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SUMMARY 

 

Many studies are being conducted on the different properties of organic aerosols 

(OA-s) as it is first emitted into the atmosphere and the consequent changes in these 

characteristics as OA-s age and secondary organic aerosol (SOA) is produced and in turn 

aged.  This thesis attempts to address some of the significant and emerging issues that 

deal with the formation and transformation of water-soluble organic aerosols in the 

atmosphere.   

First, a proven method for the measurement of gaseous sulfuric acid, negative ion 

chemical ionization mass spectrometry (CIMS), has been modified for fast and sensitive 

measurements of particulate phase sulfuric acid (i.e. sulfate).  The modifications 

implemented on this system have also been the subject of preliminary verifications for 

measurements of aerosol phase oxalic acid (an organic acid). 

Second, chemical and physical characteristics of a wide range of biomass-burning 

plumes intercepted by the NASA DC-8 research aircraft during the three phases of the 

ARCTAS experiment are presented here.  A statistical summary of the emission (or 

enhancement) ratios relative to carbon monoxide is presented for various gaseous and 

aerosol species.  Extensive investigations of fire plume evolutions were undertaken 

during the second part of this field campaign. For four distinct Boreal fires, where plumes 

were intercepted by the aircraft over a wide range of down-wind distances, emissions of 

various compounds and the effect of aging on them were investigated in detail.  No clear 

evidence of production of secondary compounds (e.g., WSOC and OA) was observed.  

High variability in emissions between the different plumes may have obscured any clear 



 xv 

evidence of changes in the mass of various species with increasing plume age.  Also, the 

lack if tropospheric oxidizing species (e.g., O3 and OH) may have contributed to the lack 

of SOA formation.  Individual intercepts of smoke plumes in this study were segregated 

by source regions.   The normalized excess mixing ratios (NEMR-s) of some gaseous and 

aerosol compounds were compared.  The NEMRs of most species had a high degree of 

variability that tended to obscure any significant differences between various smoke 

sources; however, some trends were observed.   

Smoke plumes associated with long-range transport from Asia and Siberia 

showed enhanced sulfate and HCN levels.  The fire plumes that were influenced by urban 

emissions (e.g., intercepted over California) had higher levels of CO2, CH4, NOy and 

toluene.  Overall, pronounced differences were observed when comparing the plumes 

subject to long-range transport to the ones that were intercepted closer to the fire sources 

(e.g., the plumes intercepted over California and the ones from Canadian Boreal forest 

fires).  Additionally, when comparing the plumes near the fires, the ones that were 

influenced by urban emissions (some of the plumes encountered over California) 

displayed more distinct characteristics than the ones that were less or not influenced by 

urban emissions. 

 Data from Teflon filters from the Southeastern United States were analyzed.  The 

filter data show that the fraction of water-soluble light absorbing carbonaceous material is 

larger in biomass burning plumes regardless of the urban or rural location of the 

collection of the filter.  Indeed, the slope of light absorption at 365 nm (Abs365) vs. 

WSOC was about 3.5 times higher in filters that were influenced by biomass burning 

plumes.  Also, when the filters were separated into biomass burning and non-biomass 



 xvi 

burning categories, the slopes of Abs365 vs. WSOC for each category were uniform for all 

the sites where the filters were collected. 

Finally, a new method of simultaneous online measurement of water-soluble 

aerosol light absorption and WSOC has been presented.  The results from an online study 

are in reasonable agreement with filter studies, although the measurements were collected 

during two different years and using two different techniques.  The hourly averages of the 

online data showed that the morning rush hour production of WSOC coincides with an 

increase in Abs365.  However, there was no corresponding increase in Abs365 for the 

daytime photochemical production of WSOC. 

As new challenges arise in the area of organic aerosols and their production and 

fate, the results of this thesis can be used to augment our knowledge of the field and 

provide information that can be useful in future research.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. Why Are Aerosols Important? 

 Atmospheric aerosols can have important local, regional and global impacts.  

Ambient aerosols have been extensively studied because of their significant influence on 

air pollution, human health [Kroll and Seinfeld, 2008] and climate [e.g., Saxena et al. 

1995; Malm et al. 1996; Ramanathan et al., 2001, Charlson et al., 1992].  On a local 

scale, urban air pollution from anthropogenic emissions (e.g., vehicular exhaust, biofuel 

or anthropogenic biomass burning and industrial emissions) can cause significant adverse 

health [e.g., Brimblecombe and Bowle , 1992; Studnicka et al., 1993; Harrison and Yin, 

2000; Pope et al., 2002] or socioeconomic (e.g., reduction in visibility in national parks 

[Malm, 1989]) effects.  On a regional and global scale, aerosols can be transported over 

long distances and affect the ambient conditions of places far away from the location of 

their original emission [Ravishankara, 1997].  Particulate matter in the atmosphere can 

influence cloud condensation nuclei (CCN) and cloud albedo; thus, they can significantly 

affect global climate [Charlson et al., 1992; Penner et al., 2001; Ramanathan et al., 

2001, Gunthe et al., 2009; Shinozuka et al., 2009].  Additionally, aerosols can scatter and 

absorb solar radiation and consequently affect the earth’s radiation budget and climate 

[Haywood and Boucher, 2000; Claeys et al., 2004a; Claeys et al., 2004b].  The radiative 

effect of aerosols contributes the largest degree of uncertainty in the prediction of global 

climate change due to anthropogenic activities (Figure 1.1).   
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Figure 1.1 Global-average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic 
emissions and other agents and mechanisms (IPCC, 2007) 
  

  

 

Thus, the study of aerosols and the processes involved in their production and loss 

are vital to our understanding of atmospheric mechanism and their effect on ecology and 

human health.    

In general, atmospheric aerosols (or particulate matter) are composed of some 

water-soluble inorganic compounds (such as sulfate and nitrate), water insoluble mineral 

dust and soluble and insoluble carbonaceous materials.  The carbonaceous compounds in 

turn, can be made up of soluble and insoluble organic compounds and elemental carbon.  
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Organic aerosols (OA-s) can comprise about 20-90% of fine aerosols (particulate matter 

with diameter of ≤ 2.5 µm) [e.g., Talbot et al., 1988; Artaxo et al., 1990; Talbot et al., 

1990; Saxena and Hildemann, 1996; Andreae and Crutzen, 1997; Kanakidou et al., 

2005; Zhang et al., 2007; Kroll and Seinfeld, 2008].  OA-s and the mechanisms leading 

to their production and evolution are the least understood part of atmospheric aerosols 

[e.g., Novakov et al., 1997; Zappoli et al., 1999; Decesari et al., 2000; Fuzzi et al., 2001; 

Jimenez et al., 2009].   

The presence of organic compounds in the particulate matter affects some 

important properties of aerosols such as hygroscopicity [Rubel and Gentry, 1985; 

Hansson et al., 1990; Andrews and Larson, 1993; Novakov and Corrigan, 1996; 

Hansson et al., 1998] and thus, cloud condensation nuclei activity [Asa-Awuku et al., 

2008].  Organic compounds and their effect on cloud condensation nuclei (CCN) have 

been the subject of many studies [e.g., Novakov and Penner, 1993; Noone et al., 1996].  

A clear understanding of the processes producing and affecting OA-s will greatly reduce 

the uncertainty associated with the climate change predictions as they pertain to direct 

and indirect effects of aerosols on the global radiation budget [Kanakidou et al., 2005 and 

references therein; Menon, 2004], especially since the estimation of the direct and 

indirect forcing of OA-s on climate is not well understood [Jimenez et al., 2009]. 

1.2. Organic Aerosols 

Organic aerosols are released to the atmosphere as primary emissions (i.e. direct 

emissions) from anthropogenic and natural sources, or they are produced as secondary 

compounds from physio-chemical processes involving other aerosols and trace gases, 

which can have precursors from natural or anthropogenic emissions [e.g., Khwaja et al., 
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1995; Forstner et al., 1997a; Forstner et al., 1997b; Pandis et al., 1991; Edney et al., 

2005; Sullivan et al., 2006].   

1.2.1. Primary Organic Aerosols (POA) 

There are many emission sources than can contribute to the production of primary 

organic aerosols (POA-s).  Some examples are: biomass and biofuel burning [Kanadidou 

et al, 2005 and references therein], charbroilers and meat cooking operations [Rogge et 

al., 1991], non-catalyst and catalyst-equipped vehicles and heavy-duty diesel trucks 

[Rogge et al., 1993a], road dust, tire debris and organometallic brake lining dust [Rogge 

et al., 1993b], residential fuel burning [Rogge et al., 1993c and d], etc.  Additionally, 

direct emissions from plants and agricultural waste can also produce POA [Rogge et al., 

1998]. Indeed, disintegration, stress and degradation of bulk plant material have been 

recognized as a small natural source of POA [Simoneit, 1977; Sicre et al., 1990; 

Hildemann et al., 1996; Jacob, 2000].  In the following sections only the major sources 

of POA have been discussed.   

One of the major sources of POA is biomass burning [Rogge et al. 1998; Fine et 

al., 2001; Streets et al., 2003; Iinuma et al., 2007; De Gouw and Jimenez, 2009], which 

can be both natural or anthropogenic in origin.  The differences in OA emissions from 

diverse biomass-burning sources have been discussed in Chapter 3.  

Traditionally, it has been assumed that POA is a smaller fraction of OA when 

compared to SOA, especially in urban areas. However, recently it has been suggested that 

the POA may constitute a larger fraction of OA than previously thought [Donahue et al., 

2009].  In their paper, Donahue et al. (2009) suggest that more studies need to be 

conducted to clarify the oxygenated nature of POA, which will lead to a better 
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segregation of POA and SOA and thus a better understanding of the nature and 

contribution of POA to aerosols. 

1.2.2. Secondary Organic Aerosol (SOA) 

The sources and pathways leading to the production of secondary organic aerosols 

(SOA-s) in the atmosphere are very complex. SOA-s can be produced from the oxidation 

products of many anthropogenic [Volkamer et al., 2006] or biogenic [Went 1960; Goetz 

and Pueschel, 1967; Trainer et al., 1987; Jacob and Wofsy, 1988; Andreae and Crutzen, 

1997; Kavouras et al., 1999; Pandis et al., 1992; Hoffmann and Klockow, 1998; Yu et 

al., 1999a and 1999b; Tsigaridis and Kanakidou, 2003; Claeys et al., 2004a and 2004b; 

Kanakidou et al., 2005; Hamilton et al., 2009] volatile organic compounds (VOC-s) [De 

Gouw et al., 2005; Volkamer et al., 2006; Zhang et al., 2007; Hallquist et al., 2009].   

Major families of VOC-s in the atmosphere are alkanes, alkenes/monoterpenes 

and aromatics.  Alkenes/monoterpenes have been studied as a major source of global 

SOA [Engelhart et al., 2008].  Aromatics are considered a major source of urban SOA. 

For example, isoprene (a biogenic VOC) has been extensively studied as a precursor for 

the formation of SOA [Henze and Seinfeld, 2006].  Anthropogenic VOC-s such as 

toluene (an aromatic VOC) have been known to act as SOA precursor by undergoing 

oxidation in the atmosphere [Atkinson, 2000; Kleindienst et al., 2004]. 

One of the pathways of production of SOA is through oxidation of biogenic or 

anthropogenic VOC-s by oxidizing compounds such as ozone (O3), the hydroxyl radical 

(OH) and the nitrate radical (NO3°) [Kroll and Seinfeld, 2008].  Additionally, gaseous 

VOC-s can be absorbed into cloud droplets and undergo chemical oxidation by aqueous 

phase OH [Kanakidou et al., 2005; and references therein].  SOA formation through this 
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mechanism is accomplished by the integration of first and second generation oxidized 

VOC-s into the particle phase.  As noted before, particle phase oxidation (via OH) is also 

a possible pathway of production of SOA. 

Another proposed mechanism for the formation of SOA is through 

oligomerization of carbonyl + alcohol, carbonyl + gem-diol (or alcohol-ROH) or 

carboxylic acid + alcohol compounds [e.g., Hastings et al., 2005; Ervens and 

Kreidenweis, 2007; Mang et al., 2008].  Additionally, some evidence of acid catalyzed 

production of SOA has been shown in laboratory studies [e.g., Jang et al., 2002 and 

references therein; Iinuma et al., 2007; De Haan et al., 2009a, 2009b and 2009c].  A 

more in depth discussion of these studies has been presented in Chapter 4.   

1.2.3. HOA and OOA 

A different categorization of OA is hydrocarbon-like organic aerosol (HOA) and 

oxygenated organic aerosol (OOA).  This designation is generally similar to that of POA 

and SOA [e.g., Zhang et al., 2005; Zhang et al., 2007; Jimenez et al., 2009]. 

Zhang et al. (2007) have averaged the results from many studies (see references in 

Zhang et al., (2007)), to show that of total OA, 63% is OOA in urban areas, 83% 

downwind of urban areas and 95% in rural locations.  Since it is possible that OOA can 

be both SOA and POA [Donahue et al., 2009], clearly this pattern of OOA requires 

further investigation.  

More information on the chemical composition and pathways of SOA formation 

is an important tool that can reduce the ambiguity associated with the effect of aerosols 

on climate [Kiehl, 2007].  In fact, estimating the amount of production of SOA using its 
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known precursors and pathways leading to its production are vital parts of understanding 

the direct and indirect effects of aerosols on the climate [Maria et al., 2004]. 

1.3. Emerging Issues on POA and SOA  

 In recent years, many studies have tried to address the relationship and fraction of 

POA and SOA in different air masses.  The consensus seems to be that in urban areas 

SOA is the dominant fraction of OA, whereas when studying sources such as biomass 

burning, such agreement does not exist [Capes et al., 2009; Yokelson et al., 2009; and the 

results from Chapter 3 of this thesis].  Additionally, the oxygenated nature of POA and 

SOA and the relationship of their aging with the ratio of atomic oxygen to carbon have 

been studied [Jimenez et al., 2009]. 

 Another area where the OA-s have been studied closely is the light absorbing 

nature of OA, especially at the ultra-violet region of the electromagnetic spectrum.  In 

recent years, many studies have evaluated the nature of such material and the possible 

pathways of formation of these molecules. Chapter 4 of this thesis provides an overview 

of such studies and the results from two experiments in the Southeastern United States.  

 In summary, the papers presented in this thesis address some of the different 

aspects of production of POA and SOA (specifically from biomass burning sources, in 

Chapter 3) and the different chemical and physical properties (such as light absorption), 

that can be used to distinguish the processes affecting the production of POA and the 

changes in SOA with time (Chapter 4).  Chapter 2 presents a proven method of 

measurement of atmospheric gaseous sulfuric acid, which has been modified to measure 

aerosol phase sulfuric acid (i.e. sulfate) and has the potential for the measurement of 

particulate phase organic compounds.  Some of the questions answered here are: 
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• Can CIMS combined with a thermally denuded inlet be used for fast and accurate 

measurements of some organic aerosol components? 

• Do the normalized emission ratios from different fires (in different locations) 

differ from each other? 

• Is there any evidence of SOA formation in the diverse biomass burning plumes 

encountered on board the NASA DC-8 aircraft during ARCTAS-2008? 

• Is there a difference between the light absorbing properties of water soluble OC 

for biomass burning and non-biomass burning plumes? 

• Do fresh and aged SOA contain different quantities of water soluble light 

absorbing carbon? 

• Is PILS-LWCC a viable method of near real time measurement of light absorbing 

properties of WSOC? 
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CHAPTER 2 

MEASUREMENT OF AEROSOLS BY CIMS 

2.1. Background Information 

Chemical Ionization Mass Spectroscopy (CIMS) technique has been used to 

measure various gaseous compounds such as HNO3, SO2, H2SO4, NH3, PAN, HO2NO2 

and many others, from direct ambient measurements or in laboratory studies [e.g., Mohler 

and Arnold, 1991; Viggiano, 1993 and references therein; Huey et al., 1995; Huey et al., 

1996; Tanner et al., 1997; Fehsenfeld et al., 1998; Slusher et al., 2001; Huey et al., 

2004; Huey, 2007 and references therein; Nowak et al., 2007]. Also, in recent years, 

CIMS has been modified to measure various inorganic and organic aerosol compounds 

[e.g., Curtius and Arnold, 2001; Hearn and Smith 2004a and 2004b; Hearn and Smith, 

2006].   

In this study, the modification of a CIMS system to measure aerosol sulfate by the 

addition of a thermally denuded inlet is reported.  This system was used for the 

measurement of atmospheric aerosol phase sulfuric acid.  Arnold et al. (1998) and 

Curtius et al. (1998) used a similar system for airborne measurements of aerosol sulfuric 

acid.  NO3
- was used as the reagent ion in this system and a particle into liquid sampler 

coupled with an ion chromatography system (PILS-IC) was used for verifying the aerosol 

CIMS measurements. 

2.2. Experimental Techniques 

 Two instruments were used for the measurement of atmospheric sulfate in the 

aerosol phase in this experiment.  A CIMS was modified to provide measurements of 
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aerosol sulfuric acid (sulfate) and a PILS-IC was used to verify the CIMS measurements.  

The setup and specifications of these two systems have been discussed in the following 

sections.  Additionally, a setup that was used for the calibration of CIMS has been 

discussed.   

2.2.1. CIMS Modifications 

A negative-ion detection CIMS instrument was used to measure concentrations of 

sulfate in aerosol phase in the atmosphere.  This system utilizes negative chemical 

ionization technique to convert sulfuric acid (H2SO4) molecules into HSO4
- ions, using 

NO3
- as the ionizing agent.  This technique or ones similar to it have been previously 

used in many other studies for gaseous or aerosol measurements [e.g., Viggiano et al., 

1982; Eisle and Tanner, 1993; Mohler et al., 1993; Clemitshaw, 2004 and references 

therein; McNiell et al., 2007] and [Curtius et al., 1998].  Berrensheim et al. (2000) used a 

modified version of CIMS and ambient atmospheric H2SO4 measurements to make 

indirect measurements of ambient OH.  Additionally, Curtius and Arnold (2001) have 

reported the details of setup and operation of a similar method for the direct, in situ 

measurement of aerosol sulfuric acid. 

In this system, the sheath gas is inundated with HNO3 (see Figure 2.1); the NO3
- 

ions are produced by 120Po (a radioactive α emitter) from the ion source [Huey et al., 

2004].  The NO3
- ions are carried by the sheath gas flow to mix and react with the H2SO4 

molecules present in the sample flow air.  The reaction between H2SO4 and NO3
- is 

shown below: 

 

H2SO4 + NO3
- → HSO4

-  + HNO3                        (2.1) 
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The signal count from the HSO4
- ions that result from this Reaction 2.1 are 

measured using a quadrupole mass spectrometer.  The concentration of H2SO4 is 

calculated using the measured NO3
- and HSO4

- ion signal counts via Equation 2.2 

[Berresheim et al., 2000]. 

 

[H2SO4] = 1/kt ln {[(NO3
-) + (HSO4

-)]/( NO3
-)}                                (2.2) 

  

Where, [H2SO4] is the concentration of H2SO4, (NO3
-) is the signal count for NO3

- (at 62 

amu) and (HSO4
-) is the signal count for HSO4

- (at 97 amu), k is the rate constant of 

Reaction 1, and t is the interface time between NO3
- and sample flow. 

The configuration of the CIMS used for this experiment is a modified version of 

the one utilized by Slusher et al, (2004). Figure 2.1 shows the setup of the basic 

components for this instrument.   
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Figure 2.1: Schematic of negative ion chemical ionization mass spectrometer (CIMS) for the 
measurement of sulfuric acid. The equation above the figure presents the ionization scheme of this 
instrument. (modified from Thompson, (2006)) 
 
 
 
 

The information on the setup of this system has been discussed in great detail by 

Thompson, (2006).  Very briefly, the CIMS instrument consists of a quadrupole mass 

spectrometer housed in a high vacuum chamber combined with an ion source that 

operates at a pressure that ranges from a few millibars to atmospheric pressure. In the 

current setup the ion source region is separated from the high vacuum area of the mass 

spectrometer by a collisional dissociation chamber (CDC) at an intermediate pressure 

[Tanner et al, 1997]. The ion current is transmitted from the CDC to the mass 

spectrometer with the octopole ion guide [Slusher et al, 2001]. Further details on the 

operation and specifications of the CIMS system are provided by Eisele and Tanner 

(1991); Eisele and Tanner (1993); Tanner and Eisele (1995) and Eisele et al. (1996). 
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In the modified version of the CIMS for aerosol measurements, ambient air is 

drawn into the CIMS system through a thermally denuded stainless steel tube.  A special 

heated inlet is used for the ambient flow in this instrument. This inlet is made up of a 12” 

long stainless steel tube (1/2” ID), encompassed in a stainless steel block with 1”x1”x1” 

dimensions (see Figure 2.2).  Four non-stick high-temperature cartridge heaters 

(McMaster Carr, Atlanta, GA) were used to heat the stainless steel block and thus the 

tube and consequently the air-flow. The range of the temperatures for the heated block is 

from 25 oC to 550oC.  The temperature of the sample flow was not measured. The 

temperature of the block was observed and controlled by a thermocouple probe inserted 

into the heating block.   

 

 

 

 
Figure 2.2: Schematic of the heated inlet used for modifying the CIMS instrument for aerosol 
measurements. The thermally denuded system had four heater cartridges, inside a 1"x1"x1" 

stainless steel block. The stainless steel block encompasses a 0.5" ID stainless steel tube 
 

 

 

 

High temperatures are used to vaporize the atmospheric aerosols to their core 

molecules; thus enabling the chemical reaction to take place with the CIMS reagent ion 

(NO3
-).  During the aerosol sulfuric acid measurements, the heating block temperature 
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was held constant at 360o C ± 3o C.  The flow inside the sample flow tube was considered 

laminar as the velocities in the flow tube were around 66 cm/s and the Reynold’s number 

was calculated to be 552 for a flow rate of 5 slpm, using the following equation: 

 

Re=(ρυD)µ-1                                      (2.3) 

 

Where Re is the Reynold’s number, ρ is density of air at 1 atm and 20o C, υ is the 

velocity of the sample flow, D is the diameter of the tube and µ is the dynamic viscocity 

of air.   Although the Reynold’s number indicates that the flow is laminar, it is important 

to note that this may not have been entirely true due to the convective flows caused by 

the heating of the tube.  The possible non-laminar nature of the flow would have resulted 

in the loss of H2SO4 molecules to the walls of the tube.  This problem was addressed by 

applying calibrations to these measurements under the same conditions as the ambient 

measurements, so that any loss to the walls was accounted for in the calculations. 

The sampled ambient air was directed to the CIMS heater inlet at a flow of about 

5-6 slpm.  The reagent ion used for detection of sulfate was NO3
-. The H2SO4 in the air-

flow participated in a proton exchange reaction with NO3
-, as shown in Equation 1.  The 

resulting signal from  HSO4
- ions is counted at 97 amu. 

2.2.2. PILS-IC Setup 

Weber et al. (2001) and Orsini et al. (2003), explain the principles of the 

operation of the PILS in great detail.  Briefly, ambient particulates are collected into a 

small stream of high purity water, by mixing the ambient aerosol sample flow with a 

smaller flow of steam water.  The resulting supersaturated environment causes the 
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particles to grow into droplets. In the setup used here, which is similar to that of Peltier et 

al. (2007b), the droplets are collected for further analysis by a Metrohm IC (Switzerland) 

Ion Chormatography (IC) system.  Any interference from ambient gaseous compounds 

was eliminated by the use of glass honeycomb denuders in the sample line.  The denuders 

are coated with citric acid and sodium carbonate.  The limit of detection of the PILS-IC 

system for this setup was 2 ug m-3 for sulfate and about 10 ug m-3 for other organic 

aerosol components, such as oxalate.   

2.2.3. Calibration Setup 

The aerosol H2SO4 measurements were calibrated using known aerosol sulfate 

concentrations that were generated using an aerosol atomizer.  At 35 psi, dry, ultra-pure 

nitrogen gas (AirGas, Kennesaw, GA.) was passed through a 10-3% by mass solution of 

ammonium sulfate ((NH4)2SO4) in ultra-pure water. The DI water was acquired from a 

Barnstead nanopure water purifier system (Thermo Scientific, Weltham, MA).  A model 

3075/3076 aerosol atomizer (TSI, Shoreview, MN) was utilized for the production of the 

aerosols.  The flow of air and aerosols out of the nebulizer was directed to a model 3062 

diffusion dryer (TSI, Shoreview, MN) and then passed through a model 3077 aerosol 

neutralizer (TSI, Shoreview, MN).  The calibration setup is presented in Figure 2.3.  



 16 

 

Figure 2.3: Calibration setup for generation of sulfate aerosol for the aerosol CIMS system 
 
 

 

 

 A flow splitter (TSI, Shoreview, MN) was then used to direct the flow of the 

sample to the PILS and CIMS, simultaneously.  The sample flow out of the nebulizer was 

about 4 slpm; however the PILS and CIMS required flows of 16 slpm and 6 slpm, 

respectively.  As external pumps were used to direct the sample flow to both CIMS and 

PILS, a HEPA filter (Gelman, Ann Arbor, MA) in combination with an inlet (over the 

sample line, before the thermal denuded inlet) was used to provide the needed excess 

flow to the systems.  This resulted in the dilution of the aerosol flow from the aerosol 

generation system.  The dilution was taken into account in the calculations of the sulfate 

concentrations in the PILS and CIMS systems.  Background measurements were carried 

out for this system using an inline manual valve that directed the ambient flow through a 

HEPA filter, placed before the instrument inlet. 
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2.3. Results 

 Many different laboratory tests were conducted to characterize the aerosol CIMS 

system for the measurement of sulfuric acid and its potential for the measurement of 

other organic aerosol components.  Also, the aerosol CIMS was used for the 

measurement of sulfate aerosol concentrations in ambient air from Atlanta, GA.  Some  

of the data collected from this study were compared with PILS.  Some of the results from 

these laboratory and ambient studies are presented here.  

2.3.1. System Information and Calibration 

 As described previously, a heating block was used as a thermal denuder for the 

modification of the CIMS system for aerosol sulfate measurements.  Sulfate aerosols 

were produced using the aerosol generation system and 10-3% w/w ammonium sulfate 

solution.  A range of temperatures were investigated to find the optimal temperature for 

the vaporization of the sulfate aerosols into the gas phase for measurement with CIMS. 

The results of the thermal profile of the heater and the CIMS system for the ammonium 

sulfate solution are shown in Figure 2.4.  This figure shows that sulfate aerosol 

vaporization starts at around 235° C and becomes optimal at around 360° C. 
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The optimal temperature for collection of data for aerosol sulfate measurements 

was 360° C.  This was the temperature used for the study of sulfate aerosol with the 

CIMS.  With this setup, this system is capable of making 1 Hz measurements of sulfate 

aerosols, with a sensitivity of 10 Hz/µg m-3.  Based on comparisons with the PILS-IC 

system the LOD of the aerosol CIMS for sulfate measurements is about 0.01 ppt. 

As noted before, a HEPA filter was used (with a manual valve) for background 

measurements.  The following figure (Figure 2.5) presents a sample of Atlanta, GA 

ambient air mass spectrum.  This spectrum was recorded using the CIMS system, with 

the thermal denuder heater temperature at 360° C.  A signal for both aerosol and gas-

phase sulfuric acid was observed at 97 amu.  The signal from the filtered ambient air (i.e. 

HEPA filter was used to provide background levels for sulfate aerosol) is also included in 

Figure 2.5.  As illustrated, some of the signal at 97 amu is due to the presence of gas 

Figure 2.4: Thermal profile of ammoniums sulfate at different temperatures (of 
the heater) for the CIMS system.  The aerosol generation system was used to 
produce sulfate aerosols and the optimum temperature was around 360° C 
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phase sulfuric acid in the sample flow.  The use of a HEPA filter in-line for ambient 

measurements eliminated this source of interference.  The signal for HSO4
- 

(corresponding to aerosol sulfate) is clearly at 97 amu. 

 

 

 

 

 

2.3.2. Ambient Measurements 

On March 22, 2005 ambient data on particulate sulfate concentrations from 

Atlanta, GA were collected with the aerosol CIMS system.  As before, a HEPA filter was 

used for background measurements.  Signal counts were collected at 64 and 97 amu.  

Figure 2.5: Mass spectrum of ambient air from Atlanta, GA, measured by the aerosol CIMS 
system. The temperature of the inlet heater was set at 360° C. The red trace on the graph is a 
spectrum of ambient air and the blue trace is a spectrum of ambient air with a HEPA filter inline. 
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Figure 2.6 shows a period when data was collected for the signal at 97 amu, where the 

CIMS signal for sulfate is observed.  Background levels and ambient measurements are 

highlighted in this figure (Figure 2.6). 

 

 

 

 

 

As shown in Figure 2.6, the aerosol CIMS system has a very fast response time to 

background measurements.  Ambient measurements with this CIMS setup were 

performed at the same time as the PILS-IC, where ambient air was collected from the 

same source for both instruments, and distributed between the systems using a flow 

splitter. Figure 2.7 presents the correlation of the sulfate concentration data collected by 

both of these methods for ambient sampling.  The data presented in this Figure were 

Figure 2.6: Signal count for 97 amu, using the aerosol CIMS.  Background measurements 
highlighted in this figure were performed by directing the sample flow through an inline HEPA 
filter. 
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collected on March 28th, 2005 in Atlanta, GA.  Background checks were performed by 

directing the ambient airflow through a HEPA filter, with the use of a manual valve.  The 

r2 value for the comparison of Aerosol CIMS and PILS-IC system was 0.96 and shows 

great agreement between the measurements of the two systems.   

 

 

 

   

 

 

 Finally, to assess the potential use of this system for future measurements of 

organic aerosol components, using the thermal denuder inlet, the mass spectrum of 

oxalate was recorded.  A solution of 100 pptv oxalic acid (in DI water) was used to 

produce oxalate aerosols.  The aerosol generation scheme described in previous sections 

Figure 2.7: Results of comparison of PILS-IC and aerosol CIMS sulfate 
measurements for ambient air collected on March 28, 2005 in Atlanta, GA. The 
error bars are 1σ of the uncertainty of the PILS-IC system. 
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was used here, also the heated inlet described before was used (the temperature of the 

heater was set at 200° C).  The data collected from the aerosol CIMS system for oxalate 

aerosol is shown in Figure 2.8.  

 

 

 

 

 

 

 

 

 
 
 
 
 The mass spectrum from Figure 2.8 shows that the aerosol CIMS system can be 

used for measurements of aerosol oxalate in ambient air.  Three distinct signals from the 

oxalate solution are observed at 16, 34 and 89 amu. 

2.4. Conclusions 

The results of sulfate measurements from aerosol CIMS agreed well with that of 

PILS-IC.  In this chapter, the setup and use of a modified aerosol CIMS system for the 

measurement of aerosol sulfate has been described.  This aerosol CIMS setup was proven 

Figure 2.8: Mass spectrum of oxalate aerosol (in red) compared with the spectrum of filtered air 
(in black) is presented in this figure. 
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to be an effective and sensitive method of measurement of aerosol sulfate.  The system 

can be utilized in laboratory kinetic mechanism experiments or airborne measurements 

where high sensitivity and fast time response are very important for successful data 

collection results.  Also, with the activation or de-activation of the thermal denuder on the 

inlet of this system, it can be used to measure aerosol or gaseous sulfuric acid, 

alternatively. 

Additionally, it was shown that the aerosol CIMS system has the potential to be 

used for the measurement of some aerosol organic acids such as oxalate.  Further 

experiments for the setup and specifications of such system (CIMS for organic acid 

measurements) would be useful in the future. 
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CHAPTER 3 

ARCTAS-2008 

3.1. Introduction 

 Biomass burning events include anthropogenic burning, such as bio-fuel or 

prescribed burning, and natural fires.  Emissions from either type of burning are a 

significant source for a wide range of atmospheric trace gases and aerosol particles that 

can have important impacts on biogeochemical cycles, air quality, human health, and 

direct and indirect effects on the climate through influencing the global radiation budget 

[Bein et al., 2008; Crutzen et al., 1979; Crutzen and Andreae, 1990; Guyon et al., 2003; 

Yamasoe et al., 2000].  Because these emissions can persist in the atmosphere for weeks, 

they may be transported over great distances and have both regional and global impacts 

[Allen et al., 2004; Duan et al., 2004; Scholes and Andreae, 2000; Dickerson et al., 

2002; Honrath et al., 2004; LeCanut et al., 1996; Engling et al., 2006; Fu et al., 2009].  

The frequency and intensity of biomass burning incidents and their effects are expected 

to be amplified in the future due to anticipated increases in global temperatures and 

alterations in precipitation patterns resulting from climate change [Guinot et al., 2007; 

Narukawa et al., 1999; Penner et al., 1994; Reddy and Boucher, 2004].  

 In recent years, many studies have been conducted to clarify the emissions and 

physicochemical evolution of various trace gases and aerosols from fires (e.g., [Andreae 

set al., 2001; Decesari et al., 2006]).  Using a variety of sampling methods, both 

laboratory and direct studies of biomass burning have characterized fire emissions in 

differing environments with various fuels and under diverse burning and meteorological 

conditions (e.g., [Andreae and Merlet, 2001 and references therein; Cao et al., 2008; 
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Haywood et al., 2003; Abel et al., 2003; Iinuma et al., 2007; Lacaux et al., 1995; Ludwig 

et al., 2003; Schmidl et al., 2008]).  The emission ratio, where the emission of a species 

of interest is divided by a co-emitted, non-reactive species (e.g., CO or CO2), of gases 

and particles released from fires is one important parameter used to represent fire 

emissions in model simulations [Helas et al., 1995; Andreae et al., 2001; Andreae and 

Merlet, 2001; LeCanut et al., 1996].  The term emission ratio is used when near the fire, 

whereas normalized excess mixing ratios are used to describe conditions after the plume 

has aged [Yokelson et al., 2009]. 

 Studying both the direct emissions from fires through measurements close to the 

burning site, and comparisons with more aged smoke from the same fire to infer chemical 

evolution, can improve our understanding of the effects of fires on regional and global 

scales [Dusek et al., 2005; Falkovich et al., 2005; Formenti et al., 2003; Hoyle et al., 

2007].  The gaseous emissions from biomass burning sources undergo a range of 

chemical and physical transformations over time ([Johnson and Miyanishi, 2001] and 

references therein).  When compared to a relatively non-reactive co-emitted tracer, such 

as CO, primary gaseous and particulate emissions may be expected to be depleted as the 

plume ages due to photochemical or physical processes (e.g., differences in deposition 

mechanisms); whereas secondary trace gases and aerosols may be expected to increase, 

relative to CO, due to the production of new particle mass.  However, many of the 

secondary gases have reduced vapor pressures and can partition to the aerosol phase 

resulting instead in the increase of secondary aerosols with plume age and depletion of 

gas phase components.  It has also been proposed [Grieshop et al., 2009a and 2009b] that 

the evaporation of primary aerosol components in the diluting smoke plume may produce 
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compounds that can subsequently be photo-chemically converted to lower vapor pressure 

products that also contribute to secondary aerosol mass at the expense of primary aerosol 

emissions.   

 In addition to primary aerosol particle emissions from biomass burning, both 

inorganic and organic secondary aerosol compounds can be produced as smoke plumes 

age.   Jaffrezo et al. (1998), using fine aerosol potassium as a biomass burning tracer, 

found elevated concentrations of secondary compounds such as oxalate and sulfate in 

central Greenland, which they believed were due to the transport of aged biomass burning 

plumes from northern Canada.  Production of sulfate and nitrate has also been reported in 

studies of aged biomass burning plumes [Bein et al., 2008; Formenti et al., 2003] . 

 There are conflicting research results regarding secondary organic aerosol (SOA) 

formation following the initial emissions of gases and aerosols from fires.  Although 

laboratory studies suggest secondary organic aerosol formation in biomass-burning 

plumes should readily occur [Grieshop et al., 2009a] the results from ambient data are 

less clear.  Some studies report evidence of SOA formation [Bein et al., 2008; Clarke et 

al., 2007; DeCarlo et al., 2008; Engling et al., 2006; Kang et al., 2004; Lee et al., 2005; 

Lee et al., 2008].  However, in other cases no or little evidence for SOA formation has 

been observed in an aging smoke plume [Capes et al., 2009; DeCarlo et al., 2010]. 

 The wide range of observations reported in ambient smoke plumes is due to a 

number of reasons.  First, emissions of both gaseous and particulate species can vary 

widely due to many factors, such as the type of fuel (duff, pine, etc) [Koppmann et al., 

1997], fuel condition (wet/dry) [Johnson and Miyanishi, 2001], meteorological 

conditions in the burning region and down wind (cloudy/clear sky/RH) [Hoffa et al., 
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1999], fire temperature [Cofer et al., 1996], combustion phase of the fire [Gao et al., 

2003] and the location and distance where the data are collected from the fires [Reid et 

al., 2005; Trentmann et al., 2003].  Compounding the complexity of the emissions is the 

mixing of plumes from various regions or even the variability within the region of 

burning itself, resulting in the mixing of species of various chemical ages that may have 

burned under different combustion conditions.  This mixing can further complicate 

studies of biomass burning plumes if there are fire emissions, throughout the region 

where the plumes are being investigated, making emission characterization difficult.  

Given that organic species comprise most of the smoke aerosol mass, this large 

variability in emissions from fires can make extracting evidence for SOA formation in a 

plume difficult [De Gouw and Jimenez, 2009].  The host of physical and chemical 

processes in the plumes can also further complicate the analysis of changes as the plumes 

age.  For example, coagulation, evaporation of primary species and formation of 

secondary species may lead to the growth of particles into and out of instrument 

measurement size ranges. 

 Fires studied under controlled conditions, such as micro-combustion or the use of 

pyrolysis devices [Stankiewicz et al., 1998], and introducing smoke into environmental 

chambers [Johnson and Miyanishi, 2001 and references therein] can eliminate many of 

these uncertainties.  However, this simplifies the complexity of real fires and most 

experiments cannot simulate the chemical aging of the plumes over extended time 

periods in a manner similar to what occurs in the atmosphere.   

 A wide range of smoke plumes and ambient fires were studied as part of the 

ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and 
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Satellites) study undertaken by the National Aeronautics and Space Administration 

(NASA).  Jacob et al. (2010) provide detailed information on the various phases of the 

study and range of platforms and instrumentation deployed.  This paper compares and 

contrasts measurements of all biomass-burning plumes intercepted by the NASA DC-8 

research aircraft during the three phases of the ARCTAS experiment:  ARCTAS-A, 

based out of Fairbanks, Alaska, U.S.A., from April 3 to 19, 2008; ARCTAS-B, based out 

of Cold Lake, Alberta, Canada; from June 29 to July 13, 2008; and ARCTAS-CARB, 

based out of Palmdale, California, U.S.A.; from June 18 to 24, 2008.  The locations and 

types of biomass burning smoke plumes recorded during these three phases are shown in 

Figure 3.1. 
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 A statistical summary of plume emission ratios or normalized excess mixing 

ratios (for species of interest X, ∆X/∆CO) based on the DC-8 ARCTAS data is provided 

through contrasting various smoke emissions by broadly separating the plumes into 

categories according to their source and age (where available). The most extensive 

analysis of fires in this study was during ARCTAS-B, where smoke plumes from 

numerous Boreal forest fires were intercepted and aircraft missions were undertaken, 

specifically to investigate the evolution of smoke from large fires.  The ARCTAS-B data 

set is discussed first to investigate evolution of plumes with age and to provide a basis for 

comparison with all other plumes intercepted during ARCTAS.  During the ARCTAS-

Figure 3.1: Location of selected biomass burning plumes recorded during the ARCTAS-
2008 experiment aboard the DC-8 aircraft. The plumes are identified by source 
categories 
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CARB phase of the study, where measurements focused on California emissions, 

extensive wild fires burning during this period provide a contrast to the Boreal fires of 

ARCTAS-B, both in the type of material burned and the variety of other atmospheric 

species present in the burning region (i.e. pristine versus anthropogenic-influenced 

Californian plumes).  In addition, smoke from fires that had been transported great 

distances and were serendipitously intercepted at various times during the three phases of 

this study, but most often in the high Arctic during ARCTAS-A, are also included in the 

analysis.  These plumes are compared to the other fire emissions, acknowledging 

however, that they represent very different classes of plumes due to their origins and the 

different processes that may have affected them during long transport times (e.g., 

precipitation scavenging). 

3.2. Methods 

3.2.1. Aircraft Measurements 

Jacob et al. (2010), have provided a complete list of all chemical and physical 

measurements made aboard the NASA DC-8 during ARCTAS.  In this analyses the 

following aircraft data were used: carbon monoxide (CO), carbon dioxide (CO2), 

acetonitrile (AN), hydrogen cyanide (HCN), toluene (TU), benzene (BZ), oxides of 

nitrogen (NOx and NOy), ozone (O3), peroxy acetyl nitrate (PAN), methane (CH4), PM1 

(particulate matter with aerodynamic diameter less than 1µm) water soluble organic 

carbon (WSOC), nominally PM0.7 aerosol chemical components including sulfate (SO4
2-), 

nitrate (NO3
-), ammonium (NH4

+), organic aerosol (OA), PM0.4 black carbon mass (BC-

Mass) and meteorological data and aircraft position measurements (such as latitude, 

longitude and altitude). A list of the instruments for each measurement and the 
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corresponding instrument description references and data collection rate are provided in 

Table 3.1. 

 

 

 

Table 3.1: Measurements from ARCTAS-2008 aboard the NASA DC-8 aircraft used for the analyses 
presented in this chapter 

Measurement Abbreviation 
Data 

Collection 
Rate 

References 

Carbon Monoxide 
Methane 

CO 
CH4 

1 sec Sachse et al., 1987; Diskin et al., 2002 

Carbon Dioxide CO2 1 sec Vay et al., 2003 
Acetonitrile 

Toluene 
Benzene 

C2H3N (AN) 
C6H5CH3 (TU) 

C6H6 (BZ) 
0.5 sec Wisthaler et al., 2002 

Hydrogen 
Cyanide HCN 0.5 sec Crounse et al., 2006; 2009 

Oxides of 
Nitrogen 
Ozone 

NO 
NO2 
NOy 
O3 

10 sec Weinheimer et al., 1994 

Peroxyacetyl 
Nitrate PAN 10 sec Slusher et al., 2004 
Aerosol 

Components  
(Sulfate, Nitrate, 

Ammonium, 
Organics) 

Aerosol (SO4
2-, 

NO3
-, NH4

+, 
Org) 

1 sec 
10 sec DeCarlo et al., 2008 

Black Carbon 
Mass 

BC_Mass 
 10 sec Moteki and Kondo, 2007; 2008 

Water Soluble 
Organic Carbon WSOC 3 sec Sullivan et al., 2006 

 

 

 

3.2.2. Plume Analysis 

To synchronize data used in the analysis, timing of all data was checked and 

adjusted, if necessary, to match that of ambient water vapor (H2Ov) concentrations.  
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Differences can arise due to errors or drift in individual instrument clocks, lag times in 

sample transport from inlet to detector, and instrument response time.  The data were then 

averaged to a continuous 10-second timeline to obtain a uniform time-base.  

The two main trace gases emitted from biomass burning are CO and CO2 [Crutzen 

et al., 1979].  To identify all burning smoke plumes in the ARCTAS data set, all flights 

were checked for CO and CO2 peaks.  Acetonitrile (AN) and HCN were then used as 

specific biomass burning tracers to determine if CO and CO2 enhancements (i.e. CO and 

CO2 peaks) were mainly due to biomass burning.  If the r values for CO and AN or CO 

and HCN was higher than 0.6 during the period of enhanced CO and CO2, the data (peak) 

were designated as biomass burning.  From this data set, the peaks were initially 

categorized as ARCTAS-A, ARCTAS-B and ARCTAS-CARB.  Further analyses were 

performed on these peaks to identify the source of the smoke (location of the fire, where 

available), the approximate transit time from the fire to the measurement, and evaluation 

of other emissions in the region (e.g., urban) to assess possible mixing of smoke during 

transport.  

3.2.3. Identification of Fire Sources 

For all the plumes identified, plume trajectory from fire to measurement point and 

an estimate of transport age of the identified fire plume, were determined through a 

combination of back and forward trajectory analyses.  Hybrid Single-Particle Lagrangian 

Integrated Trajectory (Hysplit) analyses (http://www.arl.noaa.gov/ready/hysplit4.html) 

were conducted within each smoke plume, at 10 second intervals, starting from the 

location where the aircraft first intercepted the plume.  These back trajectories were 

extended to up to 10 days prior to the measurement.  The back trajectory analyses (for 
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each point) were repeated for 3 different altitudes (the altitude where the plume was 

intercepted +/- 20% of the measurement altitude).  Using the Fire Information for 

Resource Management System (FIRMS) [Davies et al., 2009; Giglio et al., 2003; Justice 

et al., 2002] website, (in cases where the location of the fires were available from this 

website, mostly during ARCTAS-B and ARCTAS-CARB), a combination of 

FLEXPART [Stohl et al., 2005] and Hysplit were used to predict the plume’s trajectory.  

FLEXPART 

(http://www.esrl.noaa.gov/csd/metproducts/flexpart/flexpart_interactive/flexpart_custom.

html) dispersion model runs for up to 6 days were used to locate the potential path of the 

plume from the fires to their intersection with the DC-8 flight path for each isolated peak.  

When both analyses (FLEXPART and HYSPLIT) were available, the results were 

compared and if the general direction of the plume did not agree, the wind direction and 

speed at the location of the data collection were checked for further verification.  These 

two methods provided similar results in all 498 plumes, with the exception of three cases.  

As the wind direction and speed did not agree closely with either result in these three 

cases, these three were excluded from this analysis.  The data from 495 biomass burning 

plumes are presented here. 

For the plumes that were intercepted very near specific fires (ARCTAS-B), based 

on visual verification from the aircraft video files and FIRMS data; wind direction and 

wind speed, from the aircraft meteorological data, and the location of the fire and plume 

were used for a better estimation of the transport age.  The uncertainties associated with 

this calculation depend on various factors.  The errors associated with the measurements 

of the meteorological variables (i.e. wind speed and wind direction) were added to the 
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uncertainties in FIRMS fire data location reports.  The uncertainties of transport age for 

ARCTAS-B were calculated to be approximately 10%.  However, it is important to note 

that this value is less when closer to the fires (as visual verification is possible) and it 

increases further away from the biomass burning sources as our inability for visual 

verification increases the level of uncertainty. 

In some cases, especially in the ARCTAS-CARB portion of the experiment, the 

fire plumes intercepted were either from air masses that had been emitted within or 

advected over somewhat rural regions with minor anthropogenic influence, whereas other 

plumes were transported over regions heavily impacted by anthropogenic emissions (i.e. 

urban emissions).  These two types of cases were separated by inspecting and comparing 

the trajectories of the smoke plumes and trajectoreis of the urban emissions.  If these 

trajories intersected prior to the measurement, these plumes were categorized into a 

different class (ARCTAS-CARB BB + Urban).  

 Overall, 495 aircraft intersects with biomass burning plumes from ARCTAS-A, 

ARCTAS-B and ARCTAS-CARB were isolated from the seventeen DC-8 flights 

performed during this study.  The plumes were separated into nine different categories 

based on source and mixing with urban emissions.  For some fires, there were multiple 

transects through what appeared to be the same smoke plume at different times and 

downwind distances (e.g., Boreal forest fires in Canada, ARCTAS-B).  The evolution of 

these plumes are investigated in detail first, and they are grouped into one general 

category (e.g., Boreal fires) for overall comparisons with plumes from other sources.  A 

list and description of each plume category is presented in Table 3.2.   
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The location of each plume discussed in this paper is shown in Figure 3.1.  The 

data presented in this figure are from all 495 plumes and the type and category of each 

plume are displayed in the Figure 3.1 legend.  

3.2.4. Data Processing and Analysis 

For each smoke plume identified, a normalized excess mixing ratio was 

determined relative to CO (i.e., ∆X/∆CO) for all gaseous and aerosol components of 

interest (see Table 3.1 for a list of variables used in this analysis).  CO has been 

previously used as an inert tracer for biomass burning and other emissions [e.g., Sullivan 

 

Plume Abbreviations Plume Description 

BB CARB Biomass burning plumes from California 
wildfires  

BB CARB + Urban Mixed California urban plumes and biomass 
burning plumes from California wildfires 

Asian BB (CARB) 
Mixed Asian biomass burning plumes and 
biomass burning plumes from California 
wildfires 

Siberian BB (ARCTAS-A) Siberian biomass burning plumes over the Arctic 

Asian BB (ARCTAS-A) Asian biomass burning plumes over the Arctic 

European BB (ARCTAS-A) Mixed European urban plumes and biomass 
burning plumes over the Arctic 

Canadian BB (ARCTAS-A) Canadian biomass burning plumes over the 
Arctic 

Siberian + Asian BB 
(ARCTAS-A) 

Mixed Asian and Siberian biomass burning 
plumes over the Arctic 

Boreal forest fire BB 
ARCTAS-B 

Biomass burning plumes from Canadian 
wildfires 

Table 3.2: Abbreviations and descriptions of plume categories selected during the ARCTAS-2008 
study 
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et al., 2006; Yokelson et al., 2008].  All biomass-burning events emit CO and its slow 

chemical loss relative to time scales investigated here makes CO an appropriate 

compound to use as an inert tracer (lifetime of CO in the atmosphere ranges between 1-4 

months [Seinfeld and Pandis, 1998]).  Normalized excess mixing ratios were determined 

in two ways; from the slope of a linear regression fit, or by using the mean plume 

concentration (area under the curve of concentration values versus time within the plume) 

and subtraction of background concentrations.  The two methods generally agreed when 

the component of interest (X) and CO were well correlated (r > 0.6).  When the 

correlation coefficient was smaller (r < 0.6), the area under the curve was used to 

determine the ratio.  In this case the enhancement in the concentration of each species 

(∆X) and CO (∆CO) were calculated by subtracting the in-plume enhancement of the 

data (i.e. the area under the peak) from the background values of X and CO, respectively.  

The background values considered for this analysis were the concentration of the species 

of interest measured immediately outside of the plume under consideration.  

Averaging the data for each species over a 10 second time period minimizes some 

differences between instrument response times (i.e. reduces time smearing).  However, 

this was still a concern when data were collected close to the fires where plumes could be 

extremely narrow, resulting from short plume widths and fast aircraft speed (the typical 

range of speed for the NASA DC-8 was 500-850 km h-1 for an altitude range of 1.5-12 

km).  For species (such as WSOC) susceptible to time smearing, the correlation was 

generally poor and so the area under the peak was used in order to further reduce the 

effects of instrument response time. 
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 Once the plumes were identified, ∆X/∆CO values were calculated. Then, the 

sources and approximate plume ages were used to categorize the plumes and the statistics 

of each species (∆X/∆CO) were determined.  The transport time and development of the 

identified fires from Canadian Boreal fires were compared for evidence of possible 

evolution of the chemical properties as the smoke aged (Figures 3.2a to 3.2o).  A 

statistical analysis is used to compare different species in all ARCTAS smoke plumes for 

an overview of fire emission properties from different sources.  
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Figure 3.2: Evolution of emission ratios for trace-gas and aerosol chemical components in four large 
boreal forest fires detected during ARCTAS-B.  Specific fires are identified by date on which they 
were intercepted (month/day/year).  For cases where transport times were within ±10% for a fire 

measured on a given day, the mean normalized excess mixing ratio is given and the data range shown 
as error bar of ± 1 standard deviation 
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3.3. Analysis Complications and Simplifications 

3.3.1. Detailed Segregation vs. Counting Statistics 

The 495 plumes analyzed in this study were segregated by fire location, (which is 

likely related to the type of material burned) and mixing with other emissions (e.g., urban 

+ biomass burning).  The result of this categorization is that some groups are comprised 

of fewer plumes, making the statistical analysis weak.  However, the advantage of better 

comparison between different plumes is thought to override this shortcoming.  The 

number of plumes in each grouping for each species is listed in the figures (Figure 5a to 

5o). 

3.3.2. Transport Age vs. Photochemical Age 

In the analysis of plume age for the Canadian biomass burning plumes, transport 

age is calculated (i.e. time elapsed from when emitted to when measured), which is 

different from the photochemical age of the plume.  These two times may differ due to 

the time of day when the smoke was emitted and when the plume was intercepted by the 

aircraft, (e.g., early or late in the day, etc), or the meteorological conditions in the region 

(cloudy/clear sky).  No suitable species emitted in the fires were measured in the time 

resolution used in this analysis for estimating photochemical age; so only transport age is 

considered.  This adds some degree of ambiguity when comparing plumes of various ages 

for evidence of chemical evolution. 

3.3.3. Mixing of Various Emissions into Single Smoke Plumes 

Identifying the source of a plume, either visually when close to the fire or based 

on back trajectories, and assuming this source is representative of a specific fire, is 
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somewhat uncertain for a number of reasons.  First, even within a single region of 

burning there could be significant differences in material burned and burning conditions.  

This was visually observed in the Boreal fires (ARCTAS-B) as emissions of white and 

black smoke mixing within a single plume.  Second, as the plume moves away from the 

fire, other smaller nearby fires may add fresh emissions to the plume, mixing in smoke of 

different ages and possibly emission characteristics.  Evidence of such events was 

observed in the Boreal fires of ARCTAS-B, also.  Because of the averaging approach 

used in this analysis, these issues add uncertainty and likely some scatter to the calculated 

normalized excess mixing ratios. 

3.3.4. Different Loss Processes of Species Relative to CO 

 Accounting for dilution of both trace gas and aerosol particle emissions by 

normalizing to CO assumes that dilution is the main loss process leading to the loss of 

primary emissions as the plume moves away from the fire.  This is not the case if the 

species in the plume experience significant dry or wet deposition losses.  For example, 

hydrophilic trace gases or particles are likely to be much more efficiently lost in wet 

scavenging events compared to CO or other hydrophobic species.  Model studies have 

also shown that normalized excess mixing ratios calculated for diluting plumes can 

depend on background concentrations [Mckeen et al., 1996].  This effect is most 

prominent when the difference between in-plume and background concentrations is lows, 

either due to a very diffuse plume and/or for species with high background concentrations 

(e.g., CO2).  Both of these effects are not considered here, but should mostly affect the 

more aged plumes. 

 
 



 41 

 

Figure 3.3: Comparison of Median (25th and 75th %-ile and mean) for various trace gas and 
aerosol components in all biomass burning plumes intercepted by the NASA DC-8 during 
ARCTAS-A, ARCTAS-B and ARCTAS-CARB. Numbers inside the graphs represent the 
number of points present in each category 
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3.4. Results 

3.4.1. Canadian Boreal Forest Fires 

During the second phase of ARCTAS, smoke plumes from many active Boreal 

fires in Northwestern Canada were investigated.  Figure 3.4 shows the locations of all 

active fires in this region during ARCTAS-B.  The most substantial fires were located 

near Lake Athabasca (59.27, -109.45) and Mackay Lake (63.94, -111.16) and were 

extensively sampled during flights on July 1 and 4, 2008, respectively.  The average 

altitude where the Boreal plumes of ARCTAS-B were intercepted was approximately 

3600 ± 2700 m (asl) and ranged between 700 m (asl) close to the fires, to about 3000 m 

(asl) further downwind. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: A cumulative representation of 
observed boreal fires during the period of June 
29 to July 10, 2008 (ARCTAS-B), from FIRMS 
website 
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To investigate the evolution of various gaseous species and secondary aerosol 

formation in Boreal fires as a function of plume age, in detail, smoke plumes from four 

distinct ARCTAS-B fires were investigated. These fires were encountered during four 

different dates (06/29/08, 07/01/08, 07/04/08 and 07/08/08). Figures 3.2a to 3.2o show 

the normalized excess mixing ratios (i.e. ∆X/∆CO) for each of these fires as a function of 

plume age; with time scales varying from less than approximately 30 minutes since 

emission, to plumes with estimated transport times of 10 hours encountered some 

distance down wind of the fires. 

Figures 3.2a and 3.2b show changes in AN and HCN concentrations relative to 

CO versus transport age, in these Boreal fire plumes.  There tend to be two groups of 

data; there are plumes with low levels of AN and HCN (especially for the plumes 

encountered on 07/01/08) and ones with higher levels of HCN and AN relative to CO.  In 

either case, transport age did not seem to have a significant affect on the concentrations 

of these species, consistent with the long lifetimes of these tow compounds in the 

atmosphere. The high and low values encountered from the same fire, or between 

different fires, may be indicative of differences in emissions, even within the same fire 

(i.e. the edge of fire may have a lower temperature and thus different emissions than the 

center of the fire) [e.g., Maleknia et al., 2009]. This may be more pronounced in larger 

fires such as the one encountered on 07/01/08.  Similar trends are observed for CO2 and 

CH4 (Figures 3.2c and 3.2d), which are also stable compounds on these time scales, thus 

indicating variability in fire emissions. 

Benzene and toluene enhancements relative to CO ranged from 0.01 to 2.2 ppbv 

ppmv-1 and 0.001 to 0.5 ppbv ppmv-1, respectively (Figures 3.2e and 3.2f). The trend of 
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changes in the normalized emission mixing ratios (NEMR) of these two compounds is 

similar to the other stable species. The variation in benzene NEMR is most similar to AN.  

There was also no clear trend in the evolution of NOx and O3 relative to CO 

(Figures 3.2g and 3.2h).  However, peroxyacetyl nitrate (PAN) concentrations increased 

as the plumes aged (Figure3.2i).   Elevated concentrations of PAN may explain the lack 

of net O3 production in the aged plumes.  The production of O3 in biomass burning 

plumes is limited by the availability of NOx.  The increase in the NEMR of PAN shows 

evidence of NOx conversion to PAN which has a lifetime of weeks in the lower 

temperatures in the Arctic [Finlayson-Pitts and Pitts, 1999], thus even though no net O3 

production is observed within the timeline of the aging of the plumes discussed here (i.e. 

10 hours), it is possible that further downwind of the fires due to the thermal 

decomposition and photolysis of PAN more NOx is made available and O3 is produced.  

Mauzerall et al., (1998) observed similar enhancements of PAN in the biomass burning 

plumes over the tropical South Atlantic; additionally, they observed conversion of PAN 

to HNO3 in the course of a week.  Concentrations of ozone relative to CO were mostly 

low, with a few plume intercepts occurring on three of the four days where ratios were 

high.  These infrequent high ozone episodes were not associated with unusually high 

enhancements of other species, either trace gas or aerosol chemical components. 

Inorganic aerosol components (nitrate, sulfate and ammonium; Figures 3.2j, 3.2k 

and 3.2l, respectively) also show no clear trend.  Nitrate relative to CO is fairly uniform 

after approximately 0.6 hrs; prior to that it is somewhat lower.  Sulfate does not show this 

trend and ammonium, although more scattered, is somewhat similar to nitrate.  This is 

expected since ammonium is likely to be associated mostly with the aerosol nitrate and 
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sulfate and so should reflect the combined trends of both these inorganic species.  For 

sulfate, high values recorded near the fires on 07/01/08 contribute a great deal to the 

scatter in the early stages of the plume transport, and reduce the validity of a clear 

increasing trend. This could be due to differences in smoke emissions from different 

areas (locations) of the same fire, as seen from the HCN and AN data in Figures 3.2a and 

3.2b.  The same numbers of data points are not available for nitrate and ammonium from 

0.2 to 0.4 hours as sulfate, and this may have contributed to the more suggestive trend for 

these species.  

The concentrations of organic aerosol and WSOC are shown in Figures 3.2m and 

3.2n.  Again, no trend is observed; which may be due to the high degree of scatter, 

including values near the fires on 07/01/08.  The lack of evidence for SOA formation 

relative to CO in these fires may be due to a number of factors in addition to variability in 

emissions.  For example, variability in secondary formation processes due to dependence 

on a host of other factors (T, RH) and the fact that a significant fraction of OA and 

WSOC are composed of primary emissions (e.g., carbohydrates).  The NEMR values for 

WSOC show more variability when compared to OA.  Differences in measurement 

methods may account for some of this variability, or that WSOC is comprised of a 

smaller subset of compounds, and these may be more variable in nature.  One example 

would be SOA; if more highly variable, WSOC would be expected to also fluctuate more 

than OA.  Additionally, the increasing trend in PAN NEMR provides evidence for lack of 

available NOx species. This can hamper the production of O3 (Figure 3.2h) and thus result 

in lower concentrations of the hydroxyl radical (OH).  The lack of high concentrations of 

oxidizing species (i.e. O3 and OH) can cause a delay in the oxidation of VOC-s as they 
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are emitted by the fires, which in turn can affect their solubility and thus the production 

of SOA.  Cubison et al., (2010) have shown that the organic aerosols become more 

oxidized as they age in these fires.  This can be explained through the possible self 

reaction of compounds such as methylglyoxal and glyoxal in the aqueous phase as the 

aerosol droplet evaporates [De Haan et al., 2009b] after the initial emissions of primary 

organic aerosols from the fires.   

Black carbon NEMR values (∆BC_Mass/∆CO) varied between roughly 2000 and 

10000 µg cm-3 ppmv-1 among these four fires (Figure 3.2o).  Although as a primary 

emission, no increasing trend with age is expected, of all the species investigated, BC 

shows a trend. 

     Plume temperature and RH were investigated for possible trends.  

Temperatures of all the plumes were similar with a standard deviation of 10°K and the 

RH varied by 12% in plumes.  No significant correlations between RH and/or 

temperature with the changes in NEMR of any of the species investigated here were 

observed. Overall, the results show that for these fires, processes leading to changes in 

mass concentrations were minor relative to variability in emissions.   

3.4.2. Comparison of NEMRs for All Biomass Burning Categories 

In the following analysis, results from all fires encountered during the ARCTAS 

missions are compared.  This includes the Boreal fires recorded in Northern Canada 

during ARCTAS-B and discussed above, smoke plumes from springtime measurements 

in the Arctic (ARCTAS-A), and plumes encountered over California  (ARCTAS-CARB).  

Although recorded in the high Arctic, practically all plumes from ARCTAS-A were from 

fires from other regions that had undergone long range transport.  For ARCTAS-CARB, 
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most of the plumes originated from local fires, however there were a few cases of smoke 

transported from other regions.  ARCTAS-B was exclusively from Boreal fires in the 

region of the measurements. 

During ARCTAS-A, flights were conducted over the Arctic from April 3 to 19 

2008.  Air masses over the Arctic appeared to be broadly influenced by biomass burning 

emissions [Fisher et al., 2010].  This was evident in the elevated HCN levels recorded 

throughout the ARCTAS-A study period.  Frequent biomass burning plumes were 

encountered over a wide region, as shown in Figure 1, and generally at altitudes of ~5200 

± 800 meters asl.  Using HYSPLIT and FLEXPART, these biomass-burning plumes were 

separated into five categories based on their origin of emission.  Most of the emissions 

were from Southern Russia (Siberian), Western China (Asian) or a mixture of both 

(Siberian-Asian), with a few plumes traced back to European fires.  European plumes 

were also likely influenced by some urban emissions from cities near the burning areas.  

The final type of plume encountered in this region originated from a few fires in Canada 

(Canadian-BB-ARCTAS-A).  Note that the number of plumes from each category is 

included on the bar graphs (Figures 3.3a to 3.3o).  

 Fire emissions over and around the Los Angeles Basin were investigated during 

four NASA DC-8 flights on 18, 20, 22 and 24 of June 2008.  Also, at the end of Canada 

(ARCTAS-B) - to - California transit flight (13 July 2008), some California fire plumes 

were intercepted and are included in this analysis.  The location of all California plumes 

are shown in Figure 1, and the location of all fires burning in California and the Western 

U.S. during the ARCTAS-CARB sampling period are shown in Figure 3.5.  The average 
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altitude of the plumes encountered for the Californian fires studied were 1500 ± 700 

meters asl. 

 

 

 

 

 

 

 

 

 

 

The California fire plumes were further separated into plumes that were 

influenced by urban emissions and ones that were not. Note that even for the plumes that 

are categorized as not influenced by urban emissions, there was always evidence for 

some urban influence (especially for the aged plumes); however, this influence was not as 

significant as the group defined here as urban-influenced.  This separation is consistent 

with trends in urban tracers.  For example, the coefficient of variation (r2) between CO 

and toluene for biomass burning plumes with urban emission influence was 0.62, whereas 

biomass burning plumes, which were categorized as not significantly mixed with urban 

emissions, had coefficients of variation of 0.27.  According to HYSPLIT back 

trajectories, these plumes traveled over areas that were less directly influenced by the 

Figure 3.5: A cumulative representation 
of the fires in California from 18 June 
24 June 2008 
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large urban centers near the data collection area (e.g., Los Angeles, Sacramento, San 

Francisco and San Diego). 

Analysis of variance (ANOVA) with Tukey’s multiple range test was used to 

compare the significance of the differences between the means of all species in different 

categories. ANOVA has been previously used in many environmental and atmospheric 

studies to evaluate the variance of mean between multiple categories of samples (e.g., 

[Zhang et al. 1994; Gustin et al., 1996; Viskari et al., 2000].  The results from this 

analysis are shown in Table 3.3. Based on α=0.05, all compounds show a significant 

difference between the means of different categories except AN, where p=0.23 ≥ 0.05 

and WSOC where p=0.42 ≥ 0.05.  These differences and similarities are further discussed 

in the following sections. 
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Table 3.3: Results of ANOVA analysis for the differences in means of different species in categorized 
plumes  

Chemiscal or Aerosol Species P Value 

AN 0.23 

BZ 1.4 E –5 

CH4 3.4 E –7 

CO2 0.017 

HCN 3.1 E –10 

NH4
+ 4.0 E –17 

NOx 4.2 E –6 

NOy 1.9 E –20 

NO3
- 2.2 E -9 

O3 8.9 E –11 

Organic Aerosols 9.1 E –13 

SO4
2- 1.8 E –16 

TU 0.014 

WSOC 0.42 

 

 

 

 Figures 3.3a through 3.3o compare the normalized excess mixing ratios (NEMR) 

between all plumes and the results discussed next. 

Acetonitrile (AN) and hydrogen cyanide (HCN) are used as biomass burning markers and 

so expected to vary little with plume age, and ideally not vary widely between types of 

fires.  Figure 3.3a shows the range of AN NEMR and Figure 3.3b presents the range of 

NEMR for HCN in each plume category.  The overall range for AN was approximately 

0.1-5 ppbv ppmv-1 (relative to CO).  Grieshop et al. (2009a), recorded ∆AN/∆CO levels 

3.4.2.1. ∆AN/∆CO and ∆HCN/∆CO (Figures 3.3a and 3.3b) 
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of 0.1-0.8 ppbv ppmv-1 in biomass burning simulated chamber studies. Warneke et al. 

(2008) reported an average of 3.1 ppbv ppmv-1 for agricultural, 2.1 ppbv ppmv-1 for fires 

from Lake Baikal and 2.4 ppbv ppmv-1 from Canadian Boreal forest fires.  These values 

are consistent with the range of the median values for all the fires that were encountered 

during ARCTAS (1-2 ppbv ppmv-1).  ∆HCN/∆CO data were more variable than 

∆AN/∆CO, with significantly lower values for the California fire plumes with mean and 

medians near 2 pptv ppmv-1 compared to ranges of 5 to 9 2 pptv ppmv-1 for all other 

plume categories.  This may also be due to the possible presence of other sources of HCN 

in the Asian and Siberian plumes. 

∆CO2/∆CO ratios were typically less than roughly 50 to 60 ppmv ppmv-1, but in 

some cases the distributions were skewed towards higher ratios, such as the Boreal fires 

of ARCTAS-B. The highest ∆CO2/∆CO ratios were recorded in Asian biomass burning 

plumes.  Normalized excess mixing ratios of methane span a large range from near zero 

to roughly 1800 ppbv ppmv-1 with generally higher values in the biomass burning plumes 

that were influenced by urban emissions (e.g., ARCTAS-CARB-Urban, European BB 

and Asian BB (ARCTAS-CARB)).   

3.4.2.2. ∆CO2/∆CO and ∆CH4/∆CO (Figures 3.3c and 3.3d) 

The ∆BZ/∆CO levels in all the plumes were very similar (means typically 

between 1 and 1.5 pptv ppbv-1) except for the plumes that originated from Europe. These 

plumes contained about twice as much ∆BZ/∆CO.  Overall, ∆BZ/∆CO ratios in this study 

3.4.2.3. ∆BZ/∆CO and ∆TU/∆CO (Figures 3.3e and 3.3f) 
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were similar to those of Grieshop et al. (2009a) (0.1-4.3 ppbv ppmv-1) and Warneke et al. 

(2008) (1.1-1.3 pptv ppbv-1).   

Toluene normalized excess mixing ratios were generally less than roughly 1 ppbv 

ppmv-1. Grieshop et al. (2009a) reported a range of 0-1.1 ppbv ppmv-1 of ∆TU/∆CO in 

their laboratory studies. Warneke et al. (2008) reported 0.15 pptv ppbv-1 of ∆TU/∆CO for 

agricultural fires and 0.2 pptv ppbv-1 of ∆TU/∆CO for fires near Lake Baikal and Canada.  

The largest increase in ∆TU/∆CO levels were in the ARCTAS-CARB biomass burning 

plumes that were mixed with urban ones. This may be due to the mixing of vehicle 

exhaust emissions with the biomass burning plumes from the urban areas.  Typical urban 

normalized excess mixing ratios for ∆TU/∆CO are 0.81 – 3.07 ppbv ppmv-1 [de Guow 

and Warneke, 2007] considerably higher than what was recorded in the pure fires.  Muhle 

et al. (2007) also report elevated levels (~ 2 ppb) of toluene in ambient air masses that 

were influence by forest fires in California.  The Asian biomass burning plumes that were 

intercepted near the coast of California also showed slightly higher ratios of ∆TU/∆CO, 

which may be due to the mixing of these plumes with urban or ship emissions in this area 

[Wang et al., 2006].  For ∆TU/∆CO a number of plume categories are not shown because 

data were not available for all plume intersects.  

∆NOx/∆CO levels were clearly highest in the Boreal and California fires 

(ARCTAS-B and ARCTAS-CARB) compared to all others that were associated with 

long-range transport.  NOx is expected to be depleted relative to CO as the smoke plumes 

age and as NOx is converted to other compounds (e.g., PAN) over time, thus this may just 

3.4.2.4. ∆NOx/∆CO, ∆NOy/∆CO and ∆O3/∆CO (Figures 3.3g, 3.3h and 3.3i) 
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reflect differences in plume ages (although no age trends were observed for times scales 

less than roughly 10 hours, discussed in previous sections).  As the Siberian, European 

and Asian plumes were subject to long-range transport, the low levels of NOx in these 

plumes are to be expected. 

In contrast, ∆NOy/∆CO was fairly similar in all plumes.  The ARCTAS-CARB 

BB mixed with urban emissions had a few NOx and NOy concentrations relative to CO 

that were much higher than all other categories, skewing these distributions to much 

higher ratios.   

For ∆O3/∆CO ratios, a number of trends were observed.  In the California 

biomass-burning plumes that were mixed with urban emissions, ozone ratios were often 

(but not always) higher than the biomass plumes not mixed with urban emissions.  Some 

studies have reported greatly enhanced O3 when fire and urban emissions interact [Lee et 

al., 2008]; there was no strong evidence for that in this data set.  Asian BB (ARCTAS-

CARB) plumes encountered near the coast of California often had significantly higher O3 

ratios, possibly due to mixing with nearby ship plumes, as confirmed by the toluene data.  

Chen and Griffin (2005) also reported the observation of O3 enhancement in this area, 

due to ship plumes, in an earlier aircraft study. 

Highest NO3
- levels relative to CO were generally observed in ARCTAS-CARB 

biomass burning plumes that were mixed with urban emissions.  The lowest levels were 

recorded in Asian BB along the coast of California, the region of highest O3 NEMR 

levels.  NO3
- normalized excess mixing ratios were similar in the Asian, Siberian, and 

mixed Asian-Siberian plumes, but often lower in the European and Canadian fires 

3.4.2.5. ∆NO3
-/∆CO, ∆SO4

2-/∆CO and ∆NH4
+/∆CO (Figures 3.3j, 3.3k and 3.3l) 
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observed in the Arctic during ARCTAS-A (the Asian-CARB fires consisted of only two 

plumes and so are not considered).  Relative to CO, fine particle nitrate loss due to 

volatility or precipitation s*cavenging during transport may account for some of the 

lower ratios in the long-range transport categories. Generally the overall trends between 

source categories were somewhat similar for ∆NOy/∆CO and ∆NO3
-/∆CO, whereas 

∆NOx/∆CO was different. 

For sulfate, lowest ratios relative to CO for all plume sources were observed in 

the Boreal fires and California fires (not influenced by urban sources).  Curiously, the 

Canadian fires recorded in ARCTAS-A had significantly higher levels of sulfate relative 

to CO.  Some studies have shown emission of SO2 from biomass burning sources (e.g., 

Smith et al., 2001).  Huey et al. (2010) report higher emissions of SO2 in the Canadian 

Boreal fires which may account for the higher sulfate levels after the plumes have been 

processed for some time.  The most obvious feature of the sulfate data is the much higher 

normalized excess mixing ratios in plumes subjected to long range transport.  Note that 

this is the opposite trend to that of ∆NO3
-/∆CO.  Contributions from anthropogenic SO2 

emissions in the regions of the fires may be one reason.  Fine particle sulfate production 

in Asian anthropogenic plumes advecting to North America is well documented (e.g., 

[van Donkelaar et al., 2008; Peltier et al., 2007a]) and thought to be due to the 

conversion of a large reservoir of SO2 to non-volatile sulfate aerosol, which is not 

significantly depleted by any precipitation scavenging on route.  For this study, highest 

sulfate normalized excess mixing ratios were observed in the Asian plumes intercepted 

near the coast of California, possibly in part due to influence by ship emissions along the 
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California coast.  Capaldo et al. (1999) reported that as ships are the dominant source of 

SO2 in this area they might contribute significantly to the production of sulfate aerosols.  

∆NH4
+/∆CO levels were similar in Boreal and California fire plumes and higher 

in the California fire plumes that were influenced by urban emissions.  For the plumes 

subject to long-range transport, ∆NH4
+/∆CO variability between sources followed that of 

∆SO4
2-/∆CO, as expected.  

Organic species are the largest chemical components in fine particulate matter in 

smoke, and secondary formation may significantly enhance aerosol mass with plume age, 

however, no evidence for this was observed in the ARCTAS-B Boreal fire plumes.  The 

emission data have wide and overlapping variability in each transport age group, likely 

due to the issues discussed in previous sections.  Also, the low NOx regime (as evidenced 

by the increasing PAN NEMR) may have contributed to the lack of SOA formation. 

3.4.2.6. ∆OA/∆CO and ∆WSOC/∆CO (Figures 3.3m and 3.3n) 

The Boreal and California fire plumes had similar levels of OA and WSOC. 

However, for the California biomass burning plumes that were influenced by urban 

emissions, there were slightly higher levels of WSOC NEMR and on average lower 

levels of OA NEMR when compared to the non-urban influenced and Boreal plumes.   

Often, the OA and WSOC normalized excess mixing ratios in plumes transported over 

larger distances were lower compared to smoke plumes encountered closer to the sources 

of fire (ARCTAS-B and CARB).  In this regard, the behavior of these organic 

components is more similar to that of nitrate and not sulfate.  It is also similar to the 

preferential loss of fine particle OA or WSOC relative to sulfate that has been observed 

in Asian plumes advected to North America [van Donkelaar et al., 2008; Peltier et al., 
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2007a].  In those cases it was proposed that SOA was not regenerated in route, as sulfate 

could be, following precipitation-scavenging losses.  Similar processes may be at work in 

these smoke plumes.   

Higher levels of ∆BC/∆CO are observed in most of the plumes that were subject 

to long-range transport during ARCTAS-A.  In this case the highest levels are seen in 

Asian and Siberian plumes.  Encountered during ARCTAS-A, these plumes, on average, 

contain twice as much ∆BC/∆CO as the ARCTAS-B and ARCTAS-CARB plumes. This 

may be a result of biomass burning and anthropogenic emissions in the same general 

region rather than due to the differences from the fire emissions themselves. 

3.4.2.7. ∆BC_Mass/∆CO (Figures 3.3o) 

 

3.5. Conclusions 

Data from over 495 biomass-burning plumes from the different phases of the 

ARCTAS-2008 study (ARCTAS-A, ARCTAS-B and ARCTAS-CARB) have been 

collected and analyzed.  These plumes were separated into 9 different categories (Table 

3.2), based on their location and origin.  Many different measurements on the chemical 

and physical properties of these plumes were carried out on board the NASA DC-8 

aircraft.  16 different chemical and aerosol compounds have been investigated and 

compared for each category of these plumes (Figures 3.3a to 3.3o).  One of the goals of 

this chapter was to provide a general overview of the similarities and differences of the 

biomass burning plumes encountered during the ARCTAS-2008 experiment.  The results 

of this analysis show that the NEMR values for AN are similar in all the categories.  The 
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NEMR values for CO2, CH4, TU, NO3
- and SO4

2- were higher in plumes from California 

fires that were influenced by urban emissions. Also, SO4
2-, NO3

- and HCN NEMR levels 

were enhanced in plumes from Asian and Siberian fires that were subject to long-range 

transport. ∆NOx/∆CO levels were distinctly higher in plumes that were intersected closer 

to the sources of emissions (ARTAS-B and ARCTAS-CARB).  Overall, biomass-burning 

plumes that were influenced by urban emissions during ARCTAS-CARB had enhanced 

levels of some gaseous and aerosol species (CO2, CH4, TU, NOx, NOy, NO3
-,  SO4

2-and 

NH4
+) when compared to other plumes encountered close to the sources of emission (i.e. 

ARCTAS-B and ARTCA-CARB).  And BC-Mass, and inorganic aerosol components 

were enhanced in Asian and Siberian fire plumes.  Depletion of NOx was clear in these 

plumes. It appears that for the plumes that were subject to long-range transport, the 

gaseous and aerosol components were similar.  The same general trend was observed for 

plumes encountered near the emission sources. The only exceptions were the ARCTAS-

CARB plumes that were influenced by urban emissions and Asian fire plumes that were 

intercepted off the coast of California. 

Additionally, during ARCTAS-B, distinct fires were encountered and the data 

from the plumes emitted from these fires and the changes in the NEMRs of the 16 species 

with age were discussed in this chapter (Figure 3.2a to 3.2o).  Overall, as expected when 

comparing normalized excess mixing ratios from many biomass-burning sources, the 

inherent variability in the emissions from various sources appears to be large relative to 

any changes that may occur due to chemical evolution. This may be especially true when 

evaluating the evolution of species such as OA and WSOC, which can be produced both 

as primary emissions from biomass burning sources and also enhanced with time due to 
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secondary production processes.  No evidence of production of secondary aerosol species 

was observed in these fires.  This may have been due to the lack of sufficient 

concentration of oxidizers (i.e. O3 and OH), which would hinder the oxidation of VOC-s 

that are essential for SOA production.  Also, the possible enhancement of secondary 

species (e.g., nitrate) may have been obscured due to the high spatial variability in the 

emissions (i.e. the burning temperatures varied in large fires from the center to the edges 

of the fires, and multiple fires were contributing to the plumes present in one region).  

Also, the variability in the production of secondary compounds may have been due to the 

dependence of these processes to various other factors such as: photo-chemistry rates 

affected by cloud cover, temperature and RH, time of day, etc.   For the organic aerosol 

compounds, a significant fraction of OA and WSOC are from primary emissions.  These 

vary between different fires and also the addition of secondary species to the large 

primary emissions present in the plumes may not be discernable.   
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CHAPTER 4 

WATER SOLUBLE ORGANIC AEROSOL LIGHT ABSORPTION 

4.1. Introduction 

Organic and elemental carbon are a significant fraction of ambient fine aerosols 

and can have many chemical forms.  Since comprehensive chemical speciation of the 

carbonaceous aerosol is not possible, [e.g., Gelencser et al., 2000c; Kiss et al., 2001; 

Krivacsy et al., 2001; Gelencser et al., 2002; Gelencser et al., 2003, Myhre et al., 2004; 

Graber and Rudich, 2006; Salma et al., 2008; Baduel et al., 2009], grouping these 

compounds by physical properties has proven an effective means of characterizing their 

sources, impacts and fate in the atmosphere.  Based on thermal volatility, carbonaceous 

aerosols are often divided into two groups: elemental carbon (EC) and organic carbon 

(OC) [Turpin et al., 1990; Salma at al., 2008], with the delineation between the two 

dependant on the measurement method (e.g., thermal/optical transmission (TOT) versus 

thermal/optical reflectance (TOR)) [Chow et al., 2004].  EC is refractory and highly light 

absorbing, especially in the visible region of the electromagnetic spectrum [Seinfeld and 

Pankow, 2003].  It is also commonly measured based solely on light absorption 

properties, and in this case is referred to as black carbon (BC) [Hansen and Novakov, 

1990].  Soot is also a term used to for light absorbing carbon.  However, soot can include 

BC (graphitic component) and other adsorbed organic species [Rosen et al., 1980] that 

may or may not absorb light.  These small carbonaceous particles containing EC are 

directly emitted to the atmosphere from all combustion processes [Horvath, 1993a; 

Bergstrom et al., 2002; Seinfeld and Pankow, 2003].  Limited oxygen or low combustion 

temperatures lead to incomplete conversion of fuel to carbon oxides and the production 
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of EC or BC.  EC and BC are mainly composed of chain agglomerates of small, almost 

spherical, carbon particles that can evolve into branched or straight chains.  EC and BC 

are often internally mixed with other components from combustion.  For example, 

different combustion sources and processes can produce up to 10% moles of hydrogen as 

well as some other trace elements.  Significant quantities of organic carbon can also 

combine with EC or BC during cooling of combustion emissions [Seinfeld and Pandis, 

1998]. 

Organic carbon (OC) includes a vast array of chemical species that can have both 

primary and secondary sources.  OC has been divided into a number of sub-groups, such 

as pure hydrocarbon organic aerosol (HOA) versus oxygenated organic aerosol (OOA) 

[Zhang et al., 2005].  This categorization tends to follow the classification of water-

insoluble organic carbon (WIOC) and water-soluble organic carbon (WSOC), 

respectively.  HOA and WIOC have been found to be mainly from primary emissions, 

which includes combustion of both fossil and biomass fuels [e.g., Kanakidou et al., 2005 

and references therein; Zhang et al., 2007].  OOA and WSOC can have both primary and 

secondary sources, with primary emissions mainly from biomass burning (with small 

contributions from fossil fuel burning) [e.g., Kawamura et al. 1985; Pandis et al. 1991; 

Khwaja, 1995; Forstner et al. 1997a and 1997b; Seinfeld and Pandis, 1998;  Kanakidou 

et al., 2004 and references therein; Edney et al., 2005; Kroll et al., 2005a and 2005b; 

Sullivan et al., 2006; Zhang et al., 2007; Paredes-Miranda et al., 2009], and gas-to-

particle conversion processes in which volatile organic compounds (VOCs) are oxidized 

to semi-volatile forms that partition to the aerosol phase (i.e. SOA formation) [e.g., 

Anderson-Skold and Simpson, 2001; Sullivan et al., 2006; Volkamer et al., 2006].  
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WSOC has been further divided by its other bulk physical and chemical properties [e.g., 

Decesari et al., 2000; Mayol-Bracero et al., 2002].  One of the more common sub-

classifications has been based on Solid Phase Extraction techniques that tend to segregate 

WSOC into more hydrophilic (soluble) versus more hydrophopic (less soluble) 

components [e.g., Varga et al., 2001; Krivacsy et al., 2000; Andracchio et al., 2002; 

Duarte and Duarte, 2005; Duarte et al., 2005; Sullivan et al., 2006].  More hydrophobic 

components have been found to have properties that include, but are not limited to, higher 

molecular weight, ability to cause surface tension depression and light absorption 

characteristics, and are referred to as Humic-like substances (HULIS) [Graber and 

Rudich, 2006].  

BC has been recognized and extensively studied as the strongest light-absorbing 

component of aerosols, especially in the visible and near Infrared region (400 to 700 nm 

wavelength range) [e.g., Rosen et al., 1980; Horvath, 1993a; Horvath, 1993b; Bond et 

al., 1999; Lindberg et al., 1999; Clarke et al 2007; Marley et al., 2009].  The 

wavelengths where BC has been studied range from 400 to 700 nm [Horvath., 1993a and 

references therein].  Bergstrom et al. (2002) studied the light absorbing properties of BC 

at 400 nm.  Alexander et al. (2008) and Rosen et al. (1980) studied the light absorbing 

properties of soot (BC) at 550 nm and 630 nm.  Marley et al. (2001) studied the 

absorption of light from UV to infrared by freshly emitted BC and found that it decreases 

concomitantly with wavelength.  

In addition to BC, mineral dust and some organic aerosol components also absorb 

light [Yang et al., 2009].  As a group, light absorbing organic aerosols, have been referred 

to as Brown Carbon [Andreae and Gelencser, 2006; Yang et al., 2009] since they are 
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composed of compounds that are highly absorbing near the UV region of the 

electromagnetic spectrum.  This includes polycyclic aromatic hydrocarbons (PAHs), the 

nitrate derivatives of PAHs [Marley et al., 2009 and references therein], and HULIS. 

These species are strong light absorbers in the range of 200 to 400 nm  [e.g., Krivacsy et 

al., 2000; Kiss et al., 2001; Krivacsy et al., 2001; Varga et al., 2001; Andracchio et al., 

2002; Gelencser et al., 2003; Decesari et al., 2006; Hoffer et al., 2006; Gimbert et al., 

2007; Alexander et al., 2008; Salma et al., 2008; Baduel et al., 2009; Martins et al., 

2009; Shapiro et al., 2009]. 

Light absorbing organic compounds have been found in different atmospheric 

media from different sources.  For example, Went (1966) found yellow, brown and black 

aggregates in snow and rainwater, when studying condensation nuclei.  Mukai and Ambe 

(1986) observed brown colored soluble material in atmospheric particles at a rural site in 

Japan that was mainly impacted by local combustion sources.  Havers et al. (1998) found 

compounds that absorb light at the same wavelength as brown carbon in mineral dust 

particles.  Bond et al. (1999) report light absorbing compounds (brown) from residential 

coal burning samples. Many studies have focused on HULIS and its optical properties at 

rural [Gelencser et al., 2000a; Duarte et al., 2005; Gao et al., 2006] and urban sampling 

sites [Dinar et al., 2006a; Gao et al., 2006; Baduel et al, 2009], and the properties 

associated with fog and cloud samples [Facchini et al., 1999; Gelencser et al., 2000b; 

Krivacsy et al., 2000; Andracchio et al., 2002].    

A variety of studies have investigated sources of brown carbon.  Incomplete combustion, 

especially when associated with biomass burning, has been found to be a significant 

source of brown carbon [Mayol-Bracero et al., 2002; Gelencser et al., 2003; Dinar et al., 
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2006a; Hoffer et al., 2006; Iiuma et al 2007; Baduel et al., 2009].  Brown carbon can 

also be formed in the atmosphere through chemical reactions [e.g., Mayol-Bracero et al., 

2002; Baduel et al., 2009].  Heterogeneous reactions of biogenic volatile organic 

compounds (VOCs) such as isoprene in the presence of sulfuric acid [Limbeck et al., 

2003] have been shown to produce brown carbon.  In a more general sense, a variety of 

studies show that light-absorbing organic carbon species can be produced from biogenic 

VOC oxidation products and their subsequent polymerization [Andreae and Crutzen, 

1997; Hoffer et al., 2004].  Photo-oxidation products of anthropogenic VOCs can also 

produce brown carbon [Duarte et al., 2005].  More specifically, Gomez-Gonzalez et al. 

(2008), Noziere et al. (2009) and Shapiro et al. (2009) observed the formation of light 

absorbing material from reactions of glyoxal in acidic ammonium sulfate solutions. The 

reaction of glyoxyl with amino acids [De Haan et al., 2009a], methyl amines [De Haan 

et al., 2009b] and glyoxyl and methyl glyoxyl self reactions [De Haan et al., 2009c] have 

been proven to produce secondary organic compounds that absorb light near the same 

wavelength as brown carbon.  Glyoxal is an oxidation product of both anthropogenic and 

biogenic VOCs.  Gelencser et al. (2003) and Gimbert et al. (2007) observed formation of 

HULIS from Fenton reactions in aqueous solutions from hydroxyacid precursors.  

Noziere et al. (2005) found that the acid catalyzed aldol condensation reactions of 

aldehydes and ketones can produce light absorbing compound in aqueous solutions.Other 

possible pathways for production of brown carbon in the atmosphere are polyacidic 

species from lignin breakdown [Mayol-Bracero et al., 2002, Baduel et al., 2009] and 

from the recombination of low molecular weight primary emissions after secondary 

condensation reactions [Mayol-Bracero et al., 2002].    
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Studying the sources and fate of brown carbon in the atmosphere is important for 

a variety of reasons.  The presence of brown carbon can cause an overestimation of BC or 

EC based on currently used measurement methods [Andreae and Gelencser, 2006].  

Underestimating the absorption of light by atmospheric aerosols in the UV region may 

impact photolysis rate calculations, especially for those near UV [Martins et al., 2009] 

and influence climate predictions [Bernard et al., 2008; Alexander et al., 2008].  

 Finally, it is noted that brown carbon and HULIS have often become synonymous 

[e.g., Lukacs et al., 2007], but HULIS may constitute only a portion of the light absorbing 

carbonaceous compounds.  For example, Yang et al. (2009) showed that brown carbon 

includes not only HULIS, but also poly aromatic hydrocarbons (PAH-s) and lignin.  Sun 

et al. (2007) found that the light absorption due to brown carbon is greater than that of 

only HULIS.  In this paper no link is made between HULIS and Brown Carbon. 

4.2. Methods 

The light absorbing properties of water-soluble components of PM2.5 aerosols and 

their relationship with WSOC were investigated in this work.  The data were generated 

from two sources; archived Teflon filters collected at various sites throughout the 

Southeastern U.S. in 2007, and from an online measurement system deployed from July 

to September of 2009, in Atlanta, GA.  In both cases, light absorbing properties of water 

extracts containing dissolved aerosol components were measured with the same UV-VIS 

Spectrophotometer. 

4.2.1. Light Absorption Measurements 

Light absorbing properties of water-soluble aerosol components were measured 

with a UV-VIS Spectrophotometer and Long-Path Absorption Cell.  Liquid samples 
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either from FRM filter extracts or the online system (Particle Into Liquid Sampler, PILS) 

were injected via syringe pumps into a 100-cm path length Liquid Waveguide Capillary 

Cell (LWCC-2100, World Precision Instrument, Sarasota, FL), with an internal volume 

of 250 μL.  A dual deuterium and tungsten halogen light source (DT-Mini-2, Ocean 

Optics, Dunedin, FL) and absorption spectrometer (USB4000 spectrometer, Ocean 

Optics, Dunedin, FL) were coupled to the wave-guide via fiber optic cables (QP400-2-

SR, Ocean Optics, Dunedin, FL).  Absorption spectra were recorded over a wavelength 

range of 200 to 800 nm with an Ocean Optics Spectra-Suite data acquisition software 

system (Ocean Optics, Dunedin, FL).  This software was capable of collecting data as 

both complete spectra and/or absorption at individual wavelengths (or an integration of 

absorption over specified wavelength ranges), simultaneously.  For the filters, only 

complete spectra were collected.  However, for the online setup complete spectra and 

absorption at 250, 325, 365, 400 and 700 nm were recorded.  Complete absorption 

spectra data were integrated over 30 seconds at 0.2 nm resolution.  A data analysis 

algorithm was developed using Igor Pro (Wavemetrics, Oswego, OR) to extract data at 

wavelengths of interest from the whole spectra, collected from the filters. 

 During operation, the system was rinsed with a 0.6N solution of HCl and Milli-Q 

(>10 MΩ) DI water after each filter aliquot analysis, and every three days for the online 

system.  Each cleaning of the system was followed by manual zeroing of the baseline 

using the Spectra-Suite software so that zero absorption was recorded at all wavelengths 

as the initial system baseline using milli-Q (>10 MΩ) DI water. 

4.2.2. Filter Measurements 
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Through a network of monitoring stations, the Georgia Department of Natural 

Resources (DNR) routinely measures ambient aerosol PM2.5 mass at sites positioned 

throughout the state.  This is accomplished by following a Federal Reference Method 

protocol [Patachnick et al., 2001] that involves collecting particles on 46.2 mm Teflon 

filters (Pall-Life Science, Ann Arbor, MI) using a fine particulate cyclone size selector 

and non-denuded sampler operating for 24 hours at a flow rate of 16.7 L min-1.  At many 

sites, these filters are collected every six days, subsequently weighted to determine mass 

concentrations, archived, and eventually discarded.  Other states in the region follow a 

similar protocol.  In 2008, archived filters for the year of 2007 were obtained for a range 

of sites from the Georgia DNR, the South Carolina Department of Health and 

Environmental Control and the Alabama Department of Environmental Management and 

Jefferson Co. Department of Health.  Sites were chosen to include a range of rural and 

urban locations spread throughout the Southeastern U.S.  Figure 4.1 is a map of the 15 

site locations.   
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An every-sixth day sampling frequency in each site resulted in 60 filters per site 

and a total of 900 filters for analysis for the year 2007.  Filters were shipped from the 

monitoring stations in coolers with blue ice and then immediately transferred to a freezer 

(nominally -10°C) where they were stored until analysis.  Thus, these filters had been in 

storage at below freezing temperatures for approximately one year prior to the analysis.  

Zhang et al. (2010a) provide an overview of the overall study and methods used to 

extract and analyze these filters.  A brief overview of some of these processes is 

presented here. 
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Figure 4.1: The locations and designation (rural/urban) of FRM filter collection sites in 
Southeastern United States 
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 Filters were extracted in 30 mL of  >18 MΩ water (Barnstead Nanopure System, 

Thermo Scientific, Weltham, MA) in 30 mL amber Nalgene HDPE bottles with screw 

top lids.  These bottles were triple rinsed in Milli-Q water by sonicating the bottle in an 

ultrasonic bath at room temperature for 30 minutes, before use.  Liquid was extracted 

from the bottle with a 5 mL disposable (HDPE) syringe and transferred to another 

identical 30 mL amber bottle and filtered using a 0.45 µm PTFE disposable syringe filter.  

The bottles were stored in a fridge in the dark at 4°C until analysis.  All analysis was 

typically completed within 2 to 3 days.  Aliquots of sample were taken from the bottle for 

a series of analyses.  A Dionex (Sunnyvale, CA) ion chromatography system (DX-500), 

LC25 Chromatography Oven, GP40 Gradient Pump and ED50 Electrochemical Detector 

was used for the measurement of a range of carbohydrates, including levoglucosan, a 

biomass-burning tracer [e.g., Schkolnik and Rudich, 2006; Puxbaum et al., 2007].  The 

filter aliquots were introduced to the system with an AS40 Auto sampler (Dionex, 

Sunnyvale, CA).  To accomplish a complete speciation of carbohydrates of interest a 

Dionex CarboPac PA-1 column (an anion exchange column, used with pulsed 

amperometric detection) was used.  The mobile phase eluent used for this system was 

made from 50% v/v sodium hydroxide (NaOH) stock solution.  The solution was 

degassed by purging with ultra pure helium for 30 minutes before the beginning of daily 

measurements.  A gradient mobile phase was used for the elution of the different 

carbohydrates.  The gradient was as follows: 7.2 mM NaOH for the initial seven minutes, 

7.2 mM NaOH ramp up to 72 mM NaOH from the 8th to the 25th minutes, 180 mM 

NaOH from 28th to 43rd minutes to clean the column and 7.2 mM NaOH from the 43rd to 

the 59th minute to achieve re-equilibrium of the column.  The samples were loaded unto 



 69 

the PA-1 column from a 100 µL sample loop.  Calibration of the IC system for the 

carbohydrates of interest was accomplished by making stock solutions from solid phase 

compounds in Milli-Q DI water.  The stock solutions were stored in cool, dry conditions 

at nominally 4° C temperatures.  Calibrations for the system were repeated three times 

during the study and in all cases the r2 values were typically greater than 0.99 and the 

variability of the slopes were approximately 2% to 25% for various compounds. Dionex 

Chromeleon CHM-1-IC was used to control the instruments and the integration of 

resulting peaks.  Even though the PA-1 column provided the peak separation for many of 

the carbohydrates of interest, levoglucosan and arabitol were co-eluted [Iiuma et al., 2009 

and references therein].  The correction for the co-elution of arabitol and levoglucosan 

was accomplished by using mannitol, which has a strong linear correlation with arabitol 

[Zhang et al., 2010b] .  A more detailed discussion of the setup and methods of analysis 

are presented by Zhang et al. (2010a). 

 The water-soluble organic carbon (WSOC) concentrations were determined in  

10 ml aliquots using a Sievers Total Organic Carbon (TOC) Analyzer (Model 900, GE 

Analytical Instruments; Boulder, CO.).  The TOC concentrations were calculated by 

subtracting the measured total inorganic carbon (TIC) from the measured total carbon 

(TC). The TOC analyzer has two CO2 sensors.  One is used for the measurement of CO2 

released from the oxidation of both organic and inorganic compounds by using a 25% 

solution of ammonium sulfate (flow rate = 0.75 µL min-1) and an ultraviolet reaction 

chamber (wavelengths of 254 and 184 nm).  The other sensor is used to measure the CO2 

released from the inorganic compounds only by oxidizing the sample merely using the 

ammonium sulfate solution.  Both reactions are performed on samples with a pH of 
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approximately 2 or less, as the samples have been acidified by the addition of 6M 

phosphoric acid before the oxidation reactions take place.  The CO2 sensors operate by 

isolating the CO2 through a selective membrane into a high purity water loop and 

measuring the concentrations of CO2 using a conductometric detector (Carlson, 1980).  

The TOC analyzer was factory calibrated. The calibration was confirmed at the beginning 

and near the end of the measurements with a series of sucrose standards.  Typical results 

of the calibration were as follows: r2=0.9997; Slope=7.3E-1 ± 1%; I=-120 µgC m-3 and 

N=5.  The laboratory calibrations were used in the data analysis. 

For the absorption measurements, an automated multiport syringe (Klohn, LTD; 

Las Vegas, NV) was programmed to inject 1 mL of the sample into the LWCC.  

Complete absorption spectra were recorded 30 seconds after the injection of the aliquot.  

Following each measurement, the LWCC was flushed with 1 mL of a 0.6N solution of 

HCl and 3 mL of Milli-Q DI water.   

Additional series of analyses were done to quantify a suite of inorganic ions; 

however, these data are not discussed here.  A complete overview of the measurements 

and the results are presented by Zhang et al., 2010a.   

A series of field and laboratory blanks, and laboratory prepared standards were 

also analyzed during the study to eliminate interferences and assess measurement 

precision.  In addition to the field blank filters, provided by the participating sites, for 

every 10th filter in the sample queue a water blank and a single standard (a range of 

standards were prepared) were analyzed.  For all the data quality assurance results 

reported here the aqueous concentrations are converted to equivalent ambient 

concentration for ease and uniformity of comparison.  The limit of detection (LOD) of 
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WSOC was calculated from the 3σ (standard deviation) of the filter blanks, whereas the 

LODs for the carbohydrates were calculated from 3σ of the noise of the typical baseline 

of the IC system.  The LOD for WSOC was 0.15 µgC m-3, and ranged from 0.2 to 0.6 ng 

m-3 for the carbohydrates.  The results for the field filter blanks and DI water blanks were 

all well below LOD of the carbohydrates.  The concentrations of WSOC on the blank 

filters were very small (about 0.5%) and were thus negligible.   Comparisons of 

concentrations from co-located filter measurements (measurement precision) were 

usually within 15%; specifically, 4% for WSOC, 13% for levoglucosan and 9% for light 

absorbance at 365 nm.  Finally, measurement uncertainties were calculated using errors 

associated with volume measurements, calibration standards, filter blanks and precision 

values for each species.  The uncertainty associated with the measurement of WSOC was 

9% and 21% for levoglucosan. 

4.2.3. Online Measurements 

An automated online system was constructed to provide semi-continuous 

measurements of both the absorption spectra and carbon mass of water-soluble aerosol 

components (Figure 4.2).   
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This was accomplished by adding a LWCC to an online system for measurement 

of water-soluble organic carbon (WSOC).  A detailed description of the online WSOC 

measurement with a Particle-Into-Liquid Sampler (PILS) is described elsewhere [Sullivan 

et al., 2004; Sullivan et al., 2006; Peltier et al., 2007b; Hennigan et al., 2008].  Briefly, 

in this instrument (PILS) ambient particles are concentrated into a continuous flow of 

high purity water by a steam-condensation-droplet impaction collection system.  Two 

syringe pumps with automated selection valves (Klohn, LTD.; Las Vegas, NV) 

continuously draw sample from the PILS through a debubbler to remove air and then 

Figure 4.2: Schematic of Online Light Absorption and WSOC measurement. The area 
highlighted and enlarged is the LWCC schematic, which presents the setup that was used for the 
filter measurements 
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pump the liquid sample at a nominal rate of 0.3 mL/min through a 0.45 µm PTFE 

disposable syringe filter followed by the LWCC and the TOC analyzer (discussed in the 

previous section).  The TOC analyzer was operated in normal mode (non-turbo), drawing 

sample into the detector at a flow rate of 0.2 mL/min and recorded liquid carbon 

concentrations at a 6-minute duty cycle.  Upstream of the PILS either a sharp cut cyclone 

(URG; Chapel Hill, NC) or a non-rotating multi-orifice impactor (MSP; Shoreview, MN) 

was used to exclusively sample PM2.5 aerosols.  Possible positive artifacts due to 

interfering gases such as VOC-s were reduced with an activated carbon denuder [Eatough 

et al., 1993] and a pre-programmed automated valve that shunted sample through a 

Teflon filter (Pall-Life Science, Ann Arbor, MI) to provide an automated blank. 

Subtraction of this blank accounted for possible interferences due to collection and 

analysis of any water-soluble VOCs and contaminations in the ultra-pure water used in 

this system.  The complete spectra were collected every five minutes and the data for 

selected wavelengths of interest (250, 365, 400 and 700 nm) were collected every 20 

seconds. Background measurements were performed twice per day (4:30 and 18:30 local 

time) for 45 minutes, for the duration of the study.  Ambient WSOC concentrations were 

determined by subtraction of the results of a linear interpolation between consecutive 

blank levels and the liquid TOC concentrations.  These values were then converted to 

ambient WSOC concentrations using the following equation [Orsini et al., 2003; Weber 

et al., 2003; Sullivan et al., 2004]: 

 

C =  (Cl Ql R) / (Qa)          (4.1) 
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where C is the ambient concentration of WSOC in ug m-3, Cl is the aqueous concentration 

of WSOC in ug L-1, Ql is the liquid flow rate over the impactor in mL min-1, R is the 

sample dilution ratio (a constant value of X was assumed) and Qa is the flow rate of air 

through the PILS in L min-1.  From previous studies, the uncertainly of this system has 

been estimated at 8% and the limit of detection (LOD) ~0.1 µgC m-3 for WSOC 

measurements [Sullivan et al., 2004].  Figure 4.3 shows an example of non blank-

corrected (Cl) ambient WSOC and light absorption data at 365 and 700 nm using the 

online PILS-LWCC-WSOC system.  Periods of dynamic blank measurements are evident 

in the Figure in both the WSOC and absorption at 365nm.  
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From July to September of 2009, online water-soluble aerosol absorption 

measurements were performed in Atlanta, GA with this system.  The site for this study  

was located in the Georgia Institute of Technology’s Ford Environment Sciences and 

Technology air quality laboratory situated on the building’s top floor approximately 20 to 

40 m above ground level (depending on the side of the building) at approximately (33.78° 

and –84.40°).  The station is a straight-line distance of roughly 840 m from a major 

interstate highway.  A number of atmospheric chemistry studies have been published 

based on data from this site [e.g., Hennigan et al., 2009]. 
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Figure 4.3: Raw light absorption data from online measurements of light absorption in Atlanta, 
GA; July 2009 
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 To assess any effect of adding an LWCC to the PILS-TOC system on WSOC 

measurements de-ionized water (18 MΩ) and different solutions of oxalate were used to 

check for positive and negative artifacts.  Background carbon levels increased from a 

typical concentration of 25 ppbv to 50 ppbv.  This background increase was accounted 

for in the blank corrections.  The TOC response to oxalate solutions with the LWCC 

inline compared to offline did not change significantly (r2 = 0.998, I=5.6 ppbv, S=1.07 

ppbv and n=6), indicating no adverse effect on the WSOC concentrations by the LWCC 

system. 

4.2.4. Interpretation of Absorption Data 

A UV-VIS Spectrophotometer and Long-Path Absorption Cell were used for the 

absorbance measurements presented here.  This instrument steup uses the fundamentals 

of Beer-Lambert Law which states that “for monochromatic radiation, absorbance is 

directly proportional to the path length (l) through the medium and concentration (C) of 

the absorbing species” [Skoog et al., 1998].  This relationship is shown in Equation (4.2): 

 

Aλ = C ε l = l Σ( Ci εi )  =  -log10(I/I0)    (4.2) 

 

where, Aλ is the absorbance, I is the intensity of transmitted light and Io is the intensity of 

incident light. ε is the molar absorptivity.  Furthermore, the absobance is the product of 

the concentration of the chromophores in the solution (C), their molar or mass 

absorptivities (ε) and the (l) is the absorption path length.  l is approximately 1 m in this 

setup (± 5%) [Belz et al., 1999]. Thus, Aλ is linear with the sum of all chromophor 

concentrations, times their mass absorptivity.     



 77 

  Although the complete light absorption spectra were recorded from 200 to 800 

nm, for simplicity the absorption values averaged between 360 to 370 nm, centered at 

365 nm were used as a general measure of the absorption by light absorbing 

carbonaceous aerosols.  This wavelength was chosen because it is far enough from the 

UV region of the electromagnetic spectrum to avoid interferences from compounds such 

as phthalate and oxalate [Myhre and Nielsen, 2004] and nitrate.  Many studies have 

collected data over a wide range of wavelengths (from 190 to 1200 nm) [e.g., Kiss et al., 

2001; Duarte et al., 2005; Shapiro et al., 2009; Yang et al., 2009] to evaluate the light 

absorbing properties of brown carbon or HULIS; however, the main range of 

wavelengths of interest has been from approximately 200 to 500 nm.  For example, 

Varga et al. (2001) and Baduel et al. (2009) studied the absorption at 250 nm, 

Andracchio et al. (2002) at 254 nm and Decesari et al. (2006) at around 260 nm.  Some 

have studied the absorption of carbonaceous compounds at higher wavelengths; for 

example, Gelencser et al. (2003) and Gimbert et al. (2007) observed light absorption at 

400 nm.  Some other studies chose a collection of wavelengths to analyze.  Hoffer et al. 

(2006) studied absorption at 300 and 532 nm and Krivacsy et al. (2001) looked at a 

multitude of wavelengths, including 210, 280, and 350 nm.  

Baseline drift during the extended periods when measurements were being 

conducted was accounted for by referencing all the measurements to the absorbance at 

700 nm.  Also, to account for the differences between the FRM-filter and PILS methods 

for sample collection and extraction into water (e.g., sample air flow rates, integration 

times, extent of dilution into water), absorption (in arbitrary units) was multiplied by a 

volume correction factor.  All absorption data were determined by Equation 4.3: 
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Abs (a.u. m-3) = (Abs365-Abs700) Vl/(Va VLWCC)   (4.3) 

 

Where Abs365 is the measured absorbance at 365 nm (mean between 360 and 370 

nm), Abs700 the measured absorbance at 700 nm (mean between 695 and 705 nm), Vl is 

the volume of water the filter is extracted into (30 mL) or PILS liquid sample flow rate 

(0.3 mL min-1), Va the volume of sample air passed through the filter (24 hrs x 16.7 L 

min-1 x 0.06 min m3 hrs-1 L-1) or the PILS sample air flow rate (15 L min-1), and VLWCC 

the volume over which the absorbance measurement is made (LWCC internal volume of 

0.25 µL).  The resulting absorption at 365 nm is in units of arbitrary units per cubic meter 

of air (a.u. m-3).  

It should be noted that inferring HULIS from light absorbance is highly uncertain 

due to the complex mix of the organic aerosols that likely contains a wide range of 

chromophoric species with varying absorptivities.  Furthermore there are species that 

absorb in the UV-Vis region of EM but lack the typical HULIS structure (Yang et al., 

2009).  For example, xylose, a plant mono-sacharide released during biomass burning 

[Simoneit, 2002; Iiuma et al., 2007], but not likely considered HULIS by most separation 

methods, was one of the carbohydrates in the FRM-filter extracts which was highly 

correlated with absorbance at 365 nm, especially for filters that were influenced by 

biomass burning plumes (r2=0.78, Slope=5.4, I=0.007 and N=285). 

4.3. Results 

4.3.1. Absorbance Data 
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An example of absorption spectra recorded from filter extracts is shown in Figure 

4.4.  The online measurements produced similar spectra.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The shape is similar to what has been measured for HULIS [Gelencser et al., 

2003; Gimbert et al., 2007; Hoffer et al, 2006].  The general shape of the ambient aerosol 

spectra, especially for the filters that were affected by biomass burning plumes, were 

similar to spectra of humic acid and fulvic acid isolated from different surface water 

sources; such as those from landfill runoff [Kang et al., 2002], in lake waters [Oliveira et 

al., 2006], ocean water [Esteves et al., 2009], and Mediterranean soil samples [Munoz et 

al., 2009].    

Figure 4.4: Examples of absorption spectra from FRM filters 
collected at two sites during 2007 
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The wavelength dependence of absorption is often fit with a power law in the 

form: 

  αabs = K x λ –Α’       (4.4) 

 

Where αabs is the aerosol mass absorption efficiency, typically expressed in m2/g, 

K is a constant independent of the wavelength of light (λ) and is related to aerosol 

concentration. A’ is the Angstrom exponent for absorption.  In urban environments where 

light absorption is dominated by soot, A’ is found to be close to 1 [Andreae et al., 2006], 

whereas values of 2 and higher are observed in biomass burning [Kirchstetter et al., 

2004], with highest values found in smoldering combustion [Lawless et al., 2004] and 

water-soluble HULIS (see Andreae et al. (2006) for a review).   

   The results of the fit of the filter data to the power equation (Equation 4.4) are 

discussed below. The data are segregated by biomass burning influence (biomass burning 

influence was delineated by a levoglucosan concentration of 50 ng m-3) or location.  A 

range of wavelengths were chosen for this analysis.  The range was selected based on the 

linearity of the fit of log(absorbance) and log(wavelength), which was varied for the 

different categories of filters (i.e. rural and urban).  The power fit was applied to 330-430 

nm range as this was the area that was linear for all the filter samples.  Hoffer et al. 

(2006) note that the fit tends to over-estimate absorption for wavelengths below 350nm.   

This is also the range where the absorption of light (UV) is highest by brown carbon with 

the least interference from other non-carbonaceous soluble compounds.  The fit results 

showed a range of A’ from 6.5 to 8 for all the filters collected in this study.  
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These results (A’ values) are somewhat similar to those of Hoffer et al. (2006) for 

HULIS extracted from biomass burning samples collected in the Amazon basin.  Using 

absorption measured at two wavelengths to estimate the Angstrom exponent, Hoffer et al. 

(2006) obtained Angstrom exponents of 6.4 and 6.8 for day and night, respectively.  

Biomass burning or non-biomass burning rural or urban samples all had similar mean 

Angstrom exponents.  These biomass burning Angstrom exponents are somewhat lower 

than Hoffer et al. (2006), and may be related to our measurement of WSOC absorption 

and not just that of HULIS.   

Spectral absorbances have also been used to infer the degree of sample 

aromaticity (e.g., Krivacsy et al., 2008).  In their studies, Krivacsy et al. (2008) divided 

the value of absorption at 250 nm with the value of absorption at 365 nm (E2/E3).  There 

is an inverse correlation between E2/E3 with the levels of aromaticity of the collected 

samples [Peuravuori and Pihlaja, 1997; Krivacsy et al., 2008].  Applied to the FRM 

filter data, this ratio was substantially lower in biomass burning aerosols (E2/E3 = 4.6) 

compared to non-biomass burning filter samples (9.5), consistent with significantly 

higher levels of aromaticity in the biomass burning samples.  However, for non-biomass 

burning conditions (levoglucosan < 50 ng/m3) filters from rural sites had lower ratios 

(6.2) compared to filters collected at urban sites (8.6), indicating higher levels of 

aromaticity in rural fine particles.   Overall, the highest degree of aromaticity (lowest 

ratio) observed for the filters that were influenced by biomass burning plumes is 

consistent with the highly aromatic nature of biomass burning smoke and with the results 

observed by Krivacsy et al. (2008).  However, results from our analysis should be used 

cautiously as we did not isolate the organic component and other light absorbing 
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compounds, such as aerosol nitrate, which is known to absorb at 250 nm and may 

influence these results.  This may account for the unexpectedly higher aromaticity at the 

rural sites. 

 

4.3.2. FRM Filter Results 

As in other studies, the FRM filter data showed that biomass burning was a 

significant source for brown carbon.  Figure 4.5 shows the monthly averages of 

levoglucosan, light absorption at 365 nm (Abs365) and WSOC for all sites.   
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Figure 4.5: Monthly average concentration for all sites for 2007.  
Variability is shown as the standard error.  The number of filters 
averaged for each month is roughly 75 
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Zhang et al. (2010b) present a detailed analysis of levoglucosan as a biomass-

burning tracer, the seasonal variability of these species, and the sources of WSOC during 

this study.  As indicated by levoglucosan concentrations, the highest contributions from 

biomass burning were observed in the cool months, November through March.  In 2007 

extensive burning episodes over a broad region of Southern Georgia resulted in smoke 

impacts over much of the Southeast (Georgia Department of Natural Resources, 

Environmental Protection Division), and account for the high levoglucosan 

concentrations in May 2007.  Figure 4.5a clearly shows the same seasonal trend for 

biomass burning emissions (as indicated by levoglucosan concentrations) and Abs365 for 

the Southeastern U.S.  During the colder months Abs365 and levoglucosan at individual 

sampling sites were highly correlated, both at urban and rural locations.  Figures 6a and 

6b show that for cold months (J, F, M, A, O, N, D) the slopes at these two sites are 

somewhat similar, and this trend is observed in other sites also.  The relationship between 

Abs365 and levoglucosan in all sites are as follows: for cold months  rc=0.8; 

Slopec=0.0017 ± 0.0007; Ic=0.2 ± 0.2 a.u./ng m-3 and for the warm months (M, J, J, A) 

rw=0.7; Slopew=0.002 ± 0.002; Iw=0.2 ± 0.1 a.u./ng m-3.  When levoglucosan was greater 

than 50 ng m-3 for the 15 sites, (mostly cold months, Figure 4.5), on average, roughly 

80% of the Abs365 could be explained by levoglucosan (i.e., mean r2= 0.81), whereas only 

10% could be explained by levoglucosan, when levoglucosan was less than 50 ng m-3 (r2 

= 0.12).  
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Figure 4.6: .  Correlations between Abs365 and levoglucosan at a representative 
rural (6a.Yorkville) and urban (6b. South Dekalb)  site.  The data for the cooler 
months (J, F, M, A, O, N, D) are presented in blue and the data for the warmer 
months (M, J, J, A, S) are shown in red. The regression fit is only for the cooler 
month’s data 
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The data show that during the warmer season levoglucosan is much lower, as is 

Abs365 (see Figure 4.5b); however, WSOC remains high, presumably due to another 

source that produces a significantly lower proportion of WSOC-chromophoric 

compounds.  Zhang et al. (2010a) and other studies indicate that this summer source is 

secondary organic aerosol formation, especially from biogenic sources [e.g., Gelencser et 

al., 2002; Duarte et al., 2005; Baduel et al., 2009].  The bifurcation of the WSOC data by 

biomass/non-biomass burning is demonstrated in Figure 4.7.  This Figure shows a clear 

difference in the fraction of light-absorbing species to total WSOC (i.e., slopes of Abs365 

vs. WSOC) and thus divides the data into two distinct categories by levoglucosan 

concentrations, which results from two differing WSOC sources.  
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Figure 4.7: Comparison of Absorption vs. WSOC for all filter data. The data 
points have been color coded based on levoglucosan values. Light colors 
indicate high concentrations of levoglucosan (i.e. filters influenced by biomass 
burning plumes) and dark colors show low levels of levoglucosan (i.e. filters 
that were less affected by biomass burning plumes) 
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The FRM-filter data were separated into biomass burning and non-biomass 

burning-influenced periods using levoglucosan concentrations of 50 ng m-3 as the 

delineating value.  A levoglucosan value of 50 ng m-3 is arbitrary; however, a relatively 

low value (for urban and rural areas) was chosen to more rigorously exclude all biomass-

burning contributions since one of the goals of this work was to investigate non-biomass 

burning sources of light-absorbing WSOC.  Winter and summer mean levoglucosan 

concentrations were 170 and 19 ng m-3, respectively [Zhang et al., 2010a].  Background 

concentrations in Europe have been reported to be in the range of 5 to 52 ng m-3 

[Puxbaum et al., 2007].  The data were further segregated into urban and rural sties (see 

Figure 4.1), and the results of the comparison of WSOC and Abs365 are summarized in 

Table 4.2.   
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For most sites there is a high correlation (r) between Abs365 and WSOC 

concentrations, with correlation coefficients typically greater than 0.8 and generally 

higher correlations for the biomass burning filters.  The data for non-biomass burning 

influenced filters from two sites (Long Creek and Athens) had poor correlations due to 

Biomass Burning Non-Biomass Burning  
r Slope  

(Abs/µgC) 
r Slope  

(Abs/µgC) 
URBAN SITES  

ATH 0.86 0.23 0.33 0.015 
AUG-BRS 0.84 0.25 0.79 0.043 
COL-CRS 0.88 0.18 0.72 0.030 
N BHM 0.93 0.17 0.71 0.071 
MACON 0.89 0.25 0.83 0.058 
ROME 0.77 0.15 0.70 0.039 

S. DEKALB 0.83 0.20 0.77 0.065 
WYL 0.87 0.20 0.77 0.082 

Mean ± Stdev  0.20 ± 0.04  0.056 ± 0.018 
Std/Mean   20%  32% 

 
RURAL SITES  

ASH 0.78 0.21 0.65 0.063 
CROSS 0.70 0.16 0.71 0.067 
LCRK 0.23 0.05 0.25 0.057 
PROV 0.88 0.21 0.56 0.042 
SND 0.91 0.22 0.73 0.047 
TRE 0.92 0.21 0.74 0.041 
YKL 0.78 0.14 0.75 0.038 

Mean ± Stdev  0.19 ± 0.03  0.052 ± 0.012 
Std/Mean  16%  23% 

 

Table 4.1: Summary of linear regression results for 24-hr FRM filter Abs(365) versus WSOC 
concentration for each site, separated by high and low levels of levoglucosan (>50 ng/m3 and <50 
ng/m3, respectively).  The mean result exclude the LCRK site and the non-biomass burning also 
excluded the ATH site, which all had very low correlations 
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the presence of some high WSOC values that do not show a corresponding increase in the 

levoglucosan concentrations and the results from these two sites are not included in the 

following analysis.  Abs365 relative to WSOC (e.g., slopes) at various monitoring stations 

demonstrate: 1) For a given category (biomass-burning or non-biomass-burning) the 

extent of Abs365 per WSOC mass was fairly consistent between all sites (urban and rural), 

with similar mean slopes for urban versus rural sites of ~ 0.2 a.u. µg C-1 ± 20% (relative 

standard deviation) for biomass-burning influenced filters and mean slope of ~ 0.05 a.u. 

µgC-1 ± 30% for non-biomass-burning filters.  2) The extent of Abs365 per WSOC mass 

(slopes) are approximately a factor of 3.5 times higher in the biomass burning emissions 

versus the non-biomass-burning.  These results suggest wide-spread spatial uniformity in 

the chemical characteristics (in terms of fractions of water-soluble light absorbing 

organic species), both when air masses were influenced by biomass burning and when 

they were not.  It is noted however, that the results from the FRM filters likely do not 

include any semi-volatile species due to the sampling method and length of time the 

filters were kept in storage.  Zhang et al. (2010a) investigate the extent of semi-volatile 

contributions to WSOC mass for this study.  Thus, these results represent the more stable 

and aged components of the ambient aerosol. The online measurements should be less 

susceptible to artifacts and can also be used to investigate the more rapid variability of 

Abs365 relative to WSOC. 

To evaluate the statistical significance of the differences between Abs365/WSOC, 

a p-value test with α=0.01 was applied to the filters from all the sites, in pairs.  Only the 

filters in N. Birmingham showed a clear difference with p<0.01 (with the exception of N. 
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Birmingham and S. Dekalb where p=0.84).  All other site pairings showed p>0.01, which 

indicates that the Abs365/WSOC values were not significantly different in these sites. 

4.3.3. Online Measurement Results 

Continuous light absorbance and WSOC measurements were collected in Atlanta, 

GA, from July to September 2009 on the Georgia Institute of Technology Campus to 

investigate the sources or process that lead to the production of non-biomass burning 

brown carbon. 

 The summer 2009 data using the online system produced results that were similar 

to the FRM-filter non-biomass burning (for the months of July, August and September 

for the South Dekalb sampling site) of 2007.  For 2009, the daily averages for the online 

data were calculated and the slope of Abs365 to WSOC was 0.052 a.u. µg C-1, (Figure 

4.8); similar to the value for 2007 at ~ 0.054 abs µg C-1.  During the summer months for 

these two years, in addition to similar Abs365/WSOC ratios, WSOC concentrations were 

similar.  For 2009  WSOC = 2.9 ± 0.9 µgC m-3 versus for 2007 the Georgia EPD sites 

average was 2.2 ± 0.6 µgC m-3.  Despite these similarities, PM2.5 mass in 2009 on 

average was significantly lower at 12 ± 8 µg m-3 compared to 20 ± 11µg m-3 in 2007.   
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Patterns in diurnal variability of Abs365 relative to WSOC and other emissions can 

provide insight into sources of light-absorbing species.  Figure 4.9 shows the mean 

diurnal trends for all online Abs365, WSOC, CO, and ozone, all binned into hourly 

averages.  The CO and ozone data are from the year 2008, averaged over the months of 

July to September from the Southern Aerosol Research Characterization Study 

(SEARCH) monitoring site, located at Jefferson Street station, Atlanta, GA (33.78°, 

84.41°), since these measurements were not included in our study and we are only 

interested in typical diurnal trends for these two species.     
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Figure 4.8: Comparison of daily averages of online 
measurements of light absorption and WSOC in Atlanta, GA 
(July – September 2009) 
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Abs365 and WSOC both show comparatively small diurnal variability relative to a 

high background, which is typical of the regional characteristic of trace gases and 

aerosols in the Southeastern U.S. [Zhang et al., 2010a].  For WSOC there is a clear 

daytime increase of roughly 20% (an increase of 0.5 µgC m-3) over the typical nighttime 

concentration of approximately 2.4 µgC m-3, which is attributed to photochemical SOA 

production linked to urban emissions, since this increase was not observed at a rural site 

(Yorkville, GA) ~ 70 km from central Atlanta, GA (see Zhang et al. 2010a for more 

Figure 4.9: Hourly means of Ozone, CO, WSOC and light absorption from online measurements 
in Atlanta, GA.  Ozone and CO data are from SEARCH monitoring site at Jefferson street, 
Atlanta, GA (2008) and included for only general comparison purposes. WSOC and Abs are 
from July-Sep 2009.  Variability in the hourly averages is the standard error, where n=120 for 
each hourly average. 



 93 

details).  A similar daytime WSOC increase has been observed at other urban sites, such 

as Mexico City [Hennigan et al., 2008].  A small WSOC peak was observed at ~ 7:00 

(local time) at the same time as a peak in CO and both are likely due to primary vehicle 

emissions resulting from morning rush hour traffic combined with low boundary layer 

heights in the early morning.  A similar peak was not observed in WSOC or CO during 

the afternoon rush hour, likely due to much higher afternoon boundary layer heights 

resulting in significant dilution of the afternoon emissions.  

In contrast to WSOC, light absorbance diurnal trend was different.  First, the 

daytime increase in WSOC was not observed in Abs365, instead Abs365 levels actually 

decreased during the day, suggesting that relatively freshly formed water-soluble WSOC 

(e.g., SOA) contains few chromophores.  At the time of morning rush hour there is a 

significant increase in light absorbance levels corresponding to the slight increase in 

WSOC.  This indicates that the fresh, likely primary WSOC from vehicle emissions was 

composed of significant light absorbing compounds, possibly mainly from aromatic 

species [Salma et al., 2008].  At this time, the estimated increase in Abs365 to the increase 

in WSOC (i.e., ∆Abs365/∆WSOC) was ~0.2 a.u. µg C-1, similar to the levels in biomass 

burning plumes.  A similar light absorbance peak is observed in the afternoon at 14:00 to 

20:00 hrs local time, but in this case with no corresponding WSOC or CO increase; thus 

this does not appear to be linked to primary WSOC emissions, in contrast to the morning 

rush hour.  This peak appears to be real, as it was observed for 80% of the sampling days.  

The afternoon minimum in both Abs365 and WSOC occurs near the time of the afternoon 

blank for these data (18:30 to 19:15), however, the blank measurements are not thought 

to be the cause since they would not effect the trend prior to the blank, during which both 
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Abs365 and WSOC were decreasing, nor the general trends hours later.  The source of the 

afternoon Abs365 peak is not clear, but may be related to some form of chemical 

conversion of WSOC to more light absorbing compounds, such as formation of 

oligomers [Havers et al., 1998; Graham et al., 2002; Graber and Rudich, 2006 and 

references therein] or oxidation of secondary compounds by OH in the aqueous phase 

[e.g., Gelencser et al., 2003; Duarte et al., 2005].  The chemical conversion would 

explain the lack of increase in WSOC. Laboratory studies show that the typical time for 

formation of oligomers from low molecular weight carbonyls is less than 25 hours  [De 

Haan et al., 2009b].  This peak does not follow solar intensity, and hence OH 

concentrations, which peak near noon; however, it does occur in late afternoon when 

ozone concentrations are still high. Alternatively, this peak could also be due to increases 

in fresh WSOC with highly efficient light absorbers, which contribute a very small 

amount to the overall WSOC concentrations, but significantly increase the overall WSOC 

light absorption properties.  

At night, Abs365 increased again following sunset and reached a peak near 2:00 to 

3:00, and then declined.  The trend during morning rush hour and night are somewhat 

similar to CO measured in Atlanta in 2008 and so could be linked to primary emissions 

and diurnal trends in boundary layer height.  The nighttime increases, however, could be 

linked to the production of secondary organic nitrates through nitrate radical chemistry, 

especially with biogenic emissions [Spittler et al., 2006; Brown et al., 2009; Rollins et 

al., 2009], but the lack of concurrent WSOC concentration increase indicate that it would 

have to be a minor component of WSOC mass.  The ratio of Abs365 to WSOC is roughly 

21% higher at night compared to daytime levels.  However, because the concentrating 
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effect of low nighttime inversion height and diluting effect of daytime boundary layer 

expansion were not accounted for here; in terms of production rates, the daytime 

processes are much more important, suggesting that overall, much of the urban 

contribution to fresh WSOC are species that are not highly light absorbing.  More data at 

other sites and additional years of online data are needed to further confirm or refute 

these trends.  Also, measurements in closer proximity to the possible sources of light 

absorbing WSOC compounds would provide a better emission estimate. 

A similar fit to that of Equation 4.4 was applied to the online data in the 330-430 

nm range. The spectra were separated into hourly bins and averaged, then fit using 

Equation 4.4.  The resulting A’ values were very similar for each hour, with a median 

value of 6.8 ± 0.8.  

4.4. Conclusions 

Seasonal data from the FRM filters confirm that biomass burning is overall the 

most significant source of water soluble light absorbing species, due to the much higher 

fraction of chromophoric species per water-soluble carbon mass compared to other 

sources (~ 3.5 times higher than non-biomass burning). This may be due to the more 

oxygenated nature of the emissions from biomass burning sources [Decesari et al., 2006].  

The contribution of biomass burning is significant throughout the Southeastern U.S. 

during the winter months, based on levoglucosan concentrations.  These factors result in 

brown carbon concentrations being generally highest during this period.   In urban 

environments, primary vehicle emissions appear to also produce similar levels of light 

absorbing species relative to soluble carbon mass as biomass burning, but the amount of 

primary WSOC appears to be relatively small making this a minor source of brown 
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carbon.  In contrast, freshly formed secondary WSOC  shows no evidence of producing 

chromophoric species.  These compounds, in turn, would produce an even lower fraction 

of light absorbing species in secondary WSOC. However, a consistent chromophoric 

component to WSOC was observed throughout the Southeast that was not correlated with 

biomass burning tracers (e.g., levoglucosan).  This suggests that there is an additional 

source for the light absorbing species.  This may be from SOA not involving urban 

emissions, such as SOA formation from biogenic VOCs in rural regions, and/or chemical 

aging of SOA formed in rural or urban regions [e.g., Gelencser et al., 2002; Duarte et al., 

2005; Baduel et al., 2009].  An analysis of this data set by Zhang et al. (2010b) supports 

the view of a linkage between aged secondary organic aerosol and light absorbing species 

in WSOC, where a principle component analysis produces a SOA factor that contains 

WSOC, oxalate (a known ubiquitous SOA product) and light absorbing species.  Relative 

to combustion sources [Sun et al, 2007], this was a weaker source for light absorbing 

species and accounts for the much lower levels of brown carbon relative to WSOC during 

the summer. 

The relatively uniform spatial distribution of Abs365/WSOC ratio based on the 24-

hour FRM filters for biomass-burning and non-biomass burning impacted filters suggests 

that the light absorbing components are wide-spread, fairly uniformly distributed, and a 

consistent fractions of WSOC (although much higher for biomass burning).  Some of this 

uniformity may be due to the limitations associated with the filter data, a combination of 

both highly time averaged data and bias towards sampling only the more stable water-

soluble aerosol components  [Subramanian et al., 2004; Watson et al., 2009].  The light 

absorbing nature of the WSOC likely does depend on the type of fuel burned and the 
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nature of the fire, but this is not detected in our data.  If Abs365/WSOC emissions vary, 

our data may indicate that aging somehow leads to a more consistent ratio.  Also, the very 

different sources and processes that lead to the production of light absorbing 

carbonaceous species in the atmosphere, clearly show that lumping all water-soluble light 

absorbing compounds as HULIS may not be the correct approach to studying these 

compounds. 

This study demonstrates the utility of online Abs365-WSOC measurement for 

investigating aerosol chemistry.  Extending the measurements to various plumes at 

different stages of aging, combined with other detailed chemical analysis could provide 

significant new insights into chemical processing of aerosols.  Longer-term data sets than 

what were presented here would also provide more robust conclusions on the sources and 

processes leading to the production of brown carbon.  Collection of data on the light-

absorbing properties (i.e. absorption of light at the ultra violet region of the 

electromagnetic spectrum) of water-insoluble organic compounds in the atmosphere 

would also provide a more complete picture. 
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CHAPTER 5 

FUTURE WORK 

 The mechanisms leading to the formation of secondary organic aerosol (SOA) are 

an important piece in the overall puzzle of the affect of aerosols on climate change.  The 

physical and chemical characteristics of SOA, when first produced, from different 

sources, and as it ages, can provide useful information regarding the nature of the 

compounds and reactions involved in its production.  The most common sources of SOA 

, anthropogenic and natural, are urban emissions, biomass burning and biogenic 

emissions.  Organic and aquatic chemists have been working on analyzing the nature of 

water soluble organic compounds and the possible reaction pathways (in liquid phase) 

that they may undergo for many years.  Many impressive and useful databases on these 

organic compounds as they relate to aquatic chemistry are available.  However, the need 

for a database on the physical properties (e.g., light absorption, hygroscopocity, etc.) on 

the chemicals that have been found in different samples collected from various ambient 

sources is felt in the atmospheric chemistry research arena.  These chemicals should be 

cataloged, and where the physical properties information is available, referenced and 

where not, measured and cataloged.  Such a database will be invaluable to the 

atmospheric chemistry community and will be the basis of unifying the various 

information sources that has been published on these compounds. 

 The PILS-LWCC-WSOC system can be used, in combination with some filter 

measurements, to shed light on the chemical properties of aerosols as they are released 

into the atmosphere as primary compounds and as they age into secondary complexes.  

Such data collected from different regions, under various meteorological conditions and 
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over extended periods of time would be helpful in addressing SOA production 

mechanisms.  It is important to note that this system only collects information on bulk 

WSOC material and is unable to address specific compound separations.  However, as 

valuable as speciation of compounds may be, there are very many different compounds 

that can be found in WSOC.  Thus, addressing the WSOC as a bulk property has the 

advantage of simplifying a myriad of compounds into a group and concentrating on the 

mechanisms that may be viable for the production of SOA, based on the bulk properties 

of WSOC.   

 Operating this system (for the collection of ambient measurements) alongside a 

CIMS system that has been modified to measure aerosol oxalic acid can provide even 

more useful information on the nature of SOA formation and aging.  Further tests will 

need be conducted to better quantify this system (CIMS for aerosol oxalic acid) for the 

measurement of various organic components of aerosols.  Oxalic acid has been 

recognized as an important compound in the formation of SOA, generally as an end 

product of aqueous phase oxidation products [Seinfeld et al., 2001; Carlton et al., 2006; 

Carlton et al., 2007].  Simultaneous data collection of the light absorption properties of 

water soluble aerosols, which is related to their chemical structure (Chapter 4), the mass 

of WSOC and aerosol phase oxalic acid will provide information on the different 

processes involved in the production of SOA. 

 The biomass burning data and characteristics of plumes used here can be further 

integrated into other research studies that have similar information on biomass burning 

and/or urban plumes.  An extensive database where WSOC, CO, OA, meteorological data 

and transport time of plumes are available can be used to compare plumes of different 
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origins, but with similar age.  Also, in the ARCTAS-2008 data archive information about 

numerous chemical and aerosol species have been presented.  The main reason that the 

data were not included here was the choice of 10s averaging time that has been used for 

this analysis.  This excluded many other measurements that were collected on longer 

time-scales.  Reducing the resolution of the data will decrease the number of plumes and 

diminish the statistical value of the analysis; however, the addition of data from many 

other species and the information gained from analyzing and comparing the data would 

overshadow this problem, especially since the high resolution analysis of possible 

compounds in the plumes has already been presented (Chapter 3).   

 And finally, future measurements of biomass burning plumes where bulk organic 

and inorganic aerosol composition, WSOC and light absorption properties of water 

soluble and insoluble aerosol are collected would further advance our knowledge of the 

processes that contribute to the production of POA and SOA in fires. 
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CHAPTER 6 

CONCLUSIONS 

 Secondary organic aerosols (SOA-s) in the atmosphere, comprise a large fraction 

of atmospheric aerosols.  However, the chemical and physical processes and mechanisms 

that lead to the formation of SOA are still not well understood.  Information on emissions 

from various sources, such as urban and biomass burning, and the fate of the primary 

emissions as air-masses are transported downwind, can be very useful in clarifying some 

of the processes involved in the formation of SOA.  Furthermore, data collection on 

various characteristics of OA, such as light absorption properties, could be useful in 

understanding the various groups of chemical compound involved in the different stages 

of SOA production. 

 The results presented in this thesis showed that a negative ion chemical ionization 

mass spectrometer (CIMS), can be modified by the addition of a thermally denuded inlet 

to measure aerosol phase sulfuric acid.  This system can also be used to measure other 

aerosol phase organic acids. 

 Biomass burning is a significant source of aerosol and gaseous emissions.  Stocks 

et al. (2004) have discussed the potential for increased occurrences of forest fires with an 

increase in global temperatures.  Thus, information on emissions from different fires and 

the fate of these emissions as they are transported to regions away from the location of 

original emission is important.  Data from many biomass burning sources were compared 

in Chapter 3.  Some primary and secondary compounds had different normalized excess 

mixing ratios (NEMR) when emitted from different types of fires.  For example, HCN 

was higher in fires that were emitted from Asian and Siberian forest fires, in contrast to 
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the California and Canadian Boreal fires.  Also, the levels of some compounds, such as 

(CO2, CH4, TU, aerosol NO3
- and SO4

2-) were elevated in biomass burning plumes that 

were influenced by urban emissions.  When comparing gaseous emissions, the levels of 

primary emissions such as NOx were higher for plumes that were encountered closer to 

the fires than the ones that were subject to long range transport.  Black carbon mass and 

some inorganic aerosol component (NO3
- and SO4

2-) concentrations were higher in the 

air-masses that were transported long distances away from the location of original 

emission.  During the second part of the ARCTAS-2008 field measurement experiment, 

emissions from Canadian Boreal forest fires were evaluated based on the transport time 

of the plumes from the location of four known fires.  The NEMR for different gaseous 

and aerosol species showed scatter in the data, in the plumes, for each fire and when 

comparing the different fires with each other.  No clear indication of formation of 

secondary aerosol or gaseous species was observed.  Any enhancements may have been 

obscured due to the high spatial variability in the emissions (i.e. the burning temperatures 

varied in large fires from the center to the edges of the fires, as visually observed from 

the color of the smokes from the fires; also, multiple fires may have been contributing to 

the plumes present in one region).  Additionally, the variability in the production of 

secondary compounds may have been due to the dependence of these processes to 

various other factors such as: photo-chemistry rates affected by cloud cover, temperature 

and RH, time of day, etc. These factors may have been dissimilar for various fires, on 

different days.  In biomass burning emissions, a significant fraction of OA and WSOC 

are from primary emissions.  The addition of a much smaller amount of secondary 
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species to the large primary emissions (e.g., OA and WSOC) present in the plumes may 

have not been discernible. 

 Filter data collected from FRM sites in the Southeastern U.S. showed that 

biomass burning is the most dominant source of water soluble light absorbing 

carbonaceous aerosol in this region.  In fact, biomass burning emissions contain about 3.5 

times higher water soluble light absorbing compounds per mass of WSOC.  In urban 

emissions (especially vehicular exhaust), primary WSOC appears to be less dominant but 

the emissions contain high levels of water soluble light absorbing carbonaceous aerosols 

per mass of WSOC.  Also, the spatial distribution of light absorbing material in the 

Southeastern U.S. appears to be uniform.  Although this may have been due to limitations 

of the filter data collection system (i.e. highly averaged and biased towards less volatile 

water soluble aerosol compounds). 

 It was also demonstrated that humic like substances (HULIS) are not the only 

type of light absorbing material present in aerosols.  There are other organic compounds, 

such as xylose, that are not categorized as HULIS and yet clearly absorb light in the same 

region. 

 And finally, the data from a study in Atlanta, GA showed that the online PILS-

LWCC-WSOC system might be used for measurements of light absorbing properties of 

aerosols and WSOC. 
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