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ABSTRACT

Effluents from OD(EO) laboratory bleaching of soft-
wood kraft pulp were characterized by fractionation
and analysis of the fractions. The fractionation con-
sisted of ether extraction followed by separation of
the extract into acidic, phenolic, and neutral subfrac-
tions. The effluents from the sequence with the D
stage begun at pH 2 (D-2 bleaching) were compared to
the same sequence with the D stage begun at pH 4 (D-
4 bleaching). Adsorbable organic halide (AOX) and
total organic carbon (TOC) were determined for the
whole D and (EO) effluents as well as for the frac-
tions from both stages. Each fraction was character-
ized in terms of its ratio of chlorine to carbon
(expressed as the number of chlorine atoms per hun-
dred carbon atoms, Cl1/Cjgp) and in terms of the pro-
portion of total TOC within each fraction. The
Cl1/C10p is a likely predictor of environmental effects
caused by certain effluent fractions.

The D4 bleaching resulted in a reduced kappa num-
ber in the extracted pulp compared to the D-2 case.
This is consistent with the whole effluent TOC data,
in which D4 bleaching produced more D stage TOC
than the D-2. The (EO) stage TOC remained con-
stant. The chlorine-to-carbon ratio decreased for
each effluent type when D-4 bleaching was done.

The ether extractable material and the phenolic
fraction, which both contain compounds of environ-
mental interest, exhibited reduced Cl/Cjgg values
when D4 bleaching was done. Since the percentage
of total TOC within these fractions increased, over-
all AOX levels were nearly constant, however. Be-
cause of the greater delignification at D-4 conditions,
environmental and economic benefits may be realized
by a reduction of the applied ClO2 charge.

INTRODUCTION

It is generally accepted that bleaching at a pH of 2 or
less results in greater delignification effectiveness for
chlorine bleaching (1), for mixtures of chlorine and
chlorine dioxide (2), and for chlorine dioxide alone
(2, 3, 4, 5). However, an initial pH above 2 may be
more effective in some cases (2, 3, 6).

The pH of a chlorination stage also has an effect on
the quality of the effluent produced in the stage. The
rates of formation of both chlorinated dioxins (7, 8)
and chlorinated phenolic compounds (9, 10) are re-
duced by increased C stage pH. Total AOX is reduced
at increased pH for both chlorine and chlorine diox-
ide bleaching (2).

Pulp bleaching effluents in general have been charac-
terized with respect to adsorbable organic halide
(AOX) (11-15) and in terms of individual compounds
or environmentally significant groups of compounds
such as chlorophenolics (9, 10, 15-21), chlorinated
dioxins (7, 8, 18), chlorinated neutral compounds (21-
23), chlorinated carboxylic acids (21, 24), and chloro-
form (17, 25).

Because of the complexity of pulp bleaching efflu-
ents, these analyses give an incomplete picture of
their likely environmental effects. An alternative is
summative analysis of the effluent by fractionation
into meaningful classes of compounds, followed by
relevant characterization of the fractions. One such
procedure, based on ether extraction, has been devel-
oped and applied to effluents produced by D(EO),
OD(EO), and OC(EO) sequences (26). Ether extrac-
tion was chosen as the basis for this procedure because
virtually all effluent components known to be signifi-
cant from an environmental standpoint are found in
the extracts. Chlorine-to-carbon ratios (expressed as
the number of chlorine atoms per hundred carbon
atoms, C1/C1090), which may predict environmental
behavior, were determined for the fractions. The
same fractionation and characterization methods
were used for the present study of the effects of D
stage initial pH in OD(EO) bleaching of softwood
kraft pulp.




EXPERIMENTAL APPROACH
Pulp Bleaching

A mill-produced, oxygen-bleached kraft pulp with a
kappa number of 14.1 was bleached by an OD(EO) se-
quence in the laboratory. Only the first two stages of
bleaching were done, since most of the delignification
and most of the effluent load production occurs in
these stages. The D stages were done in a specially
designed batch reactor, and the (EO) stages were done
in a high shear mixer. The pH of the pulp slurry was
adjusted to an initial level of 2 or 4 by the addition of
sulfuric acid solution. Kappa numbers after bleaching
are given in Table L.

Effluent Fractionation and Characterization

The effluents produced in this study were fraction-
ated by ether extraction, and the ether extractable
material was further separated into acidic, phenolic,
and neutral fractions. To measure C1/C100 on the
ether extract and its fractions, the ether was exhaus-
tively removed by evaporation, and AOX and TOC
were then measured on each fraction. During evapo-
ration, volatiles other than ether were also removed.
To obtain information on the volatile fraction, a sam-
ple of the whole effluent was similarly evaporated
and the carbon and chlorine losses determined.

Figure 1 depicts the effluent fractionation scheme,
and Table II lists the names or codes of all effluent
fractions and provides an explanation of each. The
bleaching effluents were extracted with ether in con-
tinuous liquid-liquid extractors. Two successive ex-
tractions were performed, resulting in three fractions:
a non-extractable fraction and two ether extractable
fractions. The first ether fraction is material readily
extracted, and the second is removed slowly over an
extended period. The first was further fractionated
into acids, phenolics, and neutrals. Each fraction was
then evaporated, as represented in Figure 1 by the
dashed horizontal lines, to yield the final samples.

Data Analysis

The D-2 and D4 bleaching sequences were performed
in duplicate, and the effluents from the D and (EO)
stages of bleaching were fractionated and analyzed
separately. This resulted in two completely inde-
pendent sets of data for each sequence. The data for
all fractions are given in Tables III-X. The total TOC
and AOX (given in Table III) represent TOC and AOX

mass balances around the fractionation scheme, and
were determined as the sums of the AOX and TOC
measurements for the neutral, phenolic, acidic, polar,
hydrophilic, and volatile fractions.

The data for individual fractions were interpreted
principally in terms of their C1/Cygg values and
their relative sizes, expressed as a percentage of to-
tal TOC. The C1/Cyqp is of interest as a likely pre-
dictor of lipophilicity and toxicity within certain
fractions.

Analyses of variance (AOV) were done on the data
from each fraction to assess the significance of differ-
ences between pH levels and between stages. Since
data with high Cl1/C1gg had a greater variance
than the low Cl/C1qp data, all C1/Cqgp data were
log transformed to stabilize variance. When AOV
showed a significant effect between pH levels, a
least significant difference was determined using
Duncan's multiple range test (27).

RESULTS AND DISCUSSION
Whole Effluents

Data for the whole effluents are presented in Table
II. The whole effluents contain 3.8-7.0 kg/t TOC and
0.1-0.4 kg/t AOX, depending on the stage and initial
D stage pH.

Figure 2 compares mean effluent TOC from OD(EO)
bleaching with the D stage begun at pH 4 (D-4
bleaching) and from the same sequence with the D
stage begun at pH 2 (D-2 bleaching). In the D stage,
and overall, the D-4 case results in the production of
more effluent TOC. There is no increased TOC produc-
tion in the (EO) stage following D-4 bleaching. A re-
duced kappa number is observed for the pulp from D4
bleaching and could correspond to the higher level of
TOC in the D stage effluent. The delignification of
the pulp is discussed later in more detail.

Figure 3 presents a comparison of mean Cl/C100 for
the whole effluents. Both the D and (EO) stage ef-
fluents individually have a greater C1/C19g when D-
2 bleaching is done. No overall difference is seen,
however.

Ether Soluble Fraction

Table IV presents detailed data for the ether soluble
fraction. This fraction contains 0.3-0.7 kg/t TOC, rep-




resenting 6-12% of the total TOC, and 0.01-0.08 kg/t
AOX, representing 14-23% of the total AOX.

Figure 4 presents the mean ether soluble TOC as a
percentage of total TOC for both pH levels. The
mean TOC produced by D-4 bleaching is greater for
each stage. Although the difference is not great
enough to be statistically significant when all data
are used, when the calculated value (see Table IV) is
not included in the analysis, the difference is signifi-
cant. This calculated value was eliminated from
analysis because it is likely to contain greater error
than measured values. It was determined from sev-
eral measured values, each with individual errors.

Figure 5 similarly compares both pH levels with re-
spect to C1/C100. The ether soluble fraction is chlori-
nated to a larger extent in both the D and (EO) stages
when D-2 bleaching is done.

The reduced level of substitution by chlorine on or-
ganic material could be the result of a shift in chlo-
rine containing species at pH 4 versus pH 2. Kolar
and co-workers (28) reported that the sum of Cl and
HOCI during ClO7 bleaching at pH 4.5 was reduced
compared with similar bleaching at pH 2.5. Since
Clp and HOCI are responsible for chlorine substitu-
tion reactions (29, 30), an overall reduction in the

* level of these species would result in less substitution
by chlorine atoms on organics in the effluent.

In addition to a reduction in the sum of Cly and HOCl
concentrations, a change in their ratio will occur. The
Cl2/HOCI equilibrium is such that HOCI is more fa-

vored as pH increases.

Cl2 + HO HOCl+ H* +CI

As acidity decreases, the equilibrium shifts to the
right and to HOCl. Therefore, at pH 4 a greater pro-
portion of the total chlorine exists as HOCI than at
pH 2. Since HOCl is a less reactive chlorinating
species (31), a reduced degree of chlorine substitution
is expected at pH 4.

It is reasonable that a change in substitution behav-
ior with pH will be more clearly seen in the ether
soluble fractions. Chlorine substitutes to a greater ex-
tent on ether extractable material than on whole ef-
fluents (26). Therefore, these fractions are probably
more sensitive to changes in substitution behavior
than the whole effluents.

Since there is more ether soluble material formed by
D-4 bleaching and that material is chlorinated to a
reduced extent, the overall AOX remains essentially
constant under both sets of conditions. This trend is
repeated in other ether extractable fractions as well.
This is consistent with the decreased tendency of
ClO32 to be involved in substitution of chlorine atoms
at pH 4 and with the increased lignin fragmentation
seen at pH 4, as indicated by the reduced kappa num-
ber achieved at constant chemical charge. Increased
lignin fragmentation could be responsible for a greater
proportion of material in the ether soluble fractions.

Phenolic Fraction

Detailed results of the analysis of the phenolic frac-
tion are shown in Table V. The phenolic fraction con-
tains 0.02-0.05 kg/t TOC or 0.5-0.7% of the total TOC,
and 0.002-0.003 kg/t AOX or 0.8-2.6% of the total
AOX.

Figure 6 compares the phenolic TOC as a percentage
of total TOC for the two pH levels. In both the D and
(EO) effluents, the phenolic fraction represents a
higher percentage of the total TOC when the D stage
is conducted at pH 4. Figure 7 shows the effect of pH
on Cl/C1gg. A decreased phenolic C1/C1g0 is seen in
the D-4 case.

Other Fractions

Data from the other effluent fractions displayed no
statistically significant pH effects. This was gener-
ally due to small differences in means and scatter in
the replicate data. Data and graphs for these frac-
tions are provided so that the characterization is
complete, and so that trends in the data may be ob-
served. Replicate data for the neutral, acid, polar,
hydrophilic, and the volatile fractions are provided
in Tables VI-X. The corresponding graphs of the
mean data are given in Figures 8-17.

It is interesting to note, that despite the lack of sta-
tistical significance, the other ether soluble fractions
often maintain the trend observed with the ether sol-
uble and phenolic fractions. On the average, the neu-
tral, acid, and polar fractions all appear to contain a
larger proportion of the total TOC when bleaching is
conducted at pH 4, while the overall mean Cl/C10p is
lower under D-4 conditions for the acid and polar
fractions. Since a larger percentage of the material is
extracted from effluents produced with D-4 bleach-
ing, it is expected that the mean proportion of non-




extractable TOC should be lower under D-4 conditions
(Figure 14), as is the case.

Degree of Delignification

The D stage effluent contains more TOC when the D
stage is conducted at an initial pH of 4. The kappa
number of the extracted pulp is reduced to 3.7 under D-
4 conditions compared with 4.3 under D-2 conditions.
The D+(EO) stage TOC, the kappa numbers, the
change in pulp kappa number, and the ratio of TOC to
kappa change are all given in Table I for the two pH
levels. In an earlier study (26), it was stated that in-
creased TOC per unit kappa loss may imply greater
carbohydrate loss. Although the D stage begun at pH
4 appears to give slightly increased TOC per unit
kappa loss, the apparent difference is not statisti-
cally significant.

In D4 bleaching more delignification or kappa reduc-
tion can be done because less of the oxidizing power of
ClO2 may be wasted on other reaction types such as
chlorine substitution reactions and chlorate (ClO3")
formation. A reaction byproduct of the oxidation of
lignin by ClO3 is chlorite ion (ClO27) which may
form chlorate or chlorine dioxide, depending on
conditions, by the following reaction scheme (32, 33):

Cla+A0 — A +[C072] (1)

OH.' +[C1hO71 (2)

HOCI + ClOy”
[CI2O7] Cr+dos” 3)
2[C202] Clz +2402 (4)

A high concentration of the reactive intermediate
[Cl202] favors the formation of ClO2 by reaction 4
(second order in [Cl2O2]). Since chlorite ion is present
in higher concentrations during pulp bleaching at pH
4 compared to pH 2 (28), reactions 1 and 2 (both first
order in ClO2") will produce increased levels of
[CI202] at pH 4 and therefore more ClO2 will be pro-
duced by reaction 4.

EXPERIMENTAL METHODS
Pulp Bleaching

A mill-produced, 14.1 kappa O2-delignified southern
softwood kraft pulp was used in this study. The pulp

was collected just after the O) stage and was well
washed before bleaching.

D Stages.

All D stages were done in a specially designed 20 L
batch reactor. Bleaching was done at 2% consistency,
at 450C, for 30 minutes, and at a kappa factor of 0.25.
The mixer was run at 350 rpm. Initial pH was ad-
justed to 2 or 4 by the addition of sulfuric acid solu-
tion.

(EO) Stages.

~ All (EO) stages were done in a Quantum Technologies

high shear mixer at 10% consistency, at 70°C, and for
70 minutes. The NaOH charge was 0.55 times the to-
tal active chlorine charge; the O2 charge was 0.5% on
pulp; and 4.1% of the total D stage filtrate was in-
cluded as carryover. The slurry was mixed at 15 hertz
for 3 seconds, every 5 minutes.

Effluent Preparation

The D stage effluent was collected by filtration of the
2% slurry; the (EO) stage effluent was similarly col-
lected after the 10% slurry was diluted to 2%. This
was done to maintain a similar TOC content in all ef-
fluents for ether extraction. Effluent samples were
filtered to remove any fibers, quenched with excess
sodium sulfite, and acidified to a pH of less than 2.
Ether extractions were always started within 2 days
of effluent collection.

Ether Extraction of Effluents

Ether extraction was done on 4 L of effluent using con-
tinuous liquid-liquid extractors. Extraction was car-
ried out with 500 ml of diethyl ether. The first ether
phase was collected after 96 hours of extraction and
was replaced with 500 ml of fresh ether. Extraction
was continued for 336 total hours. The extraction was
then stopped, and the second ether phase and the
non-extractable materials were collected.

Ether Extract Fractionation

The first ether phase was diluted to 500 ml, 100 ml of
the sample collected, and the remaining ether placed
in a separatory funnel for fractionation. The ether
was extracted 3 times with 25 ml of 0.5 M NaHCO3,
and the extracts were collected and acidified. The
ether was next extracted 3 times with 25 ml of 0.5 M




NaOH, and these extracts were also collected and
acidified. The NaHCO3 soluble material is the
acidic fraction; the NaOH soluble material is the
phenolic fraction; and the remaining ether soluble
material is the neutral fraction.

Sample Preparation

Ether was removed from all samples by evaporation
to dryness, or near to dryness. The samples were then
dissolved in water, acidified, and diluted to a known
volume. To ensure reasonable sample recovery and to
be certain the ether was removed, TOC and AOX
mass balances were done around the fractionation
scheme.

TOC Analysis

Measurement of TOC was done using a Beckman model
915-B Tocamaster analyzer. The instrument was cali-
brated using standard solutions of potassium hydro-
gen phthalate. Samples were prepared for TOC
analysis by acidifying them, and sparging for 5 min-
utes with nitrogen to drive off any interfering carbon-
ate species.

AOX Analysis

Measurement of AOX was done using a Dohrman
model DX-20 organic halide analyzer. Sample
preparation was done by a slight modification of
method SCAN-W 9:89 (34). In this case samples were
shaken for 4 hours rather 1 hour, to more completely
adsorb the polar fractions.

SUMMARY AND CONCLUSIONS

An oxygen-bleached softwood kraft pulp was deligni-
fied to a greater extent by the OD(EO) sequence when
the D stage was run at an initial pH of 4 compared to
an initial pH of 2. D-4 bleaching resulted in a greater
percentage of the total TOC within the environmen-
tally significant ether soluble and phenolic fractions.
However, the material within these fractions was
substituted by chlorine atoms to a reduced extent un-
der D4 conditions. The net result was similar
amounts of AOX at both pH levels.

Since D-4 bleaching causes increased D stage deligni-
fication, an equivalent amount of delignification can
be done with less applied chemical, and an economic
gain achieved. A reduced ClO7 charge will result in
less effluent AOX. Reducing the charge may also re-

duce the extent of lignin fragmentation and may re-
duce the proportion of material within the ether sol-
uble fractions. If this proportion were reduced, the
lower Cl/C10g values observed under D-4 conditions
would represent a clear environmental advantage.
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Figure 1. Effluent Fractionation.
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Table I. D+(EO) TOC and Kappa Number Data for OD(EO) Sequence.

D Stage Type D + (EO) TOC (kg/t) Kappa Number A kappa TOC/A kappa
D-2 10.6 4.23 9.87 1.07
D-2 10.4 4.44 9.66 1.08
D-4 12.4 3.70 10.40 1.19
D-4 11.7 3.71 10.39 1.13

Table II. Effluent Fraction Codes and Descriptions of Fractions.

Fraction Code

NVwW
NVNEE
NVEE 1I
NVEE I
NVEEA
NVEEP
NVEEN

Description

Non-volatile, whole.

Non-volatile, non-ether extractable ("Hydrophilic").
Non-volatile, difficult to extract with ether ("Polar").
Non-volatile, readily ether extractable ("Ether Soluble").
Non-volatile, ether extractable acidic compounds ("Acids").
Non-volatile, ether extractable phenolic compounds ("Phenolics").
Non-volatile, ether extractable neutral compounds ("Neutrals").




Table III. Whole Effluent and Summed Fraction Characteristics.

D Stage pH2 pH4
TOC, kg/t 3.85 3.80 5.37 5.17
Total TOC?, kg/t 4.43 4.29 5.55 6.64
AOX, kg /t 0.299 0.294 0.381 0.386
Total AOX?, kg/t 0.297 0.264 0.337 0.336
C1/C100 2.63 2.61 2.40 2.53
(EQ) Stage
TOC, kg/t 679 = 6.60 7.01 6.54
Total TOC?, kg/t 6.70 6.52 6.99 7.60
AOX, kg/t 0.101 0.102 : 0.0943 0.0929
Total AOX?, kg/t | 0.0938 0.0930 0.0983 0.0877
C1/C100 0.50 0.52 0.45 0.48

D Stage + (EQ) Stage

TOC, kg/t 10.6 104 12.38 11.71
Total TOC?, kg/t 11.1 10.8 12.54 14.24
AOX, kg/t 0.400 0.396 0.475 0.479
Total AOX?, kg/t 0.391 0.357 0.435 0.424
Cl/C100 1.27 1.29 1.30 1.38

aSum of corresponding values for volatile, hydrophilic, polar, acid, phenolic, and neutral
fractions.




Table IV. Ether Soluble Fraction.

D Stage
TOC, kg/t 0.383
% of total TOC 8.65
AOX, kg/t 0.0547
% of total AOX 18.4
Cl/C100 4.83
(EO) Stage
TOC, kg /t 0.406
% of total TOC 6.06
AOX, kg /t 0.0127
% of total AOX 13.5
Cl/Cy00 1.06
D Stage + (EO) Stage
TOC, kg/t 0.789
% of total TOC 7.09
AOX, kg/t 0.0674
% of total AOX 17.2
C1/C100 2.89

0.267
6.22
0.0439
16.6
5.56

0.399
6.12
0.0125
13.4
1.06

0.666
6.16
0.0564
15.8
2.86

0.643
11.6
0.0773
229
4.07

0.532
7.61
0.0150
153
0.95

1.175
9.37
0.0923
21.2
2.66

0.3882
5.852
0.0474
14.1 -
4.132

0.748
9.84
0.0154
17.6
0.69

1.1362
7.982
0.0628
14.8 |
1.872

@Determined from TOC balances. Sample was contaminated during evaporation.




Table V. Phenolic Fraction.

D Stage pH2 pH4
TOC, kg/t 00239  0.0198 00325  0.0389
% of total TOC 0.54 0.46 0.59 0.59
AOX, kg/t 0.00255  0.00201 0.00273  0.00239
% of total AOX 0.86 0.76 0.81 0.71
Ci1/C100 3.60 3.45 2.84 2.07
(EO) Stage
TOC, kg/t 0.0364 - 0.0341 0.0513  0.0502
% of total TOC 0.54 0.52 0.73 0.66
AOX, kg/t 0.00243  0.00180 000216  0.00177
% of total AOX 2.59 1.94 220 202
C1/C100 2.26 1.79 142 1.19

D Stage + (EO) Stage

TOC, kg/t 0.0603 0.0539 0.0838 0.0891
% of total TOC 0.54 0.50 0.67 0.63
AOX, kg/t 0.00498 0.00381 0.00489 0.00416
% of total AOX 1.27 1.07 1.12 0.98

C1/Ci00 2.79 2.39 1.97 1.58




Table VI. Neutral Fraction.

D Stage
TOC, kg/t
% of total TOC
AOX, kg /t
% of total AOX
Ci/Cr00

(EO) Stage
TOC, kg/t
% of total TOC
AOX, kg/t
% of total AOX
C1/C100

D Stage + (EO) Stage
TOC, kg/t

[ % of total TOC

AOX, kg /t

% of total AOX

C1/Cr00

pH2

0.0551
1.24
0.00153
0.52
0.94

0.0511
0.76
0.00129
1.38
0.85

0.106
0.95

10.00282

0.72
0.90

0.0457
1.07
0.00148
0.56
1.09

0.0480
0.74
0.000701
0.75
0.49

0.0937
0.87
0.00218
0.61
0.79

pH4

0.175
3.15
0.00350
1.04
0.68

0.0885
1.27
0.00202
2.05
0.78

0.264
2.10
0.00552
1.27
0.71

0.0483
0.73
0.00290
0.86
2.03

0.0313
0.41
0.00114
1.30
1.23

0.0796
0.56
0.00404
0.95
1.72




Table VII. Acid Fraction.

D Stage
TOC, kg/t
% of total TOC
AOX, kg/t
% of total AOX
Cl/C100

(EOQ) Stage
TOC, kg/t
% of total TOC
AOX, kg/t
% of total AOX
Cl/C100

D Stage + (EO) Stage
TOC, kg/t
% of total TOC
AOX, kg/t
% of total AOX
C1/Cyo00

pH 2 pH4
0.316 0.242 0.428 0.301
7.13 5.64 7.71 4.53
0.0511 0.0369 0.0627 0.0350
17.2 14.0 18.6 10.4
5.46 5.15 4.95 3.92
0.304 0.321 0.340 0.578
4.54 4.92 4.86 7.61
0.00856 0.00827 0.0105 0.0115
9.13 8.89 10.7 13.1
0.95 0.87 1.04 0.67
0.620 0.563 0.768 0.879
5.57 5.21 6.12 6.17
0.0597 0.0452 0.0732 0.0465
153 12.7 16.8 11.0
3.25 2.71 3.22 1.79




Table VIII. Polar Fraction.

D Stage pH2 pH4
TOC, kg /t 0.226 0.248 0.386 0.848
% of total TOC 5.10 5.78 6.95 12.8
AOX, kg/t 0.0445 0.0502 0.0498 0.0336
% of total AOX 15.0 19.0 14.8 10.0
Cl/Cq00 6.67 6.85 4.37 1.34

(EQ) Stage
TOC, kg/t 0.399 0.395 0.316 0.424
% of total TOC 5.96 6.06 4.52 5.58
AOX, kg/t 0.00333 0.00280 0.00269 0.00226
% of total AOX 355 3.01 2.74 2.58
Cl/Cy00 0.28 0.24 0.29 0.18

| D Stage + (EO) Stage

| TOC, kg/t 0.625 0.643 0.702 1.272
| % of total TOC 5.62 5.95 5.60 8.93
| AOX, kg /t 00478  0.0530 00525  0.0359
| % of total AOX | 12.2 14.8 12.1 8.46

C1/C100 2.59 2.79 2.53 0.95




Table IX. Hydrophilic Fraction.

D Stage pH2 pH4
TOC, kg/t 3.43 3.69 4.25 4.79
% of total TOC 77.4 86.0 76.6 721
AOX, kg/t 0.144 0.160 0.152 0.206
% of total AOX 48.5 60.6 45.1 61.3
C1/C100 1.42 1.47 1.21 1.46
(EO) Stage
TOC, kg/t 550 - 545 5.84 6.13
% of total TOC 82.1 83.6 83.5 80.7
AOX, kg /t 0.0728 0.0745 0.0714 0.0644
% of total AOX 77.6 80.1 726 734
C1/C100 0.45 0.46 0.41 0.36

D Stage + (EO) Stage

TOC, kg/t 8.93 9.14 10.09 10.92
% of total TOC 80.2 84.6 80.5 76.7
AOX, kg/t 0.217 0.235 0.223 0.270
% of total AOX 55.5 65.8 51.4 63.8

C1/C100 0.82 0.87 0.75 0.84
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Table X. Volatile Fraction.

D Stage
TOC, kg/t
% of total TOC
AOX, kg/t
% of total AOX
* C1/C100

(EO) Stage
TOC, kg/t
% of total TOC
AOX, kg/t
% of total AOX
C1/C100

D Stage + (EO) Stage
TOC, kg/t
% of total TOC
AOX, kg/t
% of total AOX
C1/C100

0.380
8.58
0.0533
17.9
4.74

0.405
6.04

0.00539

5.75
0.45

0.785
7.05
0.0587
15.0
2.53

pH2

0.396
9.23
0.0136
5.15
1.16

0.271
4.16
0.00490
5.27
0.61

0.667
6.17
0.0185
5.18
0.94

0.276
4.97
0.0658
19.5
8.06

0.352
5.04
0.00956
9.73
0.92

0.628
5.01
0.0754
17.3
4.06

pH4

0.609
9.17
0.0557
16.6
3.09

0.384
5.05
0.00662
7.55
0.58

0.993
6.97
0.0623
14.7
2.12




