’ 

performance, I used the system to encode approximately ten hours of sinusoidal input 

into stimulation patterns that the algorithm selected and was able to recover the original 

signal with a normalized root-mean-square error of 20–30% using only the recorded LNN 

responses and trained SVM classifiers.  Response variations over the course of several 

hours observed in the results of the sine wave I/O experiment suggest that the LNNs may 

retain some short-term memory of the previous input sample and undergo neuroplastic 
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changes in the context of repeated stimulation with sensory coding patterns identified by 

the algorithm. 
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CHAPTER I 

 

 

INTRODUCTION 

 

1.1 Background 

Biological neuronal systems possess vast computational power still unparalleled in state-

of-the-art artificial neural networks (ANNs).  They demonstrate an unmatched ability to 

solve pattern recognition and non-linear control problems.  Elucidating the mechanisms 

underlying such abilities promises to not only answer key questions of neuroscience and 

computational intelligence but also to promote the development of new ANNs with vastly 

superior computational abilities. 

Although in vivo neuronal systems undeniably learn to perform exceedingly 

complex computations, it is extremely difficult to achieve the level of fine control over 

development, learning, and monitoring possible with small-scale networks growing on 

microelectrode arrays (MEAs).  MEA technology permits researchers to potentially 

employ neuronal cultures to perform arbitrary computations, limited only by the interface 

properties, hardware, and software.  By plating living neuronal networks (LNNs) on 

MEAs, researchers can form a bidirectional interface between living neurons and 

computer systems, permitting extensive study of neuronal systems at the small network 

level (Taketani & Baudry, 2010).  Via electrodes embedded in the MEA substrate, we 

can monitor and stimulate cultures for extended periods.  MEA technology has already 

facilitated the study of basic learning and computation mechanisms in a closed-loop 
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environment (Bakkum, Chao, & Potter, 2008) (Demarse & Dockendorf, 2005) (Demarse, 

Wagenaar, Blau, & Potter, 2001). 

 Before one can begin to fully examine many intriguing aspects of neuronal 

computation in these systems, however, it is essential to develop an effective method for 

communicating “sensory” inputs to the LNN and extracting state outputs from the LNN.  

Previous works examining computation in MEAs have presented various input/output 

(I/O) schemes, but they fall short of demonstrating a technique for communicating 

complex, high-bandwidth information to and from LNNs for extended periods (Bakkum 

et al., 2008) (Hafizovic et al., 2007) (Dockendorf, Park, He, Príncipe, & DeMarse, 2009) 

(Ruaro, Bonifazi, & Torre, 2005).  The static goals of prior closed-loop studies, such as 

controlling a robot’s movements among a few degrees of freedom, only require a very 

low I/O data rate (less than one bit per second) for communication with the LNN 

(Bakkum et al., 2008).  However, highly desired computational goals such as time-series 

prediction and control of non-linear, non-stationary dynamical systems demand the 

development of new communication schemes capable of sustaining significantly greater 

data rates.  In developing effective input coding algorithms, one must address not only 

the issue of finding stimuli capable of communicating effectively with LNNs but must 

also overcome the limitations inherent in using an I/O interface (the MEA) that 

significantly subsamples the spatial resolution of the LNN. 

Previous researchers have applied liquid state machine (LSM) theory in order to 

better understand the necessary conditions for communicating and computing with LNNs 

(Hafizovic et al., 2007) (Dockendorf et al., 2009).  Furthermore, LSMs have been 

effectively applied to solve a wide range of demanding prediction problems, including 
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non-linear power system state control (Venayagamoorthy, 2007).  I conducted this 

research as part of a collaboration aimed at improving biologically inspired artificial 

neural networks (BIANNs) being explored for power systems control (NSF EFRI-COPN 

Project #0836017).  In the LSM context, the LNN serves as the “reservoir” (see 

Chapter 3.2 for explanation).  However, unlike typical LSMs in which ANNs commonly 

function as the reservoir and one has the ability to transfer input data to each “neuron” 

precisely and independently, LNNs on MEAs may only receive inputs represented by 

sequences of electrode-specific stimulation.  Each electrode transfers its corresponding 

input pulse through an electrolyte solution (the neurons’ growth and support media) to 

tens to hundreds of neurons with inherently different weights for each receiving neuron.  

The value of the weights is unknown and beyond the user’s control.  The electrode 

interface also limits output, with each electrode receiving a weighted sum of the 

membrane voltages of nearby neurons (typically one to five cells) (Chao, Bakkum, & 

Potter, 2007).  Furthermore, the neurons influenced by stimulation of a particular 

electrode do not necessarily match the neurons from which the electrode is receiving 

signals. 

A useful sensory coding scheme must employ an algorithm capable of adapting to 

each specific culture and changing over time since every culture has a unique 

connectivity network, relationship to the MEA electrodes, and dynamics.  As a 

consequence of neuroplasticity and other biological factors influencing LNN 

connectivity, a network’s responses to a particular input vary over time.  Consequently, 

sensory codes that are excellent for information transfer at one moment may be less 

effective later.  When finding sets of effective sensory codes, the algorithm must 
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therefore assess not only response separability but also reliability over time.  For some 

types of experiments, if the LNN ceases to respond effectively to certain input patterns 

(begins producing irregular responses to a pattern or starts generating indistinguishable 

responses for certain patterns), a method could replace them with new, more effective 

patterns.  However, it is important to establish if, although the LNN responses to a 

particular pattern set drift over time, the capacity of the LNN to produce a diverse 

repertoire of responses to the candidate patterns persists.  If it does not, such a pattern 

replacement technique would not be as useful.  Moving beyond the analysis of short-term 

reliability involved in initially forming effective sensory input pattern sets, I also present 

results characterizing pattern set reliability over time lengths much longer than the initial 

training period — up to ten hours. 

Finally, in order to truly harness the computational potential of LNNs, future 

applications require advancing beyond only using the neurons as a reservoir and actually 

controlling the LNN’s plasticity and memory to perform computations.  As a result, ideal 

input patterns should evoke neither highly inconsistent, random responses nor completely 

repeatable responses:  If the LNN state response is always identical to a given input 

pattern regardless of what preceded it, there would be no readable memory in the 

network.  Although the induction of short-term memory is not a specific goal of this 

project, the data analysis of the sine wave I/O experiment assesses the influence of the 

prior input on the LNN’s response to the present input. 

1.2 Primary Research Aims and Accomplishments 

The following work establishes a novel and effective method for communicating 

arbitrary “sensory” input information to LNNs consisting of approximately 20 000 rat 
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cortical neurons plated on MEAs containing 60 electrodes.  The sensory coding algorithm 

determines a set of effective codes (symbols), comprised of different spatio-temporal 

patterns of electrical stimulation, to which the LNN consistently produces unique 

responses to each individual symbol.  The algorithm evaluates random sequences of 

candidate electrical stimulation patterns for evoked-response separability and reliability 

via a support vector machine (SVM)-based method, and employing the separability 

results as a fitness metric, a genetic algorithm subsequently constructs subsets of highly 

separable symbols (input patterns).  Sustainable input/output (I/O) bit rates of 16–20 bits 

per second with a 10% symbol error rate resulted for time periods of approximately ten 

minutes to over ten hours.  To further evaluate the resulting code sets’ performance, I 

used the system to encode approximately ten hours of sinusoidal input into stimulation 

patterns the algorithm selected and was able to recover the original signal with a 

normalized root-mean-square error of 20–30% using only the recorded LNN responses 

and trained SVM classifiers.  Response variations over the course of several hours 

observed in the results of the sine wave I/O experiment suggest that the LNNs may retain 

some short-term memory of the previous input sample and undergo neuroplastic changes 

in the context of repeated stimulation with sensory coding patterns identified by the 

algorithm. 
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CHAPTER II 

 

 

LABORATORY METHODS 

 

 

2.1   Neuronal Cell Cultures 

I enzymatically and mechanically dissociated cells from E18 (embryotic day 18) rat 

cortices to obtain a target density of approximately 2 500 cell/μL of medium 

(approximately 500 cells/mm
2
) and then layered the neurons onto laminin-coated 60-

electrode (59 recording/stimulation electrodes plus one ground) Multichannel Systems 

MEAs (30 μm diameter titanium nitride electrodes in a square grid with 200 μm spacing) 

(Bakkum et al., 2008) (Hales, Rolston, & Potter, 2010) (Potter & Demarse, 2001).  I 

plated and grew cells in Jimbo’s medium (containing 10% equine serum (Brewer, 

Torricelli, Evege, & Price, 1993), sodium pyruvate, insulin, and GlutaMAX™) (Jimbo & 

Kawana, 1992) (Potter, Wagenaar, & Demarse, 2005) (Wagenaar, Nadasdy, & Potter, 

2006).  When not in use, I stored the LNNs in an incubator at 35
o
C with 5% CO2, 9% O2, 

and 65% relative humidity in Teflon
®
-membrane sealed MEAs (Potter & Demarse, 

2001).  I performed experiments during three to six weeks in vitro on cultures of 

approximately 20 000 living neurons.  All animals were euthanized in accordance with 

Georgia Institute of Technology’s IACUC protocol. 

2.2   Data Acquisition 

The customized electrophysiology system, NeuroRighter (Rolston, n.d.), (Rolston, Gross, 

& Potter, 2009a) allows for versatile low-latency closed-loop experiments (Rolston, 
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Gross, & Potter, 2009b). The hardware for stimulation and recording includes a 

Multichannel Systems MEA60 preamp to which the MEA is directly connected.  The 

amplified MEA output, containing neural signals, passes through custom signal 

conditioning interface boards before terminating onto two National Instruments™ (NI) 

PCIe-6259 data acquisition cards (32 analog input channels each) installed in a PC.  The 

stimulation output originates from the computer from a PCIe-6259 card via its four 

analog outputs and then passes through custom interface boards, multiplexer headstages, 

and into the MEA.  The PCIe-6259 cards’ digital outputs control the multiplexers.  

Independent recording and stimulation is possible from all 59 electrodes but cannot occur 

simultaneously. 

2.3   Stimulus Artifact Suppression Techniques 

Stimulus artifacts in the LNN recording system present a formidable obstacle to reliable 

data collection and analysis for these types of experiments.  The system includes several 

techniques to ensure the recorded results accurately reflect neuronal activity.  

NeuroRighter incorporates band pass filtering and thresholding to detect spikes.  In 

addition, NeuroRighter includes post-processing using the SALPA (subtraction of 

artifacts by local polynomial approximation) algorithm  (Rolston, Gross, & Potter, 

2009a), a variable time-constant polynomial curve fit used to subtract large voltage 

changes due to stimulation (Wagenaar & Potter, 2002).  The real-time SALPA algorithm 

in NeuroRighter effectively suppresses a large amount of stimulation artifacts (Rolston, 

Gross, & Potter, 2009a) (Wagenaar & Potter, 2002), and further processing removes 

spikes with greater than 300 μV peak-peak amplitudes. 
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CHAPTER III 

 

 

SENSORY INPUT ENCODING AND OPTIMIZATION 

METHODS 

 

 

Figure 1:  Sensory code optimization overview 

3.1   Overview 

Figure 1 presents a flowchart of the overall sensory code optimization system.  The 

Neural Coder block takes as input both a digital signal, represented by an array of integer 

sample values, and a set of stimulation pattern definitions used to map each of the 

signal’s sample values to specific LNN stimulation patterns consisting of a unique 

electrode sequence and frequency.  For the pattern optimization stage, the mappings 

correspond to a pool of n candidate patterns chosen randomly from a range of 
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biologically reasonable stimulation frequencies and electrode sequences of a preset length 

(typically four).  The input signal is a random integer sequence drawn from a uniform 

distribution on the interval [0, n – 1]; each integer represents a different pattern in the 

candidate pool of n patterns. 

In the subsequent stages, the NeuroRighter system stimulates the MEA on which 

the LNN is living based on the Neural Coder output; each individual electrode stimulus 

consists of a biphasic square pulse.  NeuroRighter performs real-time spike detection in 

software.  Offline analysis programs I implemented in MATLAB first perform leaky 

integration on the detected spikes and sample the results to produce data feature vectors, 

which attempt to capture the meaningful spatio-temporal information contained in the 

spike responses to each input pattern (“Leaky Integration & Sampling” box in Figure 1).  

A multi-class support vector machine (SVM) then builds a model based on the responses 

to a portion of the response data.  Using the model, the SVM classifier attempts to 

classify the remaining data, and the mean classification accuracy serves as the metric for 

assessing response separability and reliability of candidate pattern sets (bottom row of 

Figure 1). 

An SVM training algorithm builds a model used to separate the feature vectors 

(based on the LNN spike responses) into categories associated with the different input 

patterns.  A hyperplane separates the data, represented by points in a high-dimensional 

space transformed by a kernel function, into two distinct regions.  In order to achieve 

classification into more than two categories, a common approach (and used in this 

research as implemented by LIBSVM) is to train a set of binary classifiers (one for each 

category) such that each attempts to maximally separate the feature vectors belonging to 
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its particular class from those belonging to all other classes.  When applying the multi-

class model after its construction, each binary classifier attempts to identify a given 

unknown feature vector, and the output is defined as the binary classifier with the largest 

graded response (winner-takes-all approach) (Chang & Lin, 2001).  I chose to use SVM 

classifiers based on their flexibility, ability to perform non-linear classification, well-

documented success in computational biology (Schölkopf, Tsuda, & Vert, 2004), and use 

by previous researchers studying input response separability in LNNs on MEAs 

(Hafizovic et al., 2007).  Despite their superiority in many respects, a substantial 

drawback is the computational complexity, especially when applying them to multi-class 

problems and using non-linear kernels.  However, I was able to mitigate the impact of 

computational complexity by using a CPU cluster (see Chapters 3.4–3.6 for more detail). 

3.2   Liquid State Machine Background 

The computational power of an LSM is derived from and dependent on the presence of a 

reservoir capable of computing a very large number of non-linear functions on the input 

signal.  Given that input information is properly encoded for a particular reservoir, and 

the reservoir possesses sufficiently rich non-linear dynamics, complex non-linear systems 

can be modeled and predictions obtained using only linear combinations of the LSM state 

(Maass, Natschläger, & Markram, 2002).   In order to effectively encode an input signal 

for the LSM, a representation must be determined such that input patterns representing 

different states in the system being modeled consistently evoke separable 

(distinguishable) responses in the reservoir (the separation property of LSMs) (Maass et 

al., 2002).  I designed the algorithm discussed in the following sections to find highly 

separable subsets of candidate input patterns tested in random order. 
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3.3    Experimental Protocol for Testing Candidate Input Patterns and Reading the 

Liquid State 

The experimental protocol for testing and evaluating the efficacy of input coding patterns 

consisted of initially stimulating the reservoir with random trains of symbols comprised 

of different spatio-temporal patterns.  Each input pattern (symbol) is composed of a 

unique sequence of (typically four) electrodes stimulated at a specific frequency between 

15 and 55 Hz.  I structured the stimulation as interleaved symbols and spaces with 

symbol length varying from 55–200 ms and an inter-symbol delay of 100 ms, unless 

noted otherwise.  For the results presented, the corresponding mean stimulation 

frequency across the MEA is approximately 13–26 Hz, which is fast enough to 

substantially reduce spontaneous bursting activity (widespread, synchronized neuronal 

firing) that could disrupt meaningful information transfer (Wagenaar, Madhavan, Pine, & 

Potter, 2005) (Madhavan, Chao, Wagenaar, Bakkum, & Potter, 2006).  The stimulation 

waveform consists of 400 µs voltage-controlled biphasic square pulses with a peak-to-

peak amplitude of 0.7 V (Wagenaar, Pine, & Potter, 2004). 

The experimental input pattern training phase consists of thousands of 

stimulations with candidate input patterns (30–100 trials per unique symbol) chosen at 

random on a uniform distribution from a total set of 100–400 patterns (100 unless 

otherwise noted).  Detected spikes from the response period following stimulation with 

each input symbol pass through a leaky integrator function, Equation 1, whose output is 

sampled at 16 evenly spaced time intervals five milliseconds apart.  Such an approach is 

consistent with commonly used techniques for extracting responses from LSMs and 

LNNs (Hafizovic et al., 2007) (Dockendorf et al., 2009) (Maass et al., 2002) (Jaeger, 

Lukosevicius, Popovici, & Siewert, 2007). 
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For liquid state (LS) readout, I implemented leaky integration using the equation,  

      ∑           
  

,                (1) 

in which xi(t) are the values of the LS readout function over time for each electrode i.  

The sj values in the summation are the spike occurrence times relative to the start of the 

response region for each spike, j, detected in the particular response period.  The time 

constant, τ = 60 ms, limits the memory of the output to a physiologically relevant range 

(Hafizovic et al., 2007).  Each stimulation trial corresponds to 59 LS outputs, one per 

electrode.  Since 16 samples comprise each electrode’s integrator output and there are 59 

readout electrodes, every response produces a 944-dimensional vector. 

3.4   Liquid State Readout and SVM Parameter Optimization 

I determined leaky integration and SVM parameters based on the results of varying them 

over reasonable ranges and comparing separability performance results.  I tested the 

leaky integration time constant, τ, over a range of 5–100 ms, and found 60 ms to be 

generally optimal.  In addition, I varied the number of samples taken from the LS 

response period from one to 32, inclusive, in powers of two.  Results improved 

substantially up to 16 samples, and no significant classification accuracy improvement 

occurred beyond 16 samples.  Utilizing more samples (and therefore more SVM input 

features) significantly increases computation time and memory requirements; hence, I 

chose 16 samples.  Figure 2  shows the relative performance for different combinations of 

the leaky integration time constant and the portion of the 100 ms response period used for 

LS output (starting at the beginning of the window).  Pixel colors indicate performance, 

with the red end of the spectrum representing better results.  More specifically, the colors 

correspond to the percentage of candidate pattern pairs with less than 10% decoding error 
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out all combinations of the 100 candidate patterns (using the trained SVM classifier).  

The top portion of  Figure 2 shows the mean results over approximately three hours of 

data collected in Experiments 1 and 2 using Culture A (see Table 1 for more 

information). 

 

Figure 2:  Leaky integration parameter optimization 
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Figure 2:  Leaky integration parameter optimization 

I also selected the SVM kernel and corresponding parameters to achieve the most 

effective separation of evoked responses to different inputs.  I tested the following 

kernels:  linear, quadratic, third-order polynomial, forth-order polynomial, radial basis 
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              ,                 (2) 

in which the data vectors (LS responses) comprise u and v, and γ and k0 represent the 

kernel parameters.  Via a grid search approach, I found the optimal values to be as 

follows:  C = 16 (cost parameter of C-SVC SVM), γ = (1 / number of features) = 
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1/944 ≈ 1.06 • 10
-3

, and k0 = 0.  Although these parameters are not the best for every 

experiment, I fixed their values across all results in order to maintain consistency while 

sacrificing little performance. 

3.5   Evaluation of Separability via an SVM Classifier 

After conducting the experiments described in Chapter 4.1, I used offline analysis 

software to assess the separability and reliability of candidate input encoding patterns.  I 

used the open source SVM package, LIBSVM 3.1, to solve the multiclass SVM training 

and classification problem employed to evaluate separability as follows (Chang & Lin, 

2001).  My analysis software randomly selects one-third of the response data to use for 

training and subsequently attempts classification on the remaining two-thirds.  Repeated 

random sub-sampling cross-validation is used in order to eliminate the bias that might 

occur from only choosing one random training and classification set (Chang & Lin, 2001) 

(Geisser, 1993).  Cross-validation reduces variance and protects against Type III 

statistical errors (Mosteller, 1948).  My algorithm randomly reselects the training and 

testing groups 30 times (chosen based on the minimum number required to produce 

negligible variance) and then calculates the overall mean performance.  I evaluated 

separability performance by calculating the mean classification accuracy for each 

particular set of patterns evaluated.  Classification accuracy 

(1 − probability of symbol error) is defined as the ratio of the number of symbols 

correctly identified to the total number tested. 
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3.6     Pattern Set Optimization via a Genetic Algorithm  

From each initial candidate set of patterns, I applied a genetic algorithm (Fraser, 1957) to 

find subsets of patterns which reliably evoke separable responses.  The genetic algorithm 

determines size n subsets of the most separable patterns from the remaining patterns in 

the following manner:  First, it assesses separability between all pairwise combinations 

(n = 2) of the candidate patterns.  It subsequently selects the most separable subsets to 

serve as the parent sets for forming the next generation, pattern sets of size (n + 1).  Mean 

classification accuracy serves as the fitness function.  Next generation candidate sets of 

(n + 1) patterns are bred from the most separable of the size n subsets by appending a 

single additional pattern chosen from the set of candidate patterns.  My software 

evaluates all combinations of new pattern sets subject to these fitness constraints (the 

next generation) and repeats the process to produce subsequent generations until the 

desired set size is attained, the separability performance drops below a certain threshold, 

or the computation time has been exhausted (depending on the application). 

3.7   Parallel Computing 

Due to the immense computational requirements of executing the sensory code 

optimization algorithm, I parallelized and executed the software via MATLAB 

Distributed Computing Server™ on a 64-CPU-core cluster at the Georgia Institute of 

Technology Laboratory for Neuroengineering.  The large number of test pattern sets for 

each particular set size (generation) can be independently evaluated for separability; 

parallelizing this aspect of the algorithm significantly improves execution speed.  

Computational speed increases almost linearly with the number of CPU cores.  
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CHAPTER IV 

 

 

SENSORY CODE OPTIMIZATION EXPERIMENTS AND 

RESULTS 

 

 

4.1   Sensory Code Optimization Experiments 

The following figures present long-term pattern separability data collected from four 

different cultures in seven experiments.  For all experiments, I used the same 100-

candidate pattern sets with 100 ms inter-pattern delays except for the experiment on 

Culture D, in which I used 400 candidate patterns with 50 ms delays.  Each long-term 

experiment consists of numerous separate subsections of 10.7 minutes for all experiments 

except for the protocol employing 10 ms delays, in which subsections last 20.8 minutes, 

and the 400-candidate-pattern protocol, in which subsections last 50.3 minutes.  The 

candidate pattern pool remained constant through each long-term experiment, but I 

recalculated the most separable pattern subsets for each experimental subsection, 

corresponding to each point in the figures of Chapter 4.2.  Refer to Table 1 for more 

details on the parameters and conditions associated with each experiment presented in the 

following section.  The mean spike rate is the culture-wide average detected spike rate 

during the experiment, and the “burstiness index” (BI) is defined as the following:  It is a 

value normalized between zero and one such that zero indicates no bursts, and one 

indicates all spikes occurred within bursts.  The BI algorithm determines the fraction of 

total spikes in an experiment that occurred in the 15% most active non-overlapping one-

second windows (Wagenaar, Pine, & Potter, 2006). 
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Table 1:  Parameters for Long-Term Sensory Coding Experiments 

Expt.#, 
Culture 

Weeks 
in vitro 

Candidates 
Tested 

Inter-
Pattern 
Delay 
(ms) 

# of Trials 
Per 

Pattern 
Per Run 

Time 
Per 
Run 

(min.) 

Total 
Time 

(hours) 

Mean Spike 
Rate (Hz); 
Burstiness 
Index (BI) 

Plot 
Symbol 

1, A 3 100 100 30 10.7 9.0 272;  0.17 ● 

2, A 3 100 100 30 10.7 9.5 196;  0.23 ● 

3, C 3 100 100 30 10.7 3.8 23.5;  0.33 + 

4, B 4 100 100 30 10.7 9.5 17.6;  0.43 □ 

5, A 5 100 10 100 20.8 12.1 298;  0.10 ○ 

6, D 5 400 50 100 50.3 12.5 156;  0.08 Δ, X 

7, A 6 100 100 30 10.7 17.8 200;  0.25 ● 

 

4.2   Sensory Code Optimization Results 

Figure 3 presents the sizes of the largest pattern sets whose mean classification accuracy 

is greater than or equal to 90%. 

 

Figure 3:  Long-Term input coding analysis with constrained error rate (<10%) 
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Figure 4 displays the results from the perspective of constraining the target set size 

instead of separability:  The plot shows mean classification accuracies for the best 16-

pattern sets found in each subsection (point). 

 

Figure 4:  Long-Term input coding analysis with constrained pattern set size (16 patterns) 

Figure 5 displays the bit rates corresponding to the input schemes determined by the 

sensory coding algorithm as it varies over time.  I calculated the bit rate using the 

following equation: 

                                          .        (3) 

I computed the symbol rate used in Equation 3 by taking the reciprocal of the mean time 

required for the symbols’ stimulation sequences (varies depending on the symbol) and the 

inter-symbol delay (fixed for a particular experiment). 
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Figure 5:  Long-Term input coding bit rate performance with error rate of ≈10% 

Culture A consistently produced the best separability results (when correcting for the 

increased symbol rate used in the experiment on Culture D).  The culture was highly 

active and living on an MEA with excellent quality electrodes (based on impedance 

measurements and SNR).  Shortening the inter-symbol delay from 100 ms to 10 ms 

significantly reduced performance, especially when viewed from the vantage point of 

symbol error rate versus set size.  However, when considering the overall bit rate, 

performance did not decline nearly as much due to the higher symbol rate, but the 10 ms 

delay case clearly resulted in a much smaller set of separable patterns given the same 

number of initial candidates.  The results from Culture D are intriguing since the culture 

had a spontaneous average firing rate that was several times lower than that of Culture A 

and had poorer quality MEA electrodes but increased its firing rate and performed 

reasonably well using the 400 candidate pattern set with 50 ms inter-pattern delays.  

Figure 6 displays another facet of the seven experimental data sets discussed in this 
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section.  For each of the seven experiments shown in Table 1 (see Table 1 for legend), 

Figure 6 shows the average over the experiment subsections (time points plotted in 

Figures 3–5) of the mean classification accuracy values for the most separable subset of 

candidate patterns the genetic algorithm constructed for each symbol set size evaluated.  

The separability appears to decline more linearly with increasing symbol set size for 

Culture A (the best-performing, most active culture — represented by solid circle 

markers in Figure 6), whereas for the least active cultures (Cultures B and C), the decline 

more closely resembles exponential decay. 

 

Figure 6:  Separability versus symbol set size 

In an effort to determine what factors might affect bit rate, I computed the spike 

rate and “burstiness” index (BI) for each subsection of each experiment.  The spike rate is 
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presented in Figure 5 — using Equation 3 and an acceptable symbol error rate of 

approximately 10%.  In general, within a particular experiment and culture, the bit rate 

did not correlate strongly with spike rate or BI; however, across different cultures, higher 

bit rates correlated with higher spike rates and lower BI values.  Figure 7 shows the lack 

of correlation between bit rate and spike rate along with BI within each of the seven 

experiments discussed (refer to Table 1).  The bottom right plot of Figure 7A and 

Figure 7B shows that there is, however, an overall positive correlation between a 

culture’s mean spike rate and its bit rate and a negative correlation between its BI and its 

bit rate.  I computed the values in these plots (square markers) by averaging the bit rate, 

spike rate, and BI values over the time course of each of the seven experiments: Hence, 

each square marker represents the mean of the values plotted for each experiment in the 

other plots. 

The results indicate that more active cultures and/or stimulation patterns that 

evoke more spiking activity are capable of sustaining a higher communication data rate 

using the methods explored in this research.  In addition, the results show that greater 

bursting activity negatively impacts communication, which is in accordance with 

previous experiments showing that bursting undermines phenomena related to 

computation and learning in LNNs (Madhavan et al., 2006) (Wagenaar et al., 2005).  By 

constructing my candidate stimulation patterns and random test signals to maintain a 

culture-wide stimulation frequency of 13–26 Hz (see Chapter 3.3), I most likely was able 

to substantially reduce bursting (Wagenaar, Pine, et al., 2006), but using the frequency 

constraints did not quiet bursting nearly as well in the less healthy LNNs, Cultures B and 

C. 
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Figure 7A:  Bit rate versus activity (spike rate) 
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Figure 7B:  Bit rate versus “burstiness” 
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CHAPTER V 

 

 

LONG-TERM COMMUNICATION WITH LIVING 

NEURONAL NETWORKS 

 

 

5.1   Input Encoding and Readout of a Sine Wave via an LNN 

After establishing an effective method for determining effective sensory input pattern 

sets, I performed experiments to evaluate the ability to read a sensory input signal 

represented using the sensory coding technique described in Chapter 4.  During the initial 

input pattern optimization, I stimulated the MEA for 10.7 minutes with 100 candidates 

(same method as described in Chapter 4.1).  I executed the sensory coding algorithm on 

the results and found a set of 16 input patterns whose corresponding evoked responses 

were distinguishable by the trained SVM classifier 91% of the time.  I then used these 

patterns to represent the sample values of a 0.16 Hz sine wave sampled at 4 Hz with 

4 bits per sample.  I mapped integer amplitude values ∊ [0, 15] to input patterns such that 

patterns that evoked larger amounts of spiking activity (on average) represent larger input 

values. 



26 
 

 

Figure 8:  Pattern set used to encode sine wave input 

Figure 8 shows the MEA electrode locations of the 16 most separable patterns 

(91% mean classification accuracy) identified from a test set of 100 candidate patterns 

based on the results of a 10.7-minute pattern optimization experiment on Culture A.  

Sequences of four electrodes marked with the same color (Figure 8) comprise each 

pattern I used to represent a particular input value.  The final electrode in each sequence 

has a “+” marker superimposed to set it apart since it contributes greater influence on 

response separability because the response window contains directly evoked action 

potentials (dAPs) elicited by stimulating that electrode.  The color bar on the right of the 

plot indicates the input signal values represented by each particular pattern.  Larger 

valued colors (as specified on the color bar) correspond to patterns that evoked greater 

amounts of spiking activity in the LNN (during the initial sensory code optimization 

phase).  I then used the resulting sensory-encoded sine wave to stimulate the LNN 

continuously for 10.3 hours via NeuroRighter. 
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Figure 9:  Sine wave I/O in LNN 

A decoder must translate neural spiking responses into meaningful output data.  

Previous closed loop learning experiments in LNNs used the center of activity trajectory 

(CAT) to represent network output (Chao et al., 2007).  The CAT approach translates the 

LNN electrical activity into a two-dimensional vector reflecting the spatially weighted 

average position of electrode activity.  The CAT approach reduces high-dimensional 

LNN activity to two dimensional output samples, losing fine spatio-temporal structure.  

Consequently, I employed a new output decoding method using trained multi-class SVM 

classifiers. 

The following experimental results support the effectiveness of the SVM-based 

decoding method.  I trained the decoder on the first 25 minutes of LS response data and 

then used it to decode the sine wave input from the LNN responses to the encoded 

sensory input (sine wave).  My trained decoder achieved readout with relatively low 
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appear to indicate that certain decoding errors are more common, such trends typically 

persist only over a few seconds to a few minutes of data and are therefore not 

representative of the overall symbol confusion statistics.  In Figure 10, the normalized 

mean error rate (blue), and symbol error rate (red) indicate degradation in decoding 

accuracy over time as the LNN state drifts.  However, retraining the detector periodically 

(approximately every two hours) maintained much more accurate decoding over the 

course of approximately ten hours without requiring any changes in stimulation patterns.  

In fact, the error decreased, indicating that the input patterns representing the sine wave 

evoked more separable and/or reliable responses over time. 

 

Figure 10:  Sine wave readout error over the course of 10.3 hours 

The sensory coding algorithm clearly demonstrated its effectiveness for encoding 

basic sensory inputs such as the sine wave, but as network activity and responses drift 

over time, one must retrain the detector to maintain accurate decoding.  Such LNN state 

drift would most likely produce changes in the “meaning” to the network of each input 

pattern over long time periods, disrupting potential computations. 

0 2 4 6 8 10
0

20

40

60

80

100

Time (Hours)

E
rr

o
r 

(%
)

LNN Sine Wave Readout Error vs. Time

 

 

Symbol Error Rate (no retraining)

Symbol Error Rate (retraining)

Mean Error (no retraining)

Mean Error (retraining)



29 
 

 

 

0
.5

1
1
.5

2
2
.5

3
3
.5

4
4
.5

5
5
.5

2468

1
0

1
2

1
4

1
6

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

Sine Wave 

Value 

Mean Response to Stimulus Pattern for 

Each Test Period (Start – End (hours)) 
   0 – 2     2 – 4     4 – 6     6 – 8    8 – 10 

Detection Error Rate for 

Each Test Period 
0                                       1 

 

0 

  

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 

Figure 11:  Changes over time in mean response to patterns representing sine wave values 

 

 

1 2 3 4 5

2

4

6

8

10

12

14

16



30 
 

Figure 11 presents detail on the dynamics of the LNN responses to the input 

patterns encoding the sine wave.  The numbers in the left column label the sine wave 

value represented by a particular input.  The middle column presents the mean MEA 

activity in the response period following stimulation by each pattern.   Each square plot in 

the five columns within the middle column shows the mean responses to stimulation with 

a particular input pattern (indicated by the values in the first column) over a two-hour 

time interval in the experiment (approximate start and end times of each interval are 

indicated at the top of the middle column).  I computed the mean activity levels by 

summing the sampled liquid state vectors for each response to a particular input pattern 

for each individual electrode over time and then averaging these values for all the 

responses to that input present in the specified time interval.  In order to allow 

comparison of the changes in magnitude of the response over the time intervals for the 

same input pattern, I have presented the mean responses for each pattern with values 

normalized between zero and one (the color bar at the top of the right column shows the 

color mapping).  Zero indicates the least activity, and one indicates the greatest activity 

within each row of the figure.  The right column shows the symbol error rate associated 

with each input pattern when using the SVM-based decoder retrained during the first 20 

minutes of each interval (training region data excluded from decoding results).  The error 

rates shown correspond to the same two-hour intervals plotted in the middle column and 

use the same color mapping with zero corresponding to 0% symbol error rate, and one 

corresponding to a 100% symbol error rate. 

Overall, the LNN responses to particular inputs do not change significantly for the 

strong majority of the input patterns, which is beneficial for maintaining a stable 
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encoding scheme.  Although the changes in responses that did occur caused the input 

pattern set to evoke more separable responses (based on improved decoding performance 

after retraining the classifier) over the course of the experiment (see Figure 10), further 

studies are necessary to establish whether a neuroplastic tendency, characteristic of 

learning, is driving this behavior or if it is the result of random response variations.  In 

either case, this algorithm, combined with the type of analysis presented in Figures 10–

11, could be used to provide extremely useful feedback to a closed-loop input pattern set 

optimization algorithm in which individual patterns that do not perform well would be 

removed and replaced by new patterns whose mean evoked responses are expected to 

differ substantially from those of the current set (producing greater separability). 

The third column of Figure 11 clearly shows that certain patterns were much more 

likely to be incorrectly decoded:  In future studies one could introduce an additional 

constraint on the sensory mapping algorithm to encode similarly valued samples to 

patterns that are less separable in order to reduce the impact of decoding errors.  Since 

such a constraint competes with the goal of mapping input signal samples to patterns in 

order of evoked response magnitude, one must address the resultant optimization 

problem.  It is also interesting to note that later in the experiment, pattern separability and 

therefore decoding accuracy (when retrained) increased substantially.  This may indicate 

some degree of adaptation to the input stimuli, but further experiments are necessary to 

extensively evaluate neuroplasticity under these circumstances. 
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5.2   Short-Term Memory 

Figure 12 shows the results of attempting to determine the previous sine wave sample 

value given only the LNN response to the present sample.  I obtained the results by 

training separate binary SVM classifiers for each sample using the two possible 

preceding samples for each present sample in the data set as the SVM classes.  The leaky 

integrated spiking responses in the 100 ms following the present samples comprise the 

training data.  I used the mean classification accuracy results presented for five two-hour 

data sets of sine wave-based stimulation collected successively from Culture A (the 

experimental data presented in Chapter 5.1).  The code set remained constant.  I 

performed SVM training and classification on one-third and two-thirds of the data, 

respectively, separately for each experiment and then averaged the results.  The control 

(black bars) represents the chance case against which to compare the classification 

accuracy:  The control varies depending on the sample due to the varying distributions of 

preceding samples for a particular sample value.  The same value always precedes some 

of the samples (values 3–6 and 10–12), preventing the previously described analysis so I 

removed them from the results presented in Figure 12; all remaining sine wave values 

have only two possible values preceding them, making a binary SVM classifier sufficient.  

Nearly half of the tested patterns (sine wave values) were associated with significant 

classification accuracy for their preceding sample value (150–300 ms in the past) given 

only the responses to the present input, providing some evidence for short-term memory.  

I observed greater memory persistence for samples associated with input stimulation 

patterns evoking large amounts of activity in the network, but there is not enough data to 

draw robust conclusions about this relationship. 
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Figure 12:  Short-term memory of previous sample value during sine wave I/O experiment.  

Error bars (blue) indicate ± one standard deviation. 
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CHAPTER VI 

 

 

APPLICATIONS AND FUTURE WORK 

 

6.1   Future Work 

Researchers conducting future studies could implement a closed-loop pattern 

optimization system to enhance the functionality of the sensory coding algorithm and 

provide a mechanism for quickly adapting to changing LNN responses.  One could 

further explore characteristics of pattern separability through new experiments and use 

the results to enhance such a closed-loop system.  Further investigation of neuroplastic 

changes occurring during long-term stimulation as well as short-term memory could help 

answer long-standing questions about learning in living neuronal systems and lead to 

further improvement of sensory coding schemes. 

Additionally, input preprocessing may enhance neural information processing and 

learning.  For example, certain types of sensory inputs may benefit from being presented 

to the LNN as stimuli driven by wavelet coefficients of the signals (instead of time 

samples), and input preprocessing based on time-delay embeddings such as the Takens’ 

delay embedding theorem (Takens, 1981) might also be useful when one intends to use 

the LNN to perform prediction on the input.  Sensory pathways in living brains are 

thought to employ multistage processing of sensory input before it reaches regions of 

high-level pattern recognition and processing (Olshausen & Field, 1997):  Certain types 

of preprocessing of input data prior to its translation into spatio-temporal electrode 

stimulation sequences could potentially emulate parts of the preprocessing of sensory 

inputs thought to occur in living brains. 
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6.2   Power Systems Control Application 

The development of high-bandwidth input/output schemes for LNNs serves as a critical 

prerequisite for the application of LNN-based computation to power system control 

problems, which are beyond the reach of present computational systems but expected to 

become more tractable with improved BIANNs (NSF EFRI-COPN Project #0836017).  

The future goal of power systems control serves as an excellent application with which to 

evaluate the performance of LNN-based computation on non-linear, non-stationary 

dynamical systems.  Traditional control systems techniques have been used extensively, 

and ANNs have been explored more recently to control power systems 

(Venayagamoorthy & Harley, 2002) (Ray & Venayagamoorthy, 2008).  However, 

consumption demands are significantly increasing and variations in sources and loads are 

becoming more rapid and substantial.  Unlike the smaller range of fluctuation produced 

by traditional sources of power, emerging sources like wind and solar farms produce 

much wider output variation over time (Venayagamoorthy, 2009) (Saber & 

Venayagamoorthy, 2009). 

Recent studies have successfully applied ANN-based intelligent control 

algorithms to certain power system control problems (Park, Harley, & Venayagamoorthy, 

2003) (Shamsollahi & Malik, 1999) (Flynn et al., 1997).  However, the best ANNs have 

not been able to achieve the degree of optimal control and significant scalability found in 

biological networks.  The development of effective methods for communicating inputs 

into LNNs and decoding their liquid state information may help guide successful 

approaches for communicating with artificial spiking neural networks that our colleagues 

are exploring as a potentially superior replacement for traditional adaptive control 

techniques. 
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Regarding the application of the sensory coding algorithm explored in this 

research to potential future experiments involving attempts to train LNNs to perform 

prediction and control of various functions and systems, including those associated with 

power system dynamics, the sensory coding algorithm demonstrates a substantial ability 

to effectively encode such data for an LNN plated on an MEA.  Although the bit rates 

achieved are less than those typical for real-time prediction/control using ANNs, such a 

result is expected and acceptable:  The purpose of such research is to demonstrate that 

LNNs are capable of learning to perform prediction and control even if it we cannot use 

real-time data.  The ultimate goal is obviously not to use LNNs on MEAs to perform real-

time control of complex power systems but instead to understand and duplicate the 

superior learning methods of the LNNs in ANNs, which supercomputers could 

potentially simulate at much faster speeds, achieving real-time prediction and control.  If 

successful, this would combine the learning advantages of living neuronal systems with 

the speed advantages of electronic computing systems, producing a new generation of 

intelligent systems with widespread applications. 
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CHAPTER VII 

 

 

CONCLUSIONS 
 

My work has established and applied a method for successfully finding spatio-temporal 

electrical stimulation patterns capable of reliably transferring sensory input information 

to and from LNNs growing on MEAs.  Furthermore, I have developed an effective LNN 

state readout approach and assessed potential plasticity and memory effects present in the 

LNNs in the context of the I/O scheme.  These findings will enhance the ability of 

researchers to communicate with small living neuronal cultures, bringing us closer to 

achieving and studying complex computation in LNNs.  Furthermore, the understanding 

gained from these techniques may directly enhance the usability of biologically inspired 

artificial spiking neural networks. 

  



38 
 

REFERENCES 

 

 

Bakkum, D. J., Chao, Z. C., & Potter, S. M. (2008). Spatio-temporal electrical stimuli 

shape behavior of an embodied cortical network in a goal-directed learning task. 

Journal of Neural Engineering, 5(3), 310-323. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/18714127 

Brewer, G. J., Torricelli, J. R., Evege, E. K., & Price, P. J. (1993). Optimized survival of 

hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium 

combination. Journal of Neuroscience Research, 35(5), 567-76. Wiley Online 

Library. doi:10.1002/jnr.490350513 

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: A Library for Support Vector Machines. 

Retrieved April 30, 2011, from http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

Chao, Z. C., Bakkum, D. J., & Potter, S. M. (2007). Region-specific network plasticity in 

simulated and living cortical networks: comparison of the center of activity 

trajectory (CAT) with other statistics. Journal of Neural Engineering, 4(3), 294-308. 

NIH Public Access. doi:10.1088/1741-2560/4/3/015 

Demarse, T. B., & Dockendorf, K. P. (2005). Adaptive flight control with living neuronal 

networks on microelectrode arrays. Proceedings 2005 IEEE International Joint 

Conference on Neural Networks 2005, 3, 1548-1551. IEEE. 

doi:10.1109/IJCNN.2005.1556108 

Demarse, T. B., Wagenaar, D. A., Blau, A. W., & Potter, S. M. (2001). The Neurally 

Controlled Animat: Biological Brains Acting with Simulated Bodies. Autonomous 

Robots, 11(3), 305-310. Springer. doi:10.1023/A:1012407611130 

Dockendorf, K. P., Park, I., He, P., Príncipe, J. C., & DeMarse, T. B. (2009). Liquid state 

machines and cultured cortical networks: the separation property. Bio Systems, 

95(2), 90-7. doi:10.1016/j.biosystems.2008.08.001 

Flynn, D., McLoone, S., Irwin, G. W., Brown, M. D., Swidenbank, E., & Hogg, B. W. 

(1997). Neural control of turbogenerator systems. Automatica, 33(11), 1961-1973. 

doi:10.1016/S0005-1098(97)00142-8 

Fraser, A. S. (1957). Simulation of genetic systems by automatic digital computers. 

Australian Journal of Biological Sciences, 10, 484-491. 

Geisser, S. (1993). Predictive Inference (p. 240). New York, NY: Chapman and 

Hall/CRC; 1 edition. Retrieved from http://www.amazon.com/Predictive-Inference-



39 
 

Monographs-Statistics-

Probability/dp/0412034719/ref=sr_1_1?ie=UTF8&qid=1322266489&sr=8-1 

Hafizovic, S., Heer, F., Ugniwenko, T., Frey, U., Blau, A. W., Ziegler, C., & Hierlemann, 

A. (2007). A CMOS-based microelectrode array for interaction with neuronal 

cultures. Journal of neuroscience methods, 164(1), 93-106. 

doi:10.1016/j.jneumeth.2007.04.006 

Hales, C. M., Rolston, J. D., & Potter, S. M. (2010). How to culture, record and stimulate 

neuronal networks on micro-electrode arrays (MEAs). Journal of visualized 

experiments JoVE. JoVE. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/20517199 

Jaeger, H., Lukosevicius, M., Popovici, D., & Siewert, U. (2007). Optimization and 

applications of echo state networks with leaky-integrator neurons. Neural Networks, 

20(3), 335-352. Elsevier. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/17517495 

Jimbo, Y., & Kawana, A. (1992). Electrical stimulation and recording from cultured 

neurons using a planar electrode array. Bioelectrochemistry and Bioenergetics, 

29(2), 193-204. doi:10.1016/0302-4598(92)80067-Q 

Maass, W., Natschläger, T., & Markram, H. (2002). Real-Time Computing Without 

Stable States. Neural Computation, 14, 2531-2560. 

Madhavan, R., Chao, Z. C., Wagenaar, D. A., Bakkum, D. J., & Potter, S. M. (2006). 

Multi-site stimulation quiets network-wide spontaneous bursts and enhances 

functional plasticity in cultured cortical networks. Conference Proceedings of the 

International Conference of IEEE Engineering in Medicine and Biology Society, 1, 

1593-1596. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17946052 

Mosteller, F. (1948). A k-Sample Slippage Test for an Extreme Population. The Annals of 

Mathematical Statistics, 19(1), 58-65. Institute of Mathematical Statistics. Retrieved 

from http://www.jstor.org/stable/2236056 

Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A 

strategy employed by V1? Vision Research, 37(23), 3311-3325. Elsevier. 

doi:10.1016/S0042-6989(97)00169-7 

Park, J.-W., Harley, R. G., & Venayagamoorthy, G. K. (2003). Adaptive-critic-based 

optimal neurocontrol for synchronous generators in a power system using MLP/RBF 

neural networks. IEEE Transactions on Industry Applications, 39(5), 1529-1540. 

doi:10.1109/TIA.2003.816493 



40 
 

Potter, S. M., & Demarse, T. B. (2001). A new approach to neural cell culture for long-

term studies. Journal of Neuroscience Methods, 110(1-2), 17-24. Elsevier. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/11564520 

Potter, S. M., Wagenaar, D. A., & Demarse, T. B. (2005). Closing the loop : stimulation 

feedback systems for embodied mea cultures. (M. Taketani & M. Baudry, Eds.)Data 

Processing, 215–242. Springer. doi:10.1007/0-387-25858-2_9 

Ray, S., & Venayagamoorthy, G. K. (2008). Real-time implementation of a 

measurement-based adaptive wide-area control system considering communication 

delays. Engineering and Technology, 2(1), 62- 70. doi:10.1049/iet-gtd 

Rolston, J. D. (n.d.). Creating NeuroRighter. Retrieved November 25, 2011, from 

http://groups.google.com/group/neurorighter-users?pli=1 

Rolston, J. D., Gross, R. E., & Potter, S. M. (2009a). A Low-Cost Multielectrode System 

for Data Acquisition Enabling Real-Time Closed-Loop Processing with Rapid 

Recovery from Stimulation Artifacts. Frontiers in neuroengineering, 2(July), 17. 

Frontiers Research Foundation. Retrieved from 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2722905&tool=pmcentr

ez&rendertype=abstract 

Rolston, J. D., Gross, R. E., & Potter, S. M. (2009b). NeuroRighter: closed-loop 

multielectrode stimulation and recording for freely moving animals and cell 

cultures. Conference Proceedings of the International Conference of IEEE 

Engineering in Medicine and Biology Society, 2009, 6489-6492. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/19964440 

Ruaro, M. E., Bonifazi, P., & Torre, V. (2005). Toward the neurocomputer: image 

processing and pattern recognition with neuronal cultures. IEEE Transactions on 

Biomedical Engineering, 52(3), 371-383. IEEE. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/15759567 

Saber, A. Y., & Venayagamoorthy, G. K. (2009). One million plug-in electric vehicles on 

the road by 2015. 2009 12th International IEEE Conference on Intelligent 

Transportation Systems, (april), 1-7. IEEE. doi:10.1109/ITSC.2009.5309691 

Schölkopf, B., Tsuda, K., & Vert, J.-P. (2004). Kernel Methods in Computational Biology 

(p. 400). MIT Press. Retrieved from 

http://books.google.com/books?id=SwAooknaMXgC&pgis=1 

Shamsollahi, P., & Malik, O. P. (1999). Real-time implementation and experimental 

studies of a neural adaptive power system stabilizer. IEEE Transactions on Energy 

Conversion, 14(3), 737-742. doi:10.1109/60.790944 



41 
 

Takens, F. (1981). Detecting strange attractors in turbulence. (D. A. Rand & L. S. Young, 

Eds.)Dynamical Systems and Turbulence, 898(1), 366-381. Springer. 

doi:10.1007/BFb0091903 

Taketani, M., & Baudry, M. (2010). Advances in Network Electrophysiology: Using 

Multi-Electrode Arrays (Vol. 2010, p. 496). Springer. Retrieved from 

http://books.google.com/books?id=4nOkcQAACAAJ&pgis=1 

Venayagamoorthy, G. K. (2007). Online design of an echo state network based wide area 

monitor for a multimachine power system. Neural Networks, 20(3), 404-413. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17513088 

Venayagamoorthy, G. K. (2009). Potentials and promises of computational intelligence 

for smart grids. 2009 IEEE Power Energy Society General Meeting, 1-6. IEEE. 

doi:10.1109/PES.2009.5275179 

Venayagamoorthy, G. K., & Harley, R. G. (2002). A continually online trained 

neurocontroller for excitation and turbine control of a turbogenerator. IEEE 

Transactions on Energy Conversion, 16(3), 1263-1267. IEEE. Retrieved from 

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1003445 

Wagenaar, D. A., Madhavan, R., Pine, J., & Potter, S. M. (2005). Controlling bursting in 

cortical cultures with closed-loop multi-electrode stimulation. Journal of 

Neuroscience, 25(3), 680-688. Soc Neuroscience. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/15659605 

Wagenaar, D. A., Nadasdy, Z., & Potter, S. M. (2006). Persistent dynamic attractors in 

activity patterns of cultured neuronal networks. Physical Review E - Statistical, 

Nonlinear and Soft Matter Physics, 73(5 Pt 1), 051907. APS. Retrieved from 

http://link.aps.org/doi/10.1103/PhysRevE.73.051907 

Wagenaar, D. A., Pine, J., & Potter, S. M. (2004). Effective parameters for stimulation of 

dissociated cultures using multi-electrode arrays. Journal of Neuroscience Methods, 

138(1-2), 27-37. Elsevier. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/15325108 

Wagenaar, D. A., Pine, J., & Potter, S. M. (2006). An extremely rich repertoire of 

bursting patterns during the development of cortical cultures. BMC neuroscience, 

7(1), 11. doi:10.1186/1471-2202-7-11 

Wagenaar, D. A., & Potter, S. M. (2002). Real-time multi-channel stimulus artifact 

suppression by local curve fitting. Journal of Neuroscience Methods, 120(2), 113-

120. Elsevier. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12385761 

 


