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SUMMARY

Perhaps no single industry has benefited more from advancements in computation,

analytics, and optimization than the airline industry. Operations Research (OR) is now

ubiquitous in the way airlines develop their schedules, price their itineraries, manage their

fleet, route their aircraft, and schedule their crew. These problems, among others, are well-

known to industry practitioners and academics alike and arise within the context of the

planning environment which takes place well in advance of the date of departure. One salient

feature of the planning environment is that decisions are made in a frictionless environment

that do not consider perturbations to an existing schedule. Airline operations are rife with

disruptions caused by factors such as convective weather, aircraft failure, air traffic control

restrictions, network effects, among other irregularities. Substantially less work in the OR

community has been examined within the context of the real-time operational environment.

While problems in the planning and operational environments are similar from a math-

ematical perspective, the complexity of the operational environment is exacerbated by two

factors. First, decisions need to be made in as close to real-time as possible. Unlike the

planning phase, decision-makers do not have hours of time to return a decision. Secondly,

there are a host of operational considerations in which complex rules mandated by reg-

ulatory agencies like the Federal Administration Association (FAA), airline requirements,

or union rules. Such restrictions often make finding even a feasible set of re-scheduling

decisions an arduous task, let alone the global optimum.

The goals and objectives of this thesis are found in Chapter 1. Chapter 2 provides an

overview airline operations and the current practices of disruption management employed

at most airlines. Both the causes and the costs associated with irregular operations are

surveyed. The role of airline Operations Control Center (OCC) is discussed in which serves

as the real-time decision making environment that is important to understand for the body

of this work.

xi



Chapter 3 introduces an optimization-based approach to solve the Airline Integrated Re-

covery (AIR) problem that simultaneously solves re-scheduling decisions for the operating

schedule, aircraft routings, crew assignments, and passenger itineraries. The methodology

is validated by using real-world industrial data from a U.S. hub-and-spoke regional carrier

and we show how the incumbent approach can dominate the incumbent sequential approach

in way that is amenable to the operational constraints imposed by a decision-making envi-

ronment.

Computational effort is central to the efficacy of any algorithm present in a real-time

decision making environment such as an OCC. The latter two chapters illustrate various

methods that are shown to expedite more traditional large-scale optimization methods

that are applicable a wide family of optimization problems, including the AIR problem.

Chapter 4 shows how delayed constraint generation and column generation may be used

simultaneously through use of alternate polyhedra that verify whether or not a given cut

that has been generated from a subset of variables remains globally valid.

While Benders’ decomposition is a well-known algorithm to solve problems exhibiting a

block structure, one possible drawback is slow convergence. Expediting Benders’ decompo-

sition has been explored in the literature through model reformulation, improving bounds,

and cut selection strategies, but little has been studied how to strengthen a standard cut.

Chapter 5 examines four methods for the convergence may be accelerated through an affine

transformation into the interior of the feasible set, generating a split cut induced by a stan-

dard Benders’ inequality, sequential lifting, and superadditive lifting over a relaxation of a

multi-row system. It is shown that the first two methods yield the most promising results

within the context of an AIR model.
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CHAPTER I

INTRODUCTION

Operations Research (OR) has played a critical role in the complex process airlines use

for scheduling various resources for their operations such as flights, aircraft, crew mem-

bers, airport operations, and passengers. In the era that followed airline deregulation in

the United States in 1978, the industry has been hypercompetitive as airlines had consid-

erably more autonomy in determining where, how often, and at which price to charge for

flights comprising their networks. In an industry whose margins are often low, operational

efficiency is of paramount importance to the success of airlines as the gap between prof-

itability and bankruptcy is narrow. Achieving operational efficiency, however, is nontrivial.

The airline industry exhibits some of the most large and difficult to solve problems arising

in transportation, and has received considerable attention from industry practitioners and

academics alike in the OR literature since the inception of the field in the 1950s.

While methodology has always been ahead of computing, the gap is considerably smaller

to date with modern innovations in computing. Models that were previously thought to be

intractable are becoming solvable. This dissertation exploits one such class of problems. A

brief overview of the airline planning process is given before a discussion of the operational

environment that the core of this body of research lies within.

1.1 Research Contributions

There is a rich body of research dedicated to solve large-scale problems arising in aviation

applications. The airline industry relies heavily upon innovations in both analytics and

computation within the OR community. Early work applying mathematical programming

to air transportation have focused on airline scheduling problems within the context of the

planning environment in which scheduling decisions made for each flight are done well in

advance of the day of operations. Resources for the flight schedule, fleets, aircraft, and crew

members (all discussed below) are usually scheduled at a minimum of two months prior to

1



departure. Consequently these models are conducted in a vacuum which do not account for

a myriad of disruptions that cause delays or cancellations.

The operational environment is very different than that of its planning counterpart. In

spite of the advancements OR has brought forth with problems in the planning environment,

much less has been done in the context of the day of operations. Disruption management

plays an integral role of the day-to-day operations for all airlines. The majority of disruption

management schemes still rely heavily on the manual construction of re-scheduling decisions

made at the flight, aircraft, crew, and passenger levels. The desire to incorporate more

of an optimization-based approach to disruption management is obvious, yet extremely

complex. Already large and difficult-to-solve problems requiring substantial computing

time and resources are exacerbated by the need to make decisions in as close to real-

time as possible. Finding a feasible solution alone may be difficult due to maintenance

restrictions on aircraft, crew legality restrictions on revised crew schedules, and air traffic

control restrictions on scheduling decisions.

A recovery operation occurs in the presence of irregularity in which an airline makes re-

scheduling decisions to its planned schedule, aircraft rotations, crew schedule, and passenger

itineraries. Some work on recovery has been conducted in the literature, but for a number

of reasons discussed in the subsequent chapters, airlines still rely heavily on manual or

heuristic procedures. One reason is that traditional work on recovery seeks to solve a proper

subset of these four classes of re-scheduling decisions. Relying on a sequential procedure to

return a complete solution may be untenable. For example, a feasible flight schedule may

be infeasible for crew schedules. Moreover, conflicts are likely to exist within operations.

An attractive set of re-scheduling decisions that preserves all maintenance requirements for

aircraft may induce excessive delays for passengers leading to a substantial loss in passenger

goodwill. The desire to have an optimization engine that returns re-scheduling decisions

for the four class of problems is naturally of interest, but has not been introduced to date.

There are two fundamental objectives to this thesis. The first is to introduce an

optimization-based approach to find re-scheduling decisions in the presence of irregularity

that is able to find a set of re-scheduling decisions for the flight schedule, aircraft rotations,

2



crew schedules, and passenger itineraries in a manner that:

• integrates all four classes of re-scheduling decisions

• solves in a suitable runtime that is amenable to the constraints imposed by the oper-

ational environment

• preserves fundamental legality requirements on flights, aircraft, and crew

• is passenger-centric that seeks to minimize aggregate passenger delay.

The second objective is to investigate methodological approaches to achieve the prior

goal and study their uses in an abstract environment that may be of use to problems

exhibiting a similar structure. These advancements are likely to be particularly useful in

solving various applications that seek to integrate various problems within the context of

airline scheduling, which seek to:

• incorporate column generation with Benders decomposition in a simultaneous manner

• accelerate Benders decomposition through finding strengthened cutting planes.

In order to study the underlying mathematics of real-time scheduling, we first review

the airline planning process.

1.2 Overview of the Airline Planning Process

The airline planning process is the complex phase in which resource scheduling decisions

are to be made on fleet allocation, aircraft assignments, crew schedules, pricing and revenue

management decisions, among other paradigms. While the planning process varies across

airlines, a representation of a typical timeline is illustrated in Figure 1.

The four classes described in the figure are by no means a comprehensive list of all

decisions that are to be made, but summarize four of the most critical tasks, each of which

are now discussed.

3



Figure 1: A Typical Airline Planning Process

1.2.1 Resource Scheduling Decisions

1.2.1.1 Schedule Development

Schedule development is the process of scheduling the stations served by a carrier and the

frequency with which flights are to operate between each city pair. Once frequency is

determined, then flight schedules are built that assign each flight to a scheduled departure

and arrival time that define the eligible itineraries that are given by the passenger connection

times.

1.2.1.2 Fleet Assignment

The fleet assignment problem assigns a fleet (or equipment) type to each flight in the

schedule. The principal objective is to maximize profit by most appropriately equating

supply with demand. Fleet assignment has received considerable attention in the academic

literature for over two decades.

Abara [3] was the first to publish significant results of applying fleet assignment at

American Airlines in which annual savings in excess of $100 million were observed.

Hane et al. in [63] introduce a basic Fleet Assignment Model (FAM) which has been

widely accepted. Their problem seeks to maximize profit (which models stochastic demand)

subject to the following classes of constraints:

1. assignment: every flight must be assigned to precisely one fleet
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2. flow balance: every node in the time-space network must preserve flow conservation

3. fleet count: the total number of fleets being utilized must not exceed the number of

available aircraft within each fleet.

Several variants of the basic FAM framework have been explored enhancing various

features. For example, Clarke et al. in [36] study incorporating maintenance and crew

considerations. Other studies have incorporated network effects of passengers in order to

better estimate revenue. Such models, referred to as origin and destination FAM (ODFAM)

or itinerary FAM (IFAM) are studied in Lohatepanont [79], Barnhart et al. [23], and Jacobs

et al. [68].

1.2.1.3 Aircraft Routing and Maintenance Planning

Given the FAM solution, the aircraft routing problem assigns individual aircraft to operate

each flight leg. The problem is usually modeled as a feasibility problem that ensures each

aircraft respects the FAA-mandated requirements on aircraft maintenance.

Work on aircraft routing is seen in Soumis et al. [109], Desaulniers et al. [47], and

Talluri [114].

1.2.1.4 Crew Scheduling

Given the flight schedule, crew members are to be assigned to cover flights in this phase of

the planning process. From the schedule a set of duties are generated that give all sequences

of flights that may be operated within a given time interval for crew members. In a domestic

carrier, a duty typically represents a single day of flying. For long-haul flights, a duty may

be comprised of two days. Most crew assignments span multiple days that concatenate

duties into a pairing that typically consists of two to four duties which are to begin and end

at each crew member’s assigned base. Both duties and pairings are subject to a set of rigid

legality requirements that are imposed by regulations mandated by the FAA, idiosyncratic

airline rules, and union rules. Connections between duties must allow for sufficient rest.

The Crew Pairing Problem (CPP) is a set partitioning problem that seeks to assign

the set of pairings to cover all flights at minimum cost. The cost of a pairing is generally
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defined to be the maximum of three components: the sum of operating costs of the duties

that comprise the pairing, the total time away from base, and a minimum guaranteed value

that depends on the cost per duty multiplied the number of duties. The CPP is typically

solved by column generation as the number of pairings may be in the billions (see Hoffman

and Padberg [64], Shaw [104], and Barnhart et al. [22]).

Once the set of pairings to be flown are given, they are ordered together in a feasible

sequence allowing for sufficient rest in between consecutive pairings, and allow for additional

tasks such as training or vacation over a period of time, usually spanning close to one month.

This is known as the rostering problem. Individual crew members then are assigned to

specific rosters usually by a bidding process in which each crew member states his or her

rostering preference to be assigned. Among North American carriers, roster assignments

are made on a seniority basis, while most European carriers assign rosters on more of a

fairness criterion in which employees rotate through the set of rosters. In the operational

environment, the rostering problem becomes substantially more complex as re-scheduling

decisions within a crew’s pairing affect the given roster, and there is a chance that the

original schedule is infeasible with the modified roster.

1.2.1.5 Dynamic Pricing and Revenue Management

A large body of research has been devoted to studying revenue management within the

airline industry. Revenue management attempts to maximize revenue by achieving an op-

timal allocation of seats to fare classes. Fares are priced by taking both aggregate and

idiosyncratic factors known as the dynamic pricing problem. Distinguishing lower-yield

leisure passengers who make their bookings relatively early from higher-yield business pas-

sengers who make their bookings much closer to the date of departure is one fundamental

characteristic that every airline will have devoted substantial resources to. The problem

has become more granular recently distinguishing each individual fare class. Overviews of

dynamic pricing and revenue management are given in Belobaba [25], Weatherford [125],

McGill and Van Ryzin [84], and Talluri and Van Ryzin [115].
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1.2.1.6 Other Relevant Paradigms

The preceding components of the airline planning process are just a few of the many prob-

lems that airlines must plan for during the day of operations. These modules will have a

strong connection to the work in this thesis. The following include other relevant planning

problems that are prevalent throughout the industry.

Manpower planning: Crew scheduling, as discussed above, typically refers to in-flight

crew (i.e., pilots and flight attendants). Scheduling ground crew staff including gate

agents, baggage handlers, and reservations agents in a manner that maximizes their

utilization is an important component to managing efficient operations.

Gate assignment: Assigning aircraft to gates has important implications for connecting

traffic and hence revenue opportunities. Moreover, gating solutions impact runway

operations, and have a fundamental impact on operations.

Flight planning: While traditional airline scheduling is concerned only with the times

at which a flight departs and arrives, four-dimensional flight planning is playing an

increasingly important role in operations, particularly as next generation air traffic

control systems mature. Flight planning has a particular importance in fuel conser-

vation.

1.2.2 Integration of Resource Planning

While airline planning models have been studied for decades, their use in practice is largely

constrained by computing capabilities. Because of the size and complexities associated with

these models, exact methods to solve such problems are often impractical. Therefore airlines

often rely on heuristic (or even manual) methods in their resource planning.

Another important observation of OR models in airline scheduling is how problems are

usually solved independently, often said to be solved in ‘silos’. For instance, the fleet assign-

ment problem is solved independently of the crew pairing problem. However as computing

has become more powerful, much of the contemporary research within aviation applications

of OR has focused on integrating various components of the scheduling process. Integrating
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FAM with maintenance has been studied in Clarke et al. [36] and Barnhart et al. [20].

Integrating crew and aircraft routings is of interest to airlines considering less turn time

is required as oppose to crews who have to change aircraft at a given station. Cordeau et

al. [45], Cohn and Barnhart [41], Mercier et al. [85], and Gao et al. [56] are four studies

exploring this class of integration. Incorporating FAM with crew scheduling has is found in

Barnhart et al. [24] and Sandhu and Klabjan [100].

1.3 Irregular Operations

Because decisions conducted in the planning stage take place months in advance of the day

of operations, decisions made are done in a frictionless environment. Of course, operations

are rife with frictions caused by a myriad of reasons. Most causes of irregularities stem from

at least one of the following sources:

• weather disturbances that reduce the flow rate into or out of a sector

• mechanical failure that precludes the use of an aircraft

• Air Traffic Control (ATC) restrictions that reduce the flow of traffic

• propagation delays caused by a single flight that has cascading effects to subsequent

flights

• network effects caused by disrupted aircraft or crew members

The next chapter explores the various causes of irregularity in greater depth. Introducing

sophisticated optimization techniques within the operational environment has been studied,

but much less extensively than problems within the planning environment. While some

research has been conducted to various facets of the overall problem, airlines have been

slow to adopt them in practice. The most likely reason is because these solutions that focus

on a sole component do not consider important constraints from other inputs. For example,

a crew recovery module may exist, but solutions from the model may not be compatible with

the aircraft. Thus, manual procedures are still relied heavily upon in practice in spite of the

advancements in computing that enable more advanced procedures. This thesis introduces
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an approach that considers all aspects of recovery in an integrated fashion. It is shown

this solution can be delivered in a reasonable time even in the presence of rigid constraints

imposed by the operational environment.

1.4 Structure of this Thesis

There are 6 chapters that comprise this thesis. Chapter 2 provides an overview of the

causes of disruption, airline disruption management, and contemporary issues involving ir-

regular operations at airlines. A model of airline recovery is studied in Chapter 3, that is

formulated and solved in an integrated manner combining flight, aircraft, crew, and pas-

senger re-scheduling decisions. Solving such a large and complex model within a reasonable

runtime is aided by methodological advancements that can expedite the solution. Chap-

ter 4 explores one such idea. Namely, it is examined how row and column generation can

be solved in a simultaneous manner. The core of the integrated model relies on Benders’

decomposition. While this algorithm is well-known and ubiquitous throughout airline plan-

ning, it can exhibit slow convergence. One possible procedure for expediting the algorithm

by to strengthen a standard Benders’ cut which is discussed in Chapter 5. Conclusions and

suggested areas for further research are presented in Chapter 6.
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CHAPTER II

AN OVERVIEW OF OPERATIONS

The purpose of this chapter is threefold. First, trends and causes of irregular operations

are studied in Section 2.1. Secondly, the costs associated with irregular operations are

studied in Section 2.2. In light of these findings, an important consequence of legislation

in the enactment of the Passenger Bill of Rights is discussed in Section 2.3. In order to

model airline recovery, it is necessary to understand the processes governing disruption

management employed at airlines. This third goal is presented in Section 2.4.

2.1 Analysis of Delays and Cancellations

Here some stylized facts and observations concerning the behavior of delays and cancella-

tions are presented. These facts seek to only summarize publicly available data. For a more

comprehensive analysis, the reader is referred to studies by Zhu [134], Bratu and Barnhart

[31], or Ball et al. [18]. Unless noted otherwise, all data is from the Airline On-Time Data

published by the U.S. Department of Transportation Bureau of Transportation Statistics

[120], and includes only domestic flights.

2.1.1 Traffic and Disruption Behavior

Figure 2 shows the total number of U.S. domestic passenger-revenue flight operations from

1996 to 2010. While air traffic is in general noisy and highly seasonal, there has clearly been

an upward trend in the total number of flight operations. The effects of the September 11

attacks are clearly seen in the immediate decline, but an upward trend before and after the

shock are clear. This upward trend is anticipated to continue by industry experts. In their

forecasts for the future growth in global air transportation traffic, Boeing [2] and Airbus

[1] expect air traffic to grow both within North American and globally. From 2009 through

2029, Boeing and Airbus estimate annual traffic within North America to grow by 2.8%

and 3.3%, respectively (whilst growing 5.3% and 4.8% globally). This rise is in the presence
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of a global air transportation system that is already operating at or near capacity at most

major stations. This leads to the first important observation.

Observation 2.1.1. As the growth in air transportation is anticipated to outpace that of

capacity, the National Airspace System (NAS) is expected to be placed under increasing

strain. The likelihood of delays and cancellations, therefore, is likely to increase, cetris

paribus.

Figure 2: Domestic Passenger-Revenue Flight Operations, 1996 – 2010

Figure 3 summarizes two important metrics for the behavior of U.S. domestic flights from

2003 through 2010. Panel 3a shows the share of all flights that were on-time (defined as all

flights arriving within 15 minutes of the original scheduled arrival time). Panel 3b shows

the cancellation rate over the same period. In both figures, the shaded regions correspond

to the first and fourth quarters of each year, when inclimate weather is more likely to occur

from snowstorms.
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(a) On-Time Rate

(b) Cancellation Rate

Figure 3: U.S. Flight Performance, 2003 – 2010

12



2.1.2 Causes of Irregularity

Irregularity is caused by a myriad of possible events. The FAA Bureau of Transportation

Statistics has discretized delays and cancellation into five classes shown in Table 1.

Table 1: BTS Disruption Classification

Delay Class Description Examples

Air Carrier Caused by factors that are within maintenance disruptions,
Delay the control for an airline fueling, baggage loading

Extreme Disruptions caused by actual or blizzards, hurricanes,
Weather forecasted severe meteorological tornadoes, severe thunderstorms
Delay disturbances

NAS Frictions resulting from the NAS non-extreme weather disruptions,
Delay ATC, airports, traffic congestion

Security Delays that stem from irregularities large terminal area disruptions,
Delay in the security of a flight or airport security breaches, excessive

queues at security areas

Aircraft Events attributable when a flight is inbound flight of 101 affects
Arriving disrupted as a result of a delay to causes a delay in flight 102 where
Late the preceding flight utilized by the the same aircraft operates

same aircraft both flights

Figure 4 illustrates the share of each of these five classes of delay from 2003–2010. It is

readily seen that NAS delays, air carrier delays and late arriving aircraft account for around

95% of all delays and cancellations.

These classes give a very coarse way to identify causes of delay. In particular, weather

delays are found within NAS delays, extreme weather delays, and as late arriving aircraft

due to weather. By summing the explicit weather-related components within these three

classes, the share of delays attributable to all weather events can be estimated. Figure 5

shows the share of U.S. weather-related delays for the total number of operations as well as

delay minutes from 2003–2010.

Given the impact weather has on flight performance in the U.S., the second important

observation is given as follows.
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Figure 4: Causes of Delay, 2003 – 2010

Observation 2.1.2. Delays and cancellations are strongly influenced by weather in the

U.S., accounting for over 40% of both the number of disruptions as well as the length of

delays.

The preceding figures come from data aggregated across all U.S. domestic carriers.

Naturally the share of each cause of disruption is subject to variability across airlines as

differences in geographic concentration, fleet type, and flight schedules are idiosyncratic

properties unique to each carrier. For example, Kenya Airways, who operate mostly within

Africa from their Nairobi hub, reported that explicit weather delays account for only 3%

of all disruptions (Schellekens [101]). Figure 6 shows idiosyncratic differences in the causes

of delay from two U.S. carriers within 2010. Most notably late arriving aircraft and NAS

delays account for significant variations of delay.
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Figure 5: Share of Weather-Related Disruptions, 2003 – 2010

Observation 2.1.3. The causes of delays are subject to variability across airlines. Factors

such as geographic presence, schedule density, and air traffic control are fundamental drivers

to the causes of airline delays.

2.2 Costs of Irregularity

This section focuses on identifying the costs of irregularity incurred by airlines. The costs

of an operational disruption extend far beyond than just the airline itself. There are also

significant costs incurred by passengers, and macroeconomic effects that are reflected in

opportunity cost of lost productivity.

2.2.1 Airline Costs

Given that the growth in the demand of air transportation is anticipated to outpace that

of capacity in a system already operating at or near capacity, disruption management is

expected to play a crucially important role in the future procurement of air traffic systems.

While airlines have a natural desire to schedule their resources at a high utilization, intro-

ducing some slack into the system is often done so as to absorb delays in the presence of

irregularities. The question of how much slack to add at which times is a nontrivial problem,
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(a) Airline ‘A’

(b) Airline ‘B’

Figure 6: An Intra-Airline Comparison of Causes of Delay, 2010
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also known as robust scheduling, is strongly related to this work in which is addressed later

in this thesis.

2.2.1.1 Direct Costs

To ameliorate the likelihood of disruptions airlines typically add extra buffer times, par-

ticularly at stations or flight segments in which the airline has a priori knowledge that are

prone to delay. Associated with every flight connection is a minimum turn time that is

represents the shortest ground time needed between the two segments. Consider a routing

with consecutive flights i and j. The planned turn time PTTij represents the difference

between the scheduled departure of flight j, SDTj and scheduled arrival time of flight i,

SATi, so

PTTij ≡ PDTj − PATi. (1)

The scheduled buffer SBij is then defined as the excess turn time relative to the minimum

turn time MTTij (which depends on the timing of flights, ground resources, and other

factors), or

SBij = PTTij −MTTij . (2)

An illustration of this concept is shown in Figure 7 where flights 101 and 149 appear

in consecutive segments within a scheduled routing. While the minimum turn time for this

connection is 30 minutes, the planned turn time is 70 minutes giving a buffer time of 40

minutes. The relatively large buffer time may be attributable to congestion at LHR that

increases the likelihood of delay. Buffer times are likely to be shorter at stations with less

activity.

Clearly there is an inherent tradeoff through adding scheduled buffers. A longer buffer

abates the risk associated with disruptions, and recovers at least as fast as a schedule

without buffers. However, there is an opportunity cost associated with buffers, namely, lost

revenue that could have been gained by scheduling only minimum turn times. The first cost

is therefore the net effect of opportunity costs (if little or no disruption) lost by robustness

and total recovery costs associated with irregularity. Ball et al. [18] study both the cost
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Figure 7: Incorporating Scheduling Buffers to Increase Robustness

of flight delay against the schedule as well as the costs induced by buffers. They estimate

that in the U.S. alone in 2007, the industry-wide costs are at least (depending upon two

approaches) $4.6 billion in delays against schedule and $3.7 billion from buffers.

In the event of an irregularity a number of critical costs are incurred. Crew costs are of

particular concern to large disruptions. As mentioned in Section 1.2.1.4, crew members are

generally paid in accordance to the maximum of three values over their pairing: the sum of

operating costs of the duties that comprise the pairing , the total time spent away from their

crew base, and a minimum guaranteed value. As a disruption prolongs the actual length

of the pairing, the first two of these three components become more costly thereby driving

up the expected cost of the pairing. Moreover additional hotel rooms may be needed, as

well as the use of reserve crew, which can carry significant costs depending on the specified

cost structure of the airline. Moreover excess fuel costs and environmental impacts also of

importance to total airline costs as argued by Cook et al. [43].

2.2.1.2 Indirect Costs

As mentioned the introduction of scheduling buffers is designed to absorb delays throughout

the flight network. Delay propagation occurs when the delay or cancellation of one flight
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cause a subsequent flight leg to be disrupted. These indirect costs incurred by the airline

can be extraordinarily high, particularly if the airline employs an aggressive scheduling

procedure allocating insufficient buffer times to their scheduled operations. By letting AATi

and SATi denote the actual and scheduled arrival times of flight i, respectively, the arrival

delay for flight i as may be computed by Delayarr
i ≡ AATi − SATi. This, coupled with the

notation from above, allows one to estimate the propagation delay for flight j, or PDj as

PDij = max {Delayarr
i − SBij , 0} . (3)

Figure 8 illustrates an example of propagation delay on a time-space network from

Figure 7 where flight 101 is delayed one hour. The direct impact on flight 101 is trivially

one hour. Using the notation above, SB101,149 = 40 minutes, Delayarr
101 = 60 minutes, and

thus PD101,149 = max {60− 40, 0} = 20 minutes.

Figure 8: Propagation Delay from a One Hour Delay (Flight 101)

Delay propagation may also result in crew members that are late on an inbound flight.

One common practice to reduce delay propagation is to add more slack to flight connections

in which the inbound flights have a higher likelihood of delays. Managing scheduling buffers

has generated some interest in the literature, as seen in papers by Lan et al. [75] and Ahmad

Beygi [6].
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2.2.2 Passenger Costs

Much like direct operating costs that are incurred by airlines to delays and cancellations,

passengers also have costs associated with delays from both direct impacts as well as delay

propagation. Scheduling buffers are also costly for passengers as they pose the same oppor-

tunity cost by reduced frequency. There are also important other costs paid by passengers

that are less tangible. One is the costs borne by missed connections of those passengers

whose itineraries contain multiple flights. Another is the loss of passenger goodwill or disu-

tility that may cause an overall loss of market share. A third includes costs internalized by

idiosyncratic passengers that stem from the loss of productivity or leisure events. Quantify-

ing these subcomponents to passenger costs is an arduous task as they rely on estimations

of non-observable data. Cook et al. [43] suggest one way to use dynamic cost indexing to

estimate aggregate passenger costs. They estimate that a 90 minute delay for one long-haul

flight for a large European carrier typically incurs an aggregate passenger cost of e12,077

(equivalent to approximately $17,100). Ball et al. [18] use an empirical method to analyze

the total cost of passenger delays of the preceding components. They estimate that total

passenger costs amounted to $16.7 billion in the U.S. alone in 2007.

2.2.3 Macroeconomic Costs

Costs emanating from both airline disruptions and scheduling buffers have significant macroe-

conomic costs associated with them. As supply chains have increasingly proliferated to a

global scale, delays to aircraft carrying freight are prone to disrupt supply chains and other

means of production. There are also economics costs of the loss of productivity both in direct

costs (missed meetings, etc.) and indirect opportunity costs. With respect to scheduling

buffers, the increased buffer times reduces frequency to markets. The loss of frequency

induces higher airfare for passengers and cargo alike, both of which may result in higher

prices passed through to consumers.

The Joint Economic Committee (JEC) reported (in [71]) that the impact on U.S. Gross

Domestic Product amounted to $9.6 billion in 2007.

20



2.2.4 Overall Costs

Table 2 summarize estimates of the total cost of irregular operations in the U.S. in 2007

from two often cited sources.

Table 2: Delay Cost Studies for U.S. Carriers, 2007

Component
Cost (billions $)

Ball et al. [18] JEC [71]

Total costs to airlines 10.5 19.1
Total costs to passengers 16.7 12.0
Total loss of GDP 4.0 9.6

Total Costs 31.2 40.7

2.3 Passenger Bill of Rights

Effective April 29, 2010 the U.S. Department of Transportation (DOT) enacted a resolution

(H.R.624/S.213) aimed at reducing excessive tarmac delays. The so-called ‘Passengers Bill

of Rights’ fines airlines up to $27,500 per passenger whom experience a tarmac delay in

excess of three hours on all U.S. domestic flights whose (a) aircraft contains at least 30

seats and (b) airport of origin process at least 1.8 million enplanements per year. This

poses a potentially substantial cost for airlines - with 84% load factors this can range from

$1.1 million for a 50-seat regional jet to $5.4 million for a wide body Boeing 767. Similar

versions of the bill have been proposed as far back as 1999 (according to Marks [82]).

Enactment of the bill is likely attributable to several widely publicized isolated events of

operations that have caused considerable, most notably the following events:

1. American Airlines Flight Diversion (Austin, Texas, December 2006) Late

December 2006 the Dallas-Ft. Worth International airport (DFW) was experiencing

large lightening storms and tornado warnings forcing a closure for nearly 8 hours.

As a result American Airlines (which operates a hub out of DFW) diverted over 100

inbound flights, many to Austin International airport (AUS). One aircraft awaited

on the tarmac for close to 9 hours (others were held for four hours) as the ground

resources at AUS were insufficient to service the diverted flights. Multiple passengers
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filed a lawsuit against the carrier, and motivated some passengers on board to begin

a passengers rights group which has been lobbying Congress since the incident in late

2006.

2. JetBlue Valentine’s Day Disruption (New York, February 2007) A winter

nor’easter made its way through the New York City on February 14, 2007 resulting

in a mix of snow and rain. Forecasters in the operations control center estimated the

temperatures would be sufficiently warm for the precipitation to convert purely to

rainfall thereby having a relatively small impact on its operations. Most other airlines

operating out of JFK had decided to cancel their flights. The forecasts, however, were

not accurate and freezing rain continued to fall prohibiting takeoff from JFK. Several

planes that pushed back from their gates no longer had gates to return to as inbound

aircraft had arrived after push back. Meanwhile the vehicles that were to tow the

stranded aircraft were inoperable as they were frozen to the ground. Nine JetBlue

aircraft were stranded on the tarmac in excess of six hours; one aircraft spent nine

hours before passengers were able to deplane and were shuttled back to the terminal.

The problem was exacerbated as problems took place at JFK, the main JetBlue hub.

The airline ended up cancelling 47% of all scheduled operations February 14–15 in

addition to the lengthy tarmac delays. The incident became widespread throughout

various media outlets in which JetBlue suffered considerable passenger goodwill, which

the airline enjoyed high customer satisfaction hitherto.

3. RST Airport Tarmac Delay (Rochester, Minnesota, August 2009) An Au-

gust 8, 2009 ExpressJet flight from Houston (IAH) to Minneapolis (MSP) was placed

in a holding pattern for 30 minutes when heavy rain forced a diversion to Rochester

International Airport (RST). While the aircraft was awaiting clearance for takeoff to

MSP, the aircraft needed refueling during which the heavy rains moved south affecting

RST operations. By the time the storm had cleared, the crew members had reached

their maximum allowable duty time thereby rendering the crew illegal even for the

short remaining flight leg. Because RST served only two airlines with ExpressJet
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not being one, the aircraft could not unload passengers directly from a jet bridge.

The security staff had left the airport which was initially cited as one reason why the

passengers were not allowed to immediately exit the aircraft (although it has been

debated if this was a legitimate reason for keeping the 47 passengers on board). De-

spite the claim by ExpressJet that their crew members tried to allow the passengers

to exit the aircraft, the passengers awaited on the ground for six hours overnight until

TSA staff had begun their duty the next morning. Passengers then boarded after the

new crew had arrived from Milwaukee. The incident garnered attention worldwide in

which passenger rights groups used the incident to lobby for a bill of rights.

In addition to the airline fines, the bill also requires that food, water, lavatories, and

medical assistance are provided for the passengers during the ground delay. A revision

of the initial bill added other provisions effective August 23, 2011 that extend excessive

tarmac delays to all airports, and all flights including international flights with a four-hour

threshold. Moreover, minimum fines were introduced for all passengers who are denied

boarding, as well as lost baggage.

2.3.1 An Analysis of the Three-Hour Tarmac Rule

The introduction of the bill drew much commentary in the press, generally receiving favor-

able feedback from passenger rights groups and other consumer advocacy groups. Aviation

experts were generally less sanguine about the efficacy of the rule believing it would lead

to preemptive cancellations in order to avoid paying the high costs associated with delays.

Figure 9 shows the total share of flight delays experiencing tarmac delays in excess of

three hours from January 2009 through June 2011. The vertical line represents the date

the three-hour tarmac rule went into effect. As seen by the figure, three-plus hour tarmac

delays have declined since the implementation of the legislation. As of June 2011, no airline

has been fined for violating the rule (while there have been 20 incidents of exceeding tarmac

delays through the end of April 2011, no incident qualified under the terms in the bill for

the fine). However, the figure also shows that these delays have occurred infrequently -

never exceeding 0.05% of all flights. Long taxi-out times (the primary driver to excessive
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delays) have also dropped considerably, falling 47 % from May-November 2010 compared

with the average over 2005 - April 2010 (see Marks [82]). In light of these findings, the

DOT has fervently defended the ruling.

Figure 9: Share of Tarmac Delays Exceeding Three Hours

Figure 10 addresses the concerns raised by skeptics of the rule who feared that cancel-

lations would increase to avoid the risk associated with long tarmac delays. Indeed, the

cancellation rate has risen from 1.67% to 1.95% before and after the rule, respectively, from

January 2009 through April 2011. Significant snowstorms in the northeast in December

caused a number of cancellations, and many experts have argued that the legislation has

alone caused this number to be higher than it would have been otherwise.

Given that the rule is still relatively new, making a strong inference is possibly spurious.

However, some have conducted thorough cost-benefit analyses of the net effect of the rule.

Marks [82] reports that even excluding the large snowstorms from December 2011, there

were over 480,000 impacted passengers from the rule year-over-year from May-November

2009 to 2010. He argues that the number of fewer passengers who are stranded on the

tarmac in excess of three hours is more than offset by the number of passengers affected by

cancellations, and aircraft returning to the gate in order to avoid the three-hour limit. A

similar exposition is given in Jenkins and Marks [70]. These are just two studies that seek

to understand the net effects of the rule; there will no doubt be more studies as more data
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Figure 10: Cancellation Rates Before and After the Tarmac Rule

becomes available.

In addition to an increase in the cancellation rate, critics of the rule also argue the

following:

1. In the event an aircraft nears the three hour threshold, it may return to the gate

whereby the process renews itself as continuous - and not cumulative delay is tracked

for passengers. Moreover, the aircraft loses its position in the departure queue ex-

acerbating the total delay if a departure occurs. Because gate returns have a higher

likelihood to be cancelled upon return to the terminal, the passenger recovery process

becomes more difficult as potentially hundreds of new passengers have to be reaccom-

modated on new itineraries that are likely to already contain high load factors.

2. The rule does not apply to several other realistic scenarios that may cause excessive

tarmac delays. For instance, in lightening storms where ground crews are prohibited

from being on the tarmac due to the risk of exposure, the flight does not qualify for

paying the penalty. The same is true for events in which the captain declares there is

a safety or security issue that prevents movement of the aircraft from the tarmac.
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2.4 Airline Disruption Management

The current practice of disruption management employed at airlines is now examined. This

section begins with an overview of the centralized decision-making enviornment, and how

decisions are made in practice. Even in spite of all the advancements made in both theory

and computation, operational decisions made in the presence of a disruption are largely con-

ducted manually. The reason for this is discussed which will serve as additional motivation

for the integrated recovery approach presented in Chapter 3.

2.4.1 Airline Operations Control Centers

Most every airline has a centeralized environment that oversees the daily operations involv-

ing the flight schedule, aircraft, maintenance events, crew members, airport resources, and

air traffic management. While this environment has different names, one that is often used

that will be used throughout this thesis, is that of an Operations Control Center (henceforth

referred to as an OCC; although there are several variants whose acronyms include SOC,

AOCC, and AIOC). Grandeau et al. [61] give an overview of the general processes found at

an OCC, including a detailed analysis of a specific carrier’s OCC. Other works discussing

the role of OCCs are found in Pujet and Feron [93] and Clarke [38].

OCCs have played an increasingly important role after the September 11 terrorist attacks

in which there was a closure of the NAS. Prior to that point, control centers were more

fragmented with passenger handling often being conducted at the station level as oppose to

a centralized environment. The following are some of the groups that play an integral role

in an OCC:

• Operations Control is responsible for maintaining the flight schedule and managing

the delay and cancellation of flights.

• Flight Dispatch is responsible for generating flight plans, and en route tracking of

flights.

• Aircraft Dispatch (or Maintenance Control) manage maintenance events for all

aircraft, and possibly reschedule maintenance activities for aircraft whose schedules
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are disrupted. They also manage the utilization of spare aircraft that may be used in

a recovery operation.

• Meteorology is responsible for creating weather forecasts in relevant areas within

the airline’s network in order for the OCC to plan their operations accordingly. They

may recommend proactive flight operations strategies in order to avoid the cascading

effects of delays.

• Crew Operations track individual crew members and ensure all rigid legality re-

quirements are preserved over the course of each crew’s pairing. In the presence of an

irregularity, they are responsible for re-scheduling crew members subject to legality

requirements, assigning deadheads to crews to be used in recovery, manage standby

and reserve crew members, and hotel arrangements for stranded crew members.

• Passenger Reaccommodation manages passenger handling and generates new

itineraries for those passengers whose original itinerary is broken by a disruption.

OCC resources have to coordinate with two other groups that play a fundamental role

in disruption management. The first is Air Traffic Control Coordinators (ATCC) who

interface between the OCC and FAA which communicate information about FAA ground

delay programs to the airline. ATCCs may or may not be located within the OCC. The

second group that strongly interacts with the OCC is Station Operations Control Centers

(SOCC) who manage individual airport operations as discussed in Grandeau et al. [61]. A

set of re-scheduling decisions may affect runway operations, gate planning, and passenger

handling which are managed under the jurisdiction of the individual SOCCs.

The input-output process of an OCC is summarized at a high-level in Figure 11. U.S.

carriers have multiple calls daily (typically three) with the FAA’s Air Traffic Control System

Command Center (ATCSCC) to discuss current-day operations in order to effectively plan

for the NAS.

The internal structure within an OCC is generally highly fragmented, with groups re-

sponsible for the operating schedule, aircraft, crews, and passengers acting mostly in iso-

lation of one another. Figure 12 shows an internal view of a typical OCC and how the
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Figure 11: An External View of an OCC

decision from one group affect that of another.

In general, the core of the re-scheduling process is contained within the flight operations

group who makes delays and cancellation decisions from the existing aircraft routings. This

group must coordinate with the maintenance planning department to ensure any devia-

tions from the aircraft routings meet all maintenance requirements at a minimum before

the tentative schedule is passed to other groups. Once the original flight schedule has been

augmented to reflect aircraft changes, delays, and cancellations, the candidate schedule is

passed to the crew scheduling group who is responsible for creating any re-scheduling de-

cisions for crew members. The schedule is also passed to the group responsible for the

passenger reaccommodation process which is conducted by assigning each individual pas-

senger to a new itinerary. Passengers are heterogeneous to the airline as higher-valued

passengers are given priority to more attractive options over others to minimize the impact

of the loss of passenger goodwill. If the re-scheduling decisions from the crew scheduling

and passenger reaccommodation groups is deemed appropriate, the scheduling changes are

made and transmitted throughout the OCC and other critical stafff. However, either group

may deny the re-scheduling decisions from flight operations and the process begins anew.
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Figure 12: An Internal View of an OCC

2.4.1.1 Decision Support Tools

Few decision support tools used in operations have sophisticated optimization as many

processes are still manual. OCC controllers typically rely on the use of a tracking tool that

will monitor flights or crew members in real-time. These systems are usually in the form of

a Gantt chart similar to that illustrated in Figure 13 for flight and maintenance operations.

The user is usually allowed to manually drag and drop different activities scheduled for

each resource. Some advanced systems may have OR support built within the tool that

will allow for an automated solution to optimize the set of re-scheduling decisions subject

to user-defined specifications concerning the parameters, objectives, and constraints.
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Figure 13: An Example of a Flight Tracking Tool

A number of decision-support systems employing mathematical programming techniques

have been developed both by airlines and vendors. Such systems exist for re-scheduling

aircraft rotations, crew schedules, and passenger itineraries in an isolated environment from

the other components of the process. Due to the size and complexities of obtaining an

integrated solution to all components, early work on employing mathematical programming

techniques to solve the airline operational problem under irregularity has been sequential.

Thus, at one extreme an OCC could employ such decision-making technology for each phase

of the recovery process as seen in Figure 12. While this is plausible on a hypothetical level,

this is not executed in practice. While a module may be used in production, it is likely at

most only one of the three possible modules while the remaining components are constructed

manually. The reasons that manual-based methods continue to play a central role in the

disruption management process within the operational environment are attributable to at

least one of the following two concerns:

1. The groups responsible for flight schedules, aircraft rotations, crew schedules, and

passenger reaccommodations have their own set of objectives that are unlikely to be

considered by other groups given the process is sequential. For example, an attractive

solution for the flight operations group that minimizes the number of tail assignment
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changes may be unattractive for the crew operations group due to the need to use an

excessive number of reserve crews that drive the crew recovery costs above a reasonable

threshold.

2. As the case with several industries, there is often times a reluctance to aggressively

implement a decision-support system that reduces a decision-maker’s autonomy. Many

individuals whom possess in-depth knowledge of an airline’s operations view any kind

of black box software with skepticism.

Three following are three commonly used tactics often used by flight operations con-

trollers in managing disruptions:

Knock-On Delays Given an aircraft whose routing contains a disrupted flight, one ap-

proach would be to delay all flights within the routing until the delay is absorbed by the

scheduling buffer within the same tail. Such a strategy is known as knock-on delays, and

is often employed for relatively small disruptions affecting a small number of aircraft, or

when the objective of the flight operations controller is to keep as many aircraft routings

preserved as possible.

Cancellation Cycles In hub-and-spoke networks aircraft rotations often exhibit cyclic

behavior. For flights departing from a hub to a spoke, the subsequent flight in the rotation

is usually returned back to the hub. Another common tactic in disruption management is

to cancel all flights within at least one cycle. This strategy may become attractive when

the operations coordinator wishes to return to the original schedule as soon as possible, or

to ensure an aircraft is present at a given station to operate a strategic flight.

Tail Swaps It is common to temporarily switch, or swap aircraft to mitigate the to-

tal length of a disruption. For instance, if one aircraft exhibits an arrival delay, it may

temporarily switch flying segments with another aircraft that is currently grounded at the

arrival station. This is a commonly used recovery mechanism to minimize the total number

of affected resources, although it is likely that the elapsed time taken to return to normal
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operations will be greater.

Figure 14 illustrates these principles in a simple three station, two aircraft, nine flight

example seen in Figure 14a. The thick black segment at CDG represents a closure forcing (at

a minimum) the disruption to flight 103. Figure 14b shows a knock-on delay management

strategy. Note that tail XYZ operates as scheduled since no flights are affected by the

closure. The late arrival of flight 103 forces the disruption to flight 107. While flight 107

is late inbound to FRA, the slack absorbs the delay and flight 109 operates as scheduled.

Figure 14c shows a cancellation cycle in which flights 103,107, and 109 are all cancelled.

The aircraft would then remain on the ground to operate flight 103 the next day. Figure

14d shows the concept of a tail swap (in conjunction with a cancellation cycle) between

aircraft ABC and XYZ. Because the late arrival of flight 103 forces a disruption to flight

107 using aircraft ABC, a tail swap occurs and flight 107 then undisrupted when operated

by tail XYZ. To return XYZ to LHR, the tail also covers flight 109. In exchange, tail ABC

covers flight 215 which was originally scheduled to be operated by XYZ.

The preceding discussion illustrated three commonly used approaches by airlines to

manage their operations under irregularity. It is common to use a hybrid approach utilizing

multiple such methods in practice. Consequently the problem of finding the optimal strategy

meeting an objective is combinatorial in nature for only the problem of flight rescheduling.

Considering similar strategies with crew and passenger considerations makes an already

difficult problem even more complex, which also explains why manual processes for recovery

are used in operations.

2.4.1.2 Disruption Management Objectives

As previously mentioned, one unattractive feature of sequential recovery methods is the

reliance on coordination with different scheduling groups whose objectives may conflict

with one another. An integrated approach addresses some of these shortcomings if a well-

defined and mutually agreeable objective is agreed upon which solutions are to be evaluated

and optimized. The following comprises a list of goals that are typically used by an airline

in a recovery process. Attractive solutions are generally sought that seek to:
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(a) Original Schedule (b) Knock-On Delays

(c) Cancellation Cycle (d) Tail Swaps

Figure 14: Commonly Employed Disruption Management Strategies
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• minimize the time required to return to the undisrupted schedule

• minimize total aggregate operational costs (considering aircraft, crews, and passen-

gers)

• minimize total passenger delay, or loss of passenger goodwill

• minimize aggregate flight delay

• minimize total deviations from the published schedule

• maximize the total number of passengers who can be accommodated to the new

schedule

Finding a solution meeting all of these objectives is unlikely for most reasonable size

disruptions. Moreover, tradeoffs are likely to exist making evaluating the quality of a

proposed recovery plan ambiguous. For instance, a given delay and cancellation plan may

be attractive as all resources are back on plan quickly, but may induce a high operational

cost. Thus weighing various criteria may be necessary to evaluate such tradeoffs.
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CHAPTER III

AN OPTIMIZATION APPROACH TO AIRLINE INTEGRATED

RECOVERY

3.1 Introduction

The airline industry has been one of the biggest beneficiaries of advancements made in the

application of advanced optimization methodologies. Fleet assignment, aircraft scheduling,

crew scheduling, dynamic pricing and revenue management, and other paradigms have

received considerable attention in both industry and academia throughout the past few

decades. Such decisions are made well in advance of the day of operations in an environment

ignoring disruptions. However in practice, operations are rife with frictions caused by

disturbances such as inclimate weather or mechanical failure. In spite of all the advances

made at the planning level, there has been relatively little work done at the operational

level.

Even though problems at the operational phase are similar to that of the planning phase,

the former’s problems are exacerbated by two things. The first are additional operational

complexities that arise. For example, suppose an aircraft is approaching its destination

but is unable to land due to convective weather. The aircraft may be placed into a holding

pattern requiring additional flying time for the cockpit crew. By the time the aircraft lands,

the crew may not be legal to fly their subsequent leg due to exceeding their allowed flying

time within a 24-hour period rendering a disruption to the subsequent legs. The second

problem is that of timing. Most airlines utilize an operations control center (OCC) which

provide a centralized decision making environment. Unlike the planning phase in which

problems are sometimes made over a year in advance of operations, OCC coordinators

are constrained to making decisions in as close to real-time as possible. Because decisions

involving repairing the schedule, aircraft, crew, and passengers are combinatorial in nature,

using an optimization-based approach may not be tractable due to the complexity of solving
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each of these operational problems. As a result, airlines do not generally rely on the use of

mathematical programming in the presence of a disruption to their operations.

Given a disruption to the existing schedule, the airline is said to be in a recovery opera-

tion. Developing an optimization model is naturally of interest to the Operations Research

(OR) practitioner given the challenges posed. The immense nominal costs also make it of

interest to an airline. While estimates vary, these are generally considered to be tens of

billions of dollars annually in the U.S. alone (see [28]). Airline passengers also have a vested

interest in the problem as passenger delays have become more problematic as the growth

in air transportation has outpaced that of capacity at major airports. In some instances

passenger delays have drawn global attention as passengers have been subjected to exces-

sively long tarmac delays. These occurrences have, in part, prompted the U.S. Congress

to draft a passengers’ bill of rights. Effective April 2010 the U.S. Department of Trans-

portation implemented a fine of up to $27,500 per passenger who exceed a tarmac delay

of three hours. While there have been some advancements made in applying mathematical

programming to the operational phase of airline scheduling, little advancements have been

implemented in practice. One possible explanation is that the literature has considered only

a proper subset of decisions required during a recovery period in order to deliver a solution

in a timely manner. Such a solution scheme may not be of use to an OCC - for example,

the recovered flight schedule may not be feasible for existing crew schedules.

The principle goal of this paper is to define, formulate, solve, and analyze a fully inte-

grated recovery problem in a manner that is amenable to the constraints imposed by an

OCC. By heuristically reducing the set of disruptable resources that are to be rescheduled,

we propose an optimization module that is to reassign the schedule, aircraft, crews, and

passengers within some time horizon. We validate our method by providing computational

results using data from a real U.S.-based airline. To the best of our knowledge, we are the

first to provide such results to the fully integrated problem. In the context of solving this

problem we also introduce some results that can extend to other related problems within

the industry.

The remainder of the chapter is organized as follows. Section 3.2 provides a review of
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relevant work done within irregular airline operations. The problem and model are formally

defined in Section 3.3. Section 3.4 discusses how the scope of the recovery operation is

limited to make the problem solvable. Our decomposition scheme is outlined in Section

3.5. Computational results are shown in Section 3.6 that validates our approach. Here we

observe the improvement the integrated approach yields relative to several key performance

metrics.

3.2 Literature Review

While there has been relatively little work previously done for studying and solving the

airline integrated recovery problem, various components within the problem have been

studied. We review some of the seminar earlier work done. This is by no means a complete

survey of irregular operations. Filar et al. [50] provides an exceptional survey of previous

work. Clausen et al. [39] give a recent state-of-the-art overview of disruption management

of schedule, aircraft, crew, passenger, and integrated recovery.

3.2.1 Schedule Recovery

Teodorovic and Guberinic [116] consider the problem of reassigning aircraft rotation when

one or more aircraft are taken out of operation that minimizes total passenger delay. A flight

network is formed and the schedule is repaired with the reduced set of aircraft. The solution

is obtained by the branch-and-bound method for which an efficient two-step branching rule

is implemented.

Using a lexicographic dynamic programming heuristic, Teodorovic and Stojkovic [117]

introduce a model that seeks to minimize total flight cancellations while minimizing passen-

ger delay. This is the first model that considers restoring the schedule and aircraft rotations

in tandem.

The first work to integrate crew rotations with aircraft rotations was studied in Teodor-

ovic and Stojkovic [118]. A heuristic model is introduced in which both aircraft and crew

rotations are repaired through a first-in, first-out (FIFO) rule and a dynamic programming

algorithm that incorporates re-timing decisions.
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Jarrah et al. [69] introduce two network models that form the basis for irregular op-

erations control at United Airlines. They allow the possibility of equipment swapping and

allow the use of spare aircraft. The first model seeks to output a flight delay plan un-

til the shortage of aircraft is resolved by minimizing total disutility. The second model

achieves the same objective but considers flight cancellations instead of delays. Computa-

tional results are presented for each model showing considerable improvement relative to

an unoptimimized schedule.

Yan and Yang [131] provide the first study that allows for delays and cancellations

simultaneously. A network flow model with side constraints was introduced that are solved

by Lagrangian relaxation with the subgradient method. By obtaining efficient bounds on

the optimal objective, computations were tractable and their model was readily seen to

deliver efficient solutions.

Yan and Tu [130] consider schedule re-optimization in the presence of multiple fleets.

A multicommodity network flow model is introduce that is efficiently solved by a modified

Lagrangian relaxation scheme using the subgradient method. A case study is presented in

which their framework improved profits in each scenario. See Yan and Lin [129] for a similar

study.

Clarke [38] introduces the Airline Schedule Recovery Problem (ASRP) that is strongly

related to our model below. The comprehensive framework that is proposed considers flight

delays and cancellations in tandem, as well the management of air traffic control (ATC).

He also imposes constraints on crew availability so as to make the schedule compatible

with respect to the initial positions of each crew. Two greedy heuristic procedures and an

optimization-based solution procedure are considered and the results are evaluated under

different scenarios.

Argüello et al. [10] use metaheuristic approach by presenting a greedy randomized

adaptive search procedure (GRASP) to restore aircraft routings in the presence of a ground

delay program. Their algorithm is polynomial in the number of flights and aircraft that has

found near-optimal solutions to minimize delay and cancellation costs under a wide range

of scenarios. Over 90% of the GRASP solutions were within 10% of optimality that were
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generally obtained within a few seconds.

A binary quadratic programming approach is introduced by Cao and Kanafani [33] and

[34] that integrates delays and cancellations. Their model maximizes profit while penalizing

undesirable outcomes.

An overview of the decision-making environment at OCCs is given in Clarke [37]. This

paper discusses the primary causes of irregularities, reviews the information systems and

decision-support systems utilized, and proposes a new decision framework. A more recent,

but similar exposition is given by Kohl et al. [74].

Three multicommodity network flow models are presented in Thengvall et al. [119] for

schedule recovery that follows a hub closure. Each model considers flight cancellations,

delays, ferrying, and swaps. The first two models - a pure network with side constraints

and a generalized network - seek to maximize profit that attempts to keep as much of the

original schedule preserved as possible. The third model, which is a pure network with side

constraints with a discretized time horizon, seeks to minimize the cost incurred from flight

cancellations and delays. Their results show that swapping opportunities have a substantial

impact in the solution quality.

Stojković et al. [111] proposed a model that allows for not only the delaying of flights,

but altering the duration of service as well to preserve maintenance schedules, ground

service, crew connections, and passenger connections. The dual to their proposed model is

a network model which allows for computation in near real-time.

Rosenberger et al. [97] develop a set packing model that seeks to assign routes to

aircraft by minimizing an objective that is comprised of both the assignment cost as well as

cancellation cost. Maintenance feasibility is preserved by enumerating all routings involving

a maintenance activity a priori. Their model is considered in the presence of both aircraft

disruptions as well as station disruptions in a ground delay program. They present an

efficient heuristic that is used to identify the subset of aircraft that are to be rerouted, and

their model is validated by simulation. They also extend their model to consider crew and

passenger connections.

Eggenberg et al. [48] repair the schedule through an efficient column generation scheme
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in which new columns are quickly generated through solving a resource constrained shortest

path problem.

3.2.2 Crew Recovery

To our knowledge, the first to study crew recovery were Wei et al. [126]. The authors

propose a comprehensive multicommodity network flow network. A heuristic-based search

algorithm is used within the context of a depth-first search branch-and-bound algorithm

that seeks to repair the original crew pairings. Song et al [108] consider a similar structure.

Stojković et al. [113] propose a model that, given a fixed flight schedule, seeks to output

a set of modified crew pairings at minimum cost through a set partitioning problem that uses

column generation throughout the branch-and-bound tree in a suitable runtime between a

few seconds an about 20 minutes.

Our work is strongly related to Lettovsky et al. [78]. Given the set of canceled flights

they also assign crew to modified pairings at minimum cost. They allow crews to deadhead

either within the modified pairing or back to their crew base. They present efficient pre-

processing techniques to identify the subset of the schedule to be disruptable. The model

is solved by the primal-dual method on the LP relaxation of the model. Three branch-

ing techniques are studied, and they show that branching on follow-ons (where consecutive

flight legs either are or are not present in a pairing) tends to be an efficient procedure for

obtaining integer solutions.

Stojković and Soumis [112] consider a one day crew recovery model that allows for

scheduling changes that keep aircraft routings fixed. Their problem is formulated as an

integer nonlinear multicommodity network flow problem that is solved by Dantzig-Wolfe

decomposition with branch-and-bound. Three problem instances are run showing that even

in the largest instance, quality solutions were obtained in under 15 seconds.

Nissan and Haase [89] present a new methodology that is particularly appropriate to

European carriers as their model assumes a fixed-cost structure of crew as oppose to pay-

and-credit that is prevalent among North American carriers. Their objective is therefore

to adhere as close as possible to the old schedule. By not explicitly repairing broken crew
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pairings, the problem size is diminished considerably in that they solve a disruption for every

duty period. A set-covering model is solved using branch-and-price with new columns being

added from a residual network by solving a shortest path problem. Their approach is shown

to solve in a runtime that is acceptable in operations.

3.2.3 Passenger Recovery

For the most part, airlines abstract passenger disruption within the context of their decision-

making process. Finding an optimal tradeoff in the disruption of the schedule and its pas-

sengers, Bratu and Barnhart [30] suggest a framework that can reduce passenger disruptions

while holding down other scheduling costs in irregular operations. Their model allows flight

delays and cancellations that assigns reserve crew and spare aircraft to accommodate the

new schedule. Two models are presented: the disrupted passenger metric (DPM) model

and the passenger delay metric (PDM) model. The former model assigns only disrupted

passengers and is only a proxy of actual delay costs, whereas the latter model assigns all

passengers and provides a more accurate description of the true costs of delay. Their model

is validated by a simulated OCC. While the DPM model is shown to not solve in sufficient

time so as to implement in an actual OCC, the PDM model suggests that it might be

amenable to a real-time decision making environment.

Zhang and Hansen [133] propose integrating other means of transportation to accom-

modate disrupted passengers. Such intermodal connections are often preferred particularly

when the destination is relatively nearby the disrupted station within a hub-and-spoke

network. By incorporating ground transportation into passenger recovery, they propose a

mixed integer nonlinear programming model that is solved heuristically by first relaxing in-

tegrality and then fixing variables. Runtimes were shown to be under 20 minutes. Moreover

their experiments show that the number of disrupted passengers may be greatly reduced

by allowing intermodal substitution; one experiment showed this number was reduced by

more than 84%.
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3.2.4 Robust Scheduling

An area closely related to recovery is schedule robustness. The central idea is to design a

schedule that is able to be recovered from more efficiently in the presence of irregularity.

Robust scheduling was studied extensively in Ageeva[5], Smith [106], Rosenberger et al.

[98], Smith and Johnson [107], and Burke et al. [32]. Crew robustness was studied in

Klabjan et al. [73], Yen and Birge [132], Shebalov and Klabjan [105], Ball et. al. [17], Gao

et al. [56], and Weide et al. [127]. The impact of schedule robustness to passenger recovery

can be seen in Lan et al. [75].

3.2.5 Partially and Fully Integrated Recovery

There have been a number of studies whose aim is to partially integrate operations under

irregularity. Abdelghany et al. [72] presented a decision support tool in which combines a

schedule simulation with a resource optimization model that minimizes cancellations and

disruptions while incorporating important crew considerations of both pilots and flight

attendants. Given the anticipated severity of disruption the flight simulation model predicts

a list of disrupted flights. Given this disruption the resource assignment optimization model

assigns an efficient plan that is to delay and cancel flights that consider crew and aircraft

swaps and utilization of reserve resources. A drawback of their approach is they do not

allow crews to deadhead. After 177 potential flight disruptions are simulated, their iterative

process saves 661 minutes of delay; 8.7% of the observed delay in the actual scenario which

is found in just over 3 seconds.

The 2009 ROADEF challenge [91] introduced a competition that sought to deliver a

recovery solution that was to integrate the schedule, aircraft, and passengers. Gabteni [54]

presents an overview of the different proposed methodologies. The winning team, seen

in Bisaillon et al. [27] employ a large-scale neighborhood search heuristic that iteratively

constructs, repairs, and improves solutions that incorporates randomness to diversify the

search procedure. Feasibility was quickly achieved in the first phase, while the third phase

was shown to be significant as cost reductions we shown to be apparent in several instances.

The third place entry is shown in Acuna-Agost et al. [4]. They define a MIP model to
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achieve their objective by first solving the problem on a very limited set with many variables

fixed a priori. The novel feature of their framework is the introduction of a Statistical Anal-

ysis of Propagation of Incidents (SAPI). Using a logistic regression, the probability of each

flight being disrupted are estimated. If these probabilities exceed a certain threshold flight

cancellation variables are fixed, and if the probabilities are sufficiently low, the previous

MIP solution is fixed. Neighboring solutions are then explored by local branching and fed

back into the MIP. Because the search space is limited, the MIP computation is tangible.

3.2.6 Fully-Integrated Recovery

Handling aircraft and crew in concert is an arduous ask which explains why previous com-

putational studies have ignored crew considerations. There have been some studies that

include a fully integrated airline recovery framework, although these tend to be only for-

mulations.

Two such proposals for integrated recovery are seen in Ph.D. dissertations by Lettovsky

[77] and Gao [55]. The formulation given by the former is closely related to our work. He

presented a fully integrated model that decomposes into a structure suitable for Benders

decomposition. The linking variables are fleeting decisions to flight legs in which are passed

to subproblems represented by repairing aircraft rotations, crew pairings, and passenger

itineraries. While a formulation was provided, no computations were preformed.

3.3 The Airline Integrated Recovery Problem

We formally define the airline recovery problem to be comprised of the following four prob-

lems:

• The schedule recovery problem seeks to fly, delay, cancel, or divert flights from their

original schedule. We call the solution to this problem the repaired schedule.

• The aircraft recovery problem assigns individual aircraft routings to accommodate

the repaired schedule that are feasible for the constraints imposed by maintenance

requirements.
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• The crew recovery problem assigns individual crew members to flights according to

the repaired schedule that satisfy the complex legality requirements.

• The passenger recovery problem re-assigns disrupted passengers to new itineraries that

delivers them to their destination.

Given a disruption, we define the time window to be an exogenous interval T :=
[
t, t
]

in

which flights, aircraft rotations, crew schedules, and passenger itineraries are allowed to be

modified. Each component may have a different interval, although we restrict our analysis

to the same horizon. The requirement is that all components be back on their original

(undisrupted) schedule by the end of the time window t.

3.3.1 Schedule Recovery

The Schedule Recovery Model (SRM) returns re-timing and flight cancellation decisions.

Our model is closely related to Clarke [38] in that we consider additional constraints imposed

by air traffic control systems.

Instead of a leg-based model, we utilize flight strings which was introduced by [19]. A

flight string (which we refer to as string) is a sequence of flights, with timing decision, to be

operated by the same aircraft. The same sequence of flights might be present in multiple

strings, although each sequence must have a unique set of re-timing decisions. A string-

based model has a number of advantages. While the number of strings naturally grows

significantly with respect to the number of flights, efficient column generations techniques

can be employed. Strings are also able to capture network effects that individual flight

decisions do not. Also, ground arcs need not formally be defined in the underlying time-

space network. The biggest advantage is that integer solutions to the aircraft recovery

problem (discussed in Section 3.3.2) are immediately obtained from the LP-relaxation.

3.3.1.1 Sets

F : set of all flight legs

E: set of equipment types (fleets)
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S: set of flight strings

A: set of all airports

Aarr: set of arrival slot capacities specified by an inbound station, arrival limit, and time

interval

Adep: set of departure slot capacities specified by an outbound station, departure limit,

and time interval

G: set of gate restrictions specified by a station, gate limit, and time interval

I
(
a, ta, t

a)
: set of strings that are inbound to station a between ta and t

a

O
(
a, ta, t

a)
: set of strings that are outbound from station a between ta and t

a

W
(
a, ta, t

a)
: set of strings that occupy a gate at station a between ta and t

a

F strategic: set of strategic flights that are prohibited from cancellation

Fmarket: set of flights that have exogenous market requirements set by the airline that

require a minimum number of flights or seats to be offered in a given segment

3.3.1.2 Data

cassign
e,s : cost of assigning equipment type e ∈ E to string s ∈ S

ccancel
f : cost of cancelling flight f ∈ F

CAPe: capacity of equipment type e ∈ E

nseats
f : minimum number of seats required by flight f ∈ Fmarket

3.3.1.3 Decision Variables

xe,s =


1 if equipment type e ∈ E is assigned to string s ∈ S

0 otherwise

κf =


1 if flight f ∈ F is cancelled

0 otherwise
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3.3.1.4 SRM Formulation

The SRM formulation is given as follows:

min
∑
e∈E

∑
s∈S

cassign
e,s xe,s +

∑
f∈F

ccancel
f κf (4)

s.t.
∑
e∈E

∑
s∈S:
s3f

xe,s + κf = 1 ∀f ∈ F (5)

∑
e∈E

∑
s∈S:
s3f

xe,s = 1 ∀f ∈ F strategic (6)

∑
e∈E

∑
s∈I(a,ta,ta)

xe,s ≤ narr
a ∀

(
a, narr

a , ta, t
a) ∈ Aarr (7)

∑
e∈E

∑
s∈O(a,ta,ta)

xe,s ≤ ndep
a ∀

(
a, ndep, ta, t

a
)
∈ Adep (8)

∑
e∈E

∑
s∈W(a,ta,ta)

xe,s ≤ ngates
a ∀

(
a, ngates

a , ta, t
a) ∈ G (9)

∑
e∈E

∑
s:s3f

CAPexe,s ≥ nseats
f ∀f ∈ Fmarket (10)

xe,s ∈ {0, 1} ∀e ∈ E,∀s ∈ S

κf ∈ {0, 1} ∀f ∈ F

The objective (4) is to minimize the aggregate cost comprised of string assignment

(including re-timing decisions) and flight cancellations. Flight assignment constraints, as

seen in (5), either require a flight to be contained in exactly one string or cancelled. To

prohibit strategic flights from being cancelled constraints of the form (6) are added. Arrival

and departure capacities at certain airports at given time intervals are not to be exceeded as

captured in (7) and (8), respectively. (9) ensures the number of aircraft on the ground does

not exceed the number of gates available at certain station and times. Market requirements

are captured in (10); they ensure that a minimum number of seats are operated on certain

flights. There are also other constraints that prohibit certain resources from being assigned

to certain flights that we do not explicitly include for brevity. For instance, a curfew

constraint ensures no flight arrives or departs within a curfew period. Other such constraints

include weather restrictions, and constraints prohibiting certain fleet types from operating
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at specific stations that cannot accommodate that type of aircraft.

3.3.2 Aircraft Recovery

The Aircraft Recovery Model (ARM) assigns individual tail numbers to strings while meet-

ing maintenance and other aircraft requirements. The ARM is solved for each equipment

type e ∈ E.

3.3.2.1 Sets

AC(e): set of aircraft of equipment type e ∈ E

Amaint(e) : set of maintenance stations capable of maintenance of equipment type e ∈ E

H(e): set of aircraft of type e ∈ E that requires maintenance activity within the time

window T

Sn (a, tmin, T ): set of eligible strings to be flown by aircraft n ∈ AC(e) that visit station

a ∈ Amaint(e) for at least tmin units of time within subinterval T ⊂ T

3.3.2.2 Data

cne,s: cost of assigning tail n ∈ AC(e) to string s ∈ S

3.3.2.3 Decision Variables

xne,s =


1 if aircraft n ∈ AC(e) is assigned to string s

0 otherwise
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3.3.2.4 ARM Formulation

Given equipment type e ∈ E, the Aircraft Recovery Model, or ARM(e) is

min
∑

n∈AC(e)

∑
s∈S

cne,sx
n
e,s (11)

s.t.
∑

n∈AC(e)

xne,s = xe,s ∀s ∈ S (12)

∑
s∈S

xne,s = 1 ∀n ∈ AC(e) (13)

∑
s∈Sn(a,tmin,T )

xne,s ≥ 1 ∀ (n, a, tmin, T ) ∈ H(e) (14)

xne,s ∈ {0, 1} ∀s ∈ S,∀n ∈ AC(e). (15)

The objective (11) minimizes the cost associated with aircraft assignment. The cost

can be thought of penalties or bonuses. For instance, a penalty may be imposed for any

deviation from the original routing. The string cover constraints (12) assure each string

that is chosen from the SRM is assigned to some eligible aircraft. (13) ensure each aircraft

is assigned to precisely one string. In the event that the required initial and end stations

coincide for a particular aircraft, we define a null string to be one with no flights so the

aircraft stays on the ground. Maintenance cover constraints are seen in (14). This simply

ensures that at least one maintenance opportunity is built in for all tail numbers requiring

maintenance. The inputs to this class of constraints includes the eligible station(s), latest

possible time for service, and minimum time duration necessary to perform the maintenance

event. Different types of maintenance checks can be incorporated into these constraints with

the given parameters required. The specific maintenance planning of choosing which event

opportunities that are to be utilized can be done post-optimization. Other constraints we

include but do not explicitly formulate are user-dependent constraints prohibiting certain

aircraft from operating at some airports, and similar operational restrictions.

3.3.3 Crew Recovery

Crew members are assigned to pairings which are comprised of duties that contain specific

flight assignments over a period of time. Each consecutive duty assignment must observe a
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rigid set of legality rules as mandated by the FAA and possible additional airline and union

requirements. A duty typically represents a single day of flying, and the pairing usually

spans between 2 and 4 duties. A roster period consists of a number of pairings over a

period of time, typically about one month. If a specific crew has a pairing that becomes

disrupted, the pairing is said to be broken. A broken pairing may be augmented during

the period overlapping with the time window T so as to deliver the crew to the station

they are required to be at immediately outside of T . All other components within the crew

schedule outside of T are to be preserved. We ensure the repaired pairing is legal for the

entire duration of the original pairing for the crew, although it may be not be the case for

the roster period in which this would have to be fixed between the end of the pairing and

end of the roster.

The Crew Recovery Model (CRM) seeks to repair disruptable crew pairings at minimum

cost. Like the ARM, the CRM is solved for each equipment type corresponding to crew

rating. For brevity within the context of CRM, a pairing is really meant by ‘the broken

component of the original crew pairing’.

Crew deadheading is an important component to the crew recovery process. Formally

a deadhead occurs when a crew member is transported on a flight but does not operate

the aircraft. Deadheading occurs during the recovery process when a schedule imbalance

creates a shortage or surplus of crew members at a given station. There are two classes of

deadheads. The first is deadheading within a pairing, i.e. when a crew member deadheads

to some station to then operate a subsequent flight. The second class of deadheading is

when crew members deadhead home to their crew base ending their current pairing. This

is common when stringent legality requirements are nearly exhausted for a crew and no

pairing can be assigned during the time window. Airlines typically have vastly different

policies on deadheading crew members. Our module requires penalties for each class of

deadheads that occur.

3.3.3.1 Sets

K: set of all available crew members
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Pk: set of eligible pairings for crew k ∈ K

P : set of all pairings, i.e. P =
⋃
k∈K Pk

A pairing p ∈ Pk is eligible for crew k ∈ K if:

(i) p begins at the station where crew k is at the beginning t of the time window T

(ii) p ends at the station where crew k is required to be at by the end t of the time window

(iii) all flight, duty, and pairing legality requirements are satisfied

3.3.3.2 Data

cassign
k,p : cost of assigning crew k ∈ K to pairing p ∈ Pk

dpairing
f : cost of deadheading a crew on flight f ∈ F

dbase
k : cost of deadheading crew k ∈ K back to base

3.3.3.3 Decision Variables

yk,p =


1 if crew k ∈ K is assigned to pairing p ∈ Pk

0 otherwise

νk =


1 if crew k ∈ K is to deadhead back to base

0 otherwise

sf = the number of surplus crew on flight f ∈ F (deadheads within pairing)
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3.3.3.4 CRM Formulation

The CRM model we consider for equipment type e ∈ E , CRM(e), is as follows:

min
∑
k∈K

∑
p∈Pk

cassign
k,p yk,p+

∑
f∈F

dpairing
f sf +

∑
k∈K

dbase
k νk (16)

s.t.
∑
k∈K

∑
p∈Pk:
p3f

yk,p − sf = 1− κf ∀f ∈ F (17)

∑
p∈Pk

yk,p + νk = 1 ∀k ∈ K (18)

yk,p ∈ {0, 1} ∀k ∈ K,∀p ∈ Pk

νk ∈ {0, 1} ∀k ∈ K

sf ∈ Z+ ∀f ∈ F

The objective (16) seeks to minimize total crew cost. (17) ensures that some crew

operates each flight that is not cancelled. If sf > 0, the flight is to contain at least one crew

that is to deadheading on a pairing. (18) assigns each crew to either some eligible pairing

or they are to deadhead to their home crew base.

3.3.4 Passenger Recovery

There are two components to the passenger recovery process. The first is an iterative

module by which the costs from aggregate itinerary delays are minimized by integration

with the SRM, ARM, and CRM. The second problem takes the eligible set of itineraries

from the first problem and assigns itineraries to passenger groups to minimize the actual

cost associated with passenger delay.

Each passenger is defined as a 4-tuple consisting of origin, departure time at origin,

destination, and scheduled time of arrival at destination. All possible eligible itineraries

are generated a priori from the original flight schedule. Some itineraries are constructed

even though they may be infeasible from the initial schedule, but may become feasible

with delays. For example, consider a passenger scheduled to depart at 8:00. If there is

a flight between the same origin and destination scheduled to depart at 7:00, then that

flight might be able to be used in the recovery solution if it experiences a delay of at least
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one hour. If it does not, then constraints will prohibit the use of that itinerary. Our

model reassigns disrupted passengers to new itineraries assuming homogeneous passengers.

In practice a more granular version of this is employed that distinguishes each individual

passenger based on certain attributes like fare class or frequent flier status. Our framework

chooses the specific itineraries that are to be used determining the flow of passengers to be

assigned to each itinerary only, and not which specific passengers are to be assigned (this

could be done post-processing).

3.3.4.1 Sets

OD: set of disrupted passengers classified by an origin-destination (OD) pair

Γ: set of all passenger itineraries

Γi ⊆ Γ: set of all itineraries eligible to assign passenger i ∈ OD

Γmulti-flt
i ⊆ Γi: set of multi-flight itineraries available to passenger i ∈ OD

3.3.4.2 Decision Variables

zi,γ: number of passengers from i ∈ OD to assign to itinerary γ ∈ Γi

si: number of passengers from i ∈ OD that are not assigned to an itinerary

δi,γ: hourly delay if passenger i ∈ OD is assigned to itinerary γ ∈ Γi

3.3.4.3 Data

cdelay
i,γ : hourly cost of passenger delay associated with assigning i ∈ OD to itinerary γ ∈ Γi

cunassign
i : cost of being unable to a assign passenger to an itinerary

ωi,γ: weight of assigning i ∈ OD to itinerary γ ∈ Γi in the aggregate delay cost

nPAX
i : number of passengers for i ∈ OD

CAPe: capacity of equipment type e ∈ E

f (γ): initial flight in itinerary γ ∈ Γ

52



f (γ): final flight in itinerary γ ∈ Γ

tarr
f : actual time of arrival for flight f ∈ F

tdep
f : actual time of departure for flight f ∈ F

tSTD
i : scheduled time of departure at origin for i ∈ OD

tSTA
i : scheduled time of arrival at destination for i ∈ OD

tconnect
min : minimum passenger connection time for multi-flight itineraries

3.3.4.4 Itinerary Recovery Model

As previously discussed, all eligible itineraries are initially constructed given the original

flight schedule. Several of the itineraries will be ineligible with different solutions pro-

vided by the SRM. The itinerary recovery model (IRM) seeks to output the set of eligible

itineraries for each OD such that the aggregate delay costs are minimized subject to ensuring

a feasible set of passenger itinerary assignments. The IRM is formulated as follows.
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min
∑
i∈OD

∑
γ∈Γi

cdelay
i,γ ωi,γδi,γ +

∑
i∈OD

cunassign
i si (19)

s.t.
∑
i∈OD

∑
γ∈Γi:
γ3f

zi,γ ≤
∑
e∈E

∑
s∈S:
s3f

xe,sCAPe ∀f ∈ F (20)

∑
γ∈Γi

zi,γ + si = nODi ∀i ∈ OD (21)

δi,γ ≥
∑
e∈E

∑
s∈S:
s3f(γ)

xe,st
arr
f(γ)
− tSTA

i ∀i ∈ OD,∀γ ∈ Γi (22)

zi,γ ≤ ni (1− κf ) ∀f ∈ F,∀(i, γ) ∈ OD × Γi : γ 3 f (23)∑
e∈E

∑
s∈S:
s3f(γ)

tdep
f(γ)xe,s ≥ t

STD
i −Mi,γ (1− vi,γ) ∀i ∈ OD,∀γ ∈ Γi (24)

zi,γ ≤Mi,γvi,γ ∀i ∈ OD,∀γ ∈ Γi (25)∑
e∈E

∑
s∈S:
s3fj

tdep
fj
xe,s −

∑
e∈E

∑
s∈S:
s3fi

tarr
fi
xe,s ≥ tconnect

min −M ′i,γ (1− wi,γ) ∀i ∈ OD,∀(fi, fj) ∈ Γmulti-flt
i

(26)

zi,γ ≤M ′i,γwi,γ ∀i ∈ OD,∀γ ∈ Γmulti-flt
i (27)

(zi,γ , δi,γ , vi,γ , wi,γ) ∈ Z× R× {0, 1} × {0, 1} ∀i ∈ OD,∀γ ∈ Γi

si ∈ Z ∀i ∈ OD

The objective (19) seeks to minimize the total weighted nominal delay cost of all

itineraries and unassigned passengers. The weights can be either unit-valued or reflect

the share of OD passengers present in the disruption. (20) prohibits the spilling of passen-

gers. For each OD (21) either assigns passengers to a feasible itinerary or strands them with

no itinerary being assigned. If a passenger cannot be assigned to an itinerary, they may

overnight at a connection point, be placed on another airline, or have their itinerary delayed

outside of T . (22) tracks the delay of each passenger-itinerary pair where the itinerary delay

is the difference between the actual arrival time of the last flight in the itinerary and the

scheduled time of arrival to the passenger’s destination. (23) ensures no passenger is as-

signed to an itinerary that contains a cancelled flight (where ni is an upper bound for zi,γ).
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Recall that all eligible itineraries are overbuilt a priori in which some itineraries are infeasi-

ble with respect to the original schedule but may become eligible through delays. The next

four constraints are logical constraints that ensure only legal itineraries are considered given

the solution from the SRM. Inequalities (24) and (25) prohibit assigning any itineraries to

passengers in which the initial flight in the itinerary departs prior to the passenger ready

time. For all i ∈ OD and γ ∈ Γi, Mi,γ = tSTD
i is chosen as a valid upper bound. Given the

solution from the SRM, passenger connection times are observed. If the connection time

does not exceed the minimum necessary connection time tconnect
min , then no passengers can be

assigned to that itinerary. This is reflected in (26) and (27) where M ′i,γ > 0 is appropriately

chosen (for example, maximum possible connection time).

3.3.4.5 Passenger Reaccommodation Model

Once the set of flight strings have been found that induces the minimal aggregate passen-

ger delay, the passenger reaccommodation model (PRM) is solved. The PRM allocates

passengers to the given set of itineraries to minimize the total assignment cost.

For all i ∈ OD let Γ∗i denote the set of eligible itineraries for the given OD induced by

the optimal SRM solution. The PRM is formulated as

min
∑
i∈OD

∑
γ∈Γ∗i

cdelay
i,γ δ∗i,γzi,γ +

∑
i∈OD

cunassign
i si (28)

s.t.
∑
i∈OD

∑
γ∈Γ∗i :
γ3f

zi,γ ≤
∑
e∈E

∑
s∈S:
s3f

xe,sCAPe ∀f ∈ F (29)

∑
γ∈Γ∗i

zi,γ = nODi ∀i ∈ OD (30)

zi,γ ∈ Z ∀i ∈ OD,∀γ ∈ Γ∗i

si ∈ Z ∀i ∈ OD.

Note the summations in (29) and (30) differ from (20) and (21) in that the former are

taken over the index sets Γ∗i . While the objective function of the IRM does not depend on

zi,γ , constraints (20) and (21) are included in the IRM to ensure a feasible solution in the
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PRM. Moreover the cost coefficients cdelay
i,γ are chosen to be identical for both the IRM and

PRM to measure the cost associated with passenger delay.

The two-stage approach to passenger recovery can be combined into a single step in

which reaccommodation is done explicitly. However our approach is advantageous in two

ways. Considerable computational effort is required to model each passenger individually;

the number of cut coefficients generated by the Benders cut has introduced a vast complexity

to the master problem which is solved as a Mixed-Integer Programming (MIP) problem.

Secondly, our approach only requires a single call to the itinerary generator a priori as

opposed to building new itineraries every time a the master problem is solved.

3.4 Limiting the Scope of Recovery

The size and complexity of the integrated recovery problem outlined above most likely

precludes the delivery of a globally optimal solution. In order to tractably solve the problem

for reasonably large scenarios, careful consideration must be placed on how to limit the size

or scope of the problem.

A flight is said to be disrupted if one of its resources precludes the flight from operating

as scheduled. Such resources include the arrival or departure airport, aircraft, or assigned

crew members. Flight disruptions may be exogenous or endogenous. An example of an

exogenous disruption is the closure of an airport for a specific period of time, in which all

flight activity to or from the airport within that time interval must be altered. However,

system-wide disruptions can be mitigated by endogenous flight disruptions. An example of

an endogenous flight disruption is seen in Figure 15 on a simple flight network consisting of

three flights: 101 from MIA to ATL, 102 from ATL to ORD, and 114 from CLT to ATL. The

thick black segment at ATL represents a closure which forces the (exogenous) disruption

to flight 101. While flight 102 is unaffected by the disruption, it may be advantageous to

(endogenously) delay the flight in order to accommodate connecting passengers. Of course

this illustration is simplistic, but shows the combinatorial nature of the problem.

Flights that are candidates for disruptions are said to be disruptable. For example,

consider flight 114 from Figure 15 that is directly unaffected by the disruption. It would be
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Figure 15: Exogenous vs. Endogenous Flight Disruptions

plausible to not consider that flight as a candidate for disruption. While simple to identify

on a three-flight example, the process of identifying which subset of flights to be considered

disruptable poses a considerable challenge.

We now discuss the procedure by which we identify all disruptable flights. Initially the

disruptable flight set includes those flights that are directly affected by a resource at the

airport. The set is then expanded to consider aircraft, crews, and passengers.

3.4.1 Limiting Flights

The disruptable flight set is instantiated with all exogenous flight disruptions that contain

a resource that forces a delay or cancellation.

Flights from disrupted routings A disruptable aircraft exists if its scheduled routing

contains a disruptable flight. Suppose kn flights are scheduled for disruptable aircraft n

within the time window T denoted by f1, f2, . . . , fkn . Let fi denote the earliest flight from

the disruptable routing present in the disruptable flight set. Denote Fn ≡ {fi, fi+1, . . . , fkn}

as all subsequent flights within T that were scheduled to be operated by aircraft n. Because

of delay propagation, a disruption to flight fi may cause disruption to the subsequent flights

from Fn. Thus the disruptable flight set is appended with all flights from Fn. Repeating

this procedure for all disruptable routings gives the updated disruptable flight set.
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Flights from disrupted crew Similar to that of aircraft, a disruptable crew exists if a

crew is scheduled to fly a disruptable flight within their pairing. The disruptable flight set

is appended in a similar fashion to that of aircraft. A list of flights is extracted that each

crew member is scheduled to fly in the disruption period. If a disruptable flight is present,

then that flight and all subsequent flights within the scheduled pairing within the disruption

period are added to the flight set.

The new flights that have been added from the crew schedules might be operated by

aircraft not previously identified as disruptable. In this case, the new aircraft is appended

to the disruptable set of aircraft.

Flights from tight passenger connections We take a passenger-centric approach to

integrated recovery, and thus minimizing passenger delay is central to our study. We further

modify the disruptable flight set by considering additional candidate flights that are iden-

tified for abating passenger delay through preprocessing. Consider a passenger originating

in MIA whose destination is ORD seen in Figure 16. Note that the connection between

flights 101 and 102 appears to be tight. Even a moderate disruption in flight 101 is likely to

break the connection for such passengers. Additional flight candidates are introduced for

such tight connections through a simple rule. If a non-disruptable flight has the same origin

and destination from a flight contained in a tight connecting itinerary, then that flight is

introduced as disruptable if the departure times are within some tolerance threshold spec-

ified by the airline. Figure 16 illustrates this concept of augmenting the disruptable flight

set to mitigate passenger delay. There are two other non-disruptable flights from ATL to

ORD. Flight 100 departs from ATL relatively near that of flight 102 and is added to the dis-

ruptable flight set assuming the difference is within the threshold. Naturally all passengers

on flight 100 are then considered in our model since the flight becomes disruptable. If the

departure of flight 110 is too late (i.e. outside the threshold), it remains non-disruptable.

These new flights will have new aircraft and new crew members associated with them.

As was done with adding new flights from crew schedules, we consider the single-flight

entities only, and ensure both the aircraft and crew members are eligible to operate the
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Figure 16: Identifying Passenger-Friendly Flights

next flight in their respective schedules.

3.4.2 Re-timing Flights

Initial work on airline recovery modeled flight delays by making copies of each flight arc that

departed at uniform intervals (see Clarke [38] and Gao [55]). While the uniform flight copy

approach is simple and intuitive, generating strings over copies of flights becomes extraordi-

narily large and complex. We instead model delays through an event-driven approach. The

idea is that events like arrivals, and times associated with constraints from the SRM give

more relevant delay decisions than arbitrary departure times from uniform flight copies.

Given a maximum allowable delay period dmax, a timeline is created for each flight from

0 to dmax representing the given flight delay. Note that in the SRM some constraints are a

function of time (see, for example, constraints (7) through (9)). Formally these are referred

to as time-dependent constraints. Table 3 gives an example of a set of time-dependent

constraints present in the flight network from Figure 16.

The flight departure interval is partitioned into k ≥ 1 disjoint subintervals from the set

of time-dependent constraints that give a maximum of k + 1 departure options. If a flight
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Table 3: An Example of Time-Dependent Constraints

Event Time Station Constraint
Directly Affected
by Disruption?

1 0930 - 1030 ATL flow rate reduction Yes
2 0930 - 1000 MIA gate restriction No
3 1130 - 1200 ATL slot restriction No
4 1200 - 1245 MIA gate restriction No

f is present in any of the time-dependent constraints, then a new subinterval is created

representing a new candidate departure time. Each string must then have no more than

one departure from each subinterval. Strings are generated through the augmented flight

network, defined to be the original flight network whose number of copies (i.e. delay options)

correspond to the number of subintervals from the delay interval.

Figure 17 shows a simple two-flight example of how delay options are generated from

these events using a maximum allowable delay (dmax) of 2 hours. The shaded regions in

Figure 17a represent the time-dependent constraints as given in Table 3. Figure 17b shows

how the flight network is augmented to accommodate different departure times. Both flights

are partitioned into 3 subintervals giving a maximum of 4 departure options for each flight.

The idea of event-driven delays is that the strings present in the augmented flight net-

work are likely to dominate most strings created from uniform flight copies whilst generating

fewer flight strings. From Figure 17 there are a maximum of 42 possible strings from this

approach. If uniform flight copies were instead employed at a coarse discretization of 15

minutes, 8 delay options would arise in addition to the original flight departure time. Thus,

9 copies of the same flight are represented for two flights giving a maximum of 92 possi-

ble strings for just this trivial two-flight illustration. Another problem with uniform flight

copies is that several strings are likely to be present in the same set of time-dependent

constraints and therefore exhibit duplicate columns in the SRM formulation.

3.5 Solution Methodology

Even by limiting the scope of the problem to make it computationally tractable, the problem

is likely too large and complex to return a globally optimal solution for most reasonable
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(a) Scheduled Flights and Time-Dependent Constraints

(b) Augmenting the Flight Network

Figure 17: Modeling Event-Driven Flight Delays
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disruption scenarios. There is an inherent tradeoff between solution quality and runtime. A

possible method might be to develop a recovery scheme in a two-phased approach that first

seeks to recover the schedule, then to recover the other three components taking the repaired

schedule as given. There are a number of problems associated with this scheme, however

tractable as it seems. Conflicting objectives almost certainly exist between the schedule,

crew costs, and passenger delays. Passing a single feasible schedule is too restrictive with

respect to each of the second-stage problems. We argue that if this were a plausible recovery

method in practice, virtually every airline OCC would have already implemented a variation

of such a solution strategy. Instead, airlines often try to find a single feasible schedule

manually. The other extreme would be to deliver a fully integrated solution that is globally

optimal with respect to each of the four components. And while an integrated recovery

framework is naturally desirable, the size and complexity may preclude such a mechanism

to be implemented in practice. Therefore a balance between these two extremes must be

reached with the goal of delivering an integrated solution.

Our approach is to return a solution that is globally optimal with respect to aggregate

passenger delay meaning passenger assignment are globally optimal over all itineraries and

all flight strings. We emphasize that optimality is in accordance to our model over the

reduced problem whose scope has been limited as discussed in the preceding section. While

this is clearly desirable for crew scheduling decisions as well, the crew recovery component

is the bottleneck of the process and the number of repaired pairings can be so large that

optimizing over all pairings and strings is unlikely to solve in an efficient manner. Two

tactics are employed to ameliorate the large cost associated with crew recovery:

1. We do not require the delivered solution to be globally optimal over all strings and

pairings. New pairings are priced out until the master solution
(
x∗e,s, κ

∗
f

)
is globally

optimal for the IRM and feasible for the ARM and CRM. When this termination

criterion is reached no further pairings are priced out (see Figure 18). Thus our

approach is considered to be passenger friendly with crew considerations.

2. Multiple cockpit crew members are required for each flight, usually two including a
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captain and a first officer. Even though the crew members may have different pairings,

we assume the pair of crew members assigned at the beginning of the time window stay

fixed through the time window. We solve the CRM only for the captain and check the

legality of the first officer in the post-processing stage. If the assigned pairing violates

some legality restriction, a swap is conducted or a reserve crew is assigned if possible.

Other than being computationally tractable for a single-day horizon, returning a globally

optimal passenger solution has another advantage: it is more satisfying to passengers whose

aggregate delay is at a minimum. Recent news headlines have reported about excessive

passenger delays inducing a ‘passenger revolt’ and a number of variants for a passenger bill

of rights have been proposed among Congress. Effective April 2010 the U.S. Department

of Transportation has enacted a rule whereby airlines would be forced to pay up to $27,500

for each passenger experiencing a tarmac delay in excess of three hours (U.S. Department

of Transportation 49 U.S.C. 40113).

3.5.1 Decomposition

Because scheduling decisions affect repaired aircraft rotations, crew schedules, and passenger

itineraries, employing a Benders’ decomposition scheme would be natural to decompose the

problem. The master problem is the SRM with linking variables {xe,s}, {κf} that are

passed into the subsequent subproblems: ARM, CRM, and IRM.

While the three subproblems are independent of each other, they are solved sequentially.

First, the SRM and IRM iterate until the aggregate passenger delay cost is minimal. The

ARM is then solved. If the ARM is infeasible, a Benders feasibility cut is added to the

SRM. Otherwise, the CRM is then solved. Again, a feasibility cut is added if the CRM

is infeasible. Otherwise, a tentative solution is found. If the optimality gap between the

current CRM iterate is within some tolerance level specified by the user, a solution to the

iterative scheme is given. Otherwise, new columns are generated and returned to the CRM,

or a Benders optimality cut is returned to the SRM. The problem structure is amenable to

parallelization, but we employ the sequential implementation.

There are five classes of Benders cuts that are passed into the master problem. Only
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the relaxation of each of the three subproblems are solved so as to obtain coefficients of

the Benders cuts. The master problem is first solved as an LP-Relaxation, and new strings

are generated based on the corresponding dual extreme ray if the relaxed SRM is infeasible

until feasibility is attained. Obtaining integer solutions for the three subproblems is further

discussed in Section 3.5.4.

The five families of Benders cuts that are included in the master problem are

∑
e∈E

∑
s∈S

πARM
e,s xe,s ≤ πARM

0 (31)

∑
f∈F

(1− κf )πCRM
f +

∑
k∈K

ρCRM
k ≤ 0 (32)

∑
f∈F

(1− κf )πCRM
f +

∑
k∈K

ρCRM
k ≤ ηCRM (33)
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where the superscripts denote the given subproblem, πARM
0 and πIRM

0 are constants that

depends on the dual variables from the right-hand side of constraints that do not depend

on master variables from the ARM and IRM, respectively. ηCRM and ηIRM are new decision

variables in the master problem corresponding to the optimal objectives in the CRM and

IRM, respectively. The cuts are ARM feasibility, CRM feasibility, CRM optimality, IRM
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feasibility, and IRM optimality, respectively. We model the ARM as a feasibility problem

so ARM optimality cuts are unnecessary.

3.5.2 Column Generation

Given the large number of flight strings and repaired crew pairings, only a subset of columns

are generated through each of these problems. Multiple columns are generated through a

residual network which is built from the flight network for flight strings and the crew

duty network for repaired crew pairings. Given a directed network G = (V,A), a dummy

source and sink node are added in which a variable (flight string or repaired crew pairing)

corresponds to an s − t path. Paths are constructed by computing the reduced cost for

every arc a ∈ A. Arcs with a sufficiently high reduced cost are eliminated and resulting

paths (columns) are generated. In order to generate multiple columns at once, a tolerance

parameter ε > 0 is defined and all columns whose path p prices out less than ε are then

added. This is sometimes known as path generation through an ε-residual network (see

Ahuja et al. [7] for a general description; Shaw [104] gives an example pertinent to a

traditional crew pairing problem). A summary of this method is shown in Algorithm 1.

Algorithm 1 Path Generation Through ε-Residual Network

Given: Set of resources R, general resource network G = (V,A), dual information
πv ∀v ∈ V , and tolerance parameter ε > 0
Initialize: Newly generated variables X = ∅
for i = 1 to |R| do

create augmented network for resource i, Gi = (V,A)
add source node s and sink node t
construct all arcs from s to eligible initial nodes and arcs to t from eligible end nodes
for all a ∈ A do

compute reduced cost ca
if ca > ε then

delete arc a: A← A \ {a}
end if

end for
Let Xi =

{⋃
p : p is an s− t path s.t.

∑
a∈p ca < ε

}
X ← Xi

end for
return new columns X
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3.5.3 Simultaneous Row and Column Generation

The preceding section illustrates how we are employing both Benders cuts as well as column

generation. While these two classical large-scale optimization methods are widely known,

they are in isolation of one another. Given an infeasible or suboptimal subproblem a Benders

cut f (xe,s, κf ) ≤ f0 is added to the master problem. But this cut generated is valid only

over the subset of strings S′ ⊆ S that have been generated. Moreover in the case of the

CRM where repaired crew pairings are also being generated, the given cut is valid only over

those subset of pairings P ′ ⊆ P that have been generated.

We discuss two cases how these methods are used together.

3.5.3.1 Flight Strings

A general Benders cut is valid over all generated flight strings S′ ⊆ S. As new strings

are added, the Benders cut may be invalid for some s ∈ S \ S′. While to the best of our

knowledge, there does not exist a way to overcome this barrier , we simply remove the

Benders cuts anytime new strings are added (a related problem introduced by Van Roy

[123] is that of cross decomposition). Because cycling may occur once the cuts are deleted,

we do not generate new strings within every iteration. Rather, they are generated every

k > 1 iterations from the LP-Relaxation of the master problem.

3.5.3.2 Repaired Crew Pairings

A Benders cut is valid over all generated linking variables as well as those local to the sub-

problem. However, if columns are being added to the subproblem, new columns may violate

the previous cuts rendering them as invalid to all variables. Therefore any cut initially gen-

erated becomes a candidate cut since it is feasible only over all generated variables. In the

context of the CRM, we denote P ′ ⊆ P to be the set of all generated pairings. Simultaneity

of these two procedures by first obtaining a certificate of infeasibility that proves the CRM

is infeasible over all P for a given master solution. If the candidate cut meets this criterion,

then the cut is added to the master. Otherwise, it is discarded. In both cases, new columns

are being generated.
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The complete details of how Benders’ cuts and newly-generated crew pairings are dis-

cussed in Chapter 4.

3.5.4 Integrality

The iterative Benders scheme solves only the master problem (SRM) to integrality and solves

the subsequent three subproblems in their respective LP relaxations. Once the iterative

algorithm has terminated, then branching is done to find a nearby solution if a fractional

solution is present. If no feasible integer solution is found by branching, the node returned

by the algorithm is then rejected and the procedure is to continue until an integer solution

is delivered. We discuss how integrality is obtained in each of the three subproblems.

SRM Integrality The SRM module is solved to integrality using branch-and-cut. One

particularly useful strategy is to branch on follow-ons. This concept was introduced by

Ryan and Falkner ([99]). A follow-on is a pair of flights that are contained in the same

fractional-valued string. The branching dichotomy either forces or forbids the given follow-

on. Anbil et al. ([9]) and Lettovsky et al. ([78]) show follow-on branching to be successful

in driving integrality of crew recovery models in particular. We find this branching strategy

to also be very effective in the SRM.

ARM Integrality One of the advantages of the flight string models is it makes the

routing problem considerably easier to solve as shown in Theorem 3.5.1.

Theorem 3.5.1. (ARM Integrality) The polyhedron associated with the LP-Relaxation of

the ARM is integral

Proof. This problem reduces to a maximum cardinality bipartite matching problem for node

sets aircraft-string assignments
{
xne,s
}

and assigned strings from the master problem
{
x∗e,s
}

.

This class of problems is well-known to be integral (see Nemhauser and Wolsey [88]).

CRM Integrality Solving the LP-relaxation of the CRM induces integer solutions in

many scenarios. However the polytope is itself not integral. Similar to the case of driving

SRM integrality, we employ branching on follow-ons with respect to fractional crew pairings.
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IRM Integrality Solving the PRM could be done through a multi-commodity network

flow algorithm yielding integer solutions. However the associated polyhedra is highly inte-

gral and branching is done only in the presence of a fractional solution.

3.5.5 Overview

Figure 18 summarizes our approach to solving the AIR model.
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Figure 18: AIR Optimization Module
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3.6 Computational Results

Our model is tested using 2007 data from a hub-and-spoke regional airline based in the U.S.

with approximately 800 daily flights and two fleet types. The main disruption of interest

is a flow rate reduction into and out of the hub, and possibly other stations. We consider

a reduction in terms of a certain percentage of scheduled operations as well as a full hub

closure for some period of time. Table 4 summarizes the benchmark parameters used in the

results obtained. As shown in the table, the SRM cost objective is only to minimize the cost

associated with canceling flights, whilst ignoring the cost of assigning equipment to flight

strings. An obvious alternative is to penalize all flights whose equipment type deviates from

the schedule. The same could be said for assigning individual tails to flight strings in the

ARM. The cost of $38 per hour of passenger delay is given by Ball et al. ([18]).

Note that we consider a zero objective on individual crew pairing assignments. This

is because the crew recovery problem is quite different from the well-known crew pairing

problem where the objective is to minimize the sum of crew pairing assignments known as

pay-and-credit, which is a complex objective which factors in the total time the crew is away

from base, flying hours, and number of duties in a pairing. Deadhead costs are influential

to the cost of the entire pairing, and therefore by minimizing deadhead costs during the

broken part of a crew pairing, pay-and-credit can be reduced.

The data represented in Table 4 comes from a priori knowledge about the given network

and airline under consideration. Of course, different airlines could incorporate their own

set of parameters characterizing their own idiosyncratic values. We emphasize the specific

values are not important per se, but rather the methodology that determines the set of

rescheduling decisions as different sets of parameters could be used to reflect other carriers.

Our goal is to deliver a solution within 30 minutes as agreed upon by our industry

partners. While this number is likely greater than the allowable time posed by an OCC

coordinator, we emphasize the challenges posed by this particular regional carrier is among

the most complex and difficult-to-solve class of problems. Moreover our implementation

serves only as a prototype versus production software. A number of ways to expedite

our implementation exist including utilizing parallelization and improved computational
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Table 4: Benchmark Parameters Used in Computations

parameter description value

cassign
e,s cost of assigning equipment e ∈ E to string s ∈ S $0

ccancel
f cost of canceling flight f ∈ F $25,000

cne,s cost of assigning tail n ∈ AC(e) to string s ∈ S $0

cassign
k,p cost of assigning crew k pairing p $0

dpairing
f cost of deadheading on flight f within a pairing $1,000

dbase
k cost of crew k deadheading to crew base $2,000

cdelay
i,γ cost in passenger goodwill per hour of delay $38

cunassign
i cost of unassigned itinerary for passenger i ∈ OD $2,500

ωi,γ weight of passenger itinerary cost in IRM
nPAX
i∑
i n

PAX
i
∀γ ∈ Γi

infrastructure that is likely to be found at an OCC. We emphasize that our model is scalable.

For small disruptions that airlines have to deal to every day much less time is needed, while

being able to provide an answer for larger scenarios. Even by sacrificing on optimality, our

module is likely able to provide an improvement over incumbent methods which often rely

on the manual construction of rescheduling decisions.

Our model has been implemented in C++ using Concert/CPLEX 12.2 on a quad-core

computing cluster whose head node is a 2.66 GHz Xeon X5355 processor.

Problem Size and Length of Disruption Section 3.4 discussed how the scope of the

recovery operation was limited. Figure 19 shows how the number of disruptable flights

grows with respect to the duration of closure at the hub beginning at 8:00 local time. While

a one-hour disruption affects nearly half the flights, every flight is disruptable when the

length of the disruption reaches 105 minutes. This is partially due to the fact that the

71



data set comes from a regional carrier whose flight legs are typically short relative to major

carriers whose networks span a larger geographical region. This is readily seen as that every

tail number has some activity at the hub between 8:00 and 9:15 AM local time.

Figure 19: Disruptable Flights and Length of Hub Closure

Build versus Repair of Crew Duty Network One of the major bottlenecks in the

solution process outlined above is the construction of, and generating paths through the crew

duty network. Because this network is apt to change for each new scheduling decision made

in the master problem, there are two approaches how to manage the crew duty network.

The first is to build it once before the iterative process begins, then heuristically repair

broken duties and missed connections and repair the original network based on the current

scheduling decisions. The second is to construct a new network entirely after each master

solution. The obvious tradeoff is computational resources spent constructing the crew duty

network and information about the true network. If the time window includes more than

one day, the number of connecting duties increases substantially thereby making the CRM

even more complex, and the former approach is more plausible. As a first attempt to study

the AIR problem, we begin by restricting our analysis to a one-day time window so that

the crew duty network can be rebuilt within each iteration. It may be naturally of interest
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to take the other approach for larger problems. The multi-day problem would require a

different set of algorithms.

3.6.1 Disruption Scenarios

We model three classes of disruption scenarios:

1. 50 % reduction in flow rate (arrivals & departures)

2. 75 % reduction in flow rate (arrivals & departures)

3. 100 % reduction in flow rate (arrivals & departures)

Each scenario will examine four different disruption events characterized by a disruption

time, disruption location, and time window shown in Table 5. Scenario 4 considers two

disruptions: one at the hub and the other at one of the largest spokes used in the network.

Given the growth of problem size on the length of hub closure (see Figure 19), we consider

a maximum hub disruption to be 75 minutes, which our heuristic search procedure includes

every flight after the disruption. The final column represents the maximum delay considered

which has a profound effect on the number of strings being generated. For a two hour hub

disruption, the total number of flight strings (that contain no more than 7 flights) increase

from under 200,000 using a one hour maximum delay period to more than 2.6 million using

a three hour maximum delay period. If a set of passenger itineraries is suboptimal after

the 30 minute threshold, the best incumbent solution is given and passed to the ARM and

CRM subproblems. The algorithm has timed out only for the largest scenarios in our study.

Table 5: Simulated Disruption Events

event
disruption disruption time window max delay

time location T time (minutes)

1 08:00 - 08:30 hub 08:00 - 23:59 90

2 08:00 - 09:00 hub 08:00 - 23:59 120

3 08:00 - 09:15 hub 08:00 - 23:59 150

4
08:00 - 09:00 hub

08:00 - 23:59 120
09:00 - 14:00 spoke
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3.6.2 Integrated versus Sequential Recovery

We report costs for all subproblems and important metrics that determine quality of solu-

tion. We do not report costs for the ARM in the integrated model since it amounts to a

feasibility problem, and is always feasible in the sequential module. All times are reported

in MM:SS format.

Disruption Scenario 1: 50% Flow Rate Capacity Reduction Tables 6 and 7 show

the first set of results for a 50% flow rate reduction into and out of the hub for the sequential

process and integrated process, respectively.

Table 6: Sequential Recovery Summary (50% flow rate reduction)

Event
1 2 3 4

subproblem costs ($)
SRM 0 0 0 150,000
ARM 0 0 0 INFEAS
CRM 0 0 0 INFEAS
PRM 11,653 28,257 55,665 116,471

solution metrics

mean flt delay 20:05 23:34 42:21 41:36
cancelled flts (%) 0 0 0 4.6
delayed flts (%) 12.8 59.4 56.2 52.0
total deadheads 0 0 0 INFEAS
mean PAX delay 23:09 24:28 45:39 39:15
unassigned PAX 0 4 5 31

CPU time 0:58 07:28 17:20 12:02

Table 7: Integrated Recovery Summary (50% flow rate reduction)

Event
1 2 3 4

subproblem costs ($)
SRM 0 0 0 50,000
CRM 0 0 0 4,000
PRM 11,653 22,942 46,057 54,820

solution metrics

mean flt delay 20:05 20:34 39:50 33:41
cancelled flts (%) 0 0 0 1.6
delayed flts (%) 12.8 35.1 38.0 49.3
total deadheads 0 0 0 2
mean PAX delay 23:09 21:47 39:22 33:37
unassigned PAX 0 3 3 5

CPU time 1:02 24:41 32:28 36:34
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Disruption Scenario 2: 75% Flow Rate Capacity Reduction Tables 8 and 9 show

the results from reducing capacity by 75%.

Table 8: Sequential Recovery Summary (75% flow rate reduction)

Event
1 2 3 4

subproblem costs ($)
SRM 0 0 0 150,000
ARM 0 0 INFEAS INFEAS
CRM 0 0 INFEAS INFEAS
PRM 15,316 29,440 62,316 85,039

solution metrics

mean flt delay 17:57 28:24 46:58 44:01
cancelled flts (%) 0 0 0 4.6
delayed flts (%) 28.7 37.7 52.3 54.4
total deadheads 0 0 INFEAS INFEAS
mean PAX delay 22:19 28:52 50:23 44:41
unassigned PAX 2 4 8 24

CPU time 1:01 10:02 14:11 14:29

Table 9: Integrated Recovery Summary (75% flow rate reduction)

Event
1 2 3 4

subproblem costs ($)
SRM 0 0 0 100,000
CRM 0 0 0 5,000
PRM 15,316 22,198 51,336 40,489

solution metrics

mean flt delay 17:57 28:31 44:01 33:05
cancelled flts (%) 0 0 0 2.3
delayed flts (%) 28.7 38.1 42.1 56.4
total deadheads 0 0 0 3
mean PAX delay 22:19 20:36 41:44 36:19
unassigned PAX 2 3 6 7

CPU time 1:04 23:20 30:56 32:27

Disruption Scenario 3: Hub Closure Finally we consider a full closure into and out

of a set of stations prohibiting all arrivals and departures within the disruption time which

are shown in Tables 10 and 11.

In both environments, a warm start is provided to the initial SRM that preserves all

scheduled routings incorporating the minimum possible delay with each flight (thereby

initially not considering flight cancellations). As a result the integrated and sequential

solutions may coincide if the warm start is optimal. This occurs in two of the scenarios
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Table 10: Sequential Recovery Summary (hub closure)

Event
1 2 3 4

subproblem costs ($)

SRM 0 0 0 175,000
ARM 0 0 0 INFEAS
CRM 0 0 0 INFEAS
PRM 17,979 32,057 56,730 133,573

solution metrics

mean flt delay 28:10 25:28 27:51 49:47
cancelled flts (%) 0 0 0 4.0
delayed flts (%) 66.9 64.2 59.3
total deadheads 0 0 0 INFEAS
mean PAX delay 17:56 31:46 41:58 43:41
unassigned PAX 4 4 3 36

CPU time 0:35 17:50 31:01 20:41

Table 11: Integrated Recovery Summary (hub closure)

Event
1 2 3 4

subproblem costs ($)
SRM 0 0 0 100,000
CRM 0 0 0 5,000
PRM 12,186 24,566 41,993 58,300

solution metrics

mean flt delay 19:25 23:24 29:39 34:40
cancelled flts (%) 0 0 0 2.3
delayed flts (%) 26.4 40.6 59.1 58.5
total deadheads 0 0 0 3
mean PAX delay 16:04 21:02 36:41 41:54
unassigned PAX 2 4 3 7

CPU time 1:46 24:09 31:00 24:22

explaining why the integrated recovery framework provides no improvement. Of course,

relaxing the warm start will induce the integrated solution to dominate its sequential coun-

terpart. No scenarios were encountered from the integrated model where no integer feasible

solution was found to a subproblem after the Benders’ framework has terminated.

We note that the 75 minute disruption seems to prohibit obtaining a solution in our

30 minute runtime goal. While about 60% of the flights are initially disruptable from

the scheduled routings, all flights are disruptable through the process by which we limit

the scope (Section 3.4). Moreover, the number of strings is vastly higher due to a longer

maximum flight delay period. The multiple disruption scenario performs better, but is does

not always meet the runtime goal in the integrated setting (Tables 7 and 9).
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Moreover we note the improvement in solution quality the integrated approach delivers

over the sequential one. First, note that 25% of the scenarios show the sequential approach

is infeasible where the integrated approach always delivers a solution. Secondly, we note

a reduction in the key performance metrics that include flight delay, passenger delay, and

cost of recovery. Table 12 shows how the integrated module reduces mean passenger delay,

mean flight delay, and passenger reaccommodation costs by averaging across the 50%, 75%,

and 100% capacity reduction scenarios. Of particular interest in the behavior of mean

passenger delay which is reduced by as much as 14.6% in the 75 minute disruption. The

integrated model also reduces passenger reaccommodation costs considerably; saving over

half the reaccommodation costs from the multiple disruption scenario.

Table 12: Summary of Improvement from Integrated Model

Performance Metric Improvement

Event
Mean Passenger Mean Flight PRM cost

Delay (%) Delay (%) (%)

30 minute disruption 2.9 13.2 12.9

60 minute disruption 13.7 6.2 22.3

75 minute disruption 14.5 3.3 20.3

multiple disruptions 12.4 25.1 54.2

Another question of interest is how the solution quality changes with respect to input

parameters. Figure 20 shows two experiments of interest using the 60-minute hub closure

disruption scenario. Panel 20a shows how the cancellation rate changes with respect to the

cost of flight cancellations ccancel
f . As mentioned previously, the airline under consideration

is highly adverse to flight cancellations due their own idiosyncratic requirements. The figure

shows that as long as the cost associated with a cancellation exceeds $15,000 per flight, the

same recovery tactic that considers only delays remains optimal. Cancellations only become

desirable when the cancellation penalty is between $10,000 and $15,000 per flight. Panel

20b illustrates the tradeoff between the severity of passenger delay and cancellations by

changing the cost of unassigned passengers cunassign
i . The solution summarized in Table 11

(setting cunassign
i to $2,500 for all i ∈ OD) remains the optimal solution for all values cunassign

i

that exceed $1,000. The tradeoffs between passenger delay and flight cancellations change

the solution only when the penalty parameter is between $500 and $1,000 per passenger.
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Therefore the optimal solution attained in the integrated model for the one-hour hub closure

are robust with respect to these two input parameters under consideration.
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(a) Changing ccancel
f

(b) Changing cunassign
i

Figure 20: Sensitivity Analyses for a One-Hour Hub Closure
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CHAPTER IV

SIMULTANEOUS ROW AND COLUMN GENERATION

4.1 Introduction

Consider a standard mathematical programming problem of the form

z∗ = min {cx : x ∈ S} (P )

where S =
{
x ∈ Rn+ : Ax = b

}
and n is large. Two classical methods to solve such large-

scale problems are decomposition methods and column generation methods.

Decomposition methods seek to decompose (P ) into several smaller problems. Primal

and dual decomposition techniques seek to partition the columns or rows, respectively of

the resource matrix A to exploit the structure of the problem in a way that is amenable to

faster computation. Benders’ decomposition and Lagrangean decomposition give examples

of the respective schemes. In each of these settings, a reformulation of the problem relies

on an iterative scheme whereby a restricted master problem is solved over a subset of

variables or constraints, and successive cuts are added based on a series of subproblems.

This chapter will specifically focus on how Benders’ cuts and column generation may be

used simultaneously.

Column generation works off a sequence of smaller problems similar to (P ). For N ′ ⊂ N

a problem of the form

x̃ = arg min
{
cx : x ∈ S(N ′)

}
(P ′)

is solved where S(N ′) =
{
x ∈ R|N

′|
+ : A(N ′)x = b

}
, and A(N ′) is a submatrix of A

matrix obtained by removing all columns whose indices are not contained in N ′. While x̃

is feasible for (P ), it is not necessarily optimal. Given x̃ the pricing problem tries to find

a variable (column) present in (P ′) but not in (P ) whose reduced cost is strictly negative.

If such a column is found it is appended to N ′ and (P ′) is re-solved. If no such column is
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found, x̃ is optimal for (P ). For all j ∈ N the reduced cost cj is given by

cj = cj − πA·,j

where A·,j denotes the jth column of A. Let π∗ denote a solution the dual variables for

(P ′) corresponding to x̃. The pricing problem

j∗ = arg min
{
cj − πA·,j : j ∈ S(N \N ′)

}
is solved. If π∗A·,j∗ ≤ cj∗ then x̃ is optimal for (P ). Else, N ′ ← N

⋃
{j∗} and (P ′) is

re-solved until no column prices out.

While decomposition and column generation methods are widely known, they are gen-

erally thought of as being mutually exclusive. It is of natural interest to integrate these two

paradigms where possible. Given a cut πx ≤ π0 that has been generated with respect to

N ′ ⊂ N variables, the problem is to determine whether or not the cut remains valid over all

variables in N , or if there exists some j ∈ N \N ′ such that πxj > π0 therefore invalidating

the cut for the global problem (P ). Surprisingly there has been little work done in the

literature regarding this fundamental question. First, a literature review of related work is

provided.

4.2 Literature Review

Van Roy [122] proposes an algorithm that simultaneously uses both primal and dual decom-

position for problems that exhibit each type of structure. The proposed approach, referred

to as cross decomposition, adds cuts and columns to the restricted master problem through

solutions to the primal and dual subproblems, respectively. The algorithm begins by select-

ing initial values of Lagrangean multiplier and solves the dual subproblem whose solution

is passed to the primal subproblem. If optimality is not verified, the primal solution is used

to update the new Lagrangean multipliers and the process continues until it terminates, for

which it is shown to do so in a finite number of steps. It is shown that fewer Benders’ cuts

(from primal decomposition) can be attained at the expense of additional constraints in the

Lagrangean relaxation (dual decomposition).
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Feillet et. al. [49] propose a methodology to add columns and cuts simultaneously

within the context of branch-and-cut-and-price. Given the solution to a restricted master

problem, they construct a feasible primal and solution to their respective master problems

(the latter of which may be infeasible). The constructed solutions attain the same objective

values as the solutions from the restricted problems. If the dual solution is feasible, then

the optimality criterion is met. Else, a dual cut is added and the process continues. They

show how to reconstruct the solutions from the restricted master solution by illustrating two

examples in which they show their method yields considerable improvements in runtime.

Poggi de Aragão and Uchoa [92] introduced an alternative method to Dantzig-Wolfe

decomposition by a reformulation into what they call an Explicit Master problem which

which is equivalent to the relaxation of the master problem from a Dantzig-Wolfe structure,

but fixes some of the reduced costs of its variables to zero. The pricing problem associated

with the Explicit Master problem is then independent of the master problem allowing cuts

to be added to the new master reformulation that do not change the structure of the reduced

costs.

Problem-specific applications of managing row and column generation simultaneously

are seen in other studies. Nemhauser and Park [87] were the first to provide such a proce-

dure, which will be reviewed in Section 4.4.2.

Barnhart et. al. [20] show how flight strings that are generated dynamically from an

aircraft routing problem can be used in conjunction with flight connectivity constraints.

For each such constraint, an auxiliary variable is added and the pricing problem is modified

in the underlying network to ensure the constraint remains valid.

Barnhart et al. [21] propose using branch-and-price-and-cut to solve integer multicom-

modity network flow problems. By reformulating the original problem, they are able to

create the pricing problem and separation algorithms in a way that do not depend on

each other. Moreover, their branching strategy does not explicitly add constraints to the

underlying problem so the pricing problem is unchanged.

Fukasawa et al. [53] studies an exact algorithm to solve the capacitated vehicle routing

problem (CVRP) that makes use of Lagrangean relaxation and column generation in a
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simultaneous manner. They are able to reformulate the problem over the intersection of

two polytopes for which 8 families of cuts known in the CVRP literature were augmented

by additional columns. The cuts were generated from the reformulation, transformed, and

subsequently added to the master problem . Column generation is preformed dynamically

trading off the bound quality in the branch-and-cut tree and time spent pricing out new

columns. Their method is able to solve problems more than twice the size of instances that

can be consistently solved using just either branch-and-cut or column generation.

Valério de Carvalho [121] study how the one-dimensional cutting stock problem may be

expedited by using cuts generated from the dual space that ultimately reduce the number

of degenerate iterations. The dual space is restricted during column generation, and the

primal space is relaxed by inserting new columns. The procedure works off these extended

spaces for which a solution can be restored to the original space.

Alves and Valéerio de Carvalho [8] use a branch-and-price-and-cut algorithm on the

multiple length cutting stock problem which they show to outperform other exact methods.

Similar to [121], for each node in the branch-and-bound tree, they restrict the dual space

by adding valid inequalities that accelerates the column generation procedure.

4.3 Review of Benders’ Algorithm

This section is a review of the seminal work of Benders [26]. As this work serves as the core

of this chapter and the next, a brief review of the algorithm is now provided. Consider the

following mathematical programming problem:

z = min cx + f1y1 + f2y2 + · · · + fkyk

s.t. Ax = b

B1x + F1y1 = d1

B2x + F2y2 = d2

...
. . .

...

Bkx + Fkyk = dk

x ∈ Zn

yj ∈ Rnj

+ , 1 ≤ j ≤ k

(P )
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where c ∈ Rn+, A ∈ Rm×n, b ∈ Rm, and for j = 1, 2, . . . , k, fj ∈ Rnj

+ , Fj ∈ Rmj×nj , and

dj ∈ Rmj (the non-negative cost coefficients are assumed without loss of generality). Notice

that (P ) is initially assumed to be a mixed-integer programming (MIP) problem, although

variants of the algorithm exit for when x is real-valued or the y vectors are discrete. The

constraints form a block system that are amenable to decomposition described as follows.

Given a feasible x∗ for (P ), the jth subproblem denoted by SUB(j;x∗) depends only on yj

and thus can be solved in isolation and is formulated as

zj = min
{
fjyj s.t. Fjyj = dj −Bjx∗, yj ∈ Rnj

+

}
(SUB(j;x∗))

whose dual is

ωj = max
{
πj (dj −Bjx∗) s.t. πjFj ≤ fj

}
. (DSUB(j;x∗))

It is assumed throughout that the dual polyhedron Qj ≡ {π ∈ Rmj : πFj ≤ fj} is

nonempty for all subproblems. Let Πj denote the set of all dual extreme point from the

jth dual polyhedron. The variables x from (P ) are referred to as linking variables whereas

variables yj are often referred to as local variables or subproblem variables for the jth sub-

problem (SUB(j;x∗)). Benders’ decomposition algorithm is a reformulation of (P ) with

the following n+ k variables:

• The original n linking variables x

• k continuous variables η1, η2, . . . , ηk where

ηj = max
{
π (dj −Bjx∗) : π ∈ Πj

}
.

At each step of the algorithm a candidate solution x∗ is given from the Master Prob-

lem (MP), whose variables contain only the linking variables x and auxiliary variables

η1, η2, . . . , ηk. In general characterizing Πj is intractable. Instead, the procedure relies on

a proper subset Π̃j of Πj which is appended if the given dual solution is shown to be sub-

optimal. The Restricted Master Problem (RMP) is the same problem as the MP but does

not rely on a complete characterization of the dual polyhedra. A solution x∗ to the RMP

may lead to an infeasible or suboptimal solution for some subproblem where inequalities
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are added to the RMP to cut off such solutions. If (x∗, η∗) is a solution from the MP, and

for all j = 1, 2, . . . , k there exists a dual optimum (πj)∗ such that η∗j ≥ (πj)∗ (dj −Bjx∗),

then the procedure terminates with (x∗, y∗1, y
∗
2, . . . , y

∗
k) being optimal for (P ). Otherwise, if

η∗j < (πj)∗ (dj −Bix∗) then weak duality has been violated for which Π̃j is appended with

the inclusion of (πj)∗, and the constraint (πj)∗ (di −Bix) ≤ ηi is added to the RMP. This

inequality is said to be a Benders’ optimality cut.

Suppose the dual subproblem is unbounded for a candidate solution x∗. Then by duality,

the original primal subproblem (SUB(j;x∗)) is infeasible. An unbounded dual extreme ray

is a feasible dual vector r ∈ Rmj such that r (dj −Bjx∗) > 0. Therefore if Rj denotes the

set of all dual extreme rays from the jth dual polyhedron, rjq (dj −Bjx∗) ≤ 0 for all dual

extreme rays q ∈ Rj . Similar to the set of dual extreme points discussed above, obtaining

a complete characterization of Rj is usually intractable, so the RMP works iteratively off a

subset R̃j of Rj . For a given x∗ if the jth dual subproblem is unbounded, then an extreme

ray rjq is found by which rj (dj −Bjx∗) > 0, then the set R̃j is appended by rjq and the

inequality rjq (dj −Bjx∗) ≤ 0 is added to the RMP. This inequality is said to be a Benders’

feasibility cut.

A given iteration of the RMP is given by a set Π̃j
p ⊆ Π̃j of dual extreme points and a

set R̃j ⊆ Rj of dual extreme rays for dual polyhedron j = 1, 2, . . . , k. Let Π̃ =
⋃k
j=1 Π̃j

and R̃ =
⋃k
j=1 R̃

j be the set of all dual extreme points and dual extreme rays, respectively.

Given these sets the RMP is formulated as

z = min cx+

k∑
j=1

ηj

s.t. Ax = b

πjp (dj −Bjx) ≤ ηj ∀p ∈ Π̃j , j = 1, 2, . . . , k (RMP(Π̃, R̃))

rjq (dj −Bjx) ≤ 0 ∀q ∈ R̃j , j = 1, 2, . . . , k

(x, η) ∈ Zn+ × Rk+.

If y∗j are such that fjy
∗
j ≤ η∗j for all j = 1, 2, . . . , k, an optimal solution (x∗, y∗) is

attained.
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While there are subtle different implementations of the algorithm, a standard one is

seen in Algorithm 2.

Algorithm 2 Benders’ Decomposition Algorithm

1: given: an initial feasible solution x∗ to RMP(∅, ∅)
2: initialize isOptimal = false
3: for all j = 1, 2, . . . , k do
4: Solve DSUB(j;x∗)
5: if DSUB(j;x∗) has a finite optimum then
6: instantiate Π̃j = (πj)∗

7: else if DSUB(j;x∗) is unbounded then
8: instantiate R̃j = (rj)∗

9: end if
10: end for
11: while isOptimal = false do
12: solve RMP, let (x∗, η∗) denote an optimal solution
13: for all j = 1, 2, . . . , k do
14: solve DSUB(j;x∗); obtain an optimal extreme point (πjp)∗ or extreme ray (rjq)∗

15: if DSUB(j;x∗) has a finite optimum then
16: if η∗j < (πjp)∗ (dj −Bjx∗) then

17: Π̃j ← Π̃j ∪ (πjp)∗

18: add Benders feasibility cut (πjp)∗ (di −Bix) ≤ ηj to RMP
19: break; return to RMP (line 12)
20: end if
21: else
22: R̃j ← R̃j ∪ (rjq)∗

23: add Benders optimality cut (rjq)∗ (di −Bix) ≤ 0 to RMP
24: break; return to RMP (line 12)
25: end if
26: end for
27: isOptimal = true
28: end while

4.4 Simultaneous Benders’ Cut and Column Generation Algorithm

Consider a problem of the form

z∗ = min cTx +
∑k

i=1 f
iyi

s.t. Ax = b

Bix + Giyi = di, i = 1, 2, . . . , k

(x, y1, y2, . . . , yk) ∈ Zn+ × Rn1
+ × · · · × Rnk

+

where c ∈ Rn+, f i ∈ Rni
+ , Gi ∈ Rmi×ni , and di ∈ Rmi for i = 1, 2, . . . , k.
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Such a structure is amenable to Benders’ decomposition. Note that the dual polyhedron

associated with subproblem i is Qi ≡
{
π ∈ Rmi : πGi ≤ f i

}
. Let Πi =

{
πi1, π

i
2, . . . , π

i
αi

}
denote the set of all extreme points of Qi and Ri =

{
ri1, r

i
2, . . . , r

i
βi

}
denote all extreme rays

of Qi.

The complete Master Problem is of the form

z∗ = min cTx+
∑k

i ηi

s.t. Ax = b

πij
(
di −Bix

)
≤ ηi, ∀πij ∈ Πi, i = 1, 2, . . . , k

rij
(
di −Bix

)
≤ 0, ∀rij ∈ Ri, i = 1, 2, . . . , k

(x, η1, . . . , ηk) ∈ Zn+ × R+ × · · · × R+.

(MP(Π, R))

As the sets Πi, Ri are generally not completely characterized, Benders’ algorithm seeks

to solve a series of restricted master problems where the sets Πi, Ri in (MP(Π, R)) are

replaced by Π̃i ⊆ Πi and R̃i ⊆ Ri and form the basis for the Restricted Master Problem

(RMP). Let Π̃ =
⋃

0≤i≤k Π̃i and R̃ =
⋃

0≤i≤k R̃
i. The RMP is then given by

z∗ = min cTx+
∑k

i ηi

s.t. Ax = b

πij
(
di −Bix

)
≤ ηi, ∀πij ∈ Π̃i, i = 1, 2, . . . , k

rij
(
di −Bix

)
≤ 0, ∀rij ∈ R̃i, i = 1, 2, . . . , k

(x, η1, . . . , ηk) ∈ Zn+ × R+ × · · · × R+.

(RMP(Π̃, R̃))

Consider a solution (x∗, η∗1, . . . , η
∗
k) to (RMP(Π̃, R̃)) for which y∗1, y

∗
2, . . . , y

∗
k are solutions

for the subproblems. x∗ is optimal for (MP(Π, R)) if and only if for all i = 1, 2, . . . , k,

η∗i ≥ π∗
(
di −Bix∗

)
where π∗ ∈ Qi.

While the dual polyhedron Qi need not be fully characterized, traditional Benders’

decomposition assumes that the set of all subproblem variables yi are all generated. However

this may be impractical for a host of applications whose subproblems are combinatorial.

Let Ji index the set of all variables for subproblem i. Suppose a column generation scheme

is being used in which at a given iteration J ′i ⊂ Ji columns have been generated. Then the

cut coefficients πij (for an optimality cut) or rij (for a feasibility cut) are valid only over the
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set J ′i . The cut is said to be invalid if there exists j ∈ Ji \ J ′i such that the ith subproblem

becomes feasible or infeasible over J ′i
⋃
{j}. The fundamental question that arises is how

one can determine from J ′i if the given candidate cut generated over J ′i is valid over Ji.

The method proposed in this chapter relies on a certificate that guarantees the validity of

a candidate cut. The certificate is based on the Theorem of the Alternative, which is a

corollary to Farkas’ Lemma.

Theorem 4.4.1 (Theorem of the Alternative). Given (A, b) ∈ Rm×n ×Rm, exactly one of

the following two systems has a solution:

(i)
{
x ∈ Rn+ : Ax = b

}
(ii) {π ∈ Rm : πb < 0, πA ≥ 0}

Theorem 4.4.1 gives rise to a number of variants of alternative systems. One that will

be of use to our approach is given as follows.

Corollary 4.4.2. Given (A, b) ∈ Rm×n×Rm, exactly one of the following two systems has

a solution:

(i′)
{
x ∈ Rn+ : Ax = b

}
(ii′) {(π,∆) ∈ Rm × R : πb+ ∆ < 0, πA+ ∆ ≥ 0}

Proof. Consider system (i′) with three mutually exclusive conditions: 1x = 1, 1x < 1, and

1x > 1 (where 1 denotes a vector of ones).

Case 1: 1x = 1. Then for the system

Ã ≡

 A

1

 and b̃ =

 b

1


the result follows from Theorem 4.4.1 by letting π = (π,∆) ∈ Rm × R.

Case 2: 1x < 1. The alternative system for (i′) is then

πA+ ∆1 ≥ 0

πb+ ∆ < 0

∆ ≥ 0.
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Case 3: 1x > 1. By rewriting the additional condition as −1x < −1 and applying the result

the alternative system is

πA−∆1 ≥ 0

πb−∆ < 0

∆ ≥ 0

Thus (i′) has a solution if and only if (ii′) does not.

For a given pair (α, t) ∈ Rm × R let H (α, t) denote the hyperplane

H(α, t) = {x ∈ Rm : αx = t}. The geometry of the previous results shows that a hyperplane

H(π,∆) separates the right-hand side vector b from the convex hull of the columns of A,

conv {A1, A2, . . . , An}, if and only if the system {x : Ax = b, x ≥ 0} has no solution.

Returning to the Benders framework from above suppose that the ith subproblem is

infeasible at a given iteration over J ′i ⊂ Ji. The preceding result provides a basis for

validating that the subproblem is infeasible over all Ji that can be obtained in the column

generation phase, which shows the validity of a given candidate Benders’ cut. The first

result gives a simple sufficient condition verifying the infeasibility of the subproblem over

Ji, even with only J ′i variables having been generated. Intuitively, the result states that if

the solution to the pricing problem is sufficiently far enough away from the vector d−Bix∗,

then one can construct a solution to the alternative system.

Theorem 4.4.3. Suppose that for a given solution x∗ from the restricted master problem

(RMP(Π̃, R̃)) there exists some i ∈ {1, 2, . . . , k} such that subproblem i is infeasible over a

set J ′i ⊂ Ji. Let j∗ = arg max
{
πGij : j ∈ Ji \ J ′i

}
denote the solution to the pricing problem

where π represents the dual variables associated with the Phase I LP of the subproblem. If

πGij∗ < π
(
di −Bix∗

)
, then the subproblem is infeasible over all Ji.

Proof. Suppose that the ith subproblem is infeasible for a given x and J ′i . By Corollary

4.4.2, it suffices to show the existence of a solution (α,∆) ∈ Rmi × R to the alternative

system

α
(
di −Bix∗

)
< ∆

αGij ≥ ∆ ∀j ∈ J
(ALT-FEAS(i))
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Consider the Phase I problem

min
{

1s : Giy + Is = di −Bix, (y, s) ∈ R|J
′
i |

+ × Rmi
+

}
.

Since the subproblem is infeasible, π
(
di −Bix

)
> 0 by strong duality where π denotes the

dual variables to the Phase I LP.

Consider now the pricing problem for which a new column A·,j∗ is returned, i.e.

j∗ ∈ arg max
{
πGij : j ∈ Ji \ J ′i

}
.

Therefore for all j ∈ Ji, πG
i
j ≤ πGij∗ and Gij∗ < π

(
di −Bix

)
by assumption. Setting

α = −π and ∆ = −Gij∗ shows the existence of a solution for (ALT-FEAS(i)), and thus

shows the result by by Corollary 4.4.2.

Figure 21 illustrates the geometry behind Theorem 4.4.3. Given the subproblem is

infeasible over a subset J ′i , there exists a hyperplane H(π, 0) separating di − Bix and

conv
{
Gi1, G

i
2, . . . , G

i
|J ′i |

}
. If the solution to the pricing problem is small enough, H(π, 0) can

be affinely transformed to some new hyperplane H(π,∆) where ∆ ≡ πGij∗ that separates

di −Bix from conv
{
Gi1, G

i
2, . . . , G

i
|Ji|

}
.

Theorem 4.4.3 showed how Benders’ feasibility cuts can be handled concurrently with

column generation in a subproblem. However an analogous result holds from the following

result with respect to Benders’ optimality cuts.

Theorem 4.4.4. Let (x∗, η∗) be a given solution from the restricted master problem (RMP(Π̃, R̃)).

Suppose there exists some i ∈ {1, 2, . . . , k} for which subproblem i is suboptimal over a set

J ′i ⊂ Ji. Let j∗ denote a newly generated column so that

j∗ ∈ arg min

f
i
j − πGij︸ ︷︷ ︸

=f
i
j

: j ∈ Ji \ J ′i

 .

If f
i
j∗ > η∗i − π

(
di −Bix∗

)
, then the subproblem remains suboptimal over all Ji.
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Figure 21: Illustration of Theorem 4.4.3

Proof. In order to show that under the assumption listed, it suffices to show the systemy ∈ Rmi
+ :

Giy = di −Bix∗

f iy ≤ η∗i

yj ≥ 0 ∀j ∈ Ji

 (36)

does not have a solution. By Theorem 4.4.1 and Corollary 4.4.2 this is equivalent to showing

that there exists a solution (α, β,∆) ∈ Rmi × R+ × R to the following alternative system:

α
(
di −Bix∗

)
+ βη∗i < ∆

αGij + βf ij ≥ ∆ ∀j ∈ Ji

β ≥ 0

(ALT-OPT(i))

Note that (−π, 1, 0) is a solution to (ALT-OPT(i)). The first condition yields

π
(
di −Bix∗

)
> η∗i which holds since the subproblem is suboptimal over J ′i . The lat-

ter condition amounts to f
i
j ≥ 0 ∀j ∈ J ′i which holds as the optimality criterion over

the set J ′i . Now let us consider the alternative system over the set Ji \ J ′i . Let ∆i ≡

min
{
f
i
j : j ∈ Ji \ J ′i

}
be the minimum reduced cost from the pricing problem. Observe
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f
i
j ≥ ∆i ∀j ∈ Ji \ J ′i . Then (−π, 1,∆) is a solution to (ALT-OPT(i)): the first condi-

tion holds by assumption (bounding the optimality gap) and the second by construction

(bounding reduced cost). The first condition in (ALT-OPT(i)) holds by assumption. The

second condition holds for all j ∈ J ′i ∪ (Ji \ J ′i) = Ji showing the subproblem is infeasible

for all Ji given x∗.

A geometric argument holds analogous to that seen in the proof of Theorem 4.4.3 to a

higher-dimension space. For a problem of the form

min
{
cx+ fy : Ax = b, Bx+Gy = d, (x, y) ∈ Zn+ × Rm+

}
Algorithm 3 summarizes how Benders’ cuts and column generation are handled simultane-

ously.

The approach above is similar to recent work done by Codato and Fischetti [52] that

seek to improve the selection of Benders’ cuts for a MIP with no column generation (i.e.

Ji = J ′i for all i = 1, 2, . . . , k). They observe that Benders’ cut separation can be posed

by a feasibility problem of the form (36) attained by minimizing an objective of 0 while

re-writing the second constraint as −f iy ≥ −η∗. This is equivalent to evaluating the dual

problem

max
{
r
(
di −Bix∗

)
− r0η

∗
i : rGij − r0f

i
j ≤ 0 ∀j ∈ Ji, (r, r0) ∈ Rmi × R+

}
(37)

which is unbounded if x∗ is suboptimal for the given subproblem (as the dual polyhedron

contains the origin). By normalizing the objective value of (37) one may define the truncated

cone truncated cone

T i =
{

(r, r0) ∈ Rmi × R+ : rGij − r0f
i
j ≤ 0 ∀j ∈ J ′i , r

(
di −Bix∗

)
− r0η

∗
i = 1

}
(38)

whose vertices have been shown by Gleeson and Ryan [58] to define the support for the rows

of the Minimal Infeasible Subsystem (MIS) corresponding to the rows of (36). By defining

coefficients (γ, γ0) one can generate violated cuts of the rows of (36) by solving the problem

max
{
γr + γ0r0 : (r, r0) ∈ T i

}
(39)
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Algorithm 3 A Simultaneous Row and Column Generation Algorithm

1: given master solution x∗, κ∗, η∗, tolerance parameter ε > 0 and variable set J ′ ⊂ J
2: solve subproblem
3: if subproblem is feasible then
4: if (x∗, y∗) is optimal then
5: terminate, return (x∗, y∗) as an optimal solution
6: else
7: generate candidate optimality cut πx ≤ π0 + η
8: get dual variables π
9: price out; let j∗ = arg min {fj − πGj : j ∈ J \ J ′}

10: if f j∗ > η∗i − π (d−Bx∗) then
11: cut is valid over all J (by Theorem 4.4.4), add cut πx ≤ π0 to master problem
12: update J ′ ← J ′

⋃
{j∗} and return to master problem

13: else
14: update J ′ ← J ′

⋃
{j∗} and re-solve subproblem

15: end if
16: end if
17: else
18: solve Phase I LP, let ρ denote dual variables
19: price out; let j∗ = arg max {ρGj : j ∈ J \ J ′}
20: if ρGj∗ ≤ 0 then
21: terminate, no column prices out so problem is infeasible
22: else
23: if πGj∗ < ρ (d−Bx∗) then
24: problem is infeasible over x∗ (by Theorem 4.4.3)

obtain feasibility cut rx ≤ r0 and to master problem
25: else
26: update J ′ ← J ′

⋃
{j∗} and re-solve subproblem

27: end if
28: end if
29: end if
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which have been shown to expedite computation to various network design problems. The

difficulty of this procedure is to choose values of the objective function coefficients that

yield stronger cuts.

Using MIS information to generate Benders’ cuts was an idea first addressed by Hooker

[67]. This idea has been extended by Codato and Fischetti [40] to generate combinatorial

Benders’ cuts that exist for conditional relations between inequalities.

The relationship between the method for simultaneously generating Benders’ cuts and

subproblem variables, and that of selecting strong Benders’ cuts given by Fischetti et al.

[52] is summarized in the subsequent result.

Theorem 4.4.5. Any feasibility cut that is generated by Algorithm 3 is a cut that may be

generated by solving (37).

Proof. For a feasibility cut to have been added in accordance to Algorithm 3 the condition

f j∗ > η∗ − π (d−Bx∗) must be met. This is equivalent to πGj∗ + η∗ < fi + π (d−Bx∗).

My maximizing the right-hand side, one obtains the objective function in (39) for (r, r0) =

(Gj∗ , η
∗).

Since the subproblem is optimal of J ′i then f ij − πGij ≥ 0 for all j ∈ J ′i . Moreover, as x∗

induces a suboptimal solution for the ith subproblem, π
(
di −Bix∗

)
> η∗i . By normalizing

this difference to unity, the polyhedron (38) contains the solution (π, 1), and therefore

generates a violated cut.

Because the result derived in this chapter applies to systems that may or may not contain

all columns, this result is a generalization of Fischetti et al. [52].

4.4.1 Application to Airline Integrated Recovery

The simultaneous row and column generation procedure is first tested in the Airline Inte-

grated Recovery (AIR) model as presented in Chapter 3. The Crew Recovery Model (CRM)

employs column generation of crew pairing variables and therefore exhibits the structure

necessary to use the method proposed above.

Recall that yk,p are binary variables that assign a crew member k ∈ K to a pairing p.

Let Pk denote the set of all pairings eligible for crew k and suppose that P ′k ⊂ Pk represent

94



the variables that have been generated. A deadhead occurs when a crew member is assigned

to a flight but does not operate the flight as an active crew. Deadheads can either be within

a pairing in which the deadhead is to position the crew to operate a subsequent flight, or

can be used to deadhead back to the crew base, typically employed if no (legal) schedule

is available for the crew member during a disruption. Let sf denote the number of crew

members who deadhead on a flight f and νk are binary variables that equal 1 if crew k is

to deadhead back to their given crew base.

Given re-timing and cancellations decisions, the Crew Recovery Model (CRM) is given

by

min
∑
k∈K

∑
p∈P

cassign
k,p yk,p +

∑
f∈F

cdhd
f sf +

∑
k∈K

cbase
k νk (40)

s.t.
∑
k

∑
p3f

yk,p − sf = 1− κf ∀f ∈ F (41)

∑
p

yk,p + νk = 1 ∀k ∈ K (42)

(y, s, ν) ∈ {0, 1}|K|×|P | × Z|F |+ × {0, 1}
|K| .

The objective (40) seeks to minimize the total cost of assigning crew members to their

(possibly new) pairings, as well as assigning deadheads - both for deadheading within a

pairing as well as deadheading back to their base. Constraints of the form (41) are cover

constraints ensuring that all flights that are not cancelled are contained in at least one

pairing. Variables sf correspond to surplus variables that capture crew deadheads within a

pairing. (42) are crew assignment constraints that ensure crew members either be assigned

to precisely one duty or are to deadhead back to their base.

Columns are generated through a crew’s duty network. Let Gk = (D,A) denote the

duty network for crew k where D denotes the set of all eligible duties and A represents the

connection between successive duties. A connection between duty i and j is valid if the

arrival of the last flight in duty i coincides with the departure of the first flight in duty j

and a host of legality requirements are met (for example, allowing sufficient rest time). An

artificial source and sink node are added denoted by s and t, respectively. An arc (s, d)
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exists if the initial flight of duty d departs from where the crew member is at the time of the

disruption. Moreover an arc (d, t) is added if the final flight of duty d arrives at the station

the crew is required to be at the end of the disruption. Given the flight cover dual variables

the reduced cost of all arcs are computed, and discarded if the reduced cost exceeds some

parameter ε > 0. All s − t paths are generated over the reduced network that correspond

to newly generated crew pairings, and whose total reduced cost is within ε of the minimum

reduced cost.

For notational convenience let π and ρ denote coefficients of the Benders’ cut that

correspond to a dual extreme ray (for a feasibility cut) or dual extreme point (for an

optimality cut) over P ′k. The candidate Benders’ cuts are then

∑
f∈F

(1− κf )πf +
∑
k∈K

ρk ≤


0 if feasibility cut

η if optimality cut

where ηCRM represents the master variable governing the optimality cuts. These are said to

be candidate cuts as their validity is only certain over P ′k but not necessarily over Pk. The

following results give certificates verifying the validity of these cuts using the framework

introduced above. Theorem 4.4.3 then gives the following result that provides a sufficient

condition for when the SRM solution is infeasible over all crew pairings.

Lemma 4.4.6. (Extending CRM feasibility cuts over new pairings) Suppose the CRM is

infeasible over a subset of pairings P ′ ⊂ P . Let {πf} , {ρk} denote the duals corresponding

to the Phase I LP-Relaxation of the CRM. If

∑
f∈F

(1− κf )πf +
∑
k∈K

ρk > max
k∈K

 max
p∈Pk\P ′k

∑
f∈p

πf + ρk


then the CRM is infeasible over all P , and the candidate Benders feasibility cut is valid

over all strings and pairings.

The analog of Lemma 4.4.6 for the CRM optimality cut is seen in Lemma 4.4.7, which

is derived from Theorem 4.4.4.

Lemma 4.4.7. (Extending CRM optimality cuts over new pairings) Suppose the CRM is

suboptimal over a subset of pairings P ′ ⊂ P . Let {πf} , {ρk} denote the CRM duals, and
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let η∗ denote the continuous master variable corresponding to the optimal objective of the

CRM. If

∑
f∈F

(1− κf )πf +
∑
k∈K

ρk + min
k∈K

 min
p∈Pk\P ′k

ck,p −
∑
f∈p

πf − ρk

 > η∗

then the CRM is suboptimal over all P , and the candidate Benders optimality cut is valid

over all strings and pairings.

If the given sufficient condition does not exist, then the candidate Benders cut is not

added to the RMP, but the subproblem is resolved with the larger set of generated pairings

and the procedure continues until either the certificate is found, or the newly generated

variables induce feasibility or suboptimality.

Algorithm 4 shows how Algorithm 3 is applied to a tangible problem for the case of

feasibility cuts only.

In order to test the efficacy of the method above, the AIR model is benchmarked against

the incumbent method whose algorithm is the same but does not check for the given suf-

ficient conditions. In the incumbent method, cuts are added only after no other variables

price out. Given that enumerating paths over the possibly dense crew duty network is

generally time-consuming, the above framework has the potential to deliver a solution in

considerably shorter time, which is of considerable value to a problem whose solution needs

to be found in a reasonable runtime.

Of interest are both the number of iterations required and total runtime. Similar data

is used to that from Chapter 3 with some changes to the flight schedule in order reduce the

number of feasible solutions from the SRM to the CRM to illustrate the improvements to

the new model.

Table 13 shows how many cuts and column generation calls are used in the incumbent

approach versus the SRCG algorithm. The runtime results are shown in Table 14.

The results show that the SRCG method solves in over 6.15% faster on average (Table

14) relative to the incumbent procedure. While more cuts are added in the SRGC method,

the increased runtimes associated with more complex RMP models are more than offset by

the savings in time associated with generating paths over the crew duty networks (Table
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Algorithm 4 Managing Column Generation and Benders Feasibility Cuts Simultaneously

1: solve LP-Relaxation for CRM
2: initialize validCut = false
3: if CRM is infeasible over P ′ then
4: Extract dual extreme ray (πf , ρk) and Phase-I duals

(
πIf , ρ

I
k

)
.

5: Let
∑

f∈F (1− κf )πf +
∑

k∈K ρk ≤ 0 denote the candidate Benders feasibility cut
6: for all crew k ∈ K do
7: Construct subgraph G̃k(D,A) of crew duty network Gk from

(
πIf , ρ

I
k

)
8: Generate new columns P new

k over the ε-residual network over G̃k(D,A)
9: if a new column exhibits a negative reduced cost then

10: Set ∆k = max
p∈Pk

∑
f∈p π

I
f + ρIk

11: else
12: Set ∆k = 0
13: end if
14: end for
15: Set ∆ = max

k∈K
∆k

16: if
∑

f∈F (1− κf )πIf +
∑

k∈K ρ
I
k > ∆ then

17: set validCut = true
18: end if
19: if validCut = true then
20: add candidate Benders cut to master problem
21: else
22: update columns P ′ ← P ′

⋃
k∈K P

new
k , and re-solve CRM relaxation

23: end if
24: end if
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Table 13: Benders’ Cuts and Generated Paths in AIR

CRM cuts generated new paths generated
flow rate disruption
reduction length

incumbent SRCG incumbent SRGC

50%

30 min hub 1 1 62 62
60 min hub 2 2 456 456
75 min hub 2 3 2779 1777
60 min hub,

5 7 880 639
200 min spoke

75%

30 min hub 0 0 47 47
60 min hub 1 1 303 303
75 min hub 2 3 2820 1283
60 min hub,

4 6 554 309
200 min spoke

100%

30 min hub 0 0 46 46
60 min hub 1 2 241 137
75 min hub 2 3 3806 2840
60 min hub,

3 6 667 408
200 min spoke

13). Recall that all computational experiments are from a single-day time window. With

longer time horizons spanning multiple days it is believed that the differences would be even

more pronounced as the crew duty networks become exponentially more complex.

4.4.2 Edge Coloring

The preceding sections illustrate how rows and columns can be handled in a simultaneous

fashion when the underlying structure is solved by Benders’ decomposition. It is now

considered how the approach above may be used in order to solve a more generalized

problem from combinatorial optimization. Given an undirected graph G = (V,E) an edge

coloring of G is a collection of independent sets so that all edges incident to every vertex

receives different colors. The edge chromatic index of G is the minimum number of colors

used in a coloring of G, and is denoted by χ(G). The edge coloring problem is to find a

coloring of G using χ(G) colors and is shown by Holyer [66] to be NP-Complete.

Now consider 3-regular graphs. Vizing [124] showed that for all simple graphs χ(G) =

∆(G) or ∆(G) + 1 where ∆(G) represents the maximum degree of the vertices of G. There-

fore the edge coloring problem of a 3-regular graph is to determine if χ(G) = 3 or 4.
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Table 14: Incumbent vs. SRCG Runtimes in AIR

flow rate disruption incumbent SRCG
improvement

reduction length (sec) (sec)

50%

30 min hub 181 158 0.0%
60 min hub 1987 1991 0.0%
75 min hub 3724 3512 5.7%
60 min hub,

2943 2670 9.3%
200 min spoke

75%

30 min hub 114 115 -0.1%
60 min hub 1739 1745 0.0%
75 min hub 3280 2791 14.9%
60 min hub,

2831 2605 8.0%
200 min spoke

100%

30 min hub 109 111 -1.8%
60 min hub 1664 1567 5.8%
75 min hub 2409 2036 15.5%
60 min hub,

2271 1897 16.5%
200 min spoke

Nemhauser and Park [87] provide a polyhedral approach of the edge coloring problem

that relies on cutting planes and column generation, which is perhaps the first known work to

use these two methods simultaneously (Lee and Leung [76] provide an alternative approach

in later work). Let A be the edge-matching incidence matrix representing G. That is, if

aij = 1 then edge i is present in matching j, and 0 otherwise. Suppose A is m × n where

m = |E| denotes the number of edges of G and n denote the number of matchings on G. The

edge coloring problem has a simple integer programming formulation. Using this notation

the edge coloring problem yields the following simple integer programming formulation

χ(G) = min {1x : Ax ≥ 1, x ∈ {0, 1}n} (43)

where xj = 1 if matching j is used in the optimal coloring and 0 otherwise.

The LP-Relaxation of (43) is known as the fractional edge coloring problem

χLP(G) = min
{
1x : Ax ≥ 1, x ∈ Rn+

}
. (44)

The authors give the correspondence between χLP(G) and χ(G) seen in Proposition

4.4.8.
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Proposition 4.4.8 (Nemhauser and Park). If χLP(G) > ∆(G), then χ(G) = ∆(G) + 1,

and if χLP(G) = ∆(G) and there is an integral optimal solution to (44), then χ(G) = ∆(G).

Notice that the preceding result is indeterminate when χLP(G) = ∆(G) but there is a

fractional component to the optimal solution. Therefore the authors suggest tightening (44)

by adding valid inequalities to the convex hull of integer solutions to (43). The following is

a result of Seymour [103] and Stahl [110].

Theorem 4.4.9 (Seymour and Stahl). Let U ⊆ V and E(U) = {(i, j) ∈ E : i, j ∈ U}. The

following inequalities are valid for the convex hull of integer solutions to (43)

∑
{j:Mj∩E′ 6=∅}

xj ≥
⌈
|E′|
|U |/2

⌉
∀U ⊆ V and E′ ⊆ E(U) (45)

where xj is the variable corresponding to the maximal cardinality matching Mj.

For cubic graphs, the right-hand side of (45) is 3. Then the application to our particular

case of 3-regular graphs give the following family of odd circuit inequalities

∑
{j:Mj∩C 6=∅}

xj ≥ 3 for all odd circuits C (46)

Combining the preceding valid inequalities with the LP (44) gives rise to the following

augmented fractional edge coloring problem

χALP(G) = min
{
1x : Ax ≥ 1, Cx ≥ 3, x ∈ Rn+

}
(47)

where C is the edge-odd circuit incidence matrix where cij = 1 if edge i is contained in

circuit j and 0 otherwise. The correspondence between χALP(G) and χ(G) is that if G is

3-regular and χ(G) = 4, then χALP(G) > 3.

Because characterizing all matchings (columns) and odd-circuits (cuts) explicitly may

be intractable, a procedure is needed to handle these dynamically. The authors propose a

row and column generation to solve (47) for cubic graphs. If at a given iterate χALP(G) = 3

and the solution is fractional (clearly if the solution is integral, then χ(G) = 3), a simple

separation procedure is conducted that removes one of the maximum cardinality matchings

with positive weight and checking whether the resulting subgraph contains any odd cycles. If
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χALP(G) > 3, then columns are generated by solving a maximum-weight matching problem.

If a column prices out, the ALP is re-solved. If no column prices out, then χ(G) = 4.

The same problem is solved through a different procedure that attempts to reduce the

total number of iterations to attain an optimal solution relative to that of Nemhauser

and Park. Because Benders’ decomposition is not employed, the framework introduced in

Section 4.4 does not exactly apply. With the case of dynamically generating cuts through

separation, the odd-circuit inequalities are always valid over the convex hull of integer

solutions to the IP (43). However an analogous problem can be solved which relies on

another variant of Theorem 4.4.1, the Integer Farkas’ Lemma (see Schrijver [102]).

Theorem 4.4.10 (Integer Theorem of the Alternative). Given (A, b) ∈ Qm×n×Qm, exactly

one of the following two systems has a solution:

(i)
{
x ∈ Zn+ : Ax = b

}
(ii) {π ∈ Rm : πb 6∈ Z, πA ∈ Zm}

Now consider the following system which is the feasibility of ALP (47) along with an

auxiliary equation

∑
j∈J

1j,exj ≥ 1 ∀e ∈ E

∑
{J :Mj∩c 6=∅}

xj ≥ 3 ∀c ∈ C (F (J,C))

∑
j∈J

xj = 3

where 1j,e is an indicator variable that equals 1 if matching j contains edge e, and 0

otherwise. If (F (J,C)) has no integer solution, then χ(G) = 4. This occurs if and only if

there exists (α, β, γ) ∈ R|E| × R|C| × R to the following alternative system for (F (J,C)):

∑
e∈E

αe + 3
∑
c∈C

βc + 3γ 6≡ 0 (mod 1)

(F (J,C))∑
e∈j

αe +
∑

{c:Mj∩c 6=∅}

βc + γ ≡ 0 (mod 1) ∀j ∈ J.

102



Suppose χ(G) > 3 for some J ′ ⊂ J and C ′ ⊆ C. Then F (J ′, C ′) has no integer solution,

and thus there exists some α, β, γ for (F (J ′, C ′)).

Similar to the strategy developed in Section 4.4.1 an algorithm is developed that takes

a solution to F (J ′, C ′) (where J ′ ⊂ J and C ′ ⊆ C), prices out new columns, and from the

pricing solution attempts to populate a solution to (F (J,C)).

The pricing problem associated with a new column j ∈ J \ J ′ is a new matching.

Let {πe}e∈E and {ρc}c∈C denote dual variables from the ALP. Given the reduced cost

cj = 1−
∑

e∈j πe −
∑

c:Mj∩c 6=∅ ρc the pricing problem amounts to the following problem

max
∑
e∈E

πexe +
∑
c∈C′

ρcyc (48)

s.t.
∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V (49)

∑
e∈U(S)

≤ 1

2
(|S| − 1) ∀S ⊆ V : S an odd set (50)

yc −
∑
e∈C′

xe ≤ 0 ∀c ∈ C ′ (51)

xe ∈ {0, 1} ∀e ∈ E

yc ∈ {0, 1} ∀c ∈ C ′.

If C ′ = ∅ the pricing problem amounts to a maximum-weight matching problem (see

Nemhauser and Wolsely [88]). Otherwise it is similar to the max-weight matching problem

with some differences. The objective (48) seeks to find a maximum-weight of the matching

and circuit over G given (π, ρ). As a matching can contain no more than one edge incident

to every vertex, constraints (49) are added. (50) are referred to as blossom inequalities. In

the left-hand side U(S) ≡ {(i, j) ∈ E : i, j ∈ S} for all S ⊆ V . An odd set is any subset S

of V whose cardinality is an odd integer. Constraints (51) are needed to ensure at least one

edge is included in the matching from a given circuit.

χALP(G) 6∈ Z and no column prices out then χ(G) = 4. However, if a column does price

out then the following result provides a certificate that shows the existence of a solution to

(F (J,C)) if a set of conditions are satisfied.
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Theorem 4.4.11. Suppose χALP(G) 6∈ Z over some set of matchings J ′ ⊂ J . Let (π, ρ)

denote dual variables associated with two constraint classes in (47), respectively. Let Jnew

denote all matchings generated from the subproblem whose reduced cost is strictly negative.

That is,

Jnew =
⋃j ∈ J \ J ′ : ∑

e∈j
πe +

∑
{c:Mj∩c 6=∅}

ρc > 1

 .

Assume that Jnew 6= ∅. If ∃p1, p2 ∈ Z+ and q ∈ Z++ such that following three conditions

hold, then χ(G) = 4.

(i) cj ≡ p1

q ( mod 1 ) ∀j ∈ J ′ : cj 6∈ Z

(ii) cj ≡ p2

q ( mod 1) ∀j ∈ Jnew : cj 6∈ Z

(iii) q ·
(∑

e∈E πe + 3
∑

c∈C′ ρc
)
6≡ 0 (mod 1 )

Proof. Suppose that conditions (i) through (iii) hold. By (i) and (ii)

1−
∑
e∈j

πe −
∑

{c:c∩Mj 6=∅}

ρc



≡ p1

q ( mod 1 ) ∀j ∈ J ′ : cj 6∈ Z

≡ p2

q ( mod 1 ) ∀j ∈ Jnew : cj 6∈ Z

≡ 0 (mod 1) ∀j ∈ J ′ ∪ Jnew : cj ∈ Z.

By setting π̂e = πe · q for all e ∈ E and ρ̂c = ρc · q then

1−
∑
e∈j

π̂e −
∑

{c:Mj∩c 6=∅}

ρ̂c ∈ Z ∀j ∈ J ′ ∪ Jnew : cj 6∈ Z (52)

and for those j ∈ J ′ ∪ Jnew such that cj is integral, then the left hand side of (52) remains

integral as q ∈ Z. Therefore 1−
∑

e∈j π̂e−
∑
{c:Mj∩c 6=∅} ρ̂c ≡ 0 ( mod 1 ) for all j ∈ J ′∪Jnew.

Condition (iii) holds if and only if −q
(∑

e∈E πe + 3
∑

c∈C′ ρc
)
6≡ 0 ( mod 1 ). Thus,

1 − q
(∑

e∈E πe + 3
∑

c∈C′ ρc
)
6≡ 0 ( mod 1 ). Therefore setting (−π̂,−ρ̂, 1) is a solution to

F (J ′ ∪ Jnew, C ′).

Since Jnew denotes all new matchings whose reduced cost is strictly negative, it suffices

to show a solution exists over all J ∪ Jnew. Finally, extending the solution to all of C is

trivial by setting ρc = 0 for all c ∈ C \ C ′.

We now examine our results on a series of edge coloring problems. For cubic graphs

whose chromatic index is 3, the two algorithms are identical. Therefore compare the algo-

rithm as given by Nemhauser and Park to our modified algorithm (SRGC) on snarks, which
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are cubic graphs whose chromatic index is 4. Table 15 summarizes the results. We note

that on average 22.3% fewer calls to the ALP are required for the modified algorithm.

Table 15: Benchmark results: Edge Coloring

Number of iterations required
Graph |V | Nemhauser

SRCG
Improvement

& Park (%)

Petersen 10 7 5 28.6
Double Star 30 66 37 43.9
Flower Snark 12 24 19 20.8
Flower Snark 20 43 39 9.3
Flower Snark 28 65 47 27.7
Flower Snark 36 73 61 16.4
Flower Snark 44 89 75 15.7
Watkins Snark 50 131 110 16.0

While the computational results indicate fewer iterations required to obtain the optimal

solution, the runtimes for the SRGC method were substantially higher. This is due to the

fact that all columns that price out negatively are required to be found. While modern

commercial solvers support such functionality, these routines may take considerable time

for large pool sizes (all computations used CPLEX 12.2).
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CHAPTER V

ACCELERATING BENDERS DECOMPOSITION

Benders’ decomposition is unequivocally one of the most widely-used algorithms in math-

ematical programming and is used in a host of applications. In spite of its ubiquity, the

algorithm is known to often exhibit slow convergence precluding its use in some applica-

tions. It is therefore of natural interest to study if enhancements to the standard algorithm

exist that lead to improved convergence. How the algorithm may be expedited is a straight-

forward, pragmatic, question that is not particularly well-known throughout the literature.

A survey of some recent studies that have examined accelerating the algorithm through

various techniques is first discussed. This chapter presents a different approach by taking a

standard cut and strengthening it to improve the efficacy of the procedure. Four possible

cut-strengthening procedures are introduced in a general context before examining their use

on the Airline Integrated Recovery (AIR) problem as formulated in Chapter 3.

The reader is referred to Section 4.3 of Chapter 4 for a review of Benders’ Decomposition.

For the remainder of this chapter, the following notation is introduced. Denote a generic

Benders’ cut by

ψx ≤ ψ0 + 1optη (53)

where ψ0 is a constant term derived by the subproblem constraints whose right-hand

sides do not depend on linking variables, 1opt is an indicator variable determining whether

the cut is an optimial cut (equal to unity) or a feasibility cut (equal to zero), and

ψ =


π if optimality cut

r if feasibility cut.

This chapter seeks to expedite Benders’ decomposition by returning a cut that dominates

(53).
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5.1 Literature Review of Benders’ Decomposition

A number of studies have examined extensions to the seminal work of Benders [26]. Geof-

frion [57] showed how Benders’ algorithm may be employed to a problem structure in which

the subproblems are nonlinear programming problems, and the cutting planes are generated

by nonlinear convex duality theory. The generalized procedure is shown to converge when

the space of master variables is either a finite discrete set or a compact and convex set of

infinite cardinality.

Because the addition of Benders’ cuts introduce complexity to the Restricted Master

Problem (RMP), finding ways to expedite solving the RMP have been proposed. McDaniel

and Devine [83] propose solving the RMP as a linear relaxation as cuts can be generated from

any extreme point or extreme ray of the dual subproblem polyhedron. Côté and Laughton

[46] show that valid cuts can be added for any integer solution (which may be suboptimal)

from the RMP. This can be done through a simple heuristic, although the convergence

property of Benders’ algorithm is no longer valid. Holmberg [65] proposed using Lagrangean

relaxation to overcome possible difficulties in solving the RMP, although he showed that

the lower bound delivered from this approach is dominated by using Lagrangean relaxation

to the original MP.

Other studies have sought to accelerate the original framework. This chapter is most

closely related to these studies. For an original MIP problem, Magnanti and Wong [80]

suggest accelerating Benders’ original algorithm by exploiting the ‘best’ possible cut when

there are multiple solutions from the dual subproblem. This is accomplished by evaluating

each dual solution at an arbitrary point from the relative interior of the convex hull of integer

solutions from the feasible set of the RMP (referred to as a core point). The cut associated

with the maximum value is then added and is shown to be Pareto-optimal (or equivalently,

it dominates every other candidate cut). They also discuss the profound importance of

model formulation of the Full Master Problem (FMP) in the efficacy of the decomposition

scheme; in a certain class of facility location problems, for instance, they show that strong

model formulations require only a single Benders’ cut for convergence.

Rei et al. [94] use a concept of local branching, as introduced by Fischetti and Lodi
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[51], to accelerate the convergence of Benders’ algorithm for a 0-1 MIP. The authors show

how both the lower bound and upper bounds can be improved by the addition of local

branching constraints from a partition of the original feasible set. They show the value in

such an approach on both a deterministic multicommodity capacitated fixed-charge network

design problem and a stochastic integrated model for logistics network design. In both

instances they have shown that local branching can substantially enhance the performance

of a traditional Benders’ implementation.

Fischetti et al. [52] propose a new selection rule of Benders’ cuts. For a given solution to

the restricted master problem (x∗, η∗) the authors examine the polyhedron Ω consisting of

the feasible region of a given subproblem along with an auxiliary inequality that conjectures

the (x∗, η∗) is suboptimal. Note that this system is empty if and only if a Benders cut is

added to the master problem in the subsequent iteration. By defining an arbitrary objective

function measuring the magnitude of a potential infeasibility and optimizing over Ω, a

Benders cut is added if the corresponding optimization problem is empty, or equivalently

if the dual problem is unbounded (it is assumed the dual problem has a feasible solution).

The dual optimization problem induces the cut generating linear program (CGLP) that is

similar to disjunctive programming studies by, among others, Balas et al. [13].

Most of these expositions studying possible acceleration mechanisms to Benders’ algo-

rithm belong to one of two classes. The first seeks ways to increase the convergence by

reducing the number of iterations necessary to obtain a solution. The second involves ways

to reduce the time spent by obtaining successive solutions to the RMP which we have re-

marked may be increasingly difficult as more Benders’ cuts are added. Within the first

class of studies, acceleration techniques may involve novel modeling strategies, or meth-

ods to find stronger cuts in the presence of several cut candidates. While the efficacy of

cuts may be influenced by such techniques, most of the structure of the original Benders’

cuts remains the same. The purpose of this section is to explore the performance of the

traditional Benders’ technique by strengthening the structure of a standard inequality to

induce deeper cuts. We study four alternatives to expediting the algorithm. The techniques

are all derived from the theory of integer programming and are first reviewed. Then their
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application to a generic MIP exhibiting a block structure are studied. Finally, each method

is performed on the Airline Integrated Recovery model studied in Chapter 3 where it is

shown that acceleration is possible.

5.2 Strengthening by Cut-Pushing

Consider a mixed integer programming problem of the form

min
{
cx+ fy s.t. Ax = b, Bx+ Fy = d, (x, y) ∈ Zn+ × Rp+

}
. (P )

where the presence of a single subproblem is assumed without loss of generality. Using

the notation in Section 4.3 the RMP is

min cx+ η

s.t. Ax = b

πp (d−Bx) ≤ η ∀p ∈ Π̃ (RMP (Π̃, R̃))

rq (d−Bx) ≤ 0 ∀q ∈ R̃

(x, η) ∈ Zn+ × R+.

For notational convenience let

S
(

Π̃, R̃
)

=

(x, η) ∈ Zn+ × R :

Ax = b,

πp (d−Bx) ≤ η ∀p ∈ Π′

rq (d−Bx) ≤ 0 ∀q ∈ R′


denote the feasible set of (RMP (Π̃, R̃)) given the set of dual extreme points Π̃ ⊆ Π and

dual extreme rays R̃ ⊆ R.

Recall the generic Benders’ cut (53): ψx ≤ ψ0 + 1optη. The cut may or may not

be binding at the incumbent point, which would depend on both whether the cut is an

optimality or feasibility cut, and whether the solution from the RMP is integral (recall that

a cut may be generated for any solution to the RMP). One can determine the minimum

distance the cut can be shifted to the interior of S
(

Π̃, R̃
)

by solving the following auxiliary

MIP:
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∆∗ = min ∆

s.t. Ax = b

πp (d−Bx) ≤ η ∀p ∈ Π̃

rq (d−Bx) ≤ 0 ∀q ∈ R̃ (54)

ψx = ψ0 + 1optη −∆

(x, η,∆) ∈ Zn+ × R+ × R+.

Let H(x; t, t0) ≡ {x ∈ Zn : tx ≤ t0} denote the set of integer points in the halfspace

defined for some (t, t0) ∈ Rn × R. Define

S′ = S
(

Π̃, R̃
)⋂

H
(
x;ψ,ψ0 −∆∗ + 1optη

)
. (55)

as the new feasible set for the RMP which includes the new Benders’ cut (53).

If ∆∗ = 0 then there exists a point x∗ ∈ S′ such that the cut is binding at x∗. If ∆∗ > 0,

then the cut is not binding at an integer point in S′, and the inequality

ψx ≤ ψ0 + 1optη −∆∗ (56)

remains valid for S′ and binding at some x∗ ∈ S′. Augmenting the original cut (53)

by an affine transformation (56) amounts to pushing the cut further into the interior of

conv(S′).

Figure 22 illustrates the concept of the strengthened cut.

Definition 5.2.1 (Dominating Cut). An inequality πx ≥ π0 is said to dominate another

inequality π′x ≥ π0 if πx ≥ π′x for all x.

Lemma 5.2.2. If ∆∗ > 0 is chosen from (54) then the cut ψx ≤ ψ0 +1optη−∆∗ dominates

ψx ≤ ψ0 + 1optη.

Proof. Note that ψx ≤ ψ0 + 1optη − ∆∗ holds if and only if ψx + ∆∗ ≤ ψ0 + 1optη. The

result follows since ψx+ ∆∗ ≥ ψx.
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(a) Feasible set S
(

Π̃, R̃
)

(b) Solution x ∈ S
(

Π̃, R̃
)

from RMP

(c) Generated Benders’ cut ψx ≤ ψ0 + 1optη (d) Augmented Cut ψx ≤ ψ0 +1optη−∆∗ dom-
inates original cut

Figure 22: Strengthening Benders’ Cut by Pushing
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An illustration of the cut-pushing method is seen in the following example.

Example 5.2.3. Consider the MIP

max x1 + 3x2 − y1 + 4y2

s.t. x1 + x2 ≤ 20

2x1 + x2 ≤ 30

−3x1 + 2x2 ≤ 20

8x1 ≤ 87

x1 + x2 + y1 + y2 ≤ 25

−3x1 − x2 − 3y1 + 2y2 ≤ −58

(x, y) ∈ Z2
+ × R2

+.

Given Π̃ = ∅, R̃ = ∅ the initial RMP is

RMP (∅, ∅) = max


x1 + 3x2 :

x1 + x2 ≤ 20

2x1 + x2 ≤ 30

−3x1 + 2x2 ≤ 20

8x1 ≤ 87

x ∈ Z2
+


whose solution is x∗ = (4, 16). The dual subproblem

min
{

5q1 − 30q2 : q1 − 3q2 ≥ 1, q1 + 2q2 ≥ 4, q ∈ R2
+

}
is unbounded with extreme ray

(
1, 1

3

)
leading to the Benders’ cut

2x2 ≤ 17. (57)

The following auxiliary problem is the cut-shifting subproblem as described in Section 5.6.1:

∆∗ = min ∆

s.t. x1 + x2 ≤ 20

2x1 + x2 ≤ 30

−3x1 + 2x2 ≤ 20

8x1 ≤ 87

2x2 + ∆ = 17

(x,∆) ∈ Z2
+ × R+
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whose optimal objective value is ∆∗ = 1 leading to the strengthened Benders’ cut

2x2 ≤ 16.

Lemma 5.2.4. Consider a MIP of the form (P ) and suppose that Benders’ decomposition

is applied by solving the RMP as a MIP. Then for any solution to the RMP that induces

an optimality cut, the optimal value of (54) is 0.

Proof. Let (x∗, η∗) be a solution to the RMP. Suppose π is a dual feasible solution that

induces an optimality cut of the form πx ≤ π0 + η. Then the optimality cut is binding at

the point (x∗, η0) where η0 is the value of the subproblem evaluated at x∗.

Recall that there are variants of Benders’ decomposition other than that shown in Algo-

rithm 2 from Chapter 4. One is by solving the continuous relaxation of the RMP for some

iterations. The following result shows that the optimum value of (54) may be nonzero for

such cases.

Lemma 5.2.5. Consider a MIP of the form (P ) and suppose that Benders’ decomposition

is applied by solving the linear relaxation for some iteration in solving the RMP. Then

for any solution (x0, η0) to the RMP for which x0 6∈ Zn+ that induces a feasibility cut, the

optimal value of (54) may be strictly positive.

The optimal objective of (54) may be nonzero for feasibility cuts, however, even if the

RMP is solved as a MIP.

Lemma 5.2.6. Consider a MIP of the form (P ) and suppose that Benders’ decomposition

is applied. If for some iteration the solution to the RMP induces a feasibility cut, then the

optimal value of (54) may be strictly positive.

Proof. See Example 5.2.3.

Pushing cuts into the interior of a feasible set to strengthen the linear relaxation has

been explored in other contexts. Bowman and Nemhauser [29] study how to strengthen cuts

from a tableau to make deeper cuts. They show that cuts from a tableau are deepest in the

sense they are not dominated by cuts further into the interior. Goycoolea [60] proposed a
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similar concept in the context of solving a quadratic mixed-integer programming problem.

He proposed first solving the quadratic function over the linear relaxation. If the solution

was not integral, a binding constraint may be pushed into the interior of the feasible set

until it was binding at an integer solution. The so-called ‘tangent cuts’ were shown to

be effective in a number of applications. Smith [106] studied the Origin-Destination Fleet

Assignment Model (ODFAM), where Benders’ cuts may be used to approximate a nonlinear

revenue function. The cuts are tangent to the original concave function and overestimate

the original feasible set. He observed that convergence could potentially be accelerated by

pushing the Benders’ inequalities down into the interior of the feasible set.

Recall the definition of S′, shown in (55), denotes the new feasible set for the RMP with

the addition of the new Benders’ cut. The following results provide insight into the depth

of the strengthened cut (56).

By choice of ∆∗, the support of the convex hull of the new feasible set S′ can be partially

characterized as follows.

Lemma 5.2.7. Given Π̃ ⊆ Π and R̃ ⊆ R, if ∆∗ is chosen from (54), the strengthened

inequality ψx ≤ ψ0 − ∆∗ + 1optη is a face of conv (S′) provided that the feasible set is

nonempty.

Proof. The result follows since there is at least one integer point in the set that is binding

at the strengthened inequality which defines at least a 0-dimensional face of

conv (S′) .

Theorem 5.2.8. Given Π̃ ⊆ Π and R̃ ⊆ R, if ∆∗ is chosen from (54), the strengthened

inequality ψx ≤ ψ0 −∆∗ + 1opt is not necessarily a facet of conv (S′).

Proof. Let

T =

(x, y) ∈ Z2
+ × R2

+ :

3x1 + 2x2 ≤ 10

2x1 + y1 + y2 ≤ 10

−x2 − y1 + y2 ≤ −2


and consider the problem max {2x1 + x2 − y1 + y2 : (x, y) ∈ T} which is solved by Benders’

decomposition and solves the RMP as a MIP with linking variables x and subproblem
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variables y. With Π̃ = ∅ and R̃ = ∅ the initial solution is x∗ = (3, 0) which leads to an

infeasible subproblem whose feasibility cut is 2x1 − x2 ≤ 5. The cut is not binding at any

integer points from T (∅, ∅) and it can be shown that ∆∗ = 1 leading to the strengthened

cut 2x1 − x2 ≤ 4. Facets of conv (S′) are then seen to be precisely x1 ≥ 0, x2 ≥ 0, x1 ≤ 2,

and 3x1 + 2x2 ≤ 10, none of which correspond to the strengthened cut.

The preceding results suggest when a facet is defined for conv (S′).

Corollary 5.2.9. The strengthened inequality is facet-defining for conv(S′) if and only if

it is parallel to a facet for conv(S′).

The summary of the cut-pushing algorithm is given in Algorithm 5.

Algorithm 5 Cut-Pushing Algorithm

1: given: optimal solution x∗ ∈ S(Π̃, R̃) to RMP and Benders’ cut

ψx ≤ ψ0 + 1optη

2: if feasibility cut then
3: let r ∈ R \ R̃ be the dual extreme ray that generated cut rx ≤ r0

4: let ∆∗ be optimal objective value to (54)
5: R̃← R̃ ∪ {r}
6: else
7: let π ∈ Π \ Π̃ be dual extreme point that generated the cut πx ≤ π0 + η
8: if RMP was solved as continuous relaxation and x 6∈ Zn+ then
9: let ∆∗ be optimal objective value to (54)

10: else
11: set ∆∗ = 0
12: end if
13: Π̃← Π̃ ∪ {π}
14: end if
15: return ψx ≤ ψ0 −∆∗ + 1opt
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5.3 Strengthening by Benders-Induced Split Cuts

Cutting planes have long been used to solve mixed-integer programming (MIP) problems.

Consider a linear relaxation of a given MIP for which its solution contains some component

that violates an integrality restriction. A cut is an inequality that is valid for the convex

hull of the feasible set but is violated by some fractional extreme point. Some cutting plane

algorithms such as the Chvátal-Gomory cut for a pure integer program (IP), terminate

after a finite number of iterations. While convergence is not guaranteed for more general

problems, cutting planes still have the ability to expedite computation during branch-and-

cut. Cutting planes are of great importance to the efficacy of modern commercial solvers.

Early research on cutting planes relied largely on the structure of the simplex tableau

attained from a continuous relaxation of the original MIP. Recently strong cutting planes are

thought to be driven by the underlying polyhedral structure of the problem (see, Conforti

et al. [42] and Atamtürk [11] for surveys of such methods). This section studies the use

of one well-known family of polyhedral cuts known as split cuts to be used together with

Benders’ decomposition.

5.3.1 Review of Split Cuts

Split cuts are a special case of a broader family of disjunctive cuts. This class of cutting

planes was studied by Cook et al. [44] where it was shown that the split closure of a mixed

integer set is a polyhedron. Consider a MIP problem of the form

max {cx : x ∈ S}

where S ≡
{
Ax ≤ b, xj ∈ Z,∀j ∈ N0, x ∈ Rn+

}
, A is an m × n matrix, N = {1, 2, . . . , n}

is the index set of variables and N0 ⊆ N is the set of integer variables. Assume that for

all binary variables xj , j ∈ N0 that the upper bound constraints xj ≤ 1 are present in the

constraint set (A, b).

Given some (π, π0) ∈ Zn × Z such that πj = 0 ∀j ∈ N \N0 note that

{x ∈ Zn : π0 < πx < π0 + 1} = ∅. Therefore every point in the feasible set must belong to

exactly one region from the following disjunction:
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
Ax ≤ b

πx ≤ π0

x ≥ 0


︸ ︷︷ ︸

≡Π0

∨


Ax ≤ b

−πx ≤ −(π0 + 1)

x ≥ 0


︸ ︷︷ ︸

≡Π1

.

The values (π, π0) define a split. One class of polyhedral cuts seek to find a valid

inequality of the form αx ≤ α0 that are constructed from a given split that are valid for

conv (Π0 ∪Π1). Such an inequality is referred to as a split cut, and is illustrated in Figure

23.

Figure 23: An Example of a Split Cut

A split cut αx ≤ α0 is derived from a split (π, π0). Since the inequality α0 ≥ αx is

required to be valid for Π0 ∪Π1,

α0 ≥ max {αx : x ∈ Π0}

= max {αx : Ax ≤ b, πx ≤ π0, x ≥ 0}

= min
{
ub+ u0π0 : uA+ u0π ≥ α, (u, u0) ∈ Rm+ × R+

}
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where the latter relation holds from duality. Similarly,

α0 ≥ max {αx : x ∈ Π1}

= max {αx : Ax ≤ b,−πx ≤ −(π0 + 1), x ≥ 0}

= min
{
vb− v0 (π0 + 1) : vA− v0π ≥ α, (v, v0) ∈ Rm+ × R+

}
.

Given an incumbent solution x̄, and a split (π, π0), coefficients of the split cut can

therefore be determined by solving the following problem referred to as the Cut Generating

Linear Program (CGLP)

max αx̄− α0

s.t. α0 ≥ ub+ u0π0

α0 ≥ vb− v0 (π0 + 1)

α ≤ uA+ u0π

α ≤ vA− v0π

1u+ 1v + u0 + v0 = 1

u, v, u0, v0 ≥ 0

(58)

where 1 is an m-dimensional vector of ones, and 1u + 1v + u0 + v0 is a normalization

constraint. If the optimal objective is strictly positive, then the split cut separates x̄ and

is added to the relaxation. Else, a proof is given that x̄ belongs to Π0 ∪ Π1. In order to

ensure a separation, typically one chooses x such that πx ∈ (π0 − 1, π0).

5.3.2 Split Cuts Generated from a Benders Disjunction

This section describes how split cuts can be generated from a disjunction defined from a

Benders’ feasibility cut. It is assumed that all variables from the RMP are integral except

for continuous variables η present in optimality cuts. Because split cuts are derived from

a disjunction that requires zero coefficients on all continuous variables, cut strengthening

discussed in this section applies only to feasibility cuts.

Let S(Π̃, R̃) denote the mixed-integer feasible set of an RMP where Π̃ and R̃ denote the

dual extreme points and extreme rays that are defined in the feasible set S(Π̃, R̃) for the

RMP.
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Given a dual extreme ray r consider a general Benders’ feasibility cut of the form rx ≤ r0

and assume that r ∈ Zn. Then the optimal solution in the space of RMP variables must be

contained in exactly one side of the following disjunction:

{rx = r0} ∨ {rx ≤ r0 − 1} . (59)

Split cuts can be generated in a similar manner presented in Section 5.3.1 from the

disjunction Π0 ∨Π1 where

Π0 ≡ X(Π̃, R̃) ∩ {x : rx = r0} and

Π1 ≡ X(Π̃, R̃) ∩ {x : rx ≤ r0 − 1} .

It is assumed without loss of generality that there is a single subproblem present in a

MIP. The CGLP for an RMP whose feasible set S
(

Π̃, R̃
)

is derived as follows.

S
(

Π̃, R̃
)

=


(x, η) :

Ax ≤ b

−rqBx ≤ −rqd ∀q ∈ R̃

−πpBx− η ≤ −πpd ∀p ∈ Π̃

(x, η) ∈ Zn+ × R+


where A is m1 × n and B is m2 × n.

Let X
(

Π̃, R̃
)

be the continuous relaxation of S
(

Π̃, R̃
)

and consider the disjunction

from (59) generated by a Benders’ feasibility cut. Coefficients (α, α0) ∈ Rn ×R are defined

for a split cut αx ≤ α0 that must be valid for Π0 ∪Π1. Note that
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α0 ≥ max {αx : x ∈ Π0}

= max


αx :

Ax ≤ b

−rqBx ≤ −rqd ∀r ∈ R̃

−πpBx− η ≤ −πpd ∀p ∈ Π̃

rx = r0

(x, η) ∈ Rn+ × R+



=

min u1b−
∑

q∈R̃ u
2
qrqd−

∑
q∈Π̃

u3
qπpd+ u0r0

s.t. u1A−
∑

q∈R̃ u
2
qrqB −

∑
q∈Π̃

u3
qπpB + u0r ≥ α∑|Π̃|

i=1

∑m2
j=1 u

3
i,j ≤ 0

u1, u2, u3 ≥ 0

u0 ∈ R.

The latter two constraints imply that u3 = 0. Similarly

α0 ≥ max {αx : x ∈ Π1}

= max


αx :

Ax ≤ b

−rqBx ≤ −rqd ∀r ∈ R̃

−πpBx− η ≤ −πpd ∀p ∈ Π̃

rx ≤ r0 − 1

(x, η) ∈ Rn+ × R+



=

min v1b−
∑

q∈R̃ v
2
qrqd−

∑
q∈Π̃

v3
qπpd+ v0 (r0 − 1)

s.t. v1A−
∑

q∈R̃ v
2
qrqB −

∑
q∈R̃ v

3
qπpB + v0r ≥ α∑|Π̃|

i=1

∑m2
j=1 v

3
i,j ≤ 0

v1, v2, v3 ≥ 0

v0 ∈ R+.

120



Observing u3 = 0 and v3 = 0 the CGLP associated with the Benders’ disjunction is

max αx− α0

s.t. u1b−
∑

q∈R̃ u
2
qrqd+ u0r0 ≤ α0

v1b−
∑

q∈R̃ v
2
qrqd+ v0 (r0 − 1) ≤ α0

u1A−
∑

q∈R̃ u
2
qrqB + u0r ≥ α

v1A−
∑

q∈R̃ v
2
qrqB + v0r ≥ α∑m1

i=1

(
u1
i + v1

i

)
+
∑|Π̃|

i=1

∑m2
j=1

(
u2
i,j + v2

i,j

)
+ u0 + v0 = 1

ui ≥ 0 i = 1, 2

vi ≥ 0 i = 1, 2

v0 ≥ 0.

(60)

The original Benders’ feasibility cut rx ≤ r0 is still added to the RMP.

The traditional use of split cuts are within the context of discrete optimization in which

the CGLP (58) is evaluated at a fractional point x. If the CGLP is evaluated at the integer

solution x∗ to the RMP, a trivial cut will be returned since x∗ ∈ Π0 or x∗ ∈ Π1. However,

evaluating the CGLP from a point x0 such that πx0 ∈ (π0 − 1, π0) may generate a nontrivial

split cut αx ≤ α0 which cuts off the fractional point x0. Figure 24 shows such an illustration.

Figure 24: Benders-Induced Split Cuts
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Different cuts may be generated depending upon the point x evaluated in the CGLP

(60). The following result shows this approach generates split cuts that are not useful as

they are dominated by the original Benders’ cut. For a given it is desired to find a point

x0 ∈ {x : r0 − 1 < r0x < r0} in order to generate a nontrivial split cut from the CGLP. The

following results show how this can be done through following LP

max ξ

s.t. rx ≥ r0 − 1 + ξ

rx ≤ r0 − ξ

(x, η) ∈ X
(

Π̃, R̃
)

ξ ≥ 0.

(61)

Lemma 5.3.1. If the LP (61) has a feasible solution it has a finite optimal objective value

bounded by 1
2 .

Proof. Note that the first two constraints suggest a valid solution must satisfy

r0 − 1 + ξ ≤ r0 − ξ ⇔ ξ ≤ 1

2
.

Theorem 5.3.2. Suppose the LP (61) has a feasible solution (x0, ξ∗). Then

x0 ∈ {x : r0 − 1 < rx < r0} if and only if ξ∗ ∈
(
0, 1

2

]
.

Proof. (⇒) If x0 ∈ {x : r0 − 1 < rx < r0}, then ξ∗ > 0 by the first two constraints present

in (61). Moreover as x0 is feasible, by Lemma 5.3.1, ξ∗ ≤ 1
2 .

(⇐) If ξ∗ ≤ 1
2 , then r0 − 1 < rx < r0 for all x ∈ X

(
Π̃, R̃

)
, and thus for x0.

The CGLP is likely to generate different cuts depending upon the point which is being

evaluated in the objective. In practice, one can fix various values of ξ ∈
(
0, 1

2

]
to find

solutions from (61) that may generate different cuts to evaluate the Benders-induced CGLP

(60). In general one may populate a set X̂ with different values in an attempt to generate

different cuts. For instance, one may use a solution pool to populate points within a certain

threshold of optimal values from (61). Another approach may be to define a set Ξ of different

values ξ∗ and populate X̂ with solutions satisfying different values of ξ∗ ∈ Ξ.
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If no feasible solution exists to (61), then no feasible solution exists to at least one set

of the disjunction and no split cut is to be generated.

Example 5.3.3. Recall Example 5.2.3 from Section 5.6.1. The associated Benders’ dis-

junction from the cut (57) is

{2x2 = 17} ∨ {2x2 ≤ 16} .

Let X̂ =
{(

87
8 ,

33
4

)}
be a singleton solution to (61). The associated CGLP (58) then has a

solution of (α∗0, α
∗
1, α
∗
2) =

(
16
10 ,

4
10 ,

206
10

)
leading to the split cut 16x1 + 4x2 ≤ 206 which cuts

off a region of X (∅, ∅), including the basic solution
(

87
8 ,

33
4

)
.

The Benders’ cut and its induced split cut are shown in Figure 25.

(a) Benders’ feasibility cut (b) Benders-induced disjunction

(c) Split cut (d) Updated region S (∅, {r})

Figure 25: Example of Benders-Induced Split Cut
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Algorithm 6 Benders-Induced Split Cut Algorithm

1: Given: Benders’ feasibility cut rx ≤ r0

2: if (r, r0) ∈ Zn × Z then
3: Consider the disjunction: {rx = r0} ∨ {rx ≤ r0 − 1}
4: Let X̂ denote a set of points generated from the LP (61) where

rx ∈ (r0 − 1, r0) ∀x ∈ X̂

5: while X̂ 6= ∅ do
6: let x ∈ X̂
7: solve CGLP (60) evaluated at x
8: let (α, α0) be a solution to (60)
9: if αx̄ > α0 then

10: add split cut αx ≤ α0 to the RMP
11: end if
12: X̂ ← X̂ \ x
13: end while
14: end if
15: add Benders’ feasibility cut rx ≤ r0 to RMP

Generating Benders-induced split cuts is summarized in Algorithm 6.

A hybrid version of the cut-pushing and split cut procedures may be used if the original

Benders’ cut is not binding at an integer solution. Therefore cut-pushing may be employed

to ensure that some feasible solution is binding at the cut. This is shown in Algorithm 7.
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Algorithm 7 A Modified Benders-Induced Split Cut Algorithm

1: Given: Benders’ feasibility cut rx ≤ r0

2: if (r, r0) ∈ Zn × Z then
3: Solve (54) for which ∆∗ is the optimal objective value
4: Consider the disjunction: {rx = r0 −∆∗} ∨ {rx ≤ r0 − (∆∗ + 1)}
5: Let X̂ denote a set of points generated from the LP (61) where

rx ∈ (r0 − 1, r0) ∀x ∈ X̂

6: while X̂ 6= ∅ do
7: let x ∈ X̂
8: solve CGLP (60) evaluated at x
9: let (α, α0) be a solution to (60)

10: if αx̄ > α0 then
11: add split cut αx ≤ α0 to the RMP
12: end if
13: X̂ ← X̂ \ x
14: end while
15: end if
16: add Benders’ feasibility cut rx ≤ r0 to RMP

5.4 Strengthening by Lifting

Another standard technique that is used in conventional mixed-integer programming is to

strengthen inequalities through lifting. This process takes as given a valid inequality and

introduces binary variables that were not originally present by finding coefficients for which

the augmented inequality remains valid. This chapter begins with a review of the concept

of traditional lifting and discuss how lifting may be incorporated into standard Benders’

decomposition.

Lifting was originally studied by Gomory [59] within the context of the group problem.

It has initially been studied further by the likes of Padberg [90], Wolsey [128], among others.

Further expositions are reviewed below.

5.4.1 A Review of Lifting in Mixed-Integer Programming

Consider a mixed 0− 1 optimization problem of the form

min

∑
j∈N

cjxj : x ∈ S

 .

where
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S =

x ∈ Rn+ :

∑
j∈N aijxj ≤ bi, i = 1, 2, . . . ,m

xj ∈ {0, 1} ∀j ∈ I ⊆ N

 (62)

and I denotes the set of binary variables. Let C0 ⊂ N and
⋃t
k=1Ck denote a disjoint

partition of I \ C0. It is also assumed that bi ≥ 0 for all i = 1, 2, . . . ,m. In similar studies

it is assumed that m = t+ 1 in which there is a single row where all variables are present,

and t rows that form a block structure over the variables present in C1, . . . , Ct.

For q ∈ {0, 1, . . . , t} let

Sq =

x ∈ R
∑

0≤k≤q |Ck|
+ :

∑
0≤k≤q

∑
j∈Ck

aijxj ≤ bi, i = 1, 2, . . . ,m

xj ∈ {0, 1} , ∀j ∈ I
⋂(
∪qk=0Ck

)
 (63)

and suppose that ∑
0≤k≤q

∑
j∈Ck

αjxj ≤ α0 (64)

is a valid inequality for conv(Sq) (note that St = S). For q ≤ t− 1 the process of lifting

is to introduce coefficients {αj} for j ∈ Cq+1 for which

∑
0≤k≤q+1

∑
j∈Ck

αjxj ≤ α0 (65)

is valid for conv(Sq+1). Clearly (64) and (65) are both valid for conv(S), and (65)

dominates (64) since every solution to the former is a solution to the latter by setting

xk = 0 for all k ∈ Cq+1.

Suppose (64) is valid for some Sq where q ∈ {0, 1, . . . , t− 1}. The lifting problem is to

find coefficients {αj}j∈Cq+1
for which (65) is valid for Sq+1 ⊆ S. When the largest such

coefficients are found, the lifting is said to be maximal. Gu et al. [62] showed that if

conv(Sq) and conv(Sq+1) are full dimensional, α0 6= 0, and (64) defines a facet of conv(Sq),

then (65) defines a facet of conv(Sq+1) if and only if the lifting is maximal.

The preceding illustrates lifting in binary variables that are originally not present in an

inequality. Lifting is more general than this particular study, and more general studies of

lifting can be seen in Richard et al. [95], [96] and Narisetty et al. [86].
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For the remainder of this work, we will assume that only binary variables are lifted into

a valid inequality so
⋃t
k=1Ck form a partition of the set I \ C0. In other words, fractional

variables are present in the final inequality if and only if they belong to the original valid

inequality.

For a given set C0 ⊂ N where
∑

j∈C0
αjxj ≤ α0 is valid for S0, lifting was originally

studied whereby binary variables are lifted in one at a time. That is, m = |I \ C0| lifting

problems are solved and Ci denote singleton subsets for i = 1, 2, . . . ,m.

Let xi denote some variable for which i ∈ I \C0 where C1 = {i}. The lifting problem is

to find a coefficient α1 for which

∑
j∈C0

αjxj + αixi ≤ α0

is valid for conv(S1). The inequality is trivially valid for all values of αi when xi = 0. If

xi = 1, then

αi ≤ α0 −
∑
j∈C0

αjxj

for all x ∈ S0, and maximal for which the preceding relationship is binding for some x. A

maximal lifting is then satisfied by solving the problem

α∗i = max

 ∑
0≤k≤1

∑
j∈Ck

αjxj : x ∈ S1 ∩ {x : xi = 1}

 .

so that ∑
j∈C0

αjxj + α∗i xi ≤ α0.

is valid for conv(S1). This procedure is repeating for singleton sets C2, . . . , Ct, or terminated

if αi = 0 since every successive iteration would yield the same value of the lifting problem.

In general for q = 1, 2, . . . , t let i be such that Cq = {i}. The qth lifting problem is of

the form

α∗q = max

 ∑
0≤k≤q

αjxj : x ∈ Sq ∩ {x : xi = 1}

 . (66)

Lifted cover inequalities for a 0− 1 knapsack problem were among the first to illustrate

the use of sequential lifting procedures.
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5.4.2 Using Lifting in Benders’ Decomposition

Consider a standard Benders’ cut

ψx ≤ ψ0 + 1optη (67)

Note that only those variables from the RMP present in the cut are those whose cor-

responding component from the dual extreme ray or dual extreme point are nonzero. Let

N = {1, 2, . . . , n} denote all master variables and I ⊆ N be those restricted to be binary.

Let C0 ⊆ N be defined as

C0 ≡ {j ∈ N : ψj = 0} .

The Benders’ cut (67) can equivalently be expressed as

∑
j∈C0

ψjxj ≤ ψ0 + 1optη. (68)

This suggests that (67) may be strengthened by lifting in variables from a set I ′ ≡

I ∩ (C \C0) where it is assumed that I ′ 6= ∅. Let C1, C2, . . . , Ct denote a disjoint subsets of

I ′. The original inequality (67) is strengthened by successively solving the lifting problem

for sets C1, . . . , Ct. Note that C1, . . . , Ct need not partition I ′ as excessive calls to the lifting

problem may more than offset the strengthened inequality.

Consider a problem solved by Benders’ decomposition whose feasible set consists of

original constraints of the form Ax ≤ b along with all Benders’ cuts. Let Bopt and Bfeas

denote the set of Benders’ optimality and feasibility cuts, respectively. Given the original

cut (68), the set analogous to (63) for q ∈ {0, 1, . . . , t} is given by

Sq =


x ∈ R

∑
0≤k≤q |Ck|

+ :

∑
0≤k≤q

∑
j∈Ck

aijxj ≤ bi, i = 1, 2, . . . ,m∑
0≤k≤q

∑
j∈Ck

πijxj ≤ πi0 + η, ∀i ∈ Bopt∑
0≤k≤q

∑
j∈Ck

rijxj ≤ ri0, ∀i ∈ Bfeas

xj ∈ {0, 1} , ∀j ∈ I
⋂(
∪qk=0Ck

)
.


(69)

Algorithm 8 summarizes how Benders’ cuts may be strengthened through lifting proce-

dure.
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Algorithm 8 Benders’ Lifting Algorithm

1: Given: Benders’ cut ∑
j∈C0

ψjxj ≤ ψ0 + 1optη

where C0 ≡ {j ∈ N : ψj = 0}
2: let I ′ ≡ I \ C0

3: if I ′ 6= ∅ then
4: define a disjoint subsets such that

⋃t
k=1Ck ⊆ I ′

5: for q = 1, 2, . . . , t do
6: let i be such that Cq = {i}
7: define Sq as in (69)
8: Solve the qth lifting problem:

ψi = ψ0 −max


q∑

k=1

∑
j∈Ck

ψjxj − 1optη : x ∈ Sq ∩ {x : xi = 1}


9: if ψi 6= 0 then

10: continue;
∑

0≤k≤q
∑

j∈Ck
ψjxj ≤ ψ0 + 1optη is valid for conv(Sq)

11: else
12: Cut cannot be strengthened, set ψj = 0 for all j ≥ q,

q = t
13: end if
14: end for
15: else
16: Set ψj = 0 for all j ∈ N0

17: end if
18: return the strengthened Benders’ cut∑

0≤k≤t

∑
j∈Ck

ψjxj ≤ ψ0 + 1optη
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Example 5.4.1 (Christensen and Pedersen [35]). Consider the uncapacitated facility loca-

tion problem that seeks to satisfy demand from m clients from n potential facility locations

that may be opened. Let xj denote binary variables that dictate whether or not facility j

are to be opened for all j ∈ J = {1, 2, . . . , n}. Let yij denote the fraction of demand from

client i ∈ I = {1, 2, . . . ,m} that is satisfied from facility j ∈ J . The firm’s problem is to

minimize the total cost associated with opening plants and shipping the good from plants to

clients given by

min

n∑
j=1

fjxj +

m∑
i=1

n∑
j=1

cijyij (70)

s.t.

n∑
j=1

yij ≥ 1, i = 1, 2, . . . ,m (71)

− xj + yij ≤ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (72)

(x, y) ∈ B|J | × [0, 1]|I|×|J | . (73)

Suppose n = 3 and f1 = 2, f2 = 3, and f3 = 3. Suppose m = 5 and let the transportation

costs cij be given in the following table.

Table 16: Transportation Costs cij

client

factory

1 2 3 4 5

1 2 3 4 5 7
2 4 3 1 2 6
3 5 4 2 1 3

The problem may be solved by Benders’ decomposition where xj are the linking variables.

Note that other than the binary restrictions on the x variables, only the Benders’ cuts are

present in the RMP. Let x = (1, 0, 0) denote an initial feasible solution. This leads to the

Benders’ optimality cut −2x1 + 4x2 + 7x3 + η ≥ 21. No variables may be lifted since all

binary variables are present in the cut. The RMP is then

min
{
η : −2x1 + 4x2 + 7x3 + η ≥ 21, (x, η) ∈ B3 × R+

}
whose solution is x∗ = (0, 1, 1). The solution is suboptimal and generates the second feasi-

bility cut

−3x2 − 3x3 + η ≥ 12. (74)
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By rewriting the constraint by complementing x2 and x3 (since their coefficients are nega-

tive), the constraint is equivalent to 3x2 + 3x3 + η ≥ 18. The lifting problem seeks to find a

coefficient α1 such that α1x1 + 3x2 + 3x3 + η ≥ 18 is valid for all x. The lifting problem is

then to set α1 such that

α1 = 18−min
{

3x2 + 3x3 + η : 2x1 + 4x2 + 7x3 + η ≥ 23, x1 = 1, (x, η) ∈ B3 × R+

}
= 18− 16 = 2

and thus 2x1 + 3x2 + 3x3 + η ≥ 12, or by re-complementing x2 and x3, the strengthened

inequality

2x1 + 3x2 + 3x3 + 12 ≤ η

is returned to the RMP.
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5.5 Superadditive Lifting

While lifting is a tractable mechanism for strengthening valid inequalities, one of its draw-

backs is different sequences of sets C1, C2, . . . , Ct in general induce different inequalities,

and therefore is said to be sequence dependent. Unless one has a priori knowledge on

useful orderings of those subsets, strengthening the inequality depends on some degree of

randomness with respect to sequence.

Gu et al. [62] show a sufficient condition for which lifting is independent of its sequence

leading to more robust inequalities derived from lifting.

5.5.1 Review of Superadditive Lifting

Consider a problem of the form min
{∑

j∈N cjxj : x ∈ S
}

where S is described in (62). Let

Z ≡ [0, b1] × [0, b2] × · · · × [0, bm] and z = (z1, z2, . . . , zm) ∈ Z be arbitrary. For some

i ∈ {1, 2, . . . , t} let hi(z) and fi(z) be two functions defined as follows:

hi(z) =

max
∑

j∈Ci
αjxj

s.t.
∑

j∈Ci
aijxj = zi, i = 1, 2, . . . ,m∑

j∈Ci
wjxj ≤ ri

xj ∈ {0, 1} ∀j ∈ I ∩ Ci

x ∈ R|Ci|
+

(75)

and

fi(z) =

min α0 −
∑

0≤k≤i−1

∑
j∈Ck

αjxj

s.t.
∑

0≤k≤i−1

∑
j∈Ck

aijxj ≤ bi − zi i = 1, 2, . . . ,m∑
j∈Ck

wjxj ≤ rk k = 0, 1, . . . , i− 1

xj ∈ {0, 1} ∀j ∈ I ∩
(
∪i−1
k=0Ck

)
x ∈ R

∑
0≤k≤i−1 |Ck|

+ .

(76)

Using the convention that hi(z) = −∞ if hi(z) is infeasible for z ∈ Z, it follows that

hi(z) ≤ fi(z) for all z ∈ Z as fi(z) is always feasible.

The central result uses the concept of a superadditive function summarized in the fol-

lowing definition.
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Definition 5.5.1. A function f : Z → Z is said to be superadditive on Z if it is bounded,

and if for all z1, z2, and z1 + z2 ∈ Z, f(z1) + f(z2) ≤ f(z1 + z2).

The following result provides a sufficient condition for when lifting coefficients are inde-

pendent of its sequence.

Theorem 5.5.2 (Gu et al. (2000)). If the lifting function f is superadditive on Z, then

lifting is sequence independent.

Therefore under the conditions present in Theorem 5.5.2 all variables may be lifted

concurrently.

While lifting functions generally are not superadditive, some important applications

have been shown to be giving rise to sequence-independent lifting. Two important applica-

tions of superadditive lifting are reviewed that will be used in the subsequent results from

superadditive lifting in a Benders’ framework with multiple rows.

5.5.1.1 Review of Pure 0− 1 Knapsack

Consider the pure 0− 1 knapsack problem max
{∑

j∈N cjxj : x ∈ Y
}

where

Y =

x ∈ Bn :
∑
j∈N

ajxj ≤ b


given b ≥ 0 and aj ∈ [0, b] for all j ∈ N (nonnegativity holds without loss of generality as

binary variables may be complemented). A cover C ⊆ N is a set such that
∑

j∈C aj > b.

The cover is said to be minimal if
∑

j∈C\{k} aj ≤ b for all k ∈ C. A cover inequality is∑
j∈C xj ≤ |C| − 1 is valid for Y and facet-defining for Y C =

{
x ∈ B|C| :

∑
j∈C ajxj ≤ b

}
.

A lifted cover inequality seeks to find valid coefficients {αj}j∈N\C such that
∑

j∈C xj +∑
j∈N\C αjxj ≤ |C| − 1 is valid for Y N = Y . The following pair of results from Gu et al.

[62] show how superadditive lifting of a cover inequality can be used in the context of the

pure 0− 1 knapsack problem.

Theorem 5.5.3 (Gu et al. [62]). Given a cover inequality
∑

j∈C xj ≤ |C| − 1, the lifting
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function f is generally not superadditive over Z = [0, b] where

f(z) = min

|C| − 1−
∑
j∈C

xj :
∑
j∈C

ajxj ≤ b− z, x ∈ B|C|


= max

∑
j∈C

xj :
∑
j∈C

ajxj ≤ b− z, x ∈ B|C|
 .

The preceding result shows that lifted cover inequalities are not superadditive. However,

this can be generalized other other families of inequalities.

Lemma 5.5.4. Given an inequality
∑

j∈M αjxj ≤ α0 that is valid for

X0 =
{
x ∈ B|M | :

∑
j∈M ajxj ≤ b

}
for some M ⊂ N . The lifting function f is generally

not superadditive over Z = [0, b] where

f(z) = min

α0 −
∑
j∈M

αjxj :
∑
j∈M

ajxj ≤ b− z, x ∈ B|M |


= max

∑
j∈M

αjxj :
∑
j∈M

ajxj ≤ b− z, x ∈ B|M |
 .

Even when the pure lifting function f is in general not superadditive, superadditive

lifting may still be employed by a valid lifting function g that approximates f such that

g(z) ≤ f(z) for all z ∈ Z. Using this, the following approximate lifting function was

shown to be valid for lifted cover inequalities. Assume without loss of generality that

a1 ≥ a2 ≥ · · · ≥ ar where C = {1, 2, . . . , r}.

Theorem 5.5.5 (Gu et al. [62]). Given a cover inequality
∑

j∈C xj ≤ |C| − 1, the approx-

imate lifting function g is superadditive over Z = [0, b] where

g(z) =



0 for z = 0

h for z ∈ (µh − λ+ ρh, µh+1 − λ] , h = 0, 1, . . . , r − 1

h− (µh − λ+ ρh − z) /ρ1 for z ∈ (µh − λ, µh − λ+ ρh] , h = 1, 2, . . . , r − 1

,

(77)

λ ≡
∑

j∈C aj − b, µ0 ≡ 0, and µi ≡
∑

1≤h≤i ah for i = 1, 2, . . . , r.
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5.5.1.2 Review of Mixed 0− 1 Knapsack with a Single Continuous Variable

Consider now the previous problem with the addition of a single nonnegative variable to

the right-hand side of the constraint leading to the mixed-integer 0 − 1 knapsack problem

max
{∑

j∈N cjxj : x ∈ Y ′
}

where

Y ′ =

(x, s) ∈ Bn × R+ :
∑
j∈N

ajxj ≤ b+ s

 .

It is again assumed without loss of generality that aj > 0 for all j as xj may be

complemented otherwise. Let M ⊂ N and
∑

j∈M αjxj ≤ α0 be valid for

Y 0 =
{

(x, s) ∈ B|M | × R+ :
∑

j∈M ajxj ≤ b+ s
}

.

Theorem 5.5.6 (Marchand and Wolsey [81]). Given an inequality
∑

j∈C αjxj ≤ α0 + s,

the lifting function f(z) is superadditive over R+ where

f(z) = min

α0 −
∑
j∈M

αjxj + s :
∑
j∈M

ajxj − s ≤ b− z, (x, s) ∈ Bn × R+


= max

∑
j∈M

αjxj − s :
∑
j∈M

ajxj − s ≤ b− z, (x, s) ∈ Bn × R+


Note that M need not be a cover, so the lifting holds with a general valid inequality for

Y 0.

5.5.2 Superadditive Lifting for Relaxed Linear Systems

Most problems for which superadditive lifting is used are for those whose feasible set consists

of a single row. Showing a lifting function is superadditive may be difficult for when m = 1,

and approaching intractable for values of m > 2. This eliminates lifting for a large class of

applications and likely explains why most studies have examined single-row systems. This

section proposes one possible method to lift in variables of a valid inequality for which

the lifting function has multiple rows. We examine relaxing the original feasible set S to

a relaxed set S and using a lifting function that is superadditive for S to strengthen the

original inequality.

As in Section 5.4 let C0, C1, . . . , Ct denote disjoint subsets of N . For all

q = 0, 1, . . . , t let
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Sq =

x ∈ R
∑q

k=0 |Ck|
+ :

∑
0≤k≤q

∑
j∈Ck

aijxj ≤ bi, i = 1, 2, . . . ,m

xj ∈ {0, 1} ∀j ∈ I
⋂(
∪qk=0Ck

)


and note that St = S.

For some C0 ⊂ N consider a valid inequality for S0 of the form

∑
j∈C0

αjxj ≤ α0. (78)

Let (z1, z2, . . . , zm) ∈ Z = [0, b1]× [0, b2]× · · · × [0, bm]. The lifting function associated

with (78) is

f (z1, z2, . . . zm) =

max
∑

j∈C0
αjxj

s.t.
∑

j∈C0
aijxj ≤ bi − zi, i = 1, 2, . . . ,m

xj ∈ {0, 1} , ∀j ∈ I ∩ C0.

(79)

While showing (79) is superadditive is possible for m = 1 or 2, it is generally intractable

for values of m ≥ 3. Therefore in such circumstances we approximate (79) by relaxing S

as follows. Let µ1, µ2, . . . , µm denote nonnegative multipliers of the rows of the first set

of constraints in (79). After aggregating the nonnegative linear combination, the relaxed

lifting function is defined for all z ∈ Z = [0,
∑m

i=1 µibi]:

f (z;µ) =

max
∑

j∈C0
αjxj

s.t.
∑

j∈C0
âjxj ≤ b̂− z

xj ∈ {0, 1} , ∀j ∈ I ∩ C0

(80)

where âj =
∑m

i=1 µiaij and b̂ =
∑m

i=1 µibi.

Given µ ∈ Rm+ for all q = 0, 1, . . . , t let

Sq(µ) =

x ∈ R
∑q

k=0 |Ck|
+ :

∑
0≤k≤q

∑
j∈Ck

âjxj ≤ b̂

xj ∈ {0, 1} ∀j ∈ I
⋂(
∪qk=0Ck

)


and note that St(µ) = S(µ).

The relaxed lifting function amounts to a knapsack problem which for which a superad-

ditive function may be known depending upon whether or not I = N (see Theorems 5.5.3

136



and 5.5.6). The following result shows that if the relaxed function (80) is superadditive over

S
q
(µ) it remains superadditive over Sq for all q = 0, 1, . . . , t.

Theorem 5.5.7. Suppose f(x) is a valid superadditive lifting function defined over a set

X. Then f(x) is superadditive over every subset Y of X.

Proof. Let y1, y2, y1 + y2 ∈ Y . Since Y ⊆ X, y1, y2, y1 + y2 ∈ X. Thus f(y1 + y2) ≤

f(y1) + f(y2) since f is superadditive over X.

Finally, when coefficients are determined over the relaxation that the lifted inequality

remains valid for the original problem.

Theorem 5.5.8. For any q = 0, 1, . . . , t− 1 suppose

∑
0≤k≤q

∑
j∈Ck

αjxj ≤ α0

is valid for Sq. Suppose coefficients {αj}j∈Cq+1
are determined in accordance to the following

relaxed lifting function where z ∈ Z and µ ∈ Rm+ :

f(z) = min

α0 −
∑

0≤k≤q

∑
j∈Ck

αjxj :
∑

0≤k≤q

∑
j∈Ck

âjxj ≤ b̂− z, x ∈ S
q
(µ)


= max

 ∑
0≤k≤q

∑
j∈Ck

αjxj :
∑

0≤k≤q

∑
j∈Ck

âjxj ≤ b̂− z, x ∈ S
q
(µ)

 .

Then the lifted inequality

∑
0≤k≤q

∑
j∈Ck

αjxj +
∑

j∈Cq+1

αjxj ≤ α0

is valid for Sq+1.

Proof. For any q = 0, 1, . . . , t− 1 suppose
∑

0≤k≤q
∑

j∈Ck
αjxj ≤ α0 is valid for Sq. Given

coefficients {αj}j∈Cq+1
generated from the relaxed superadditive lifting function (80)∑

0≤k≤q
∑

j∈Ck
αjxj +

∑
j∈Cq+1

αjxj ≤ α0 is valid for S
q+1

(µ) which remains valid for Sq+1

since Sq+1 ⊆ Sq+1
(µ) for all µ ∈ Rm+ .
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5.5.3 Superadditive Lifting for Relaxed Systems for Benders’ Cuts

We now consider how the methods discussed in Section 5.5.2 are applicable to Benders’

decomposition. For a given iteration of Benders’ decomposition let B = Bfeas
⋃
Bopt denote

the set of all Benders’ cuts that have been derived where Bfeas and Bopt denote the sets of

feasibility and optimality cuts, respectively. Let

S(B) =

(x, η) ∈ Bn × Rn+ :

∑
j∈N ajxj ≤ bi, i = 1, 2, . . . ,m∑
j∈N r

i
jxj ≤ ri0, ∀i ∈ Bfeas∑

j∈N π
i
jxj ≤ πi0 + η, ∀i ∈ Bopt

 (81)

be the feasible set for the Restricted Master Problem that includes the sets of Benders’

cuts. Note that we assume all integer variables are binary in the RMP. We relax the original

feasible set (81) by aggregating nonnegative weights over the rows.

Let ∑
j∈C0

ψjxj ≤ ψ0 + 1optη

denote a generated Benders’ cut where C0 ≡ {j ∈ N : ψj 6= 0}. The cut is successively

strengthened by taking the original inequality and lifting in variables from sets C1, C2, . . . , Ct

whose coefficients are determined by solving a lifting problem over a set S(B) ⊆ S(B) that

is based on a relaxation corresponding to aggregation of the constraints in S(B). The key is

that the lifting function over S(B) is either itself superadditive, or can be approximated by a

valid superadditive function, so the final inequality is invariant to the lifting sequence. Two

cases are examined dependent upon whether or not an optimality cut is already present in

the RMP.

5.5.3.1 Superadditive Lifting when Bopt = ∅

In the case where no optimality cuts have been added let (µ, λ) ∈ Rm+ × R|B
feas|

+ denote the

nonnegative weights used in the aggregation S (B;µ, λ) so that

S (B;µ, λ) =

 x ∈ Bn :
∑
j∈N

âjxj ≤ b̂


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where

âj ≡
m∑
i=1

µiaij +
∑

i∈Bfeas

λir
i
j and

b̂ ≡
m∑
i=1

µibi +
∑

i∈Bfeas

λir
i
0.

The lifting problem associated with Cq+1 is

f(z) = min

α0 −
∑

0≤k≤q

∑
j∈Ck

αjxj :
∑

0≤k≤q

∑
j∈Ck

âjxj ≤ b̂− z, x ∈ B
∑q

k=0 |Ck|


= max

 ∑
0≤k≤q

∑
j∈Ck

αjxj :
∑

0≤k≤q

∑
j∈Ck

âjxj ≤ b̂− z, x ∈ B
∑q

k=0 |Ck|

 .

Note the lifting function amounts to a pure 0 − 1 knapsack problem for which is in

general not superadditive (Theorem 5.5.3). One can, however, use an approximate function

which is superadditive similar to that shown in (77).

Given the approximate valid superadditive lifting function g, the lifting is done itera-

tively for q = 1, 2, . . . , t over the sets

S
q
(B;µ, λ) =

x ∈ R
∑

0≤k≤q |Ck|
+ :

∑
0≤k≤q

∑
j∈Ck

âjxk ≤ b̂

xj ∈ {0, 1} , ∀j ∈ I
⋂(
∪qk=0Ck

)
 . (82)

5.5.3.2 Superadditive Lifting when Bopt 6= ∅

Let (µ, λ, ρ) ∈ Rm+ × R|Bfeas| × R|Bopt| be given (
∑

i∈Bopt ρi 6= 0) where S (B;µ, λ, ρ) denotes

the following relaxation over S(B):

S (B;µ, λ, ρ) =

{
(x, η) ∈ Bn × R+ :

∑
j∈N âjxj ≤ b̂+ η

}
(83)

where

âj ≡
∑m

i=1 µiaij +
∑

i∈Bfeas λir
i
j +

∑
i∈Bopt ρiπ

i
j∑

i∈Bopt ρi
and

b̂ ≡
∑m

i=1 µibi +
∑

i∈Bfeas λir
i
0 +

∑
i∈Bopt ρiπ

i
0∑

i∈Bopt ρi
.

139



The lifting problem associated with Cq+1 is

f(z) = min

α0 −
∑

0≤k≤q

∑
j∈Ck

αjxj :
∑

0≤k≤q

∑
j∈Ck

âjxj ≤ b̂+ η − z, x ∈ B
∑q

k=0 |Ck|


= max

 ∑
0≤k≤q

∑
j∈Ck

αjxj :
∑

0≤k≤q

∑
j∈Ck

âjxj ≤ b̂+ η − z, (x, η) ∈ B
∑q

k=0 |Ck| × R+

 .

The lifting function amounts to a 0 − 1 knapsack problem with a single continuous

variable for which is superadditive (Theorem 5.5.6).

The lifting is then done iteratively for q = 1, 2, . . . , t over the sets

S
q
(B;µ, λ, ρ) =

x ∈ R
∑

0≤k≤q |Ck| :

∑
0≤k≤q

∑
j∈Ck

âjxj ≤ b̂+ η

xj ∈ {0, 1} , ∀j ∈ I
⋂(
∪qk=0Ck

)
 . (84)

There are four cases to consider for the superadditive lifting over the relaxation: whether

or not there exists an optimality cuts, the following two may be employed:

1. lifting a feasibility cut for which no optimality cuts have been generated - lifting is

over a 0-1 knapsack problem for which is not superadditive in general, but may be

approximated by a valid superadditive function.

2. lifting an optimality cut for which there are other optimality cuts present in the RMP

- lifting is over a 0-1 knapsack with a single continuous variable and is known to be

superadditive.

While there are other cases (e.g. a feasibility cut for which there are optimality cuts

generated in the feasible set of the RMP), they are not superadditive and no strong ap-

proximation to the superadditive function is known, similar to that shown in Gu et al.

[62]).

Introducing sequence-independent lifting through a relaxed lifting function is summa-

rized in Algorithm 9.
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Algorithm 9 Relaxed Superadditive Lifting Algorithm

1: Given: Benders’ cut ∑
j∈C0

ψjxj ≤ ψ0 + 1optη

where C0 ≡ {j ∈ N : ψj = 0}
2: let I ′ ≡ I \ C0

3: if I ′ 6= ∅ then
4: define a disjoint subsets such that

⋃t
k=1Ck ⊆ I ′

5: if feasibility cut then
6: if Bopt = ∅ then
7: for q = 1, 2, . . . , t do

8: Define (µ, λ) ∈ Rm+ × R|B
feas|

+

9: Construct relaxation S
q
(B;µ, λ) as in (82)

10: Define valid superadditive lifting function g over S
q
(B;µ, λ)

11: For all w ∈ Cq where w = {i} solve lifting problem

ψi = ψ0 −max
{
g(x) : x ∈ Sq(B;µ, λ) ∩ {x : xi = 1}

}
12: end for
13: end if
14: else
15: if Bopt 6= ∅ then
16: for q = 1, 2, . . . , t do

17: Define (µ, λ, ρ) ∈ Rm+ × R|B
feas|

+ × R|B
opt|

+

18: Construct relaxation S
q
(B;µ, λ, ρ) as in (84)

19: Solve lifting problem

ψi = ψ0 −max

 ∑
0≤k≤q

∑
j∈Ck

ψjxj − η : (x, η) ∈ Sq(B;µ, λ, ρ) ∩ {x : xi = 1}


20: end for
21: end if
22: end if
23: end if
24: return the strengthened Benders’ cut∑

0≤k≤t

∑
j∈Ck

ψjxj ≤ ψ0 + 1optη
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5.6 Computational Experiments from Airline Integrated Recovery

The cut strengthening methods proposed in this chapter are now performed on the Airline

Integrated Recovery problem.

For a given iteration let Bfeas denote the family of previously generated Benders’ feasi-

bility cuts for all subproblems. Let ri denote the ith extreme ray ri =
(
ri,1, ri,2, ri0

)
used to

generate a Benders’ feasibility cut of the form
∑

e∈E
∑

s∈S r
i,1
e,sxe,s +

∑
f∈F r

i,2
f κf ≤ ri0 for

some i ∈ Bfeas.

Let Bopt
CRM denote the set of Benders’ optimality cuts generated from the CRM of the

form
∑

f∈F π
i,2
f κf ≤ πi0 + ηCRM where πi =

(
πi,2, π0

)
is a dual extreme point for the CRM

that generates the ith feasibility cut for some i ∈ Bopt
CRM. Finally, let Bopt

IRM denote the

set of Benders’ optimality cuts generated from the IRM of the form
∑

e∈E
∑

s∈S π
i,1
e,sxe,s +∑

f∈F π
i,2
f κf ≤ πi0 + ηIRM where πi =

(
πi,1, πi,2, π0

)
is a dual extreme point for the IRM

that generates the ith IRM feasibility cut for some i ∈ Bopt
IRM.

Let B = Bfeas ∪ Bopt
CRM ∪ B

opt
IRM denote all feasibility cuts that have been generated and

X (B) represent the feasible set associated with the RMP given as follows:
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X (B) =



(
x, κ, ηCRM, ηIRM

)
:∑

e∈E
∑

s:s3f xe,s + κf = 1 ∀f ∈ F∑
e∈E

∑
s:s3f xe,s = 1 ∀f ∈ F strategic∑

e∈E
∑

s∈I(a,ta,ta) xe,s ≤ n
arr
a ∀

(
a, narr

a , ta, t
a) ∈ Aarr∑

e∈E
∑

s∈O(a,ta,ta) xe,s ≤ n
dep
a ∀

(
a, ndep, ta, t

a) ∈ Adep∑
e∈E

∑
s∈W(a,ta,ta) xe,s ≤ n

gates
a ∀

(
a, ngates

a , ta, t
a
)
∈ G∑

e∈E
∑

s:s3f CAPexe,s ≥ nseats
f ∀f ∈ Fmarket∑

e∈E
∑

s∈S r
i,1
e,sxe,s +

∑
f∈F r

i,2
f κf ≤ ri0 ∀i ∈ Bfeas∑

f∈F π
i,2
f κf ≤ πi0 + ηCRM ∀i ∈ Bopt

CRM∑
e∈E

∑
s∈S π

i,1
e,sxe,s +

∑
f∈F π

i,2
f κf ≤ πi0 + ηIRM ∀i ∈ Bopt

IRM

ηCRM, ηIRM ≥ 0

xe,s {0, 1} ∀e ∈ E,∀s ∈ S

κf {0, 1} ∀f ∈ F



.

Consider a generic Benders’ cut for the Airline Integrated Recovery problem of the form

∑
e∈E

∑
s∈S

ψ1
e,sxe,s +

∑
f∈F

ψ2
fκf ≤ ψ0 + 1opt

CRMη
CRM + 1opt

IRMη
IRM (85)

where 1opt
CRM and 1opt

IRM are indicator variables equal to unity if the inequality is a CRM or

IRM optimality cut, respectively.

5.6.1 Cut Pushing

Using the framework introduced in Section the cut pushing subproblem is

∆∗ = min

∆ :
∑
e∈E

∑
s∈S

ψ1
e,sxe,s +

∑
f∈F

ψ2
fκf + ∆ = ψ0, (x, κ, η) ∈ X (B) ,∆ ≥ 0

 . (86)

In a traditional application of Benders’ decomposition the RMP would be solved as a

MIP. For any optimality cut ∆∗ = 0 since the cut is binding at the previous integer solution.

However, variants of the algorithm allow for the RMP to be solved as an LP relaxation (this

has been studied in McDaniel and Devine [83], among others). In these cases ∆∗ may be
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strictly positive inducing a stronger cut. For feasibility cuts the optimal value of (86) may

be nonzero when the RMP is solved as a mixed integer or linear program.

After the subproblem (86) has been solved, the strengthend Benders’ cut

∑
e∈E

∑
s∈S

ψ1
e,sxe,s +

∑
f∈F

ψ2
fκf ≤ ψ0 −∆∗ + 1opt

CRMη
CRM + 1opt

IRMη
IRM

is added to the RMP which weakly dominate (85) if ∆∗ = 0 and strictly dominate if ∆∗ > 0.

5.6.2 Split Cuts

For a given iteration let C denote the family of previously generated split cuts. For the jth

split cut let αj =
(
αj,1, αj,2, αj0

)
denote the coefficients generated from the CGLP of the

form
∑

e∈E
∑

s∈S α
j,1
e,sxe,s +

∑
f∈F α

j,1
f κf ≤ αj0 where j ∈ C.

This section will re-define the feasible set for the RMP from above that will include the

split cuts and upper bound on all binary variables. For this section let

X ′ (B, C) =



(
x, κ, ηCRM, ηIRM

)
:∑

e∈E
∑

s:s3f xe,s + κf = 1 ∀f ∈ F∑
e∈E

∑
s:s3f xe,s = 1 ∀f ∈ F strategic∑

e∈E
∑

s∈I(a,ta,ta) xe,s ≤ n
arr
a ∀

(
a, narr

a , ta, t
a) ∈ Aarr∑

e∈E
∑

s∈O(a,ta,ta) xe,s ≤ n
dep
a ∀

(
a, ndep, ta, t

a) ∈ Adep∑
e∈E

∑
s∈W(a,ta,ta) xe,s ≤ n

gates
a ∀

(
a, ngates

a , ta, t
a
)
∈ G∑

e∈E
∑

s:s3f CAPexe,s ≥ nseats
f ∀f ∈ Fmarket∑

e∈E
∑

s∈S r
i,1
e,sxe,s +

∑
f∈F r

i,2
f κf ≤ ri0 ∀i ∈ Bfeas∑

e∈E
∑

s∈S α
1
e,sxe,s +

∑
f∈F α

2
fκf ≤ αi0 ∀i ∈ C

xe,s ≤ 1 ∀e ∈ E,∀s ∈ S

κf ≤ 1 ∀f ∈ F∑
f∈F π

i,2
f κf ≤ πi0 + ηCRM ∀i ∈ Bopt

CRM∑
e∈E

∑
s∈S π

i,1
e,sxe,s +

∑
f∈F π

i,2
f κf ≤ πi0 + ηIRM ∀i ∈ Bopt

IRM

ηCRM, ηIRM ≥ 0

xe,s {0, 1} ∀e ∈ E,∀s ∈ S

κf {0, 1} ∀f ∈ F



.
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An iteration of the Restricted Master Problem is an optimization problem whose feasible

set consists of all SRM constraints (see Section 3.3.1) along with:

1. the set of all generated Benders cuts B = Bfeas ∪ Bopt
CRM ∪ B

opt
IRM

2. the set of all generated split cuts C.

Let X (B, C) denote the continuous relaxation for X ′ (B, C) as defined above, and for

a given iteration of the decomposition procedure let Y (B, C) denote the constraints from

X (B, C) together with the family of generated split cuts from C. That is,

Y (B, C) = X (B, C)
⋂(x, κ) :

∑
e∈E

∑
s∈S

αi,1e,sxe,s +
∑
f∈F

αi,2f κf ≤ α
i
0, ∀i ∈ C

 .

For a given iteration of Benders’ decomposition suppose the solution to the RMP induces

an infeasible solution for a subproblem. Let r =
(
q1, q2, q0

)
denote an extreme ray whose

feasibility cut is of the form

∑
e∈E

∑
s∈S

q1
e,sxe,s +

∑
f∈F

q2
fκf ≤ q0.

Recall that only feasibility cuts are applicable to induce a split cut since no continuous

variables are present. Moreover, the coefficients r are required to be integral. From Section

5.3, we wish to induce a split cut of the form

∑
e∈E

∑
s∈S

α1
e,sxe,s +

∑
f∈F

α2
fκf ≤ α0 (87)

from the disjunction∑
e∈E

∑
s∈S

q1
e,sxe,s +

∑
f∈F

q2
fκf = q0

 ∨ ∑
e∈E

∑
s∈S

q1
e,sxe,s +

∑
f∈F

q2
fκf ≤ q0 − 1

 .

Let

Π0 = Y (B, C) ∩

(x, κ) :
∑
e∈E

∑
s∈S

q1
e,sxe,s +

∑
f∈F

q2
fκf = q0

 and

Π1 = Y (B, C) ∩

(x, κ) :
∑
e∈E

∑
s∈S

q1
e,sxe,s +

∑
f∈F

q2
fκf ≤ q0 − 1

 .
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Coefficients of the split cut α =
(
α1, α2, α0

)
from (87) are generated from the CGLP

using sets Π0 and Π1. Let ui, vi, i = 1, 2, . . . , 12 denote multipliers from the first twelve

constraints from Y (B, C) (or equivalently, the first twelve rows of X ′) and let u0, v0 denote

scalars corresponding to multipliers from the respective disjunctions.

Note that ui = vi = 0 for i = 11, 12 since the multipliers are associated with Benders’

optimality cuts whose relation is implied (see Section 5.3.2 for derivation).

In order to formulate the CGLP associated with the RMP for the Airline Integrated

Recovery problem, the following notation is introduced:

Λ0(u) =

∑
f∈F u

1
f +

∑
f∈F strategic u2

f +
∑

(a,narr
a ,ta,t

a
)∈Aarr narr

a u3
(a,narr

a ,ta,t
a
)

+
∑

(a,ndep
a ,ta,t

a
)∈Adep n

dep
a u4

(a,ndep
a ,ta,t

a
)

+
∑

(a,ngates
a ,ta,t

a
)∈G n

gates
a u5

(a,ngates
a ,ta,t

a
)

+
∑

f∈Fmrkt nseats
f u6

f +
∑

i∈Bfeas r
i,1
0 u7

i +
∑

i∈C α
i
0u

8
i

+
∑

e∈E
∑

s∈S u
9
e,s +

∑
f∈F u

10
f + q0u0

Ψ0
e,s(u) =

∑
f∈s u

1
f +

∑
s:s3f

f∈F strategic

u2
f +

∑
s:s∈I(a,ta,ta) u

3
(a,narr

a ,ta,t
a
)

+
∑

s:s∈O(a,ta,t
a
)

u4
(a,ndep

a ,ta,t
a
)

+
∑

s:s∈W (a,ta,t
a
) u

5
(a,ngates

a ,ta,t
a
)

+
∑

s3f :
f∈Fmrkt

CAPeu
6
f +

∑
i∈Bfeas r

i,1
e,su7

i

+
∑

i∈C α
i,1
e,su8

i + u9
e,s + q1

e,su0

Ω0
f (u) = u1

f +
∑

i∈Bfeas

ri,2f u7
i +

∑
i∈C

αi,2f u
8
i + u10

f + q2
fu0.

For a Benders-induced split cut of the form

α0 ≥ max

∑
e∈E

∑
s∈S

α1
e,sxe,s +

∑
f∈F

α2
fκf : (x, κ) ∈ Π0


the following relation is used in the CGLP:
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α0 ≥ min Λ0(u)

s.t. Ψ0
e,s(u) ≥ α1

e,s ∀e ∈ E,∀s ∈ S

Ω0
f (u) ≥ α2

f ∀f ∈ F (88)

ui ≥ 0 i = 1, 2, . . . , 10

u0 ∈ R.

The analogous condition with respect to Π1 is derived in the same manner by introducing

the following notation:

Λ1(v) =

∑
f∈F v

1
f +

∑
f∈F strategic v2

f +
∑

(a,narr
a ,ta,t

a
)∈Aarr narr

a v3
(a,narr

a ,ta,t
a
)

+
∑

(a,ndep
a ,ta,t

a
)∈Adep n

dep
a v4

(a,ndep
a ,ta,t

a
)

+
∑

(a,ngates
a ,ta,t

a
)∈G n

gates
a v5

(a,ngates
a ,ta,t

a
)

+
∑

f∈Fmrkt nseats
f v6

f +
∑

i∈Bfeas r
i,1
0 v7

i +
∑

i∈C α
i
0v

8
i +

∑
e∈E

∑
s∈S v

9
e,s

+
∑

f∈F v
10
f + (q0 − 1)v0

Ψ1
e,s(v) =

∑
f∈s v

1
f +

∑
s:s3f

f∈F strategic

v2
f +

∑
s:s∈I(a,ta,ta) v

3
(a,narr

a ,ta,t
a
)

+
∑

s:s∈O(a,ta,t
a
) v

4
(a,ndep

a ,ta,t
a
)

+
∑

s:s∈W (a,ta,t
a
) v

5
(a,ngates

a ,ta,t
a
)

+
∑

s3f :
f∈Fmrkt

CAPev
6
f +

∑
i∈Bfeas r

i,1
e,sv7

i +
∑

i∈C α
i,1
e,sv8

i + v9
e,s + q1

e,sv0

Ω1
f (v) = v1

f +
∑

i∈Bfeas

ri,2f v7
i +

∑
i∈C

αi,2f v
8
i + v10

f + q2
fv0.

For a Benders-induced split cut of the form

α0 ≥ max

∑
e∈E

∑
s∈S

α1
e,sxe,s +

∑
f∈F

α2
fκf : (x, κ) ∈ Π1


the following relation is used in the CGLP:
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α0 ≥ min Λ1(v)

s.t. Ψ1
e,s(v) ≥ α1

e,s ∀e ∈ E,∀s ∈ S

Ω1
f (v) ≥ α2

f ∀f ∈ F (89)

vi ≥ 0 i = 1, 2, . . . , 10

v0 ∈ R+.

For a given point x̂, the associated CGLP associated with the RMP of the Airline

Integrated Recovery problem is given as follows, as derived from (88) and (89):

max
∑
e∈E

∑
s∈S

α1
e,sxe,s +

∑
f∈F

α2
fκf − α0

s.t. α0 ≥ Λ0(u)

α0 ≥ Λ1(v)

Ψ0
e,s(u) ≥ α1

e,s ∀e ∈ E,∀s ∈ S

Ψ1
e,s(v) ≥ α1

e,s ∀e ∈ E,∀s ∈ S (AIR-CGLP)

Ω0
f (u) ≥ α2

f ∀f ∈ F

Ω1
f (v) ≥ α2

f ∀f ∈ F
10∑
i=1

∑
j

uij +

10∑
i=1

vij + u0 + v0 = 1

ui, vi ≥ 0 i = 1, 2, . . . , 10

(u0, v0) ∈ R× R+.

5.6.3 Standard Lifting

Strengthening a standard Benders’ cut of the form (85) through sequential lifting is now

examined. Let S1 =
{
s ∈ S : ∃e ∈ E s.t. ψ1

e,s 6= 0
}

. Similarly let F 1 =
{
f ∈ F : ψ2

f 6= 0
}

.

One can lift in strings or flight cancellation variables. We will let S0 = S\S1 and F 0 = F \F 1

denote the strings or flight cancellation variables, respectively, that will be introduced in

(85).
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Lifting Flight String Variables Let C0 = S1 and C1, C2, . . . , Ct be disjoint subsets of

S0. For q ∈ {0, 1, . . . , t} let Xq(B) denote the set analogous to X(B) (so Xt(B) = X(B))

defined only over
⋃

0≤k≤q Ck. That is,

Xq (B) =



(
x, κ, ηCRM, ηIRM

)
:∑

e∈E
∑

0≤k≤Cq

∑
s∈Ck:s3f xe,s + κf = 1 ∀f ∈ F∑

e∈E
∑

0≤k≤q
∑

s∈Ck:s3f xe,s = 1 ∀f ∈ F strategic∑
e∈E

∑
0≤k≤q

∑
s∈Ck∩I(a,ta,t

a) xe,s ≤ n
arr
a ∀

(
a, narr

a , ta, t
a) ∈ Aarr∑

e∈E
∑

0≤k≤q
∑

s∈Ck∩O(a,ta,ta) xe,s ≤ n
dep
a ∀

(
a, ndep, ta, t

a) ∈ Adep∑
e∈E

∑
0≤k≤q

∑
s∈Ck∩W(a,ta,ta) xe,s ≤ n

gates
a ∀

(
a, ngates

a , ta, t
a
)
∈ G∑

e∈E
∑

0≤k≤q
∑

s∈Ck:s3f CAPexe,s ≥ nseats
f ∀f ∈ Fmarket∑

e∈E
∑

0≤k≤q
∑

s∈Ck
ri,1e,sxe,s

+
∑

f∈F r
i,2
f κf ≤ ri0 ∀i ∈ Bfeas∑

f∈F π
i,2
f κf ≤ πi0 + ηCRM ∀i ∈ Bopt

CRM∑
e∈E

∑
0≤k≤q

∑
s∈Ck

πi,1e,sxe,s

+
∑

f∈F π
i,2
f κf ≤ πi0 + ηIRM ∀i ∈ Bopt

IRM

ηCRM, ηIRM ≥ 0

xe,s {0, 1} ∀e ∈ E,∀s ∈
⋃

0≤k≤q Ck

κf {0, 1} ∀f ∈ F



.

The first term in the Benders’ cut (85) may then be expressed as
∑

e∈E
∑

s∈C0
ψ1
e,sxe,s

and is valid for X0 (B). Given some s̃ ∈ C1 for which a valid equipment is eligible, the

initial lifting problem is to determine a value of ψ1
e,s̃ such that

ψ1
e,s̃xe,s̃ +

∑
e∈E

∑
s∈C0

ψ1
e,sxe,s +

∑
f∈F

ψ2
fκf ≤ ψ0 + 1opt

CRMη
CRM + 1opt

IRMη
IRM

is valid for X1 (B).

In general suppose that from an original Benders’ inequality (85), q − 1 variables have

been lifted in so that

∑
e∈E

∑
0≤k≤q−1

∑
s∈Ck

ψ1
e,sxe,s +

∑
f∈F

ψ2
fκf ≤ ψ0 + 1opt

CRMη
CRM + 1opt

IRMη
IRM
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is valid for conv(Xq−1(B)). For some ẽ, s̃ ∈ Cq the qth lifting problem is then given by

ψ1
ẽ,s̃ = max

∑
e∈E

q−1∑
k=1

∑
s∈Ck

ψ1
e,sxe,s +

∑
f∈F

ψ2
fκf − 1opt

CRMη
CRM − 1opt

IRMη
IRM

s.t.
(
x, κ, ηCRM, ηIRM

)
∈ Xq (B) ∩

{
x : xẽ,s̃ = 1

}
.

Lifting Flight Cancellation Variables Let C0 = S1 and C1, C2, . . . , Ct be disjoint

subsets of F 0. For q ∈ {0, 1, . . . , t} let Xq(B) denote the analogous set as the preceding case,

but for the appropriate subset of flight cancellation variables that have been introduced, or

Xq (B) =



(
x, κ, ηCRM, ηIRM

)
:∑

e∈E
∑

s:s3f xe,s + κf = 1 ∀f ∈
⋃

0≤k≤q Ck∑
e∈E

∑
s:s3f xe,s = 1 ∀f ∈ F strategic

⋂
(∪0≤k≤qCk)∑

e∈E
∑

s∈I(a,ta,ta) xe,s ≤ n
arr
a ∀

(
a, narr

a , ta, t
a) ∈ Aarr∑

e∈E
∑

s∈O(a,ta,ta) xe,s ≤ n
dep
a ∀

(
a, ndep, ta, t

a) ∈ Adep∑
e∈E

∑
s∈W(a,ta,ta) xe,s ≤ n

gates
a ∀

(
a, ngates

a , ta, t
a
)
∈ G∑

e∈E
∑

s:s3f CAPexe,s ≥ nseats
f ∀f ∈ Fmarket

⋂
(∪0≤k≤qCk)∑

e∈E
∑

s∈S r
i,1
e,sxe,s

+
∑

0≤k≤q
∑

f∈Ck
ri,2f κf ≤ ri0 ∀i ∈ Bfeas∑

0≤k≤q
∑

f∈Ck
πi,2f κf ≤ πi0 + ηCRM ∀i ∈ Bopt

CRM∑
e∈E

∑
s∈S π

i,1
e,sxe,s

+
∑

0≤k≤q
∑

f∈Ck
πi,2f κf ≤ πi0 + ηIRM ∀i ∈ Bopt

IRM

ηCRM, ηIRM ≥ 0

xe,s {0, 1} ∀e ∈ E,∀s ∈ S

κf {0, 1} ∀f ∈
⋃

0≤k≤q Ck



.

The second term in (85) may be expressed as
∑

f∈C0
ψ2
fκf and is valid for X0 (B).

For some f̃ ∈ C1 the lifting problem is to determine a value of ψ2
f̃

such that

ψ2
f̃
κ
f̃

+
∑
e∈E

∑
s∈S

ψ1
e,sxe,s +

∑
f∈C0

ψ2
fκf ≤ ψ0 + 1opt

CRMη
CRM + 1opt

IRMη
IRM
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is valid for X1 (B).

In general suppose that from an original Benders’ inequality (85), q − 1 variables have

been lifted in so that

∑
e∈E

∑
s∈S

ψ1
e,sxe,s +

∑
0≤k≤q−1

∑
f∈Ck

ψ2
fκf ≤ ψ0 + 1opt

CRMη
CRM + 1opt

IRMη
IRM

is valid for conv(Xq−1(B)). For some f̃ ∈ Cq the qth lifting problem is then given by

ψ2
f̃

= max
∑
e∈E

∑
s∈S

∑
s∈Ck

ψ1
e,sxe,s +

∑
0≤k≤q

∑
f∈Ck

ψ2
fκf − 1opt

CRMη
CRM − 1opt

IRMη
IRM

s.t.
(
x, κ, ηCRM, ηIRM

)
∈ Xq (B) ∩

{
κ : κ

f̃
= 1
}
.

‘

5.6.4 Superadditive Lifting from Relaxation

This section considers lifting in flight strings from the superadditive lifting over the re-

laxed feasible set (lifting cancellation variables are not considered in this section). While

Marchand and Wolsey [81] show that lifting over a 0 − 1 knapsack problem with a single

continuous variable is superadditive, it is not necessarily the case for two continuous vari-

ables. Therefore superadditive lifting is done only when Bopt
CRM = ∅. Recall the CRM is

solved after several iterations of the SRM, IRM, and ARM (see Figure 18 from Chapter 3)

so the strengthening will still be valid for most Benders’ cuts applied.

Given the set X(B) as described above, let µ =
(
µ1, µ2, . . . , µ6

)
denote weights for all

rows from the original set of constraints that exclude all Benders’ cuts, where each subvector

µj is nonnegative for j = 1, 2, . . . , 6. Moreover let λ ∈ R|B
feas|

+ denote the weight vector for

the feasibility cuts, and ρ = ρIRM denote the nonnegative weight vector corresponding to

the optimality cuts from the IRM. If Bopt
IRM 6= ∅ the weights must satisfy

∑
i∈Bopt

IRM
ρIRM
i > 0.

Following the notation above let

∑
e∈E

∑
s∈C0

ψ1
e,sxe,s +

∑
f∈F

ψ2κf ≤ ψ0 + 1opt
IRMη

IRM
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denote a Benders’ cut where

C0 = {s ∈ S : ψe,s 6= 0 for some e ∈ E} .

There are two cases considered which lifting may be utilized to strengthen the Benders’

cut.

Case 1: lifting feasibility cut and Bopt
IRM = ∅ The relaxation to the system X(B) is

X(B) =

x ∈ R|E|×|S|+ :

∑
e∈E

∑
s∈S â

1
e,sxe,s +

∑
f∈F â

2
fκf ≤ b̂

xe,s ∈ {0, 1} ∀e ∈ E,∀s ∈ S

κf ∈ {0, 1} ∀f ∈ F

 (90)

where for all e ∈ E and s ∈ S

â1
e,s =

∑
f∈s

µ1
f +

∑
s:s3f

f∈F strategic

µ2
f +

∑
s:s∈I(a,ta,ta)

µ3
(a,narr

a ,ta,t
a
)

+
∑

s:s∈O(a,ta,t
a
)

µ4
(a,ndep

a ,ta,t
a
)

+
∑

s:s∈W (a,ta,t
a
)

µ5
(a,ngates

a ,ta,t
a
)

(91)

+
∑
s3f :

f∈Fmrkt

CAPeµ
6
f +

∑
i∈Bfeas

ri,1e,sλi,

for all f ∈ F

â2
f = µ1

f +
∑

i∈Bfeas

ri,2f λi, (92)

and

b̂ =
∑
f∈F

µ1
f +

∑
f∈F strategic

µ2
f +

∑
(a,narr

a ,ta,t
a
)∈Aarr

narr
a µ3

(a,narr
a ,ta,t

a
)

+
∑

(a,ndep
a ,ta,t

a
)∈Adep

ndep
a µ4

(a,ndep
a ,ta,t

a
)

+
∑

(a,ngates
a ,ta,t

a
)∈G

ngates
a µ5

(a,ngates
a ,ta,t

a
)

(93)

+
∑

f∈Fmrkt

nseats
f µ6

f +
∑

i∈Bfeas

ri,10 λi.

For C1, C2, . . . Ct that are disjoint subsets for S′ = S \C0, the lifting is done iteratively

over sets X
q
(B;µ, λ) where

X
q
(B;µ, λ) =

x ∈ R
∑

0≤k≤q |Ck| :

∑
0≤k≤q

∑
j∈Ck

â1
e,sxe,s +

∑
f∈F â

2
fκf ≤ b̂

xe,s ∈ {0, 1} ∀e ∈ E,∀s ∈
⋃q
k=0Ck

κf ∈ {0, 1} ∀f ∈ F

 .
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Given a valid superadditive lifting function g(x, κ) that is to approximate the true lifting

function, for the qth lifting problem where s̃ ∈ Cq is given by

ψe,s̃ = ψ0 −max
{
g(x, κ) : (x, κ) ∈ Xq

(B;µ, λ) ∩
{
x : xe,s̃ = 1

}}
.

Case 2: lifting optimality cut and Bopt
IRM 6= ∅ The relaxation to the system X(B) is

now given by

X(B) =

x ∈ R|E|×|S|+ :

∑
e∈E

∑
s∈S â

1
e,sxe,s +

∑
f∈F â

2
fκf ≤ b̂+ ηIRM

xe,s ∈ {0, 1} ∀e ∈ E,∀s ∈ S

κf ∈ {0, 1} ∀f ∈ F


where for all e ∈ E and s ∈ S

â1
e,s =

(a1
e,s)
′∑

i∈Bopt
IRM

ρIRM
i

,

for all f ∈ F

â2
f =

(a2
f )′∑

i∈Bopt
IRM

ρIRM
i

,

and

b̂ =
b′∑

i∈Bopt
IRM

ρIRM
i

where:

• (a1
e,s)
′ is described in (91) with the addition of the term

∑
i∈Bopt

IRM
πi,1e,sρIRM

i to the

right-hand side

• (a2
f )′ is described in (92) with the addition of the term

∑
i∈Bopt

IRM
πi,2e,sρIRM

i to the right-

hand side

• b′ is described in (93) with the addition of the term
∑

i∈Bopt
IRM

πi0 to the right-hand side.

For C1, C2, . . . Ct that are disjoint subsets for S′ = S \C0, the lifting is done iteratively

over sets X
q
(B;µ, λ, ρ) where

X
q
(B;µ, λ, ρ) =

x ∈ R
∑

0≤k≤q |Ck| :

∑
0≤k≤q

∑
j∈Ck

â1
e,sxe,s +

∑
f∈F â

2
fκf ≤ b̂+ η

xe,s ∈ {0, 1} ∀e ∈ E,∀s ∈
⋃q
k=0Ck

κf ∈ {0, 1} ∀f ∈ F

 .
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For the qth lifting problem where s̃ ∈ Cq is given by

ψe,s̃ = ψ0 −max


∑

e∈E
∑q

k=0

∑
j∈Ck

ψ1
e,sxe,s +

∑
f∈F ψ

2
fκf − ηIRM

s.t. (x, κ, η) ∈ Xq
(B;µ, λ, ρ) ∩

{
x : xe,s̃ = 1

}


which is superadditive by Marchand and Wolsey [81].

5.6.5 Computational Results from AIR Model

The preceding four proposals to accelerate Benders’ decomposition by cut strengthening

are now evaluated.

5.6.5.1 Benchmark Results

Table 17 summarizes the performance of each method relative to the standard approach used

from Chapter 3 represented by the column labeled ‘benchmark’. The subsequent columns

represent each of the four cut-strengthening methods which are, respectively, cut-pushing

(Section 5.6.1), Benders-induced split cuts (Section 5.6.2), sequential lifting (Section 5.6.3),

and relaxed superadditive lifting (Section 5.6.4).

The following notes are important considerations for the initial results presented:

• Concerning the cut-pushing procedure, only feasibility cuts are considered as all iter-

ations of the RMP are solved as integer programs.

• For the sequential lifting results presented, only flight string variables xe,s are being

lifted, and the lifting order is determined by the number of flights in each string. That

is, a pool is populated until either all eligible strings (those who are not present in

the initial inequality) have been added, or until the pool size meets a predetermined

limit. For this implementation, strings with the highest number of flights are added

first in descending order (other lifting strategies are tested in Section 5.6.5.2).

• The weights for all rows are 1 for all superadditive lifting scenarios.

The table shows three salient results. First, the Benders-induced split cuts perform the

best overall, reducing runtimes by 3.1% over all scenarios - which is 1.1% better than the

second best method (cut-pushing). Second, the acceleration methods perform better on
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Table 17: Acceleration Methods on AIR Model: Runtime Performance (CPU seconds)

flow disruption
benchmark

cut-
induced

sequential
relaxed

rate length pushing
split

lifting
SA

restr. (min.)
cuts lifting

(% diff.) (% diff.) (% diff.) (% diff.)

50%

30 (hub) 62 65 63 68 69
(+4.8%) (+1.6%) (+9.7%) (+11.3%)

60 (hub) 1481 1511 1408 1502 1528
(+2.0%) (-4.9%) (+1.4%) (+3.2%)

75 (hub) 1948 1900 1860 1924 2019
(-3.9%) (-2.5%) (-1.2%) (+3.6%)

60 (hub) 2194 2102 2032 2149 2108
300 (spoke) (-4.2%) (-7.4%) (-2.1%) (-3.9%)

75%

30 (hub) 64 64 66 68 69
(0.0%) (+3.1%) (+6.3%) (+7.8%)

60 (hub) 1400 1381 1379 1445 1449
(-1.4%) (-1.5%) (+3.2%) (+3.5%)

75 (hub) 1856 1810 1833 1791 1897
(-2.5%) (-1.2%) (-3.5%) (+2.2%)

60 (hub) 1947 1891 1811 1930 1942
300 (spoke) (-2.9%) (-7.0%) (-0.1%) (0.0%)

100%

30 (hub) 106 99 100 106 105
(-6.6%) (-5.7%) (0.0%) (-0.1%)

60 (hub) 1449 1383 1399 1508 1518
(-4.6%) (-3.5%) (+4.1%) (+4.8%)

75 (hub) 1860 1828 1804 1793 2007
(-1.7%) (-3.0%) (-3.6%) (+7.9%)

60 (hub) 1462 1415 1390 1434 1396
300 (spoke) (-3.2%) (-4.9%) (-1.9%) (-4.5%)

mean difference:
-2.0% -3.1% +1.0% +3.0%

(all scenarios)

mean difference:
-2.5% -4.0% -0.4% +1.9%

(excluding 30-min scenarios)
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more complicated problems in general. By eliminating the smallest 30-minute scenarios,

split cuts save 4.0% of total time which may be significant in settings such as an OCC.

Third, both sequential and relaxed sequence-independent lifting do not help very much

on average. For the case of sequential lifting the reduced time spent as a result of the

strengthened inequality is, on average, more than offset in the time associated with solving

the lifting problem. For the case of relaxed superadditive lifting, the lifting problem becomes

almost trivial to solve; however, it is believed that the coefficients are weak and do not help

the net computational effort.

5.6.5.2 Sensitivity Analysis for Lifting Implementations

While Table 17 presents initial results of the methods to strengthen a Benders’ cut, some

of the implementations are nontrivial as there are certain degrees of freedom in the exper-

iments. This section examines different implementations that seek to enhance the pefor-

mance.

Cut-Pushing As previously mentioned, the cut-pushing results from Table 17 are only

used for feasibility cuts (typically deriving from the ARM subproblem). However, the

method may be applicable to optimality cuts when the RMP is solved as an LP-relaxation,

and the associated feasible solution is fractional.

Table 18 shows the results from where an optimality cut is generated after k fractional

solutions are found for k = 5, 10, 20. The results indicate that adding optimality cuts from

the relaxations are, on average, still faster than adding no strengthening, but slower than

just considering cut-pushing from feasibility cuts associated with integer solutions to the

RMP.

Sequential Lifting Sequential lifting is nontrivial to implement considering it is governed

by a lifting rule (for sequential lifting) or aggregation parameters (for relaxed superadditive

lifting). Sensitivity is conducted for different rules in the sequential lifting case where it is

shown that performance may be improved upon from the initial results presented above.

Because the large number of flight strings, not all strings are required to be present
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Table 18: Generating Optimality Cuts from RMP Relaxation: Runtime Performance
(CPU seconds)

flow disruption
benchmark

optimality
optimality and feasibility cuts

rate length
cut

k = 5 k = 10 k = 20
restr. (min.)

only

(% diff.) (% diff.) (% diff.) (% diff.)

50%

30 (hub) 62 65 65 63 63
(+4.8%) (+4.8%) (+1.6%) (+1.6%)

60 (hub) 1481 1511 1520 1511 1508
(+2.0%) (+2.6%) (+2.0%) (+1.8%)

75 (hub) 1948 1900 1941 1938 1945
(-3.9%) (-0.4%) (-0.5%) (-0.2%)

60 (hub) 2194 2102 2186 2145 2169
300 (spoke) (-4.2%) (-3.6%) (-2.2%) (-1.1%)

75%

30 (hub) 64 64 65 66 68
(0.0%) (+1.6%) (+3.1%) (+6.3%)

60 (hub) 1400 1381 1372 1403 1410
(-1.4%) (-2.0%) (+0.2%) (+0.7%)

75 (hub) 1856 1810 1818 1843 1839
(-2.5%) (-2.0%) (-0.7%) (-0.9%)

60 (hub) 1947 1891 1896 1902 1926
300 (spoke) (-2.9%) (-2.6%) (-2.3%) (-1.1%)

100%

30 (hub) 106 99 104 106 103
(-6.6%) (-1.9%) (0.0%) (-2.8%)

60 (hub) 1449 1383 1390 1389 1451
(-4.6%) (-4.1%) (-4.1%) (+0.1%)

75 (hub) 1860 1828 1806 1800 1784
(-1.7%) (-2.9%) (-3.2%) (-4.1%)

60 (hub) 1462 1415 1432 1444 1458
300 (spoke) (-3.2%) (-2.1%) (-1.2%) (-0.3%)

mean difference:
-2.0% -1.1% -0.6% 0.0%

(all scenarios)

mean difference:
-2.5% -1.9% -1.3% -0.6%

(excluding 30-min scenarios)
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in the final inequality. Given a set C0 of strings whose coefficients are nonzero and a

given parameter pmax that specifies the maximum number of lifting problems to be solved,

m = min {|I \ C0|, pmax} lifting problems are solved (for all computations pmax = 500). The

following four strategies were used to determining the sequence of lifting variables:

1. Maximum Flights per String (default method shown in Table 17): As mentioned this

method seeks to first lift in string variables with the highest number of flights.

2. Maintenance Strings: For all aircraft requiring maintenance within the time window,

those strings not already present in the original cut will be lifted first.

3. Adjacency : Given the incumbent solution (x∗e,s, κ
∗
f ) that generates the Benders’ cut,

adjacent solutions are lifted in first that correspond to strings that have the most

flights in common with that from those strings s : x∗e,s = 1.

4. Random Lifting : strings are be lifted in randomly for the m variables lifted.

Table 19 shows the results for the four different policies and shows the result against

the benchmark (no strengthening).

The number of flight cancellation variables are far fewer than that of flight strings.

Therefore all flights whose coefficient is zero in the original cut will be lifted until a zero

coefficient is found. The following three lifting strategies are employed for lifting flight

cancellation variables.

1. Identical Segments: For all flights f such that κ∗f = 1, priority is given to flights with

the same origin and departure as f .

2. Follow-On Segments: For all flights f such that κ∗f = 1, priority is given to all flights

scheduled to follow f for same scheduled aircraft through the end of the recovery

window.

3. Random Lifting : Lift in flight cancellation variables in a random order.

Table 20 shows how the different lifting strategies perform for flight cancellation variables

against both the benchmark solution (with no lifting) and the three lifting strategies. The
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Table 19: Sensitivity for Sequential Lifting of Flight Strings: Runtime Performance
(CPU seconds)

flow disruption
benchmark

default maint.
adjacency random

rate length (max flts) strings
restr. (min.)

(% diff.) (% diff.) (% diff.) (% diff.)

50%

30 (hub) 62 68 66 62 66
(+9.7%) (+6.5%) (0.0%) (+6.5%)

60 (hub) 1481 1502 1513 1493 1524
(+1.4%) (+2.2%) (+0.1%) (+2.9%)

75 (hub) 1948 1924 1960 1923 2033
(-1.2%) (+0.1%) (-1.3%) (+4.4%)

60 (hub) 2194 2149 2137 2088 2167
300 (spoke) (-2.1%) (-2.6%) (-4.8%) (-0.1%)

75%

30 (hub) 64 68 60 66 68
(+6.3%) (-6.3%) (+3.1%) (+6.3%)

60 (hub) 1400 1445 1440 1377 1461
(+3.2%) (+2.9%) (-1.6%) (+4.4%)

75 (hub) 1856 1791 1819 1801 1830
(-3.5%) (-2.0%) (-3.0%) (-1.4%)

60 (hub) 1947 1930 1911 1862 1909
300 (spoke) (-0.1%) (-1.8%) (-4.4%) (-2.0%)

100%

30 (hub) 106 106 103 107 109
(0.0%) (-2.8%) (0.0%) (+2.8%)

60 (hub) 1449 1508 1486 1499 1516
(+4.1%) (+2.6%) (+3.5%) (+4.6%)

75 (hub) 1860 1793 1864 1783 1870
(-3.6%) (0.0%) (0.0%) (+0.5%)

60 (hub) 1462 1434 1514 1415 1403
300 (spoke) (-1.9%) (+3.6%) (-3.2%) (-4.0%)

mean difference:
+1.0% +0.2% -1.0% +2.1%

(all scenarios)

mean difference:
-0.4% +0.6% -1.6% +1.0%

(excluding 30-min scenarios)

159



table shows that for the cases of a single disruption, there is little difference from the

benchmark. However, when multiple disruptions exist, then lifting is considerably more

valuable in expediting Benders’ decomposition.

Relaxed Superadditive Lifting Aggregation is necessary in order to transform a mul-

tirow system into a single constraint in order to utilize sequence independent lifting over the

relaxation. A weight vector µ ∈ Rm+ is given as input for which the initial implementation

uses a weight of one for all rows. Other weights were used, but the results were nearly

identical to that of the benchmark scenario displayed in Table 17.
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Table 20: Sensitivity for Sequential Lifting of Flight Cancellations: Runtime Performance
(CPU seconds)

flow disruption
benchmark

lifting strings lifting cancellation variables

rate length
default ident. follow-on

random
restr. (min.)

(max flts) segs. segs.

(% diff.) (% diff.) (% diff.) (% diff.)

50%

30 (hub) 62 68 63 64 67
(+9.7%) (+1.6%) (+3.2%) (+8.1%)

60 (hub) 1481 1502 1485 1489 1505
(+1.4%) (+0.3%) (+0.5%) (+1.6%)

75 (hub) 1948 1924 1957 1940 1956
(-1.2%) (+0.5%) (-0.4%) (+0.4%)

60 (hub) 2194 2149 2104 2122 2142
300 (spoke) (-2.1%) (-4.1%) (-3.3%) (-2.4%)

75%

30 (hub) 64 68 64 67 66
(+6.3%) (0.0%) (+4.7%) (+3.1%)

60 (hub) 1400 1445 1413 1449 1428
(+3.2%) (+0.9%) (+3.5%) (+2.0%)

75 (hub) 1856 1791 1853 1861 1852
(-3.5%) (-0.2%) (+0.3%) (-0.2%)

60 (hub) 1947 1930 1870 1883 1910
300 (spoke) (-0.1%) (-4.0%) (-3.3%) (-1.9%)

100%

30 (hub) 106 106 109 112 108
(0.0%) (+2.8%) (+5.7%) (+1.9%)

60 (hub) 1449 1508 1461 1450 1462
(+4.1%) (+0.8%) (0.0%) (+0.9%)

75 (hub) 1860 1793 1813 1829 1839
(-3.6%) (-2.5%) (-1.5%) (-1.1%)

60 (hub) 1462 1434 1403 1411 1424
300 (spoke) (-1.9%) (-4.0%) (-3.5%) (-2.6%)

mean difference:
+1.0% -0.7% +0.5% +0.8%

(all scenarios)

mean difference:
-0.4% -1.4% -0.9% -0.4%

(excluding 30-min scenarios)
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

There is perhaps no single industry that has benefited more from advancements made in

operations research than aviation. From an airline’s perspective, these tools have been

successfully employed to help airlines to design their flight network, assign their fleets,

schedule their aircraft and crew resources, price their fares, utilize their airport resources,

and a host of other well-known paradigms. One common characteristic these paradigms

share is they take place well in advance of operations, sometimes over a year in advance

relative to the departure of a given flight. Such problems present in the planning phase

of airline operations are assumed to be frictionless. However, as discussed in Chapter 2,

disruptions are common that render the necessity of re-scheduling various resources. As

the growth of the demand of air transportation is expected to outgrow that of airspace

and airport capacities worldwide, delays and cancellations are anticipated to induce further

difficulties for airlines.

The recovery process involves four primary classes of re-scheduling decisions pertaining

to the flight schedule, aircraft routings, crew schedules, and passenger itineraries. Such

scheduling decisions, made in the operational environment of an airline’s Operational Con-

trol Center (OCC), are faced with greater complexities relative to its planning counterpart.

First, decisions are required to be delivered in as close to real-time as possible. Second, op-

erational regulations stemming from regulations mandated by the FAA, unions, and airline

agreements, often make finding a feasible solution alone an arduous process.

While there has been a relatively small body of research aimed at studying mathematical

programming techniques to solve the airline recovery problem, most studies have proposed

doing so by a sequential approach. While this may be computationally tractable, its prac-

tical use within an OCC is spurious. Integrating the four classes of re-scheduling decisions
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overcomes most barriers, but thought to be too computationally burdensome for its own

practical use. In order to incorporate integrated recovery into the constraints imposed by

the real-time decision making environment of an OCC, some blend of optimization and

heuristic methods are necessary. Chapter 3 has studied one possible mechanism that opti-

mizes the four class of problems together via Benders’ decomposition after the problem size

has been reduced by heuristic methods. Results verify that the integrated solution delivers

(sometimes substantial) improvements over the traditional sequential approach. Moreover,

it has been shown that the runtimes associated with solving a one-day problem may be

viable for an OCC.

Computational effort is central to the efficacy of real-time decision making environments

like that of an OCC, so improving the performance of traditional algorithm have important

consequences. Chapters 4 and 5 introduce two mechanisms that are used to solve the larger

AIR problem, and may be applied to other problems exhibiting a similar structure. The

AIR model relies on both column generation and constraint generation. While each of these

classical techniques to solve large-scale optimization problems are well-known in practice,

little has been studied in using these two methods concurrently. Chapter 4 examines one

such possibility that relies on an the Theorem of the Alternative to determine whether or

not the Benders’ cut remains valid over those columns that have not priced out. By saving

much effort associated with generating paths through the crew duty network, results have

shown that the certificate-based method reduces computational effort from the standard

approach that makes redundant calls to the pricing out phase. A discrete version was also

discussed whose certificate is based on the integer analog to the Theorem of the Alternative.

The core algorithm employed in the solution presented in Chapter 3 is Benders’ decom-

position, which is a pragmatic approach to solve large-scale optimization problems whose

constraint matrix is represented by a block diagonal structure. While this method has been

successfully employed to solving ubiquitous problems arising in mixed-integer programming,

stochastic programming, and transportation, it has been seen to exhibit slow convergence

in some settings. A body of literature exists to circumvent such shortcomings. However,

these studies often assume a certain structure for the underlying problems. Chapter 5 has
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explored ways in which the well-known Benders’ decomposition algorithm may be expedited

by strengthening a standard Benders’ feasibility or optimality cut. Four methods were pro-

posed. The first considered pushing a non-binding cut into the interior of the feasible set

associated with the RMP until it was binding with a feasible point. The second considered

a split disjunction from a Benders’ cut in which a split cut could be generated from the

Cut Generating Linear Program (CGLP). The third suggested lifting in variables whose

component in the dual extreme point or extreme ray was zero in a standard, sequential

manner. To overcome the dependency from the lifting sequence, the RMP was relaxed by

a method of row aggregation. Lifting is then either superadditive, or may be approximated

by a valid superadditive function. By testing the approaches within the context of the AIR

problem, the first two methods were of particular use in reducing the computational effort.

6.2 Future Work

A number of alternative approaches and extensions arise from the conclusions of this work.

The following list some of the more salient features that may lead to promising future

research within this domain.

6.2.1 Extensions and Alternative Approaches to AIR

This thesis presents a methodology to solve a problem for integrated airline recovery. Prob-

lems of such size and complexity often involve as much inexact procedures as more sci-

entifically rigorous ones. Consequentially, the approach undertaken by this body of work

represents only one of a multitude of possibilities. The following possible extensions may

expedite the optimization process making an optimization-based approach to AIR more

tractable.

Recovering only duties in crew recovery The Crew Recovery Model (CRM) pre-

sented in Chapter 3 has sought to assign crew members to modified crew pairings that

delivers each disrupted crew member to the station in which they are required to be present

at by the end of the time window. While this replicates the practice of airline operations,

it may be more beneficial to assign crew members only to duties that are contained within
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the time window and concatenate the duties to pairings in a postprocessing stage. This

would eliminate the need to generate pairings that correspond to paths over a crew duty

network that may be dense, particularly for regional carriers.

Incorporating uncertain Event times While the practice of disruption management

differs across carriers, one trait in common to all OCCs is the uncertainty of event times.

For recovery scenarios that are caused by weather disruptions, the times associated with

the impact on operations may change on a frequent basis. For airlines that use recovery

pro-actively well into the future, an optimized solution to be be invalid at the beginning

of its operational irregularity. Incorporating uncertainty through a stochastic process or

scenario tree analysis may improve on the applicability of the proposed model.

Endogenous Time Window Because disruptable flights, aircraft, crews, and passengers

are a function of time, the time window plays an important role in the computational effort

to deliver an sequential or integrated solution. This window is exogenous to the optimization

model and is defined by the user. However, this may be spurious considering it may limit

the feasibility of a solution (if the window is relatively short), or induce longer than needed

runtimes (if the window is relatively long). Having an exact or inexact method to where

the time window is endogenous so as to mitigate such errors may improve the quality of the

system.

Updates of Crew Duty Network Building, managing, and generating paths through

the crew duty network is likely to be a tedious effort for most large disruptions. Therefore

initial efforts to solve the AIR model have been over a single-day horizon where it is plausible

to rebuild the network over each iteration. However, rebuilding the network for a time

window that spans multiple days will preclude its use in practice. Alternate methods are

therefore required for larger scenarios to be employed in an OCC environment.

One possibility is to generate the crew duty network once before the iterative opti-

mization process based off the original schedule, and update the network before the CRM

is solved as changes to duties and eligible connections between them arise from the new
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scheduling decisions. Algorithm 10 demonstrates such an idea. The key is determining how

the network is to update, which is nontrivial and would require additional analysis.

Algorithm 10 Integrating SRM and CRM through Approximations to Crew Duty Network

1: given: original flight schedule and all data
2: generate all duties D based off the original operating schedule
3: generate arc set A which defines all legal connections between duties
4: generate the crew duty network G = (D,A)
5: initialize i = 1
6: while optimal AIR solution has not been found do

7: let
(
x∗e,s, κ

∗
f , η
∗
CRM, η

∗
IRM

)
denote a solution to the SRM (Benders’ RMP)

8: let Dnew denote newly generated duties from x∗e,s
9: let Dillegal denote the duties that are no longer legal given (x∗e,s, κ

∗
f )

10: let Aillegal
1 =

{
aij ∈ A : i ∈ Dillegal or j ∈ Dillegal

}
11: let Aillegal

2 =
{
aij ∈ A : duty i and duty j are no longer legal given x∗e,s

}
12: let Aillegal = Aillegal

1 ∪ Aillegal
2 denote illegal arcs for new solution

13: let Anew denote the set of new legal arcs given x∗e,s
14: approximate new crew duty network by Gi =

(
Di,Ai

)
where:

Di = D \ Dillegal ∪ Dnew and

Ai = A \ Aillegal ∪ Anew

15: for all crew k ∈ K do
16: generate s− t paths over Gi and let P ′k denote the set of pairings
17: end for
18: solve CRM given ∪k∈KP ′k
19: if solution is not optimal then
20: price out new pairings P new

k ⊂ Pk \ P ′k
21: generate candidate Benders’ cut
22: if cut shown to be valid over all Pk then
23: add cut to RMP and update new columns
24: else
25: do not add cut, add new columns and re-solve CRM
26: end if
27: end if
28: i← i+ 1
29: end while

6.2.2 Computational Enhancements

In addition to analyzing and solving the Airline Integrated Recovery problem, another

contribution of this thesis has been examining ways in which computational advancements

may accelerate some classes of optimization problems. Given this exposition, a number of

166



open questions are raised for future research.

6.2.2.1 Simultaneous Cut and Column Generation

Chapter 4 has studied an alternative method where column generation and cut generation

may be applied in a simultaneous manner. There are two areas of interest that may be

useful to such large-scale optimization problems whose problem structure is amenable to

both constraint and column generation.

Comparison with Existing Methods The proposed approach relied on using informa-

tion obtained from the pricing problem and determining whether or not a solution could be

obtained for the alternate polyhedron which is obtained by invoking the Theorem of the Al-

ternative. If a subproblem is infeasible or suboptimal over a proper subset of local variables

and certain conditions are met in the pricing problem, then a certificate of infeasibility or

suboptimality is found over all subproblem variables and the candidate cut may be added.

If the conditions are not met, then columns continue to price out until either the certificate

is found, or no other columns price out.

While relatively little work has been done in this general area, there are two connections

of interest. One is recent work by Fischetti [52] in which it is shown that the method above

has a strong connection with (Theorem 4.4.5). However, there are other studies in which

illustrate a different idea that first relies on a reformulation of a master problem such

that the pricing problem becomes independent of the original master problem in a way

the pricing problem and cuts to the new problem are independent. Further analysis and

computational experiments would provide valuable insight into the strengths and weaknesses

of each approach.

Generalization to Mixed-Integer Programming The proposed method was shown

to work well on a class of problems that are solved by Benders’ decomposition where the

Restricted Master Problem (RMP) is solved as an MIP problem, all subproblems were

continuous, and columns are being generated from the variables of one or more subprob-

lem. Another method was proposed to a more generic combinatorial optimization problem
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involving edge coloring (Section 4.4.2). An analogous version of the Theorem of the Al-

ternative, applied to discrete systems (Theorem 4.4.10), was used in a manner similar to

the continuous version. However, the methodology relied on pricing out all columns whose

reduced cost was negative, which caused the runtimes to increase dramatically (although

fewer iterations were required). It would be of interest to either devise a better algorithm to

construct a solution, or to tighten the discrete alternative system in an equivalent manner.

Perhaps of even greater interest would be to lay a theoretical basis for the connec-

tion to the above method and that of a generic branch-and-bound-and-price framework

from Barnhart et al. [21]. If the traditional methodology could be strengthened from the

certificate-based approach, there could be great implications to a wide range of problem

employing such methods in practice.

6.2.2.2 Further Strengthening Techniques to Benders’ Cuts

While Chapter 5 sought to accelerate Benders’ decomposition by strengthening the standard

Benders’ inequality, three classes of further analysis may be of interest.

Other Cut Strengthening Procedures The methods proposed to accelerate Benders’

decomposition in Chapter 5 are just four possibilities of other methods thought to accelerate

Benders’ decomposition through cut strengthening. Other polyhedral methods may be

employed, such as examining lift-and-project cuts for an RMP whose integer variables are

binary (see Balas [12], Balas et al. [14], and Balas and Perregaard [15]), or some possible

work in two-row cuts.

Optimizing over the Split Closure The results from the AIR problem show that split

cuts generated from a Benders’ disjunction performed the best on average. However the

Benders’ disjunction is just one class of cuts that may be used. Some analysis may be of

interest on why the Benders-induced split is strong relative to other classes of split cuts.

Perhaps of greater interest would be to optimize over the split closure of the RMP, which

optimizes over all possible split disjunctions. While the separation problem amounts to

a nonlinear programming problem, a reformulation into a parametric mixed integer linear
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programming problem is possible (see Balas and Saxena [16]). Because of the computational

burden of optimizing over all possible split disjunction, this was not considered in this thesis,

but testing the method might show the procedure is tractable.

Tighter Relaxations to Superadditive Lifting Approximations The superadditive

lifting over the row aggregation was not shown to be effective in the context of the AIR

model as the generated coefficients were typically weak. Whether the poor results were

attributable to the structure of the AIR mode (perhaps due to too many rows of the RMP),

the aggregation used (poor choice of weights for the aggregation), or the overall method

are unclear. Further analysis may show the method to dominate the sequential lifting, and

may be of use for other applications.
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