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ABSTRACT 

Human performance in monitoring and controlling large-scale, dynamic sys-

tems is considered. Initial efforts were directed at obtaining an empirical 

understanding of the relationship between the physical characteristics of a 

large-scale system and human performance. Results showed the very strong 

effect that number of levels and degree of interconnectedness can have on 

human performance. Later efforts formalized these empirical results into 

several measures of large-scale system complexity. Two dimensions of complex-

ity were proposed, measured, and evaluated: structural complexity results from 

the physical structure of the system, while strategic complexity results from 

an operator's understanding of the system. The knowledge gained from these 

engineering approaches was used to develop a behavioral model of the human 

operator in a large-scale environment. A comparison of the model's perfor-

mance to human performance indicated that the model was consistent with human 

behavior. The model was then used to provide cognitively plausible decision 

aid to the human operator. Results from this approach were promising in that 

they showed subtle performance improvement for the aided subjects. 



I. INTRODUCTION 

Recent trends in automation have facilitated the creation of large, com-

plex engineering systems, such as communication networks [Henneman and Rouse 

1984b, 1986]. These systems are frequently represented as hierarchical net-

works that consist of a very large number of nodes connected by arcs. The net-

work size and degree of integration combine to create systems of potentially 

enormous complexity. Because of this complexity, computer technology is often 

used to control the systems. For example, the functions of a large-scale com-

mand and control network may depend on a distributed set of intelligent con-

trol systems. 

Although full automation often is appropriate during normal situations, 

control is likely to be transferred to a human operator during abnormal or 

infrequent events, e.g., system failures. In this way, the manner in which 

people interact with large systems is fundamentally being changed. The human 

operator is no longer in charge of the routine, continuous control of the sys- 

tem. 	Rather, the operator is mostly concerned with the unexpected, the 

unusual, and the non-routine aspects of system control. 	Requisite human 

skills for system control are shifting from psychomotor to problem solving 

[Wickens 1984]. 

The use of automation in control systems during normal operation raises 

questions about the human's ability to control the system during abnormal 

situations. Since operators infrequently interact with the system, their 

knowledge of the system dynamics, structure, and context may be inadequate to 

cope with the complex task demands of abnormal situations. This problem is 

especially critical in dynamic environments in which the state of the system 

is time-varying; timely resolution of crisis situations is dependent upon the 



human's ability to retrieve and use relevant task knowledge quickly. In addi-

tion, in a context-rich environment the human's problem solving performance is 

also dependent on the human's internal representation of that contextual 

knowledge. 

This report considers human performance in monitoring and controlling 

large-scale systems by reporting the methods, results, and conclusions of a 

series of four experiments within a particular environment. Initial efforts 

were directed at obtaining an empirical understanding of the relationship 

between the characteristics of a large-scale system and human performance. 

Later efforts formalized these empirical results into several measures of 

large-scale system complexity. Finally, the knowledge gained from these 

engineering approaches was used to develop a behavioral model of the human 

operator in a large-scale dynamic environment. This model formed the basis of 

an approach to aiding the human operator. The report roughly follows this 

chronology. 



II. SYSTEM CHARACTERISTICS AND HUMAN PERFORMANCE 

A. Characteristics Of Large-Scale Systems 

When considering human performance in interacting with a complex system, 

difficulty often arises in trying to exercise adequate experimental control 

over the characteristics of the real system. A variety of exogenous variables 

may mask the true effect of the variable of interest. Moreover, due to cost 

constraints, it is often difficult to make the changes in system characteris-

tics necessary to elicit variations in human performance. For example, if in 

a large scale system the variable of interest is the number of levels in the 

system, it is infeasible to alter the structure of a real system. Thus, a 

common approach to studying human performance in interacting with a complex 

system is to use a computer-based simulated abstraction of the real system. 

Two simulations, MABEL and CAIN, were developed for the purposes of this 

study. MABEL is a relatively context-free representation of a large scale sys-

tem in which a human operator is required to monitor and control the real time 

functioning of the system. By issuing commands, the operator accesses and 

displays activities within various parts of the hierarchical system, acquires 

information about the current system state, and issues control actions (e.g., 

component repairs and load shedding) when required. A subject's major task in 

MABEL is to diagnose and repair failed components. The CAIN system is struc-

turally isomorphic to MABEL; the difference is that CAIN is contextually aug-

mented, representing the nationwide telephone system. 

In order to provide a context for the simulations, experiments, and 

results presented in this report, the next section describes the general 

features of two existing large-scale systems, the nationwide telephone system 



of AT&T and the U.S. Army's Communications-Electronics Management System. The 

purpose is to present physical characteristics of these real systems and to 

describe ways in which people interact with the systems. 

1. Examples of Large-Scale Systems 

The nationwide telephone system [AT&T; Ash and Mummert 1984; Mocenigo and 

Tow 1984] has functioned until recently as a five-level hierarchical network 

composed of more than 170 million telephones and more than 22000 switching 

centers. The network consists of two basic elements: transmission and switch-

ing. The transmission elements are the actual communication paths that mes-

sages take through the system; the switching stations serve to interconnect 

calls economically. 

A major feature of the system is its high degree of automation. Messages 

are sent through the system hierarchy via direct or alternate paths that have 

been pre-determined. The system operates under normal conditions without any 

manual intervention. The switching stations, serving as repositories of net-

work intelligence, automatically perform such tasks as 1) determination of 

source, destination, and path through the network; 2) testing of lines for 

busy conditions before establishing a path; and 3) continual checking of cir-

cuit conditions. 

Nonetheless, human monitoring and maintaining of the system is still a 

necessity. During overload situations or in the case of major equipment 

failures, network performance can degrade rapidly. Human network controllers 

must intervene when the automatic solutions are excessively expensive or when 

a problem arises requiring human judgement. To deal with these situations, 

two general categories of control exist -- expansive and protective [Ash and 



Mummert 1984]. Expansive controls increase the network capacity by providing 

substitute or alternate routes for calls that are blocked. Protective con-

trols reduce the number of calls entering a congested portion of the network 

or reduce the number of routing alternatives. Thus, the human operator can 

implement these controls by cancelling alternate routing, rerouting calls, 

issuing line load controls, and playing recorded announcements. 

Recently the national phone network of AT&T altered its structure consid-

erably. Instead of being structured hierarchically as explained above, a new 

approach called Dynamic Nonhierarchical Routing (DNHR) is being used [Ash and 

Mummert 1984]. The system is termed dynamic because a call may be routed over 

different paths at different times of the day to take advantage of spare net-

work capacity. The system is termed nonhierarchical because switches are no 

longer separated into a hierarchy of different classes; they are equivalent in 

function. In short, any call may be routed through any part of the network to 

reach its destination. 

As Mocenigo and Tow [1984] point out, managing the DNHR network is analo-

gous to finding "a moving needle in a moving haystack" due to the increased 

dynamic nature of the system. Recent research efforts at AT&T have been 

directed towards introducing a higher degree of intelligence into the system, 

thus automating the system to an even greater degree. As Mocenigo and Two 

note, however, it will not be possible to eliminate the role that the human 

monitor must play in this system, largely due to the problems that system 

failures create. 

A very different type of large-scale system, the Army's Communications-

Electronics Management System (C-EMS) [U.S. Army 1977a, 1977b], is designed as 

a means to meet the communications requirements of the battlefield. Due to 



the dynamic nature of its environment, the system lacks the permanence and the 

level of automation of the nationwide phone system. In addition, since the 

military must be mobile during combat operations, a high degree of engineering 

and planning is required to produce an integrated, effective system. During a 

battle, for example, parts of the network may be damaged or communication 

units may change locations. The system must be able to respond quickly to 

these changing resource capacities and network configurations. 

The C-EMS is composed physically of several different forms of communica-

tion device. Although the telephone network described above is composed 

largely of phone-related equipment, the C-EMS network may consist of radio, 

wire and cable systems, radio-wire integrated systems, messenger services, and 

visual and sound communications. These system components typically are 

arranged hierarchically in a manner similar to that of the phone network. 

Each device is referred to as a node. The specific system requirements are 

dependent upon the type of information to be transmitted, the form in•which it 

will be received, and the security and speed required. Thus, not only is the 

C-EMS more mobile and less automated than the nationwide phone system, but it 

can also be described as less homogeneous. 

2. MABEL 

MABEL (Monitoring, Accessing, Browsing, and Evaluating Limits) [Henneman 

and Rouse 1984b; Henneman 1985a] is programmed in Pascal on a VAX 11/780 com-

puter and operates in real time. It is structured as a large network that can 

range in size from hundreds to thousands of nodes. Customers travel through 

the system from a randomly selected source node to a random destination. Sub-

jects monitor this system activity via a CRT display. When they detect a 

problem in the system (possibly due to a failure), subjects issue an 



appropriate command through a keyboard to correct and compensate for the 

abnormal situation. The overall system objectives are: 1) to maximize the 

number of customers served, and 2) to minimize the time it takes for customers 

to travel between their source and destination nodes. 

The following sections discuss MABEL in more detail. Emphasis is placed 

on the structure of MABEL, the operator interface, and typical system opera-

tion. 

,System structure.  Several elements are basic to the structure of MABEL. 

A node represents the smallest structural unit in the network. Customers are 

processed at nodes with service times following an exponential distribution. 

Each customer is passed from node to node, following a path that will minimize 

its expected time in the system. If a node in a customer's path is currently 

busy, the customer joins a waiting line at that node until the node becomes 

idle. 

As mentioned above, MABEL can consist of hundreds or thousands of nodes. 

It is impossible for the human operator to perceive and process information 

about all of the nodes at one time. On a more practical level, it is impossi-

ble to display information about all of these nodes at one time. Thus, nodes 

are grouped into relatively small networks called clusters. Human operators 

are restricted to viewing only one cluster at a time on the MABEL display. 

These clusters are grouped into hierarchical levels. A customer typi-

cally enters the system through a cluster in the lowest level. The customer 

proceeds through that cluster to a node that connects to a cluster in the next 

higher level. This process repeats until the customer reaches the top level 

of the system. At this point, the process reverses: the customer travels 

through a cluster and then "jumps" down to the next lower level. The process 



repeats until the customer reaches his destination. 

Thus, as noted above, the system is analogous to a telephone communica-

tions system. Imagine a hypothetical three level network in which a call is 

placed from Americus, GA to Mason City, IA. The message first travels from 

Americus to Macon to Atlanta via a network of telephone lines and switching 

stations. The message then travels from Atlanta to Chicago. It is then 

transferred to Davenport, IA, and finally proceeds to Mason City. Atlanta and 

Chicago are at the highest level of the hierarchical system; Macon and Daven-

port are at the second level, while Americus and Mason City are at the lowest 

level. 

Customers initially arrive at a node in the lowest level in the system. 

These arrivals are scheduled according to a Poisson process. Routing through 

the system is completed automatically as determined by a shortest path algo-

rithm. Thus, customers are routed through nodes that will minimize the time 

they spend in the system. 

Operator interface.  Subjects obtain information about MABEL from a video 

display (Figure 1). The screen is divided into several sections. The upper 

right portion of the screen displays a cluster of nodes. The dim numbers to 

the left of each node identify the node, while the numbers inside each node 

represent the current queue size (the number of customers waiting to be 

served). This portion of the screen is updated approximately every two 

seconds. A different cluster of nodes is viewed by entering an appropriate 

command. 

The lower right portion of the screen is an aid to the user to identify 

the current displayed cluster. Each letter (A,B,C) represents a level in the 

hierarchy. Each number (1,2 3 ,_,...) represents either a node or a cluster. 
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Figure I. MABEL Display 

Bright and dim characters are used to indicate the subject's current position 

in the hierarchy. A row of characters that is completely bright represents 

the cluster that is currently displayed on the screen. One bright character 

in a row of characters indicates the node above the currently displayed clus-

ter. In Figure 1, therefore, the displayed cluster is in Level B. This clus-

ter is beneath Node 7 of Level A. 

The upper left portion of the screen is used to display the current time. 

Time is updated approximately every three seconds. Since the system operates 

in real time, customers will keep arriving to the system whether any action is 

taken by the operator or not. 



The middle left portion is used to display a variety of user-requested 

information about the system. This information is input at the prompt "Your 

action:", located at the lower left part of the screen. Ten different com-

mands are available to the user. These can be grouped into four categories: 

access, monitor, diagnosis, and control. The ten different commands are sum-

marized in Table 1. 

Typical =am operation. Under normal circumstances, MABEL will operate 

automatically without any interference from the human monitor. When a node 

failure occurs, however, the human must act to diagnose and repair it. Node 

failures can occur in two ways: 

(1) Total failure due to malfunctioning equipment: in this case a node is 

unable to service any customers waiting at it. All customers waiting at 

ACCESS Commands  
d 	down one level 
u up one level 

MONITOR Commands 
monitor next level 

s 	system summary statistics 
c 	cluster summary statistics 

DIAGNOSTIC Commands  
t 	test displayed cluster 

for failures 
n node information 

CONTROL Commands 
✓ replace node 
1 	reduce load 

Table 1. MABEL Command Set 



the node are lost, thereby reducing the queue size to zero. 	Addition- 

ally, the node refuses to accept any customers from another node. These 

customers are retained at their previous node. Since they are unable to 

proceed, the situation may lead to the following type of failure. 

(2) Failure due to exceeding the capacity of the node: each node has a max-

imum number of customers that it can "store" at any one time -- that is, 

each node has a maximum queue size. If this queue size is exceeded, the 

node fails. Its behavior after this point is identical to equipment 

failures. The node is unable to accept customers and, thus, new custo-

mers are retained at their old node. Once a failure occurs, therefore, 

it is likely to lead to other failures. In the extreme case, if nothing 

is done to repair failed nodes, the entire system will fail. 

It is, of course, also possible for this type of failure to be induced 

simply by trying to service too many customers, i.e., the system is trying to 

handle too much of the load. In this case, customers arrive at a node at a 

rate faster than the node can service them. 

Subjects locate failures by monitoring critical system states and testing 

suspect nodes or clusters of nodes. If a failure is found, the subject 

dispatches a crew to repair the node. If the system becomes too crowded with 

customers, the subject can issue a command to reduce the number of customers 

admitted to the system. 

3. CAIN 

Certain features of MABEL were substantially changed to develop CAIN 

(Contextually Augmented Integrated Network) ilienneman and Rouse 1986; Henneman 

1985a]; however, the underlying structure of CAIN is identical to that of 



MABEL. 	CAIN, however, is contextually augmented. The simulation has a much 

higher level of fidelity in that the addition of context produces a simulation 

with a much stronger resemblance to a real system. 

Thus, although the physical hierarchical structure of MABEL was 

preserved, the addition of contextual information to CAIN required changing 

some features of the interface. In the MABEL scenario, for example, all nodes 

on a display page are identified by a number on the CRT display. Each 

displayed node in a cluster, therefore, is physically identical to nodes in 

other clusters. The MABEL interface has a generic quality in that all subsys-

tems are visually similar; no contextual cues exist. On the other hand, nodes 

in CAIN are identified via specific geographic locations. Thus a node in 

MABEL with the label "9" might be labeled "Chicago" in CAIN. A typical CAIN 

display is shown in Figure 2. 

Simply introducing geographic names as node labels is not enough, how-

ever, to alter subject task performance. A small experiment (n=3) replicated 

the first MABEL experiment, with the exception that nodes were given geo- 

graphic names. 	Subjects still referred to nodes by number only; contextual 

labels were present but not needed to perform the task. 	No significant 

difference was found in terms of performance between subjects using the two 

task scenarios. This result suggests that the addition of context must be 

such that it provides associative links (i.e., memory aids) or cues (i.e., 

clues to the location of problems within the system) through which subject 

performance is enhanced or task difficulty is decreased. 

Associative links. The formation of associative links in CAIN is facili-

tated by the way in which a subject identifies a node. In CAIN nodes are 

referred to by geographic labels only, never by number. Subjects may input 
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Figure 2. CAIN Display 

the shortest string of characters that uniquely identifies the node from all 

other nodes in the system. Thus, "Denver" may be abbreviated "den". Most 

nodes can be identified with a three or four character substring of the com-

plete name. In addition, the number of elements on a display page is kept 

constant at 16 so that the contextual information is invariant. 

To illustrate the effect this change has on the subject's task, consider 

the command that displays a lower level cluster. In MABEL, the subject inputs 

the command "d2," which displays the cluster beneath node 2. In CAIN, on the 

other hand, the subject types "dSanf," which displays the cities beneath San 

Francisco (e.g., Berkeley, San Jose). Thus, subjects can form associations or 

links between system parts due to the existence of contextual information. 



Subjects can use these learned associative links to maneuver through the 

CAIN display hierarchy. In MABEL movement between display pages is con-

strained to the cluster of nodes immediately above or below the current 

display. Thus, it is not possible to jump laterally across the network. In 

CAIN, however, it is possible to move from one part of the system to any other 

part. For example, if a subject recalls that the cluster associated with Ban-

gor, Maine, was previously experiencing problems, it is simple to call up that 

particular cluster display. In addition, subjects can always return immedi-

ately to the highest level in the system. 

Cues.  The formation of cues in CAIN is provided by the introduction of 

context-dependent events. These events are of one of two types: recurring 

failures and nonuniform loading. Although equipment in nodes fails randomly, 

some equipment experiences a higher probability of failure. For example, a 

thunderstorm in Little Rock, Arkansas, may make equipment in that city suscep-

tible to lightning damage. Similarly, given that incidents of vandalism are 

more likely to occur in Newark, New Jersey than Council Bluffs, Iowa, there is 

a greater chance of equipment damage in Newark. Therefore, equipment in cer-

tain cities exhibits a greater tendency to fail than in other cities. Sub-

jects are informed of these locations via warning alarms that appear on the 

bottom of the display. Subjects can directly monitor activities within these 

trouble spots via a special "watch" command. 

Besides recurring failures, another type of context-dependent event 

present in CAIN is nonuniform loading. At different times, some sections of 

the system may be prone to heavy loading. For example, certain times of day 

are busier in one part of the country than in others. Similarly, a major pol-

itical or sports event in one section of the country may increase the number 



of messages sent. As with the recurring failures, subjects are told the loca-

tion of these increased loads via a message at the bottom of the screen. Sub-

jects can then reduce the number of customers admitted to the overloaded sub-

system. 

In summary, despite the structural ismorphism of the two simulations, 

CAIN represents a significant departure from the context-free scenario of 

MABEL. Through the addition of contextual detail and the addition of events 

that are dependent upon this contextual information, the simulation fidelity 

has been increased significantly. 

4. Issues 

Initial efforts in this research program were to gain an understanding of 

the relationship between physical characteristics of a system and human per-

formance in monitoring and controlling such a system. For example, informa-

tion displays for computer-based large-scale systems are frequently con-

strained by their size: only a limited amount of information may be displayed 

at one time. Thus, the number of elements of a system presented at one time 

may affect the ability of the operator to perceive relevant system state 

information both rapidly and accurately. 

Another system characteristic that may affect human monitoring and con-

trol performance is the number of hierarchic levels. A system with multiple 

levels may have a very strong effect, for example, on the length of time 

needed for a human operator to find a failed component. Although some gui-

dance exists within the literature relative to trade-offs between depth and 

breadth in static display menu hierarchies [llaap and Roske-Bofstrand 1986], 

little guidance exists for dynamic systems. Finally, another system charac- 



teristic of interest is the rate at which system components fail. If the main 

role of the human operator in a large dynamic system is to diagnose failures, 

an important issue is whether or not humans can change their control stra-

tegies to adapt to changes in the quality (or reliability) of individual sys-

tem components. These system characteristics (display size, number of levels, 

and component failure rate) were considered in Experiment One. 

B. Experiment One: Empirical Analysis 

1. Method 

Twelve volunteer subjects were initially exposed to MABEL by a set of 

written instructions [Henneman and Rouse 19841)]. These instructions contained 

a detailed explanation of the overall structure and normal operation of MABEL, 

a summary of the commands, and an explanation of the subject's role in operat-

ing MABEL during off-normal situations. Summary sheets of this information 

were also available. A quiz verified subjects' understanding of the effects 

of failures on system performance. 

Training concluded with a special version of MABEL that allowed subjects 

to stop the execution of the program at any time during the experimental run. 

This training version of MABEL had the advantages of allowing subjects to 

become familiar with the commands and become aware of the effects of failures 

on both display features and system performance without being overwhelmed by 

the progressive effects of failures. If a situation became too complex, the 

subject could simply halt the dynamic system, solve the problem, and proceed. 

Subjects supervised two different training scenarios: a system with 16 

nodes/cluster and 2 levels, and a system with 9 nodes/cluster and 3 levels. 



The experiment had three independent variables: cluster size (i.e., 

number of nodes per display) and number of levels functioned as within-subject 

factors and failure rate served as a between-subjects factor. Cluster size 

varied between 4, 9, and 16 nodes; number of levels varied between 2 and 3. 

Failure rate was defined as the probability that a randomly selected node in 

the system would fail during each iteration of the MABEL program. One itera-

tion occurred after each activity in the network (for example, the arrival of 

a new customer to the system). Failure rate was either low (probability of 

failure/iteration = .0005) or high (probability of failure/iteration = .0010). 

The six subjects in each group controlled six systems corresponding to all 

possible combinations of cluster size and number of levels. The order of 

presentation to subjects was balanced in order to average out any residual 

training effect. 

Performance was assessed in several ways. The measures can be broadly 

grouped into two categories, namely, product and process [Henneman and Rouse 

1984a]. Product measures assess the final result of a problem solving session 

(such as number of customers served) and, thus, assess system-human perfor-

mance. Process measures, on the other hand, assess how that result was 

obtained by evaulating individual steps in a subject's strategic approach to 

supervising the system. 

The product measures calculated the length of time customers spend in the 

system (mean sojurn time) and the number of customers served during an experi-

mental run. (These measures were normalized to account for inherent differ-

ences that exist among the different experimental system configurations. 

Henneman and Rouse I1984b] provide a description of this bias-correcting pro-

cedure.) Process measures were classified into three types: 1) errors (e.g., 



number of times a subject viewed a failed node but did not repair it), 2) 

failure diagnosis (mean time to diagnose a failure and the fraction of 

failures found), and 3) strategy (e.g., mean amount of time spent accessing, 

monitoring, diagnosing or controlling). 

2. Results 

Analyses of variance were performed to determine the effect of the 

independent variables (cluster size, number of levels, and failure rate) on 

each of the dependent measures. Overall trends within the product measures of 

performance were very consistent: performance degraded with increasing number 

of levels and improved with increasing display size. The effect of number of 

levels was very strong, producing up to a 5-fold degradation in level of per-

formance. This effect was expected: the greater the percentage of nodes hid-

den from view, the greater the difficulty subjects experienced in supervising 

the system. For instance, the three-level systems resulted in substantially 

longer times to diagnose failures. Since it took more time for the effects of 

lower level failures to become obvious at the higher levels, the effects 

tended to be more serious than in the two-level systems. This lengthened 

diagnosis time tended to degrade most other performance dimensions. 

A trend not predicted was that increasing cluster size would lead to 

improved performance. One would suspect that larger numbers of nodes per 

display should lead to increased task complexity. Thus, as the number of com-

ponents that the human must deal with increases, performance should degrade. 

This is not the case with MABEL. A main reason for this result is that the 

larger systems are inherently more reliable than the smaller systems: the 

small systems contain fewer alternate paths between nodes through which custo-

mers can be rerouted following a failure. Thus, customers tend to be retained 



more frequently at nodes when they have fewer alternate paths through the sys-

tem. This system characteristic also accounts for the shorter failure diag-

nosis times found in the small cluster size systems: failures and their symp-

toms propagate faster in the small systems. 

Failure rate did not play a role in shaping performance except with 

respect to the measures of strategy, e.g., the percent of time subjects spent 

performing different activities (accessing, monitoring, diagnosing, and con-

trolling). Results suggested the prevalence of two basic strategies for 

supervisory control of MABEL. One strategy involved staying at higher levels 

and using monitor commands to assess the state of lower levels. The other 

strategy involved actually accessing the lower levels and performing tests to 

diagnose failures. Subjects with low failure rate conditions tended to select 

the former strategy, while subjects with high failure rate conditions tend to 

select the latter strategy. Apparently both strategies were effective in that 

performance was independent of failure rate. Thus, it appears that subjects 

could adopt strategies to compensate for decreased reliability of individual 

system components, but not for the more resource-constrained networks. 

C. Experiment Two: Measuring Complexity 

The initial experiment considered the relationship between several physi-

cal characteristics of a large-scale system and human performance. A second 

experiment addressed this relationship more quantitatively by evaluating 

several measures of task complexity. Based on a review of the literature 

[Henneman and Rouse 1986], two measures of complexity relevant to the task of 

human monitoring and control a large-scale systems were proposed. Two dom-

inant perspectives were identified within the complexity literature as being 

particularly relevant to this discussion, namely, that of the systems 



scientist and that of the behavioral scientist. 

Most studies of complexity performed by systems scientists are on a 

context-free or theoretical level. Although much work has gone into defining 

and measuring system complexity, little has been done to assess the implica-

tions of complexity. Furthermore, while humans must play an important role in 

many large-scale systems (e.g., failure diagnosis and network management), 

little research has investigated the relationship between large-scale system 

complexity and human performance. Finally, due to the strong theoretical fla-

vor of the systems science approach, it is often difficult to see its applica-

tion to real-world systems. 

On the other hand, studies of complexity performed by behavioral scien-

tists are on a very applied level. Although the approach often lacks the 

mathematical rigor of the systems approach, complexity is always related to 

some aspect of human performance. Unfortunately, differences between tasks 

and complexity measures cause difficulty in generalizing results across con-

texts. Moreover, the small, well-defined nature of the tasks seems to have 

little relation to human performance in large-scale system. 

The research described in the remainder of this section attempts to 

integrate several perspectives concerning the nature of complexity, as well as 

illustrate the impact of this conceptualization of complexity on human perfor-

mance in CAIN. Complexity is viewed as being a result of both the structure 

of the system and the human operator's understanding of the system. Complex-

ity is also considered in terms of its relation to both system performance and 

human performance. Thus, both nonbehavioral and behavioral approaches are 

taken into account. 



In this report, the complexity of a large-scale system is described in 

terms of: 1) the physical structure of the system and 2) operators' under-

standing of the system as reflected by their strategy. From this perspective, 

a system that is complex or difficult to control for one operator may be rela-

tively easy to control for another operator. Similarly, the complexity of a 

system may vary with time for any particular operator. Some systems, however, 

may be complex regardless of any particular control strategy due to their 

inherent structural complexity. The following paragraphs propose two measures 

of complexity that incorporate these ideas. Structural complexity is con-

sidered first, followed by strategic complexity. 

1. Complexity measures 

Structural complexity.  A one-to-one relationship exists between the 

simulated physical structure of CAIN and the actual structure of the display-

page hierarchy. Since the main control task in CAIN is to locate failures, a 

measure of structural complexity should assess the difficulty of finding 

failures given the physical arrangement of the system. A major constraint 

placed on an operator's ability to locate failures is the hierarchical display 

structure; thus, it seems reasonable that structural complexity can be 

estimated by calculating the total number of display pages the operator must 

view in order to repair all system failures. Assuming that the operator knows 

the location of all failures, this measure represents the minimum number of 

pages necessary to find all system failures. Therefore, the structural com-

plexity measure represents optimal performance given the constraints of the 

structure or arrangement of the system components. Operator performance 

affects this measure only in that individual operators may have more or fewer 

failures depending upon their fault finding ability. 



To illustrate how this measure is calculated, consider the system in Fig-

ure 3. This hypothetical system contains four nodes per display page and has 

three levels. Each group of four rectangles represents a cluster of nodes 

(i.e., one display page). For clarity, only those clusters of nodes that 

enter into the complexity calculation are shown. The darkened rectangles 

represent nodes that have failed. In this example, therefore, three failures 

exist within the system: two on the second level and one on the third level. 

The structural complexity measure is determined by counting the number of 

display pages that must be viewed in order to find all failures. The counting 

method assumes a strategy based on tracing higher level symptoms to their 

lower level causes. (Context—specific cues might, of course, allow operators 
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Figure 3. Example calculation of structural complexity. 



to locate failures in fewer pages.) Thus, the counting method assumes that 

after locating all failures along one subsystem branch, the subject returns to 

the highest system level to search the next branch (a depth-first strategy). 

Figure 3 is self-explanatory: to repair all three failures in the system, an 

operator must view at least six display pages. The final return to the top 

system level is not counted into the measure because it would simply add one 

to all estimates. 

Strategic complexity.  The strategic complexity measure explicitly con-

siders operator performance. When operators are deciding which path through 

the system is most likely to lead to finding a failure, they make a tradeoff 

between their uncertainty concerning the state of a subsystem display page 

(i.e., queue lengths) and their expectations of finding a failure in that sub-

system. High uncertainty about a subsystem may be acceptable, for example, if 

a relatively low probability exists of finding a failure on that display page. 

On the other hand, high subsystem uncertainty may be unacceptable if a very 

high probability exists of finding a failure.' 

State uncertainty U is defined as the real time elapsed since a particu-

lar display page was last tested for failures. Probability of failure is 

defined as the probability that a failure exists within a cluster, given the 

state of the display X, and is denoted by p[F1X). For example, when a subject 

views a particular display page, features of that display provide information 

about the existence of failures in other subsystems (e.g., a large queue size 

' Of course, the acceptance of uncertainty will also vary as a function of 
the consequences of a failure. If, for example, a failure is likely to lead 
soon to another failure, high uncertainty about that subsystem would be unac-
ceptable. Subjects, however, do not have any knowledge of these possibly 
unequal probabilities. Thus, it is reasonable to assume equal effects of 
failures for this discussion. 



suggests a lower level failure.) Experimental data files were replayed in 

order to estimate these probabilities empirically. These probabilities were 

determined by dividing the frequency with which a display state reflected a 

failure by the frequency with which a particular display state (i.e., queue 

length) was viewed by an operator. Sets of probabilities were calculated for 

different system configurations (2 vs. 3 levels and high vs. low redundancy) 

and different loading rates (e.g., a system with a low loading rate has fewer 

customers in service and, hence, lower threshold or queue size will reflect 

failures). 

The measure of strategic complexity multiplies these two measures (state 

uncertainty and probability of failure given the system state) and sums the 

product across all clusters in the system: 

strategic complexity *5.: U( i) * p[FIX(i)] 

where U(i) is the time since last accessing display page i; X(i) is the state 

of page i reflected by the display one level higher; p[FIX(i)] is the proba-

bility of failure given state i; and F denotes "failure." Strictly speaking, 

this conceptualization results in strategic complexity having units of 

seconds. The U(i) values are really just "proxy" measures [Keeney and Raiffa 

1976] of complexity, however, and thus, strategic complexity is left unitless. 

When a subject descends to a lower level, the p[FIX(i)1 remain fixed for 

the previous level. When a subject returns to the higher level, the p[FIX(i)] 

value associated with the just-visited lower-level clusters is set to zero. 

Thus, when an operator descends to a lower-level subsystem and tests for 

failures, the strategic complexity measure is simultaneously increased by the 

"new" uncertainty (i.e., increased U(i)) present in the other lower-level sub-

systems and decreased by the certainty (i.e., U(i) 11. 0) now associated with 



Monitor Display  

Cluster 	Number of customers 

Denver 	 8 

Los Angeles 	5 

Chicago 	 1 

New York 	 1 

Cluster Display 

15 
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Denver 	Chicago 
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Los Angeles New York 

the current level. 

To illustrate how the strategic complexity measure is determined, con-

sider the display in Figure 4. This system contains four nodes per display 

page and has two levels. The operator is viewing the highest level page in 

the display hierarchy and is monitoring activity in the next level of the sys-

tem. The operator can gather information about activity in the second level 

of the system from two sources in this example: the cluster display and the 

data displayed via the monitor command. The monitor command lists the number 

of customers in the clusters one level below; the cluster display shows the 

number of customers waiting at all nodes in the current cluster. 

Each of these pieces of information reflects the probability that a 

failure has occurred in a lower level cluster. These probabilities (which are 

plausible but hypothetical) are listed in Table 2. For example, the queue 

size of 15 in Denver reflects a relatively high probability (0.75) that a 

Figure 4. Example monitor and cluster display for calculation 
of strategic complexity. 



Cluster U P(FIX] U x Win 
uncertainty monitor 	cluster 

Denver 20.12 .600 	.750 15.090 

Los Angeles 0.54 .100 	.015 .054 

Chicago 7.36 .001 	.001 .007 

New York 9.12 .001 	.050 .456 

Strategic Complexity 15.607 

Table 2. Example Calculation of Strategic Complexity 

failure exists in level two. Similarly, the monitor command reports that 

eight customers are currently in the cluster beneath Denver; these eight cus-

tomers reflect a 0.60 probability that a failure exists. The operator has not 

tested the cluster beneath Denver for failures for U(Denver) = 20.12 s. Using 

the information that reflects the highest probability of failure (i.e., from 

the cluster display) results in the following measure of strategic complexity 

for the Denver region: 

U(Denver) * p[FIx(Denver)) = 20.12 * 0.75 

= 15.09 

This procedure is then repeated for the other clusters in the network and the 

measures are added together. In this way the total strategic complexity is 

determined to be 15.61. 

In this example, it should be noted that Denver makes a large contribu-

tion to the strategic complexity measure for two reasons: first, the operator 

has a high degree of uncertainty concerning the Denver subsystem in that it 



has not been tested for failures in 20.12 s. Second, the display reflects a 

very high probability (0.75) that a failure exists in the Denver subsystem. 

The combination of these two factors leads to a very high measure of strategic 

complexity for the Denver subsystem. On the other hand, the other subsystems 

have either a low uncertainty measure or a low probability of failure. Thus, 

as shown in Table 2, their contribution to strategic complexity is small. 

Dependent measure  la .complexity.  The literature review also suggested 

that an appropriate dependent measure of complexity is the time to failure 

diagnosis. In the context of CAIN, this measure is the mean time from when a 

failure occurs to when the subject issues a repair command for a failed node. 

Since the two independent complexity measures vary with time and since there 

are multiple repairs occurring in conjunction with the assessment of the vari-

ables, it was necessary to use a dependent measure that also changes with 

time. Average time, therefore, includes the diagnosis time for the current 

repair plus diagnosis times for the four previous repairs. 

To summarize, the structural measure reflects an inherent characteristic 

of the network, namely, the number of display pages necessary to find all the 

failures in the system. The strategic measure, on the other hand, reflects 

temporal aspects of subjects' strategies, i.e., subjects' paths through the 

network. From this perspective, the strategic measure reflects the complexity 

resulting from a particular strategy. 

Although the two complexity measures proposed here may have some general 

applicability (in particular, the measure of strategic complexity is appealing 

due to its temporal nature), it is not the intent of this work to suggest or 

prove that these measure are true indices of task complexity. The goal 

instead is to show in a pragmatic sense that these two dimensions represent a 



useful distinction relative to task complexity. These measures are a com-

venient means to demonstrate data distinction. 

2. Method 

The main goal of Macperimemt Sao was to imvestigate the mature of complier-

ity in a large-scale kommormachime system. As emphasized im the precetimg 

section, the general asommptina is made that task complexity *am only be mess-

ured relative to an imdimidmal's mederstamding of the system and expertise in 

dealing with problems sun' that system. Ilmo, complexity is considered ta be 

dynamic, varying acmes time and anon subjects. Accordimgly. as disonamed 

below, subjects were reqmired to perfume the teak (CAM) over a relatively 

long period of time. 

Results from the 	 One indicated that cloister size (=meat of 

nodes per display page) is RIMEL had as particularly strong effect om oaddiect 

task performance. Meamlts ammested that at 	clusters degraded performance 

because fewer connect 	 ; less redmodancy rammed 

failures to propagonelmoreqpirkIy..tether remelt from Raga:anent Ome shamed 

the very strong effect of smoker of hierarchical 'system levels cm kazoo pet-

formance. Thus, two imMegemdeot variables selected for fortber amalysio were 

the degree of redundancy tor connectivity among coopomemto) and the moniker of 

levels in the system. (Cluster size was kept constant at 26 in order to 

emphasize the norvaryimg feanures of the contextual display.) ReAmmismy or 

connectivity was defined as the member of commectious emanating from each 

node. Redundancy varied' between lam (mix commectiona ketmeem nodes) and 

(13 connections per mode). sad the umber of levels varied between mum amd 

three. 



Of interest in this experiment was the way in which complexity changes as 

subjects gain expertise. Thus, the order of presentation of experimental con-

ditions was not randomized. All subjects saw the same experimental conditions 

in the same order. A final independent variable, therefore, was the order of 

presentation of experimental conditions within each combination of number of 

levels and redundancy. 

Eight paid subjects were trained in three sessions via a combination of 

written instructions and hands-on experience with CAIN, similar to that used 

in Experiment One. Subjects completed the first two training sessions by con-

trolling a two-level CAIN system. The third training session was spent con-

trolling a three-level CAIN system. As in Experiment One, these sessions were 

performed using a version of CAIN that allowed subjects to start and stop the 

program execution. 

Summarizing the ten experimental sessions (S1-S10), they were performed 

in the following order (with the intent of increasing experimental diffi-

culty): S1 and S2 had two levels with high redundancy; S3, S4, and S5 had 

three levels with high redundancy; S6 and S7 had two levels with low redun-

dancy; and S8, S9, and S10 had three levels with low redundancy. Each experi-

mental session was performed on consecutive days and lasted about 45 minutes. 

3. Results 

Summary  gi Anproacti.  Data from this experiment were first analyzed using 

the same performance measures used in Experiment One, e.g., mean time to 

failure diagnosis and fraction of failures repaired. Overall results from the 

analysis of variance of subject performance measures supported those of Exper-

iment One. Measures of fault diagnosis performance were affected as expected 



by the independent variables. Increasing the number of system levels from two 

to three corresponded to a higher mean time to failure diagnosis. This result 

was largely because failures take longer to propagate upwards in the three-

level systems. In addition, failure-related symptoms take longer to emerge in 

highly interconnected networks; thus, the high redundancy systems resulted in 

longer mean times to diagnosis. The fraction of failures repaired by subjects 

was also significantly affected by increasing the number of levels: as the 

number of levels increased from two to three, the fraction of failures found 

decreased from 0.95 to 0.69. As in Experiment One, subjects had difficulty 

coping with the very large search space in the three-level systems. 

The data were also analyzed with the purpose of investigating relation-

ships between the complexity measures, the CAIN environment, and operator per-

formance. This investigation was accomplished in two ways. First, an 

analysis was undertaken of average or global measures of complexity (i.e., the 

complexity time series averaged over each experimental run). The effect of 

the experimental independent variables (number of levels and degree of inter-

connectivity between nodes) on the mean complexity measures was determined 

using analysis of variance. The relationship between the mean complexity 

measures and measures of subject failure-diagnosis performance was then 

assessed by using correlation analysis. As is discussed below, this analysis 

of mean complexity values provided explanations for differences that exist 

between different system configurations. 

The second way in which complexity was investigated involved using a 

fine-grained approach, namely, time-series analysis. Time-series analysis was 

selected due to the intrinsic time-varying nature of the independent and 

dependent complexity measures. This analysis provided insight into the way in 



which complexity evolves and affects different phases of the failure-diagnosis 

process. 

Due to the amount of time necessary to perform these analyses, the 

results are limited to Sessions 2, 5, 7, and 10. Data for the analyses were 

generated by replaying subject data files. Every three seconds (corresponding 

to the rate of display update), both complexity measures and the mean time to 

failure diagnosis were calculated. Mean values for all measures were calcu-

lated from these time series. 

Ana lysis 	Average  complexity measures. The results of two ANOVAs using 

mean structural and strategic complexity measures as dependent measures and 

number of levels and degree of redundancy as independent measures are summar-

ized in this section. Structural complexity, as measured here, was decreased 

in two ways: 1) decreasing the number of system levels and 2) decreasing the 

number of system failures. 	The first way enables subjects to access fewer 

display pages in order to diagnose failures in the lowest system level. 	The 

second way is facilitated by increasing the network redundancy (i.e., increas-

ing the number of connections between nodes). As network redundancy 

increases, the mean number of node capacity failures decreases, which has the 

effect of decreasing the structural complexity measure. 

Strategic complexity, as measured here, may be decreased in three ways: 

1) using an effective strategy in terms of responding to symptoms, 2) decreas-

ing redundancy, and 3) decreasing number of levels (which causes symptoms to 

emerge more rapidly). Subjects tended to trace failures to the lowest system 

level only when a symptom (i.e., visual cue) appeared on the display, even if 

they had not viewed a particular region in a large period of time. Conse-

quently, when symptoms emerged slowly (as in the high-redundancy/three-level 



conditions), high uncertainty resulted. 	This uncertainty helped to create 

moderate to high strategic complexity. On the other hand, symptoms emerged 

more rapidly in the low-redundancy/two-level conditions. Since operators 

tended to wait for symptoms to emerge on the top-level display, low redundancy 

led to low values of strategic complexity. 

This dependence on visual cues has implications for the design of task 

performance aids. One possibility is to have aids that help people to over-

come their inability or reluctance to reduce system uncertainty despite the 

absence of failure symptoms. Alternatively, failure-related cues or symptoms 

could be enhanced so that operators naturally pursue leads sooner. 

These results provide insight to the overall characteristics of the two 

complexity measures and their relationship to subject fault diagnosis perfor-

mance. The measures are sensitive to variations among the system characteris-

tics of number of levels and degree of redundancy. In general, the more com-

plex systems have three rather than two levels. Although multiple system lev-

els might be desirable in that they allow supervision of large networks and 

protect upper levels from the effects of failures, they have the undesirable 

side effect of masking symptoms from operators, thereby increasing the com-

plexity of failure diagnosis. Multiple displays could possibly be used to 

reduce this complexity. The effect of redundancy on complexity depends on the 

type of complexity: more redundant systems (corresponding to less structural 

complexity) enhance the proper operation of the system by reducing the impact 

of failed components. On the other hand, more redundancy leads to increased 

strategic complexity (the complexity of failure diagnosis) due to the slower 

emergence of failure symptoms. 



Beyond the characteristics of these single complexity dimensions is 

another important conceptual and methodological issue: the multidimensional 

nature of complexity, i.e., the relationship between the independent and 

dependent measures of complexity. A correlation analysis between the two 

average complexity measures and the two independent measures indicated that 

when many failures exist in a system, the general tendency is for the complex-

ity measures to increase. At the same time, however, the mean time to failure 

diagnosis decreases. Thus, even though complexity may be large, failure-

diagnosis time may be small. 

This observation emphasizes the distinction mentioned previously between 

proper system functioning and the complexity of failure diagnosis. In a 

localized sense, control in a complex system is simple: no matter what the 

operator does, it will result in finding a problem (as reflected by short 

diagnosis times). In a global sense, however, control in a complex system is 

complex: so many problems may exist in the system that proper operation is 

endangered, as reflected by a low fraction of failures found. The operator, 

dealing with only a small part of the system at one time, may be oblivious to 

the scope of problems in the network. Another important issue is, therefore, 

the impact of a richly interconnected multiple-level system (that supports 

proper system functioning) on the complexity of human monitoring and control 

(that will degrade failure diagnosis performance). 

Analysis al fine,-grained sanninnitx measures Time-series analysis [Box 

and Jenkins 1976] was used to identify, estimate, and diagnostically check 

transfer functions that relate the two input complexity measures (structural 

and strategic) to the mean time to failure diagnosis. Each transfer function 

model predicted the current mean time to failure diagnosis through a linear 



combination of the complexity measures at various time lags. The essence of 

the modeling process was to determine the time lags to include in the model 

and the weight or relative contribution of each time-lagged variable to the 

predicted value. 

Overall, the approach was successful. The equations removed all struc-

ture from the autocorrelation function of the model residuals. Furthermore, a 

comparison of the sum of squares of the original dependent time series (i.e., 

mean time to failure diagnosis) to the sum of squares of the residuals showed 

that the transfer functions explained 82 to 97 percent of the variance within 

the original data. Nevertheless, wide differences in the lag and coefficient 

values in the models existed among both subjects and systems. 

A plausible explanation for these differences was derived by identifying 

certain characteristics of the task, the system, and the human related to the 

the process of failure diagnosis. For example, several different events are 

associated with the life cycle of each system failure: failure occurrence, 

symptom emergence, and failure diagnosis. Failure occurrence is when a part 

of the system fails. Symptom emergence is the time period between failure 

occurrence and the time a failure first affects any node that appears on the 

subject's video display. Failure diagnosis is the time period from failure 

occurrence to when a subject issues a repair command for a failed component. 

The timing of these events undoubtedly has some effect on the length of time 

needed to find the failure. Moreover, the system complexity at these event 

times might also affect failure diagnosis time. 

Besides the possibility that different events associated with the failure 

life-cycle affect diagnosis time, it is also reasonable that different types 

of diagnosis might affect failure diagnosis time. The diagnosis of any 



particular failure may be classified as one of three types: topographic, symp-

tomatic, or serendipitous. Subjects identifying failures using a topographic 

strategy trace failure symptoms from higher system levels to their causes in 

lower levels. Subjects identifying failures using a symptomatic strategy make 

a direct mapping from their knowledge of the system structure to the failed 

component. A symptomatic diagnosis relies, therefore, on the subject's con-

textual knowledge of the system. For example, when subjects make a jump from 

one cluster to another in the same level to repair a failure, their action 

suggests that their context-specific knowledge of the system is providing gui-

dance to system trouble areas. Finally, subjects may also identify failures 

accidentally or serendipitously. In this diagnosis mode, subjects locate 

failures while browsing through the system or while tracing the cause of a 

different failure. 

In summary, it is possible that several different types of failure-

related events (e.g., failure occurrence and symptom emergence) and several 

different modes of failure diagnosis (e.g., symptomatic, topographic, and 

serendipitous) affected the time to failure diagnosis within a system. In 

addition, due to the aforementioned averaging window of five failure-diagnosis 

times for the dependent complexity measure, it is possible for many lags (pos-

sibly quite long) to have entered the transfer function. From the perspective 

offered in the preceding paragraphs, therefore, the transfer functions relat-

ing the two complexity measure to failure diagnosis time were affected by 

types of failure-related event, modes of failure diagnosis, and the way in 

which diagnosis time were aggregated. 

These factors were considered analytically by replaying subject data 

files and comparing measures of the characteristics described above to the 



transfer functions. Results showed that the variables and lags present in the 

transfer function were reasonable, if not entirely explainable. The real-time 

values of lags frequently agreed with the mean inter-failure event times cal-

culated from subject data files. A comparison of these values suggested that 

recurring patterns of agreement existed between the lags and inter-event 

times. These recurring patterns were useful to explain the presence of both 

positive and negative terms in the transfer functions. Differences between 

time values can probably be accounted for by any of several reasons, including 

the high variability present within the data, the subjective nature of the 

modeling process, and the existence of events other than failure occurrence or 

symptom emergence (e.g., diagnosis time for a particular system level or sub-

system) that affected parameters in the transfer functions. 

These results demonstrate how two different dimensions of complexity, 

structural and strategic, can be related to human fault-diagnosis skill in a 

large-scale system. The exact nature of the two measures is relatively unim-

portant beyond a certain degree of intuitive validity. The importance of 

these results, however, lies in the demonstration that the complexity measures 

were dependent upon the number of failures in the system and the rate at which 

their symptoms emerge. These factors were highly dependent upon both system 

characteristics (i.e., number of levels and degree of redundancy) and subject 

strategy. Of equal importance is the demonstration that the complexity meas-

ures related to performance in a time-varying manner, and the nature of this 

time-varying manner was highly dependent upon events that occurred within the 

system and the strategy of individual subjects. 



D. Conclusions 

The experiments, results, and conclusions up to this point have con-

sidered the relationship between the design of a large-scale system and human 

monitoring and control behavior. System characteristics such as number of 

levels and degree of interconnectedness can have a very strong effect on the 

ability of humans to maintain proper system operation in the presence of 

failures. Since the normal system operation tends to be affected in the oppo-

site direction in the presence of the same design characteristics, system 

designers must be careful to create environments that support both system and 

human performance. 

Straightforward measures were used to assess the complexity of a large 

scale system as it relates to the task of monitoring and control. Complexity, 

as discussed in this report, is a dynamic property of a human-machine system. 

Complexity varies with time and it varies among operators. Furthermore, com-

plexity is multidimensional: two dimensions of complexity (i.e., structural 

and strategic) have been proposed, and it appears that this distinction is 

useful both conceptually and practically. Complexity is not due solely to the 

structure of the system, although a system may certainly be complex due to its 

structure. Rather, complexity also arises when the human, trying to solve 

problems within the system's environment, does not understand the structure 

and as a result issues an inappropriate command, misinterprets display infor-

mation, etc. In short, systems are also complex due to humans' understanding 

of the system as reflected by their strategies. 

Another result from this work concerns the outcome of complexity. Based 

on a review of the literature and the major control task of subjects (i.e., 

finding failures), mean time to failure diagnosis was used as the major 



dependent measure of complexity. As results suggest, however, mean time to 

failure diagnosis alone does not completely describe the implications of com-

plexity. For example, the most complex systems resulted in shorter failure-

diagnosis times due to the number and location of failures. A smaller frac-

tion of the total number of failures was diagnosed, however. Thus fraction of 

failures diagnosed was used to explain a different aspect of performance 

related to task complexity. In short, the result of complexity is multidimen-

sional. A single dimension does not capture the outcome of a complex system. 

These comments are important in light of the relationships among system 

characteristics that contribute to complexity, proper operation of the system, 

and complexity of monitoring and control by the human. As the system becomes 

more "complex" (from a nonbehavioral perspective, i.e., more levels and more 

redundancy), it becomes more resistant to the effects of system failures. 

Failures take longer to propagate through the more complex systems. Moreover, 

the effects of any one failure on overall system performance are minimized due 

to the number of alternate paths through the system. Hence, normal system 

operation is enhanced. This situation is analogous to the use of redundant or 

standby equipment in systems to increase fault tolerance. On the other hand, 

as the system becomes more complex, the task of finding system failures 

becomes more difficult. Although the system design characteristics can help 

to avoid the short-term effects of failures, they can have the dual effect of 

making the human supervisory controller's task more difficult. These findings 

lend support to Nawrocki's 11981] conjecture that efforts to simplify the task 

of equipment operation through hardware design tend to complicate the task of 

equipment maintenance. 



The relationship between complexity and human performance takes on 

increasing importance given the growing prevalence of large-scale systems. 

Human abilities and limitations in monitoring and controlling these complex 

systems must be identified in order to design systems that facilitate good 

failure diagnosis and network management performance. In short, systems must 

be designed such that they do not overload human information processing capa-

bilities. Beyond the issue of design, an understanding of human performance 

constraints should facilitate the creation of effective performance aids. 

Such aids can be used to help people overcome their limitations in coping with 

the complex environments these systems create, thereby leading to safe and 

effective system performance. 



III. MODELING HUMAN PERFORMANCE 

The work described in the preceding sections has implicitly modeled human 

performance as a function of various system characteristics. Powerful sta-

tistical evidence illustrated the strong effect that a system designed for 

good automatic control can have on a human operator's ability to exercise 

accurate and timely system intervention. From a behavioral viewpoint, however, 

the statistical models that have been described do not offer sufficient cogni-

tive explanation for human performance. The empirical analyses describe what  

happens when humans interact with a large-scale system, but they do not help 

to explain silly things happen that way. Therefore, the second phase of this 

research program concentrated on the development of a behaviorally valid model 

of human performance in monitoring and controlling a large scale system 

[Henneman 1985b; Zinser 1986; Zinser and Henneman 1986]. 

Modeling is a good approach in this problem area for several reasons. 

First, a modeling approach will contribute to a better understanding of human 

performance in this task. From the previous experiments, much knowledge (both 

formal and anecdotal) was obtained about how people perform this task. The 

modeling process allows the formal codification of knowledge and cognitive 

mechanisms relevant to a complex monitoring and control task. Both human 

abilities and limitations must be identified by this process. Thus, the model 

should contain appropriate knowledge representations and implementation 

mechanisms to provide a high level of behavioral fidelity to human perfor-

mance. 

Second, the modeling approach should facilitate the development of an 

approach to aiding the human operator. A model that incorporates mechanisms 

coherent with human cognitive functions should be able to provide meaningful 



and timely aid to the human operator. Thus, a focus of this work is the use 

of the model as the basis of an on-line human performance aid. 

A. MURRAY : A Model Of Human Problem Solving 

The model developed in this report is an extension of a conceptual model 

of human problem solving proposed by Rouse [1983]. Rouse has suggested that 

problem solving takes place on three levels: 1) recognition and classifica-

tion, 2) planning, and 3) execution and monitoring. Thus, when a problem 

situation develops, the first task is to detect that the problem exists and to 

categorize it (recognition and classification). An approach or plan to solv-

ing the problem must then be developed (planning), and finally, the plan must 

be implemented (execution and monitoring). The model is further characterized 

by its ability to make either a state- or a structure-oriented response, 

depending on both the system state and the human's level of expertise. The 

model assumes that humans have a preference for pattern-recognition solutions 

to problems -- that is, humans prefer to make context-specific state-oriented 

responses to situations. Moreover, the model operates heterarchically at all 

three problem solving levels almost simultaneously, with situations constantly 

being re-evaluated relative to their state- or structure-oriented status. 

Several efforts have used this generic problem solving model. Domains 

have included automotive and aircraft powerplants [Hunt and Rouse 1984], pro-

cess control networks [Knaeuper and Rouse 1985], and communication networks 

[Viteri 1984]. Performance of these models was, in general, quite good; how-

ever, they were constrained by the lack of real "understanding" of the domain 

by the model. The models lacked knowledge structures that would allow flexi-

ble performance strategies to be pursued. Thus, results from efforts at using 

Rouse's model as the basis for an on-line performance aid [Knaeuper and Morris 



1984] were equivocal. A major reason appeared to be the rigidity of the per-

formance strategy of the model. 

1. Overview of the Model 

The model proposed for the CAIN environment, MURRAY, is illustrated in 

Figure 5. MURRAY operates in the three stages of Recognition and Classifica-

tion, Planning, and Execution and Monitoring. Situations are continually re-

evaluated as system states change due to the system dynamics or operator 

actions. An important feature of this task is that at any given time the 

human operator may have several different tasks that could be performed. The 

key to good performance is the ability to choose among these possibly con-

flicting subtasks. These model components, their associated representations, 

and how they interact will be considered below. The section concludes with an 

example of how the model operates. 

2. Knowledge Representation 

MURRAY's fidelity to human performance is dependent on the representation 

of three different types of knowledge needed to perform the task: system 

knowledge, contextual knowledge, and task knowledge. System knowledge and con-

textual knowledge are shown explicitly in Figure 3, while the task knowledge 

is embedded within the Recognition/Classification and Planning components. The 

Execution component of the model is realized by implementational procedures 

and the command that is issued. 

The first type of knowledge, syste knowledge,  consists of information 

from CAIN about the current system state, e.g., the number of customers wait-

ing to be served in a city. Thus, the system knowledge of MURRAY is identical 

to the information presented on the CAIN display. System knowledge is only 



CLASSIFICATION      
RECOGNITION/ 	PLANNING 

1 

— — 

( EXECUTION 

CONTEXTUAL 
KNCWLEDGE 

ME TARUL ES 

PRIORITIZATION 

FRAMES 

 

	41 	  

IMPLEMENTATION  
PROCEDURES 

TASK KNOWLEDGE 
(RULE BASE) 

Figure 5. Components of the Conceptual Model 

accessed by the model's Recognition/Classification component and the Prioriti-

zation mechanism. The system knowledge is structured as a hierarchical frame 

system [Minsky 1975]. The frame of the highest structural level represents 

the cluster currently displayed by CAIN. A cluster frame contains information 

regarding its location relative to other clusters and levels in the network. A 

cluster frame also contains 16 city frames that correspond to each of the 

cities (i.e. communication nodes) in the cluster. Each city frame has several 

"slots" that contain such information as the number of customers waiting for 

service at the city and the average length of time they have been waiting. 

These slots are either filled by data that appear on the CAIN display or by 

appropriate default values. The information contained within this set of 

frames will change as the information on the display changes. If a new 



cluster is displayed, the slots in the 16 city frames change to reflect the 

features of the newly displayed cluster. The slots in the cluster frame will 

also inherit information from the city of the level above. 

The second type of knowledge, contextual knowledge,  consists of informa-

tion concerning the context of the system at a given time, such as locations 

of individual cities in the network and cities that have high loading and 

abnormal failure rates. Thus, contextual knowledge is augmented over time; as 

the model gains 'expertise', the knowledge stored by this component will 

change. Contextual knowledge is represented by a network of context frames. 

This network contains a hierarchy of city and cluster frames as described 

above, and also data structures that describe both the evolution of the system 

to the current state, and the human operator's monitoring behavior and 

knowledge about the system at any given time. Since the human operator's 

knowledge of the contextual features of individual cities (e.g., high failure 

rate) and the contextual relationships among cities (e.g., Decatur is associ-

ated with Atlanta) will vary with time, the model's contextual knowledge also 

is augmented as time and, hence, experience increases. 

Finally, the third type of knowledge, task knowledge, represents the 

operator's behavior in monitoring, problem solving, and failure detection. In 

other words, task knowledge refers to the knowledge needed by operators to 

perform their jobs, for example, repairing failed equipment. Task knowledge 

is represented as a production system [Newell and Simon 1972]. The operator's 

heuristics correspond to productions (or rules), while the operator's internal 

model of the system corresponds implicitly to 'metarules' that organize the 

application of the 'normal', explicit rules. The metarules are directly imple-

mented in the procedures of the model's Prioritization component (or inference 



engine), which will be explained later. 

MURRAY contains 22 rules in its representation of task knowledge. These 

rules have a fixed syntax, and thus, they can be manipulated from outside the 

program by a text editor. The set of rules is based on a combination of 

expert judgement and empirical evidence from Experiments One and Two. Each 

rule consists of a situation and an action part made up of predicates. The 

situation part of a rule contains one or more predicates. Each predicate may 

have a value associated with it that relates to either the system or contex-

tual knowledge of MURRAY. The predicates of a rule's condition part have the 

function of matching that rule to a CAIN system state or recalled contextual 

information. Thus, the condition part of a rule corresponds to the Recognition 

and Classification component of the conceptual model in Figure 5. The action 

part of a rule contains a command for CAIN. Thus, the identification of a set 

of potential actions corresponds to the Planning component in the conceptual 

model. 

To summarize, the model depicted in Figure 5 consists of three interact-

ing types of knowledge. System knowledge includes system state information as 

presented on the CAIN display screen. Contextual knowledge is also acquired 

from the display, although it is less transient in nature. Contextual 

knowledge is acquired over time and represents some of the long term relations 

among system components. Thus, both system and contextual knowledge can be 

thought of as forms of declarative knowledge [Anderson 1976]. Task knowledge, 

on the other hand, is a form of procedural knowledge [Anderson 1976] that del-

ineates how the task should be performed. Details of the implementation of 

these representations in MURRAY and the way they interact are considered in 

the next section. 



3. Implementation 

An important part of MURRAY is the inference mechanism of the rule base 

representation of the task knowledge. This mechanism determines the way that 

rules are applied and evaluated. The mechanism is implemented whenever the 

system state changes, i.e., whenever the model observes a set of new data from 

CAIN (as a reaction to a command issued by the operator or a dynamic change in 

the system). At this point, the condition predicates of all the rules are 

evaluated successively in the Classification component of the model. Those 

rules whose condition parts match are then prioritized. This prioritization 

is partially based on A, priori importance weights that are associated with 

each rule. 

These A priori importance weights of applicable rules are dynamically 

altered by the characteristics of the current system state to which a rule is 

applied. Fuzzy set theory methodologies are applied to the set of all applica-

ble rules. The use of fuzzy sets can be regarded as a means of representing 

the phenomenon of activation levels involved in human cognitive processes. 

(Hunt and Rouse [1984] describe a similar use of fuzzy sets in human perfor-

mance modeling.) Three factors alter the initial importance weight values to 

determine the actual importance of a rule in a given situation. These factors 

are described below. 

The first factor is determined by linear fuzzy membership functions. 

Several of the rules contain fuzzy predicates that describe the current system 

state in the form of qualitative expressions such as 'high' or 'low'. These 

values are used to define the membership of the rule in the set of applicable 

rules. The deviation of the value of the current system state from a 'normal' 

system state is proportionally weighted by the membership function. Thus, a 



city with a queue size of 16 customers yields a higher membership function 

than another city with 12 customers. The membership value always lies between 

1 and 2. 

The second and third factors are based on memory functions embedded 

within the model. MURRAY contains two types of memory. The simplest type, on 

which the second weighting factor is based, is the model's ability to remember 

previously issued commands. MURRAY is restricted from reissuing the same com-

mand within a certain span of time. The factor derived from this kind of 

memory is a function of time and frequency of usage of a given command. Com-

mands that are used more frequently are more "automatic", and thus, are 

retained for less time in memory Nenneman and Rouse 1984c]. The numerical 

value resulting from this factor is also presented to the prioritization of a 

given rule and always lies between 0 and 1. The more recently a command was 

issued, the lower is the value of this second factor. (A value of 1 

represents the fact that memory retrieval for a given command failed.) 

The second type of memory, which is more complicated than the simple 

command memory described above, is the contextual knowledge that an operator 

accrues over time due to learning. This type of memory is the basis for the 

third rule weighting factor. The factor is bounded between 1 and 2 and its 

value increases with contextual representativeness. This form of memory is 

implemented by the context frame structures that were explained earlier and 

accessed by the inference mechanism upon application of rules that allow 

actions to be activated from the contextual memory instead of solely from a 

system state. Information in the context frames is updated whenever a par-

ticular city is displayed. If no updates occur, the retention of the context 

frame decreases over time until it is eventually deleted from the contextual 



memory. 

The dynamic importance of a rule in the given context is finally obtained 

by multiplying the AL _priori weight value of that rule by each of these three 

factors. The rule that is eventually chosen is determined by ordering the 

applicable rules in descending order of derived importance in a priority queue 

and using a head-of-the-line queueing discipline. The first element of the 

priority queue is the model's first choice of the next CAIN command. The fol-

lowing section presents an example of how this mechanism works. 

4. Example 

Consider a situation in which the currently displayed cluster is at the 

highest level of the system. The previously observed cluster was on the second 

system level below Chicago, and the operator's last command that was issued 

was an 'up' command. Information available in the cluster frame structure 

includes the queue sizes of the 16 top level cities and their locations. For 

simplification, only three cities with the largest queue sizes will be con-

sidered (Seattle(17), Chicago(14) and Atlanta(15)). Previously, the cluster 

below Boston had a large number of customers and Dubuque (in the level below 

Chicago) indicated a high queue size. This information was retrieved from the 

model's contextual memory. Also, the cluster below Seattle was recently 

displayed. Both the 'monitor' and 'test' commands were issued recently. The 

watch list of cities with recurring failures was also observed fairly recently 

and the only city on it was Houston. 

The rules applicable to this situation (as derived by the 

Recognition/Classification component of the model) are listed in Table 3. The 

numbers in brackets represent the importance weight, the factors derived from 



the fuzzy functions (fuzz), from the simple command memory (cmd), and from the 

contextual memory (ctxt), and finally the overall dynamic importance of the 

rule is listed. All the values of the three weighting factors can be explained 

by the above given information about the situation. For example, the dynamic 

importance for 'down (Chicago)' is obtained by its current queue size of 12 

(1.20), the fact that the same command was given before (0.60) and its contex-

tual situation (1.10). 

During the prioritization process, 'down (Seattle)' is initially selected 

as a command (*). The next several possibilities are not considered as com-

mands since their final importance is less than 72. The 'test' command ulti-

mately yields the highest priority in the given context (**), and thus, is 

implemented as the next CAIN command. It is interesting to see how close some 

of the prioritization decisions are. This phenomenon (which suggests that in a 

given situation more than one action may be 'correct') will be further dis-

cussed in the next section when validation issues of the model are addressed. 

Command Weighting 

fuzz 

Factors Zinal 
Egight 

cmd ctxt 
#2 down(Seattle) [47 1.70 0.90 1.00 72] (*) 
#2 down(Chicago) [47 1.20 0.60 1.10 37] 
#2 down(Atlanta) [47 1.50 1.00 1.00 70] 
#3 mon (36 1.00 0.95 1.00 34] 
#6 test [84 1.00 0.87 1.00 74] (**) 
#11 mon [44 1.00 0.95 1.00 42] 
#20 down(Boston) [25 1.10 1.00 1.30 36] 
#21 down(Dubuque) [24 1.05 1.00 1.20 30] 
#22 down(Houston) [21 1.12 1.00 1.15 27] 

Table 3. A Fuzzy Set of Rules 



B. Experiment Three: Model Evaluation 

1. Method 

Experimental data were collected to validate MURRAY. Ten junior and 

senior Industrial Engineering majors participated in a total of nine sessions 

(3 training, 6 data collection) monitoring and controlling CAIN. Subjects 

read 2 sets of written instructions that described CAIN and its operation 

prior to Sessions 1 and 2. At the end of Session 3, subjects took a quiz to 

verify their knowledge of CAIN and to assess their level of contextual 

knowledge. Subjects took a similar quiz at the end of Session 9. Each ses-

sion lasted approximately 45 minutes, and subjects were paid $50.00 for their 

participation. 

Independent variables considered in the experiment were Session (6 lev-

els) and Subject (10 levels). Session was of interest to assess if subject or 

model performance (and level of agreement between the two) improved or 

degraded with time. Individual subject performance was of interest to assess 

if degree of model-subject agreement was a function of individual strategy 

differences. 

Comparison of MURRAY and subject performance was done in two ways. 

First, an "open-loop" comparison was made in which subject performance was 

compared with MURRAY's performance. Second, a "closed-loop" analysis was per-

formed. Subject data files were replayed concurrently with a version of MUR-

RAY. Whenever a subject action was performed, MURRAY generated the action it 

would implement, along with a list of its other applicable rules. The 

subject's action was then implemented. This form of analysis allowed an 

action-by-action (or process) performance comparison to be made. 



2. Open-loop Evaluation 

MURRAY's performance was compared to subjects' performance in a number of 

ways and, from all perspectives, MURRAY consistently performed very well. 

For example, MURRAY's performance on such measures as mean customer sojurn 

time, number of customers served, and fraction of failures repaired was always 

between the best and worst subject's performance and usually better than aver-

age. When the experimental results were averaged across sessions for each of 

the subjects, MURRAY outperformed all of the subjects. The only measure for 

which this result did not hold was the fraction of failures found: MURRAY 

repaired a smaller fraction of failures than most subjects. This result fol-

lows, however, from the fact that MURRAY allowed fewer failures to occur; in 

short, MURRAY's control resulted in a more stable system. There was not, how-

ever, any statistical difference between MURRAY's and subjects' performance as 

measured by Duncan's Multiple Range Test. 

Subject and MURRAY performance was also compared based on individual com-

mand usage. A comparison of single command usage showed a high degree of 

similarity; major differences involved MURRAY's preference for monitoring the 

system. This activity resulted in much information being displayed. Subjects 

were apparently reluctant to ask for all of this information, whereas MURRAY 

could easily process all of these data. A comparison of command sequences 

showed similar results: MURRAY tended to favor commands that would generate 

the most information on which to base future actions. 

3. Closed-Loop Evaluation 

Subject and MURRAY performance were also compared on an action-by-action 

basis, thereby facilitating a comparison of subject and model in exactly the 



same environmental conditions. This type of analysis allows a validation of 

the behavioral 'processes and representations present in the model. Matches 

were differentiated in three different ways: Type I - same command issued by 

MURRAY and subject at same time; Type II - same command, different time (i.e., 

one command earlier or later); Type III - commands that belong to the same 

class, issued at the same time (e.g., a 'down' command to different clusters). 

In addition, subject commands were compared to the first three choices that 

MURRAY had listed in its priority queue of applicable actions. By averaging 

across subjects and sessions, MURRAY matched subjects' actions across Type I, 

II, and III matches 75.3% of the time. MURRAY exactly matched (Type I match-

ing) subject performance 64% of the time. These results are impressive given 

the subjective nature of the rule identification method and development of 

prioritization weights. 

These results for each experimental session were analyzed with ANOVA. 

The difference between sessions was not significant, whereas the difference 

between subjects was highly significant (p<0.0001). This result suggests that 

some subjects used different strategies from the model but did not change them 

over time. 

It can be argued that a critical decision that subjects must make in this 

task is when a new cluster should be displayed and which one it should be. 

One reason for the 25% of the commands that were not explained by the model 

was found by comparing the degree of matches with just the 'down' (or 'change 

screen') commands. Considering only the first three of MURRAY's choices, sub-

ject performance (with respect to only 'd' commands) agreed just 12% of the 

time (Type I matching). The differences between subjects were significant 

(p<0.0001), but there were no significant differences between sessions. This 

• 



result is consistent with the findings of Henneman and Rouse [1986]: humans 

not only use symptomatic and topographic search strategies, but also use 

serendipitous and other random-appearing search strategies; these strategies 

are not represented or supported by MURRAY in its task knowledge. Neverthe-

less, relying on its task description provided in the rule base, MURRAY 

resulted in uniformly excellent performance. Therefore, a model-based aid 

might be useful in providing the operator with procedural instructions; MURRAY 

could support the operator with additional or alternative strategies to moni-

tor or control CAIN. In addition, MURRAY could provide support in accessing 

the network by identifying problem areas that are most critical. 

C. Conclusions 

To summarize, MURRAY proved to be a reasonable means of describing human 

behavior in a complex monitoring and control task. Open-loop analysis of 

model performance indicated that the model consistently did as well as human 

operators. Closed-loop, action-by-action comparison of subject and MURRAY 

performance revealed a high degree of behavioral congruence. Thus, it appears 

that the structures and mechanisms present in the model produce quite similar 

behaviors to humans' structures and mechanisms used in performing this task. 

Nevertheless, it should be noted that the level of matching was not per-

fect. Both MURRAY and human operators appear to have different strengths that 

are useful in this environment: MURRAY is good at prioritizing tasks; the 

human operator is good at improvising flexible search strategies. Thus, a 

combination of the two could result in improved overall system performance. 

The next step in this research program, therefore, was to implement a human 

performance aid based on MURRAY. Such an aid should provide cognitively plau-

sible assistance to the human operator. 



IV. AIDING HUMAN PERFORMANCE 

Aiding human performance in a system may be done in many ways. For exam-

ple, it may be possible to aid human performance simply by altering the 

characteristics of the display of information to the human operator [Mitchell 

and Saisi 1986]. Alternatively, the aid may provide advice to the human based 

on some normative representation of a task, such as multi-attribute utility 

theory [Freedy, et al. 1985]. Still other approaches may use system simula-

tion to allow the human operator to ask "what if" questions of potential 

actions [Moon and Hammer 1986]. Coupled with decisions regarding the selec-

tion of an appropriate aiding scheme are decisions concerning task allocation. 

For example, if an aid is able to suggest appropriate operator actions, it 

might be acceptable to allow the aid to implement its own suggestions in some 

situations. 

In the context of CAIN, one can imagine potential operator performance 

aids. A simple alteration of the displays (e.g., highlighting-the most 

salient visual cues) could likely lead to a performance improvement. Another 

approach might be based on the complexity measures described earlier: the aid 

could make recommendations based on actions that would reduce complexity by 

the greatest amount. In this section, one particular approach to aiding the 

human operator is developed and evaluated. The approach proposed here is 

based on the model of human operator performance, MURRAY, that was discussed 

in the preceding section. Since the model contains knowledge structures and 

mechanisms congruent with those underlying humans' behaviors, the model should 

be effective in providing meaningful advice to the human operator [Knaeuper 

and Morris 1984]. Thus, the model-based aid evaluated here is significantly 

different from the decision support available from expert systems or other 



normative approaches. Although MURRAY's advice is always derived from a set 

of if-then rules (as is an expert system), MURRAY's decisions are based on its 

embedded knowledge structures (i.e., contextual and system) and its prioriti-

zation mechanism to resolve conflicts among rules. The model is only expert 

in the sense that it makes use of all available information on the complex 

CAIN display, has a good memory, is not pressured by time-critical situations, 

etc. 

The implementation of the MURRAY-based aid is largely one of designing an 

appropriate interface. The design of this interface is critical in that the 

operator should be neither overloaded with information nor preoccupied with 

requesting advice. In view of the complexity of the existing CAIN display and 

associated operator functions, the decision was made to implement a simple, 

straightforward interface for the aid. The mechanism works as follows. MUR-

RAY operates in real-time in parallel with the human operator who is control-

ling the system. MURRAY suggests a single command to the operator upon 

request, i.e., whenever the operator issues an 'h'-command ('help'). MURRAY's 

highest ranked choice for the next command is presented on the CAIN display 

next to the command entry line at the lower center part of the display [Figure 

2]. Considering factors such as the operator's mental workload and the time-

constrained dynamic environment, this rather simple augmentation of the 

display was selected over other possible implementations, such as multiple 

command options, displaying further information relative to MURRAY's prioriti-

zation process, or even adding another display with aiding information. This 

interface is directed at the expert end user (such as the CAIN operator) 

rather than a sporadic novice user. 



A. Experiment Four: Aid Evaluation 

1. Method 

The evaluation of the on-line aid was performed by augmenting Experiment 

Three described in the previous section. The main goal of Experiment Four was 

to assess the effects of on-line aiding on operator performance in the CAIN 

environment. The experimental design used to evaluate this issue was a 

between-subjects design in each of two treatment groups: unaided (using the 

subject performance data from Experiment Three) and aided operation of CAIN (a 

new group of 10 subjects). Thus, the treatment structure is a one-way fac-

torial design with aiding being the independent variable of interest. 

A second group of ten paid subjects participated in operating CAIN for 

nine sessions. Instructions, training, and questionnaires were presented in 

three sessions as in Experiment Three. The difference in this experimental 

condition was the availability of the on-line aid. The instructional material 

was augmented by a description of the 'help' command. The new command was 

introduced in the second training session. The subjects were instructed to 

use the aid when uncertain about what to do next or to enhance their own stra-

tegies. Subjects were also told to implement the aid's suggestion only if 

they felt it was reasonable. 

2. Results 

From several perspectives, the aid had no impact on subject performance. 

ANOVA revealed no statistical differences between groups on the various meas-

ures of subject performance, although the aided group frequently performed 

slightly better. A comparison of command usage also showed no major sys-

tematic differences between groups. 



At first observation, these results are disappointing. However, a more 

fine-grained analysis of the data revealed ways in which the aid was quite 

helpful. First, although there were no statistical differences between 

groups, aided subjects were able to find failures faster than unaided sub-

jects, thus maintaining a more stable system. Accordingly, unaided subjects 

had more failures occur during their experimental sessions. Second, the aid 

enjoyed a high level of acceptance by subjects. On the average, 83% of all 

commands that were suggested by the aid were actually implemented by subjects. 

Given that aid requests constituted only 8% of all commands issued, however, 

this high level of acceptance was not reflected in the overall performance 

scores. These results suggest that more emphasis should be given in the 

future to training operators in the use of the aid to illustrate its benefits. 

Third, the questionnaires completed by subjects at the end of the experimental 

sessions indicated that aided subjects had a higher level of contextual 

knowledge (as measured by number of second-level city locations correctly 

recalled) than unaided subjects. 

Finally, as emphasized in Section III, one of the strengths of MURRAY is 

its ability to prioritize tasks. In fact, a key to good performance in this 

task is the ability to decide which part of the network should be observed 

next. It is interesting to note, therefore, that the percentage of times a 

'd'-command suggested by the aid led to finding a failure was 34%; the percen-

tage of times any "e-command issued by a subject that was not suggested by 

the aid led to finding a failure was only 10%. Clearly, from this perspective 

the aid was quite beneficial in providing useful aid to the operator. 

Nevertheless, since the aid was requested infrequently, these fine-grained 

results were not reflected in the overall performance scores. As mentioned 



above, the low level of use masked any overall performance improvement. 

B. Conclusions 

In the final phase of this research program, an on-line performance aid 

based on MURRAY for human monitoring and control in a large-scale system was 

introduced, described, and evaluated. Model-based on-line aiding was selected 

because previous efforts have shown its potential benefits [Knaeuper and 

Morris 1985]. Experimental results, however, failed to show significantly 

improved overall performance of aided subjects. Nevertheless, more fine-

grained evaluation of the results demonstrated subtle subject improvement in 

some performance aspects. One of these aspects was a more stable operation of 

the CAIN system by aided subjects. The second and most important result was 

improved subject performance in the critical decision of selecting which part 

of the network to observe next. The aid provided clear performance improve-

ment with respect to failure-detection strategies. These subtle performance 

improvements suggest that further research is needed to determine if alterna-

tive implementations of the aiding approach could result in more definitive 

results. 

Several other aiding approaches are viable given the experimental results 

presented in this report. For example, the fact that subjects did not request 

the aid very often suggests that different results could be obtained if the 

model's suggestion was always available. (Such an approach would be con-

sistent with the model-based aid used by Knaeuper and Morris [1984]). Alter-

nately, the aid could present its recommendation only if the derived impor-

tance ranking of the rule exceeded some threshold value. A related approach 

would be to emphasize the use of the aid through training as mentioned above. 

Another alternative would be to alter the strategy of the model so that it 



would support problem-solving strategies significantly different from the 

human's. Zinser [1986], for example, found that if the Avriori weightings of 

the model's rules that were related to contextual knowledge were increased, 

command matches with human performance decreased; the model began to place 

more emphasis on context-dependent strategies (e.g., recalling that Dubuque 

has recurring failures). Given that approximately half the failures in CAIN 

were dependent on the context, a strategy based more on contextual recall and 

augmented with 'normal' human strategies should be very effective. In light 

of the ambiguity of the current results, these ideas merit careful further 

consideration. 



V. CONCLUSIONS 

The research described in this report has considered human performance in 

the monitoring and control of large-scale systems from many perspectives. 

Initial efforts empirically examined the effects of system design parameters 

on human performance. The results clearly illustrated the problems that peo-

ple have in controlling a multiple-level system. Large performance differ-

ences were noted when the number of system levels increased from two to three. 

Multiple-level systems tend to mask failure symptoms from the human operator. 

Although such systems protect upper system levels from the effects of 

failures, when the failures do propagate upwards, their effects are more seri-

ous. Unfortunately, the results presented here indicate that people tend to 

wait until symptoms emerge rather than pursuing a more active search strategy. 

Similar comments can be made regarding the degree of redundancy present 

in a system. Increased connectivity between system parts led to improved 

automatic system performance but degraded human failure-diagnosis performance. 

Thus, system designers need to be aware of the tradeoffs that can be made 

between supporting automated system control and human failure-diagnosis per-

formance. Moreover, if the physical structure of the system cannot be altered 

to support good human performance, then aids must be designed within the sys-

tem to cause the human operator to adopt effective control strategies. 

Other human limitations in dealing with large multiple-level systems were 

also noted. For example, when contextual information was introduced to the 

system, humans did not adopt strategies that took any great advantage of this 

information, even though they were aware of certain types of failure that 

could be located more readily by using contextual knowledge. Humans used a 

rather mechanical strategy that did not rely on the context. People also had 



difficulty in prioritizing subtasks in time-critical situations. It was shown 

that by relying on a model-based aid with a very good prioritization method 

the human could make better search decisions. Again, people tended to learn 

one way of performing the task and not change as the environmental conditions 

shif ted. 

The notion of relying on an aid based on human cognitive functions 

deserves much closer scrutiny. Despite some ambiguity, the results discussed 

in this report are promising: subtle performance improvements were shown when 

the aid was used by subjects. The approach is consistent with the views 

espoused by Rasmussen [1985] regarding the support of human operators in com-

plex systems. In particular, Rasmussen argues that an aspect to consider in 

the design of a system is "a representation of the information processing 

capabilities and limitations of the decision maker and of the subjective for-

mulation of goals and criteria for choice among possible strategies..." MURRAY 

provided such a representation of the human operator that was shown to be of 

use in decision support. MURRAY gave "cognitively plausible" advice to the 

human operator when that information was needed. 

Nevertheless, the CAIN system (as augmented with MUREAY's advice) is lim-

ited in the support it can provide the operator. Rasmussen [1985] argues that 

systems should support an operator at various levels in an abstraction hierar-

chy of functions and according to various levels of aggregation. Although 

CAIN does support various levels of aggregation, CAIN's level of abstraction 

to the human operator is fixed. Future work should concentrate on defining 

the system functions and representations at various levels of abstraction. 

Concurrent efforts should be directed at considering some of the issues 

related to aiding mentioned in Section IV. In particular, alternate interface 



design methods, task allocation strategies, and issues related to user accep-

tance should be considered. Also, the notion of implementing a model with 

search strategies complementary to (as opposed to coincident with) human stra-

tegies (e.g., based on the contextual information) should be explored. Aids 

based on models complementary to human strategies may have more potential to 

improve overall performance but may be difficult for the human operator to 

understand. On the other hand, aids based on models coincident with human 

strategies may be easy for the human to understand but may not enable any 

improvement over unaided performance. This potential trade-off deserves more 

consideration. 

In summary, the material presented here has made several important con- 

tributions. 	First, it has added to a general understanding of the relation- 

ship between system design characteristics and human performance. 	Second, 

from a theoretical perspective, this project has contributed a framework for 

measuring the complexity of a system based on the physical system characteris-

tics and the human's understanding of these characteristics. Third, a model 

of human performance was proposed and evaluated that was made up of several 

different interacting knowledge structures and cognitive mechanisms. The model 

was shown to produce behavior consistent with human performance. Finally, 

this model was shown to be effective as a means of aiding human performance in 

a complex monitoring and control task. 
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