Technical Report GIT-CC-94-21

Falcon: On-line Monitoring and Steering

of Large-Scale Parallel Programs!

Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan

John Stasko, and Jeffrey Vetter

College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

Abstract — Falcon is a system for on-line monitoring and steering of large-scale parallel programs. The
purpose of such interactive steering is to improve its performance or to affect its execution behavior. The
Falcon system is composed of an application-specific on-line monitoring system, an interactive steering
mechanism, and a graphical display system. In this paper, we present a framework of the Falcon system,
its implementation, and evaluation of the system performance. A complex sample application — a molecular
dynamics simulation program (MD) — is used to motivate the research as well as to evaluate the performance
of the Falcon system.

1 Introduction

The high performance of current parallel supercomputers is permitting users to interact with their applica-
tions during program execution. Such interactive executions of large-scale parallel codes typically make use of
multiple networked machines working in concert on behalf of a single user, as computational engines, display
engines, input/output engines, etc. Our research explores the potential increases in performance and func-
tionality gained by the on-line interaction of end users with their supercomputer applications. Specifically,
we are investigating the interactive steering of parallel programs, which is defined as ‘the on-line configura-
tion of a program by algorithms or by human users, with the purpose of affecting the program’s performance
or execution behavior’. Interactive program steering does not involve simply the on-line or postmortem ex-
ploration of program trace or output data, as being investigated by researchers in program debugging[28, 18]
or in computer graphics[6]. Instead, program steering targets the parallel code itself, and it can range from
rapid changes made by on-line algorithms to the implementation of single program abstractions (e.g., a mu-
tex lock [35]) to the user-directed improvement of or experimentation with high-level attributes of parallel
codes (e.g., load balancing in a large-scale scientific code — see Section 2.2). In either case, program steering
is based on the on-line capture of information about current program and configuration state [7, 31, 46, 40],
and it assumes that human users and/or algorithms inspect, analyze, and manipulate such information when
making and enacting steering decisions.

I This research was supported in part by NASA grant No. NAGW-3886 and with funding from Kendall Square Research
Corporation.

Falcon is a system for the on-line monitoring and steering of threads-based parallel programs. This paper
focusses on Falcon’s contributions to program monitoring:

o Application-specific monitoring — in addition to providing default program information, Falcon permits
users to capture and analyze application-specific program information, ranging from information about
single program variables to program states defined by complex expressions involving several program
components distributed across different processors of a single underlying parallel machine. These
capabilities are especially useful for non-Computer Science end users, who wish to view, analyze, and
steer their programs in terms of program attributes with which they are familiar (e.g., ‘time step size’,
‘current energy’, etc.).

e Scalable, dynamically controlled monitoring performance — by using concurrency and multiple mecha-
nisms for capturing and analyzing monitoring information, the performance of the monitoring system
itself can be scaled to different application needs, ranging from high-bandwidth and low-latency event-
based monitoring to lower bandwidth sampling of accumulated values. Moreover, the resulting tradeoffs
between monitoring latency, throughput, overhead, and accuracy may be varied dynamically, so that
monitoring performance may be controlled and adjusted to suit the needs of individual applications
and target machines. In addition, simple mechanisms are provided so that users can evaluate program
perturbation due to monitoring.

e On-line analysis, steering, and graphical display — monitoring information captured with Falcon may be
attached to arbitrary user-provided analysis code and subsequent (if desired) steering algorithms and/or
graphical views. Analyses may employ statistical methods, boolean operators like those described
in [40], or simply reorder the events being received, as described in Section 5.4. Graphical views
may be displayed with multiple media or systems, currently including X windows, Motif, and the
SGI Explorer environment. In addition, Falcon offers default on-line graphical animations of the
performance of threads-based parallel programs. For such Motif-based displays, the Polka system for
program animation provides users with easy-to-use tools for creating application-specific 2D animations
of arbitrary program attributes[49].

e Extension to multiple heterogeneous computing platforms — an extension of Falcon addresses both single
parallel computing platforms running threads programs as well as distributed computational engines
using PVM as a software basis.

Falcon runs on several hardware platforms, including the Kendall Square Research KSR-1 and KSR-2
supercomputers, the GP1000 BBN Butterfly multiprocessor, the Sequent multiprocessor, SGI workstations,
and SUN SPARCstations. Falcon is now in routine use at Georgia Tech by non-Computer Science end users,

and it is available for public release for the KSR-1, KSR-2, SGI, and SUN SPARCstation platforms.

In the remainder of this paper, Section 2 presents the motivation for this research by examining the
monitoring and steering needs of a sample parallel application, a molecular dynamics simulation (MD) used
by physicists for exploring the statistical mechanics of complex liquids. Section 3 presents details of the
implementation and performance of the Falcon system itself. The overall performance of the Falcon system
as well as its performance with the MD code is evaluated in Section 4. Section 5 examines the nature and
requirements of Falcon’s graphical displays. Related research is described in Section 6. The final section
presents conclusions and future research.

2 Monitoring and Steering a Parallel Code

Program monitoring and steering derive their value from their utilization in understanding and improving
program behavior, and in permitting users to experiment with program characteristics that are not easily
understood. Clearly, it will be hard to prove that promises of enhanced utility or performance of parallel
applications can be fulfilled more easily by steered programs than by non-steered ones. However, it is

inevitable that program steering will be performed in the future, in part because scientists now have available
to them the computational and network power for interactive execution of interesting physical simulations
and the means for interactive data visualization or even for virtual reality interfaces to their programs. To
further motivate our work, this section briefly describes a particular parallel code, its potential for utilizing
program steering, and the required support for on-line monitoring.

2.1 The MD Application

MD is an interactive molecular dynamics simulation developed at Georgia Tech in cooperation with a group
of physicists exploring the statistical mechanics of complex liquids [51, 8]. In this paper, the physical MD
system being simulated contains 4800 particles representing an alkane film and 2700 particles in a crystalline
base on which the film is layered. For each particle in the MD system, the basic simulation process takes the
following steps: (1) obtain location information from its neighboring particles, (2) calculate forces asserted by
particles in the same molecule (intra-molecular forces), (3) compute forces due to particles in other molecules
(inter-molecular forces), (4) apply the calculated forces to yield new particle position, and (5) publish the
particle’s new position. The dominant computational requirement is calculating the inter-molecular forces
between particles, and other important computations include finding the bond forces within the hydrocarbon
chains, determining system-wide characteristics such as atomic temperature, and performing on-line data
analysis and visualization.

The implementation of the MD application attains parallelism by domain decomposition. That is, the
simulation system is divided into regions and the responsibility for computing forces on the particles in
each region is assigned to a specific processor. In the case of MD, we can assume that the decomposition
changes only slowly over time and that computations in different sub-domains are independent outside some
cutoff radius. Inside this radius information must be exchanged between neighboring particles, so that
different processes must communicate and synchronize between simulation steps. The resulting overheads
are moderate for fairly coarse decompositions (e.g., 100-1000 particles per process), but unacceptable for
finer grain decompositions (e.g., 10 particles per process).

2.2 Steering MD — Experimentation and Results

The on-line manipulation of parallel and distributed programs has been shown to result in performance
improvement in many domains. Examples include the automatic configuration of small program fragments
for maintaining real-time response in uniprocessor systems[32], the on-line adaptation of functional program
components for realizing reliability versus performance tradeoffs in parallel and real-time applications [5, 14,
12], and the load balancing or program configuration for enhanced reliability in distributed systems[26, 43,
31].

The MD simulation offers opportunities for performance improvement through on-line interactions with
end users and with algorithms, including:

e Decomposition geometries can be changed to respond to changes in physical systems. For example,
a slab-based decomposition is useful for an initial system, but a pyramidal decomposition may be a
better choice if a probe is lowered into the simulated physical system.

e The interactive modification of cutoff radius can improve solution speed by computing uninteresting
time steps with some loss of fidelity, which typically requires the involvement of end users.

e The boundaries of spatial decompositions can be shifted for dynamic load balancing among multiple
processes operating on different sub-domains, performed by end users or by a configuration algorithm.

e Global temperature calculations, which are expensive operations requiring a globally consistent state,
can be replaced by less accurate local temperature control. On-line analysis can determine how often
global computations must be performed based on the temperature stability of the system.

To demonstrate the utility of program steering, we next review some results of interactive MD steering
applied to the problem of improving system load balance. In particular, we examine the behavior of the MD
simulation when spatial domain of the physical system is decomposed vertically. In this situation, it is quite
difficult to arrive at a suitable load balance when decomposing based on static information (such as counting
the number of particles assigned to each process, etc.). This is because the complexity of MD computation
depends not only on the number of particles assigned to each process, but also on particle distances (due to
cutoff radius). Furthermore, the portions of the alkane film close to the substrate are denser than those on
the top and therefore require more computation. In fact, fairly detailed modeling of the code’s computation
is required to determine a good vertical domain decomposition without experimentation, and there is no
guarantee that an initial ‘good’ decomposition will not degrade over time due to particle movement or other
changes in the physical system. As a result, it appears easier to simply monitor load balance over time
and then steer the application code to adjust load balance (by adjusting domain boundaries) throughout
the application’s execution. In this paper, such steering is performed interactively by end users. Necessary
algorithmic support will be developed in the future; it will enable users to interact with the application only
when automated steering is not successful.

For interactive steering of MD, the Falcon system is used to monitor process loads on-line, the resulting
trace information is analyzed, and workloads are displayed in bar graph form (see Figure 1). In addition,
the MD code performs on-line visualization of particles and of current domain boundaries. The load balance
view of Falcon and the MD system’s data displays are depicted in Figures 1 and 2, respectively, for a sample
simulation run with four domains on four processors. Associated with these displays is a textual user interface
(also part of Falcon) that permits the user to change selected program attributes (in this case, shift individual
domain boundaries) while the application is running.

The effects of dynamic steering when used to correct load imbalances can be quite dramatic, as shown
in Figure 3. In this figure, several steering actions significantly improve program performance by successive
adjustment of domain boundaries. These results are important for several reasons. First, they demonstrate
that it is possible to improve program performance by use of on-line steering, rather than degrade performance
due to steering and monitoring costs. Second, it should be apparent that user interactions with the code
can be replaced or assisted by on-line steering algorithms, in effect giving users the ability to migrate their
experiences and experimental knowledge into their application codes, without requiring extensive program
changes. Third, and more broadly, these results indicate the potential of on-line steering for helping end
users experiment with and understand the behavior of complex scientific codes.

2.3 The Requirements of Steering

While the steering of MD code by adjustment of domain boundaries as presented in Section 2.2 is straight-
forward, important to our work are the future opportunities presented by on-line steering and monitoring.
Toward this end, our group is now experimenting with interactive parallel programs in several domains, in-
cluding (1) the interactive simulation of complex systems used in conjunction with some physical system, for
on-line diagnosis of problems or for trying out certain fault containment strategies[13] (e.g., telecommunica-
tion systems), and (2) the on-line experimentation with scientific or engineering applications. For example,
we are developing an interactive global atmospheric modeling code, where scientists can easily experiment
with alternative values for atmospheric quantities to adjust model runs in accordance with actual measured
atmospheric data obtained from satellite observations (e.g., concentrations of certain pollutants or strengths
and directions of wind fields). Similarly, we are using on-line steering to give users the ability to interact with
their large-scale optimization codes, to direct program searches out of local minima, to detect and correct
searches possibly leading to infeasible solutions, etc.

To realize on-line program steering, several assumptions must be made, some of which may be removed or
ameliorated by our future work. First, program steering requires that application builders must write their
code such that steering is possible. Second, users must provide the program and performance information
necessary for making steering decisions. Third, it is imperative that such information can be obtained
with the latency required by the desired rate of steering. Concerning the first requirement, in the MD code,

donain 0 donain 1 donain 2 donain 3

Figure 1: The load balance view of MD.

& &
g o
g
[=]
)
Eﬂh o
H
% &
o
Fhir
o
. i
o
-]
(a) Initial Decomposition (b) Balanced Decomposition

Figure 2: Initial and balanced decompositions of the steered system. The horizontal frames mark the
boundaries between processor domains. The dark particles are the fixed substrate while the lighter particles
are the alkane chains.

Ot

Speedup with 4 Processors

4 T T T T T T T
35 Speedup —— fourth steering event
third steering event
3 - .
& second steering event
=
8 25 T
a,
)
2 r first steering event .
15 ¢ .
1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Time (in iterations)
Figure 3: The effect of steering on performance over time with 4 processors.

domains are represented such that their boundaries are easily shifted to make steering for improved workload
balance possible. In general, however, programs can be made steerable only by requiring end users to write
them accordingly, by requiring substantial compiler support[46], or by requiring that the programming
language offer stronger mechanisms of abstraction than those existing in parallel Fortran or in the Cthreads
library used in our work (e.g., the object model [5, 11, 26, 14]). We are currently designing higher level
language primitives for definition of steering actions and for inclusion of such actions with application code.
At this time, however, Falcon relies on user-directed inclusion of actuators with the application code. These
actuators are then stored into a runtime library which serves as a catalogue of names as well as an interface
to the Falcon’s on-line monitoring mechanism (see Section 3.4 for a description and brief evaluation of the
steering library).

One of the primary concerns of this paper is the second requirement for on-line steering: the on-line
provision, analysis, and display of information to users about current program behavior and performance,
at rates suitable for program steering. Examples of such information used in graphical displays include the
on-line data visualizations depicting molecular distributions in MD, the associated current values of domain
boundaries (see Figure 2), and performance information about threads depicted in graphical views like the
thread life-time view shown in Figure 13. Examples of such information used by on-line steering algorithms
include lock contention values, which are used by on-line configuration algorithms to adjust individual mutex
locks (see [35]) based on changes in a program’s locking pattern.

A third requirement of on-line steering is that steering is effective only if it can be performed at a rate
higher than the rate of program change. In the case of load balancing by dynamic domain shifting in MD,
human users can detect load imbalances and shift domain boundaries faster than the rate of occurrence of
significant particle movements (which require several minutes for moderate size physical simulations on our
KSR-2 machine). However, when steering is used to dynamically adjust lock waiting strategies, changes in
locking patterns must be detected and reacted upon in every few milliseconds[35]. As a result, any on-line
monitoring support for program steering must permit users to realize suitable tradeoffs in the bandwidth
versus latency of monitoring.

In response to the requirements listed above, Falcon gives users the ability to control instrumentation
by permitting them to explicitly include program-specific sensors of different types into their application
codes. A sensor definition language generates sensor implementations for target C and Fortran programs,
and runtime-configurable monitoring libraries capture, analyze, and store/forward or display sensor outputs
as desired by users. In addition, Falcon offers efficient system I/O (for data visualizations) and underlying
communications across computer networks (for all remote mechanisms).

The description and evaluation of on-line monitoring in Falcon is the primary focus of this paper. However,
to demonstrate the usability of Falcon, we also briefly describe and evaluate Falcon’s interfaces to program
animation and graphical data rendering tools.

3 The Design and Implementation of Falcon

3.1 Design Goals

Past work in program monitoring has focussed on helping programmers understand the correctness or
performance of their parallel codes[33, 41], on minimizing or correcting for program perturbation due to
monitoring[30], on reducing the amounts of monitoring or trace information captured for parallel or dis-
tributed program debugging[40], and on the effective replay[28] or long-term storage[47] of monitoring infor-
mation.

Falcon has three important attributes. First, Falcon supports the application-specific monitoring/steering,
analysis, and display of program information, so that users can capture, process, and understand and steer
exactly the program attributes relevant to steering or to the specific performance problems being diagnosed or
investigated. That steering requires application-specific program information is clearly demonstrated by the
MD application steered in Section 2.2, where program variables capturing domain boundaries are adjusted
based on monitoring output describing workload in terms of durations of molecular computations across
different domains. Section 4 will also demonstrate that such specialization of monitoring to capture only
specific program attributes can also significantly improve monitoring system performance and scalability
compared to standard tools like GProf or compared to the default monitoring performed by Falcon.

Second, the primary focus of Falcon is to reduce or at least control monitoring latency throughout the
execution of a parallel program, while maintaining acceptable monitoring workload imposed on the underlying
parallel machine. Dynamic control of monitoring overhead is important because the effectiveness of program
steering can depend on the delay between the time at which a program event happens and the time at which
the event is noted and acted upon. In addition, excessive monitoring overheads not only offset performance
gains achieved by steering, but also alter the order of occurances of program events. Finally, for scalability to
large-scale parallel machines and programs, the Falcon system is configurable in its offered total performance
and associated resource usage.

A third attribute of Falcon is its support for scalable monitoring, by varying the resources consumed
by its runtime system in accordance with machine size and program needs. In Section 4, we show that
Falcon can be used to monitor programs of any size running on our 64-node KSR multiprocessor, such that
monitoring overheads and latencies can be adjusted in conjunction with program and machine size.

3.2 System Design

Falcon is constructed as a toolkit that collectively supports the on-line program monitoring and steering
of parallel and distributed programs. There are four major conceptual components, as shown in Figure 4:
(1) monitoring specification and instrumentation, which consists of a low-level sensor specification language,
higher level view specification constructs, and an instrumentation tool, (2) runtime libraries for information
capture, collection, filtering, and analysis, (3) mechanisms for program steering, and (4) a graphical user
interface and several graphical displays of program behavior and performance information.

User

Sensor/View

Specification Graphical | Graphical
User Displays
Interface
A
| Probes & groigram &
Instructions Irftrog;rgggie
Original »| [nstrumentation Filter & | Trace
Source Code Tool Analyzer Database
Application
Code
Trace
) Data
Monitoring &
User Interaction
Instrumented Controller
Rupnipg Trace Data
Application Collector
Trace Data
Analyzer
Trace Data “

Steering Commands

Program Steering
Controller

Figure 4: Overall architecture of Falcon.

The following steps are taken when using Falcon. First, the application code is instrumented with the
sensors and probes generated from sensor and view specifications. Toward this end, monitoring specifications
allow users to expose specific program attributes to be monitored and based on which steering may be
performed. User programs and/or Falcon’s user interface or analysis/steering algorithms directly interact
with the runtime system in order to gain access to information about runtime-created sensor and actuator
instances. When the application is running, program and performance information of interest to the user
and to steering algorithms is captured by the inserted sensors and probes, and is collected and partially
analyzed by Falcon’s runtime monitoring facilities. These facilities essentially consist of monitoring data
output queues attaching the user program being monitored to a variable number of additional components
performing steering and low-level processing of monitoring output (discussed in detail in Section 3.3 below).
Partially processed monitoring information is then fed to steering mechanisms for effecting on-line changes
to the program or to its execution environment; or it is fed to the central monitor and graphical displays for
further analysis and for display to end users. Trace information can also be stored in a trace data base for
postmortem analyses.

The monitoring, steering, and user interaction ‘controllers’, as part of the Falcon runtime system, activate
and deactivate sensors, execute probes or collect information generated by sampling sensors, maintain a
directory of program steering attributes, and also react to commands received from the monitor’s user
interface. For performance, these controllers are physically divided into several local monitoring controllers
and a steering controller residing on the monitored program’s machine so that they are able to rapidly
interact with the program. In contrast, the central monitoring and steering controller is typically located on

a front end workstation or on a processor providing user interface functionality.

Falcon uses the Polka system for the construction and use of graphical displays of program information[49].
Several performance or functional views (e.g., the aforementioned bargraphs and thread visualizations) have
been built with this tool. However, in order to attain the speeds required for on-line data visualization and to
take advantage of other performance display tools, Falcon also interfaces to custom displays and to systems
for the creation of high-quality 3D visualizations of program output data, like the SGI Explorer tools.

3.3 System Implementation

Falcon’s implementation relies on a Mach-compatible Cthreads library[36] available on several hardware
platforms, including the Kendall Square Research KSR-1 and KSR-2 supercomputer, the GP1000 BBN
Butterfly multiprocessor, the Sequent multiprocessor, and uni- and multi-processor SGI and SUN SPARC
workstations. Figure 5 depicts the system’s implementation. It is discussed next in the context of the

To
User Interface &
Graphical Displays
Shared Memory
User - Monitoring TCP/IP sockets Central
Thread Controller) ~#=——————————®| Monitor
A
User <

Thread
Local Monitor H »
Thread H
User - Local Monit E Database
Thread /\, OL%hre:gl) ——)

H Trace Filter &
User :
Thread > Steering
[~ Controller : . N
i+ High Performance

Trace

Analyzer
1/0 Channel

Shared Memory Multiprocessor

Figure 5: Implementation of the monitoring mechanism with Cthreads.

basic contributions of Falcon to the monitoring literature: (1) low monitoring latency and varied monitoring
performance, also resulting in system scalability, (2) the ability to control monitoring overheads, and (3)
the ability to perform application-specific monitoring and on-line analyses useful for steering algorithms and
graphical displays.

Application-specific monitoring — sensors and sensor types. Using a simple specification language,
programmers may define application-specific sensors for capturing (a) the program and performance be-
haviors to be monitored and (b) the program attributes based on which steering may be performed. The
specification of a tracing sensor is shown in Figure 6. It simply describes the structure of the application data
to be contained in the trace record generated by this sensor. From this declaration is generated the sensor
subroutine shown in Figure 7. The body of this subroutine generates entries for an event data structure,
then writes that structure into a buffer. A local monitoring thread later retrieves this structure from the
buffer. Each sensor’s code body is also surrounded by an if statement, so that the sensor can be turned on
or off during program execution (ie., the monitoring system itself may be dynamically steered).

sensor work_load {
attributes {
int domain_num;
double work_load;

}
}s;
Figure 6: Specification of sensor work_load.
int
user_sensor_work_load(int process_num, double work_load)
{
if (sensor_switch_flag(SENSOR_NUMBER_WORK_LOAD) == ON) {
sensor_type_work_load data;
data.type = SENSOR_NUMBER_WORK_LOAD;
data.perturbation = 0;
data.timestamp = cthread_timestamp();
data.thread = cthread_self();
data.process_num = process_num;
data.work_load = work_load;
while (write_buffer(get_buffer(cthread_self()), &data,
sizeof (sensor_type_work_load)) == FAILED) {
data.perturbation = cthread_timestamp() - data.timestamp;
}
¥
}

Figure 7: Generated code of sensor work_load.

Figure 6 shows the specification of the tracing sensor that monitors the workload of each domain partition
in MD, and Figure 7 depicts the generated sensor code. There are four implicit fields for any event record that
describe the event’s sensor type, timestamp, thread id, and perturbation. The purpose of the perturbation
field is to record the additional time spent by the sensor waiting on a full monitoring buffer, if any. This
‘buffer full’ information is important for generating comprehensible execution time displays. A more detailed
explanation of this problem appears with the discussion of Figure 13 in Section 5.3.

It is important to realize that each single sensor specification generates an event type; but its corre-
sponding sensor code may be inerted to many different places within a single parallel program. Moreover,
since new threads can be forked during an application’s execution time, sensor instances are dynamic. The
monitoring system identifies such dynamically created sensors using a combination of thread identifier and
sensor type. In addition, users may explicitly register individual instrumentation objects, which correspond
to specific calls to sensor code made by the target program. Such registration gives the monitoring system
the ability to control (e.g., turn on or off) single invocations of sensor code instead of controlling all instances
of a certain type of sensor as a whole.

Controlling monitoring overheads — sensor types and sensor control. The monitoring overheads
experienced with sensor invocations may be controlled by use of different sensor types: sampling sensors,
tracing sensors, or extended sensors. A sampling sensor simply writes its output into a structure located
in shared memory periodically accessed by the monitor’s runtime components also resident on the parallel
machine, called local monitoring threads. A tracing sensor generates timestamped event records that may be
used immediately for program steering or stored for postmortem analysis. In either case, trace records are
stored in trace queues from which they are removed by local monitoring threads. Last, an extended sensor
performs simple analyses before producing output data, so that some data filtering or processing required

10

for steering may be performed prior to output data generation. It is evident that sampling sensors inflict
less overhead on the target application’s execution than tracing and extended sensors. However, as shown in
Section 4, the more detailed information collected by tracing sensors may be required for diagnosis of certain
performance problems in parallel codes. Furthermore, the combined use of all three sensor types may enable
users to balance low monitoring latency against accuracy requirements concerning the program information
required for program steering.

Monitoring overheads may be controlled during each program run by direct interaction of user programs
and/or Falcon’s user interface and/or analysis/steering algorithms with the monitor’s runtime system. First,
sensors can be turned on or off during the application’s execution[47]. Second, sensors can dynamically adjust
their own behavior to continously control overall monitoring overhead and latency. For example, a tracing
sensor that monitors a constantly accessed mutex lock can reduce its tracing rate to every five mutex lock
accesses, thereby improving monitoring perturbation at the cost of reducing trace accuracy. In this paper,
we use such dynamic sensor configuration for selective monitoring of a parallel program, where during a
single program run, different monitoring methods are employed at different points in time. This is attained
by enabling or disabling specific sensors, by switching from sampling to tracing sensors, and by changing
the behavior of individual sensors (e.g., sensor sampling rates). Experimentation described in Section 4 will
demonstrate the utility of selective monitoring with the MD code.

Controlling monitoring overheads — concurrent monitoring and steering. As depicted in Figure
5, local monitoring and steering threads perform trace data collection, processing, and steering concurrently
and asynchronoulsy with the target application’s execution. Local monitors and steering controllers typically
execute on the target program’s machine; but they may run concurrently on different processors, using a
buffer-based mechanism for communication between application and monitoring threads.

An alternative approach performs all monitoring activities, including trace data capture, collection, and
analyses, in the user’s code. One problem with this approach is that the target application’s execution is
interrupted whenever a monitoring event is generated and processed, and the lengths of such interruptions
are arbitrary and unpredictable if complicated on-line trace analyses are used. In contrast, the only direct
program perturbation caused by Falcon is the execution of embedded sensors and the insertion of trace records
into monitoring buffers. Such perturbation is generally predictable (results on the KSR-2 are presented in
Section 4), and its effects on the correctness of timing information can be eliminated using straightforward
techniques for perturbation analysis [30].

Falcon’s runtime system itself may be configured (steered) in several ways, including disabling or enabling
sets of sensors, varying activation rates, etc. One such on-line variation explored in detail in this paper is
changing the number of local monitoring threads and communication buffers to configure the system for
parallel programs and machines of different sizes. Such changes permit selection of suitable monitoring
performance for specific monitoring and steering tasks, and they may be used to adapt the monitoring system
to dynamic changes in workload imposed by the target application. For example, when heavy monitoring is
detected by a simple monitor-monitor mechanism, new local monitors may be forked. Similarly, when bursty
monitoring traffic is expected with moderate requirements on monitoring latency, then buffer sizes may be
increased to accommodate the expected heavy monitoring load. Such parallelization and configuration of
monitoring activities is achieved by partitioning user threads into groups, each of which is assigned to one
local monitor. When a new application thread is forked, it is added to the local monitor with the least
amount of work.

On-line analysis and display. Monitoring information partially processed by local monitors can be fed to
Falcon’s steering mechanism to effect on-line changes to the program and its execution environment. It can
be sent to Falcon’s central monitor for further analysis and for display of program behavior and application
performance to end users. It can be stored in a trace data base for postmortem analysis. The central
monitor, user interface, graphical displays, and trace database may reside on a different machine to reduce
interference from monitoring activities to the target application’s execution, and to capitalize on efficient
graphics hardware and libraries existing on modern workstations. Section 5 describes some on-line analysis
typically required for the on-line display of monitoring information: the need to reorder information produced
by Falcon prior to its presentation to users. Falcon’s interfaces to systems for the creation of high-quality

11

3D visualizations of program output data are out of scope of this paper. For the MD application, custom
visualizations were constructed in order to gain the speeds required for on-line data viewing and steering.

3.4 On-line Steering Mechanisms

As described in Sections 1 and 2, program steering requires functionality in addition to that being offered by
Falcon’s monitoring components. Falcon’s on-line steering component is a natural extension of its monitoring
facilities. Similar to local and central monitors, steering is performed by a steering server on the target
machine and a steering client providing user interface and control facilities. The steering server is typically
created as a separate execution thread to which local monitors forward only those monitoring events that are
of interest to steering activities. Such events tend to be a small proportion of the total number of monitoring
events, in part because simple event analysis and filtering is done by local monitors rather than by the
steering server. Steering decisions, then, are made based on specific attributes of those events, by human
users (interactively) or by steering algorithms.

Falcon’s steering system permits users to implement on-line control systems that operate on and in
conjunction with the programs being steered. As a result, the primary task of each steering server is to read
incoming monitoring events and then ‘decide’ what actions to take, based on previously encoded decision
routines and actions, both of which are stored on a steering event database which is part of the server. This
database contains entries for each type of steering event, where each event may either perform some actual
steering action on the parallel program or simply note the occurrence of some monitoring event for future use
in steering or for inspection by users from the client’s user interface. Accordingly, the secondary task of each
steering server is to interact with the remote steering client. The steering client is used to enable/disable
particular steering actions, display and update the contents of the steering event database, and input direct
steering commands from end users to the server. The steering client is not addressed by the target (on the
parallel machine) performance measurements shown below. Its functionality and performance are discussed
in more detail elsewhere.

At the lowest level of abstraction, a steering action that modifies an application is either a probe or an
actuator. A probe updates a specific program attribute asynchronously to the program’s execution. These
attributes are defined by application programmers in an object-oriented fashion, where each specific program
abstraction can define one or multiple attributes and then export methods for operating on these attributes.
The steering event database lists all steerable objects and their program attributes. Also, actions are stored
in the database with each event type. Actions are defined methods able to operate on the attributes of
these objects. A complete object-oriented framework for defining and operating on program attributes is
defined in [38]. The definition and dynamic adjustment of operating system level attributes is described
in [35]. For purposes of this paper, the reader should assume that such attributes correspond to specific
program variables (ie., to specific locations in the program’s data). The steering server uses probes to update
such variables at any time it chooses, and it uses actuators to have the program’s execution threads enact
certain steering actions on its behalf. Such actuators may also execute additional functions to ensure that
modifications of program state do not violate program correctness criteria[5].

The performance of steering is assessed in Section 4.5 below.

4 System Evaluation

To understand the performance of the Falcon monitoring system, we evaluate its implementation on a
Kendall Square Research KSR-2 parallel machine?. This machine has 64 processors interconnected by two
rings. The KSR-2 supercomputer is a NUMA (non-uniform memory access) shared memory, cache-only

2The 64 node KSR-2 machine at Georgia Institute of Technology was upgraded from a 64 node KSR-1 during our experimen-
tations. Therefore, some of the results presented in this paper are obtained on the KSR-1 machine, while others are obtained
on the KSR-2. Programs running on the KSR-2 are roughly twice as fast as those running on a KSR-1 due to differences in
machine clock speeds.

12

architecture with an interconnection network that consists of hierarchically interconnected rings, each of
which can support up to 32 nodes. Each node consists of a 64-bit processor, 32 MBytes of main memory
used as a local cache, a higher performance 0.5 Mbyte sub-cache, and a ring interface. CPU clock speed
is 20 MHz on the KSR-1 and 40 MHz on the KSR-2, with a peak performance of 20 and 40 Mflops per
node for KSR-1 and KSR-2, respectively. Access to non-local memory results in the corresponding cache line
being migrated to the local cache, so that future accesses to that memory element are relatively cheaper. The
parallel programming model implemented by KSR’s OSF Unix operating system is one of kernel-level threads
which offer constructs for thread fork, thread synchronization and shared memory between threads. This
kernel-level thread facility is called Pthreads. Falcon itself employs Cthreads, a user-level threads facility
that is built on top of Pthreads.

In the remainder of this section, we first evaluate the basic performance of Falcon’s monitoring mecha-
nisms, including measurements of the average costs of tracing sensors and of minimal and expected monitor-
ing latencies. Next, using the MD code, we evaluate Falcon’s ability to control monitoring overheads and to
scale to different performance requirements. The overheads incurred by individual elements of the runtime
steering library are evaluated last.

4.1 Sensor Performance

The perturbation, latency, and throughput of sensors depend on three factors: (1) the size of the event data
structure, (2) the cost of event transmission and buffering from sensors to local monitors, and (3) sensor
type. A tracing sensor generating a ‘large’ event containing many user-defined and implicit attributes will
execute longer than one generating a ‘small’ event. Event transmission and buffering costs are affected by
a variety of factors, including the number of event queues and local monitor threads, and the actual event
processing demands placed on local monitors. Factor (1) is evaluated in Table 1, which depicts the basic
costs of executing a sensor modulo its size, where basic costs include: (a) accessing the sensor switch flag, (b)
computing the values of sensor attributes, and (c) writing the generated sensor record into an event queue.
The table displays measured execution times on a KSR-2 machine.

Event record length || 32 bytes | 64 bytes | 128 bytes

Cost (microseconds) 6.8 7.9 9.6

Table 1: Average cost of generating a sensor record on the KSR-2.

The results in Table 1 indicate that the direct program perturbation caused by inserted sensors should be
acceptable for many applications for moderate amounts and rates of monitoring. Specifically, if an application
can tolerate from 5% to 10% perturbation, then Falcon’s monitoring mechanism can produce monitoring
events at a rate from 7,500 to 15,000 events per second on the application’s critical execution path. Given
these costs, total perturbation of a parallel program can be derived as the cumulative cost of generating all
of the sensor records in the program’s critical path. A more complex perturbation model is required when
considering side effects of such direct program perturbation[30].

The dominant factor in sensor execution is the cost of accessing the buffer shared between application
and monitoring threads. The use of multiple monitoring buffers (one per user thread) in Falcon reduces
the contention of buffer access by user and monitoring threads, so that the effective cost of buffer access is
the cost of copying a sensor record to the buffer. This latter cost depends on the size of the sensor record,
as clearly evident from the measurements in Table 1. It should be noted that these costs do not include
perturbation that might be caused by bottlenecks in the processing and transmission of the events (which
would result in delays in obtaining buffer space). However, such worst case perturbation may be avoided
by making dynamic monitoring adjustments provided by Falcon’s runtime monitoring mechanisms, such as
turning off non-critical sensors, reducing a sensor’s tracing rate, forking new local monitoring threads, etc.

13

4.2 Monitoring Latency and Perturbation

Monitoring latency is defined as the elapsed time between the time of sensor record generation and the time
of sensor record receipt and (minimal) processing by a local monitoring thread. Low latency implies that
steering algorithms can rapidly react to changes in a user program’s current state[37]. Monitoring latency
includes the cost of writing a sensor record to a monitoring buffer, the waiting time in the buffer, and the
cost of reading the sensor record from the monitoring buffer. While the reading and writing times can be
predicted based only on sensor size, the event waiting time in the monitoring buffer depends on the rate at
which monitoring events can be processed by local monitors.

Buffer size Record length
(bytes) || 32 bytes | 64 bytes | 128 bytes
256 69 73 87
1,024 68 71 84
4,096 68 70 83
16,384 69 73 85

Table 2: Minimum monitoring latency (in microseconds) on the KSR-2.

Buffer size Record length
(bytes) || 32 bytes | 64 bytes | 128 bytes
256 164 181 242
1,024 201 264 294
4,096 211 277 498
16,384 256 347 556

Table 3: Latency at moderate monitoring rates (in microseconds) on the KSR-2.

Tables 2 and 3 depict the results of two experiments with a synthetic workload generator instrumented
to generate sensor records of size 32 bytes at varying rates, using a single local monitoring thread. In Table
2, monitoring latency is evaluated under low loads, resulting in an approximate lower bound on latency.
Results vary with event record sizes, but demonstrate the independence of monitoring latency on the size of
the monitoring buffer at low loads. Table 3 uses higher monitoring loads® and experimentally demonstrates
the expected result that larger monitoring buffers reduce program perturbation, but also increase monitoring
latency for buffered events. Specifically, latency is not affected by buffer size at low rates, but increases with
increasing buffer sizes even at moderate monitoring rates. This would indicate the use of smaller buffers.
However, program perturbation can be larger with small buffers since programs must wait until buffer space
is available when attempting to produce an event. Figure 8 demonstrates that the maximum event processing
rate of a single local monitoring thread is about 40,000 to 45,000 events per second on the KSR-2 (assuming
no significant processing of events in the local monitoring thread). However, monitoring latency remains
acceptable when the monitoring rate is less than this saturation point.

The bottleneck due to limitations on the processing ability of single local monitors can be remedied by
use of parallelism. Figure 9 shows that monitoring delay is reduced when multiple local monitors are used

3The measurements in Table 3 use a monitoring rate of approximately 40,000 events per second, which almost saturates the

14

800

700 Latency vs Event Rate —— B
g 600 |
=}
2
& 500 .
2
g
= 400 |
Q
5
3 300 .
g
E=
S 200 T
=

100 1

0
0 10000 20000 30000 40000 50000

Event Rate (events/second)
Figure 8: Monitoring latency versus event rate on the KSR-2.

to monitor the MD application. In this experiment, all procedure calls to the Cthreads library are traced.
As MD runs on more processors, the frequency of calls to the Cthreads library increases, resulting in higher
event rates. It is evident from the results shown in Figure 9 that additional local monitors are effective in
reducing monitoring delay when this delay exceeds some threshold (around 200 microseconds for the MD
code on the KSR-2). Below this threshold, the additional overheads associated with multiple vs. single local
monitoring threads prevents their effectiveness.

In general, the measurements shown in Tables 2 and 3 and in Figures 8§ and 9 demonstrate that there
exists no general means of attaining both low monitoring latency and perturbation at arbitrary rates of
monitoring (other than using additional hardware support). The approach taken by Falcon toward addressing
this problem is simply to permit the configuration of the monitoring system itself (buffer sizes, number
of trace buffers, number of local monitoring threads, and attachment of monitoring threads to buffers —
monitoring load distribution) to offer the performance characteristics desired by the application program.
Such configuration can be performed dynamically in a fashion similar to on-line program steering, where the
saturation points for local monitors may be used as triggers for configuring the monitoring system itself.

4.3 Monitoring the MD Code

This section demonstrates the overall performance and utility of Falcon’s monitoring mechanisms, again using
the MD application. Measurements in this section are taken on a 64-node Kendall Square Research KSR-1
machine. The specific MD simulation used in these measurements uses a cylindrical domain decomposition;
MD performance and speedups with different decompositions are evaluated in detail elsewhere[9].

Table 4 depicts the results of four different sets of MD runs, normed against a run of MD without
monitoring. These experiments compare the performance and perturbation when using Falcon for five
different cases: (1) when no monitoring performed (Original MD), (2) when tracing only MD calls to the
underlying Cthreads package (Dft Mon Only), (3) when tracing Cthreads events as well as sampling (using
sampling sensors) the 10 most frequently called procedures in MD (Dft Mon & Sampling), (4) when using the
Unix GProf profiler existing on the KSR-1 machine (MD with Gprof), and (5) when tracing Cthreads events
as well as the 10 most frequently called procedures in MD (Tracing All Mon Events). The table and figures list
computation times and speedups with different numbers of processors. These measurements do not consider

single local monitoring thread used in the experiment.

15

1000

900 with 1 local monitor ——
with 2 local monitors ——

800 with 3 local monitors —=— R
_’é? with 4 local monitors ——
8 700 |
2
e 600
g
)
E 500
)
a 400
[
&
5 300
>
<

200

100 [g—e—F

0
0 4 8 12 16 20 24

Number of domains

Figure 9: Monitoring latency with multiple local monitors on the KSR-2. (Each domain of particles is
assigned to one processor.)

Execution Time of Each Iteration (seconds) & Monitoring Overhead
Number of || Original MD Dft Mon Dft Mon Tracing All MD with

Processors Only & Sampling Mon Events Gprof

1 8.19 8.19(< 1%) | 9.61(17%) | 114.60(1299%) | 22.53(175%)

4 2.65 2.65(< 1%) | 3.21(21%) | 59.30(2140%) | 7.29(175%)

9 1.45 1.45(< 0%) | 1.72(19%) | 65.33(4406%) | 4.28(195%)

16 0.62 0.63(1%) | 0.73(17%) | 54.29(8628%) | 1.71(175%)

25 0.30 0.31(2%) | 0.35(16%) | 41.56(13776%) | 0.82(173%)

36 0.19 0.20(4%) | 0.23(16%) | 33.65(17245%) | 0.54(195%)

Table 4: Average execution time and perturbation of each iteration of MD with different amounts of moni-
toring or profiling on KSR-1.

the costs of either forwarding trace events to a some front end workstation or storing them in a trace data
base, since those costs are not dependent on Falcon’s design decisions but rather on the performance of the
networking code and/or file system implementation of the KSR-1 machine. Specifically, measurements with
trace events essentially ‘throw away’ events at the level of local monitors, whereas the measurements with
sampling sensors actually use local monitors to retrieve and evaluate sampling sensor values stored in shared
memory on the KSR-1 machine.

The MD application’s performance with different amounts of monitoring or profiling is depicted in Fig-
ure 10, and the resulting program perturbation due to monitoring is shown in terms of speedup degradation
in Figure 11. Evaluations of each experiment are presented next. The first experiment (Dft Mon Only
— default monitoring) measures the overhead of monitoring when Falcon traces all calls to the underlying
Cthreads package. Specifically, this is the amount of monitoring required for the thread life-time view

4Super-linear speedups are due to the KSR-1’s ALLCACHE memory architecture. When MD runs on a large number of
processors, it can load all of its code and data into the fast sub-caches or local caches associated with these processors, while

16

10.0

: Original MD ——
| Dft Mon Only -+---
; Dft Mon & Sampling -&---
8O 1L MD with Gprof - -
- :
.2
B
2 6.0
>
£
=
e 40 b
=
3
>
9]
2.0
0.0
0 5 10 15 20 25 30 35

Number of processors

Figure 10: Comparing average execution time of each iteration of MD on the KSR-1.

45.0 \ \
Original MD ——
40.0 Dft Mon Only -+-- A
Dft Mon & Sampling -&---
35.0 F MD with Gprof -x oA
: Linear Speedup ---- S
30.0 P ,
& 25.0 i
S
b
& 20.0 i
15.0 A
10.0 R
5.0 i
0.0 == !
0 5 10 15 20 25 30 35

Number of processors

Figure 11: Comparing speedups of MD on the KSR-1%.

17

shown in Figure 13 in Section 5.2. The monitoring information being collected includes the runtime activi-
ties associated with each thread (such as thread_fork, thread_join and thread_detach events), synchronization
calls, and all other information displayed in the thread life-time view. It is apparent from Figures 10 and
11 that default monitoring does not noticably perturb the execution of MD. However, monitoring overheads
increase slightly with an increasing number of processors, which is caused by an increasing number of events
(more user threads imply more cthreads calls, and hence more monitoring events) generated during a shorter
execution time and beginning to saturate the available local monitoring threads. The creation of additional
local monitors can remedy this problem.

The second experiment compares the overhead of Falcon monitoring with that of commonly used program
profiling tools, namely, with Gprof. The KSR implementation of Gprof used in these measurements has been
optimized to take advantage of the machine’s memory architecture in several ways, including replicating
counters on each processor to avoid remote accesses. To compare fairly, we exclude the time spent on
writing the results to file from the presented Gprof execution times. Using Falcon, we monitor the 10
most frequently called procedures in MD. These calls constitute about 90% of all procedure calls made
in the program. Each procedure is monitored by a sampling sensor, which increments a counter for each
procedure call being monitored. Counter values are sampled each millisecond by local monitoring threads.
The result of this experiment is the addition of 20% to MD’s total execution time. In comparison, with
Gprof, the execution time of MD is increased by approximately 180%. Similar advantages of Falcon to
other profiling tools are demonstrated when using Prof. Experimental results not reported in detail here
show that Prof’s overhead is approximately 130% [15]. The results described above are not surprising, since
profiling tools typically maintain large amounts of compiler-derived information about a parallel program’s
attributes. In comparison, Falcon only maintains the specific information required for taking certain program
measurements.

While the first two experiments clearly demonstrate the importance of monitoring only the program
attributes of interest to the user, the third experiment shows that it is also important to adjust or select
the techniques being used for information capture. In this experiment, tracing sensors are used in place
of sampling sensors for monitoring the 10 most frequently called procedures in MD, which results in a
very significant increment of monitoring overheads. The excessive performance penalties arising from this
‘misuse’ of tracing sensors are primarily due to the direct perturbation caused by monitoring tens of millions
of procedures calls and are exacerbated by the saturation of the single local monitoring thread being used
in the experiment. The resulting (lack of) performance clearly demonstrates two points. First, since tracing
sensors are too expensive for procedure profiling, any monitoring system must offer a variety of mechanisms
for information capture and analysis, including both sampling and tracing sensors. Second, since tracing
can help users gain an in-depth understanding of code functionality and performance (see Sections 4.4 and
5), users should be able to both control the rates at which tracing is performed and the specific attributes
of the application that are captured via tracing. We call the user’s ability to focus monitoring on specific
system attributes selective monitoring. It is explained in more detail in the next section.

In general, the experiments with MD presented in this section demonstrate that the multiple monitoring
mechanisms (e.g., tracing vs. sampling sensors) supported by Falcon can be employed such that monitoring
overheads remain moderate for realistic parallel application programs.

4.4 An Example of Selective Monitoring Using Falcon

In this experiment, the MD code’s most computationally intensive component is monitored using Falcon’s
sampling and tracing sensors. Both types of sensors are needed since programmers require both summary
(e.g., total number of invocations) and sequencing or dependency information (e.g., ‘b’ was done after ‘a’
occurred) to understand and evaluate code performance. Such dynamically selective monitoring is useful
since programmers can focus on different phenomena at different times during the performance evaluation
process. The specific purpose of the selective monitoring demonstrated in this section is to understand the

it cannot do so when running on a single processor.

18

effectiveness of certain, commonly used ‘short cuts’ which are intended to eliminate or reduce unnecessary
computations in codes like MD.

The dominant computation of each domain thread in the MD code is the calculation of the pair forces
between particles, subject to distance constraints expressed with a cut-off radius. This calculation is imple-
mented with a four-level, nested loop organized as follows (pseudocode is shown below):

for (each molecule mol_1 in my domain) do
for (each molecule mol_2 in domains within cut_off_radius) do
if (within_cutoff_radius(mol_1, mol_2)) then continue;
for (each particle part_1 in molecule mol_1) do
if (within_cutoff_radius(part_1, mol_2)) then continue;
for (each particle part_2 in molecule mol_2) do
if (within_cutoff_radius(part_1, part_2)) then continue;
calculate_pair_forces(part_1, part_2);
end for
end for
end for
end for

The inner three levels of this loop check the distances between molecules and particles to eliminate all
particles outside the cut-off-radius. When the distance between two molecules is checked, three dimensional
bounding boxes are used for each molecule. Each molecule’s bounding box includes all of its particles. The
minimum distance between two molecules is defined as the distance between their bounding boxes’ closest
points, whereas the minimum distance between a particle and a molecule is the distance from the particle
to the molecule’s bounding box’ closest point.

The question to be answered with selective monitoring is whether the additional costs arising from the
use of bounding boxes is justified by the saved costs in terms of the resulting reduction in the total number of
pair force calculations. More specifically, does the reduction is total number of pair force calculations justify
the additional computation time consumed by bounding box calculations? A simple selective monitoring
mechanism is used to answer this question, by dynamically monitoring the performance of this four-level
loop. Specifically, a sampling sensor is first used to monitor the hit ratios of the distance checks at all levels.
When a hit ratio at some loop level falls below some threshold, say 10%, a tracing sensor monitoring this loop
level is activated to obtain more detailed information. The intent is to correlate the low hit ratio with specific
properties of domains or even of particular molecules. Specifically, for each ‘hit’ distance check at the 2nd
level loop, we trace the distances between particles and molecules at the 3rd level loop. The motivation is
to understand the relationships of distances between molecules’ bounding boxes and with distances between
specific particles of a molecule with the bounding boxes of other molecules. In other words, what is the
effectiveness of the second level distance check?

The performance of such dynamically selective monitoring is presented in Table 5. In these measurements,
we use a MD data set that contains 300 molecules with 16 particles each. This relatively small system is then
monitored by insertion of sampling and tracing sensors at one, two, three, or all levels of the nested loop
(the outermost level is numbered zero, while the innermost three). Tracing at all levels results in overheads
that are somewhat unacceptable, especially when the same tracing is performed for larger systems. This is
apparent from the increases in monitoring overheads experienced when tracing at all levels for increasing
system sizes (e.g., 9 vs. 16 domains). On the other hand, when tracing only at lower levels (e.g., levels 1 or
2), overheads are less than 1% for smaller systems and no more than 5% for larger systems, and sampling
overheads remain small for all system sizes.

These results indicate that selective monitoring is quite effective, even when applied to this highest
frequency set of loops in the MD program’s execution. Furthermore, the strategy of sampling execution and
only initiating tracing when some problem (e.g., a low hit ratio) is experienced should result in composite
monitoring overheads that approximate the sampling overheads experienced with Falcon for long system

19

Execution Time of each MD time step (seconds) & Monitoring Overhead
No. of No Sampling Tracing at | Tracing at | Tracing at | Tracing at
domains || Monitoring Hit-Ratio Level 1 Level 2 Level 3 All levels
4 1.28 | 1.28(<1%) | 1.28(< 1%) 1.34(5%) 1.38(8%) | 1.46(14%)
9 0.703 | 0.706(< 1%) | 0.708(< 1%) | 0.734(4%) | 0.742(5%) | 0.794(13%)
16 0.301 | 0.301(< 1%) 0.304(1%) | 0.316(5%) | 0.323(7%) | 0.356(18%)
25 0.147 | 0.147(< 1%) 0.149(1%) | 0.155(5%) | 0.158(7%) | 0.188(28%)

Table 5: Performance of selective monitoring of the MD’s main computation component on the KSR-2.

runs. In conclusion, the on-line ‘steering’ of Falcon’s monitoring mechanisms themselves can be used to
control runtime monitoring overheads.

4.5 Performance of On-line Steering

As outlined in Section 3.4, the steering component of Falcon operates in conjunction with its monitoring com-
ponents, by receiving and processing selected monitoring events, then controlling the application’s execution
based on such runtime state information. This section presents low-level measurements that highlight the
basic performance and operation of program steering when viewed as a low-level control system. Therefore,
tor these measurements, networking is disabled and, hence, no remote operations are performed with the
steering client. Three processors are used, one running an application thread, a second running a single local
monitoring thread, and a third running the steering server. Algorithmic steering is used in order the evaluate
the basic costs of observing some interesting program state via the (1) local monitor and (2) steering server,
(3) making a simple decision based on that observation, and (4) enacting that decision by taking a steering
action. These costs are evaluated in the first experiment, which measures the latency of actions (1)-(4) for
a lightly loaded system:

Measurement microseconds
Avg. Latency 610
Min. Latency 224
Max. Latency 4483

Table 6: Latency for closed-loop steering.

Table 6 describes the closed-loop latency for steering under the following conditions: a total of 100,000
sensor events are generated by the application program, they are received by local monitors, and they are
then forwarded to the steering server without any additional filtering or processing. (4) The steering server
performs a simple action in response to each event’s receipt. This action consists of a write to a variable
in the application program. (1)-(4) are performed for an application program that repeatedly performs the
following tasks. First, it generates a monitoring event using a Falcon sensor. Second, the program waits
on some pre-specified memory location that will be asynchronously updated by the steering server. Third,
the steering server receives the event from the local monitor, reads the event type, accesses its database of
steering events to determine the actions required for this event type, and then uses a probe to enact this
action. The probe essentially changes the value of the memory location on which the program is waiting.

20

For these measurements, the database only contains a moderate number of different steering event types and
their respective actions.

The results depicted in Table 6 demonstrate an average latency of 610 microseconds for algorithmic
program steering using Falcon. This implies that program steering can be performed using Falcon at rates
approximating the execution times of the set of inner loops in programs like MD. However, it is not possible to
use Falcon’s current mechanisms to perform steering of program abstractions accessed with high frequencies,
like the adaptable locks described in [35]. Such high-rate and low-latency steering must be performed by
local monitors themselves, possibly using custom implementations of sampling sensors. Two surprising results
depicted in the table are (1) the high maximum latency for servicing a steering event (4,483 microseconds),
which is due to mismatches in the scheduling of application, monitoring, and steering threads, and (2) the
low minimum latency of 224 microseconds for steering, which is comprised mainly of the costs of event
transmission from the application, to local monitor, to steering thread, respectively (recall that monitoring
latency is approximately 70 microseconds).

The second experiment evaluates more complex steering actions, by forcing the steering thread to take
multiple actions for each received steering event. Specifically, Table 7 depicts the latencies of steering when
for each received steering event, the steering server takes some variable number (1, 10, 100) of actions
involving both probes and actuators. The purpose of this experiment is to determine the incremental costs
of steering.

Complex action || Number | Microseconds | Gain
Probe write 1 643 -
Probe write 10 2930 4.6
Probe write 100 15418 | 23.9
Actuator 1 627 -
Actuator 10 1207 1.9
Actuator 100 7870 | 12.6

Table 7: Average closed-loop latency with complex actions.

First, consider the costs of probe-based steering. For each probe, different memory locations have to
be accessed. In this experiment, worst case costs are evaluated by forcing the steering server to access its
database once for each received event. As the complexity of the action increases, the execution time required
by the steering server to execute this action increases. For a complex action, the server must execute this
action before accepting any other events from the monitor. As seen from Table 7, the basic probe write costs
643 microseconds. These costs increase by a factor of 4.6 for a complex action that requires 10 probe writes
(2,930 microseconds), and they increase by a factor of 23.9 for very complex actions (to 15,418 microseconds
for 100 probe writes). These measurements indicate that the steering server’s construction is sensible in that
it permits the basic costs of steering to be amortized over the costs of increasingly complex actions.

The second portion of Table 7 addresses actuator costs. These measurements are interesting in their
demonstration of scalability for actuators versus probes in terms of the resulting costs arising for steering
servers. Specifically, 100 actuator activations do not correspond to 100 executions of actuator code by the
steering server. Instead, the server simply enables the actuator once (for 100 executions), and then relies
on the user program to execute steering actions using the enabled actuator. As expected, actuator-based
steering costs do not depend on the number of steering actions taken; they depend only on the number of
times actuators are enabled or disabled! However, in order for the steering server to program the actuators,
the server must write to a buffer shared by the server and the application. A lock must prevent simultaneous
access to this region. Unfortunately, this lock is a point of contention between the server and the application

21

and, as such, the performance of the server is somewhat degraded.

From these measurements and in accordance with earlier results presented in this paper and in [2] address-
ing the time required for analyzing monitoring output, it should be apparent that the steering component of
Falcon is sufficiently fast to (1) keep up with fairly high rates of monitoring and (2) steer programs at rates
and with overheads enabling medium grain on-line program configuration[5] and application steering.

5 The On-line Presentation of Monitoring Information

The process of on-line user interaction with a target application includes (1) obtaining application-specific
information through monitoring mechanisms, (2) displaying this information to the user, and (3) controlling
program execution based on (2). Steps (1) and (3) have been discussed in the previous sections. This section
presents Falcon’s methods for presenting monitoring information to end users.

5.1 Falcon’s On-line Display System: An Overview

Graphical displays have been shown useful in presenting data structures [39], algorithms [48], runtime pro-
gram behaviors [29], and performance information[17, 41] to human users. However, most current work deals
primarily with off-line graphical and animated presentations of program and performance information. Fal-
con’s specific goals concerning the presentation of information to end users are to evaluate: (1) how on-line
displays of program information can help users understand a target program’s performance and runtime
behavior, and (2) how users can use such an understanding to steer their parallel codes. The resulting
necessary attributes of graphical displays used for program steering include:

o Application-specific displays — program information should be presented to end users in familiar terms,
that is, by reference to abstractions in their programs rather than by reference to machine or operating
system details with which they may not be familiar.

e Behavior-preserving displays — program monitoring and information display cause program perturba-
tion and they exhibit a lag between the time of information generation and its display to end users.
Programmers and end users must be made aware of both monitoring perturbation and information
delay and should, potentially, be able to control them when performing program steering.

The Falcon information display system offers functionality addressing both attributes. First, the central
monitor in Falcon is able to ‘attach’ any number of event streams from local monitors to its input ports,
and ‘route’ events to any number of analysis packages and subsequent displays through its output ports.
Such attachments to either input or output ports may be changed during program execution, if needed. As
a result, event streams may be subjected to multiple analysis packages and then displayed by any method of
display chosen by end users. Attachments are created and dissolved by commands to the central monitor,
and alternative displays may be associated with event streams by use of class hierarchies within the display
process. Figure 12 demonstrates the use of three alternative display methods for a sample event stream. The
first method, built on the X window system and the Athena and Pablo [41] widget sets, uses the work_load
events for the display of the application’s load balance information. The second method applies statistical
methods to analyze events from the application and then presents the resulting summary information to end
users in a textual format. The third method, built on the Polka animation system and the Motif widget set,
uses specific events from the on-line event stream to animate the program’s behavior at the threads level
(also see Figure 13).

In this paper, we focus on 2D graphical displays of program behavior or performance, which have been
shown useful for on-line steering in previous sections, where graphically displayed load balance information is
used to direct the execution of the MD code (e.g., see Figure 1). Our future work is combining event streams
from the monitoring system with program output typically generated via file system calls, so that users can

22

Proc O

Load Balance View

Proc 3 Proc 1

work_load
events

——»m Central Statistics Textual Presentation

L
| EE—

—_ = mm Monitor statistics Analyler statistics of Program Statistics
events text
event streams
from application
events of I u
threads, locks, Event [|
and conditions Reordering causally
Filter ordered | L
events

Thread Life-Time View

Figure 12: A sample on-line display system for an application.

understand and direct program execution in terms of individual program variables (e.g., ‘energy levels’ or
‘molecular positions’ in the MD code). Toward this end, we are now developing and integrating into Falcon
interactive 3D data visualization tools. These tools are being applied to a large-scale atmospheric modeling
application.

Falcon attempts to preserve the original behavior of the parallel program when displaying program
performance. Two issues arise: (1) monitoring can perturb program execution, and (2) the monitoring
system’s method of event collection via buffers does not preserve the actual time ordering of events being
produced and displayed. Specifically, since monitoring events are first buffered on the parallel machine
and local monitoring threads are not perfectly synchronized, events received by the central monitor and
ultimately, by analysis and display packages are not guaranteed to be in order. For off-line monitoring,
event files can be sorted. For on-line monitoring, event reordering must be performed on-line and with
suitable efficiency. Furthermore, in order to preserve the behavior of the original program when presenting
such information to users, reordering must be performed so that the causal order of events exhibited by the
executing program is preserved and enforced.

The remainder of this section describes how Falcon displays address both program perturbation and
monitoring delay, by providing on-line perturbation information displayed as perturbation events, and by
reordering and displaying monitoring events according to known information about a program’s causal exe-
cution order. In both cases, the system-level default information about threads available in Falcon is utilized.

5.2 The Thread Life-Time View: Performance of Threaded Programs

The graphical thread life-time view described next is one contribution of the Falcon project toward un-
derstanding the dynamic behavior of threads-based parallel programs. Available with Cthreads programs
running on SGI and SPARC workstations and on KSR machines, this view uses the default sensors embedded
in Cthreads. The view is implemented with the Polka animation library [49]. Since Polka provides a vari-
ety of graphical objects, animation primitives, and user interface facilities, the program defining the thread

23

life-time view only consists of roughly 200 lines of application-level Polka code. Polka runtime libraries pro-
vide a flexible animation scheduling policy, permit different temporal mappings of program events to their
animations, and therefore facilitates the construction of on-line displays. Polka is described and evaluated
in detail in [49].

The thread life-time view shows the different states of threads over time. The state information depicted
in the view includes thread execution time, blocking time, waiting time in ready queues, the identifiers
of conditions or mutex locks on which threads are blocked, and thread identifiers. From this information,
users can easily discern the time a thread spends doing useful computation versus waiting for other threads,
the degree to which different threads’ executions are synchronized, processor utilization, and other useful
program and performance information. Figure 13 shows a snapshot of the MD program’s execution on four
processors (ie., molecules are partitioned into four domains) on the KSR-1. When a new thread is forked,

IntraMolecular Calculation
threads start

IntraMolecular Calculation
threads end

Domain 0 (thread 16)

Domain 2 (thread 15)

Domain 1 (thread 14)

Domain 3 (thread 13)

Figure 13: An annotated thread life-time view of MD. The actual display uses colors to represent different
threads and different thread states.

a narrow horizontal bar is created to represent the new thread’s life-time, and a vertical line is drawn from
the parent thread to the child thread at the time of the fork event. A narrow bar terminates when the
thread, which the narrow bar represents, joins another thread after it exits or when a detached thread calls
thread_exit. In the case of thread_join, another vertical line is drawn from the caller thread to the thread it
is joining. The resulting empty space in the display can be reused for depiction of a new thread, if there
is any. Since the color display has to be rendered into monochrome for this presentation, some annotations
are added to compensate for lost information. Specifically, the thread life-time view uses different colors and
patterns to represent thread states. In Figure 13, the solid black pattern represents a thread in a running
state, while the dark gray pattern represents a thread waiting for a condition. The lightly dotted pattern
indicates that a thread has called thread_exit and is waiting to join to another thread. The heavily dotted
pattern indicates that a thread is in a processor’s ready queue; it is waiting for another thread using the
processor to complete its execution.

24

The bottom four bars in Figure 13 represent four threads each computing properties of the molecules
in their respective domains (numbered 0, 1, 2, and 3 from bottom to top). Each such ‘domain’ thread
forks a second ‘helper’ thread in every iteration. These ‘helper’ threads are shown as short bars above
the ‘domain’ threads (they may not be in the same order as the ‘domain’ threads). They calculate intra-
molecular forces while domain threads wait for information from neighboring domains. At the end of each
iteration, domain threads perform neighbor-to-neighbor synchronization. As apparent from the figure, the
intramolecular calculations of domain 3 proceed and perform useful computations while the domain thread
is waiting for completion of the computations of neighboring domains’ threads. However, domain thread 3
experiences significant wait time since its domain computation is finished quickly, whereupon it must wait
for completion of neighboring threads’ computation (it needs their data from the current iteration before
starting the next iteration). Therefore, it is also clear from this view that work load is imbalanced: domain
3 has little work to do, while domain 0 is almost always busy. This illustrates a problem with the slab-based
domain decomposition strategy used in this run of the MD program: Domain 0 is responsible for additional
molecules in the substrate on which the liquid being modeled is layered; this substrate is much denser than
the liquid and therefore, contains many more molecules.

5.3 Perturbation Events

The thread life-time view shown in Figure 13 can help users understand program performance problems
only if the thread running and waiting time shown is due to application’s execution and synchronization
rather than monitoring perturbation caused by executing extra code and additional synchronization between
application threads and monitoring threads. Section 4.1 shows that the basic perturbation due to sensor code
execution is quite small, provided that monitoring buffers are sufficiently large and local monitoring threads
can process events fast enough to keep monitoring buffers from being completely full. Furthermore, the direct
perturbation due to the execution of a sensor is easily predicted from the sensor’s type. As a result, such
perturbation can be removed from the event trace by application of simple perturbation analysis. However,
if local monitoring threads cannot keep up with the rate of event generation, then monitoring buffers will
eventually become full, and application threads will have to wait for some time until events have been
removed from such full buffers. Since such waiting time caused by filled monitoring buffers is not due to the
program’s code or data, the resulting thread life-time view can be incomprehensible or misleading to end
users.

Figure 14 depicts a potentially misleading thread life-time view constructed with an event trace cap-
tured from a large-scale atmospheric modeling code. The problems in this view are due to an unsuitable
configuration of the monitoring system (a single local monitoring thread), which is quickly overwhelmed by
events from a large number of computational threads. Without perturbation events, it would appear to
programmers that their computational threads execute for different amounts of time. This is misleading
since in this program, each of the computational threads have the same amount of work. In fact, when first
using Falcon, one of the atmospheric code’s implementors spent several hours chasing a non-existing load
imbalance indicated by the life-time view (without perturbation events). A more precise inspection of the
view in Figure 14 shows pure black bars that represent ‘worker’ threads, each responsible for a partition of
the computation space. The three bars below each ‘worker’ thread are ‘helper’ threads, which are employed
by the ‘worker’ thread to help calculate separate terms in its computation. The iterative algorithm performs
barrier synchronization after threads finish their work and before the next iteration starts. The figure in-
dicates that the third ‘helper’ thread of the top ‘worker’ thread and the first ‘helper’ thread of the bottom
‘worker’ thread waited a very long time for mutex locks. In addition, the second and third ‘helper’ threads of
the bottom ‘worker’ thread have significantly longer computation times than other ‘helper’ threads. These
superficial observations imply that the program has unbalanced work loads and improper synchronizations.
However, the improved threads life-time view with perturbation events presents a different picture.

Figure 15 shows the same execution of the atmospheric modeling code, with special perturbation events
depicting the total blocking times experienced by its threads on the monitor’s event buffers. It is clear
from this ‘correct’ view that the ‘helper’ threads have balanced work loads, but that their execution times
are extended due to monitoring perturbation experienced by the ‘helper’ threads of the bottom ‘worker’.

25

thread running

in ready queue

| ! T
10970, 7 11004.6
execution time (milliseconds?

< J»- |¥ J4' [-in Jh-Out Jv-in |v—0ut I [Ciose

T
105836.9

Figure 14: A thread life-time view that shows perturbation events.

Specifically, the extremely long blocking times for mutex locks apparently experienced by the third ‘helper’
thread for the top ‘worker’ and the first ‘helper’ thread for the bottom ‘worker’ (shown in Figure 14) are
not due to mutex locking. They are due to additional thread waiting times experienced when writing mu-
tex_end_lock events to the monitoring buffers. From this example, it should be evident that perturbation
events help users understand the monitoring system’s contribution to total thread execution and wait times.
Our current work is generalizing this straightforward notion of perturbation events to apply more sophis-
ticated sequential perturbation analyses (e.g., see [30]). Another type of monitoring perturbation, causing
misordered event streams, is discussed next.

5.4 On-line Event Reordering

Event orderings and program animation. Displays like the thread life-time view of Figure 13 can
provide users with insights into program progress and correctness. However, the perturbation example
described above already demonstrates that graphical views can be quite misleading and confusing if the
information being displayed does not correspond to the program’s actual execution. This section focusses on
another issue with on-line graphical views, namely, on the fact that the graphical animation order determined
by the receipt and display of monitoring events does not correspond to the actual or causal order in which
program events occur! Such misorderings can both confuse users and more critically, cause failures of the
animation itself. For example, causal ordering would require that the thread_fork event creating a thread
precede any event executed by the new thread. A display that shows a child running before it has been
forked by its parent does not make any sense. Furthermore, suppose that the first event for this child thread
is a condition_wait event. In the thread life-time view of Figure 13, this event is represented by a change
in the color and fill pattern of that thread’s horizontal bar. However, if the thread_fork event has not been
received by the display system, the horizontal bar does not yet exist. When the display system attempts to
perform a color-change action on this non-existent object, it crashes. Some of these crashes could be avoided
by adding a layer of error-checking code to the display system, but this adds execution overhead, makes
displays more difficult to design, and still leaves the viewer with displays that may not be useful.

The out-of-order events that cause problems for the display system cannot have occurred in the program’s
execution, since they would violate causal event orderings determined by program and language semantics.

26

thread running

in ready queue

waiting to join

ta be Joined

i I I I I I I I | T T T T T T T T
10936, 9 10970.7 11004.6
execution time (milliseconds!)

< > Jv [Jh-in [h-out fv-in fv-out I [ciose

Figure 15: A thread life-time view that shows perturbation events.

Instead, misorderings existing in the event stream are due to the buffering and processing methods employed
in the monitoring system. Specifically, high monitoring performance (i.e., low perturbation) requires that
events for each thread be buffered until a local monitor is ready to process them. Furthermore, different
local monitors send events to the central monitor at their own speeds, in part because the number of events
to be processed and the processing requirements of individual events may differ among local monitors. As a
result, while the event stream reaching the display system is in-order with respect to each individual thread
(recall that each thread uses only a single event buffer), it may be out of order with respect to thread events
from different threads.

On-line event reordering. The diagnosis and correction of out-of-order events is a common problem in
parallel and distributed monitoring systems. Existing systems (e.g., ParaGraph[17] and STEVE[42]) rely on
a sort by timestamp value to impose a total order on all events stored in event files. The on-line nature
of the Falcon monitoring system precludes using such a solution, and sorting by timestamp order does not
entirely eliminate the problem of out-of-order events[4]. In addition, coarse clock granularities and poor clock
synchronization among different processors may lead to event timestamps that do not accurately reflect the
actual order of program execution. For example, if the system clock changes only every 10 milliseconds,
and if two events occur within this time frame, then the ordering of these two events cannot be determined
within this period. A more realistic concern on the KSR supercomputer used in our work is poor clock
synchronization, where one processor’s clock can be sufficiently ahead of another processor’s clock so that
the elapsed time between a thread fork and the first event executed by the child appears to be negative.
This problem is exacerbated when threads are allowed to migrate across processors, something we avoid in
Cthreads but is permitted in the Pthreads parallel programming library on the KSR machine.

Ordering rules. The previous discussion of out-of-order events makes apparent that the use of timestamps
is not sufficient for determining and enforcing suitable, global event orderings. Falcon addresses this issue
by employing an ordering filter between the central monitor and the display system (see Figure 12). This
filter ensures that the event stream reaching the display system adheres to a pre-specified, known causal
ordering among thread events. This ordering filter has knowledge of all execution threads, mutex locks,
and conditions identified occurring in the event stream. The algorithm employed by the filter follows a
“minimum-intervention policy”. Namely, it examines each event in the stream arriving from the monitoring
system, checks the applicable ordering rules for this event type, and if no rules are violated, forwards the

27

event to the display system. If a rule violation is indicated, the event is held back until the rules are satisfied.

As an example, consider the ordering rule for a mutex lock event. Actually, a mutex lock is recorded as
two separate events - the mutex_begin_lock event indicating that a thread has attempted to obtain the lock,
and the mutex_end_lock event indicating that a thread has succeeded in obtaining the lock. The following
ordering rule is observed by the filter for a mutex_end_lock:

mutex_end_lock t m n <- ((thread_init t || thread_fork pt t) &&
(mutex_init m || mutex_alloc m) &&
(mutex_unlock m n-1))

This rule may be translated as: “The mutex_end_lock event with parameters ¢, m, and n, may be passed on
to the display system if thread t has been initialized or forked by a parent thread, mutex variable m has been
initialized or allocated, and the mutex_unlock event for variable m, sequence number n - 1 has already been
passed on to the display system.” Accordingly, the parameters associated with the event mutex_end_lock are
t, the id of the thread attempting to obtain the lock, m, the id of the mutex variable, and n, the sequence
number indicating the number of successful lock attempts on this particular mutex variable. Among these
parameters, the most interesting parameter is n, since it required an unforeseen augmentation of the Falcon
system and since it enables the efficient implementation of on-line event ordering discussed below.

The rule applied to a mutex lock is one of many rules implemented by the reordering filter (see Appendix
A for a complete listing of these rules). Moreover, even for this single rule, with each of its expressions is
associated another set of ordering rules that must be met. The rules appearing in Appendix A are written
to reflect the logic of the current filtering code. Our future work is addressing the automatic generation of
filtering code from formal rule specifications like the one shown above.

Implementation of on-line reordering. Figure 16 outlines the implementation of the event reordering
filter. The event stream at the left arriving from the central monitor is only partly ordered with respect to

———-

thread 0 out—of—order events are held back
in per—thread queues before being
sent to the display system

—- thread 1

(—— (hread 2 ‘\
A

~,
Re

/ —f— (hread n K

4 per—thread queues

[T ———

. Lo in—order events are passed .
event stream from monitoring system on to the display system event stream to display system

immediately

Figure 16: Architecture of the on-line trace reordering filter.

each thread_id. The event stream forwarded to the display system shown at the right hand side of the figure
is ordered according to the specified ordering rules. To attain this ordering, the filter maintains an ordered
queue for all events with the same thread_id encountered in the event stream, shown at the center of the
figure. This queue only contains events that are not ready to be processed (that do not yet satisfy the rules),
whereas other events are immediately forwarded to the display system. The ordering filter then continues
to examine new events, checking the head of each active queue in every round to see if it is now possible to

28

place the event in the stream going to the display system. Note that these queues are not activated until
a thread_init event (in the case of the program’s initial thread), or a thread_fork event (all other threads) is
processed for that thread_id. Processing of the queue is turned “off” again when a thread_exit is encountered.
Straightforward generalizations of this code would entail dynamic queue creation and deletion at some cost
in runtime performance.

Additional data structures in the ordering filter are assigned to mutex_ids and condition_ids, each of which
is represented by a data structure that keeps track of the sequence numbers associated with this abstraction
that have been processed thus far. An example of these data structures is shown in Figure 17, where threads
are waiting on both condition variables. These data structures are dynamically allocated as the events are

mutex_id 77 mutex_id 99
MutexeS —p

max_seq_num 4 max_seq_num 12

cond_num 101 cond_num 67

Conditions ——p- | max_seq_waiting 3| ——» | max_seq_waiting

signalled signalled

sl O - —T—

Figure 17: Detail.

observed in the stream. A mutex_init or mutex_alloc event causes data structure allocation for this mutex_id,
and the sequence number for the mutex is initialized to 0. No event associated with this mutex_.id may be
processed until after the mutex_init or mutex_alloc events have occurred. In addition, mutex_end_lock and
mutex_unlock events have a sequence number, and are required to be processed in sequence number order.
Similar data structures exist for events concerning condition variables, again requiring that condition_init or
condition_alloc events precede each condition’s use and using sequence numbers initialized to 0. Specifically,
a condition_end_wait event for sequence number n must be preceded by a condition_signal on sequence number
n or a condition_broadcast on a range of sequence numbers containing n. In turn, a condition_signal on n
must be preceded by a condition_begin_wait on n. A condition_broadcast on n! ... n2 must be preceded
by a condition_begin_wait on n2. The condition_begin_wait on sequence number n must be preceded by
condition_begin_wait on sequence number n-1.

Evaluation. Meaningful performance numbers for the efficiency of the ordering filter are difficult to obtain.
Because online monitoring requires the ordering filter to prevent display crashes, it is not possible to compare
the appearance and execution of the display with the ordering filter versus without the ordering filter. Instead,
we have attempted to evaluate the effects of the ordering filter on the appearance and speed of the displays
under three offline conditions. The degree to which the events are misordered may also have an effect on the
delay or “drag” that the reordering filter may impose on the display. Accordingly, we have produced trace

29

files with varying degrees of misordering and have developed a metric to describe the degree of misordering
in an event stream or file. Traces were collected from four executions of the MD application. For each
run the buffer size of the local monitor was varied in order to produce trace files with varying ratios of
out-of-order events. The use of large buffers should produce more out-of-order events in the trace file (but
less perturbation in the program), and smaller buffers should cause fewer out-of-order events (but more
perturbation in the program).

As a measure of the misordering of the events, we calculated a hold-back ratio. Recall that the reordering
code will temporarily hold back any event that violates causal ordering. If a misordered event is held back
for multiple times, it will be counted for as many times. In our experiments, the hold-back ratios for the
four trace files range from 0.60 (9,020 events held back in a file of 14,970 records) for the smallest size local
buffer to 2.81 (40,903 events held back in a file of 14,552 records) for the larger local monitor buffer. The
results clearly confirms the hypothesis that smaller event buffers cause more out-of-order events and larger
buffers causes less out-of-order events.

For each trace file, we run a sorting program to produce another version of the trace file with all event
records totally ordered by their timestamps. The thread life-time display code is then executed, observed,
and timed for each of four trace files under the following three conditions: (1) the thread life-time view
reading directly from the sorted file, (2) the reordering filter reading from the sorted trace file, passing event
records to the thread life-time display through a socket, (3) and the reordering filter reading from the original
trace file, passing event records to the thread life-time display through a socket.

Not surprisingly, the total running time of the display under the second condition exceeds the first in
every case, ranging from a 3% increase to a 6% increase in display time. We attribute this delay primarily
to CPU contention between the display and reordering code (they run on the same machine). However, the
running times of the thread life-time display under the second and the third conditions are not significantly
different. The degree of misordering does not significantly affect display execution time simply because the
reordering code is much faster, from 10 to 30 times, than the display code itself, which relies on relatively
more expensive X-windows call to show events to end users. In other words, the reordering filter is sufficiently
fast to supply the display code with a steady stream of events.

6 Related Research

Interactive program steering. The concept of steering can be found in many interactive scientific visu-
alization and animation applications which allow users to directly manipulate the objects to be visualized
or animated [22, 21]. For example, in a wind tunnel simulation, users can interactively change shapes and
boundaries of objects in the wind tunnel in order to see the effects on the air flow. Research has also addressed
the provision of programming models and environments to support the interactive steering of scientific visu-
alization. In [22], DYNA3D and AVS (Application Visualization System from AVS Inc.) are combined with
customized interactive steering code to produce a time-accurate, unsteady finite-element simulation. The
VASE system [21] offers tools that create and manage collections of steerable Fortran codes.

The idea of steering has also been used in parallel and distributed programming to dynamically change
program states or execution environment for improving program performance or reliability [5, 35, 8]. Early
work in this research area focusses on the dynamic tuning of parallel applications in order to adapt them to
different execution environments [44, 45]. Recent experiments demonstrate that changes to specific program
states or program components, such as locks [35] and problem partition boundaries [8], can significantly
improve overall performance. Our research interests are to provide a mechanism for programmers easily
take advantage of this dynamic tuning capability as well as supporting the on-line capture of program and
performance information necessary for efficient program steering. While we can base some of our work on
past research on the monitoring of parallel and distributed programs for correctness and/or performance
debugging, on-line and dynamic monitoring are relatively new topics[40]. We refer the reader to [16] for a
brief survey of current research on interactive steering and on-line monitoring.

30

Program monitoring. Past work in monitoring of parallel and distributed programs focuses on perfor-
mance understanding and debugging. These performance monitoring systems (e.g. Miller’s IPS[34] and
IPS-2[33], Reed’s Pablo[41]) provides programmers with execution information about their parallel codes,
and leads their attention to those program components on which most execution time is spent. A variety
of performance metrics, such as normalized processor time[l], execution time on the critical execution path
[33], etc., are employed to describe the program’s runtime performance. One limitation of these performance
metrics is the difficulty to relate measured performance numbers to specific program details. Instead, most
such research measures program execution times at the procedure level. However, program steering can
depend on program information derived from specific program variables or statements, such as the analyses
of the workloads of each domain when steering the MD application.

Some recent work has addressed application-specific program monitoring[47, 40]. In these systems, users
can explicitly specify what variables or program states to monitor using specification languages [40, 23], some
of which are based on the Entity-Relational model[47]. The W3 search model described in [20] addresses this
problem in a different fashion: performance data is collected using hooks either inserted by the compiler or
by programmers; based on this data, potential performance bottlenecks are identified and resources causing
these bottlenecks are found and then, corrected by application programmers.

Data and perturbation analysis. Monitoring information may be refined with trace data analysis tech-
niques, such as the Critical Path Analysis and Phase Behavior Analysis described in [33], often in an off-line
manner. More sophisticated analysis techniques may be used to reduce and correct perturbation to the
measured program performance due to monitoring [30]. In addition, performance data may be subjected to
various statistical filtering techniques prior to its display to users. All such techniques may be applied to
Falcon’s monitoring data, as well.

A number of systems have addressed the problem of “out-of-order” events, events that violate causality.
These events violate the “happened-before” relationship described in [27] and [10]. Post-mortem display
systems such as ParaGraph[17] and SIEVE[42] may sort the trace files by timestamp. Instant Replay[28§],
Makbilan[52], TraceViewer[19], the Animation Choreographer[25], and Xab[3] have all used a causality graph
as on ordering tool for the post-mortem display of the execution of parallel programs. These methods are
not effective for run-time performance display because they rely on fully available trace files that may be
sorted prior to their display. In contrast, Xab[3], a tool for monitoring PVM programs, uses a timestamp
adjustment approach. Each processor calculates time as the sum of its local clock and an “offset” value.
This offset value is adjusted whenever a process a message with a a later timestamp than the receiving
process’s current time. However, it was found that lower-level changes to PVM were required to eliminate
some “out-of-order” events. These changes are in part analogous to the Cthread-based support provided for
on-line event reordering in the Falcon system.

On-line program steering utilizes current and past efforts concerning the efficient linkage of multiple
supercomputer engines, which is being addressed by several Gigabit testbeds efforts in the United States.
Systems like PVM[50] and Express offer software support for constructing large-scale distributed and parallel
codes.

7 Conclusions and Future Work

The Falcon monitoring system enables programmers to capture and view precisely the program attributes
of interest to them. Such monitoring may be performed on-line (during the program’s execution) with
low latency and more importantly, with dynamically controlled monitoring overheads. To attain such con-
trols, Falcon’s monitoring mechanisms themselves may be configured on-line to realize suitable tradeoffs in
monitoring latency, overhead, and perturbation.

Falcon performs program monitoring on-line, namely, monitoring information is captured, analyzed, and
stored or displayed during the target program’s execution. This permits programmers to view their long-
running parallel codes interactively, and then steer their execution into more appropriate data domains or

31

simply, to play ‘what if’ games with alternative parameter settings. Toward this end, Falcon also offers an
integrated library for interactive program steering, as well as support for the on-line provision of monitoring
information both to algorithms controlling program configuration and to graphical displays based on which
users can perform program steering.

This paper demonstrates the utility and potentials of on-line program steering and monitoring with a
large-scale parallel application program, a molecular dynamics simulation used by physicists to study the
interfacial properties of lubricants. Additional measurements are based on an atmospheric modeling code
used by scientists to study global atmospheric phenomena. When Falcon is used with these programs, it
becomes apparent that programmers should be permitted to perform monitoring and steering at multiple
levels of abstraction within a single parallel program, ranging from inspecting and steering individual pro-
gram variables to steering at the threads or process level. The evaluation of Falcon’s performance with these
applications also demonstrates the importance of supporting multiple degrees of granularity (and accom-
panying overheads) with which monitoring may be performed. Detailed performance studies on a 64-node
KSR shared memory multiprocessor show how changes in the methods of capturing program information
can result in distinct differences in monitoring performance. In other publications, we also also demonstrate
some limitations on applying Falcon’s functionality, notably when using it for the steering of individual
operating system abstractions used by parallel programs (e.g., mutex locks[35]). To support the monitoring
and steering rates required for such fine grain program control, monitoring mechanisms must be customized.
Our future work will address how such customized mechanisms may be used in conjunction with the remain-
der of the Falcon system. In addition, future work is addressing the monitoring of object-oriented, parallel
programs, including the provision of default monitoring views and performance displays[38].

The MD and atmospheric modeling codes as well as the Falcon system are implemented and evaluated on
a 64-node KSR shared memory supercomputer. However, the Falcon system is available on several shared
memory platforms, including SGI and SUN Sparc parallel workstations. A version of Falcon currently being
completed also works with PVM across networked execution platforms. Similar portability is attained for
the graphical displays used with Falcon. Notably, the Polka animation library can be executed on any Unix
platform on which Motif is available [49]. The Falcon system has been in routine use at the Georgia Institute
of Technology by non-Computer Science end users. Its low-level mechanisms are available via the Internet
since early Summer 1994. A version of Falcon offering on-line user interfaces for monitoring and monitor
control will be released in 1995.

Current extensions of Falcon not only address additional platforms (e.g., an IBM SP machine now avail-
able at Georgia Tech and the monitoring of PVM programs running Cthreads, C, or Fortran programs), but
also concern several essential additions to its functionality. First, currently, users can insert into their code
simple tracing or sampling sensors, where sensor outputs are forwarded to and then analyzed by the local
and central monitors. We are now generalizing the notion of sensors to permit programmers to specify higher
level ‘views’ of monitoring data like those described in [24, 40, 47]. Such views will be implemented with
library support resident in both local and central monitors. Second, we are developing notions of composite
and extended sensors that can perform moderate amounts of data filtering and combining before tracing or
sampling information is actually forwarded to local and central monitors. Such filtering is particularly im-
portant in networked environments, where strong constraints exist on the available bandwidths and latencies
connecting application programs to local and central monitors.

An important component of our future research is the use of Falcon with very large-scale parallel pro-
grams, either using thousands of execution threads or exhibiting high rates of monitoring traffic. For these
applications, it will be imperative that monitoring mechanisms are dynamically controllable and configurable.
Namely, it must be possible for users to focus their monitoring on specific program components, to alter
such monitoring dynamically, and to process monitoring data with dynamically enabled filtering or analysis
algorithms. Moreover, such changes must be performed so that monitoring overheads are experienced pri-
marily by the program components being inspected. Dynamic control of monitoring is also important for
the efficient on-line steering of parallel programs of moderate size. Specifically. program steering requires
that monitoring overheads are controlled continuously, so that end users or algorithms can perform steering
actions in a timely fashion.

32

On-line control of monitoring performance will be performed in Falcon by affecting the rates of data
collection by individual or sets of sensors, the degrees of parallelism used by local monitors, and the amounts
of filtering done by local monitors prior to information transfers to central monitors. In addition, we are
developing on-line control algorithms that permit Falcon’s use with real-time applications.

Longer term research with Falcon addresses the integration of higher level support for program steering,
including graphical steering interfaces, and the embedding of Falcon’s functionality into a programming
environment supporting the process of developing, tuning, and steering threads-based parallel programs,
called LOOM. In addition, Falcon will be a basis for the development of distributed laboratories in which
scientists can inspect, control, and interact on-line with virtual or physical instruments (typically represented
by programs) spread across physically distributed machines. The specific example being constructed by our
group is a laboratory for atmospheric modeling research, where multiple models use input data received from
satellites, share and correlate their outputs, and generate inputs to on-line visualizations. Moreover, model
outputs (e.g., data visualizations), on-line performance information, and model execution control may be
performed by multiple scientists collaborating across physically distributed machines.

Acknowledgements. We thank Niru Mallavarupu for contributing to early implementations of Falcon
components. Thomas Kindler is responsible for the parallel implementation of the atmospheric modeling
code.

References

[1] Thomas E. Anderson and Edward D. Lazowska. Quartz: A tool for tuning parallel program performance.
In Proc. of the 1990 SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
pages 115-125, Boston, May 1990.

[2] Peter Bates. Debugging heterogeneous distributed systems using event-based models of behavior. In
Proceedings of the Workshop on Parallel and Distributed Debugging, pages 11-22, Madison, Wisconsin,
May 1988.

[3] Adam Beguelin, Jack Dongarra, Al Geist, and Vaidy Sunderam. Visualization and debugging in a
heterogeneous environment. Computer, 26(6):88-95, June 1993.

[4] Adam Beguelin and Erik Seligman. Causality-preserving timestamps in distributed programs. Technical

Report CMU-CS-93-167, Carnegie Mellon University, Pittsburgh, PA, June 1993.

[5] Thomas E. Bihari and Karsten Schwan. Dynamic adaptation of real-time software. ACM Transactions
on Computer Systems, 9(2):143-174, May 1991.

[6] Gretchen P. Brown, Richard T. Carling, Christopher F. Herot, David A. Kramlich, and Paul Souza.
Program visualization: Graphical support for software development. IEEE Computer, 18(8):27-35,
August 1985.

[7] Bernd Bruegge. A portable platform for distributed event environments. In Proceedings of the
ACM/ONR Workshop on Parallel and Distributed Debugging, pages 184-193, Santa Cruz, California,
May 20-21 1991. ACM Press. ACM SIGPLAN NOTICES 26(12), December 1991.

[8] Greg Eisenhauer, Weiming Gu, Karsten Schwan, and Niru Mallavarupu. Falcon — toward interactive
parallel programs: The on-line steering of a molecular dynamics application. In Proceedings of The
Third International Symposium on High-Performance Distributed Computing (HPDC-3), pages 26-34,
San Francisco, CA, August 1994. IEEE, IEEE Computer Society.

[9] Greg Eisenhauer and Karsten Schwan. Md - a flexible framework for high-speed parallel molecular
dynamics. In Adrian Tentner, editor, High Performance Computing - 1994, pages 70-75, P.O. Box
17900, San Diego, CA 92177, April 1994. Society for Computer Simulation, Society for Computer
Simulation. Proceedings of the 1994 SCS Simulation Multiconference.

33

[10] Colin Fidge. Logical time in distributed computing systems. Computer, 24(8):28-33, August 1991.

[11] Ahmed Gheith, Bodhi Mukherjee, Dilma Silva, and Karsten Schwan. Ktk: Kernel support for config-
urable objects and invocations. In Proceedings of the Second International Workshop on Configurable
Distributed Systems, pages 92-103, Pittsburgh, Pennsylvania, March 1994. The IEEE Computer Society
Press.

[12] Ahmed Gheith and Karsten Schwan. Chaos-arc — kernel support for multi-weight objects, invocations,
and atomicity in real-time applications. ACM Transactions on Computer Systems, 11(1):33-72, April
1993.

[13] Kaushik Ghosh, Kiran Panesar, Richard M. Fujimoto, and Karsten Schwan. PORTS: A parallel, opti-
mistic, real-time simulator. In Proceedings of the 8th Workshop on Parallel and Distributed Simulation,
Edinburgh, July 1994. College of Computing, Georgia Institute of Technology. to appear.

[14] Prabha Gopinath and Karsten Schwan. Chaos: Why one cannot have only an operating system for
real-time applications. SIGOPS Notices, pages 106-125, July 1989. Also available as Philips Technical
Note TN-89-006.

[15] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John Stasko, Jeffrey Vetter, and
Nirupama Mallavarupu. Falcon: On-line monitoring and steering of large-scale parallel programs. In
Proceedings of FRONTIERS’95, February 1995. To appear. Also available as Technical Report GIT-
CC-94-21, College of Computing, Georgia Institute of Technology.

[16] Weiming Gu, Jeffrey Vetter, and Karsten Schwan. An annotated bibliography of interactive program
steering. ACM SIGPLAN Notices, 29(9):140-148, September 1994.

[17] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of parallel programs. IEEE
Software, 8(5):29-39, September 1991.

[18] David P. Helmbold, Charles E. McDowell, and Jian-Zhong Wang. Determining possible event orders
by analyzing sequential traces. IEEE Transactions on Parallel and Distributed Systems, 4(7):827-840,
July 1993.

[19] David P. Helmbold, Charlie E. McDowell, and Jian-ZhongWang. Traceviewer: A graphical browser for
trace analysis. Technical Report UCSC-CRL-90-59, Univ. of California at Santa Cruz, Santa Cruz, CA,
October 1990.

[20] Jeffrey K. Hollingsworth and Barton P. Miller. Dynamic control of performance monitoring on large
scale parallel systems. In Proceedings of the 7th ACM International Conference on Supercomputing,
pages 185-194, Tokyo, Japan, July 1993.

[21] David Jablonowski, John Bruner, Brian Bliss, and Robert Haber. VASE: The visualization and appli-
cation steering environment. In Proceedings of Supercomputing’93, pages 560-569, November 1993.

[22] David Kerlick and Elisabeth Kirby. Towards interactive steering, visualization and animation of un-
steady finite element simulations. In Proceedings of Visualization’93, 1993.

[23] Carol Kilpatrick, Karsten Schwan, and David Ogle. Using languages for describing capture, analysis, and
display of performance information for parallel and distributed applications. In International Conference
on Computer Languages ‘90, New Orleans, pages 180-189. IEEE, March 1990.

[24] Carol E. Kilpatrick and Karsten Schwan. ChaosMON — application-specific monitoring and display
of performance information for parallel and distributed systems. In Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, pages 57-67, Santa Cruz, California, May 20-21 1991.
ACM Press. ACM SIGPLAN NOTICES 26(12), December 1991.

[25] Eileen Kraemer and John T. Stasko. Toward flexible control of the temporal mapping from concurrent
program events to animations. In Proceedings FEighth International Parallel Processing Symposium,

pages 902-908, 1994.

34

[26] Jeff Kramer and Jeff Magee. Dynamic configuration for distributed systems. IEEE Transactions on
Software Engineering, SE-11(4):424-436, April 1985.

[27] Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Communication of the
Association for Computing Machinery, 21(7):558-565, July 1978.

[28] Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging parallel programs with instant replay.
IEEE Transactions on Computers, C-36(4):471-481, April 1987.

[29] Allen D. Malony, David H. Hammerslag, and David J. Jablonowski. Traceview: A trace visualization.
IEEE Software, pages 19-28, September 1991.

[30] Allen D. Malony, Daniel A. Reed, and Harry A. G. Wijshoff. Performance measurement intrusion and
perturbation analysis. IEFE Transactions on Parallel and Distributed Systems, 3(4):433-450, July 1992.

[31] Keith Marzullo and Mark Wood. Making real-time reactive systems reliable. ACM Operating Systems
Review, 25(1):45-48, January 1991.

[32] Henry Massalin and Calton Pu. Threads and input/output in the synthesis kernel. In Proceedings of
the 12th Symposium on Operating Systems Principles, pages 191-201. SIGOPS, Assoc. Comput. Mach.,
December 1989.

[33] Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See Lim, and Timothy
Torzewski. IPS-2: The second generation of a parallel program measurement system. IEEE Transactions

on Parallel and Distributed Systems, 1(2):206-217, April 1990.

[34] Barton P. Miller and Cui-Qing Yang. IPS: An interactive and automatic performance measurement tool
for parallel and distributed programs. In Proceedings of the 7th International Conference on Distributed
Computing Systems, pages 482-489, Berlin, West Germany, September 1987. IEEE.

[35] Bodhi Mukherjee and Karsten Schwan. Experiments with a configurable lock for multiprocessors. In
Proceedings of the International Conference on Parallel Processing, Michigan, pages 205-208. IEEE,
Aug. 1993.

[36] Bodhisattwa Mukherjee. A portable and reconfigurable threads package. In Proceedings of Sun User
Group Technical Conference, pages 101-112, June 1991.

[37] Bodhisattwa Mukherjee and Karsten Schwan. Improving performance by use of adaptive objects: Ex-
perimentation with a configurable multiprocessor thread package. In Proc. of Second International
Symposium on High Performance Distributed Computing (HPDC-2), pages 59-66, July 1993. Also
TR# GIT-CC-93/17.

[38] Bodhisattwa Mukherjee, Dilma Silva, Karsten Schwan, and Ahmed Gheith. Ktk: kernel support for
configurable objects and invocations. Distributed Systems Engineering Journal. Expected to be out
early 95.

[39] Brad A. Myers. INCENSE: A system for displaying data structures. Computer Graphics, 17(3):113,
July 1983.

[40] D.M. Ogle, K. Schwan, and R. Snodgrass. Application-dependent dynamic monitoring of distributed
and parallel systems. IEEE Transactions on Parallel and Distributed Systems, 4(7):762-778, July 1993.

[41] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Keith A. Shields, and Bradley W. Schwartz. An Quverview
of the Pablo Performance Analysis Environment. Department of Computer Science, University of Illinois,
1304 West Springfield Avenue, Urbana, Illinois 61801, November 1992.

[42] Sekhar R. Sarukkai and Dennis Gannon. Parallel program visualization using SIEVE.1. In International
Conference on Supercomputing. ACM, July 1992.

35

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Karsten Schwan, Prabha Gopinath, and Win Bo. CHAQOS - kernel support for objects in the real-time
domain. IEEE Transactions on Computers, C-36(8):904-916, July 1987.

Karsten Schwan and Anita K. Jones. Flexible software development for multiple computer systems.
IEEE Transactions on Software Engineering, SE-12(3):385-401, March 1986.

Karsten Schwan, Rajiv Ramnath, Sridhar Vasudevan, and Dave Ogle. A system for parallel program-
ming. In 9th International Conference on Software Engineering, Monterey, CA, pages 270-282. IEEE,
ACM, March 1987. Awarded best paper.

Karsten Schwan, Rajiv Ramnath, Sridhar Vasudevan, and David Ogle. A language and system for the
construction and timing of parallel programs. IEEE Transactions on Software Engineering, 14(4):455-
471, April 1988.

Richard Snodgrass. A relational approach to monitoring complex systems. ACM Transactions on

Computer Systems, 6(2):157-196, May 1988.

John T. Stasko. TANGO: A framework and system for algorithm animation. IEEE Computer, 23(9):27-
39, September 1990.

John T. Stasko and Eileen Kraemer. A methodology for building application-specific visualizations of
parallel programs. Journal of Parallel and Distributed Computing, 18(2):258-264, June 1993.

V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice and
Ezperience, 2(4):315-339, 1990.

T. K. Xia, Jian Ouyang, M. W. Ribarsky, and Uzi Landman. Interfacial alkane films. Physical Review
Letters, 69(13):1967-1970, 28 September 1992.

Dror Zernik and Larry Rudolph. Animating work and time for debugging parallel programs — foundation
and experience. In Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,
pages 46-56, Santa Cruz, California, May 20-21 1991. ACM Press. ACM SIGPLAN NOTICES 26(12),
December 1991.

36

Appendix A: A Complete List of Cthreads Events Reordering
Rules

Here is the terminology used in describing the ordering rules:

<- = "is allowable if preceded by"
t = thread number

¢ = condition number

m = mutex number

n = sequences number

pt = parent thread

ct = child thread

jt = join_to thread number

bn = beginning sequence number
en = ending sequence number
processor number

x = don’t care value

o
1}

The ordering rules for all events from default monitoring of Cthreads programs are listed below. A brief
explanation for each rule is provided. For each mutex number m and condition number ¢, it is initially set
to 0.

thread_init t <= 0O;
This is the initial event for thread t. All prior events pertaining to this thread are ignored. An internal
buffer is created for this thread number, and it is turned “on”.

thread_fork pt ct <- ((thread_init pt) && ((pt == 0) && (thread_fork t pt)));
The parent thread must be “on” for this event to be processed. An internal buffer is created for the
child thread and it is turned “on”. It is required that the parent thread is initialized before this event.

thread_exit t <- ((thread_init t) && (thread_fork pt t));
The internal buffer is de-allocated and the thread is turned “off”. Any succeeding events recorded by
this thread are ignored.

thread_begin_join t jt <- (thread_init t);

thread_end_join t jt <- ((thread_init t) && (thread_exit jt));
The thread_exit jt event for the join_to thread jt must have occurred before this event.

thread_detach t <- (thread_init t);
thread_yield t <- (thread_init t);
thread_set_name t <- (thread_init t);
mutex_init t m <- ((thread_init t)
&% '((mutex_init x m) || (mutex_alloc x m)));

No prior mutex_init x mor mutex_alloc x m event may have occurred.

mutex_alloc t m <- ((thread_init t)
&% '((mutex_init m) || (mutex_alloc m)));
No prior mutex_init x mor mutex_alloc x m event may have occurred.

mutex_begin_lock t m n <- ((thread_init t)
&& ((mutex_init x m) || (mutex_alloc x m)));
A mutex_init x mor mutex_alloc x m must precede this event.

37

mutex_end_lock t m n <- ((thread_init t)
&& ((mutex_init x m) || (mutex_alloc x m))
&& (mutex_end_lock x m n-1))
A mutex_init x m or mutex_alloc m must precede this event. The mutex_end_lock m, n-1 must
have occurred. The initial value of this term is mutex_end_lock x m 0, which is always true.

mutex_unlock t m n <- ((thread_init t)
&& ((mutex_init x m) || (mutex_alloc x m))
&% '(mutex_end_lock x m n+1));
A mutex_init x mor mutex_alloc x m must precede this event. The mutex_end_lock m, n+1 may
not have occurred.

mutex_free t m <- (thread_init t);
mutex_clear t m <- (thread_init t);
mutex_set_name t m <- (thread_init t);

condition_alloc t ¢ <- ((thread_init t)
&% '(condition_init x ¢ || condition_alloc x c¢));
No prior condition_init x ¢ or condition_alloc x c¢ event may have occurred before this one.

condition_init t ¢ <- ((thread_init t)
&% '((condition_init ¢) || (condition_alloc c)));
No prior condition_init x ¢ or condition_alloc x c¢ event may have occurred before this one.

condition_free t ¢ <- (thread_init t);
condition_clear t ¢ <- (thread_init t);

condition_begin_wait t ¢ n m <- ((thread_init t)
%&& ((condition_alloc x c¢) || (condition_init x c))
&& (condition_begin_wait t ¢ n-1 m));
A condition_init x c or condition_alloc x c event must have occurred, and so do the preceding
condition_begin_wait t ¢ n-1 m event.

38

