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Process-Structure Linkages with
Materials Knowledge Systems

David B. Brough

124 Pages

Directed by Professor Surya Kalidindi

The search for optimal manufacturing process routes that results in the combi-

nation of desired properties for any application is a highly dimensional optimization

problem due to the hierarchical nature of material structure. Yet, this problem is a

key component to materials design. Customized materials data analytics provides a

new avenue of research in the efforts to address the challenge described above, while

accounting for the inherently stochastic nature of the available data. The analyt-

ics mine and curate transferable, high value, materials knowledge at multiple length

and time scales. More specifically, this materials knowledge is cast in the form of

Process-Structure-Property (PSP) linkages of interest to the design/manufacturing

experts.

The extension of the novel Materials Knowledge Systems (MKS) framework to

Process-Structure linkages holds the exciting potential to development full PSP link-

ages that can be can be leveraged by experts in data science, manufacturing and

materials science and engineering communities. PSP linkages are an essential compo-

nent in the to realize a modern accelerated materials innovation ecosystem. This work

describes the methodologies used to extend the MKS framework to Process-Structure

linkages and demonstrates their utility.



CHAPTER I

INTRODUCTION

Customized materials design has great potential for impacting virtually all emerging

technologies, with significant economic consequences [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

However, materials design (including the design of a manufacturing process route)

resulting in the combination of properties desired for a specific application is a highly

challenging inverse problem due to the hierarchical nature of materials structure.

Material properties are controlled by the hierarchical internal structure (over multiple

length scales which spans from atomic to macroscopic) as well as coupled physical

phenomena which can occur at different timescales at each of the hierarchical length

scales. Characterization of the structure at each of these different length scales is

often in the form of images which come from different experimental/computational

techniques resulting in highly heterogeneous data as illustrated in Figure 1. As a

result, tailoring the material hierarchical structure to yield desired combinations of

properties or performance characteristics is enormously difficult.

Several recent national and international initiatives [15, 6, 7] have been launched

with the premise that the adoption and utilization of modern informatics and data

science offers a new opportunity to dramatically accelerate the design and deploy-

ment cycle of new advanced materials in commercial products. There is a critical

need for customized data science approaches that take into account the stochastic

nature of materials data at multiple length scales in order to extract relevant and

transferable materials knowledge. Data driven and computationally cheap Process-

Structure-Property (PSP) linkages can exact valuable materials knowledge from these

heterogeneous datasets and provide a format that is usable and valuable for design

1



Figure 1: Heirarchical Materials Structure at Multiple Length Scales a). Idealized
graphene crystalline structure. b). Atomic model for a fivefold icosahedral Al-Ag qua-
sicrystals. c). Delamination cracks in h-BN particles subjected to compressive stress
in the (0001) planes (within a silicon nitride particulate-reinforced silicon carbide
composite. d). Electron diffraction pattern of an icosahedral Zn-Mg-Ho quasicrystal.
e). Spherulites in in poly-3-hydroxy butyrate (PHB) f). Cast iron with magnesium
induced spheroidised graphite. h). Cross-section of an aluminium casting g). As-cast
wrought-grade aluminium alloy (Al-Mg-Fe-Si) i). Metal component. j). Automotive
engine. Structure images courtesy of Core-Materials [1]

2



and manufacturing experts. Additionally, PSP linkages provide systemic, modu-

lar and hierarchical protocols for community engagement (i.e., several people mak-

ing complementary or overlapping contributions to the overall curation of materials

knowledge).

The Materials Knowledge Systems (MKS) is a novel data science approach for

solving hierarchical materials science problems using techniques from physics, ma-

chine learning, regression analysis, signal processing, and spatial statistics. The MKS

framework can be used to bridge multiple length scales, and provides a data driven ap-

proach to solving inverse material design problems. Previous development of the MKS

framework provides systematic protocols to create high value Structure-Property link-

ages for hierarchical materials that can be leveraged by experts in the manufacturing,

data science, and materials science and engineering communities.

This work builds on the existing framework and extends the previous definition of

MKS from Structure-Property linkages defined by physics based kernels, to include

Process-Structure linkages using similar kernels. The use of these kernel based meth-

ods is referred to as MKS localization linkages. Previous work related to the same

framework uses spatial correlations to created Structure-Property linkages with effec-

tive material properties. This work also extends this framework to Process-Structure

linkages using advanced regression methods. These linkages based on spatial cor-

relations are referred to as MKS homogenization linkages. In summary this work

contributes to the accelerated materials development community by i). creating a

code base that allows for high level access to previously developed MKS framework

to create Structure-Property linkages through the Python package PyMKS, and ii).

the extension of the MKS framework to Process-Structure linkages which when com-

bined with the original framework provides a method for the creation of full PSP

linkages.

3



CHAPTER II

EXECUTIVE SUMMARY

This chapter provides a high level overview of the contributions of this work. Section

2.1 provides the necessary background on the previously developed core principles of

MKS framework used to create Structure-Property linkages. The remaining sections

discuss the implementation of the Structure-Property linkage framework into the

Python package Materials Knowledge Systems in Python (PyMKS), and the extension

of this framework to Structure-Property linkages.

2.1 Introduction to Materials Knowledge Systems

In this section the mathematical connections between between physics and machine

learning used in the MKS framework are presented. Additionally, the workflows to

create homogenization linkages (connecting a lower length scales to a higher length

scales) and localization linkages (connecting higher length scales to lower length

scales) in hierarchical materials are presented.

2.1.1 Microstructure Function and Local State Space

Two of the foundational concepts in the MKS framework are the microstructure

function and local states. Local states, h, are the local thermodynamic state variables

(or order parameters) needed to uniquely define local material structure. The space

of all possible local states is called the Local State Space and is represented with the

variable H. The microstructure function m(h, x) is the probability density associated

with finding the local state h at spatial position x. The expectation value obtained

using this probability density (on the local state space) is the measured value of the

4



local state at location x denoted by Φ(x) as shown in Eq. (1) and (2).∫
H

m(h, x)dh = 1 (1)

Φ(x) =

∫
H

hm(h, x)dh (2)

The introduction of the microstructure function as a probability density function

provides two advantages: i). it casts material structure into a probabilistic framework

that effectively connects to data science, and ii). it maps complex descriptions of local

states (potentially could be a combination of several scalar and tensor thermodynamic

state variables) into a consolidated continuous scalar-valued function that lends itself

naturally to spectral representations [16, 17, 18, 19].

2.1.2 Derivation of MKS Series using Elastostatics

Although the derivation presented here for the MKS series is demonstrated with

the elastostatics equation, the same series can be derived from differential equations

that govern other phenomena such as thermoelectric, piezoelectric, diffusion, and

conductivity for composite materials [20]. Similar derivations with the electrostatics

can be found in published literature [21].

Let C(x) be the local stiffness tensor for a two-phase material with stiffness tensors

CA and CB. The stiffness tensor and strain field at location x can be represented as

a perturbation from a pre-selected reference.

C(x) = CR + C ′(x) (3)

ε(x) = ε̄+ ε′(x) (4)

where CR and ε̄ are the reference stiffness tensor and average strain, and C ′(x) and

ε′(x) are the local perturbations from their respective references.

With these perturbed definitions, the constitutive equation for stress and strain

is therefore

σij(x) =
(
CR

ijlk + C ′ijlk(x)
)(
ε̄lk + ε′lk(x)

)
(5)

5



and the equilibrium condition is

σij,j(x) =
[(
CR

ijlk + C ′ijlk(x)
)(
ε̄lk + ε′lk(x)

)]
,j

= 0 (6)

σij,j(x) = CR
ijlkε

′
lk,j(x) + C ′ijlk,j(x)ε̄lk +

[
C ′ijlk(x)ε′lk(x)

]
,j

= 0 (7)

Eq. (7) can be recasted into an inhomogenous differential equation with terms

that only contain the reference tensor and the perturbed strain as shown in Eq. (8)

and (9).

Fi(x) = C ′ijlk,j(x)ε̄lk +
[
C ′ijlk(x)ε′lk(x)

]
,j

(8)

CR
ijlkε

′
lk,j(x) + Fi(x) = 0 (9)

The perturbed strain can be represented in terms of a perturbed displacement field

u′(x).

ε′kl(x) =

(
u′k,l(x) + u′l,k(x)

)
2

(10)

CR
ijkl

(
u′k,lj(x) + u′l,kj(x)

)
2

+ Fi(x) = 0 (11)

The solution to the displacement field can be found for any inhomogeneous term (and

therefore microstructure) using Green’s functions as shown in Eq. (13). Note that

the G(r) terms depend on the reference medium CR.

CR
ijklGkm,lj(r) + δimδ(x− r) = 0 (12)

ε′kl(x) =

∫
V

(
Gik,l(r) +Gil,k(r)

)
2

Fi(x− r)dr

=

∫
V

(
Gik,l(r) +Gil,k(r)

)
2

[
C ′ijlk(x− r)ε̄lk +

[
C ′ijlk(x− r)ε′lk(x− r)

]]
,j
dr

(13)

Assuming periodic boundary conditions, the derivatives in the terms which define

F (x) can be moved to the Green’s functions using integration by parts, and the
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perturbed strain can then be written in the form shown in Eq. (14)

ε′kl(x) =

∫
V

Γikjl(r)
[
C ′ijlk(x− r)ε̄lk +

[
C ′ijlk(x− r)ε′lk(x− r)

]]
dr (14)

In Eq. (14), the Γikjl(r) term contains the Green’s functions and is independent of

the microstructure. Eq. (14) contains ε′(x) on both sides. A series can be created by

recursively inserting the right hand side into itself. The resulting series is shown in

Eq. (15). For the remainder of the derivation the indices will be dropped for economy

of notation.

ε′(x) =

∫
V

Γ(r)C ′(x−r)ε̄dr+

∫
V

∫
V

[
Γ(r)C ′(x−r)ε̄

][
Γ(r′)C ′(x−r′)ε̄

]
dr′dr+... (15)

The microstructure function m(h, x) and local states h can be introduced into the

series found in Eq. (15) using the relationships described in Eq. (16) as reults in the

series shown in Eq. (17).

C ′(x− r) =

∫
H

hm(h, x− r)dh

α(h, r) = Γ(r)hε̄

α(h, h′, r, r′) = Γ(r)hε̄Γ(r′)h′ε̄

(16)

p(x) =

∫
V

∫
H

α(h, r)m(h, x− r)drdh+∫
V

∫
V

∫
H

∫
H

α(h, h
′, r, r′)m(h, x− r)m(h′, x− r′)dr′drdhdh′ + ...

(17)

In Eq. (17), the perturbed strain ε′(x) as been replaced with p(x) as a more

general term that can be used to represent some local property field of interest. The

discretized version of Eq. (17) is the MKS series and can be found in Eq. (18).

p[s] =
L−1∑
l=0

S−1∑
r=0

α[l, r]m[l, s− r]+

L−1∑
l=0

L−1∑
l′=0

S−1∑
r=0

S−1∑
r′=0

α[l, l′, r, r′]m[l, s− r]m[l
′, s− r′] + ...

(18)

The transition from round brackets ”()” to square brackets ”[]” is used to indicate

the transition from continuous to discrete variables. In Eq. (18), s, S, l and L are

the discrete variables for x, V , h, and H respectively.
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2.2 MKS Structure-Property Linkages

MKS Structure-Property linkages are based on Eq. (18). The framework used to

create linkages between materials structure and effective properties referred to as

MKS Homogenization Structure-Property linkages can be derived from this equation

by using constitutive relationships (e.g. relating the strain ε to the stress σ through

the stiffness tensor C) an additional microstructure function can be multiplied to all of

the terms in the series. By taking the volume average of the series with the additional

microstructure function, it changes the first term of the series into 2-point spatial

correlations and the higher order terms become higher spatial correlations. More

detailed derivation of this transition can be found in [22]. The MKS Homogenization

workflow uses spatial correlations to create features for machine learning models that

connect effective properties and structure.

The MKS Localization workflow uses regression to calibrate microstructure inde-

pendent α terms to connect local property field with structure. The high level steps

for each of the workflows are shown in Fig. 2.2. The first step in both of the work-

flows is the discretization of the microstructure function. The remaining steps in the

homogenization workflow are the computation of 2-point statistics, dimensionality re-

duction, and the application of machine learning models to calibrate the linkage. The

second and final step of the localization workflow is the calibration of the α terms

from Eq. (18). The remainder of this section will describe the workflows in more

detail.

2.2.1 MKS Homogenization Structure Property Linkages

2.2.1.1 Step 1: Discretize the Microstructure Functions

m(h, x) exhibits a dependence on both local state and spatial variables. The spatial

variables are discretized by either sampling or averaging over a finite domain. The

local state variable can also be discretized with one of two strategies. The simplest

8



Figure 2: The MKS Homogenization workflow (left) consists of four steps. 1.
Discretize the raw microstructure with the microstructure function. 2. Compute 2-
point statistics to create a natural origin. 3. Create low dimensional microstructure
descriptors using dimensionality reduction. 4. Calibrate structure-property linkage
with low dimensional microtructure descriptors and effective properties using machine
learning. The MKS Localization workflow (right) consists of 2 steps. 1. Discretize
the raw microstructure with the microstructure function. 2. Calibrated physics-based
kernels using regression.
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Figure 3: Three hat basis functions Λ used to discretize the local state space H.
This method is referred to as Primitive basis functions.

approach is to discretize the local state space H using triangle or hat basis functions

Λ(h − l) to divide the local state space into intervals. The hat basis functions are

defined in Eq. (19).

Λ(h− l) = max

(
1−

∣∣∣∣∣h(L− 1)

H
− Hl

L− 1

∣∣∣∣∣, 0
)

(19)

In Eq. (19), H and h maintain their definitions as the local state and local state space

variable respectively, L is the total number of hat basis functions used to span the

local state space and l enumerates the hat functions. The hat functions are placed

along the local state space such that the maximum and minimum values of the local

state space domain fall on the peak values of the hat functions associated with the

largest and smallest values of l as descript in Eq. (20). As an example, hat functions

with L = 3 and h ∈ [0, 1] can be found in Fig. 3. The discretized microstructure

function m[l, s] using the hat functions as basis function is shown in Eq. (20).
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m[l, s] =

∫
H

∫
V

δ(x− s)Λ(h− l)m(h, x)dxdh (20)

In Eq. (20), δ(x) is a dirac delta function. In previous work, this approach has been

referred to as primitive binning using the Primitive basis functions [23, 24, 25, 26, 27,

3].

As an alternative, functions on the local state space f(h) can be represented using

orthogonal basis functions ξ as shown in Eq. (21) and (22).

f(h) =
∞∑

l=−∞

clξl(h) (21)

1

Nl

∫ b

a

ξl′(h)ξl(h)w(h)dh = δll′ (22)

In Eq. (22) ξl is the lth order orthogonal basis function, w(h) is the weighting function,

δll′ is the Kronecker delta andNl is a normalization constant that depends on the order

and type of the basis functions. The set of coefficients cl defined in Eq. (21) provide

a unique discrete representation of the function f(h). This approach is useful when

only a small number of cl dominate the representation and the weighting function

w(h) equals one.

Applying this discretization approach to capture the h dependence in m(h, x)

using an orthogonal basis functions with w(h) = 1 and mapping the local state space

to the orthogonal domain leads to the discretization found in Eq. (23).∫
V

δ(x− s)m(h, x)dx =
L−1∑
l=0

m[l, s]ξl(h) (23)

In both discretization methods found in Eq. (20) and (23), m[l, s] are associated with

a bases functions that represent the local state dependence of m(h, x).

2.2.1.2 Step 2: Compute 2-Point Statistics

n-point spatial correlations provide a way statistical framework to rigorously quantify

material structure. 1-point statistics fj[l] are the probability that a specified local
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state will be found in any randomly selected spatial bin in a microstructure j as shown

in Eq. (24).

fj[l] =
1

S

∑
s

mj[l, s] (24)

While 1-point statistics provide information on the relative amounts of the different

local states, information about how those local states are spatially arranged in the

microstructure is not provided. 2-point spatial correlations fj[l, l
′, r] (also known

as a 2-point statistics) [28, 29, 30] capture the probability of finding the head of a

randomly placed vector r in local state l, while the tail of the vector is in local state

l′ in the microstructure j, and is defined in Eq. (25).

fj[l, l
′, r] =

1

Ωj [r]

∑
s

mj[l, s]mj[l
′, s+ r] (25)

In Eq. (25), Ωj [r] is a normalization factor that depends on the vector r. The

application of this concept to a two-phase composite material with example discretized

vectors can be found in Fig. 4. When the 2 local states are the same l = l′, the set

of 2-point statistics are called an autocorrelation, otherwise they are called a cross-

correlation.

Higher order spatial statistics are similar to 2-point statistics, in that they can

be thought of in terms of probabilities of finding specified local states separated by

a prescribed set of vectors. 3-point statistics are the probability of finding three

specified local states at the ends of a triangle (defined by 2 vectors), placed randomly

in the material structure. 4-point statistics describes the probability of finding 4 local

states at 4 locations (defined, using 3 vectors) and so on.

While higher order statistics provide more information about the material struc-

ture, the general time complexity to compute n-point statistics is O(Nn) making the

computation of higher order statistics prohibitive. Additionally, using the properties

of Fourier transforms [31], the time complexity for 2-point statistics can be reduced

to O(N logN). For this reason, the general protocol for MKS Homogenization only

12



Figure 4: The discretization scheme for both the microstructure function and the
vector space needed to define the spatial correlations, illustrated on a simple two-
phase composite material. The discretized vectors r describe the relative positions
between different spatial locations.
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uses 2-point statistics.

2.2.1.3 Step 3: Dimensionality Reduction with PCA

The total number of combinations of 2-point statistics defined by the two local states

creates an extremely large feature space with collinear features. Dimensionality re-

duction can be used to reduce the feature space to a reasonable size. Eq. (18), shows

that the 2-point statistics are linearly related to effective property, therefore a linear

dimensionality reduction technique is advantageous. Principal Component Analysis

(PCA) is a global linear dimensionality reduction technique that maps high dimen-

sional data into a low dimensional space through Principal Components (PCs) while

retaining as much of the variance in the data as possible [32]. The application of

PCA to 2-point statistics is shown in Eq. (26).

fj [ν] ≈
∑
k∈K

µj [k]φ [k, ν] + f [ν] (26)

In Eq. (26), fj [ν] is a set of 2-point statistics. The variable ν uniquely represents

a combination of l, l′, and r in Eq. (25). φ[k, ν] are PCs and can be thought

of as calibrated bases that can be used to represent fj [ν]. µj [k] are the Principal

Component scores (PC scores) and are unique low dimensional representation of fj[ν].

f [ν] are the average values over all ν used to calibrate φ[k, ν].

2.2.1.4 Step 4: Calibration of Linkage

The low dimensional microstructure descriptors µj [k] and effective property, peff
j serve

as inputs and outputs for a machine learning model F as show in Eq. (27).

peff
j = F(µj[k]) (27)

Previous studies have used polynomial regression as F [22, 2, 33].
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2.2.2 Localization

The homogenization and localization workflows share the same first step which is

described in Sec. 2.2.1.1.

2.2.2.1 Step 2: Calibration of Linkage

The second and final step of the MKS localization workflow is to calibrate the Green’s

function based α terms in Eq. (28) using regression.

pj[s] =
∑
l,r

α[l, r]mj[l, s − r] +
∑

l,l′,r,r′

α[l, l′, r, r′]mj[l, s − r]mj[l
′, s − r′] + ... (28)

Prior work [23, 24, 25, 27, 3] has shown that the first term is dominant for problems

with low to moderate contrast. The calibration of the first-order MKS localization

kernels can be done efficiently by taking advantage of discrete Fourier transforms and

the convolution theorem [34, 35]. This transformation leads to

P [k] =
∑
l

β[l, k]M [l, k] (29)

In Eq. (29) P [k], β[l, k] and M [l, k] are the discrete Fourier transforms of p[s], α[l, s]

and m[l, s] from the first term in Eq. (28) respectively.

With the uncoupled spatial frequency representation shown in Eq. (29), the β

terms can be calibrated easily using multiple linear regression techniques using the

known values for P [k] and M [l, k]. The discretization method found in Eq. (20) is

subject to the constraint that the discretized microstructure function sums to one at

any instance in space as shown in Eq. (30).∑
l

m[l, s] = 1 (30)

Due to this constraint, multiple linear regression with categorical variables as outlined

in previous studies is used [23, 24, 25, 27]. The discretization method found using

Eq. (23) is not subject to the constraint shown in Eq. (30) and therefore standard

multiple linear regression is used.
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In prior work, information from higher order kernels has been calibrated by re-

defining the local state space to included information about nearest neighbors and

using the same regression approach for a first term [36].

2.3 Contribution 1:
Materials Knowledge Systems in Python

This section presents an overview of the Python project PyMKS and its implemen-

tation of high level APIs to create Structure-Property linkages.

2.3.1 Background

In the materials development community, common practices for developing tools and

infrastructure are highly localized within organizations resulting in major inefficiency

(unnecessary duplication of codes, inadequate verification and validation of multiple

instantiations of code, not engaging the right talent for the right task, etc.). Although

it is well know that the pace of discovery, development and deployment of knowledge

and technology significantly increases with effective collaboration [37, 38, 39, 40],

historically scaling effective collaborations to large communities has been difficult.

The modern advent of information technology has facilitated massive electronic

collaborations (e-collaborations) that have lead to significant advances in several do-

mains including the discover of the Higg’s boson [41], the sequencing of the human

genome [42], the Polymath project [43], the monitoring of species migration [44, 45]

and numerous open source software projects. E-collaborations allow experts from

complementary domains to create close collaborations regardless of spatial and tem-

poral distances. E-collaborations require cyber-infrastructure that allow members

to generated, analyzed, disseminated, and consumed information [46]. Open source

cyber-infrastructure tools eliminate collaboration hurdles due to software licenses, and

can help foster truly massive e-collaborations. In other words, even with collabora-

tions involving proprietary data, open source cyber-infrastructure provide a common
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language that can facilitate e-collaborations among large groups of practitioners.

The Materials Knowledge Systems in Python project (PyMKS) is the first open

source materials data science framework that can be used to create high value Structure-

Property linkages for hierarchical materials that can be leveraged by experts in mate-

rials science and engineering, manufacturing, and data science communities, and is an

essential component in the cyber-infrastructure needed to realize modern accelerated

materials innovation ecosystems.

The programming language Python was chosen because of it’s portability, human

readable syntax, holistic design, optimized libraries and community. PyMKS is li-

censed under the permissive MIT license which allows for unrestricted distribution in

commercial and non-commercial systems.

2.3.2 Underlying Technologies

PyMKS is built on highly optimized Python packages NumPy [47], SciPy [48], and

Scikit-learn [49]. NumPy arrays are the primary data structure used throughout

PyMKS and provide basic algorithmic functionality. SciPy’s signal processing and

numerical linear algebra functions are used to calibrate models and generate synthetic

data. PyMKS is highly integrated with Scikit-learn and mimics its simple API in

order to leverage models for dimensionality reduction, regression, classification and

model selection. In addition PyMKS uses the Python testing framework Pytest for

unit-tests and doc-tests.

2.3.3 Code and API Design

PyMKS contains 5 major modules that include microstructure function basis classes,

models to objectively quantify structure and create PSP linkages, functions to com-

pute 2-point statistics, data generation tools and plotting functions. The basis classes

use methods to discretize the raw structure data and introduce the local state variable

l. The four basis classes are designed efficiently discretize different types of local state
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variables. The Primitive Basis uses indicator (or hat) functions and it well suited for

microstructures that have discrete local states. The Legendre Polynomial Basis and

Fourier Series Basis create spectral representation of non-periodic and periodic con-

tinuous local state distributions respectively. Lastly Generalized Spherical Harmonics

basis create compact spectral representations of orientation distribution functions in

the local state space [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61].

PyMKS has three models which implement the approaches to quantify differences

in materials structure, and create homogenization and localization Structure-Property

linkages. The Structure Analysis model creates objective low dimensional structure

descriptors using 2-point spatial statistics and dimensionality reduction to quantify

materials structure. The default dimensionality reduction technique is PCA, but

any model from Scikit-learn that has a transform fit method can be used. The

Homogenization inherits the Structure Analysis model, but adds the additional step

of creating a linkage between the low dimensional microstructure descriptors and

a effective property to class label using an estimator form Scikit-learn. The default

estimator is a polynomial regression, but any estimator from Scikit-learn that has fit

and predict methods can be used to either predict material properties or classify the

microstructures. The Localization model requires a set of microstructures and their

local field responses to calibration influence coefficients that can be used to predict

local materials responses as well as structure evolutions that are independent of the

microstructure. The Localization model has fit and predict methods to follow the

standard API for an estimator from Scikit-learn.

PyMKS also contains modest data generation tools that are used in both examples

and unit tests. A Microstructure Generator class uses filters of different shapes to

create synthetic microstructures. A Cahn-Hilliard simulation with an optimized semi-

implicit spectral scheme with periodic boundary conditions [62] is used to generate

data with a continuous local state. A finite element simulation with periodic boundary

18



conditions [25] is used to create both local and effective material properties with a

microstructure containing only discrete local states. Lastly PyMKS contains some

plotting tools that are used throughout the examples. A more detailed overview of

the PyMKS project can be found in Ch. 3 and on pymks.org.

Figure 5: An illustration of the design for PyMKS. The four blocks represent the
main functionalists in PyMKS. The modules listed on the far left are exposed in the
API. The arrows indicate imported modules.

2.4 Contribution 2:
Process-Structure Homogenization Linkages

This section provides a high level description the contribution to development of the

process-structure homogenization linkage for the MKS framework with an example

using synchrotron X-ray scattering data of polyethylene.
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2.4.1 Structure Evolution and Time Series Analysis

Process-structure homogenization linkages aim to predict the evolution of low dimen-

sional structure descriptors. To do so, the introduction of time into the microstructure

function is needed m[l, s, n], and results in changes to Eq. (25) and (26) to their time

dependent versions found in Eq. (31) and (32) respectively.

fj[l, l
′, r, n] =

1

Ωj[r, n]

∑
s∈S

mj[l, s, n]mj[l
′, s+ r, n] (31)

fj[ν, n] ≈
K∑
k=1

µj[k, n]φ[k, ν] + f [ν] (32)

In Eq. (31), fj[l, l
′, r, n] is the 2-point statistic for the local states l and l′, the vector

r and time n. Ωj[r, n] is a normalization factor that depends on the sample j and

the vector r and time n. In Eq. (32) fj[ν, n] is a vectorized format of the 2-point

statistics and ν represents a unique combination of l, l′ and r at time n. K is the total

number of principal components (PCs). µj[k, n] is a time dependent low dimensional

microstructure descriptors for PC k at time n. A model is desired to predict future

microtructure descriptors µ[k, n+ i] using previous values and time series analysis.

A non-parametric regression method called Time Series Multivariate Adaptive

Regression Splines (TSMARS) has been shown to work well with a moderate number

of dimensions and medium size data [63]. A major concept in the TSMARS model are

hinge functions. Hinge functions equal the value of its argument when the argument

is positive and zero otherwise and shown in Eq. (33). Two hinge functions can create

disjoint subregions in a high dimensional space using a data point referred to as a

know κ in their argument as shown in Fig. 6.

g(x) =


x, if x > 0.

0, otherwise.

(33)
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Figure 6: An example of two hinge functions meeting at a knot with value of five
(κ = 5).

The calibration of the TSMARS generates non-linear functions in disjoint subre-

gions of PC space for previous values of microstructure descriptors using products

and summations of hinge functions as shown in Eq. (34).

µ̂[k, n] = a[0] +
P∑
i=1

a[n− i]
Qi∏
q=1

b[q, i]g(µ[k′, n− i]− κ[q, i])] + ε (34)

In Eq. (34), µ̂[k, n] is the estimated microstructure descriptor for PC k at time

n. a[0] and a[n − i] are coefficients that are calibrated using ordinary least squares

regression. P is the number of previous time steps used in the model. µ[k′, n− i] is a

microstructure descriptor for PC k′ and time n− i. g is the hinge function described

in Eq (33). κ[q, i] is the knot for subregion q and time n−i. Lastly b[q, i] is a constant

that can only take the values of ±1.

2.4.2 Process-Structure Homogenization Linkage with X-ray Scattering

In this study X-ray scattering images are used in place of the 2-point statistics in Eq.

(32). The two are indeed related and, it has been shown that the X-ray scattering

data corresponds to the Fourier transform of the autocorrelation of the difference
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Figure 7: An example of the typical evolution in 2D SAXS patterns with increasing
strain for a tensile specimen of LLDPE2.2a. Strain is applied in the vertical direction.
The numbers indicate the SAXS pattern number; an interval of 3 seconds between
consecutive patterns is strictly maintained. Every tenth image is displayed for clar-
ity. The intensity is log scaled to highlight the characteristic features in the SAXS
evolution with time

in electron density [64]. In this example 12 different samples of polyethylene with

systematically different processing conditions using three parameters (density, blow

up ratio (BUR) and thickness) were used. Each sample had a uniaxially strain applied

while a synchrotron X-ray beam measured the scattering pattern as a function of time.

Fig 7 shows the evolution of once of the X-ray scattering patterns.

Principal component analysis was used on all 2224 images from all 12 samples.

The process steam lines found in image on top of Fig. 8 illustrate the evolution of
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Polymer Film Label BUR Thickness (µm) Images
6*LLDPE1 LLDPE1.1a 2.5 20 182

LLDPE1.1b 2.5 30 191
LLDPE1.1c 2.5 75 195
LLDPE1.2a 3 20 191
LLDPE1.2b 3 30 195
LLDPE1.2c 3 75 191

6*LLDPE2 LLDPE2.1a 2.5 20 191
LLDPE2.1b 2.5 30 195
LLDPE2.1c 2.5 75 61
LLDPE2.2a 3 20 227
LLDPE2.2b 3 30 199
LLDPE2.2c 3 75 206

Table 1: Labeling of tensile specimens made from blown films of the two LLDPE
polymers.

the structure due to the strain and the percent variance as a function of PC is shown

in lower image of Fig. 8

A leave one sample out cross-validation method was used to optimize the number

of principal components K and autoregressive order P , and was found to be K = 20

and P = 1. The multistep prediction process starts with proving the initial P mi-

crostructure descriptor values and recursively uses predictions for previous time steps

to march forward in time. The most accurate model (based on predicted mean sqaure

error values) was used to predicted microstructure descriptors up to the final time

step. These final predictions in turn were used to construct a low rank approxima-

tion of the final X-ray scattering image. The results for this process can be found

in Fig. 9. In Fig. 9, the top images show the predicted and actual low dimensional

microstructure descriptors for all time steps for the first eight PCs. The lower two

images show the final image from the experiment and the final prediction images from

the model.

This example demonstrates the utility of this approach. With this models only

the microstructure descriptors for the initial X-ray scattering image are needed to

predict the final X-ray scattering image and still maintain the important scattering
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Figure 8: Principal component scores for X-ray scattering images from the 12 dif-
ferent samples and there percentage of the variance captured as a function of the
number principal components.
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Figure 9: Predicted and actual principal component scores for sample LLDPE1.2b
(above). The original image (bottom left) and the predicted image (bottom right).
The mean squared error value over the predicted principal component scores had a
value 2.11.
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features. Althought not displayed in this study, the addtion of a Structure-Property

linkage could be added to this study to create a full PSP linkage. A more detailed

review of this methodology and case study can be found in Ch. 4.

2.5 Contribution 3:
Process-Structure Localization Linkages

This section discusses the contribution of Process-Structure linkage to the MKS lo-

calization framework and demonstrates the methods viability using the Cahn-Hilliard

equation as a case study.

2.5.1 Derivation of the MKS Series for
Process-Structure Localization Linkages

The derivation of the MKS Localization Process-Structure Linkages can be viewed

as introducing time dependence into the Structure-Property Linkage derivation in

Sec. 2.1.2, but the starting point differs in two ways. i). The field of interest is the

change in structure rather than a propertyfield, and ii). rather than using constitutive

relations to introduce the microstructure terms, we begin with a non-linear differential

equation that governs the evolution of the microstructure. In this example the Cahn-

Hilliard equation is used [65]. The equation models the solidification process called

spinodal decomposition where a single liquid phase separates into two solid phases

and can be found in Eq. (35).

∂φ(x, t)

∂t
= D∇2

([
φ(x, t)(1− φ(x, t)2))

]
+ γ∇2φ(x, t)

)
(35)

In Eq. (35), φ(x, t) is an order parameter used to represent the concentration field

at location x and time t,
√
γ represents the interface width between the two phases,

and D is the diffusivity. The equation uses a double well potential with minima at -1

and 1 [66, 67]. We start by representing the concentration field φ(x, t) in terms of a

reference quantity φ̄ and a local perturbation φ′(x, t) and introduce these terms into
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Eq. (35) as shown in Eq. (36).

∂φ′

∂t
−D∇2φ′ = D∇2

(
γ∇2φ′ −

[
3φ′φ̄2 + 3φ′2φ̄− φ′3

])
= D∇2

(
γ∇2φ′ + ψ(x, t)

) (36)

In this new form, the Green’s function approach can be used to find the solution to

the equation on the left hand side as shown in Eq. (37).

φ′(x, t) = −
∫
V

G(r, t)φ′(x− r, 0)dr+∫
T

∫
V

G(r, τ)D∇2
r

(
γ∇2

rφ
′(x− r, t− τ) + ψ(x− r, t− τ)

)
drdτ

(37)

In Eq. (37), φ′(x, 0) is the initial value of the perturbed concentration and G(r, t) is

the Green’s function. By assuming periodic boundary conditions, the operators ∇r

can be moved from concentration terms to the Green’s functions. This allows φ′(x, t)

to be recursively substituted forming the series expansion shown in Eq. (38).

φ′(x, t) = −
∫
V

[
1−

∫
T

∫
V

G̃(r, r′, t, τ)dr′dτ
]
G(r, t)φ′(x− r, 0)dr + ... (38)

with

G̃(r, r′, t, τ) = D∇2
r

[
∇2

rG(r′, τ)γ − 3φ̄2G(r′, τ)
]

(39)

Introducing the time-dependent microstructure function m(h, x, t) and influence ker-

nels α(h, r, t) as shown in Eq. (40) into Eq. (38) leads to the continuous version of

the continuous time dependent MKS series as shown in Eq. (41).

φ′(x, t) =

∫
H

hm(h, x, t)dh

α(h, r, t) = −h
[
1−

∫
T

∫
V

G̃(r, r′, t, τ)dr′dτ
]
G(r, t)

(40)

φ′(x, t) =

∫
V

∫
H

α(h, r, t)m(h, x− r, 0)dhdr + ... (41)

Eq. (41) is the key develop to the MKS Process-Structure localization relationship

by demonstrating that the initial microstructure function m(h, x, 0) can be linked to
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the evolution of the structure at an arbitrary time t through the time dependant,

but microstructure independent influence kernels α(h, r, t). This results shows that

with calibrated α(h, r, t), the evolution of new initial structure can be mapped to

it’s evolution at time t. Additionally, Eq. (41) is the exact analog of the structure-

property localization linkages established previously in the MKS framework [23, 24,

25, 27, 3]. Therefore, the extension presented here now makes it possible to explore the

complete set of Process-Structure-Property linkages in a consistent MKS framework

in both space and time.

Following the discretization method outlined in Sec. 2.2.1.1, the discrete version

of the MKS process-structure-localization series is shown in Eq. (42).

ψ[s, n] =
S−1∑
r=0

L−1∑
l=0

α[l, r, n]m[l, s− r, 0] + ... (42)

In Eq. (42), ψ[s, n] is the evolved microstructure up to time n. All other variables are

the time dependent equivalents to those found in Eq. (18). The next section demon-

strates the utilization of this approach using data from Cahn-Hilliard simulation.

2.5.2 Process-Structure Localization Linkage
with Cahn-Hilliard Simulations

In order to calibrate the influence kernel α(h, x, t), 250 random initial microstructures

of size (100, 100) were generated using normal distributions with standard deviations

of 10−2. The means of the distributions were randomly samples from an uniform

distribution between [-0.5, 0.5]. The evolution of each of the samples were found

by numerically solving Eq. (35) for 500 time steps. The initial microstructures

and their evolved compliments served as the input and output to calibrate α(h, x, t)

respectively. As example of one pair can be found in Eq. (10). The influence kernels

were calibrated using regression techniques developed previously [24, 25, 23, 27], and

images of the significant kernels can be found in Fig. 11.

In order to validate the process-structure localization linkage, an additional 250
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Figure 10: One instance of an initial microstructure (100 x 100) and its corresponding
microstructure after 500 small time steps, which were used to calibrate the influence
kernels for the MKS process-structure localization linkage.

Figure 11: Significant influence kernels for the Cahn-Hillard simulation at 500 time
steps.
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Figure 12: Predicted concentration fields by simulations using 500 time steps (left)
as well as the concentration fields predicted by the two MKS localization linkages
using one large time step.

micrstructures were generated with the inital structure from a noraml distrbution with

the same variance as the calbration data, but the mean values were sampled from a

uniform distribution between [-1, 1]. The evolution of these structures were predicted

using the calibrated influence coefficients and the evolutions were also computed by

solving the Cahn-Hilliard model for 500 time steps as ground truth. The average run

time for the simulation to reach 500 time steps was 1.33 secs, while the average run

time using the Process-Structure localization linkage was 4.94 x 10−3 an a root mean

squared error of 3.36 x 10−2. An examples of the output from the simulation and

process-structure linkages with two different basis function can be found in Fig. 12.

This example demonstrates the viability of the MKS Process-Structure localiza-

tion linkage approach to solve non-linear differential equation for a range of initial con-

ditions. This approach may be extremely useful when numerical integration schemes

are difficult to optimize. A more detailed overview of the approach and case study

can be found in Ch. 5.

2.6 Conclusion

The major contributions of the work are:

1. The development of an open source project Materials Knowledge Systems in

Python (PyMKS):
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• PyMKS allows high level access the MKS Structure-Property localization

and homogenization linkages. PyMKS is an open source project with a

permissive license that provides simple high level APIs to access the MKS

framework and has been launched with the aim to nucleate and grow an

emergent community focused on establishing data-driven homogenization

and localization Process-Structure-Property linkages for hierarchical ma-

terials.

2. The extension of the MKS framework to Process-Structure homogenization link-

ages.

• An extension of the MKS framework to Process-Structure homogenization

linkages using Time Series Multivariate Adaptive Regression Splines was

presented. The Process-Structure linkage is generated using a data driven

approach to calibrate non-linear relationships between low dimensional

microstructure in PCA space. The approach was validated by predicting a

low rank representation of the final step of Small Angle X-ray Diffraction

data. This extensions allows for the complete Process-Structure-Property

homogenization linkages to be created to solve inverse materials design

problems and expedite the development of new materials.

3. Extension of the MKS framework to Process-Structure localization linkages.

• An extension to the MKS framework to Process-Structure localization link-

ages was presented. The extension presents an alternate method to learn

the underlying embedded physics in a numerical model. These Green’s

function based influence kernels may provide certain computational ad-

vantages in the case for problems where traditional numerical integration

schemes have been difficult to optimize.
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Overall, it was demonstrated that the MKS localization kernels extracted

were insensitive to the details of the initial microstructure and the same

kernel can be applied to any initial microstructure in the selected material

system.

The methods described here have laid a strong foundation for future developments

addressing a broad range of materials systems with richer microstructures and more

complex governing physics. These approaches now make it possible to create com-

plete Process-Structure-Property linkages for both homogenization and localization

workflows which can be used to significantly expedite the develop of new materials.

32



CHAPTER III

MATERIALS KNOWLEDGE SYSTEMS IN PYTHON - A

DATA SCIENCE FRAMEWORK FOR ACCELERATED

DEVELOPMENT OF HIERARCHICAL MATERIALS

3.1 Introduction

Current practices for developing tools and infrastructure used in multiscale materials

design, development, and deployment are generally highly localized (sometimes even

within a single organization) resulting in major inefficiencies (duplication of effort,

lack of code review, not engaging the right talent for the right task, etc.). Although

it is well known that the pace of discovery and innovation significantly increases with

effective collaboration [37, 38, 39, 40], scaling such efforts to large heterogeneous

communities such as those engaged in materials innovation has been very difficult.

The advent of information technology has facilitated massive electronic collabora-

tions (generally referred to as e-collaborations) that have lead to significant advances

in several domains including the discovery of the Higg’s boson [41], the sequencing of

the human genome [42], the Polymath project [43], the monitoring of species migration

[44, 45] and numerous open source software projects. E-collaborations allow experts

from complementary domains to create highly productive collaborations that tran-

scend geographical, temporal, cultural, and organizational distances. E-collaborations

require a supporting cyber-infrastructure that allows team members to generate, an-

alyze, disseminate, access, and consume information at dramatically increased pace

and/or quantity [46]. A key element of this emerging cyber-infrastructure is open

source software, as it eliminates collaboration hurdles due to software licenses and
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can help foster truly massive e-collaborations. In other words, even with collabora-

tions involving proprietary data, open source cyber-infrastructure provides a common

language that can facilitate e-collaborations with large numbers of team members.

Several recent national and international initiatives [15, 6, 7] have been launched

with the premise that the adoption and utilization of modern data science and in-

formatics toolsets offers a new opportunity to accelerate dramatically the design and

deployment cycle of new advanced materials in commercial products. More specif-

ically, it has been recognized that innovation cyber-ecosystems [68] are needed to

allow experts from the materials science and engineering, design and manufactur-

ing, and data science domains to collaborate effectively. The challenge in integrating

these traditionally disconnected communities comes from the vast differences in how

knowledge is captured, curated, and disseminated in these communities [69]. More

specifically, knowledge systems in the materials field are rarely captured in a digital

form. In order to create a modern materials innovation ecosystem, it is imperative

that we design, develop, and launch novel collaboration platforms that allow auto-

mated distilling of materials knowledge from large amounts of heterogeneous data

acquired through customized protocols that are necessarily diverse (elaborated next).

It is also imperative that this curated materials knowledge is presented to the design

and manufacturing experts in highly accessible (open) formats.

Customized materials design has great potential for impacting virtually all emerg-

ing technologies, with significant economic consequences [4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14]. However, materials design (including the design of a manufacturing process

route) resulting in the combination of properties desired for a specific application is

a highly challenging inverse problem due to the hierarchical nature of the internal

structure of materials. Material properties are controlled by the materials’ hierarchi-

cal internal structure as well as physical phenomena with timescales that vary at each

of the hierarchical length scales (from the atomic to the macroscopic length scale).

34



Figure 13: Heirarchical Materials structure at multiple length scales a). Simulated
graphene crystalline structure. b). Simulated fivefold icosahedral Al-Ag quasicrys-
tals. c).High resolution electron microscopy image of delamination cracks in h-BN
particles subjected to compressive stress in the (0001) planes (within a silicon nitride
particulate-reinforced silicon carbide composite). d). Electron diffraction pattern of
an icosahedral Zn-Mg-Ho quasicrystal. e). Cross-polarised light image of spherulites
in poly-3-hydroxy butyrate (PHB) f). Cast iron with magnesium induced spheroidised
graphite. g). SEM micrograph of a taffeta textile fragment. h). Optical microscopy
image of a cross-section of an aluminium casting. i). X-ray tomography image of
open cell polyurethane foam. Images courtesy of Core-Materials [1].

Characterization of the structure at each of these different length scales is often in

the form of images which come from different experimental/computational techniques

resulting in highly heterogeneous data. As a result, tailoring the material hierarchical

structure to yield desired combinations of properties or performance characteristics

is enormously difficult. Figure 13 provides a collection of materials images depict-

ing material structures at different length scales, which are generally acquired using

diverse protocols and are captured in equally diverse formats.

While the generation (from experiments and computer simulations) and dissemi-

nation of datasets consisting of heterogeneous images are necessary elements in a mod-

ern materials innovation ecosystem, there is an equally critical need for customized

analytics that take into account the stochastic nature of these data at multiple length
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scales in order to extract high value, transferable, knowledge. Data-driven Process-

Structure-Property (PSP) linkages [70] provides a systemic, modular, and hierarchical

framework for community engagement (i.e., several people making complementary or

overlapping contributions to the overall curation of materials knowledge). Compu-

tationally cheap PSP linkages also communicate effectively the curated materials

knowledge to design and manufacturing experts in highly accessible formats.

The Materials Knowledge Systems in Python project (PyMKS) is the first open

source materials data analytics toolkit that can be used to create high value PSP

linkages for hierarchical materials in large scale efforts driven and directed by an

entire community of users. In this regard, it could be a foundational element of the

cyber-infrastructure needed to realize a modern materials innovation ecosystem.

3.2 Current Materials Innovation Ecosystem

Open access materials databases and computational tools are critical components

of the cyber-infrastructure needed to curate materials knowledge through effective

e-collaborations [71]. Several materials science open source computational toolsets

and databases have emerged in recent years to help realize the vision outlined in

the Materials Genome Initiative (MGI) and the Integrated Computational Materials

Engineering (ICME) paradigm [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Yet, the creation

and adoption of a standard materials taxonomy and database schema has not been

established due to the unwieldy size of material descriptors and heterogeneous data.

Additionally, the coupled physical phenomena that govern material properties are too

complex to model all aspects of a material simultaneously using a single computational

tool. Consequently, current practices have resulted in the development of computation

tools and databases with a narrow focus on specific length/structure scales, material

classes, or properties.

The NIST Data Gateway contains over 100 free and paid query-able web-based
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materials databases. These databases contain atomic structure, thermodynamics,

kinetics, fundamental physical constants, x-ray spectroscopy, among other features

[72]. The NIST DSpace provides a curation of links to several materials community

databases [73]. The NIST Materials Data Curation Systems (MDCS) is a general

online database that aims to facilitate the capturing, sharing, and transforming of

materials data [74]. The Open Quantum Materials Database (OQMD) is an open

source data repository for phase diagrams and electronic ground states computed

using density functional theory [75]. MatWeb is a database containing materials

properties for over 100,000 materials [76]. Atomic FLOW of Materials Discovery

(AFLOW) databases millions of materials and properties and hosts computational

tools that can be used for atomic simulations [77]. The Materials Project (and the

tool pyMatgen) [78, 79] provides open web-based access to computed information on

known and predicted materials as well as analysis tools for electronic band structures.

The Knowledgebase of Interatomic Models (OpenKIM) hosts open source tools for

potentials for molecular simulation of materials [80]. PRedictive Integrated Structural

Materials Science (PRISMS) hosts a suite of ICME tools and datastorage for the

metals community focused on microstructure evolution and mechanical properties

[81].

SPPARKS Kinetic Monte Carlo Simulator (SPPARKS) is a parallel Monte Carlo

code for on-lattice and off-lattice models [82]. MOOSE is a parallel computational

framework for coupled systems of nonlinear equations [83]. Dream3D is a tool used

for synthetic microstructure generation, image processing and mesh creation for finite

element [84].

While there exits a sizable number of standard analytics tools [85, 86, 49, 87, 88,

89, 90, 91, 92, 93], none of them are tailored to create PSP linkages from materi-

als structure image data and their associated properties. PyMKS aims to seed and
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nurture an emergent user group in the materials data analytics field for establish-

ing homogenization and localization (PSP) linkages by leveraging open source signal

processing and machine learning packages in Python. An overview of the PyMKS

project accompanied with several examples is presented here. This paper is a call to

others interested in participating in this open science activity.

3.3 Theoretical Foundations of Materials Knowledge Sys-
tems

Material properties are controlled by their internal structure and the diverse physi-

cal phenomena occurring at multiple time and length scales. Generalized composite

theories [94, 95] have been developed for hierarchical materials exhibiting well sep-

arated length scales in their internal structure. Generally speaking, these theories

either address homogenization (i.e., communication of effective properties associated

with the structure at a given length scale to a higher length scale) or localization

(i.e., spatiotemporal distribution of the imposed macroscale loading conditions to the

lower length scale). Consequently, homogenization and localization are the essential

building blocks in communicating the salient information in both directions between

hierarchical length/structure scales in multiscale materials modeling. It is also pointed

out that localization is significantly more difficult to establish, and implicitly provides

a solution to homogenization.

The most sophisticated composite theory available today that explicitly accounts

for the full details of the material internal structure (also simply referred as mi-

crostructure) comes from the use of perturbation theories and Green’s functions

[96, 94, 97, 98, 99, 100, 101, 102, 103, 104, 105, 21, 106]. In this formalism, one usually

arrives at a series expansion for both homogenization and localization, where the indi-

vidual terms in the series involve convolution integrals with kernels based on Green’s

functions. This series expansion was refined and generalized by Adams and co-workers

[107, 21, 108] through the introduction of the concept of a microstructure function,
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which conveniently separates each term in the series into a physics-dependent kernel

(based on Green’s functions) and a microstructure-dependent function (based on the

formalism of n-point spatial correlations [100, 101, 102, 103, 104, 105]).

Materials Knowledge Systems (MKS) [25, 24, 27, 23, 22, 2, 33] complement these

sophisticated physics-based materials composite theories with a modern data sci-

ence approach to create a versatile framework for extracting and curating multiscale

PSP linkages. More specifically, MKS employs a discretized version of the compos-

ite theories mentioned earlier to gain major computational advantages. As a result,

highly adaptable and templatable protocols have been created and used successfully

to extract robust and versatile homogenization and localization metamodels with

impressive accuracy and broad applicability over large microstructure spaces.

The MKS framework is based on the notion of a microstructure function. The

microstructure function provides a framework to represent quantities that describe

material structure such as phase identifiers, lattice orientation, chemical composition,

defect types and densities, among others (typically referred to as local states). The

microstructure function, mj (h, s), represents a probability distribution for the given

local state, h ∈ H, at each position, s ∈ S, in a given microstructure, j [109, 110,

111, 30]. The introduction of the local state space L (i.e., the complete set of all

potential local states) provides a consolidated variable space for combining the diverse

attributes (often a combination of scalar and tensor quantities) needed to describe

the local states in the material structure. The MKS framework requires a discretized

description of mj, which is denoted here as mj [l, s], where the [·, ·] represent the

discretized space (in contrast to (·, ·), which defines the continuous space). In most

applications, S is simply tessellated into voxels on a regular (uniform) grid so that

the position can be denoted by s→ i, j, k in three dimensions.

As noted earlier, the local state space in most advanced materials is likely to

demand sophisticated representations. In prior work [27, 3, 112], it was found that
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spectral representations on functions on the local state space offered many advantages

both in compact representation as well as in reducing the computational cost. In

such cases, l indexes the spectral basis functions employed. The selection of these

functions depends on the nature of local state descriptors. Examples include: (i) the

primitive basis (or indicator functions) used to represent simple tessellation schemes

[25, 24, 23, 22, 2, 33, 109, 110, 113], (ii) generalized spherical harmonics used to

represent functions over the orientation space [27, 3], and (iii) Legendre polynomials

used to represent functions over the concentration space [112].

3.3.1 Homogenization

Comparing different microstructures is quite difficult even after expressing them in

convenient discretized descriptions mainly due to the lack of a reference point or a

natural origin for the index s in the tessellation of the microstructure volume. Yet

the relative spatial distributions of the local states provide a valuable representation

of the microstructure that can be used effectively to quantify the microstructure and

compare it with other microstructures in robust and meaningful ways [110, 30, 109,

33, 113]. The lowest order of spatial correlations with relative spatial information

comes in the form of 2-point statistics and can be computed as a correlation of a

microstructure function such that

fj[l, l
′, r] =

1

Ωj [r]

∑
s

mj[l, s]mj[l
′, s+ r] (43)

where r is a discrete spatial vector within the voxelated domain specified by s,

fj[l, l
′, r] is one set of 2-point statistics for the local stats l and l′ and Ωj [r] is a

normalization factor that depends on r [113]. The subscript j refers to a sample

microstructure used for analysis (i.e., each j could refer to a microstructure image).

The physical interpretation of the 2-point statistics is explained in Fig. 26 with a

highly simplified two-phase microstructure (the two phases are colored white and

gray). If the primitive basis is used to discretize both the spatial domain and the
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Figure 14: The discretization scheme for both the microstructure function and the
vector space needed to define the spatial correlations, illustrated on a simple two-
phase composite material. The discretized vectors r describe the relative positions
between different spatial locations.
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local state space then fj[l, l
′, r] can be interpreted as the probability of finding local

states l and l′ at the tail and head, respectively, of a randomly placed vector r.

2-Point statistics provide a meaningful representation of the microstructure, but

create an extremely large feature space that often contains redundant information.

Dimensionality reduction can be used to create low dimensional microstructure de-

scriptors from the sets of spatial correlations (based on different selections of l and

l′) with principal component analysis (PCA). The PCA dimensionality reduction can

be mathematically expressed as

fj [ν] ≈
∑
k∈K

µj [k]φ [k, ν] + f [ν] (44)

In Eq. 44, fj [ν] is a contracted representation of fj [l, l′, r] as a large vector (i.e., ν

maps uniquely to every combination of l, l′ and r deemed to be of interest in the

analyses). The µj[k] are low dimensional microstructure descriptors (the transformed

2-point statistics) or principal component scores (PC scores). The φ [k, ν] are the

calibrated principle components (PCs) and the f [ν] are the mean values from the

calibration ensemble of fj [ν] for each ν. The k ∈ K indices refer to the µj [k]

in decreasing order of significance and are independent of l, l′ and r. The main

advantage of this approach is that the fj [ν] can be reconstructed to sufficient fidelity

with only a small subset of µj [k] [32].

After obtaining the needed dimensionality reduction in the representation of the

material structure, machine learning models can be used to create homogenization

PSP linkages of interest. As an example, a generic homogenization linkage can be

expressed as

peff
j = F(µj[k]) (45)

In Eq. 45, peff
j is the effective materials response (reflecting an effective property in

structure-property linkages or an evolved low dimensional microstructure descriptor

in process-structure linkages), and F is a machine learning function that links µj[k]
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to peff
j .

3.3.2 Localization

MKS Localization linkages are significantly more complex than the homogenization

linkages. These are usually expressed in the same series forms that are derived in

the general composite theories, while employing discretized kernels based on Green’s

functions [96, 94, 97, 98, 99, 100, 101, 102, 103, 104, 105, 21, 106]. Mathematically,

the MKS localization linkages are expressed as

pj[s] =
∑
l,r

α[l, r]mj[l, s − r] +
∑

l,l′,r,r′

α[l, l′, r, r′]mj[l, s − r]mj[l
′, s − r′] + ... (46)

In Eq. 46, pj[s] is the spatially resolved (localized) response field (e.g., a response

variable such as stress or strain rate in a structure-property linkage, or an evolved

microstructure function in a process-structure linkage), and α[l, r] are the Green’s

function based discretized influence kernels. These digital kernels are calibrated using

regression methods [23, 24, 25, 27, 3, 112].

Fig. 3.3.2 provides schematic overviews of the MKS homogenization and localiza-

tion workflows. More detailed explanations on the MKS homogenization and local-

ization linkages can be found in prior literature [25, 24, 27, 23, 22, 2, 112, 33, 109,

110, 113].

3.4 Materials Knowledge Systems in Python

PyMKS is an object-oriented numerical implementation of the MKS theory developed

in the literature [24]. It provides a high-level, computationally efficient, framework

to implement data pipelines for classification, cataloging and quantifying materials

structures for PSP relationships. PyMKS is written in Python, a natural choice for

scientific computing due to its ubiquitous use among the data science community as

well as many other favorable attributes [114]. PyMKS is licensed under the permissive
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MIT license [115] which allows for unrestricted distribution in commercial and non-

commercial systems.

3.4.1 Core Functionality

PyMKS consists of four main components including a set of tools to compute 2-

point statistics, tools for both homogenization and localization linkages and tools

for discretizing the microstructure. In addition, PyMKS has modules for generating

data sets using conventional numerical simulations and a module for custom visual-

ization of microstructures. PyMKS builds on Scikit-learn’s pipelining methodology

to create materials specific machine learning models. This is a high level system for

combining multiple data and machine learning transformations into a single customiz-

able pipeline with only minimal required code. This approach makes cross-validation

and parameter searches simple to implement and avoids the complicated book keep-

ing issues associated with training, testing and validating data pipelines in machine

learning.

The starting point for an MKS homogenization analysis is to use 2-point statisics

as outlined in Eq. 48 and provided in PyMKS by the MKSStructureAnalysis ob-

ject, which calculates the objective low dimensional structure descriptors, µj[k]. The

default dimensionality reduction technique is PCA, but any model that uses the

transform fit or a “transformer” object can be substituted. After calculating the

descriptors, the MKSHomogenizationModel is used to create linkages between the µj[k]

and the effective material response, peff
j , as indicated in Eq. 45. The default machine

learning algorithm is a polynomial regression, but any estimator with the fit and

predict methods can be substituted to create the linkages between µj[k] and peff
j .

The MKSLocalizationModel object provides the MKS localization functionality.

It calibrates the first order influence kernels α[l, r] used to predict local materials

responses, pj[s], as outlined in Eq. 46. The calibration of the influence kernels is

44



achieved using a variety of linear regression techniques described in numerous previous

studies [25, 24, 27, 112]. The MKSLocalizationModel object uses fit and predict

methods to follow the standard interface for a Scikit-learn estimator object.

To use either the homogenization or the localization models in PyMKS, the mi-

crostructure first needs to be represented by a microstructure function, mj [l, s]. The

bases module in PyMKS contains four transformer objects for generating the mj [l, s]

using a varietly of discretization methods [25, 24, 27, 23, 22, 2, 33, 112]. These four

objects can be thought of as materials specific extension to the feature extraction

module in Scikit-learn. A PrimitiveBasis object uses indicator (or hat) functions

and is well suited for microstructures that have discrete local states (e.g., distinct

thermodynamic phases). The LegendreBasis and FourierBasis objects create spec-

tral representations of microstucture functions defined on nonperiodic and periodic

continuous local state spaces, respectively. For example, functions over a range of

chemical compositions can be described using LegendreBasis, while functions over

orientations in two-dimensional space can be described using FourierBasis. Fur-

thermore, GSHBasis creates compact spectral representations for functions over lat-

tice orientation space (such as those needed to describe polycrystalline microstruc-

tures) [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61].

PyMKS contains modest data generation tools (in the datasets module) that are

used in both the PyMKS examples and the PyMKS test suite. The MicrostructureGenerator

object creates stochastic microstructures using digital filters. This assists users in

creating PyMKS workflows even when data is unavailable. PyMKS has objects

for generating sample data from both a spinodal decomposition simulation (using

the CahnHilliardSimulation object) and a linear elasticity simulation (using the

ElasticFESimulation object). PyMKS comes with custom functions for visualizing

microstructures in elegant ways (in the tools module). These are used extensively
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in the PyMKS example notebooks to minimize incidental code associated with visu-

alization.

3.4.2 Underlying Technologies

PyMKS is built upon the highly optimized Python packages NumPy [47], SciPy [48],

and Scikit-learn [49]. NumPy arrays are the primary data structure used throughout

PyMKS and provide the basic vector and matrix manipulation operations. SciPy’s

signal processing and numerical linear algebra functions are used to calibrate models

and generate synthetic data. PyMKS is highly integrated with Scikit-learn and mim-

ics its simple API in order to leverage from Scikit-learn’s data pipeling methodology

for machine learning and data transformations. In addition, PyMKS uses the Pytest

framework to automate execution of the test suite [116].

Optional packages that can be used with PyMKS include Simple Finite Elements

in Python (SfePy) [117], the python wrapper for the FFTW library (pyFFTW) [118]

and the plotting package Matplotlib [119]. SfePy is used to simulate linear elas-

ticity to create sample response field data. PyFFTW is a hightly optimized Fast

Fourier Transform library that enhances the efficiency of PyMKS and enables par-

allel computations in PyMKS. Matplotlib is used to generate custom microstructure

visualizations.

3.4.3 Development Practices

PyMKS leverages from existing tools, standards and web resources wherever possible.

In particular the developers are an open community that use GitHub for issue tracking

and release management (see https://github.com/materialsinnovation/pymks).

Additionally a Google group is used as a public forum to discuss the project devel-

opment, support and announcements (see pymks-general@googlegroups.com). The

Travis CI continuous integration tool is used to automate running the test suite for

branches of the code stored on GitHub. Code standards are maintained by following
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the Python PEP8 standards and by reviewing code using pull requests on GitHub.

Detailed administrative guidelines are outlined in the ADMINISTRATA.md document,

and potential developers are encouraged to follow them.

3.5 Examples of Homogenization and Localization with PyMKS

A demonstration of the MKS homogenization and localization workflows as shown in

Fig. 3.3.2 are presented in this section using PyMKS. Additional workflow examples

can be found on the PyMKS website pymks.org.

3.5.1 Prediction of Effective Stiffness with Homogenization

3.5.1.1 Generation of Calibration Data

In this example the MKSHomogenizationModel is used to create a structure-property

linkage between a 2-phase composite material and effective stiffness Cxx.

Multiple classes of periodic microstructures and their effective elastic stiffness

values can be generated by importing the make elastic stiffness function from

pymks.datasets.

This function has several arguments. n samples is a list indicating the number

of microstructures for each class. grain size and volume fraction are also lists

that specify the average grain features and mean volume fractions for each of the

microstructure classes. Variance in the volume fractions for each class can be con-

trolled using percent variance which specifies a range of volume fractions centered

about the mean values (i.e. volume fration ± percent variance). size indicates

the dimensions of all the microstructures. elastic modulus and poissons ratio are

used to indicate the material properties for each of the phases. Lastly, seed is used

as the seed for the random number generator.

In this homogenization example, 50 samples from 16 different microstructures

classes with dimensions 21 x 21 and their effective stiffness values were created totaling

to 800 samples. Each of the 16 classes have different sized microstructure features and
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volume fractions. The make elastic stiffness function returns the microstructures

X and their associated stiffness values y.

1 from pymks.datasets import make_elastic_stiffness

2 import numpy as np

3

4 sample_size = 50

5 n_samples = [sample_size] * 16

6

7 grain_size = [(8, 8), (8, 6), (6, 8), (6, 6),

8 (10, 4), (4, 10), (4, 4), (10, 10),

9 (12, 2), (2, 12), (2, 2), (12, 12),

10 (14, 1), (1, 14), (1, 1), (14, 14)]

11

12 volume_fraction = [(0.8 , 0.2), (0.7, 0.3), (0.6, 0.4), (0.5,

0.5),

13 (0.2, 0.8), (0.3, 0.7), (0.4, 0.6), (0.5,

0.5),

14 (0.8, 0.2), (0.7, 0.3), (0.6, 0.4), (0.5,

0.5),

15 (0.2, 0.8), (0.3, 0.7), (0.4, 0.6), (0.5,

0.5)]

16

17 percent_variance = 0.15

18 elastic_modulus = (300, 200)

19 poissons_ratio = (0.28, 0.3)

20 size = (21, 21)

21 seed = 1

22

23 X, y = make_elastic_stiffness(n_samples=n_samples ,

24 volume_fraction=volume_fraction ,

25 grain_size=grain_size , size=

size ,

26 percent_variance=

percent_variance ,

27 elastic_modulus=elastic_modulus ,

28 poissons_ratio=poissons_ratio ,

29 seed=seed)

An example microstructure from each of the 16 classes can be visualized by
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importing draw microstructures function from pymks.tools. The output from

draw microstructures can be found in Fig. 16.

1 from pymks.tools import draw_microstructures

2

3 X_examples = X[1:: sample_size]

4 draw_microstructures(X_examples , figsize =(4, 4))

3.5.1.2 Calibration of Homogenization Model

Before an instance of the MKSHomogenizationModel can be made, an instance of

a basis class is needed to specify the discretization method for the microstructure

functions (see Fig. 3.3.2). For this particular example, there are only 2 discrete

phases numerated by 0 and 1. It has been shown that the primitive basis provides

the most compact representation of discrete phases [109, 110, 30, 113, 33, 25, 25, 23].

In PyMKS the class PrimitiveBasis from pymks.bases can be used with n states

equal to 2 and the domain equal to [0, 1].

The periodic axes as well as the set(s) of spatial correlations need to be specified

in addition to the basis class for the MKSHomogenizationModel. This is done using

the arguments periodic axes and correlations respectively . In practice the set

of spatial correlations are a hyper parameter of our model that could be optimized,

but for this example only the two autocorrelations will be used.

1 from pymks import MKSHomogenizationModel

2 from pymks import PrimitiveBasis

3

4 prim_basis = PrimitiveBasis(n_states=2, domain =[0, 1])

5 model = MKSHomogenizationModel(basis=prim_basis ,

6 periodic_axes =[0, 1],

7 correlations =[(0, 0), (1, 1)])

The default pipeline used to create the homogenization linkage uses PCA and

polynomial regression objects for Scikit-learn. Using GridSearchCV from Scikit-

learn, cross validation is used on the testing data to find the optimal number of
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principal components and degree of polynomial (based on the R-squared values)

within a defined subspace for the hyper parameters for our model. A dictionary

params to tune defines the subspace. For this example n components will be varied

between 1 to 13 and degree of the polynomial regression will be varied between 1 to

3. StratifiedKFold is used to ensure that microstructures from each of the classes

are used for each fold during cross validation. The array labels is used to label each

of the classes.

1 from sklearn.cross_validation import StratifiedKFold

2 from sklearn.grid_search import GridSearchCV

3

4 flat_shape = (X.shape [0],) + (X[0].size ,)

5 params_to_tune = {’degree ’: np.arange(1, 4),

6 ’n_components ’: np.arange(1, 13)}

7 labels = np.repeat(np.arange (16), 50)

8 skf = StratifiedKFold(labels , n_folds =5)

9

10 fit_params = {’size’: X[0]. shape}

11 gs = GridSearchCV(

12 model , params_to_tune , cv=skf ,

13 \usepackage{courier}fit_params=fit_params).fit(X.reshape(

flat_shape), y)

The results of our parameter grid search can be examined by either printing or

creating visualizations. The parameters and score of the best estimator can be printed

as shown below.

1 from __future__ import print_function

2

3 print(’Order of Polynomial ’, gs.best_estimator_.degree)

4 print(’Number of Components ’, gs.best_estimator_.n_components)

5 print(’R-squared Value’, gs.score(X, y))

1 Order of Polynomial 2

2 Number of Components 11

3 R-squared Value 0.999960653331
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Two different visualizations of the results from GridsearchCV with can be created

using draw gridscores matrix and draw gridscores from pymks.tools.

draw gridscores matrix provides a visualization of two matrices for both the

mean R-squared values and their standard deviation. The output from draw gridscores matrix

can be found in Fig. 17.

1 from pymks.tools import draw_gridscores_matrix

2

3 draw_gridscores_matrix(gs, [’n_components ’, ’degree ’],

4 score_label=’R-Squared ’,

5 param_labels =[’Number of Components ’,

6 ’Order of Polynomial ’])

draw gridscores provides another view of the same information with the mean

values indicated by the points and the standard deviation indication by the shared

regions. The output from draw gridscores can be found in Fig. 18.

1 from pymks.tools import draw_gridscores

2

3 gs_deg_1 = [x for x in gs.grid_scores_ \

4 if x.parameters[’degree ’] == 1]

5 gs_deg_2 = [x for x in gs.grid_scores_ \

6 if x.parameters[’degree ’] == 2]

7 gs_deg_3 = [x for x in gs.grid_scores_ \

8 if x.parameters[’degree ’] == 3]

9

10 draw_gridscores ([gs_deg_1 , gs_deg_2 , gs_deg_3], ’n_components

’,

11 data_labels =[’1st Order ’,

12 ’2nd Order ’, ’3rd Order’],

13 param_label=’Number of Components ’,

14 score_label=’R-Squared ’)

For the specified parameter range, the model with the highest R-squared value

was found to have a 2nd order polynomial with 11 principal components. This model

is calibrated using the entire training dataset and is used for the rest of the example.
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1 model = gs.best_estimator_

2

3 model.fit(X, y)

3.5.1.3 Prediction of Effective Stiffness Values

In order to validate our model, additional data is generated using the make elastic stiffness

function again with the same parameters with the exception of the number of samples

and the seed used for the random number generator. The function returns the new

microstructure X new and their effective stiffness values y new.

1 test_sample_size = 10

2 n_samples = [test_sample_size] * 16

3

4 seed = 0

5

6 X_new , y_new = make_elastic_stiffness(

7 n_samples=n_samples , size=size ,

8 grain_size=grain_size ,

9 volume_fraction=volume_fraction ,

10 percent_variance=percent_variance ,

11 elastic_modulus=elastic_modulus ,

12 poissons_ratio=poissons_ratio ,

13 seed=seed)

Effective stiffness values predicted by the model for the new data are generated using

the predict method.

1 y_pred = model.predict(X_new)

A visualization of the PC scores for both the calibration and the validation data

can be created using draw components scatter from pymks.tools. The output from

draw components scatter can be found in Fig. 19

Because both the validation and the calibration data were generated from the

make elastic stiffness function with the same parameters both sets of data are
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different samples from the same distribution. Similar visualizations can provide in-

sights on differences between different data sources.

1 from pymks.tools import draw_components_scatter

2

3 draw_components_scatter ([ model.reduced_fit_data [:, :2],

4 model.reduced_predict_data [:, :2]],

5 [’Training Data’, ’Test Data’],

6 legend_outside=True)

To evaluate our model’s predictions, a goodness-of-fit plot can be generated by im-

porting draw goodness of fit from pymks.tools. The results from draw goodness of fit

can be found in Fig. 20. Additionally the R-squared value for our predicted data can

be printed.

1 from pymks.tools import draw_goodness_of_fit

2

3 fit_data = np.array ([y, model.predict(X)])

4 pred_data = np.array ([y_new , y_pred ])

5 draw_goodness_of_fit(fit_data , pred_data ,

6 [’Training Data’, ’Test Data’])

1 print(’R-squared value’, model.score(X_new , y_new))

1 R-squared value 0.999949544961

3.5.2 Prediction of Local Strain Field with Localization

3.5.2.1 Generation of Calibration Data

In this example the MKSLocalizationModel is used to predict the local strain field for

a three phase microstructure with elastic moduli values of 80 MPa, 100 MPa and 120

MPa; Poisson’s ratio values all equal to 0.3 and a macroscopic imposed strain equal

to 0.02. The model is calibrated using delta microstructures (analogous to using a

unit impulse response to find the kernel of a system in signal processing) [25]. The

the material parameters specified above are used in a finite element simulation using
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the make elasticFEstrain delta function from pymks.datasets. The number of

Poisson’s ratio and elastic moduli values indicates the number of phases.

1 from pymks.datasets import make_elastic_FE_strain_delta

2 import numpy as np

3

4 n = 21

5 n_phases = 3

6

7 elastic_modulus = (80, 100, 120)

8 poissons_ratio = (0.3, 0.3, 0.3)

9 macro_strain = 0.02

10 size = (n, n)

11

12 X_delta , strains_delta = make_elastic_FE_strain_delta(

13 elastic_modulus=elastic_modulus ,

14 poissons_ratio=poissons_ratio ,

15 size=size , macro_strain=macro_strain)

Delta microstructures are composed of only two phases with the center of the mi-

crostructure being a different phase from the rest. All permutations of the delta

microstructures and their associated strain fields εxx are needed to calibrate the lo-

calization model. A delta microstructure and it’s strain field can be visualized using

draw microstructure strain from pymks.tools. The output from draw microstructure strain

can be found in Fig. 21.

1 from pymks.tools import draw_microstructure_strain

2

3 draw_microstructure_strain(X_delta [0], strains_delta [0])

3.5.2.2 Calibration of the Localization Model

In order to make an instance of the MKSLocalizationModel, an instance of a basis

class must first be created to specify the discretization method for the microstructure

function (see Fig. 3.3.2). For this particular example, there are 3 discrete phases,
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therefore the PrimitiveBasis from pymks.bases will be used. The phases are enu-

merated by 0, 1 and 2, therefore we have three local states with a domain from 0 to

2. An instance of the PrimitiveBasis with these parameters can be used to create

an instance of the MKSLocalizationModel as follows.

1 from pymks import MKSLocalizationModel

2 from pymks import PrimitiveBasis

3

4 p_basis =PrimitiveBasis(n_states=3, domain =[0, 2])

5 model = MKSLocalizationModel(basis=p_basis)

With the delta microstructures and their strain fields, the influence kernels can

be calibrated using the fit method. A visualization of the influence kernels can

be generated using the draw coeff function from pymks.tools. The results from

draw coeff can be found in Fig. 22.

1 from pymks.tools import draw_coeff

2

3 model.fit(X_delta , strains_delta)

4 draw_coeff(model.coef_)

3.5.2.3 Prediction of the Strain Field for a Random Microstructure

Model validation is done by comparing strain fields computed using a finite element

simulation and our localization model for the same random microstructure. The

make elasticFEstrain random function from pymks.datasets generates a random

microstructure and its strain field results from finite element analysis. The output

from make elasticFEstrain random are visualized using draw microstructure strain

can be found in Fig. 23.

1 from pymks.datasets import make_elastic_FE_strain_random

2

3 np.random.seed (101)

4

5 X, strain = make_elastic_FE_strain_random(

6 n_samples=1, elastic_modulus=elastic_modulus ,
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7 poissons_ratio=poissons_ratio , size=size ,

8 macro_strain=macro_strain)

9

10 draw_microstructure_strain(X[0] , strain [0])

The localization model predicts the strain field by passing the random microstruc-

ture to the predict method. A visualization of the two strain fields from both the lo-

calization model and finite element analysis can be created using draw strains compare

from pymks.tools. The output from draw strains compare can be found in Fig.

24.

1 from pymks.tools import draw_strains_compare

2

3 strain_pred = model.predict(X)

4 draw_strains_compare(strain [0], strain_pred [0])

These examples demonstrate the high level code that creates accurate and compu-

tationally efficient homogenization structure-property linkages using MKSHomogenizationModel

and localization linkages using MKSLocalizationModel with PyMKS.

3.6 Conclusion

The MKS framework offers a practical and computationally efficient approach for

distilling and disseminating the core knowledge gained from physics-based simulations

and experiments using emerging concepts in modern data science. PyMKS is an open

source project with a permissive license that provides simple high level APIs to access

the MKS framework by implementing pipelines from Scikit-learn with customized

objects for data from hierarchical materials. PyMKS has been launched with the aim

to nucleate and grow an emergent community focused on establishing data-driven

homogenization and localization Process-Structure-Property linkages for hierarchical

materials.
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Figure 15: The MKS Homogenization workflow (left) consists of four steps. 1.
Discretize the raw microstructure with the microstructure function. 2. Compute 2-
point statistics using local states (Eq. 48). 3. Create low dimensional microstructure
descriptors using dimensionality reduction techniques (Eq. 44). 4. Establish a linkage
with low dimensional microtructure descriptors using machine learning. (Eq. 45).
The MKS Localization workflow (right) consists of 2 steps. 1. Discretize the raw
microstructure with the microstructure function. 2. Calibrated physics-based kernels
using regression methods (Eq. 46).
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Figure 16: One sample from each of the 16 difference microstructure classes used for
calibration of the homogenization model.

Figure 17: Mean R-Squared values and Standard deviation as a function of the order
of the polynomial and the number of principal components.
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Figure 18: The mean R-Squared values indicated by the points and the standard
deviation indication by the shared regions as a function of the number of principal
components for the first three orders of a polynomial function.

Figure 19: Low dimensional microstructure distributions (µj[k] from Eq. 44) for
both the calibration and validation datasets.
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Figure 20: Goodness-of-Fit plot for effective stiffness Cxx for the homogenization
model.

Figure 21: Delta microstructure (right) and its associated strain field (left). The delta
microstructures and their local response fields are used to calibrated the localization
model.
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Figure 22: Calibrated influence kernels for the localization model.

Figure 23: Random microstructure and its local strain field found using finite element
analysis.

Figure 24: A comparison between the local strain field computed using finite element
(left) and the prediction from the localization model (right).
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CHAPTER IV

PROCESS-STRUCTURE EVOLUTION LINKAGE USING

DIMENSIONALITY REDUCTION AND TIME SERIES

ANALYSIS

4.1 Introduction

The discovery and curation of Process-Structure-Property (PSP) linkages in ad-

vanced materials and their efficient communication towards the design and manu-

facturing experts are the main limiting steps in the accelerated exploitation of new

materials in emerging technologies. While it has been recognized that an acceler-

ated design cycle for advanced materials can have a significant economic impact

[6, 7, 13, 8, 9, 10, 11, 12], in practice the design cycle often takes decades. Some

of the difficulties encountered include materials property dependence on extreme val-

ues of microstructure distributions, metastablity of microstructures during processing

and/or use, variations in data collection protocols, and uncertainty in data, models

and model parameters [120, 69]. Additionally, the multiscale (or hierarchical) nature

of materials structure necessitates a high dimensional representation and poses the

central challenge in establishing high value PSP linkages [121, 112, 22, 69]. The large

descriptor space needed to capture the salient details of the material structure cre-

ates a major challenge that, in turn, demands a significant amount of data analysis

in extracting reliable and useful PSP linkages.

This existing challenge is exacerbated in the case of materials such as polymers

where the added complexity arising from minute differences in chemistry and chemical

composition can produce dramatic effects in properties across members of the same
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polymer family. Consider for example, the case of the commodity polymer polyethy-

lene resin (PE) chemically summarized as (CH2-CH2)n. The same chemical formula

represents a broad family of materials that span an application range from grocery

bags to bulletproof vests.

In reality, the simple chemical structure actually represents a family of materials

which can be subclassified into a variety of grades on the basis of factors inculding but

not restricted to density, crystallinity, average molecular chain length and extent of

chain branching. The choice of processing conditions under which grades of PE resin

are converted from raw material to finished product influence the hierarchy of struc-

tural assembly from nanoscale to microscale domains and ultimately have a profound

impact on the macroscopic properties. Constructing the necessary PSP linkages for

polymers to accelerate materials development is non trivial. Firstly, the quantification

of the structure requires detailed experimental data at the corresponding hierarchical

length scales. Secondly, dynamic datasets capable of characterizing the changes in

properties with corresponding changes in structure are required.

The recently developed Materials Knowledge Systems (MKS) combines concepts

from sophisticated physics-based composite theories [97, 98], signal processing [122],

and machine learning [123, 124, 125] to establish a new framework for pursuing PSP

linkages. These linkages can be established at separable time and length scales rel-

evant to the materials hierarchical structure in order to communicate the salient

information for both the top-down (referred to as localization) and the bottom-up

(referred to as homogenization) scale-bridging. The Python package PyMKS [126]

provides the code base to efficiently establish these linkages.

The MKS framework has thus far been applied largely to capturing structure-

property linkages from data generated by multiscale models [25, 24, 27, 23, 22, 2].
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These structure-property linkages are, in general, less complex than the process-

structure linkages as they do not require a rigorous treatment of the structure evo-

lution over time. In other words, the extension of the MKS framework to process-

structure linkages necessitates the introduction of time series analysis.

The extension to process-structure relationships is an important and critical com-

ponent of the MKS framework. Only with this extension, is it actually possible to

formulate a complete and comprehensive set of PSP linkages needed in a materials

innovation effort. With the complete formulation of PSP linkages (typically in the

form of metamodels or surrogate models), it is possible to address inverse problems

in materials and/or process design, where the goal is to identify a process recipe

capable of producing a material with improved combination of properties or perfor-

mance metrics. Furthermore, such surrogate models lend themselves to an integrated

community effort for curating and sharing material knowledge (in the form of PSP

linkages) at different length and time scales which can also be effectively communi-

cated and digested by the manufacturing experts.

4.2 Background

The MKS framework provides templatable protocols that can be used to create PSP

linkages. These protocols start by introducing the concepts of the microstructure

function and the local state space. The simplest interpretation of the local state is

the thermodynamic state variables (or order parameters) needed to uniquely define a

material system such as (orientation, chemical concentration, crystal structure, phase,

etc). The local state space defines the space of all possible local states used to define

a material system for a given problem. The microstructure function is represented

by mj[l, s, n] and is a function of discretized representations of space s, time n and

local state l. The subscript j denotes a particular sample. The introduction of the
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microstructure function provides two benefits. It introduces a probabilistic interpre-

tation of the microstructure by converting the structure into a probability distribution

where the expectation value is the measured material structure as shown in Eq. (47).

Ej[l|s, n] =
∑
l∈L

lmj[l, s, n] (47)

Additionally the local state space introduces a consolidated descretized variable space

L where both tensoral and scalar quantities used to define the materials structure can

be mapped into and are represented by a scalar value l.

The homogenization protocol starts by converting the raw structure information

into the microstructure function (also referred to as digitizing the microstructure)

based on the local states (e.g., phase identifier, chemical composition, lattice orien-

tation). An idealized example of discretized microstructure with two discrete local

states can be found in Fig. 25. In this example, the image is segmented such that

each voxel is assigned to a particular local state.

With the microstructure function, we can now look at computing spatial corre-

lations between the local states. A 2-point statistic is the probability of finding the

head of the vector r in one local state l and the tail of the vector in another local

state l′ over the entire image. A set of 2-point statistics is defined by all possible

vectors that can be defined within an image [22, 110, 109, 113]. 2-point statistics

fj[l, l
′, r, n] are efficiently computed in the form of spatial correlations using Discrete

Fourier Transforms as shown in Eq. (48).

fj[h, h
′, r, n] =

1

Ωj[r, n]

∑
s∈S

mj[h, s, n]mj[h
′, s+ r, n] (48)

In Eq. (48), Ωj[r, n] is a normalization factor. The transformation of the materials

structure information into 2-point statistics provides the benefit of creating a natural

origin or a point of reference that can be used to objectively compare differences in

the relative spatial arrangements of the local stats in each microstructure as shown
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in Fig. 26.

Creating structure property linkages or classification models with the raw 2-point

statistics is difficult due to the large feature space it creates as well as the collinear

features that are present due to redundant information. Low dimensional microstruc-

ture descriptors can be created using dimensionality reduction techniques such as

Principal Component Analysis (PCA) or one of its variants [32, 127]. PCA creates

low dimensional microstructure descriptors using linear combinations of the 2-point

statistics as shown in Eq. (49).

fj[ν, n] ≈
K∑
k=1

µj[k, n]φ[k, ν] + f [ν] (49)

In Eq. (49) fj[ν, n] is a feature vector that includes all 2-point statistics deemed

important for the problem (this includes all different combination of l, l′, and r, which

are all mapped onto ν), n is a discrete time variable, and j identifies a particular

microstructure. φ[k, ν] and f [ν] are the calibrated PCs and the mean values of the

selcted features respectively. K is the total number of PCs. µj[k, n] are the PC

scores at time n, and are taken as the low dimensional microstructure descriptors

for sample j. Often most of the variance in a dataset can be captured with a small

number of low dimensional descriptors compared to the number of features. Previous

studies have used these protocol to create structure-property linkages with effective

properties or microstructure classification models [33, 113, 22, 109]. A related protocol

for localization has also been applied to variety of material systems [26, 112, 27, 25,

24, 23].

The extension of the MKS framework from structure-property to process-structure

linkages introduces the need to represent the evolution of the microstructure as time

series data. Time series modeling approaches can be separated into methods that work

in the frequency domain such as spectral analysis [128, 129, 130] and wavelets [131,

132, 133], and methods that work in the time domain. The time domain methods are
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Figure 25: Idealized microstructure with two local states shown by the white and
gray voxels. The relative spatial locations for two voxels is described by a discretized
vector r.

Figure 26: Discretized microstructure (left) and its 2-point statistics (right). Each
pixel in the 2-point statistics image depicts the probability of finding the selected
(ordered) local states at the ends of a vector whose tail is at the origin and the head
is at the pixel itself.
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to be further separated into three main categories: Autoregresive Integrated Moving

Average (ARIMA) models, State Space models, and Neural Networks.

ARIMA models were developed by Box and Jenkins [134] and predict the evolution

of time series data based on previous values and previous errors. The advantages of

ARIMA models are that (i) the number of model parameters is linked to the number

of previous values and previous errors as well as the number of times the time series

is differenced, (ii) they can be solved with Ordinary Least Squares Regression, and

(iii) they are intuitive. The model requires that nonlinear trends be removed from

the data, and the residuals are normally distributed [134].

State space models estimate a joint probability over latent state variables and

observed measurements. Kalman Filter [135] is used when the latent state variable is

assumed to be continuous, while Hidden Markov Models are used with discrete latent

variables [136, 137, 138]. State space models can be viewed as recursive Bayesian

estimation [139], and are well suited for streaming noise data. The models create a

linear function using a Markov assumption (only the current state is needed to predict

the next), although extensions of the models have been made for nonlinearities [140,

141, 142]. The draw backs from this method are that (i) the parameter estimation is

non-convex, and (ii) the dynamics of the system must be well understood a priori to

create transition models to update the latent state variables.

Neural Networks have also been successfully applied to time series analysis as well

as other sequential learning problems. The most notable model is Long Short Term

Memory Neural Network (LSTM) [143]. LSTM introduces the concept of a memory

block which contains gates that control the flow of information into and exiting the

memory block as well as information carried into the next time step [144]. This

model has been shown to outperform the previous two methods with non-stationary

data [145], but optimization of neural network parameters is non-convex and typically

requires a significant amount of data [144].

68



In this study, an extension to the MKS homogenization framework is presented

using a non-parametric extension to ARIMA models using time series data gath-

ered from synchrotron based in-situ X-ray scattering measurements. In experiments

of this type, the material or a material system under investigation is exposed to

an X-ray beam which allows the internal structure to be probed. Simultaneously,

the corresponding changes in the properties of the material or material system are

investigated by perturbing the varibles of state. These include variables such as

temperature, pressure, and electric fields or their combinations. By combining the

measurements of structure and function along with a suitable design of experiments,

a detailed investigation into the structure-properties-processing-performance can be

performed. Although our work towards establishing PSP linkages is demostrated on

X-ray scattering data, the approach can be extended to data from in-situ experiments

utilising a varitety of microscopy, tomography, neutron scattering, and spectroscopic

techniques.

4.3 Extension of MKS to Process-Structure Linkages

State space models enjoy certain advantages in handling noisy data, and can be

adapted to in-line learning from streaming data. But in order to avoid divergence

and minimize error, these models require a priori knowledge of the dynamics of the

system to create state transition matrices. Although some work has been done to

empirically calibrate these transition matrices [146], the dynamics of low dimensional

microstructure descriptors is generally not well understood. While LSTM have shown

significant predictive power when optimized with large dataset, in many practical

applications, materials datasets are not large [147]. For these reasons, LSTM and

State Space models are not generally applicable for the evolution of low dimensional

microstructure descriptors.

ARIMA models require that the model errors are known. This makes multistep
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predictions impossible with a moving average component leaving only autoregressive

model as a possible method. A non-parametric regression method call Multivari-

ate Adaptive Regression Splines (MARS) was developed by Friedmen [63], and later

applied to time series analysis by Lewis and others [148, 149]. In time series appli-

cations the method is referred to as Time Series Multivariate Adaptive Regression

Splines (TSMARS). TSMARS has been shown to work well with moderate number of

dimension (in our case PCs ≤ 20) and moderate sized data (between 50 and 1000)[63].

TSMARS looks to fit a function, F , to connect the current microstructure descrip-

tors µ[k, n] with it previous values as well as potentially with processing parameters

η[n] as shown in Eq. (50).

µ̂[k, n] = F(µ[k, n− 1], µ[k, n− 2], ...η[n], η[n− 1], ...) + ε (50)

In Eq. (50), µ[k, n − i] is the microstructure descriptor for PC k at a discrete time

value n − i and η[n − i] are processing parameters at time n − i. The function F is

estimated in a piece-wise manner in disjoint subregions defined by hinge functions g

using ordinary least squares regression. The borders of the disjoint regions are data

points called knots, κ. The hinge function is defined in Eq. (51), and an example of

two hinge functions meeting at a knot equal to 5 can be found in Fig. 27.

g(x) =


x, if x > 0.

0, otherwise.

(51)

For economy of notation, the estimate of the function F will only be written in

terms of the previous values of the microstructure descriptors µ[k, n − i], but the

processing parameters can be added in the same way.

The TSMARS calibration consists of three major steps.

1. Forward pass which greedily adds hinge functions in pairs to minimize the local

mean squared error (MSE) for subregions until some stopping criteria is reached.
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Figure 27: An example of two hinge functions meeting at a knot with value of five
(κ = 5).

2. Pruning or backward pass to remove hinge functions to avoid over-fitting using

Generalized Cross Validation (GCV) and MSE.

3. Coefficients for the bases function in each disjoint sub regions are calibrated

using ordinary least squares regression.

The function F is estimated using linear combinations of the product of hinge

functions as shown in Eq. (52).

F = a[0] +
P∑
i=1

a[n− i]
Qi∏
q=1

b[q, i]g(µ[k′, n− i]− κ[q, i])] (52)

In Eq. (52), P is the number of previous time steps of values of microstructure

descriptors that will be used in the model and is called the autoregressive (AR)

order. Qi is the set of disjoint subregions for time n−i, µ[k′, n−i] the low dimensional

microstructure descriptor for PC k′ at time n − i, κ[q, i] is a knot in PC k′, b[q, i]

is a constant that can only take the values of ±1, a[n − i] and a[0] are coefficients

found using ordinary least squares regression. More detailed explanations of MARS

and TSMAR can be found in published literature [63, 148, 149].
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In this study the iterations of the Forward pass step of the calibration was stopped

if i). the R-squared value is greater that .999 or ii). the change in the R-squared

value was less than 0.001. The number of PCs K and the autoregressive order P

were optimized for the Process-Structure linkage using a leave one sample out cross-

validation approach. When selecting the range over which to search, three practical

issues need to be considered. i). The AR order determines the number of initial

images that need to be provided to the model at the time of prediction. As a result

a low AR order that provides an accurate model is desired. ii). As the number of

PCs increases, the amount of variance retained in the low dimensional microstructure

descriptors µj[k, n] also increases. iii). While the time complexity for prediction is

O(NPK) where N is the number of time steps, the time complexity for calibration is

O
(
N2(PK)3

)
. The last 2 issues require an optmized value of PCs where a sufficient

amount of the variance is captured without the run time becoming too large.

During the cross-validation process, each of the samples was systematically left out

during the calibration of the model. After each of the calibrations, the first P images

from the sample not used during the calibration are provide as initial conditions for

the model. The prediction process recursively used predictions from previous time

steps in the model (i.e. if P = 1 then µ̂j[k, n + i] is used to predict µ̂j[k, n + i + 1])

to move forward in time. The MSE values, as defined in Eq. (53), were computed

over the predicted time steps. This metric will be referred to as predicted MSE

value through the remainder of the paper. During the calibration, the union of the

calibration samples was used as a single time series which resulted in discontinuities at

the edges between samples. To basis introduced by the discontinuities, the last value

50 steps in the sample used at padding at the end of each sample prior to forming a

single calibration time series.

1

NK

K∑
k=1

N∑
i=1

(µ̂j[k, n]− µj[k, n])2 (53)
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In this work, the TSMARS model has been used to extend the MKS homogeniza-

tion framework to Process-Structure Linkages. TSMARS uses a data driven approach

to predict the evolution of the low dimensional microstructure descriptors by creating

nonlinear functions of previous microstructure desciptor values in subregions in the

PC space. In this paper, we explore the first application of this approach using X-ray

scattering data.

4.4 Application

For this case study, X-ray scattering data is used as a surrogate for 2-point statistics.

Indeed, it has been shown that the X-ray scattering data corresponds to the Fourier

transform of the autocorrelation of the difference in electron density [64].

4.4.1 Dataset

In an X-ray scattering measurement, the specimen under investigation is irradiated

by a coherent beam of monochromatic X-rays. The incident X-rays interact non-

destructively with the electrons in the specimen. This interaction results in a fraction

of the X-rays deviating from their original collimated path, i.e., results in scatter-

ing. The scattering of X-rays due to the distribution of electron density within the

microstructure of a material is characteristic of the material. The scattered X-rays,

which are captured on a two dimensional detector plate create a scattering pattern

which contains the microstructural information characteristic to the specimen that

caused the scattering. The scattering pattern can be mathematically related to the

electron density distribution within the specimen by way of the Fourier Transform.

Consequently, the inverse relationship between length scales in real and Fourier space

is maintained analogous to time and frequency in a traditional temporal Fourier

transform.

Small Angle X-ray Scattering (SAXS) is a subset of scattering techniques wherein
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microstructural features at the mesoscopic scale between one to hundreds of nanome-

ters can be probed in a specimen. In this work, we use SAXS to investigate the

mesoscopic structure of semi-crystalline polymer films of linear low density polyethy-

lene (LLDPE), a grade of PE. Semi-crystalline polymers comprise of a microstructure

wherein the polymer chains can organize into crystalline and noncrystalline domains.

The crystalline domains consist of tightly packed polymer chains that have become

regularly ordered to form lamellae while amorphous domains are formed from loose

disordered arrangements of the polymer chains. Consequently, the electron density

in crystalline domains ρc is greater than ρa, the electron density in the amorphous

domains.

The three dimensional Fourier transform of the electron density distribution within

the scattering volume is captured by the X-Ray detector plate in the form of a two

dimensional projection i.e. a SAXS pattern. In the specific case of a semi-crystalline

microstructure the electron density distribution varies spatially between ρc and ρa.

A single SAXS pattern therefore provides an average description of all the spatial

arrangements of crystalline and amorphous domains within the scattering volume at

that instant of time. The time series data required for the application of the MKS

homogenization approach are image sequences of such SAXS patterns obtained while

simultaneously recording the stress and strain data of the individual specimens during

uniaxial tensile stretching. The dataset therefore provides insight into the evolution

of the semi-crystalline microstructure at the mesoscale for different LLDPEs under

uniaxially applied stress and strain.

4.4.2 Materials and Methods

Melt blown films of two LLDPE polymers, henceforth referred to as LLDPE1 and

LLDPE2 were supplied by ExxonMobil Chemical Company (EMCC). Both the LLD-

PEs were statistical copolymers of ethylene and hexene, where the hexene comonomer
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Polymer Film Label BUR Thickness (µm) Images
6*LLDPE1 LLDPE1.1a 2.5 20 182

LLDPE1.1b 2.5 30 191
LLDPE1.1c 2.5 75 195
LLDPE1.2a 3 20 191
LLDPE1.2b 3 30 195
LLDPE1.2c 3 75 191

6*LLDPE2 LLDPE2.1a 2.5 20 191
LLDPE2.1b 2.5 30 195
LLDPE2.1c 2.5 75 61
LLDPE2.2a 3 20 227
LLDPE2.2b 3 30 199
LLDPE2.2c 3 75 206

Table 2: Labeling of tensile specimens made from blown films of the two LLDPE
polymers.

was incorporated along the backbone chain in the form of butyl short chain branching

(SCB). The densities for LLDPE1 and LLDPE2 were 0.912 g/cc and 0.923 g/cc. The

density variation between the two polymers arose from the differing levels of SCB in-

corporation. The melt flow indices for each of the polymers was 1.0 (ASTM-D1238)

and the molecular weight distributions for these LLDPEs were also similar. Both

polymers were converted into films by the method of film blowing into two series of

blown films. The first series of films had a blow up ratio (BUR) of 2.5 while the second

series had a BUR of 3. The BUR is a standard processing parameter which describes

the manufacture of blown films. Within each series, three films were fabricated with

average thicknesses of 20µm, 30µm and 75µm, thereby totaling twelve films. The

labeling scheme followed in the current work to describe tensile specimens for in-situ

testing is described in Table 2

SAXS experiments were performed at beamline 12-IDC of the Advanced Photon

Source (APS) at the Argonne National Laboratory (ANL). In these experiments, the

X-ray beam had an energy of 12 keV (i.e., a wavelength of 1.0332Å) and the beam

dimensions were 200 µm x 200 µm. X-rays scattered by the LLDPE film specimens

were detected by a MAR CCD detector situated at a distance of 2426 mm from the
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LLDPE specimen. The detector pixel size was 175 µm. A fixed exposure time of

0.1 seconds was utilised while taking SAXS snapshots. SAXS patterns were collected

every 3 seconds. This time interval was determined based on the minimum detector

readout time per pattern. A portable tensile stage made by Linkam Scientific Instru-

ments, was utilised for the tensile measurements. The Linkam stage was operated at

a tensile deformation rate of 25.4 mm per minute. The collection of SAXS data and

deformation data was synchronized such that the first SAXS pattern in any of the

image sequences was always obtained from an unstrained pristine specimen at t0.

4.4.3 Data Processing

Prior to analysis, the contrast X-ray scattering images was enhance by taking the log

of the intensity. In order to normalize the difference in intensity due to film thickness,

each of the images were normalized by their mean intensity value.

PCA was done on all 2224 images from the 12 samples. The PC scores as well

as the percent variance as a function of the number of PCs is shown in Fig. 29. In

the image on the top in Fig. 29, the microstructure evolution of the 12 samples is

represented by the process streamlines (µj[k, n] as a function of time), each indicated

by different colors in the image on the bottom.

4.4.4 Model Selection, Calibration and Validation

The results from the leave one sample out cross-validation process can be found on

the top image in Fig. 30. It was found that as the number of PCs increased, the

mean predicted MSE value decreased. When K is small the mean predicted MSE

value decreases as P increases, but this tread reverses as the K gets large. In general

the value of P had less affect on the predicted MSE value as the number of PCs

increased. The model with the lowest mean predicted MSE value was found to have

P = 1 and K = 20 and had a value of 6.8. The general trend indicates that the

model accuracy would continue as the number of PCs increases but with diminishing
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Figure 28: An example of the typical evolution in 2D SAXS patterns with increasing
strain for a tensile specimen of LLDPE2.2a. Strain is applied in the vertical direction.
The numbers indicate the SAXS pattern number; an interval of 3 seconds between
consecutive patterns is strictly maintained. Every tenth image is displayed for clar-
ity. The intensity is log scaled to highlight the characteristic features in the SAXS
evolution with strain
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Figure 29: Principal component scores for X-ray scattering images from the 12
different samples and there percentage of the variance captured as a function of the
number principal components.
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returns and higher computational costs. The bottom images in Fig. 30 qualitatively

show that the predictions for PCs 1 and 2 improve as the total number of PCs K

increases.

In order to demonstrate the utility of this method, the models with the maximum

and minimum predicted MSE values found during the cross-validation process for

P = 1 and K = 2 are used for prediction. Using the predicted low dimensional

microstructure descriptors, a low rank approximate of the X-ray scattering images

was create (as shown in Eq. (49)). The model used to predict sample LLDPE1.2b

had the lowest predicted MSE value of 2.11. Fig. 31 shows the actual final image and

the final predicted low rank image. The model used to predict sample LLDPE2.2b

had a predicted MSE value of 19.9. The similar results can be found in Fig 32. The

predictions from both models retain the relevant scattering information.

4.5 Conclusion

In this paper, an extension of the MKS framework to process-structure homogeniza-

tion linkages using Time Series Multivariate Adaptive Regression Splines was pre-

sented. The process-structure linkage was generated using a data driven approach

to calibrate non-linear relationships between low dimensional microstructure in PCA

space containing non-linear functions, and the approach was validated by predicting

a low rank representation of the final step of Small Angle X-ray Diffraction data.

This extensions allows for the complete process-structure-property homogenization

linkages to be created which can be used to solve inverse materials design problems

and expedite the development of new materials.
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Figure 30: Log of the mean predicted MSE values created using leave one sample
out cross-validation as a function of the autoregressive order P and total number
of Principal components K (above). Mean predicted MSE values for PCs 1 and 3
decrease as the number of the total number of principal components K increases
(below).

80



0.95
(a)
b

0.95
(b)
b

Figure 31: Predicted and actual principal component scores for sample LLDPE1.2b
(above). The experimental image (bottom left) and the predicted image (bottom
right). The mean squared error value over the predicted principal component scores
had a value 2.11.
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Figure 32: Predicted and actual principal component scores for sample LLDPE2.2b
(above). The experimental image (bottom left) and the predicted image (bottom
right). The mean squared error value over the predicted principal component scores
had a value 19.9.
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CHAPTER V

MICROSTRUCTURE-BASED KNOWLEDGE SYSTEMS

FOR CAPTURING PROCESS-STRUCTURE EVOLUTION

LINKAGES

5.1 Introduction

Customized materials design (including the design of a manufacturing process route)

resulting in the combination of properties desired for a specific application is a highly

challenging inverse problem, owing mainly to the extremely large parameter space

involved in defining the hierarchical internal structure of the material. However,

this endeavor has great potential for impacting virtually all emerging technologies

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 150], with significant economic consequences. The

central impediment comes from the need to consider the relevant details of the hi-

erarchical internal structure (spanning a multitude of length scales) that control the

properties of interest to a specific application. Additionally, a diverse range of coupled

physical phenomena occur at different timescales at each of the different length scales.

Therefore, one is generally daunted by the enormous difficulty involved in tailoring

the material structure to yield desired combinations of properties or performance

characteristics.

Historically, and mainly because of the difficulties mentioned above, materials

development efforts have relied largely on experimentation. Consequently, many of

the efforts aimed at designing and developing new/improved materials have incurred

significant cost and time. Recent advances in physics-based modeling of multiscale

materials phenomena [151, 152, 153, 154, 155, 156, 120, 157, 23, 158] have raised the

exciting possibility that the vast design space for experimentation can be constrained
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to a significant degree by embracing in-silico simulations and explorations. In other

words, there is a tremendous potential for significant reductions in cost and time

incurred in materials development effort if one could judiciously utilize multiscale

materials modeling and simulation tools in combination with a reduced number of

experiments.

The central impediments associated with the effective utilization of physics-based

multiscale materials models in the materials development include: path dependent

microstructure evolutions that depend on initial conditions, non-unique parameter se-

lection for coupling multiscale models, approximations in microstructure representa-

tion, material property dependence on extreme values of microstructure distributions,

large optimization space, metastablity of microstructure during use, and uncertainty

in data, models and model parameters [120, 69]. An important strategy in address-

ing these impediments involves the formulation and utilization of robust surrogate

models (also called metamodels or emulators) for computationally efficient commu-

nication of critical information between well separated structure/length/time scales.

Such low-dimensional, but sufficiently accurate, models present a computationally

viable approach for exploring efficiently the extremely large materials design space.

In the context of hierarchical materials (with details of the material structure

spanning multiple well-separated scales) surrogate models are needed to exchange high

value information in both directions between the scales. Depending on the direction of

information flow, the models can be classified as homogenization (information flowing

from lower scales to higher scales) or localization (information flowing from higher

scales to lower scales) relationships. It should be noted that localization linkages

are significantly more difficult to establish compared to the homogenization linkages;

indeed the latter are implicitly embedded within the former and can be recovered

from them when needed.
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5.2 Review of Homogenization and Localization Approaches

Theories for predicting the properties of composite materials go as far back as 1873,

with Maxwell predicting an effective conductivity for a region of a materials with

dilute inhomogeneities through a mean-field approximation [159, 160, 161]. The sim-

plest, and most commonly used, homogenization methods for mechanical properties

were developed by Voigt and Reuss [162, 163], and provide ”elementary” bounds for

the estimates of the effective properties. These calculations typically involve simple

volume-averaging of the properties at the microscale. The bounds obtained in this

approach also correspond to the correct effective values for highly specialized mi-

crostructures. For example, the upper bounds obtained in these approaches typically

correspond to microstructures where the microscale constituents have uniform shape,

and are continuous and perfectly aligned along a loading direction (e.g., unidirec-

tional, straight, and continuous fibers).

Hill and Hashin introduced the concept of a Representative Volume Element

(RVE) [94, 95] which can be defined as a statistically homogeneous subvolume where

the length scale associated with the local perturbation in material properties is suf-

ficiently small compared to the length scale of the subvolume (typically referred as

”well-separated” length scales). With this definition, a mean-field approximation can

be used to assign an effective property to a RVE. It can be shown that good estimates

for a broad class of effective properties associated with an RVE can be expressed in

the following generalized form [94]:

Peff =
〈
A(x)P (x)

〉
(54)

where Peff denotes the effective property,
〈〉

denotes ensemble average (also equal to

volume average by virtue of the ergodic assumption), and A(x) is a suitably defined

tensor operator that depends on the spatial location x in the RVE. The central chal-

lenge of this theory lies in the computation of the spatially-varying tensor operator.
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While the theory described above emerged in the context of mechanical prop-

erties, it has also been successfully applied to material properties such as thermo-

electric, piezoelectric, diffusion, and conductivity for composite materials [20]. A

large variety of approaches have been built on this foundational framework, and

have been employed successfully in addressing practical problems of interest in com-

posite material systems. Hill developed the self-consistent method which employs

Eshelby’s solution to ellipsoidal inclusions in an infinite medium to find an approx-

imate estimate of the effective properties [164, 165]. An improved generalized self-

consistent method emerged from the work of Hashin, Shtrikman, Christensen and

Lo [95, 166, 167, 168, 169], which allows for more complex geometric shapes of the

reinforcement phase. A good overall treatment of such approaches for homogeniza-

tion theory or estimates can be found in the textbook by Qu and Cherkaoui [170] as

well as the report by Bohm [160]. Further advanced theories of homogenization were

established by Willis [171], and subsequently by Ponte-Castanada [172].

In a completely different approach, advanced composite theories were developed

to specifically take into account the rich details of the material microstructure. These

approaches utilized the formalism of n-point spatial correlations to quantify the de-

tails of the material microstructure together with the concept of Green’s function

to estimate the effective property of interest [99, 100, 101, 102, 103, 104, 105]. An

overview of this more sophisticated approach for composite theories can be found in

the book by Milton [20]. One of the earliest demonstration of this approach comes

from Brown, who used a series expansions of a localization tensor to predict the

electrical conductivity of a 2-phase material [96]. More rigorous applications of this

approach can be found in the work of Torquato and co-workers [173, 174].

The main limitation of the approach described above is that the Green’s func-

tions needed to implement the method are only available for cases involving highly
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Figure 33: Generalized MKS homogenization workflow for structure-property link-
ages [2].

idealized and simplified physics (i.e., material constitutive laws). The recently for-

mulated Materials Knowledge Systems framework (MKS) addresses this critical gap

by advancing a data-driven approach [23, 24, 25, 27, 3].

5.3 Homogenization and Localization with MKS

MKS homogenization and localization linkages are created by merging concepts from

the physics-based statistical continuum theories developed by Kroner [97, 98], ma-

chine learning [123, 124, 125] and digital signal processing [122]. A generalized work-

flow for establishing the homogenization linkage (e.g., structure-property linkage) is

shown in Fig. 33. Broadly, this worflow includes a calibration step and a validation

step. More specifically, this data-driven approach captures the pertinent microstruc-

ture features through n-point spatial correlations and employs dimensionality reduc-

tion techniques to create low-dimensional microstructure descriptors [109, 110, 113].

Linkages between effective properties and these low dimensional descriptors are then

created using regression techniques [22, 2, 33].
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The MKS localization linkages are expressed as a series, where each term involves

convolutions of physics-capturing kernels (based on Green’s functions) with hierar-

chical microstructure descriptors. These kernels (referred to as influence functions)

capture and organize the governing physics as convolution operators that are inde-

pendent of the spatial arrangements of the local states in the material microstructure.

Therefore, in the MKS localization approach, these kernels are calibrated with results

produced using numerical tools (e.g., finite element models).

It is emphasized here that once the influence kernels in the MKS linkages are

calibrated and validated, they can be used to predict the local responses for new

microstructures at very minimal computational expense. Therefore, this approach

is of particular value when one needs to explore a very large number of potential

microstructures. It should be noted that the design of multiscale material systems for

optimized performance is expected to require a consideration of a very large number of

potential microstructures. As a simple illustration, let us assume that the specification

of an RVE at any selected material structure scale would require a minimum of 8000

(i.e. 20 X 20 X 20) spatial cells or voxels. Further assume that the specific material

system being explored allows for placement of only ten distinct potential local states

(could be based on differences in thermodynamic phases and/or chemical composition

and/or defect densities and/or local orientation attributes such as the crystal lattice

orientation). Even with such highly conservative estimates, the number of different

RVEs that one can imagine producing in a comprehensive materials design exploration

is 108000. While an exhaust search of the structure space is impractical, the subspaces

explored during optimization are also extremely large. An efficient exploration of

such large design spaces demands innovative new approaches.

Prior effort in MKS localization was largely focused on steady state structure-

property localization linkages [25, 24, 27, 23], with the exception of one prior study

exploring the time evolution of the microstructure field [26]. Previous studies have
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Figure 34: Generalized MKS Localization workflow for structure-property linkage at
the meso-scale [3].

shown that if the local states are discrete, influence coefficients can be calibrated

with a small number of simulations and then used to predict the local response of

microstructures with any new spatial configuration of the local states [25, 24]. Similar

to Green’s functions, the MKS localization kernels depend on the boundary conditions

and physical constants that govern the constitutive behavior of the local states present

in the material system. It has been shown that the influence kernels can be suitably

parametrized to include such dependencies (i.e., interpolation between sets of kernels

can provide remarkably accurate predictions for new conditions [3]). A generalized

MKS localization workflow, including both calibration and validation steps, can be

found in Fig. 34. It is noted here that the workflows presented in Fig. 33 and 34

are highly generalized, and can be applied broadly to a range of material systems

experiencing a range of multiscale materials phenomenon.

A schematic illustration of a multiscale simulation using the MKS framework is

shown in Fig. 35. This chain of models passes homogenization information from

the lower length scales to higher lengths. The thermodynamic model computes ther-

modynamic quantities that define the phase field model parameters. In turn the

phase field model predicts the microstructure as a result of processing conditions.
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Figure 35: One instance of a multiscale simulation covering multiple length and
time scales. The homogenization information is passed to models at higher length
scales, while the localization information is passed to models at lower length scales.
Sufficiently accurate and computationally cheap surrogate models created using the
MKS framework serve as replacements for the models which use the microstructure
(i.e., mechanical and phase field models) to speed up exploration for a new material.

The effective modulus of the microstructure is found using the mechanical model (e.g

finite element method), which is used in the design model for a component. In the

model chain localization information is also passed from the higher length scales to

the lower length scales. Using a microstructure and the applied stress and/or tem-

perature provided by the design model, the mechanical model computes local stress

and strain fields. These local fields provide information about the free energy density

to the phase field model for microstructure evolution which in turn invalidates ther-

modynamic calculations from the thermodynamic model. The current approaches for

multiscale simulations based on numerical approaches such as finite element method

or the phase-field method are not ideally suited for such bi-directional explorations

due to their high computation costs. In the MKS framework, computationally cheap

and sufficiently accurate surrogate models will serve as surrogates, and can greatly

expedite this process.
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Although most of the previous work in the MKS framework has focused on the

mesoscale [25, 24, 27, 23, 22, 2, 33], the approach can indeed be extended to other

length and time scales involved in multiscale materials phenomenon as long as the

phenomena involved are well separated and the heterogeneity at each scale is statisti-

cally homogeneous or weakly stationary [21]. Although some preliminary work with

MD simulations has been reported [121, 175], much additional work is still needed to

further refine and demonstrate the details of such implementations.

The current effort is aimed at the extension and application of the MKS approach

to include transient process-structure evolution localization linkages. In general, the

process-structure evolution linkages are significantly harder to establish compared

to the structure-property linkages, because of the need to explicitly account for the

time evolution of the important field quantities (in addition to their spatial distri-

butions), many of which demand continuous descriptions. Consequently, there cur-

rently exist only a few reports in literature describing efforts aimed at capturing

the salient process-structure evolution metamodels for multiscale materials phenom-

ena. One area that has received a lot of attention in prior literature is the evolu-

tion of crystallographic texture in deformation processing of polycrystalline metals

[176, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. However, in this set of applications,

all the attention is generally focused on capturing the salient details of the time evo-

lution, while ignoring or grossly simplifying the spatial distribution of the important

field variables involved. More recently, there have been a limited number of efforts

aimed at mining low-dimensional process-structure evolution linkages from results

accumulated in phase-field simulations [177, 178, 179, 158]. In these prior applica-

tions, gross simplifications were made by limiting the set of initial microstructures,

the microstructure descriptors or the local states allowed in the microstructure.

In this paper, we extend the MKS localization framework to allow efficient capture

of the process-structure evolution localization linkages. Indeed, this extension when
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suitably combined with the existing MKS framework has the potential to facilitate

a common, consistent, broadly applicable, framework for casting all of the relevant

process-structure-property (PSP) linkages in a selected class of materials. A second

major thrust of this paper is the derivation of the MKS framework using spectral

representations for some of the main functions (kernels) involved in these linkages.

The novel protocols described above are demonstrated in this paper through a specific

case study involving the extraction of process-structure evolution linkages embedded

in the simulation results produced by a selected phase-field model.

5.4 Generalized MKS Framework for Process-Structure Link-
ages

The development of the generalized MKS framework for process-structure linkages

will be presented here using the Cahn-Hilliard model as an example. However, the

generalized final expression formulated here is broadly applicable to various other

microstructure evolution models. The Cahn-Hilliard description of microstructure

evolution can be expressed as [180]

∂φ(x, t)

∂t
= D∇2

([
φ(x, t)(1− φ(x, t)2))

]
+ γ∇2φ(x, t)

)
(55)

In Eq. (55), φ(x, t) is an order parameter used to represent the concentration field

at location x and time t,
√
γ represents the interface width, and D is the diffusivity.

Note also that a double well potential with minima at -1 and 1 has been used in Eq.

(55) for the free energy term [66, 67].

The theoretical framework of MKS is built on perturbation expansions. For the

present case, we therefore start by expressing the concentration field φ(x, t) in terms

of a reference quantity φ̄ (constant in both space and time) and a local perturbation

φ′(x, t) from that reference as

φ(x, t) = φ̄+ φ′(x, t) (56)
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Introducing Eq. (56) into Eq. (55) results in the following differential equation.

∂φ′

∂t
−D∇2φ′ = D∇2

(
γ∇2φ′ −

[
3φ′φ̄2 + 3φ′2φ̄− φ′3

])
= D∇2

(
γ∇2φ′ + Ψ(x, t)

) (57)

where

ψ(x, t) = φ′3 − 3φ′φ̄2 − 3φ′2φ̄ (58)

We can use a Green’s function approach to find the solution to Eq. (57) where

∂G(x− x′, t− t′)
∂t

−D∇2
xG(x− x′, t− t′) = δ(x− x′, t− t′) (59)

and with a suitable change of variables we have

φ′(x, t) = −
∫
V

G(r, t)φ′(x− r, 0)dr+∫
T

∫
V

G(r, τ)D∇2
r

(
γ∇2

rφ
′(x− r, t− τ) + ψ(x− r, t− τ)

)
drdτ

(60)

In Eq. (60), φ′(x, 0) is the initial value of the perturbed concentration. Assuming

periodic boundary conditions, the operators ∇r can be moved from concentration

terms to the Green’s functions.

φ′(x, t) = −
∫
V

G(r, t)φ′(x− r, 0)dr+∫
T

∫
V

Dγ∇4
rG(r, τ)φ′(x− r, t− τ) +D∇2

rG(r, τ)ψ(x− r, t− τ)drdτ

(61)

Recursive substitution of φ′(x, t) into equation (61) produces a series (called the weak

contrast expansion) that can be used to compute the perturbed concentration field

[98, 97, 174, 21].

φ′(x, t) = −
∫
V

[
1−

∫
T

∫
V

G̃(r, r′, t, τ)dr′dτ
]
G(r, t)φ′(x− r, 0)dr + ... (62)

with

G̃(r, r′, t, τ) = D∇2
r

[
∇2

rG(r′, τ)γ − 3φ̄2G(r′, τ)
]

(63)

The higher order terms in Eq. (62) (i.e., the terms denoted by ...) will be discussed

later (see the description near Eq. (68)).
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Simplified analytical solutions for Eqs. (62) and (63) are very difficult and de-

mand highly sophisticated approaches to handle the convergences of the terms in

the series [181, 102]. There have also been numerous approaches utilizing numerical

iterative schemes to solve the same equations [182, 183, 184, 185, 186, 187]. The nu-

merical approaches generally demand significant computational resources because of

the highly nonlinear expressions embedded in Eqs. (62) and (63). More importantly,

most conventional numerical approaches do not facilitate learning. In other words,

when the equations are solved for one specific set of inputs there is no established

formalism for transferring the knowledge gained in the process to the next application

of the same set of equations for a different set of inputs. This is precisely where data

science approaches, such as the MKS approach, bring many potential benefits. In

the data science approach, we recognize that each term in the series is essentially a

convolution, where the kernel is completely independent of the topological details of

the material microstructure. Suitable algorithms are then designed and employed to

efficiently learn these kernels from previously accumulated results. In many ways, the

calibrated MKS localization linkages take full advantage of the known physics of the

phenomena, and supplement only the mathematically intractable components with

data science approaches, where they exhibit a decisive advantage.

The MKS kernels facilitate learning and transfer of knowledge to a new set of

microstructure inputs. In order to accomplish this, Eqs. (62) and (63) need to be

reformulated using the concepts of microstructure function and local states [107, 188].

The local state captures all the attributes (thermodynamic state variables) needed

to identify the physical properties to be assigned to the spatiotemporal location of

interest in the material internal structure. In the problem described here, either the

concentration value or the perturbed concentration value (after selecting a reference

concentration value) can serve as local state variables. The local state will be denoted

as h. The set of all values that h can take is denoted as the local state space, H. The
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main distinction between h and φ′ (or φ) is that the later is a specific value assigned

to a specific spatiotemporal location, while the former denotes any value that could

have been assigned to the later.

The introduction of the concept of the local state now allows us to describe a

microstructure function m(h, x, t) as the probability density associated with finding

the local state h at spatial position x at time t. The expectation value obtained using

this probability density distribution (on the local state space) should be taken as the

specific value assigned in the fully deterministic framework described earlier. In other

words, for the fully deterministic case, one could write m(h, x, t) = δ(h − φ′(x, t)).

For the more general case, the definitions introduced above lead to the following

mathematical statements ∫
H

m(h, x, t)dh = 1 (64)

φ′(x, t) =

∫
H

hm(h, x, t)dh (65)

The introduction of the microstructure function as a probability density function

brings the added benefit that it maps complex descriptions of local state (potentially

could be a combination of several scalar and tensor thermodynamic state variables)

into a continuous scalar-valued function that lends itself naturally to spectral repre-

sentations [16, 17, 18, 19]. Extending the treatment above to the term containing the

Green’s function in Eq. (62) allows us to define an influence function or localization

kernel as

α(h, r, t) = −h
[
1−

∫
T

∫
V

G̃(r, r′, t, τ)dr′dτ
]
G(r, t) (66)

Recasting Eq. (62) with the terms defined in Eq. (65) and (66) takes the following

form.

φ′(x, t) =

∫
V

∫
H

α(h, r, t)m(h, x− r, 0)dhdr + ... (67)

The derivation of Eq. (67) is a key step in the formulation of the MKS approach

for the process-structure evolution localization linkages sought in this work. The
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main benefit of the form of Eq. (67) lies in the fact that α(h, r, t) serves as a con-

volution kernel capturing all of the relevant physics in the problem, and operates

on the initial microstructure function m(h, x, 0). Even more importantly, when the

series is expanded properly, the localization kernel is completely independent of the

microstructure function m(h, x, 0). Furthermore, Eq. (67) is the exact analog of the

structure-property localization linkages established previously in the MKS framework

[23, 24, 25, 27, 3]. Therefore, the extension presented here now makes it possible to

explore the complete set of process-structure-property linkages in a consistent MKS

framework in both space and time.

Because of the specific way in which Eq. (67) was derived, it is relatively easy to

write the additional terms in the series expansion. For example, the second term in

this expansion would be expressed as

∫
H

∫
H

∫
V

∫
V

∫
T

α(h, h′, r, r′, t, t′)m(h, x− r, 0)m(h′, x− r′, 0)dhdh′drdr′dt′ (68)

Therefore, another way to interpret the series expansion in Eq. (67) is to recognize

that each term in the series captures the contribution arising from a specific arrange-

ment of the local microstructure in the neighborhood of the spatial voxel of interest

as a function of time.

The next step in the practical implementation of the MKS framework is to trans-

form Eq. (67) into a discrete representation. In other words, the functions φ′(x, t),

α(h, x, t) and m(h, x, t) need to be discretized. Following notations and conventions

employed in signal processing [189, 190], we will use round brackets to represent

variables with continuous domains and square brackets to represent variables with

discrete domains.

The discrete version of φ′(x, t) is denoted as ψ[s, n]; these are formally related to

each other as

1

∆x∆t

∫
s

∫
n

φ′(x, t)dxdt = ψ[s, n] (69)
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In Eq. (69), s and n enumerate uniformly partitioned intervals that fully span the

continuous domains of space V and time T , respectively, and ∆x and ∆t denote

appropriate measures of the intervals. Therefore, the discrete version of φ′(x, t) es-

sentially captures the averaged values within the uniformly subdivided intervals in

space within the time step n.

5.5 Discretization Methods for Local State Space

Functions α(h, x, t) and m(h, x, t) exhibit a dependence on the local state variable, in

addition to the spatial and temporal variables. The spatial and temporal variables are

discretized using the same method outlined in Eq. (69), but there are two potential

strategies to deal with the discretization of these functions with respect to the local

state variable. The simplest approach is to discretize the local state space H using

triangle or hat basis functions Λ(h− l) to divide the local state space into intervals.

The hat basis functions are defined in Eq. (70).

Λ(h− l) = max

(
1−

∣∣∣∣∣h(L− 1)

H
− Hl

L− 1

∣∣∣∣∣, 0
)

(70)

In Eq. (19), H and h maintain their definitions as the local state and local state space

variable respectively, L is the total number of hat basis functions used to span the

local state space and l enumerates the hat functions. The hat functions are placed

along the local state space such that the maximum and minimum values of the local

state space domain fall on the peak values of the hat functions associated with the

largest and smallest values of l. An example of these hat functions with L = 3 and

h ∈ [0, 1] is found in Fig. 36. Using this method to position the hat functions in the

local state space ensures the sum of all hat functions contained within the local state

space sum to 1, and that a summation of the hat functions times the microstructure

function returns the original microstructure function.
L−1∑
l=0

Λ(h− l) = 1;h ∈ H (71)
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Figure 36: Three hat basis functions Λ used to discretize the local state space H.
This method is referred to as Primitive basis functions.

L−1∑
l=0

Λ(h− l)m(h, x, t) = m(h, x, t) (72)

In previous work [26], this approach has been referred to as primitive binning

using the Primitive basis functions [23, 24, 25, 27, 3] leading to

1

∆x∆t

∫
H

∫
s

∫
n

Λ(h− l)m(h, x, t)dxdtdh = m[l, s, n] (73)

1

∆x∆t

∫
H

∫
s

∫
n

Λ(h− l)α(h, x, t)dxdtdh = α[l, s, n] (74)

where l now enumerates the number of basis functions used to represent the local state

variable h. This primitive binning approach results in the MKS formulation that is

consistent with most of the prior studies [23, 24, 25, 27, 3], where it is expressed as

ψ[s, n] =
S−1∑
r=0

L−1∑
l=0

α[l, r, n]m[l, s− r, 0] + ... (75)

Alternatively, the functions on the local state space can be represented to adequate

accuracy using highly efficient orthogonal basis functions. For example, it is well

known that orthogonal functions developed through classical Sturm-Liouville theory

can be used as basis functions in many applications. Using such basis orthogonal
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functions, one can establish representations such as the ones shown below for an

arbitrary function [191, 192, 193, 194]:

f(h) =
∞∑

l=−∞

clξl(h) (76)

1

Nl

∫ b

a

ξl′(h)ξl(h)w(h)dh = δll′ (77)

In Eq. (77) ξl is the lth order orthogonal basis function, w(h) is the weighting function,

δll′ is the Kronecker delta and Nl is a normalization constant that depends on the

order and type of the basis functions. The most important feature of Eq. (76) is that

the set of coefficients cl now provide a discrete representation of the function f(h).

This approach is particularly attractive when only a small number of cl dominate

the representation, but requires that the local state domain H is mapped into the

interval over which the basis function is orthogonal and orthogonality relationship

has a weighting function equal to one, i.e., w(h) = 1. Two potential orthogonal bases

that meet these criteria are Legendre polynomials and Fourier series [195, 196, 31].

Applying this discretization approach to capture the h dependence in functions

m(h, x, t) and α(h, x, t) in Eq. (67), by selecting orthogonal basis functions with

w(h) = 1 and mapping the local state space to the orthogonal domain leads to the

following discretized versions:

1

∆x∆t

∫
s

∫
n

m(h, x, t)dxdt =
L−1∑
l=0

m[l, s, n]ξl(h) (78)

1

∆x∆t

∫
s

∫
n

α(h, x, t)dxdt =
L−1∑
l=0

α[l, s, n]ξl(h) (79)

The introduction of these discretized representations into Eq. (67) produces the exact

same MKS formulation as shown previously in Eq. (80), but with a new interpretation

of the index l.

ψ[s, n] =
S−1∑
r=0

L−1∑
l=0

α[l, r, n]m[l, s− r, 0] + ... (80)
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In the remainder of this paper, we first demonstrate the viability of the extended

MKS framework presented above for process-structure evolution linkages. Further-

more, in conducting this case study, we will explore using the two approaches de-

scribed above for the discretization of the functions on the local state space for mul-

tiscaling in time by extending the length of time step n to match the time domain of

the simulation T through a specific case study.

5.6 Cahn-Hilliard Simulations and MKS Linkage Calibra-
tions

5.6.1 Simulation and MKS Linkage Details

The simulation data as well as the MKS localization linkages used in this case study

were generated using the Python library PyMKS [126]. A Cahn-Hilliard simulation

is used to generated data for the calibration of the MKS linkages and serves as a

reference to compare and validate their performance. The Cahn-Hilliard equation

presented earlier in Eq. (55) was solved using the optimized semi-implicit spectral

scheme with periodic boundary conditions described by Cheng and Rutenberg [62].

The parameter γ was set equal to 0.2, and the time step for the calibration dataset

was set equal to 10−2 sec. Two spatial domains with sizes of 100 X 100 and 300

X 300 were used to examine how the different methods scale for larger simulations.

The simulations and the MKS linkages were computed on a machine with 8 1.0 GHz

processors and 8 GB of memory.

In the present study, we focus on capturing process-microstructure localization

linkage in one large time step using the MKS framework. Note that this differs

from the approach used in the earlier study [26] where the time derivative of the

concentration was used as the output response field (the LHS of Eq. (80)) and it was

shown that once this linkage is established for one time step, it can be recursively

applied to march forward in time. In the present study we have used the concentration

at the end of 500 time steps (or one large time step) as the output response field.
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In this study, we explore both the discretization approaches described earlier for

the functions on the local state space. The approaches result in two different MKS

localization linkages that look alike in their mathematical forms. The linkage re-

ferred to as Legendre MKS linkage throughout the remainder of the paper uses the

discretization method outlined in Eq. (78) and Eq. (79) with Legendre polynomials

as the basis functions. The other linkage uses the discretization method outlined in

Eq. (73) and Eq. (74) and is referred to as the Primitive MKS linkage throughout

the remainder of this paper. Both models restrict the local state space domain to h ∈

[-1, 1].

5.6.2 First Order Influence Coefficients and Discrete Fourier Transforms

Only the first term in Eq. (80) is used in this work. In prior work [23, 24, 25, 27, 3],

it was shown that the first term is dominant for problems with low to moderate

contrast, which in turn controls the degree of heterogeneity of the response field. In

the present problem, this criterion is met within the 500 time steps of the simulation.

This results in significant computational advantages as the calibration of the first-

order MKS localization kernels can be done efficiently by taking advantage of discrete

Fourier transforms and the convolution theorem [34, 35]. This transformation leads

to

P [k, n] =
∑
l

β[l, k, n]M [l, k, 0] (81)

In Eq. (81) P [k, n], β[l, k, n] and M [l, k, 0] are the discrete Fourier transforms of

ψ[s, n], α[l, s, n] and m[l, s, n] for Eq. (80) respectively.

With the uncoupled spatial frequency representation shown in Eq. (81), the β

terms can be calibrated easily using multiple linear regression techniques using the

known values for P and M . The discretization used for the Primitive MKS linkage

(Eq. (73) and Eq. (74) is subject to the constraint that the discretized microstructure
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Figure 37: One instance of an initial microstructure (100 x 100) and its corresponding
microstructure after 500 small time steps, which were used to calibrate the influence
coefficients for MKS localization linkages using both the Legendre and the Primitive
basis functions.

function sums to one at any instance in space and time,

∑
l

m[l, s, n] = 1 (82)

therefore multiple linear regression with categorical variables as outlined in previous

studies is used [23, 24, 25, 27]. The discretized microstructure function in the Legendre

MKS linkage is not subject to the constraint shown in Eq. (82) and therefore standard

multiple linear regression is used.

5.6.3 Calibration Data

The first step in the calibration of MKS localization kernels is the generation of a

calibration dataset. For this purpose, Eq. (55) was numerically solved for 500 time

steps for 500 randomly generated initial concentration fields with values sampled from

a normal distributions. The mean values of the normal distribution were randomly

selected between [-0.5, 0.5] and standard deviations of 10−2. The concentration fields

at the beginning and the end of the 500 small time steps constitute the input and

output, respectively for the calibration of the MKS localization linkages. An example

of these fields is shown in Fig. 37.
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Figure 38: Root mean squared error (points) and standard deviation (line widths)
values of the predicted concentration fields found using 10-fold cross-validation of
MKS localization evolution-linkages using the Legendre and Primitive basis functions
to represent the microstructure function and influence function.

5.6.4 Selection of Local States and Calibration of Influence Coefficients

One of the main MKS parameters for either of the discretization methods is the

selection of the of total number of local states (or number of basis functions) L used

to describe the local state space. In the previous study it was shown that an increase

the in variable L can potentially lead to increased accuracy for small time steps at

the cost of making the MKS linkage computationally more expensive [26]. Therefore,

the minimum value of L that provides a sufficient level of accuracy is desired.

In order to explore the selection of L for both discretization methods with one

large step, the calibration ensemble of data was randomly split into two sets. One

set which will be referred to as the linkage selection dataset contains 320 (or 80%) of

the microstructures and remaining 80 (or 20%) of the microstructures will be referred

to as the linkage validation dataset. In the present work, the two MKS localization

linkages were calibrated using the linkage selection dataset while varying L between

2 and 15. In order to avoid over fitting the linkage for a given value of L, 10-fold
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Figure 39: Significant influence coefficients for the Primitive basis for with L equal
to 6. All other influence coefficients were less than 10−5.

cross-validation was used. This method randomly partitions the linkage selection

dataset into ten equally sized sub-datasets and calibrates the linkage ten times while

systematically leaving out each of the sub-datasets once. This method results in 10

calibrations for each value of L amounting to a total of 280 calibrations between the

two MKS localization linkages.

RMSE =

√√√√ 1

N

N−1∑
i=0

(φ[i]simulation − φ[i]prediction)2 (83)

In order to evaluate the accuracy of the linkages while varying L, the root mean

squared error (RMSE) was value computed over every voxel in the sub-datasets used

for each of the calibrations with reference to the Cahn-Hilliard simulation (as shown

in Eq. 83) and was averaged over the ten cross-validation scores. The averaged RMSE

values and their standard deviations are shown in Fig. 38.

The two MKS linkages exhibit a downward overall trend with increasing L. Large

and small oscillations were seen in the case of Primitive and Legendre MKS link-

ages respectively. In the Legendre MKS, it was also observed that the coefficients

of the even polynomials in the series were all orders of magnitude smaller than the

coefficients of odd polynomials. These observations suggest that the influence func-

tions for the Cahn-Hilliard in Eq. (66) are odd functions. For L greater than 3, the

Legendre MKS linkage consistently produced a lower RMSE values compared to the
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Figure 40: Significant influence coefficients for the Legendre basis with L equal to 6.
All other fields had maximum values of less than 10−2.

corresponding Primitive MKS linkage. It should also be noted that with the Primi-

tive basis, the dominant kernels are the ones associated with the important regions in

the local state space. With Legendre basis, we get a more organized descriptions of

the kernels with the higher-order terms representing the less important contributions,

in general, as one would expect for smooth decaying functions such as the influence

functions. Figure 38 shows that L = 6 provides sufficiently accurate low-cost linkages

that can be used to predict processing-structure evolution for the present case study.

The Primitive and Legendre MKS linkages were both calibrated using the entire

calibration dataset with the value of L set equal to 6. These two linkages are used

for the remainder of the case study. The discretized influence functions (referred to

as influence coefficients) for both linkages can be found on Fig. 39 and Fig. 40.

5.7 Microstructure Evolution Linkages for Cahn-Hilliard
Simulation

Both MKS linkages calibrated in this study were used to predict the microstructure

evolution of the same set of 250 initial concentration fields. The initial microstruc-

tures, one instance shown in Fig. 41, generated from normal distributions with mean

values randomly selected between [-0.1, 0.1] and standard deviations of 10−2 were

used as inputs into the Cahn-Hilliard simulation and the two MKS linkages. The

simulation numerically predicted each of the microstructures after 500 small time
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Figure 41: Initial microstructure (100 x 100) used as a common input for the Cahn-
Hilliard simulations as well as the MKS localization linkages with Primitive and Leg-
endre basis functions.

steps with an average run time of 1.33 seconds. The MKS linkages used the same ini-

tial inputs and the predicted microstructures equivalent to running the simulation for

500 small time steps, but with one large step. The average run time of the Primitive

and Legendre MKS linkages were 3.82 x 10−3 seconds and 4.94 x 10−3 seconds with

RMSE values of 5.68 x 10−2 and 3.36 x 10−2 respectively. An instance of the final

predicted microstructures for the MKS linkages and the simulation are compared in

Fig. 42.

One of the major advantages of using the MKS localization linkage is that the

learning in the form of the MKS influence coefficients (discretized kernels) can be

transferred to other initial microstructures that may be defined on larger spatial do-

mains. In other words, the same influence coefficients that are calibrated on a small

dataset can be used to predict the structure evolution for a much larger microstruc-

tures. This allows for the influence coefficients to be calibrated once and used to
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Figure 42: Predicted concentration fields by simulations using 500 small time steps
(left) as well as the concentration fields predicted by the two MKS localization linkages
using one large time step.

represent the processing-microstructure evolution for simulations with equal or larger

domains sizes. Because of the decaying nature of the discretized influence functions

in real space as shown in Fig. 39 and Fig. 40, the edges can be zero padded to expand

their domain size to match the domain of new initial microstructure. The influence

coefficients for both of the Primitive and the Legendre MKS linkages were scaled up

from a domain of size 100 by 100 to 300 by 300 using the method outlined by Landi

et al. [25].

A set of 250 initial microstructures were created using the same method as de-

scribed above, but on a larger spatial domain of 300 x 300, is shown in Fig. 43.

These microstructures were used as inputs to the same the Cahn-Hilliard simulations

and the MKS localization linkages and the final microstructures were predicted. The

average run time for the simulation using 500 time steps was 1.13 x 102 seconds.

Primitive and Legendre MKS linkages had run times of 3.54 x 10−2 seconds and 7.00

x 10−2 seconds, with RMSE values 7.10 x 10−2 and 4.00 x 10−2 respectively. The

predicted concentration fields are compared in Fig. 44.

As one should expect, the accuracy of the MKS linkages generally improves when

a larger number of terms in the series are retained (see Fig. 38). In practice, the level

of desired accuracy would be controlled by the application. However, it is important

to note that the MKS approach allows the user to establish the desired accuracy level

and make the necessary trade-offs between the accuracy and the effort involved.
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Figure 43: Initial large microstructure (300 x 300) used as a common input for the
Cahn-Hilliard simulations and the MKS localization linkages.

5.8 Conclusion

A new generalized MKS localization framework with two different discretization meth-

ods for the local state variables has been developed for formulating computationally

low-cost process-structure linkages which allow for temporal multiscaling. This frame-

work is quite general and allows compact representation of the influence functions (or

kernels) on the local state spaces. The overall framework was presented and demon-

strated using a Cahn-Hilliard microstructure evolution as a prime example.

Although the computational cost of the Primitive MKS linkage was slightly lower

than the Legendre MKS linkage, and the Legendre MKS linkage was more accurate

and showed more smooth decay of error with increasing number of terms in the

series. Both MKS localization linkages predicted the process-structure evolution for

the concentration fields three orders of magnitude faster than the simulation with a

small time step.

This case study suggests that MKS localization framework provides an alternate
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Figure 44: The concentration fields predicted by the numerical simulation with a
500 small time steps (left) as well as the concentration fields predicted by the MKS
localization linkages with one large time step using scaled up influence coefficients
from a domain size of 100 by 100 to 300 by 300 with Primitive and Legendre bases.

method to learn the underlying embedded physics in a numerical model. This form

of expression of the underlying physics as Green’s function based influence kernels

(as opposed to expression in the form of differential equations) may provide certain

computational advantages in rapid exploration of large spaces in process design to

attain desired or specified microstructures. This is especially the case for problems

where traditional numerical integration schemes have been difficult to optimize.

Overall, it was demonstrated that the MKS kernels extracted for the example

studied were indeed insensitive to the details of the initial microstructure (in other

words the same kernel can be applied to any initial microstructure in the selected

material system) and could be trivially expanded for applications to larger domain

sizes with comparable accuracy. The method described here has laid a strong foun-

dation for future developments addressing a broad range of materials systems with

richer microstructures and more complex governing physics.

109



REFERENCES

[1] CORE-Materials. CORE-Materials - A resource repository contains a large
number of open educational resources (OERs) in Materials Science and Engi-
neering. https://www.flickr.com/people/core-materials/, 2009. [Online;
accessed 6-April-2016].

[2] Akash Gupta, Ahmet Cecen, Sharad Goyal, Amarendra K Singh, and Surya R
Kalidindi. Structure–property linkages using a data science approach: Appli-
cation to a non-metallic inclusion/steel composite system. Acta Materialia,
91:239–254, 2015.

[3] Yuksel C Yabansu and Surya R Kalidindi. Representation and calibration of
elastic localization kernels for a broad class of cubic polycrystals. Acta Materi-
alia, 94:26–35, 2015.

[4] Charles Ward. Materials genome initiative for global competitiveness. In 23rd
Advanced Aerospace Materials and Processes (AeroMat) Conference and Expo-
sition. Asm, 2012.

[5] John Allison, Dan Backman, and Leo Christodoulou. Integrated computational
materials engineering: a new paradigm for the global materials profession. JOM,
58(11):25–27, 2006.

[6] National Science and Technology Council Executive Office of the President.
Materials genome initiative for global competitiveness, 2011.

[7] Materials Genome Initiative National Science and Technology Council Commit-
tee on Technology Subcommittee on the Materials Genome Initiative. Materials
genome initiative strategic plan, 2014.

[8] John Allison. Integrated computational materials engineering: A perspective on
progress and future steps. JOM Journal of the Minerals, Metals and Materials
Society, 63(4):15–18, 2011.

[9] Gregory B Olson. Designing a new material world. Science, 288(5468):993–998,
2000.

[10] National Research Council (US). Committee on Integrated Computational Ma-
terials Engineering. Integrated computational materials engineering: a transfor-
mational discipline for improved competitiveness and national security. National
Academies Press, 2008.

110

https://www.flickr.com/people/core-materials/


[11] Georg J Schmitz and Ulrich Prahl. Integrative computational materials engi-
neering: Concepts and applications of a modular simulation platform. John
Wiley & Sons, 2012.

[12] Lynne Robinson. Tms study charts a course to successful icme implementation,
2013.

[13] John E Allison. Integrated computational materials engineering (icme): A
transformational discipline for the global materials profession. Metals and Ma-
terials, page 223.

[14] A Study Organized by The Minerals, Metals & Materials Society. Inte-
grated computational materials engineering (icme): Implementing icme in the
aerospace, automotive, and maritime industries, 2013.

[15] Alan Anderson. Report to the president on ensuring american leadership in
advanced manufacturing. Executive Office of the President, 2011.

[16] Nicholas Young. An introduction to Hilbert space. Cambridge university press,
1988.

[17] Paul Richard Halmos, Paul Richard Halmos, Paul Richard Halmos,
Paul Richard Halmos, and Hungary Mathematician. Introduction to Hilbert
space and the theory of spectral multiplicity. Chelsea New York, 1957.

[18] Walter Rudin. Real and complex analysis. Tata McGraw-Hill Education, 1987.

[19] Gerald B Folland. Fourier analysis and its applications, volume 4. American
Mathematical Soc., 1992.

[20] Graeme W Milton. The theory of composites, volume 6. Cambridge University
Press, 2002.

[21] Brent L Adams, Surya Kalidindi, and David T Fullwood. Microstructure-
sensitive design for performance optimization. Butterworth-Heinemann, 2013.

[22] Surya R Kalidindi, Stephen R Niezgoda, and Ayman A Salem. Microstruc-
ture informatics using higher-order statistics and efficient data-mining proto-
cols. Jom, 63(4):34–41, 2011.

[23] Hamad F Al-Harbi, Giacomo Landi, and Surya R Kalidindi. Multi-scale mod-
eling of the elastic response of a structural component made from a composite
material using the materials knowledge system. Modelling and Simulation in
Materials Science and Engineering, 20(5):055001, 2012.

[24] Surya R Kalidindi, Stephen R Niezgoda, Giacomo Landi, Shraddha Vachhani,
and Tony Fast. A novel framework for building materials knowledge systems.
Computers, Materials, & Continua, 17(2):103–125, 2010.

111



[25] Giacomo Landi, Stephen R Niezgoda, and Surya R Kalidindi. Multi-scale
modeling of elastic response of three-dimensional voxel-based microstructure
datasets using novel dft-based knowledge systems. Acta Materialia, 58(7):2716–
2725, 2010.

[26] Tony Fast, Stephen R Niezgoda, and Surya R Kalidindi. A new framework
for computationally efficient structure–structure evolution linkages to facilitate
high-fidelity scale bridging in multi-scale materials models. Acta Materialia,
59(2):699–707, 2011.

[27] Yuksel C Yabansu, Dipen K Patel, and Surya R Kalidindi. Calibrated local-
ization relationships for elastic response of polycrystalline aggregates. Acta
Materialia, 81:151–160, 2014.

[28] SR Niezgoda, DT Fullwood, and SR Kalidindi. Delineation of the space of 2-
point correlations in a composite material system. Acta Materialia, 56(18):5285–
5292, 2008.

[29] David T Fullwood, Surya R Kalidindi, and Brent L Adams. Second-order
microstructure sensitive design using 2-point spatial correlations. In Electron
backscatter diffraction in materials science, pages 177–188. Springer, 2009.

[30] Stephen R Niezgoda, David M Turner, David T Fullwood, and Surya R Ka-
lidindi. Optimized structure based representative volume element sets reflecting
the ensemble-averaged 2-point statistics. Acta Materialia, 58(13):4432–4445,
2010.

[31] George B Arfken. Mathematical methods for physicists. Academic press, 2013.

[32] Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417, 1933.
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