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SUMMARY 

Appropriate access to healthcare services is important for preventing the spread of disease, 

reducing hospitalizations and emergency department use, and increasing quality of life. 

However, within the United States healthcare system, there exist many disparities in access 

to care. In this thesis, we aim to quantify and assess disparities in healthcare access, for 

informed decision making towards improving access. Compared to existing methods, our 

approach allows for local-level estimates, is data-rich, and is statistically rigorous. 

In Chapter 2 of this thesis, we focus on access to pediatric primary care services in seven 

states. We design an optimization model to match primary care need with supply while 

taking into consideration system constraints such as health insurance acceptance and 

maximum travel distance. Output of this model enables computation of census tract-level 

average distance children must travel to reach their primary care providers and average 

congestion children face to schedule visits with their providers. We perform statistical 

inference, both between and within states, to determine whether there are significant 

disparities in travel distance and congestion. 

In Chapter 3, we focus on primary care for non-elderly adults in Georgia and how it may 

be impacted by the Affordable Care Act (ACA). Specifically, we project the supply and 

need to primary care services starting from year 2013 through year 2025 under two 

scenarios: ACA implementation without Medicaid expansion and ACA implementation 

with expansion. Similar to Chapter 2, we use an optimization model to obtain census tract-

level estimates of availability and accessibility and test whether they significantly change 

by year 2025 due to ACA implementation or additional Medicaid expansion. We 



 xiv 

additionally evaluate the impact of two other policies intended to improve access: 

increasing the number of residency positions in Georgia and implementing a parity 

program so that more providers accept Medicaid insurance. 

In Chapter 4, we begin analysis of psychosocial services for Medicaid-insured children. 

Using Medicaid claims data for 34 states, we identify which providers are likely to treat 

Medicaid-insured children and their practice settings. We estimate per-provider and per-

state psychosocial service caseloads and compare across states, urbanicity/rurality, and 

provider specialties. 

Finally, in Chapter 5, we develop a modeling framework for one potential intervention to 

increase access to psychosocial services: collaboration between mental health providers 

and primary care providers. Our framework mimics providers’ making individual decisions 

on who they partner based on their unique preferences. We create this framework by 

extending congestion games into a setting in which players have their own private cost 

function for each resource and resources have their own capacities and preferences over 

the players. We construct a polynomial-time algorithm to find a Nash equilibrium for 

singleton games with non-decreasing cost functions under this setting and demonstrate our 

model for services to Medicaid-insured children in New York.  
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CHAPTER 1. INTRODUCTION 

Healthcare access has been on the national policy agenda since the 1967 Report of the 

National Advisory Commission on Health Manpower [1]. An Institute of Medicine (IOM) 

report states that disparities in access to care are "among this nation's most serious 

healthcare problems" [2]. Appropriate access can increase life expectancy and quality of 

life by diagnosing and treating health conditions early and by preventing the spread of 

disease. As of 2015, about 10% of Americans under 65 years of age have no health 

insurance and nearly 25% of Americans do not have a regular primary care provider [3]. 

Access can be characterized by multiple dimensions, namely availability, accessibility, 

accommodation, affordability, and acceptability. All are necessary to eliminate health 

disparities [4]. In this thesis, we focus on the first two dimensions: availability, defined as 

the opportunity patients have to choose among different providers of healthcare services, 

varying in the service quality and patient accommodation, and accessibility, defined as the 

time and/or distance barriers that patients experience in reaching their providers [5]. Spatial 

access, referring to availability and accessibility together [6-8], is critical to promote 

preventive care and wellness, and to reduce severe health outcomes. Lack of spatial access 

to healthcare can lead to higher costs, higher emergency outbreaks, and inconsistency in 

health treatments and outcomes [9-10]. Spatial access is particularly relevant when 

addressing healthcare disparities for the Medicaid-insured population because of the 

reduced network of providers accepting Medicaid-insured patients due to low 

reimbursement rates and the burden of the required paperwork [11-16]. 
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Several methods to measure spatial access exist including population-to-provider ratios, 

distance to nearest provider, gravity models, and two-step floating catchment area models 

[7, 12]. However, these methods do not consider providers’ maximum capacities and 

artificially limit where a patient can travel to receive care. They also cannot incorporate 

population groups’ differing insurance and mobility, characteristics that affect which 

providers a patient can potentially visit, when computing overall congestion. Instead, we 

use optimization modeling, as described in [13-14] to assign patients to providers. With 

this model, we can minimize overall travel distance while using constraints to limit the 

number of patients assigned to a provider and to incorporate patients’ travel distance and 

provider preferences. 

In the remaining chapters of this thesis, we describe the access model framework, apply it 

to different healthcare services, and identify systematic disparities in access across 

geographies or due to factors influencing access. In Chapter 2, we focus on pediatric 

primary care with comparisons made within and among seven states. In Chapter 3, we 

evaluate the impact of the Affordable Care Act (ACA) on access to adult primary care in 

Georgia between years 2013 and 2025 by projecting the supply and need of adult primary 

care visits under three scenarios: no ACA implementation, implementation without 

Medicaid expansion, and implementation with expansion. In Chapter 4, we provide a 

thorough analysis on the supply of psychosocial services available to Medicaid-insured 

children. Finally, in Chapter 5 we explore how integration of psychosocial services with 

primary care may affect access by introducing a congestion game-based modeling 

approach.  
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CHAPTER 2. QUANTIFYING DISPARITIES IN 

ACCESSIBILITY AND AVAILABILITY OF PEDIATRIC 

PRIMARY CARE ACROSS MULTIPLE STATES 

2.1 Introduction 

Access to preventive health care is a major determinant of health among children [17]. 

Along with social and environmental factors, appropriate access to primary care for 

children can result in fewer missed days of school, lower emergency room utilization to 

treat ambulatory sensitive conditions, and better lifelong health [18-19]. 

Despite these benefits, children enrolled in either state Medicaid programs or state 

Children’s Health Insurance Programs (CHIP) have historically received less primary care 

than children not eligible for public insurance [11, 20]. Reducing disparities and increasing 

access to individual-centered and family-centered care, including primary care for children, 

were identified as priorities for all federally funded insurance programs, including 

Medicaid and CHIP in the federal National Quality Strategy [21]. 

Existing research has focused on identifying factors associated with systematic disparities 

including demographics, socio-economics, healthcare infrastructure and/or environmental 

factors [13, 22-23]; geographic variations using GIS-supported provider data and 

population demographics [12, 24-29]; and national summaries using individual-level 

survey data [30-32]. While these existing studies provide the foundation for understanding 

disparities in healthcare access, managing access through targeted interventions and 

policies requires a leap from current research [33]. 
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The aim of this chapter is to understand differences in spatial access to pediatric primary 

across and within states. Similar to [4], for the purposes of this chapter, we define 

availability as providers’ patient volume or time available for healthcare delivery that 

patients would experience when seeking care and accessibility as the distance barriers that 

patients would experience in reaching their providers.  

Outcomes include quantification of systematic disparities of accessibility and availability 

measured at the census tract level accompanied by a systematic geographic analysis within- 

and between-states in order to suggest interventions and to identify communities in need 

for improvement of pediatric primary care access. The states piloted in this analysis include 

southeastern states (Georgia, Louisiana, Mississippi, North Carolina and Tennessee) and 

comparative states (California and Minnesota). The seven selected states vary significantly 

in implementation of Medicaid/CHIP programs, as well as in population size, population 

distribution, and demographics.  

Specific research questions include: 

• Are there systematic disparities in spatial access to pediatric primary care between- and 

within-states?  

• Are there systematic disparities in spatial access between publicly-insured and privately-

insured children?  

• Are there systematic disparities between children living in urban versus rural 

communities? 
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• Which communities are in need for improvement and which spatial access dimensions 

need to be targeted by policy makers? 

The approach to addressing these questions introduces a comprehensive framework for 

studying disparities in spatial access. The modeling approach is data “rich,” mathematically 

rigorous and computationally scalable, integrating large data and health policy in a 

systematic manner. As more data become available, the approach has the potential to 

provide even more specific information to target community or state-specific interventions. 

Material in this chapter has been published in final form at [34]. 

2.2 Methods 

2.2.1 Modelling Overview 

We estimate access by assigning patients and providers while accounting for the locations 

of each, the underlying need (using wellness visits by age as a proxy), patient trade-offs 

between distance and crowding, and some limits in the system.  This modeling approach 

has been found to be superior to catchment approaches, which underestimate access in 

dense areas [35] and to simple ratios of providers and population by area [14], which 

inaccurately portray access, especially at lower geographical granularity. The matching 

model also has the advantage over both catchment methods and simple ratios of accounting 

for specific types of barriers to access that are of significant concern in states with high 

poverty rates like the southeastern states, including the willingness of providers to accept 

Medicaid, and the limited transportation options of some participants.  

2.2.2 Data and Estimation Approach 
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2.2.2.1 Supply of Pediatric Primary Care 

The primary care supply consists of Family Medicine [36], Internal Medicine physicians 

[37], and General Pediatricians and Nurse Practitioners specializing in Pediatrics. 

Registered nurses and public health nurses are excluded. Providers’ practice location 

addresses are obtained from the 2013 National Plan and Provider Enumeration System 

(NPPES) [38]. A maximum provider caseload of approximately 2500 patients/year is 

assumed [39]. Caseloads of General Pediatricians and Pediatric Nurse Practitioners are 

assumed to be completely devoted to pediatric care while Family and General physicians 

are assumed to devote around 10% of their caseload. Sensitivity analysis examined other 

variations on these percentages.  

The 2009 MAX Medicaid claims data obtained from the Centers for Medicare and 

Medicaid Services [40] are used to determine what providers have seen Medicaid patients. 

We further used the approach in [13] to inform the constraints on provider Medicaid 

acceptance by considering the aggregated count of providers accepting Medicaid at the 

county level and using a sampling technique to specify whether a provider accepts 

Medicaid. 

2.2.2.2 Need for Pediatric Primary Care 

We focus on wellness visits, thus we apply the recommendations by the American 

Academy of Pediatrics [41] to calculate the type and frequency of wellness visits/year by 

age with an average number of visits/year equal to 8, 1.6, and 1 for 0-1, 1-5 and 6-18 age 

groups, respectively. The patient population is aggregated at the census tract level, using 

the 2010 SF2 100% census data and the 2012 American Community Survey data [42] to 
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compute the number of children in each census tract by age class along with information 

on poverty and ownership of cars, to estimate access to private transportation means.  

An estimation of the population of children at or below the minimum income-eligibility 

threshold for public coverage is derived using the cutoff thresholds published by CMS [43] 

(Table 1). We refer to this population as eligible to be publicly insured and those above the 

threshold as likely to be privately insured. We recognize the distinction is imperfect as 

some children may have both insurance types, some neither, and additional variations in 

coverage eligibility exist (e.g., medically-needy).  

Table 1. Medicaid/CHIP eligibility thresholds with respect to the Federal Poverty 

Level, April 2014 

 Eligibility 

 

Medicaid  
Ages 0-1 

Medicaid  
Ages 1-5 

Medicaid  
Ages 6-18 

Separate 
CHIP 

California 261% 261% 261% N/A 

Georgia 205% 149% 133% 247% 

Louisiana 212% 212% 212% 250% 

Minnesota 283% 283% 283% N/A 

Mississippi 194% 143% 133% 209% 

North Carolina 210% 210% 133% 211%(6-18) 

Tennessee 195% 142% 133% 250% 

 

We assume patients do not travel to excessively distant providers (i.e., more than 25 miles) 

as recommended by the Health Resources Services Administration and that those without 

private transportation in their household will travel a maximum distance of 10 miles [44]. 

Street-network distances are computed using the ArcGIS Network Analyst [45]. 

2.2.3 Matching Model 



 8 

For each of our seven selected states, we apply an optimization model similar to one 

introduced in [14] to estimate served need for pediatric primary care. This model matches 

the available supply and the population-based need of services under a series of access and 

system constraints. Decision variables represent the number of patients in each census tract 

of a given age class who are assigned to a specific provider, namely 𝑥𝑖𝑗𝑘
𝑀  and 𝑥𝑖𝑗𝑘

𝑂 , where 

index  𝑖 ∈ 𝑆 represents a census tract,  index  𝑗 ∈ 𝑃 represents a provider, index  𝑘 = 1,2,3 

denotes a specific age class, and superscripts M and O distinguish between children 

covered by public insurance and children covered by private insurance respectively. Table 

2 provides a summarized view of the set of parameters. We describe in detail the objective 

function and the constraints in the next two subsections. 

2.2.3.1 Objective Function 

We assume patients prefer to visit nearby and less congested/busy physicians; however, 

when a provider office has a high patient volume, families prefer providers or/and mid-

level providers farther away [46, 47]. Under these assumptions, the objective function of 

the optimization model is a weighted sum of the total distance traveled (which needs to be 

minimized) and of the provider preference contingent upon availability of the providers 

(which needs to be maximized). In particular, the objective function of the model is as 

follows: 

𝑚𝑖𝑛 ((1 − 𝜆) ∑ ∑ ∑ 𝑑𝑖𝑗𝑓𝑘(𝑥𝑖𝑗𝑘
𝑀 + 𝑥𝑖𝑗𝑘

𝑂 )

𝑘=1,2,3𝑗∈𝑃𝑖∈𝑆

− 𝜆 ∑(1 − 𝑦𝑗)𝑢𝑗

𝑗∈𝑃

) 
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where 𝑓𝑘 is the yearly number of visits required by a patient in age class 𝑘, 𝑑𝑖𝑗 is the 

distance between the centroid of census tract 𝑖 and provider 𝑗, 𝑦𝑗 is the level of congestion 

at provider 𝑗 computed as the ratio of assigned number of visits to maximum provider 

caseload, and 𝑢𝑗  is a weight assigned to each provider to ensure that physicians are 

preferred to nurse practitioners.  We note that the congestion level for Family/Internal 

Medicine is computed considering the physicians’ caseload that is devoted to visits for 

children. We thus assume that these physicians work at their maximum capacity, respecting 

the general perception of shortage of primary care supply for adult population [48]. 

The balance between the two components is controlled by a non-negative trade-off 

parameter 𝝀 ∈ [𝟎, 𝟏]. Its value is empirically evaluated by performing several runs of the 

model to choose the value of the parameter such that (i) neither of the two components of 

the objective function dominates the other, and (ii) the resulting optimized decision reflects 

the fact that close neighbors experience the same travel distance and the same congestion 

level. Specifically for each state, we run the optimization model for different values of 𝝀 

and compute for each run the total distance traveled (i.e. the first element of the objective 

function), total patient satisfaction (the second element of the objective), and the Geary 

spatial autocorrelation index [49] for census tract-level travel distance and congestion. We 

then select a value for 𝝀 where neither total distance nor total patient satisfaction dominate 

and the Geary index values are below 1, denoting positive spatial autocorrelation among 

neighboring census tracts. Examples are shown in Figure 1 for Georgia and California. 
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Table 2. Parameters used in the pediatric primary care optimization model. 

Parameter Description Value Data Source 

𝒑𝒊𝒌
𝑴  Total number of publicly-insured children at 

census tract 𝑖 in age class 𝑘 

 2010 SF2 100% Census 

data, 2011 American 

Community Survey  

𝒑𝒊𝒌
𝑶  Total number of privately-insured children at 

census tract 𝑖 in age class 𝑘 

 2010 SF2 100% Census 

data, 2011 American 

Community Survey  

𝒑𝒊
𝑴 = ∑ 𝒑𝒊𝒌

𝑴

𝒌

 

 

Total publicly-insured population at census 

tract 𝑖 
 - 

𝒑𝒊
𝑶 = ∑ 𝒑𝒊𝒌

𝑶

𝒌

 
Total privately-insured population at census 

tract 𝑖 
 - 

𝒎𝒐𝒃𝒊
𝑴 Percentage of publicly-insured population in 

census tract 𝑖 that owns at least one vehicle 

 2010 SF2 100% Census 

data, 2011 American 

Community Survey  

𝒎𝒐𝒃𝒊
𝑶 Percentage of privately-insured population in 

census tract 𝑖 that owns at least one vehicle 

 2010 SF2 100% Census 

data, 2011 American 

Community Survey  

𝒎𝒊𝒎𝒂𝒙 Maximum allowed distance (in miles) 

between a patient and the matched provider 
25 US Department of Human 

and Health Services  [44] 

𝒎𝒐𝒃𝒎𝒂𝒙  Maximum allowed distance (in miles) 

between a patient and the matched provider 

when the patient does not own a vehicle 

10  

- 

𝒅𝒊𝒋 Distance between centroid of census tract 𝑖 
and provider 𝑗 

 ArcGIS, ESRI; NPPES (for 

provider location); 2010 

SF2 100% Census data (for 

centroid location) 

𝒇𝒌 Number of yearly visits of a child in age 

class 𝑘 

 𝑓1 = 8 

 𝑓2 = 1.6 

 𝑓3 = 1 

American Academy of 

Pediatricians  [41] 

𝝀 Weight parameter for the distance component 

in the objective function 

 Experimentally evaluated 

𝒄𝒎𝒊𝒏 The minimum percentage of the total patient 

population required to be assigned to 

providers (others are considered 

“uncovered”).  

90% Experimentally evaluated 

𝑷𝑶𝑷 Total patient population  2010 SF2 100% Census 

data 

𝑪𝒂𝒑𝒋 Maximum number of yearly visits of a 

provider 

Sampled from distribution [37, 52, 53] 

𝒑𝒄𝒋 Percentage of the provider’s caseload 

devoted to visits to children 
100%  if Pediatric Specialist 

10%  if Family/Internal 

Medicine physician 

[36] 

𝒍𝒄𝒋 Percentage of provider’s caseload necessary 

to remain in practice 
15%  for NC; 10% for GA, 

LA, TN; 0%  for CA, MN, MS  

Experimentally evaluated 

𝒑𝒂𝒎𝒋 Probability that provider 𝑗 accepts publicly-

insured patients 

𝑝𝑎𝑚𝑗 = 1 if provider accepts 

Medicaid/CHIP patients 

𝑝𝑎𝑚𝑗 = 0 if provider does not 

accept Medicaid/CHIP patients 

Medicaid Claims data 

𝜶𝒌 Percentage of the total patients in age class 𝑘 

that is served by pediatrics specialists 

 𝛼1 = 80% 

 𝛼2 = 70% 

 𝛼3 = 50% 

[50] 

𝒖𝒋 Disutility perceived by patients when served 

by physician 𝑗 

𝑢𝑗 = 5 if General Pediatric  

𝑢𝑗 = 40 if Family/Internal 

Medicine Physician 

𝑢𝑗 = 10 if Nurse Pediatric 

Experimentally evaluated  
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GEORGIA 

 

CALIFORNIA 

 

Figure 1. Normalized performance measures for different values of the trade-off 

parameter in the optimization model with the range of recommended values 

highlighted in grey, for Georgia and California. 

2.2.3.2 Model Constraints 

Constraints to the model ensure that the assignment of patients to providers mimics the 

process by which families choose primary care for their children. They are given below: 

  ∑ ∑ 𝑓𝑘(𝑥𝑖𝑗𝑘
𝑀 + 𝑥𝑖𝑗𝑘

𝑂 )𝑘=1,2,3 /(𝐶𝑎𝑝𝑗𝑝𝑐𝑗) = 𝑦𝑗𝑖∈𝑆   ∀𝑗 ∈ 𝑃 (2.1a) 

  ∑ ∑ ∑ (𝑥𝑖𝑗𝑘
𝑀 + 𝑥𝑖𝑗𝑘

𝑂 )𝑘=1,2,3𝑗∈𝑃 ≥ 𝑐𝑚𝑖𝑛𝑃𝑂𝑃𝑖∈𝑆    (2.1b) 



 12 

  ∑ 𝑥𝑖𝑗𝑘
𝑀 ≤ 𝑝𝑖𝑘

𝑀
𝑗∈𝑃  ∀𝑖 ∈ 𝑆, 𝑘 = 1,2,3  (2.1c) 

  ∑ 𝑥𝑖𝑗𝑘
𝑂 ≤ 𝑝𝑖𝑘

𝑂
𝑗∈𝑃   ∀𝑖 ∈ 𝑆, 𝑘 = 1,2,3 (2.1d) 

  𝑥𝑖𝑗𝑘
𝑀 ≥ 0  ∀𝑗 ∈ 𝑃, 𝑖 ∈ 𝑆, 𝑘 = 1,2,3 (2.1e) 

  𝑥𝑖𝑗𝑘
𝑂 ≥ 0  ∀𝑗 ∈ 𝑃, 𝑖 ∈ 𝑆, 𝑘 = 1,2,3 (2.1f) 

  ∑ ∑ (𝑥𝑖𝑗𝑘
𝑀 + 𝑥𝑖𝑗𝑘

𝑂 )𝑘=1,2,3 = 0𝑗:𝑑𝑖𝑗≥𝑚𝑖𝑚𝑎𝑥   ∀𝑖 ∈ 𝑆 (2.1g) 

  ∑ ∑ 𝑥𝑖𝑗𝑘
𝑀

𝑘=1,2,3 ≤ 𝑚𝑜𝑏𝑖
𝑀𝑝𝑖

𝑀
𝑗:𝑑𝑖𝑗≥𝑚𝑜𝑏𝑚𝑎𝑥   ∀𝑖 ∈ 𝑆 (2.1h) 

  ∑ ∑ 𝑥𝑖𝑗𝑘
𝑂

𝑘=1,2,3 ≤ 𝑚𝑜𝑏𝑖
𝑂𝑝𝑖

𝑂
𝑗:𝑑𝑖𝑗≥𝑚𝑜𝑏𝑚𝑎𝑥   ∀𝑖 ∈ 𝑆 (2.1i) 

  ∑ ∑ 𝑓𝑘(𝑥𝑖𝑗𝑘
𝑀 + 𝑥𝑖𝑗𝑘

𝑂 )𝑘=1,2,3 ≤ 𝐶𝑎𝑝𝑗𝑝𝑐𝑗𝑖∈𝑆   ∀𝑗 ∈ 𝑃 (2.1j) 

  ∑ ∑ 𝑓𝑘(𝑥𝑖𝑗𝑘
𝑀 + 𝑥𝑖𝑗𝑘

𝑂 )𝑘=1,2,3 ≥ 𝐶𝑎𝑝𝑗𝑙𝑐𝑗𝑖∈𝑆   ∀𝑗 ∈ 𝑃 (2.1k) 

  ∑ ∑ 𝑓𝑘(𝑥𝑖𝑗𝑘
𝑀 )𝑘=1,2,3 ≤ 𝐶𝑎𝑝𝑗𝑝𝑐𝑗𝑖∈𝑆 𝑝𝑎𝑚𝑗 ∀𝑗 ∈ 𝑃  (2.1l) 

  ∑ ∑ (𝑥𝑖𝑗𝑘
𝑀 + 𝑥𝑖𝑗𝑘

𝑂 ) ≥ 𝛼𝑘𝑗: 𝑐𝑎𝑡𝑗=1,3 ∑ ∑ (𝑥𝑖𝑗𝑘
𝑀 + 𝑥𝑖𝑗𝑘

𝑂 )𝑗𝑖𝑖∈𝑆   ∀𝑘 = 1,2,3 (2.1m) 

The first constraint computes provider congestion 𝑦𝑗 as used in the objective function. The 

second constraint ensures at least a given percentage of the total state population is assigned 

to providers. In particular, we set the value of parameter 𝑐𝑚𝑖𝑛 to the maximum value 

allowing feasibility of the model. The resulting value is equal to 90% for each state. 

Constraints (2.1c)-(2.1f) are assignment constraints that require assignment of patients to 

providers to be nonnegative and not greater than the census tract population. Constraints 

(2.1g)-(2.1i) mimic distance barriers encountered by patients, setting a maximum 

allowable distance considering vehicle ownership. 

The next set of constraints mimics availability barriers. In particular, constraint (2.1j) 

ensures that the total number of patients assigned to each provider cannot exceed his or her 

maximum caseload. Constraint (2.1k) acknowledges that for a provider to remain in 

practice, he or she must maintain a sufficiently large number of visits per year. The value 
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of parameter 𝑙𝑐𝑗 is set for each state as the maximum value for which feasibility of the 

model was achieved. Finally, constraint (2.1l) allows for different participation in the 

Medicaid program by limiting the total number of publicly insured who can be assigned to 

each provider. 

The final constraint specifies that pediatric specialists cover a greater percentage of visits 

to children [50, 51] with respect to Family/Internal Medicine physicians. To this end, these 

constraints ensure that a given percentage 𝛼𝑘 of the total patients in age class 𝑘 are served 

by pediatric physicians and pediatric nurse practitioners. 

2.2.4 Accessibility and Availability Measures 

The solution produced by the optimization model is used to compute census tract-level 

accessibility and availability measures for primary care for all children, children eligible 

for public insurance, and children likely to be privately insured. Accessibility is quantified 

as the average distance a child in a census tract must travel for each visit to his/her matched 

provider, thus smaller values of the measure indicate better accessibility. Availability is 

quantified by the congestion a child experiences for each visit at his/her matched provider, 

where patient congestion is measured as the ratio between all assigned visits to a provider 

and his/her maximum caseload; thus smaller values indicate better availability. Children 

experiencing a distance of 25 miles or greater are assumed to be “unserved” by the existing 

network. Hence, the output represents the served need, which may be smaller than the need 

itself. 

Extensive analysis was conducted to assess the sensitivity of the access estimates to 

variations in input data. We first tested the sensitivity of the model with respect to the 
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percentage of providers’ caseload devoted to children by varying parameter 𝑝𝑐𝑗 within 

range 0%-10% for internists and 7%-15% for family practitioners. Output measures were 

not found to be very sensitive to these changes. Full results are provided in Appendix A.1. 

For provider workload, 50 different parameter settings of the model were considered by 

varying the caseload for each provider. Specifically, for each provider, gender was 

identified from NPPES information [38]. The age of that provider was then sampled from 

a normal distribution fit on data from [52] given their gender. Finally, that provider’s 

caseload was determined according to their gender and sampled age using data derived 

from [53]. Details on these distributions are given in Appendix A.2. This process was 

repeated for all providers 50 times, and the caseloads obtained after each repetition were 

input into the optimization model for 𝐶𝑎𝑝𝑗. Thus, our output consists of 50 values of 

accessibility and availability measures for each census tract. We summarize the results 

based on all 50 settings. 

2.2.5 Systemic Disparities: Measures and Statistical Inference 

2.2.5.1 Between-State Disparities 

To evaluate whether between-state disparities in accessibility and availability are 

systematic, we apply the one-sided hypothesis test of difference in the medians using the 

Wilcoxon signed-ranked test, for each pair of states and for each population group. This 

hypothesis test applies under the independence assumption, which does not hold since the 

access measures are spatially dependent. Because of this limitation, the test is more 

conservative in detecting differences between states. 
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Most papers in disparities compare whether any difference exists (i.e., 𝛿 = 0). We consider 

multiple levels of differences to gain understanding of how large differences are, if they 

exist. The null hypothesis difference in medians thus takes three different levels for both 

accessibility and spatial availability:  

• 𝛿 = 0, 𝛿 = 1 or 𝛿 = 2 miles for the accessibility measure; and  

• 𝛿 = 0.0, 𝛿 = 0.1 or 𝛿 = 0.2 patient-to-provider caseload ratio for the availability 

measure. 

2.2.5.2 Within-Sate Disparities 

We group census tracts into three categories according to their rural-urban commuting area 

code (RUCA) [54]. We classify the census tracts as Large Urban Areas (RUCA = 1-3), 

Small Urban Areas (RUCA = 4-6), and Rural Areas (RUCA = 7-10). We then compare 

disparities in accessibility and availability between publicly-eligible children and children 

likely to be privately insured. 

2.2.5.3 Intervention Maps 

We identify served, underserved and unserved census tracts if the percentage of served 

need is at least 80%, between 50% and 80%, and less than 50%, respectively; these levels 

can be adjusted depending on the coverage targeted. 

Using the method described in Serban [55] we identify the specific tracts where the 

difference in either accessibility or availability between the children eligible for public 

insurance and those who are likely to be privately insured is statistically significant. 

Specifically, we consider the difference process 𝑍(𝑠) = 𝑀(𝑠) − 𝑂(𝑠) for each spatial unit 
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𝑠 (i.e., census tract) within a geographic domain (e.g. state). We decompose 𝑍(𝑠) = 𝑓(𝑠) +

𝜖𝑠, with 𝑓(𝑠) the regression function assumed unknown and estimated using nonparametric 

penalized splines regression through the mgcv library in the R statistical software. 

Subsequently, we use the existing methods proposed by Serban [55], and Krivobokova et 

al. [56] to estimate simultaneous confidence bands [𝑙(𝑠), 𝑢(𝑠)] for the regression 

function 𝑓(𝑠). For those spatial units 𝑠 or regions such that 𝑢(𝑠) < 0, the difference is 

significantly negative, while for those spatial units 𝑠 such that 𝑙(𝑠) > 0, the difference is 

significantly positive. The results are displayed as point maps, where the points correspond 

to the centroids of the census tracts where the difference process 𝑍(𝑠) is significantly 

negative or positive, defined as significance maps. A significance level of 0.01 is used. 

2.3 Results 

The study population represents more than 9 million children across approximately 16,500 

census tracts served by a network of more than 17,000 unique provider locations 

representing around 76,000 individual and group providers.  

2.3.1 Between-State Disparities 

Figure 2 displays the boxplots of the median of the access measures computed at the census 

tract level across all 50 settings for all census tracts in each of the seven states and for each 

population group. The median state-level distance to care for children eligible for public 

insurance ranges from 7.54 to 9.79 miles. For children likely to be privately insured, it 

ranges from 4.78 to 8.50 miles. The median state-level congestion for children eligible for 

public insurance ranges from 0.40 to 0.74. For children likely to be privately insured, it 

ranges from 0.39 to 0.70. 
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MEDIANS - DISTANCE 

 

MEDIANS - CONGESTION

 

Figure 2. Distribution of medians of travel distance (in miles) and medians of 

congestion for different population groups. Each boxplot represents the distribution 

across census tracts after taking the median across the 50 runs for each census tract. 

For each run, we apply the one-sided Wilcoxon test for comparison of medians of distance 

(in miles) for each pair of states (H0: μState1-μState2≤δ vs. H1: μState1-μState2>δ) for the children 

eligible for public insurance (Public) and children above the income threshold for public 

insurance (Private). Table 3 summarizes the results of these statistical comparisons with 

State 1 specified by the row and State 2 by the column. A symbol “*”, “**“, and “***” in 

the cell indicates a p-value less than or equal to 0.01 in at least 75% of the runs for null 

difference in medians δ=0, δ=1, and δ=2 respectively. The comparisons between 

congestion medians are similarly summarized for null difference in medians δ=0.0, δ=0.1, 

and δ=0.2 in Table 4.  

Comparing accessibility (Table 3, null value 𝛿 = 0), each state except  Louisiana has a 

higher median distance than California for the eligible population, and all states have a 
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higher median distance than California for the population likely to be privately insured; 

some differences remain significant at distance 𝛿 ≤ 2 miles for the population likely to be 

privately insured. Mississippi has higher median distance than all the other states for the 

eligible population, and it has a higher distance than all the other states, except North 

Carolina, for the population likely to be privately insured. Several states have higher 

median distance than Louisiana or Minnesota (𝛿 = 0 miles) for both population groups. 

There are no comparisons between pairs of states where the difference is statistically 

significant for 𝛿 ≥ 2 miles.  

Comparing availability (Table 4, null value 𝛿 = 0), Mississippi has a higher median 

congestion for both the population groups than all the other states. Minnesota has a higher 

median congestion for both the population groups than all the other states except 

Mississippi. All states except North Carolina have a higher median congestion than 

Louisiana for children eligible for public insurance insured. Additionally, all states except 

North Carolina and Tennessee have higher median congestion for children likely to be 

privately insured. All differences in medians are not statistically significant for 𝛿 ≥ 0.1. 
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Table 3. Between-state differences in median distance (in miles) a child must travel 

for visits to matched providers, by insurance type, averaged across 50 runs. 

States CA GA LA MN 

  Public Private Public Private Public Private Public Private 

CA         -0.8082   -2.3116   0.8931   0.5933   -0.6064   -2.9870   

GA 0.8082 * 2.3116 *     -1.0000   1.7013 * 2.9049 * 0.2018 * -0.6754   

LA -0.8931   -0.5933 * -1.7013   -2.9049       -1.0000   -1.4996   -3.5804   

MN 0.6064 * 2.9870 * -0.2018   0.6754   1.4996   3.5804 *         

MS 2.4092 ** 4.7211 *** 1.6010 * 2.4095 * 3.3024 ** 5.3144 ** 1.8028 ** 1.7341 * 

NC 0.8453 * 3.2631 *** 0.0371 * 0.9515 * 1.7384 * 3.8564 ** 0.2389 * 0.2761 * 

TN 1.1832 * 2.4998 ** 0.3750   0.1882   2.0763 * 3.0931 * 0.5768 * -0.4872   

States MS NC TN     

  Public Private Public Private Public Private     

CA -2.4092   -4.7211   -0.8453   -3.2631   -1.1832   -2.4998       

GA -1.6010   -2.4095   -0.0371   -0.9515   -0.3750   -0.1882       

LA -3.3024   -5.3144   -1.7384   -3.8564   -2.0763   -3.0931       

MN -1.8028   -1.7341   -0.2389   -0.2761   -0.5768   0.4872       

MS         1.5639 * 1.4580   1.2260 * 2.2213 *     

NC -1.5639   -1.4580           -0.3379   0.7633 *     

TN -1.2260   -2.2213   0.3379   -0.7633               

 

Table 4. Between-state differences in median congestion, measured as the ratio 

between all assigned visits to a provider and his/her maximum caseload, by insurance 

type, averaged across 50 runs. 

States CA GA LA MN 

  Public Private Public Private Public Private Public Private 

CA         0.0282 * 0.0653 * 0.0836 * 0.1127 * -0.1192   -0.1312   
GA -0.0282   -0.0653         0.0554 * 0.0474 * -0.1474   -0.1965   
LA -0.0836   -0.1127   -0.0554   -0.0474         -0.2028   -0.2439   

MN 0.1192 * 0.1312 * 0.1474 * 0.1965 * 0.2028 * 0.2439 *       
MS 0.2619 * 0.2519 * 0.2901 * 0.3172 * 0.3456 * 0.3647 * 0.1428 * 0.1207 * 
NC -0.1632   -0.1935   -0.1350   -0.1282   -0.0796   -0.0808   -0.2824   -0.3247   
TN -0.0522   -0.0994   -0.0240   -0.0340   0.0314 * 0.0134   -0.1713   -0.2306   

States MS NC TN     
  Public Private Public Private Public Private     

CA -0.2619   -0.2519   0.1632 * 0.1935 * 0.0522 * 0.0994 *     
GA -0.2901   -0.3172   0.1350 * 0.1282 * 0.0240   0.0340       
LA -0.3456   -0.3647   0.0796   0.0808   -0.0314   -0.0134       

MN -0.1428   -0.1207   0.2824 * 0.3247 * 0.1713 * 0.2306 *     
MS         0.4251 * 0.4455 * 0.3141 * 0.3513 *     
NC -0.4251   -0.4455           -0.1110   -0.0942       
TN -0.3141   -0.3513   0.1110 * 0.0942               
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2.3.2 Within-State Disparities 

Table 5 shows differences in median travel distance (in miles) and median congestion of 

children eligible for public insurance vs. children above the income threshold for public 

insurance, averaged across the 50 runs. For each run, the Wilcoxon paired statistical test 

(H0: μPublic - μPrivate ≤ δ; H1: μPublic - μPrivate > δ) was applied for each state for three different 

values of the hypothesized difference δ for the three different urbanicity classifications of 

the census tracts. A symbol “*”, “**“, or “***” in the cell indicates a median p-value less 

than or equal to α/4 (α=0.01), as specified in Bonferroni’s method for correcting for 

multiple hypothesis tests, over the 50 runs for the three levels of difference δ respectively 

(δ=0, δ=1, and δ=2 for distance and δ=0.0, δ=0.1, and δ=0.2 for congestion). 

Table 5. Within-state differences in median travel distance (in miles) and median 

congestion, averaged across 50 runs. 

  Distance - Medians Congestion - Medians 

  State Large Urban Small Urban Rural State Large Urban Small Urban Rural 

California 3.3381 *** 5.8216 *** 2.3172 *** 9.7767 *** 0.0133 * 0.0064 * 0.1217 * 0.3611 * 
Georgia 1.8348 * 2.2379 * 1.2642 * 1.6948 * 0.0504 * 0.0474 * 0.0509 * 0.0842 * 

Louisiana 3.0383 * 2.6598 * 1.0970 * 1.9829 * 0.0424 * 0.0591 * 0.0394 * 0.0497 * 
Minnesota 0.9575 * 0.5092 * 1.0071 * 1.2097 * 0.0012 * -0.0188  0.0333 * 0.0424 * 
Mississippi 1.0263 * 1.3521 * 0.9263 * 1.2245 * 0.0233 * 0.0048  0.0545 * 0.0316  

North 
Carolina 

0.9203 * 0.5494 * 0.6730 * 1.3608 * 0.0436 * 0.0000 * 0.0327 * 0.0858 * 

Tennessee 2.0216 * 2.2643 * 1.9465 * 2.4214 ** 0.0605 * 0.0504 * 0.1124 * 0.0671 * 

 

Median distance for the eligible children is statistically significantly higher than for 

children likely to be privately insured in each state and for all three urbanicity classes for 

a difference of 𝛿 = 0 miles. The differences remain statistically significant at 𝛿 ≤ 2 miles 

for California for areas all urbanicity classes. These differences are not statistically 

significant for 𝛿 ≥ 2 for all the other states. 
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The eligible population has higher congestion in each state and for each urbanicity level 

with few exceptions at the null value 𝛿 = 0.0. These differences are not statistically 

significant for 𝛿 ≥ 0.1.  

Comparisons of medians of distance and congestion of children likely to be privately 

insured versus children eligible for public insurance across urban and rural census tracts 

are shown in Figure 3. The median distances for children eligible for public insurance range 

from 6.13 (large urban areas in Minnesota) to the maximum of 17.91 miles (rural areas in 

California). The median distances for children likely to be privately insured range from 

4.44 (large urban areas in California) to 13.49 (rural areas in California) miles. The median 

congestion values for children eligible for public insurance range from 0.35 in large urban 

areas in North Carolina to the maximum of 0.79 in rural areas in California. The median 

congestion values for children likely to be privately insured range from 0.35 in large urban 

areas in North Carolina to 0.77 in rural areas in Mississippi. 

  



 22 

 Distance Congestion 

CA 

  

GA 

  

LA 

  

MN 

  

MS 

  

NC 

  

TN 

  

Figure 3. Distribution of census tract-level travel distance and congestion for publicly-

insured (grey box) and privately-insured (white box) children in each urbanicity level 

for each state, after taking the median value across the 50 runs. 
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2.3.3 Intervention Analysis 

For each run, we label each census tract as either served, underserved, or unserved based 

on its percentage of served need. Table 6 lists the average number of census tracts falling 

into each of the three categories across the 50 runs along with the 10th percentile and 90th 

percentile number of census tracts in parentheses. Figure 4 maps the category of each 

census tract based on its average percentage of served need across the 50 runs.   

Table 6. Average [10th percentile, 90th percentile] number of census tracts across the 

50 runs that are served, underserved, and unserved by state and urbanicity. 

State Service Level Entire State Large Urban Small Urban Rural  

CA 

Served 7046 [7041, 7051] 6795 [6790, 6800] 195 [193, 196] 56 [54, 57] 

Underserved 576 [567, 583] 481 [474, 488] 44 [43, 47] 51 [49, 54] 

Unserved 378 [375, 382] 222 [219, 225] 54 [53, 55] 102 [101, 104] 

GA 

Served 1595 [1593, 1597] 1365 [1363, 1367] 152 [151, 152] 79 [78, 79] 

Underserved 234 [231, 236] 153 [151, 156] 40 [39, 41] 41 [39, 42] 

Unserved 126 [125, 128] 72 [71, 73] 28 [27, 28] 27 [26, 28] 

LA 

Served 959 [957, 960] 818 [817, 819] 78 [77, 78] 63 [62, 64] 

Underserved 98 [96, 100] 58 [57, 59] 18 [18, 19] 22 [20, 23] 

Unserved 68 [66, 69] 42 [42, 42] 4 [4, 4] 22 [20, 23] 

MN 

Served 1118 [1116, 1120] 866 [865, 868] 116 [115, 117] 136 [135, 137] 

Underserved 122 [120, 124] 43 [41, 44] 22 [22, 23] 57 [55, 59] 

Unserved 94 [93, 95] 14 [14, 15] 15 [15, 15] 65 [64, 66] 

MS 

Served 558 [556, 560] 258 [257, 259] 194 [193, 195] 106 [104, 107] 

Underserved 76 [74, 78] 27 [26, 28] 20 [19, 21] 29 [28, 31] 

Unserved 21 [21, 22] 6 [6, 6] 9 [9, 9] 6 [6, 6] 

NC 

Served 1828 [1825, 1831] 1439 [1437, 1442] 280 [278, 283] 108 [106, 109] 

Underserved 222 [218, 225] 129 [126, 132] 50 [47, 52] 43 [41, 46] 

Unserved 120 [118, 121] 62 [61, 64] 23 [22, 24] 35 [34, 36] 

TN 

Served 1215 [1213, 1217] 963 [961, 964] 156 [154, 157] 97 [95, 98] 

Underserved 174 [170, 177] 91 [88, 92] 48 [47, 50] 35 [33, 37] 

Unserved 91 [89, 92] 35 [34, 36] 24 [23, 25] 32 [30, 33] 
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Figure 4. Map of census tracts that are served (light-grey; at least 80% of population 

assigned to a provider on average across the 50 runs), underserved (grey; 50-80% of 

population assigned on average), or unserved (black; less than 50% of population 

assigned on average). White-shaded census tracts were not included in the analysis. 
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The average percentage of served census tracts across the 50 settings ranges from 82% 

(Georgia and Tennessee) to 88% (California); the average percentage of underserved 

census tracts ranges from 7% (California) to 12% (Georgia, Mississippi, and Tennessee); 

the average percentage of unserved census tracts ranges from 3% (Mississippi) to 7% 

(Minnesota).  

Census tracts identified as served or unserved tend to be located in a subset of counties, 

while those identified as underserved are in many counties dispersed around the state.  The 

served tracts tend to be located in large urban areas. The percentage of large urban census 

tracts among the served census tracts ranges between 46% (Mississippi) to 96% 

(California).  The unserved census tracts are located in large urban areas in all the states 

except Minnesota where they are mostly located in rural areas (69%) and Mississippi where 

they are located in small urban tracts (43%). 

Results from significance maps are summarized in Table 7 and Table 8, which show for 

travel distance and congestion respectively the total number of census tracts where the 

publicly-insured population has a statistically significantly greater value (lower access) 

than the privately-insured population, at α = 0.01 significance level in at least 75% of the 

runs. The column ‘Tot’ also contains the percentage of census tracts in the state meeting 

that criteria while the ‘Large Urban’, ‘Small Urban’, and ‘Rural’ columns contain the 

percentage of census tracts in each urbanicity category computed with respect to the total 

in the corresponding ‘Tot’ column. Results are reported for different values of the threshold 

δ. 
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The percentage of census tracts where children eligible for public insurance need to travel 

further to access care than the children likely to be privately insured ranges from 22% 

(North Carolina) to 71% (California). For =2 miles, the percentage varies from 0% 

(Mississippi and Minnesota) to 35% (California) including many in large urban areas.  

There are relatively fewer census tracts where children eligible for public insurance have 

lower availability than the other children. The percentage of census tracts where the public 

insurance eligible experience higher congestion than the children likely to be privately 

insured ranges from 7% in Minnesota, Mississippi, and North Carolina to 24% in 

California. At 𝛿=0.0, the tracts where availability is lowest for the public insurance eligible 

tend to be more concentrated in small urban and rural areas in Minnesota and Mississippi 

and more concentrated in large urban areas in the other states. 

Table 7. Number (percent) of census tracts where the publicly-insured population has 

a significantly greater travel distance than the privately-insured population at 𝜶 =
𝟎. 𝟎𝟏 significance level in at least 75% of the runs. 

 

 

 

Tot
Large 

Urban

Small 

Urban
Rural Tot

Large 

Urban

Small 

Urban
Rural Tot

Large 

Urban

Small 

Urban
Rural

California 5711 (71%) 5402 (95%) 174 (3%) 135 (2%) 4262 (53%) 4008 (94%) 137 (3%) 117 (3%) 2778 (35%) 2566 (92%) 114 (4%) 98 (4%)

Georgia 973 (50%) 866 (89%) 60 (6%) 47 (5%) 364 (19%) 322 (88%) 17 (5%) 25 (7%) 140 (7%) 122 (87%) 4 (3%) 14 (10%)

Louisiana 425 (38%) 376 (88%) 11 (3%) 38 (9%) 147 (13%) 128 (87%) 1 (1%) 18 (12%) 37 (3%) 30 (81%) 1 (3%) 6 (16%)

Minnesota 1194 (90%) 851 (71%) 121 (10%) 222 (19%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Mississippi 592 (90%) 289 (49%) 183 (31%) 120 (20%) 125 (19%) 90 (72%) 27 (22%) 8 (6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

North Carolina 485 (22%) 317 (65%) 105 (22%) 63 (13%) 129 (6%) 86 (67%) 24 (19%) 19 (15%) 12 (1%) 11 (92%) 0 (0%) 1 (8%)

Tennessee 593 (40%) 414 (70%) 101 (17%) 78 (13%) 358 (24%) 278 (78%) 39 (11%) 41 (11%) 183 (12%) 168 (92%) 0 (0%) 15 (8%)

State

δ=0 δ=1 δ=2

Distance (Accessibility)
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Table 8. Number (percent) of census tracts where the publicly-insured population has 

a significantly greater congestion than the privately-insured population at 𝜶 = 𝟎. 𝟎𝟏 

significance level in at least 75% of the runs. 

 

2.4 Discussion 

This study uncovers systematic differences and disparities in accessibility and availability 

of pediatric primary care across seven states for public insurance eligible and children 

above the income threshold for public insurance. Disparities are quantified between- and 

within-states, comparing public insurance eligible versus likely to be privately insured 

children and across three urbanicity levels.  

The study also introduces a framework that can be used to help support policymaking.  The 

objective is to identify where the communities with the greatest need for improvement are 

and which spatial access dimensions need be targeted by policy makers in order to increase 

access to primary care for children. This framework will be especially useful if local data 

is available and the model assumptions adjust to fit the data.   

The between-state pairwise comparisons reveal that children above the income threshold 

for public insurance have the best median accessibility in California, and public insurance 

eligible children have the best median accessibility in California, Minnesota and Louisiana. 

The median availability is the lowest in Louisiana for both population groups. While 

Tot
Large 

Urban

Small 

Urban
Rural Tot

Large 

Urban

Small 

Urban
Rural Tot

Large 

Urban

Small 

Urban
Rural

California 1949 (24%) 1756 (90%) 96 (5%) 97 (5%) 727 (9%) 630 (87%) 40 (6%) 57 (8%) 179 (2%) 155 (87%) 9 (5%) 15 (8%)

Georgia 340 (17%) 217 (64%) 71 (21%) 52 (15%) 60 (3%) 60 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Louisiana 175 (16%) 140 (80%) 15 (9%) 20 (11%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Minnesota 99 (7%) 6 (6%) 38 (38%) 55 (56%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Mississippi 47 (7%) 0 (0%) 33 (70%) 14 (30%) 14 (2%) 0 (0%) 13 (93%) 1 (7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

North Carolina 149 (7%) 96 (64%) 32 (21%) 21 (14%) 2 (0%) 0 (0%) 0 (0%) 2 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Tennessee 288 (19%) 193 (67%) 43 (15%) 52 (18%) 25 (2%) 4 (16%) 13 (52%) 8 (32%) 3 (0%) 1 (33%) 2 (67%) 0 (0%)

Congestion (Availability)

State

δ=0.0 δ=0.1 δ=0.2
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disparities between states exist, they are not significant for pairwise comparisons when 

considering intervention levels of a difference ≥1 mile in travel distance (except for 

comparisons with California) or a difference ≥0.1 in experienced congestion (except for 

comparison with Minnesota and Mississippi). This is an important finding as many 

disparity studies have only drawn inferences at zero absolute differences between states or 

between population groups [57-60]. While there are disparities between states, they are 

significant at low comparison levels, suggesting that within-state disparities are more 

relevant than those between states.  

The within-state systematic disparities are more nuanced when comparing accessibility and 

availability for the two population groups and across urbanicity levels. In general, we do 

find that public insurance eligible children experience lower access than children above the 

income threshold for public insurance. However, the difference in accessibility is >1 mile 

only for California, and for rural areas in Tennessee. The differences in availability are less 

systematic, with significant differences only for the level equal to 0.  

The intervention analysis shows that the areas of lower spatial access can be found 

throughout a state across all urbanicity levels. Eligible children have worse spatial access 

than children likely to be privately insured across all the urbanicity levels. These findings 

highlight the importance of identifying specific areas where interventions are needed, with 

interventions targeted to the type of spatial access in need of improvement.  

The findings for specific states may offer some guidance on where and how to target 

resources. For example, California has the greatest opportunity to improve accessibility for 

the public insurance eligible children as it has the largest percentage of communities 
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(53%) where the eligible children need to travel more than 1 mile further than the other 

children, in contrast to all other states for which the percentage ranges between 0% in 

Minnesota to 24% in Tennessee.  

For other states such as Georgia and Minnesota, census tracts with high accessibility are 

geographically clustered, especially in urban areas, while being significantly worse for 

publicly-insured children in some of those same areas. For the same states, communities 

with low availability are spread throughout the state, thus interventions to improve 

availability are more challenging to implement since the communities in need are spread 

throughout the state as compared to interventions for improving accessibility. These 

findings suggest interventions need to be targeted to the local need, combining both policy 

interventions for improving public insurance acceptance by providers already in practice 

and network interventions that add providers to some areas (e.g. telehealth, school-based 

health centers, and mobile clinics).  

In states such as Tennessee, North Carolina and Louisiana, public insurance eligible  

children experience lower accessibility and availability throughout the state, indicating that 

investments in multiple types of statewide interventions would be needed, particularly 

policy interventions targeting access for publicly-insured children. In states such as 

Mississippi, spatial access is systematically low both populations, thus targeting network 

interventions that would lead to an increase in the primary care providers, both physician 

and mid-level providers, will have the highest impact. 

2.5 Limitations 
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This study has several limitations, many of which stemming primarily from the limited 

availability of detailed data. First, we used income thresholds for public insurance 

programs to estimate the numbers of children who are publicly insured. Because the ACS 

data used to estimate household income are not the same as the units of measure for 

insurance eligibility and low income populations are more likely to live in multi-family 

households, the model may underestimate the number of children eligible for public 

insurance.  

Second, because no single data source exists that identifies all providers who provide 

primary care to children or that quantifies caseload, we have used multiple data sources 

and a series of assumptions; thus, supply and locations of service may have been under or 

overestimated. To know the supply of health care providers, we used the NPEES database 

for information on geolocation for each provider and on provider type.  NPPES provides 

provider-level data on both specialty and location; however, it has limitations. Since some 

nurse practitioners bill under physician’s national provide index (NPI), the supply of 

pediatric primary care may be underestimated. This may be offset by the fact some 

physicians spent significant time in supervising mid-level providers as well as residents, 

interns and fellows. Moreover, some providers may practice from different offices, while 

only the business address is provided with the provider’s NPI.  We also use the MAX files 

for obtaining information on the Medicaid acceptance rates, although Medicaid MAX files 

can have data quality issues, especially for states with large populations on managed care 

[61]. We did not capture the differences among states of the variation of providers’ 

caseload devoted to the publicly insured. It is also possible that there are some providers 
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who would see patients on CHIP but not patients on Medicaid, and this is not captured in 

our data.  

Third, household level data on transportation options by income thresholds for eligibility 

for public insurance were not available, so we compare the estimated income derived from 

census data with the federal net-income thresholds instead of modified adjusted-gross 

income (MAGI)-equivalent minimum thresholds as defined in federal public insurance 

coverage laws and regulations.  

A final limitation is the set of assumptions specifying some of the system constraints. We 

assume the maximum provider capacity is the same across all providers. We assume the 

same maximum willingness to travel for populations in both rural and urban areas. We do 

not account for changes in the percentage of physicians practicing pediatric primary care 

after 2013. We are also estimating need for pediatric care using recommendations for 

wellness visits for children. We do not include visits for minor illnesses or more intensive 

care for children with chronic or complex conditions. Thus we underestimate the level of 

access for some children. We assume that the disutility of crowding is linear although in 

other papers we have shown how the model can incorporate nonlinear functions. We also 

estimate matches between patients and providers assuming a centralized framework; in 

other papers we have shown how the model can incorporate decentralized decision making 

with patients maximizing their own individual welfare. 

Overall, most of the above stated assumptions can be relaxed with the acquisition of local-

level, detailed data. This would be paired with minor modifications to the model used to 

account for the provider-specific or geographical-specific data. 
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2.6 Conclusions 

Even though this study has limitations, it has potential implications for public health and 

health care policy.  While concerns about the availability of primary care providers have 

been expressed within recent health policy, this study finds that across states the disparities 

in availability for pediatric primary care are not as significant as the disparities in 

accessibility. Moreover, contrary to some beliefs, despite potential gains in insurance 

coverage over the last several years, both rural and urban communities are in need for 

improvement of accessibility to primary care for publicly-insured children. 

More generally, the findings in this study suggest that some policies will be more effective 

than others in addressing disparities in spatial access, while the policy recommendations 

depend on the state. For some states, incentivizing providers to accept public insurance 

could improve spatial access for public insurance eligible children, but incentivizing 

providers in some other states would not generate the same result since access for children 

likely to be privately insured also needs improvement.  For all states, since unserved 

communities are spread across counties, interventions to provide access to pediatric 

primary care for these communities need to be more targeted, e.g., school telehealth clinics 

at school-based health centers.  

The study thus shows that generating specific recommendations for small areas within 

states is needed to shift the needle on access to care for children. This can be done with 

additional data specific to local areas with minor modifications to the model. Continuing 

to refine the model and data will ensure that the approach is reliable and accurate, while 

promoting the use of interventions that are most appropriate in a given locale.  
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CHAPTER 3. PROJECTING THE IMPACT OF AFFORDABLE 

CARE ACT PROVISIONS ON ACCESSIBILITY AND 

AVAILABILITY OF PRIMARY CARE PROVIDERS FOR THE 

ADULT POPULATION IN GEORGIA 

3.1 Introduction 

Several policy interventions have been implemented and evaluated to improve healthcare 

access, to ultimately reduce health disparities [5, 62]. The most recent and comprehensive 

among these interventions are the provisions in the Patient Protection and Affordable Care 

Act (ACA). One primary emphasis of ACA is to eliminate disparities in financial access to 

healthcare, particularly, for the most disadvantaged populations. While affordability (i.e., 

financial access) is an essential dimension of healthcare access, other dimensions such as 

availability and accessibility are equally relevant to reduce health disparities. Improving 

spatial access, referring to availability and accessibility together, is especially important 

for the Medicaid-insured population due to a smaller network of providers accepting 

Medicaid insurance [11, 15, 16]. 

Because ACA’s implementation will transform healthcare delivery in ways that are not 

fully understood, it is expected to have unintended consequences that could counteract its 

overall benefits. For example, although the ACA primarily focuses on financial access, it 

will also impact other forms of healthcare access. Availability and accessibility are 

functions of the available network of providers (supply) and of the patients accessing the 

healthcare services (demand/need). These will be greatly affected by the main provisions 
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of the ACA, including the individual mandate, the exchange insurance market, the end of 

the pre-existing health condition exclusions, and the optional expansion of Medicaid 

eligibility, but also by provisions that could result in an increase in the number of primary 

care providers and/or the acceptance rate of the Medicaid insurance program. 

Many studies [53, 63-66] forecast that the resulting increase in the demand of care due to 

these provisions may not be adequately supported by the supply of healthcare services, 

with an estimated need of primary care physicians of around 20,400 in 2020 as provided 

by [53], for example. This is a concern because too few physicians or inadequate supply 

could lead to services being delayed or forgone altogether. The delay may worsen health 

conditions, eventually resulting in an increase of severe health outcomes. 

Although most existing studies on the impact of the ACA provisions provide nationwide 

or state-level projections [53, 66-68], the projected impact will vary geographically 

because of the pre-existing disparities in access and because of the variations in the 

implementation of the ACA and state-level health policies. Understanding the ACA’s 

projected impact on other dimensions of healthcare access locally at the community-level 

is paramount in facilitating targeted interventions and most effective resource allocation 

[69-70]. 

The aim of this chapter is to project how spatial access is impacted by the implementation 

of the ACA for the non-elderly adult population.  The questions we address are: 

• What is the projected impact of ACA without Medicaid expansion on availability and 

accessibility of primary care providers geographically and over time?  
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• What is the projected burden of opting for Medicaid expansion on availability and 

accessibility of primary care providers geographically and over time? 

• Does a higher rate of Medicaid insurance acceptance by providers or/and an increase of 

the overall supply result in an improvement in the served need for primary care services? 

The methods include three models: a supply-projection model, a need-projection model, 

and an optimization model. The supply and need models predict the total number of 

available (supply) and needed primary care visits for each year from 2013 (the baseline 

year) until 2025. The optimization model estimates served need for primary care visits by 

matching the projected supply and need under a series of access constraints. Availability 

and accessibility are projected at the census tract level by contrasting served to needed 

visits. 

We pilot our study for the state of Georgia, but the proposed models can be generalized 

and applied to other states in the U.S. Material in this chapter has been published at [71]. 

3.2 Methods 

3.2.1 Study Population 

The study population consists of all adults age 19-64 living in Georgia. The Medicare 

population is excluded since the Medicaid and the exchange market primarily impact the 

insurance status of the population younger than 65. The child population is also excluded 

since the Medicaid expansion does not apply to this population. 

3.2.2 Data Sources 
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Data sources used for the supply projection model include the 2013 National Plan & 

Provider Enumeration System (NPPES) [38], the Georgia Board for Physician Workforce's 

2013 Spotlight on Graduate Medical Education [72], the Georgia Board for Physician 

Workforce's 2008 Basic Physician Reports [73], the Centers for Disease Control's National 

Vital Statistics Reports [74], the 2007-2011 American Community Survey (ACS) County-

to-County Migration Flows by Educational Attainment table [75], and the 2012 ACS 

Educational Attainment table [42].  

Data sources used for need projections include the Governor's Office of Planning and 

Budget's residential population projections [76], the 2010 Census and the 2012 and 2013 

American Community Surveys [42], 2006 median income data from Environmental 

Systems Research Institute [77], estimates from Kaiser Family Foundation/Urban Institute 

- Table ES-3 [78], and Congressional Budget office estimates – Table 3 [79]. 

An additional data source for the optimization model is the 2009 MAX Medicaid patient-

level claims files [40].  

Provider addresses are geocoded using the Texas A&M Geocoding Services [80], and 

street-network distances between census tract centroids and provider addresses are 

computed using the ArcGIS Network Analyst [45]. 

3.2.3 Supply Projection Model 

According to the definition of Primary Care of the Institute of Medicine’s Committee [81], 

primary care providers include general and family medicine and general internal medicine, 

including physicians, Nurse Practitioners (NPs) and Physician Assistants (PAs). We use 
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NPPES to identify these providers, both to additionally obtain their specific location 

information and to avoid inconsistences in other databases [82]. We consider only 

individual provider records [83]. 

The supply-projection model consists of three steps: county-level projections of active 

workforce, distribution of projected supply across census tracts, and conversion of 

available supply in number of visits, all obtained yearly and for all counties. These steps, 

as well as alternate supply scenarios that we consider, are detailed in the next subsections. 

3.2.3.1 County-level Projections 

In the first step, a stock-and-flow model [84] computes the total number of active 

physicians yearly by considering the current level of physicians plus the net flow. The net 

flow is the difference between new entrants in the workforce (new graduates practicing in 

Georgia and immigrants) and exit from the workforce (due to retirement, death, profession 

change, and emigration) [53]. The model includes two modules, the Student and Workforce 

Modules. Output of these modules was found to be comparable to national-level 

projections, suggesting their validity (see Appendix B.1 for details). 

The Student Module determines the number of students completing graduate medical 

education in Georgia and entering the workforce for the first time, assuming that students 

graduate after three years [72, 85]. After completing the residency, students either emigrate 

from Georgia or join the Georgia physician population, where they may choose to practice 

in other specialties or in primary care. Using data from the Georgia Board for Physician 

Workforce on graduate medical education [72], we estimate the input parameters of the 
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module including the percentage of graduates practicing out of Georgia and/or choosing to 

practice in other specialties than primary care. (See Figure 5). 

 

Figure 5. Student Module flowchart. 

The Workforce Module determines age and county of each physician currently working. 

Physicians age 35 to 64 flow through the system by transitioning between stocks 

representing 5-year age categories. We assume physicians at the age of 75 either retire or 

enter administrative roles. New physicians enter the age <35 stock after graduating and 

new graduates are allocated to each county according to the distribution of the primary care 

physicians across counties in the baseline year of 2013. The initial age distribution within 

each county is assumed to be the same as in the 2008 reports [73]. If a county does not 

have a 2008 report, we use the average of the counties belonging to the same Primary Care 

Service Area. 

To incorporate physicians’ immigration from outside Georgia, each age stock has an 

additional inflow by which providers enter the workforce according to rates computed 

using ACS data on education attainment and migration flows [42, 75]. To incorporate 



 39 

physician attrition, each age stock has an additional outflow, again considering emigration 

patterns as well as death rates taken from tables I-7 and I-8 of [74]. 

A stock of NPs and PAs is added to the county total workforce based on data from 

previously published studies.  In particular, the growth of PAs is based on the conservative 

national growth in PAs between 2013 and 2026 projected by Hooker and Muchow [86]. 

We assume the PA growth for Georgia is the same as the national growth and a constant 

number of PAs is added each year to obtain the percentage growth between 2013 and 2025. 

A similar procedure, based on the projection of registered nurses in Georgia between 2012 

and 2025 by Health Resource and Service Administration [87], is applied to obtain the total 

number of NPs in each year. The county of each additional PA and NP is then determined 

according to the distribution of all primary care providers in the base year. 

3.2.3.2 Census Tract Distribution 

For the baseline year, physician locations are given in the NPPES data [38]. For future 

years, if a county and age class is projected to have fewer physicians than the previous 

year, we remove a randomly-selected physician in that county and age class.  

If instead an increase is projected, we distribute the projected supply surplus across 

locations using a recursive sampling approach. For each additional physician, we first 

sample a census tract within that county using a weighted sampling procedure, where 

weights are estimated using the distribution of all providers (i.e. physicians, PAs, and NPs) 

in the baseline year with a small non-zero probability given to census tracts that had no 

providers in 2013. We next assign a location within that census tract to that physician by 

sampling from all provider locations existing in the previous years. If the census tract had 
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no previous locations, we randomly select a location (latitude and longitude) in the census 

tract using information about the census tract shapefiles. 

A similar procedure is applied to distribute PAs and NPs. 

3.2.3.3 Conversion to Visits 

The census tract-level workforce estimates are converted to number of available visits 

using proficiency ratios (i.e. the average number of yearly visits per provider). Specifically, 

we use data published in [53] on Average Patient Care Hours Worked per Week by General 

Internal Medicine Physicians. Data are reported by age class and gender in full-time-

equivalent units and, by considering 45 hours per week, 50 weeks per year, and an average 

visit duration equal to 16 minutes (equivalent to a panel size of 2500 patients per year per 

physician [39] and approximately 8400 visits per year), we derived the annual number of 

visits per physician by age and gender. Using the gender distribution reported in [88] for 

which 67% of physicians are male and 33% are female, we obtain the final proficiency 

ratios for physicians (Table 9). 

Table 9. Total number of yearly visits per primary care physician, by age. 

Age Male Female Overall 

<40 8736 6888 8126 

40-44 8988 7224 8406 

45-49 9240 7644 8713 

50-54 9912 8064 9302 

55-59 9576 7896 9022 

60-64 8904 6216 8017 

> 64 7056 7560 7222 

We assume NPs and PAs all have a proficiency ratio equal to 8401, the average among the 

age classes of the proficiency ratios of primary care physicians. 
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3.2.3.4 Supply Interventions 

We run the model considering three growth scenarios to account for expected growth in 

the number of residency positions available in Georgia [89]: 0% (constant), 12% (medium) 

and 30% (high) growth in the number of enrolled graduate students.  

Provider acceptance of publicly-insured patients is estimated using the approach in [13]. 

We account for possible changes in the Medicaid participation among physicians due to 

the Medicaid Parity Program [90], by considering: Medicaid acceptance ratios increase 

only in years 2013 and 2014 (without Parity), and Medicaid participation increases for the 

entire study period (with Parity). The increment in the Medicaid acceptance ratio due to 

the Medicaid Parity Program is estimated to be 13.03% [91]. 

3.2.4 Need Projection Model 

We project need and not demand of medical care to estimate potential spatial access of 

primary care, which reflects important potential barriers to care. Demand depends on 

several factors such as income and education. For example, in the Grossman’s model [92], 

highly educated people are expected to be more efficient producers of health. Our estimates 

of need, however, are driven by demographic characteristics and health status [93, 94]. We 

use utilization data as a measure of self-assessed health status, since “self-assessments 

often provide the ‘trigger’ that leads to consultations with primary care providers” [93]. 

Need is projected for three age classes (19-24, 25-44, and 45-64), by insurance status, and 

by gender. Insured population is divided into eligible for Medicaid and with private 

insurance. Under no-ACA and non-expansion of Medicaid, only adults with children under 
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18 and a family income of less than 36% of the federal poverty level (FPL) are eligible for 

Medicaid. ACA implementation with non-expansion of Medicaid additionally makes non-

elderly people in families with income between 100 and 400 percent of FPL eligible for 

health insurance subsidizes. Under Medicaid expansion, all adults with income below 

138% of FPL are eligible for Medicaid. Figure 6 summarizes the eligibility criteria for the 

three scenarios. 

 

Figure 6. Medicaid eligibility criteria under different ACA implementation scenarios. 

Our model consists of three steps. First, the number of adults eligible for Medicaid under 

each scenario is forecasted for each census tract and year. Second, we use published 

estimates to compute the number of uninsured and privately-insured adults in each county. 

These two steps are described in detail in the following subsections. Finally, adults are 

distributed to census tracts and split into age and gender classes according to ratios 

computed from 2010 Census Table PCT3. 
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3.2.4.1 Projecting Medicaid-insured 

Regression models are used to project the total Medicaid-eligible population in Georgia in 

each county for each ACA implementation scenario. Specifically, for the baseline year, 

regression models are fit on the number of married family households with children under 

18, single parent households, and family households without children in each county using 

characteristics such as average household size, education, age, race, average rent, and 

median income. Future household estimates are produced by forecasting predictors to 

future years. Full model details are given in Appendix B.2. The predicted household counts 

are divided into income ranges to determine eligibility and converted into number of 

nonelderly adults using ratios computed from 2010 Census and 2012 ACS data.  

We assume the number of nonelderly adults in group quarters and nonfamily households 

stays proportional to the total number of nonelderly adults each year and that these adults 

do not have children. Therefore, these adults are only eligible for Medicaid under the 

Medicaid-expansion scenario. The proportion of these adults below 138% of FPL is 

assumed to be the same as the proportion of all adults within 138% of FPL given in 2012 

ACS Table B17024. 

3.2.4.2 Projecting Uninsured and Privately-insured 

For each county, we obtain the baseline percentage of non-elderly uninsured adults with 

respect to FPL using the 2013 ACS Table C27016 and the population forecasted each year 

from the Governor's Office of Planning and Budget [76].  



 44 

For the no-ACA scenario, we assume the proportion uninsured stays equal to the 2013 

estimates each year.  

For the Medicaid expansion scenario, we assume the percent uninsured decreases over the 

years due to the effect of the individual mandate. In particular, we assume that the total 

reduction of the uninsured population in Georgia in 2022 and in the subsequent years with 

respect to the baseline no-ACA implementation scenario is equal to 51.3% as estimated by 

the Kaiser Family Foundation/Urban Institute: State-by-State implication of ACA [78]. We 

project such a reduction year-by-year by using the nationwide year-by-year change 

estimates from the Congressional Budget Office [79], shown in Figure 7. 

For the non-expansion scenario, we split the population into those under 138% of FPL and 

those over. Because adults under 138% of the FPL are eligible for a hardship exemption to 

the individual mandate if their state does not expand Medicaid, we assume for this group 

that the proportion uninsured each projected year stays equal to the 2013 census estimate. 

For adults over 138% of the FPL, we apply the reduction in uninsured that was described 

for the Medicaid expansion scenario. Note, combined with the uninsured under 138% of 

FPL, the total reduction of the uninsured population in Georgia in 2022 with respect to the 

baseline scenario is equal to 27.7%, close to the estimate of 28% by [78]. 

For each county, year, and ACA implementation scenario, we subtract our forecasted 

number of Medicaid-eligible adults and the estimated number of uninsured from the total 

nonelderly adult population forecasted by [76] to obtain the number of privately insured. 
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Figure 7. Congressional Budget Office’s yearly estimates of proportion of uninsured 

that will be covered nationwide. 

3.2.5 Optimization Model 

We apply an optimization model similar to the one described in Chapter 2 Section 2.2.3 to 

match need and supply under a series of access constraints such that the travel to care is 

optimized. 

Decision variables represent the total number of patients in each census tract of a given age 

class and gender assigned to a specific provider location, namely 𝑥𝑖𝑗𝑔𝑘
𝑀  and 𝑥𝑖𝑗𝑔𝑘

𝑂 , where 

index  𝑖 ∈ 𝐶 represents a census tract, index  𝑗 ∈ 𝑃 represents a provider location, index  𝑘 

denotes a specific age class, index g represents the gender, and superscripts M and O 

distinguish between adults covered by Medicaid and adults covered by private insurance 

respectively. 

We assume an important factor influencing a patient’s choice in provider is distance, hence, 

patients prefer to visit nearby physicians. Thus, our objective function is the weighted sum 

of the total distance traveled which needs to be minimized: 
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𝑚𝑖𝑛 (∑ ∑ ∑ ∑ 𝑑𝑖𝑗𝑣𝑘𝑔(𝑥𝑖𝑗𝑘𝑔
𝑀 + 𝑥𝑖𝑗𝑘𝑔

𝑂 )

𝑔∈𝐺𝑘∈𝐾𝑗∈𝑃𝑖∈𝑆

) 

where 𝑑𝑖𝑗 is the distance between the centroid of census tract 𝑖 and provider location 𝑗 and 

𝑣𝑘𝑔 are provider utilization ratios (the average number of office visits per patient)  per age 

class k and gender g, provided by [66]. 

Constraints for the model are described in Table 10 with parameter descriptions given in 

Table 11. Note, capacity 𝑠𝑗 at location 𝑗 returned by the supply projection is decreased by 

55% to account 10% visits devoted to children [36] and for 45% visits devoted to elderly 

population [95]. Also, following guidelines established by the U.S. Department of Health 

and Human Services on rational areas for the delivery of primary medical care [44], we set 

a maximum possible travel distance of 25 miles for those with a vehicle and 10 miles for 

those without. 

The output of the model consists of the optimal assignment of needed visits in each census 

tract to providers in the network, while the needed visits within a census tract may be 

assigned to different providers or/and a proportion of the need may not be served. Hence, 

the model provides estimates of the served visits for primary care. The difference between 

the needed and served visits provides the unmet need, describing patients’ ability to find 

providers who will serve them. 
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Table 10. Detailed mathematical formulation of the adult primary care optimization 

model. 

 

 

 Brief Description 

𝑚𝑖𝑛 (∑ ∑ ∑ ∑ 𝑑𝑖𝑗𝑣𝑘𝑔(𝑥𝑖𝑗𝑘𝑔
𝑀 + 𝑥𝑖𝑗𝑘𝑔

𝑂 )

𝑔𝑘𝑗∈𝑃𝑖∈𝑆

) 

 

 The objective function is the minimization 
of the total weighted traveled distance. 

 

∑ 𝑥𝑖𝑗𝑘𝑔
𝑀

𝑗

≤ 𝑝𝑖𝑘𝑔
𝑀  

 

∀𝑖 ∈ 𝐶 
∀𝑘 ∈ 𝐾 

∀𝑔 ∈ 𝐺 

Assignment constraints that ensure total 
number of Medicaid-insured (privately-
insured) patients assigned to providers in 
each census tract does not exceed the 
total estimated Medicaid-insured 
(privately-insured) population, a 
minimum number of patients are 
assigned, and assignments are non-
negative. 

 

∑ 𝑥𝑖𝑗𝑘𝑔
𝑂

𝑗

≤ 𝑝𝑖𝑘𝑔
𝑂  

 

∀𝑖 ∈ 𝐶 

∀𝑘 ∈ 𝐾 

∀𝑔 ∈ 𝐺 

∑ ∑ ∑(𝑥𝑖𝑗𝑘𝑔
𝑀 + 𝑥𝑖𝑗𝑘𝑔

𝑂 )

𝑘,𝑔

≥ 𝑐𝑚𝑖𝑛 ∑ ∑(𝑝𝑖𝑘𝑔
𝑀 + 𝑝𝑖𝑘𝑔

𝑂 )

𝑘,𝑔𝑖𝑗𝑖

 

 

 

 

𝑥𝑖𝑗𝑘𝑔
𝑀 ≥ 0, 𝑥𝑖𝑗𝑘𝑔

𝑂 ≥ 0  

∀𝑖 ∈ 𝐶 

∀𝑘 ∈ 𝐾 

∀𝑔 ∈ 𝐺 

∀𝑗 ∈ 𝑃 

 

∑ ∑(𝑥𝑖𝑗𝑘𝑔
𝑀 + 𝑥𝑖𝑗𝑘𝑔

𝑂 )

𝑘,𝑔

= 0

𝑗:𝑑𝑖𝑗≥𝑚𝑖𝑚𝑎𝑥

 

 

 

∀𝑖 ∈ 𝐶 
Accessibility constraints which mimic 
distance barriers encountered by 
patients.  

 

∑ ∑ 𝑥𝑖𝑗𝑘𝑔
𝑀

𝑘,𝑔

≤ 𝑚𝑜𝑏𝑖
𝑀𝑝𝑖

𝑀

𝑗:𝑑𝑖𝑗≥𝑚𝑜𝑏𝑚𝑎𝑥

 

 

 

∀𝑖 ∈ 𝐶 

 

∑ ∑ 𝑥𝑖𝑗𝑘𝑔
𝑂

𝑘,𝑔

≤ 𝑚𝑜𝑏𝑖
𝑂𝑝𝑖

𝑂

𝑗:𝑑𝑖𝑗≥𝑚𝑜𝑏𝑚𝑎𝑥

 

 

∀𝑖 ∈ 𝐶 

 

∑ ∑ ∑ 𝑣𝑘𝑔(𝑥𝑖𝑗𝑘𝑔
𝑀 +𝑥𝑖𝑗𝑘𝑔

𝑂 ) ≥  𝑙𝑐 ∗  𝑠𝑗

𝑔𝑘𝑖

∗ 𝛿 

 

 

∀𝑗 ∈ 𝑃 

 

Availability constraints which require 
providers to maintain a sufficiently large 
number of visits to remain in paractice 
and to stay within their overall capacity 
and capacity available for Medicaid.  

∑ ∑ ∑ 𝑣𝑘𝑔(𝑥𝑖𝑗𝑘𝑔
𝑀 +𝑥𝑖𝑗𝑘𝑔

𝑂 ) ≤ 𝑠𝑗

𝑔𝑘𝑖

∗ 𝛿 

 

 

∀𝑗 ∈ 𝑃 

 

 

∑ ∑ ∑ 𝑣𝑘𝑔 ∗ 𝑥𝑖𝑗𝑘𝑔
𝑀 ≤ 𝑝𝑎𝑚𝑗 ∗ 𝑠𝑗

𝑔𝑘𝑖

∗ 𝛿𝑐 

 
 

 

∀𝑗 ∈ 𝑃 
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Table 11. Parameters used in the adult primary care optimization model. 

Parameters of the 
Model 

Description Value Data Source 

𝒑𝒌𝒈𝒊
𝑴  Total Medicaid-insured population in 

age class 𝑘, gender 𝑔, at census tract 𝑖. 
 Demand Projection Model 

𝒑𝒌𝒈𝒊
𝑶  Total privately--insured population in 

age class 𝑘, gender 𝑔, at census tract 𝑖. 
 Demand Projection Model 

𝒑𝒌𝒈𝒊
𝑼  Total uninsured population in age class 

𝑘, gender 𝑔, at census tract 𝑖. 
 Demand Projection Model 

𝒎𝒐𝒃𝒊
𝑴 Percentage of Medicaid-insured 

population in census tract 𝑖 that owns 
at least one vehicle 

 2010 Census and 2012 American 

Community Surveys [42]. Assumed 

constant for each year. 

𝒎𝒐𝒃𝒊
𝑶 Percentage of privately-insured 

population in census tract 𝑖 that owns 
at least one vehicle 

 2010 Census and 2012 American 

Community Surveys [42]. Assumed 

constant for each year. 

𝒎𝒊𝒎𝒂𝒙 Maximum allowed distance (in miles) 
between a patient and the matched 
provider 

25 US Department of Human and 
Health Services [44]. Assumed 
constant for each year. 

𝒎𝒐𝒃𝒎𝒂𝒙 Maximum allowed distance (in miles) 
between a patient and the matched 
provider when the patient does not 
own a vehicle 

10  
- 

𝒅𝒊𝒋 Distance between centroid of census 
tract 𝑖 and provider 𝑗 

 Assumed constant for each year. 
ArcGIS Network Analyst [45], 
2013 NPI data (for provider 
location) [38], 
2010 SF2 100% Census data (for 
centroid location) [42]. 

𝒗𝒌𝒈 Number of yearly visits of a person 
with insurance coverage in age class 𝑘 
of gender 𝑔 

 Assumed constant for each year 
[66] 

𝒄𝒎𝒊𝒏 Minimum percentage to be assigned 
providers 

 Experimentally evaluated 

𝒔𝒋 Total available visits at  provider 
location 𝑗 

 Supply projection model  

𝒍𝒄𝒋 Percentage of provider’s caseload 
necessary to remain in practice 

 Experimentally evaluated 

𝒑𝒂𝒎𝒋 Probability that providers in location 𝑗 
accept Medicaid-insured patients 

 Assumed constant for each year. 
MAX Medicaid Claims data [40].  

𝜹 Percentage of provider’s caseload 
dedicated to non-elderly population 

45% [36], [95] 

𝜹𝒄 Percentage of Medicaid provider’s 
caseload dedicated to non-elderly 
population 

90% [36] 

 

3.2.6 Availability and Accessibility Measures 
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We use the results of the optimization model to measure spatial access to primary care for 

the adult population at the census tract level yearly. 

We measure both accessibility and availability by means of two indices that vary between 

zero (worst value) and one (best value). In particular, accessibility is measured as one 

minus the ratio between the average distance a person travels to reach his/her assigned 

provider and the maximum allowed distance according to the guidelines established by the 

U.S. Department of Health and Human Services [44]. Hence, for a given census tract, if 

the average distance a person travels for each visit is 10 miles (25 miles), the corresponding 

accessibility index for the census tract is 0.6 (0.0). Availability is measured as one minus 

the congestion (the ratio between the visits assigned to a provider and his/her maximum 

caseload) a person in the census tract experiences for each visit at his/her assigned provider. 

Hence, if the average congestion of a physician in a given census tract is equal to 80% (the 

number of visits assigned to a typical provider is 80% as large as his/her maximum 

caseload), the availability index in the census tract is equal to 0.2. We assume people who 

are not assigned to a provider have the worst spatial access, hence regions whose 

population is not assigned to any provider are assumed to experience lowest accessibility 

and availability equal to 0. 

Similar to Section 2.2.5 of Chapter 2, we identify the specific tracts where the difference 

in either accessibility, availability or served need between two given scenarios is 

statistically significant by considering the difference process 𝑍(𝑠) = 𝑀1(𝑠) − 𝑀2(𝑠) for 

each spatial unit 𝑠 (i.e., census tract) within a geographic domain (e.g. state). We consider 

multiple levels of differences to gain understanding by how large differences are, if they 

exist. The difference thus takes three different levels, i.e., δ=0.0, δ=0.05, or δ=0.1. We 
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again create significance maps, where points correspond to the centroids of the census 

tracts where the difference process Z(s) is significantly negative or positive. With each map 

is an associated table containing the number of locations where the difference process is 

statistically significantly positive, negative and of no change. A significance level of 0.05 

is used. 

3.3 Results 

Results are obtained for 13 possible different scenarios Table 12 of different 

implementations of Medicaid eligibility expansion (no-ACA, non-expansion, expansion), 

different supply growth rates (constant, medium, high), and different Medicaid acceptance 

ratios (without Parity, with Parity). The baseline scenario corresponds to no-ACA, constant 

supply growth and without Parity. 

Table 12. Different policy scenarios considered. 

  
Medicaid Parity WITHOUT Expansion 

(without Parity) 
Medicaid Parity WITH Expansion  

(with Parity) 

Need/Supply 

Constant 
Growth  

(0% increase) 

Medium 
Growth  

(12% increase) 

High Growth   
(30% increase) 

Constant 
Growth  

(0% increase) 

Medium 
Growth  

(12% increase) 

High Growth   
(30% increase) 

No-ACA 
Implementation 

1 (baseline) - - - - - 

ACA Non-
expansion 

2 3 4 8 9 10 

ACA with 
Expansion 

5 6 7 11 12 13 

 

3.3.1 Supply-Projection Model 

Between 2013 and 2025, the number of primary care physicians increases by 9.2% (615 

total) under the constant growth, by 10.1% (677 total) under the medium growth, and by 
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11.7% (784 total) under the high growth scenarios. The number of NPs is projected to 

increase by 20%, while the number of PAs by 47%. 

3.3.2 Need-Projection Model 

Under Medicaid expansion, additional 980,000 people are projected to be eligible for the 

Medicaid program by 2025, and a decrease of over 700,000 uninsured is projected. In 2013, 

the percentage of Medicaid-eligible adult population is estimated to be 2%, while under 

the expansion scenario in 2025, it is projected to be 17% of the total population. The 

percentage of uninsured is estimated to be 26% of the total population in 2013 and 15% in 

2025 under expansion. Population aging and growth are projected to produce an increase 

in the needed visits by 20% by 2025. 

3.3.3 Optimization Model 

Figure 8 shows the number of served visits in the state for all the projected years 

considering different scenarios. In 2025, the number of served visits under the baseline 

scenario is 7,044,866; an additional 876,124 visits are served due to the exchange market, 

a negligible number of additional visits are served due to supply growth and/or 

implementation of the parity program, while an additional 439,087 visits are served under 

Medicaid eligibility expansion. In the baseline scenario in 2013, the served visits are 67% 

of the needed visits and they remain the same in 2025 both for the baseline scenario and 

under non-expansion, while they increase to 80% under expansion regardless of supply 

growth. 
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Figure 8. Total served visits in the state for all projected years and for different 

scenarios. 

Table 13 shows the impact of the ACA provisions with and without Medicaid expansion 

on the served visits in year 2025 for the entire population. The impact of ACA under non-

expansion is measured as the difference between the percentage of served visits under the 

non-expansion and no-ACA scenarios without additional supply growth or the Parity 

program (scenario 2 and scenario 1 in Table 12). The impact of Medicaid eligibility 

expansion is measured as the difference in the percentage of served visits under the 

expansion and non-expansion scenarios (scenario 5 and scenario 2 in Table 12). In year 

2025 with =0.0, almost all the census tracts have a statistically significantly increment in 

the served visit for the entire population due to the provisions of ACA both with and 

without Medicaid expansion. For   0.1 the difference is not statistically significant. The 

significance maps for =0.0 are given in Figure 9, where it is shown that the positive impact 

is not concentrated in specific areas but affects the entire state. 
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Table 13. Number census tracts where the difference in the percentage of served visits 

is significantly positive, negative, or with no change, for three levels of the difference 

for the entire population in 2025.  

  
Change 

Difference in the percentage of served visits 

=0% =5% =10% 

Imapct of ACA 
under Non-
expansion 

Positive 1954 1472 0 

Negative 0 0 0 

No Change 1 483 1955 

Impact of 
Medicaid 
Expansion 

Positive 1955 0 0 

Negative 0 0 0 

No Change 0 1955 1955 

 

 Positive Negative 

Impact of 
ACA under 

Non-
expansion 

  

Impact of 
Medicaid 
Expansion 

  

Figure 9. Significance maps marking census tracts where the difference in percentage 

of served visits in 2025 is significantly positive or significantly negative. Grey-shaded 

counties were not found to have a significant difference. 
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3.3.4 Availability and Accessibility Measures 

3.3.4.1 Accessibility 

In the baseline scenario in 2013, the median accessibility is 0.674 for the overall 

population, 0.919 for the publicly-insured, and 0.925 for the privately-insured.  

In year 2025 under non-expansion, assuming medium supply growth with parity, median 

accessibility is 0.760 for overall population, 0.921 for publicly insured, and 0.926 for 

privately insured. Under expansion, median accessibility is 0.811 for overall population, 

0.922 for publicly insured, and 0.925 for privately insured. Figure 10 shows the median 

level of accessibility at the state level for all the projected years considering different 

scenarios. 

The impact on accessibility of ACA under non-expansion is measured as the difference 

between the level of accessibility under the non-expansion and no-ACA scenarios. In 2025, 

the impact regardless of the implementation of the Parity program ranges between -0.2 and 

0.5, where positive values correspond to an improvement in accessibility under non-

expansion. For =0.0, assuming medium supply growth, the majority of census tracts show 

a statistically significantly positive difference regardless of the implementation of the 

Parity program. Such a difference is not statistically significant for  0.1 (see Table 14). 

The corresponding significance maps for =0.0 show that the positive impact is not 

concentrated in specific areas but affects the entire state uniformly. 

The measure of the impact of Medicaid eligibility expansion is measured as the difference 

in the level of accessibility under the expansion and non-expansion scenarios. In 2025, 
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assuming medium supply growth with parity, impact ranges between -0.095 and 0.095 for 

the publicly-insured for 95% of the census tracts, and between -0.06 and 0.06 for the 

privately-insured, where positive values correspond to an improvement in accessibility 

under expansion. For =0.0, the number of census tracts where the difference is statistically 

significantly positive (negative) is 82 (61) for the publicly-insured population and 79 (156) 

for the privately-insured population. For   0.05 the difference is not statistically 

significant (Table 15). The significance maps for =0.0 show both the positive and negative 

impact are concentrated mainly in urban areas, namely, the Atlanta and Columbus areas. 

Table 14. Number census tracts where the difference between the non-expansion with 

medium supply growth and the baseline scenarios is significantly positive, negative, 

or with no change, for three levels of the difference, for the entire population in 2025. 

Parity 
Program 

Change 
ACCESSIBILITY AVAILABILITY 

0% 5% 10% 0% 5% 10% 

No 

Positive 1934 1209 0 579 0 0 

Negative 0 0 0 109 0 0 

No Change 21 746 1955 1267 1955 1955 

Yes 

Positive 1935 1212 0 538 0 0 

Negative 0 0 0 104 0 0 

No Change 20 743 1955 1313 1955 1955 

 

Table 15. Number census tracts where the difference between the expansion and non-

expansion scenarios, assuming medium supply growth, is significantly positive, 

negative, or with no change in 2025, by population group and level of the difference. 

Parity 
Program 

 
Change 

ACCESSIBILITY AVAILABILTY 

Publicly-insured Privately-insured Publicly-insured Privately-insured 

0% 5% 10% 0% 5% 10% 0% 5% 10% 0% 5% 10% 

No 

Positive 88 0 0 85 0 0 0 0 0 0 0 0 

Negative 171 0 0 81 0 0 1820 0 0 1955 0 0 

No Change 1696 1955 1955 1789 1955 1955 135 1955 1955 0 1955 1955 

Yes 

Positive 82 0 0 79 0 0 0 0 0 0 0 0 

Negative 61 0 0 156 0 0 1955 1015 0 1955 0 0 

No Change 1812 1955 1955 1720 1955 1955 0 940 1955 0 1955 1955 



 56 

 

 

 

Figure 10. Median accessibility (top) and median availability (bottom) at the state 

level for the entire population for all the projected years and for different scenarios. 

3.3.4.2 Availability 

In the baseline scenario in 2013, median availability is 0.202 for the overall population, 

0.418 for the publicly-insured, and 0.271 for the privately-insured. 
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In 2025 under non-expansion, assuming medium supply growth with parity, median 

availability is 0.196 for the overall population, 0.348 for the publicly-insured, and 0.234 

for the privately-insured. Under expansion, median availability is 0.182 for the overall 

population, 0.251 for the publicly-insured, and 0.196 for the privately-insured. Figure 10 

shows the median level of availability at the state level for all the projected years 

considering different scenarios. 

In year 2025, assuming medium supply growth, the impact on availability of ACA non-

expansion, regardless the implementation of the Parity program, ranges between -0.3 and 

0.5, where positive values correspond to an improvement in availability under non-

expansion. For =0.0, the number of census tracts where the difference is statistically 

significantly positive (negative) is 579 (109) without Parity and 538 (104) with Parity. For 

  0.05 the difference is not statistically significant (see Table 14). 

The impact on availability of Medicaid eligibility expansion, assuming medium supply 

growth with parity, ranges between -0.48 and 0.48 for the publicly-insured for 95% of the 

census tracts and between -0.28 and 0.28 for the privately-insured, where positive values 

correspond to an improvement in availability under expansion. For =0.0, the majority of 

the census tracts show a statistically significantly negative difference for both the 

population groups regardless of the implementation of the Parity program. For   0.1 the 

difference is not statistically significant (Table 15). 

3.4 Discussion 
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This chapter focuses on the projected impact of ACA implementation on spatial access to 

primary care for non-elderly population at the census tract level and over time for Georgia.  

Existing studies project supply either for the entire workforce [67, 96, 97] or by 

specialization [94, 98-103] commonly at the national level. This paper is the first to report 

primary care supply projections by age and at the census tract level.  

In contrast to existing research [53, 66, 104], we evaluate the impact of ACA (with or 

without Medicaid expansion) on healthcare access using served need estimated using an 

optimization model. This is an important contribution as it should be expected that not all 

supply will be available to patients in need of care due to healthcare access barriers and 

system constraints. 

The percentage of unmet needed visits decreases to 25% under non-expansion and to 20% 

under expansion, both for medium and high supply growth. These results are not consistent 

with existing studies, which forecast that the supply shortage worsens with the 

implementation of the ACA [53, 66, 104]. This discrepancy is explained by the fact that 

our shortage measure accounts for system interactions between supply and need, unlike 

commonly used measures [53, 64, 66]. Additionally, these findings reveal the importance 

of interventions to increase supply in targeted areas so that accessibility and availability 

barriers can be overcome where needed. 

Overall, the implementation of the ACA will have a positive impact on accessibility 

(increase up to 20% under expansion), while it will negatively affect availability (decrease 

between 13% and 19% under expansion). This finding reveals the importance of 

implementing interventions accounting for multiple dimensions of access simultaneously. 
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However, the overall impact on spatial access will minimally affect the geographic 

disparities in the state. We find that few communities, particularly those with predominant 

uninsured population, experience improved accessibility, and few communities experience 

reduced accessibility due to the added need. We also project that the ACA provisions 

excluding Medicaid expansion will minimally affect availability, although the number of 

communities with projected lower availability is larger than the number of communities 

with projected lower accessibility.  

More importantly, under Medicaid expansion, the burden on the privately insured 

population in terms of accessibility of primary care is not substantial. There are very few 

communities where privately insured will experience lower accessibility of primary care 

services. The availability of primary care providers for both the populations will decrease 

in most communities. Such a decrement, however, is not greater than 0.05.  

One primary challenge in this study is the limited data availability. We consider multiple 

data sources for different years when estimating the model parameters. A second limitation 

is the reliance on several model assumptions. The supply model assumes that provider 

productivity and its geographic distribution remain the same as in the baseline year. The 

supply of midlevel providers is underestimated because such providers are not captured in 

NPESS if they do not directly bill for services; the practice act in Georgia requires midlevel 

providers to practice under the supervision of a physician [105]. The projection of midlevel 

providers may also be underestimated as the supervision requirements may be removed. 

The need projection model assumes that current patterns of healthcare utilization remain 

the same as in the baseline year. While the need estimates are based on utilization ratios 

which may underestimate or overestimate need for some subpopulations, other approaches 
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such as using the recommended care guidelines could consistently underestimate the need 

across most populations, particularly for those with chronic conditions. In the optimization 

model, the willingness to travel is assumed the same for all populations in rural and urban 

areas. The models introduced in this paper are general in that they allow such assumptions 

to be relaxed if detailed local-level data are available to inform the system constraints. 

Additionally, our models account for changes in supply and need due to some provisions 

of the ACA (i.e., Medicaid eligibility expansion, the creation of the exchange insurance 

market, supply growth, and Medicaid Parity program), but they do not account other major 

changes in policy such as new payment models or technology oriented health care 

provisions as it is still unclear how such changes will impact supply. These can be 

addressed using our models along with simulation approaches, which can generate 

behavioral responses to such changes.  

Even though this study has several limitations, it has some important implications for 

health care providers and policy makers. While there are several national-level studies 

highlighting the need of primary care providers for supplying the increased need due to 

ACA provisions [53, 63-64, 66], we find that such provisions (i.e. Medicaid eligibility 

expansion and health exchange markets) will reduce the total unmet need and positively 

impact accessibility for the overall population while reducing availability.  

With respect to accessibility, the burden of the increased need due to a higher Medicaid 

population is not significant on the privately-insured population, while potentially reducing 

the availability of primary care providers for the publicly-insured and the privately-insured 

population.  
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If Georgia opts for Medicaid eligibility expansion the total level of served need will 

substantially increase (from 67% to 80%) in 2025. Such a policy will positively affect the 

total level of accessibility for the overall population, while reducing availability. Increase 

of supply will also positively affect the served need and the accessibility but will not 

uniformly overcome spatial access barriers. For a more effective impact, interventions need 

to be targeted locally accounting simultaneously for multiple dimensions of access. 
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CHAPTER 4. PROVIDER-LEVEL CASELOAD OF 

PSYCHOSOCIAL SERVICES FOR MEDICAID-INSURED 

CHILDREN 

4.1 Introduction 

Mental health (MH) disorders are prevalent among children but undertreated, with less than 

half of those with mental health disorders receiving any services [106]. For the most 

common disorders among this population, including depression, anxiety disorder, and 

attention deficit/hyperactivity disorder, psychotherapy and/or other psychosocial services 

are recommended as a first line of treatment [107-110]. Guidelines by the National Institute 

of Mental Health specify that children with mental health and behavioral disorders should 

all receive psychotherapeutic or psychosocial intervention, and that psychotropic 

medication should be complemented by provision of these services [111]. Several studies 

examined the efficacy of various psychosocial interventions [112-115]. About 75% of 

people who undergo psychotherapy show improvement for their condition [116]. 

Medicaid is the largest insurer of children [117] and the single largest payer of mental 

health services [118], but studies have documented that many Medicaid-insured children 

with mental health and behavioral disorders do not receive any psychosocial treatment 

[119-124]. Only 49% of young persons aged ≤20 years received psychosocial services 

before starting antipsychotics [125], and only 68% of children and adolescents aged 6-17 

years received concurrent therapy [123]. Fewer than 38% of children aged 6-12 years who 

initiated medication for attention deficit/hyperactivity disorder received any psychotherapy 
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visits [119]. Among children who initiate treatment, many do not receive a minimal number 

of psychotherapy [124, 126] or psychosocial [127, 128] visits. 

Several studies have posited that lack of geographic access to treatment is one of the major 

barriers to psychotherapy services for this population. Not only is there an overall shortage 

of mental health providers in most states [129], but many mental health providers do not 

accept Medicaid [129-131].  A national survey of office-based psychiatrists found that the 

percentage of psychiatrists who accept Medicaid declined from 2010 to 2015, and only 

35.4% accepted new Medicaid patients during the most recent period examined (2014-

2015) [131]. Studies have also examined the geographic availability of mental health 

treatment facilities that accept Medicaid [132, 133] and/or serve children [134]. Those 

studies reported that many communities lack these resources. 

 Although some studies have provided information about geographic availability and 

distribution of Medicaid-participating providers [132-134], these studies did not describe 

the volume of services provided at each location. Anecdotal evidence suggests that a small 

percentage of mental health treatment facilities and clinics may provide the majority of 

services to this population (i.e., high-volume providers). These studies also focused on 

specialty mental health providers; however, psychosocial services can also be delivered in 

other settings such as primary care practices [135-138]. To date, empirical data are lacking 

on how the supply of psychosocial services for Medicaid-enrolled children varies across 

provider types (e.g., primary care, mental health specialists). A nuanced understanding has 

important implications for informing the accessibility of services for Medicaid-enrolled 

children. 
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This chapter links two large national databases to conduct the most comprehensive analysis 

to date on the supply of psychotherapy services available to Medicaid-insured children. 

Our objectives were to provide new information about who delivers psychosocial services 

to Medicaid-enrolled children and how visit volume is distributed across provider types 

and geography. Material in this chapter has been published in final form at [139]. 

4.2 Methods 

4.2.1 Data Sources 

We used data from the 2013 National Plan and Provider Enumeration System (NPPES) 

database [38] and 2012-2013 Medicaid Analytic eXtract (MAX) claims [40]. NPPES is a 

national database listing all health care providers with a National Provider Identifier (NPI) 

number. An NPI number can be assigned to a person (entity type 1) or an organization, 

such as a hospital or physician group (entity type 2). We used NPPES to determine whether 

a provider seeing Medicaid-insured children for psychosocial services specializes in a 

mental health–related field, as defined by the Health Resources and Services 

Administration [140], or another field, such as primary care, rehabilitative care, or 

developmental care. We considered providers who fell into one of the following 11 

provider categories: psychiatrist, psychologist, counselor, social worker, mental health 

center, other entity 1 mental health, other entity 2 mental health, primary care, 

rehabilitative/developmental care, other care center (including general acute-care hospitals 

and federally qualified health centers), and other entity 2 related care. A full description of 

taxonomies in each category is available in Appendix C. We included psychiatric hospitals 
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and residential treatment facilities in the category of mental health center because they can 

have outpatient clients [141].  

For the MAX data, the most recent years of data available from CMS when this study began 

were 2013 for 28 states and 2012 for all states. We used information from the MAX 

Personal Summary file, which contains demographic data for Medicaid beneficiaries, and 

the MAX Other Therapy file, which contains claims for services received by Medicaid 

beneficiaries outside of inpatient hospitals, long-term care facilities, and pharmacies. We 

used Current Procedural Terminology (CPT) codes [142] to identify health care encounters 

involving psychotherapy (including individual, group, or family psychotherapy) or other 

psychosocial services, such as skills training and development, psychosocial rehabilitation 

services, and activity therapy. The selected CPT codes are level 1 Healthcare Common 

Procedure Coding System codes that are based on codes used in a Centers for Disease 

Control and Prevention study [143]. The Georgia Institute of Technology Institutional 

Review Board approved this study. 

4.2.2 Linking NPPES Provider Database to MAX Claims 

We developed an algorithm to link providers in the NPPES Provider database with the 

healthcare encounter data from the MAX OT file. The MAX OT file contains two separate 

identifiers for the billing provider (the NPI number as well as a unique Medicaid 

identification number) and one identifier for the service provider (a unique Medicaid 

identification number). We assumed that the Medicaid beneficiary received services from 

the provider listed in the “service provider” field, which can differ from the “billing 

provider”. For example, individual providers may work for a subsidiary organization but 
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bill under the NPI number of a parent organization. Because the “service provider” field in 

the MAX data only contain the unique Medicaid identification number, we created an 

algorithm to match an NPI number to the service provider field using information from the 

billing provider fields. This algorithm is summarized in Figure 11 and described below. 

 

 

Figure 11. Procedure to match service providers to NPIs. 

 

In Step 1, if a service provider ever appeared as a billing provider in the MAX OT file, we 

assessed whether all claims for which he or she was listed as the billing provider had the 

same NPI. In this case, we considered that NPI be a ‘match’. This accounted for 33% of all 

matches for psychosocial service providers.  If the service provider was not matched, in 

step 2 we assessed whether the billing NPI field was valid and identical in all claims in 
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which he or she was listed as the service provider. If so, we considered that to be the 

matched NPI (42% of all matches).  Service providers matched in these two steps were 

considered to have a single NPI match. 

For service providers with multiple valid NPIs in the billing NPI field, we randomly 

selected a billing NPI with a MH-related primary taxonomy from the claims in which they 

were the billing provider if those claims had any such primary taxonomies (3.4% of all 

matches). If not, we randomly selected a billing NPI with a MH-related primary taxonomy 

from the claims in which they were the service provider (5.4% of all matches).  Remaining 

service providers were either matched to a random non-MH-related billing NPI (4.0% of 

all matches) or had no associated billing NPIs that were listed in the NPPES database (12% 

of all matches). 

In our analysis, we included 21 states from 2013 and 13 additional states from 2012 (34 

states total) for which we could match at least 75% of psychosocial service providers to a 

single NPI number in the NPPES database. States for which we could match <75% of 

psychosocial service providers to a single NPI number in the NPPES database either had a 

large number of service providers, each with multiple potential NPI numbers (e.g., Indiana, 

Nebraska, Wyoming), or had a large number of billing NPI numbers not listed in the 

NPPES database and, therefore, service providers could not be matched to any NPI number 

(e.g., Michigan, Missouri, New Hampshire). 

4.2.3 Address Classification 

To avoid a provider’s caseload being split between his or her own Entity 1 NPI number 

and his or her organization’s Entity 2 NPI number, we additionally grouped providers with 
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the same practice address together and performed an address-level analysis. That is, for 

each address where at least 1 Medicaid psychosocial service provider practices, we took 

the following 3 steps: (1) we identified all providers in the 2013 NPPES database sharing 

that practice address, (2) we determined the provider category of each of those providers 

using their Entity type and primary taxonomy, and (3) we categorized the practice setting 

of the address. We performed these steps in a hierarchical fashion based on the presence or 

absence of each provider category. For example, the presence of a mental health center 

provider resulted in a “mental health practice setting” categorization, whereas the presence 

of an other care center provider and absence of a mental health center provider resulted in 

an “other care center practice setting” categorization. Remaining categories are shown in 

Figure 12. 

 

Figure 12. Classification of addresses. White boxes list each possible address 

categorization. Each address is categorized based on whether the description of 

providers located at that address given in the blue boxes applies, starting with the box 

furthest left. 

4.2.4 Caseload Estimation 
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We measured the caseload of each Medicaid-participating provider delivering 

psychosocial services by estimating the number of Medicaid-enrolled children who 

received psychosocial services from that provider in a given year and adding all the 

psychosocial visits delivered by that provider. We obtained the unique address-level 

caseloads by combining the caseloads of all service providers practicing at the same 

address. 

We examined state-level variations in the distribution of services across provider and 

location categories, and by practice location urbanicity. We determined urbanicity by using 

the zip code approximation of the rural–urban commuting area codes [144]: codes 1-3 

represented large urban areas (i.e., areas with a primary flow to or within an urbanized 

area), codes 4-6 represented small urban areas (i.e., areas with a primary flow to or within 

a large urban cluster), and codes 7-10 represented rural areas. 

4.3 Results 

In the 34 states (21 states from 2013 and 13 states from 2012), we identified 83,727 mental 

health providers who provided psychosocial services to Medicaid-insured enrollees. Of 

these, 51,638 (61.7%) provided psychosocial services to Medicaid-insured children. We 

additionally identified 18,721 practitioners in related health care settings who provided 

psychosocial services to Medicaid-insured persons, 11,676 (62.4%) of whom served 

children. Combined, these providers saw more than 1.6 million Medicaid-insured children 

and provided more than 32 million psychosocial services visits to these children across 32 

238 provider locations. Of these children, 60% were aged <13 years and 91% had a mental 

health diagnosis. 
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Mental health practitioners conducted more psychosocial treatments than non–mental 

health practitioners (Figure 13). More than one-third of children were treated at mental 

health centers, which accounted for >40% of mental health visits. Counselors, the largest 

group of the 11 provider types, treated 20% of children and accounted for 16% of mental 

health visits. Other care centers treated 16% of children and accounted for 15% of mental 

health visits. 

More than 58% of psychosocial services occurred at addresses with at least 1 mental health 

center. Additionally, about 21% of children were treated and 19% of visits took place at 

other care center locations. Only about 12% of children were treated at locations with 

Entity 1 mental health providers but no organization NPI number. These locations were 

responsible for only 9% of visits.  
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Figure 13. Total number of Medicaid-insured children seen for psychosocial services 

and their corresponding total number of psychosocial visits aggregated among 34 US 

states in 1 selected year (2012 or 2013), by provider category. 
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4.3.1 State-level Distribution of Services 

The distribution of psychosocial services across provider and address categories varied 

considerably by state. The percentage of children who received psychosocial services from 

mental health centers ranged from 2.4% (Washington) to 81.7% (Kentucky), whereas the 

percentage of psychosocial service visits from mental health centers ranged from 1.2% 

(Iowa) to 86.8% (Kentucky). In Oklahoma and Texas, counselors treated the majority of 

children, whereas in Minnesota, psychologists treated the majority of children. In 3 states 

(Iowa, Illinois, and Washington), more children were treated by non–mental health 

providers than by mental health providers. 

Aggregating services by location revealed that in more than half of the states, most services 

occurred at mental health center locations (Table 16, Table 17). However, large variations 

occurred. The percentage of children seeking psychosocial services at mental health center 

locations (vs other locations) ranged from 7.8% (Washington) to 88.6% (Kentucky). In 

Illinois, Iowa, Montana, and Washington, most children (54.5% to 87.2%) were treated in 

other care center locations. Only in Vermont were more than 50% of children seen at 

locations with Entity 1 mental health providers but no Entity 2 providers; however, only 

28.2% of visits by children were made at those locations. 
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Table 16. Distribution of Medicaid-insured child psychosocial patients across address 

categories. Starred states use 2012 data. 

State 

Total No. 

of Patients 

% of Patients 

MHC OCC MHE2 CMH MMH SMH PDE2 PDE1 

Alabama* 35,040 65.9 20.5 11.2 1.1 3.4 8.2 0.3 0.1 

Arizona 56,045 77.0 22.9 2.9 0.2 0.1 0.3 0.3 0.02 

Connecticut 29,903 51.4 36.2 12.2 7.2 5.5 6.7 0.1 0.3 

District of Columbia* 5,868 58.4 41.8 7.3 0 0.3 0.9 0 0 

Florida* 80,695 47.0 20.5 12.6 4.4 11.7 14.6 2.5 4.6 

Georgia 67,249 55.5 10.9 27.8 1.5 6.2 8.5 1.1 1.4 

Hawaii 1,551 56.0 44.7 0 0.7 0 0 0 0 

Iowa 5,667 17.5 81.5 1.7 0.4 0 0 3.2 0.3 

Idaho 18,394 61.6 28.5 22.1 1.5 1.7 1.0 0.7 0 

Illinois* 115,650 29.6 70.5 1.8 0.7 0.8 2.3 0.5 5.6 

Kentucky* 50,774 88.6 4.5 6.2 1.7 2.1 0.2 0.3 0.2 

Louisiana 39,574 68.7 17.6 8.1 3.2 4.0 6.0 0.2 0.7 

Massachusetts 87,878 75.0 20.5 6.2 3.1 2.5 1.8 0.1 0.0 

Maryland* 39,829 65.7 23.0 8.5 1.3 3.5 6.6 0.1 0 

Minnesota 35,874 47.0 25.1 34.2 0.2 7.0 1.6 0.3 0.2 

Mississippi 32,157 63.2 13.1 17.4 3.9 3.9 10.9 0 0 

Montana* 10,465 25.5 54.5 18.1 2.5 12.1 11.2 0.6 1.3 

North Carolina* 78,468 42.0 16.8 24.1 6.0 5.6 19.3 2.7 1.0 

New Jersey 31,482 73.8 13.8 16.8 0.7 0.8 3.3 0.1 0 

New Mexico* 37,938 45.4 36.2 25.0 0.9 3.3 6.5 0.9 1.0 

Nevada* 10,025 85.5 12.8 24.7 6.7 16.1 21.5 1.5 27.7 

New York 61,925 31.9 14.4 10.0 35.2 11.5 10.9 0.5 0.6 

Ohio 122,127 80.2 10.6 12.7 0.6 1.0 0.9 0.9 0.1 

Oklahoma 98,125 52.7 7.4 31.5 2.5 10.3 23.5 0.0 0.8 

Oregon 22,438 62.4 18.3 20.0 1.8 7.9 3.3 0.1 0 

Pennsylvania 110,304 76.9 15.5 9.2 0.6 2.1 2.2 0.5 0.1 

Tennessee 43,134 59.0 12.0 10.9 10.0 10.2 9.6 0.2 0.5 

Texas* 145,564 26.9 30.1 24.7 5.7 11.4 18.6 0.2 0.2 

Utah 13,963 49.1 6.0 43.2 0.9 11.6 6.5 0 0.2 

Virginia* 35,166 47.0 20.3 29.0 4.2 9.2 9.1 0.4 0.1 

Vermont 10,530 42.0 7.7 21.2 7.3 29.6 21.0 0 0 

Washington 50,662 7.8 87.2 4.8 1.8 1.7 1.8 0.3 0.7 

Wisconsin* 34,200 45.3 23.2 18.1 12.4 10.2 7.0 0.5 0.9 

West Virginia 14,364 10.7 5.9 28.4 2.1 3.8 3.4 0.1 0.2 
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Table 17. Distribution of Medicaid-insured child psychosocial visits across address 

categories. Starred states use 2012 data. 

State 

Total No. 

of Visits 

% of Visits 

MHC OCC MHE2 CMH MMH SMH PDE2 PDE1 

Alabama* 840,858 80.3 13.0 3.0 0.1 0.8 2.7 0.1 0.03 

Arizona 745,061 84.2 13.1 2.4 0.1 0.1 0.2 0.02 0.01 

Connecticut 517,747 40.1 34.7 8.4 6.2 4.0 6.4 0.1 0.1 

District of Columbia* 138,044 69.8 18.8 11.0 0 0.1 0.3 0 0 

Florida* 1,030,037 45.6 15.0 9.2 2.8 8.9 11.5 1.6 5.4 

Georgia 1,186,922 73.5 5.2 13.5 0.7 2.1 3.5 0.8 0.8 

Hawaii 32,971 83.9 16.0 0 0.1 0 0 0 0 

Iowa 368,572 3.82 95.7 0.1 0.04 0 0 0.3 0.03 

Idaho 878,843 45.7 43.7 10.1 0.1 0.2 0.1 0.1 0 

Illinois* 1,706,700 33.7 56.0 0.9 0.2 0.3 2.1 0.4 6.5 

Kentucky* 513,478 91.0 2.9 3.9 0.6 1.5 0.04 0.1 0.04 

Louisiana 1,076,208 84.4 4.7 7.2 1.0 0.8 1.7 0.1 0.1 

Massachusetts 2,635,936 80.0 11.9 4.7 1.7 0.9 0.7 0.02 0.01 

Maryland* 762,003 64.9 18.8 7.1 0.9 2.1 6.0 0.3 0 

Minnesota 778,272 47.5 16.9 28.3 0.04 6.1 1.0 0.2 0.1 

Mississippi 821,511 61.6 9.1 17.4 1.4 2.1 8.5 0 0 

Montana* 467,083 16.2 70.4 4.9 0.6 3.3 3.9 0.2 0.5 

North Carolina* 1,745,610 45.6 24.5 11.7 2.2 2.1 11.1 2.4 0.4 

New Jersey 466,525 63.6 14.5 18.5 0.2 0.5 2.7 0.01 0 

New Mexico* 940,717 50.0 29.6 13.8 0.5 1.3 3.4 0.8 0.6 

Nevada* 620,908 54.2 3.0 8.1 2.5 6.1 8.2 0.7 17.3 

New York 571,711 27.8 10.3 11.2 31.7 9.9 8.7 0.2 0.3 

Ohio 2,571,918 87.2 3.5 8.5 0.1 0.3 0.3 0.1 0.03 

Oklahoma 3,224,014 46.4 2.8 25.7 1.5 6.5 16.7 0.02 0.4 

Oregon 249,955 61.6 12.8 16.2 0.8 6.4 2.4 0.04 0 

Pennsylvania 2,987,005 77.5 12.8 6.7 0.5 1.3 1.2 0.03 0.01 

Tennessee 368,921 61.5 10.9 6.8 5.8 6.8 7.6 0.1 0.6 

Texas* 1,377,028 25.4 22.7 18.7 4.8 8.5 19.8 0.1 0.2 

Utah 396,217 44.7 8.6 40.6 0.2 3.8 2.2 0 0.02 

Virginia* 531,231 51.8 12.6 18.7 2.4 5.7 8.5 0.3 0.01 

Vermont 342,033 42.1 2.5 24.9 2.3 18.1 10.1 0 0 

Washington 752,035 8.4 84.2 3.2 1.6 0.9 1.1 0.2 0.6 

Wisconsin* 351,274 49.1 14.0 14.7 8.8 6.4 6.3 0.3 0.4 

West Virginia 152,185 65.6 2.5 27.2 0.8 2.4 1.3 0.1 0.2 
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4.3.2 Per-provider Distribution 

Most providers saw <25 children and provided <250 psychosocial service visits during 

their selected year of data (Table 18, Figure 14). More than 75% of Entity 1 mental health 

providers saw at most 20 Medicaid-enrolled children per year or provided <170 

psychosocial visits to Medicaid-enrolled children. Among Entity 1 mental health providers, 

counselors had the highest 75th-percentile child–patient caseload, with 25 children, and the 

highest 75th-percentile and 90th-percentile child–visit caseloads, with 302 and 730 visits, 

respectively. However, psychiatrists had the highest 90th-percentile child–patient 

caseload, with 84 children. Social workers generally had the lowest caseloads. 

Table 18. Total number of addresses seeing Medicaid-insured children for 

psychosocial services (no.) and mean (mean), 50th percentile (50%), 75th percentile 

(75%), and 90th percentile (90%) caseload among those addresses, by zip code 

urbanicity and address category. Blank cells indicate a caseload below 11. 

  

Patients Visits 
MHC OCC MHE2 CMH MMH SMH PDE2 PDE1 MHC OCC MHE2 CMH MMH SMH PDE2 PDE1 

Overall 

No. 7092 7071 4236 1391 2944 7247 648 1609 7092 7071 4236 1391 2944 7247 648 1609 

Mean 140 53 57 36 34 20 15 12 2629 762 695 327 352 257 161 186 

50% 30 — 15 — — — — — 296 66 103 48 76 64 — 59 

75% 108 35 47 30 34 22 — 14 1571 381 401 204 297 256 54 235 

90% 331 109 124 77 78 47 32 30 5820 1423 1165 596 785 680 402 495 

Large 

urban 

No. 5661 5396 3582 1183 2377 5749 504 1402 5661 5396 3582 1183 2377 5749 504 1402 

Mean 146 61 56 35 32 20 15 12 2742 821 681 317 316 258 144 188 

50% 29 — 14 — — — — — 285 66 93 43 62 60 — 63 

75% 109 39 44 27 30 20 — 15 1561 381 381 182 252 233 52 236 

90% 348 130 120 69 71 46 31 30 6296 1473 1162 549 697 663 435 487 

Small 

urban 

No. 859 795 431 143 336 793 96 132 859 795 431 143 336 793 96 132 

Mean 149 38 64 47 43 21 18 — 2744 702 678 428 481 264 266 179 

50% 41 — 23 14 18 11 — — 420 64 164 80 170 88 16 31 

75% 132 35 66 53 50 27 13 13 1971 410 511 377 490 363 77 245 

90% 334 85 153 117 110 50 47 26 5802 1529 1121 889 1109 759 276 495 

Rural 

No. 555 866 220 63 224 683 48 72 555 866 220 63 224 683 48 72 

Mean 70 22 51 26 39 19 — 12 1310 449 927 294 540 239 127 173 

50% 28 — 19 — 22 — — — 225 73 169 78 167 87 — 30 

75% 73 20 51 32 48 25 — 15 1131 347 584 173 500 310 30 200 

90% 157 56 122 59 96 45 25 28 3050 1120 1327 601 1174 691 245 527 
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Child Patients per Provider Child Visits per Provider 

  

Child Patients per Address Child Visits per Address 

  

Figure 14. Boxplots displaying per-provider per-year and per-address per-year 

caseloads of Medicaid-insured child psychosocial patients and visits across 34 US 

states, by provider and address category. 

Across address categorizations, median caseload was at most 30 children and 296 visits. 

Mental health centers had the highest mean, median, 75th percentile caseload, and 90th 

percentile caseload, both in patients and visits, which was at least twice those of the next 

highest category (generally locations with other Entity 2 mental health). Caseload was 

generally lowest at locations without mental health providers. All these caseload 
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distributions were heavily skewed (Figure 14). For example, about 7% of locations with 

Entity 1 mental health providers but without Entity 2 mental health providers saw half of 

the Medicaid-enrolled children seeking psychosocial services from such locations. 

Similarly, 4% of mental health centers saw half the children seeking psychosocial services 

at mental health center locations. 

Patient caseloads for Entity 1 mental health providers were generally lowest in large urban 

zip codes and highest in small urban areas (75th percentile of 18 children in large urban 

areas vs 29 children in small urban areas). Entity 1 mental health provider visit caseloads, 

however, were highest in rural zip codes (75th percentile of 144 visits from children in 

large urban areas versus 312 visits from children in rural areas). Small urban zip codes 

generally had the highest patient caseload across all address categories and the highest 

child visit caseloads for mental health center, other care center, and single mental health 

provider locations. Rural zip codes had the lowest patient and visit caseloads for both 

mental health centers and other care centers (Table 18).  

4.4 Discussion 

This chapter provides a comprehensive analysis of the current supply of psychosocial 

services available for Medicaid-enrolled children across provider types, revealing the 

important role of mental health centers, especially those that serve a high volume of 

Medicaid-enrolled children. More than half of the visits occurred in a mental health center, 

yet only 4% of mental health centers saw half the children seeking psychosocial services. 

Across all practice settings, fewer than 10% of locations were responsible for more than 

half of the patients served and more than half of the visits provided. This finding suggests 
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that Medicaid-insured children have little choice in treatment location. Concentrating the 

supply of psychosocial services to few locations may partly explain why many studies cite 

distance as a barrier to care [145-147]. These findings underscore the limits of studies that 

assess geographic accessibility of mental health treatment by only examining where mental 

health clinics and providers are located, without taking into account the volume of services 

provided at those location.  

Fewer than 15% of patients who seek psychosocial services receive these services from 

providers not associated with a center or organization. This concentration of treatment at 

centers and organizations may be due to barriers against Medicaid participation among 

providers, such as reimbursement rates and administrative costs. Administrative 

requirements and the cost of overhead to handle paperwork and insurance billing have been 

reported as a barrier to psychiatrists participating in Medicaid [148, 149]. This barrier may 

be even more pronounced for therapists in solo or small group practices. Easing these 

burdens may enable providers to accept more Medicaid-insured patients. 

Service distribution is not consistent across states, which may be explained, in part, by 

differences in the organization of mental health care systems available to serve Medicaid-

insured children and/or differences in state policies. For example, Florida required 

behavioral health clinicians such as psychologists to work under physician supervision, 

which may explain why it has more services provided by psychiatrists and related care 

providers than most other states [150]. In Massachusetts, private practice psychologists can 

only provide therapy through licensed mental health clinics, which may account for its low 

rate of services from Entity 1 providers [151]. 
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Our findings have key implications for policy makers and program planners who aim to 

improve the accessibility of psychosocial services for Medicaid-enrolled children. These 

decision makers should recognize that high-volume mental health clinics play an important 

role in providing psychosocial services to Medicaid-insured children. Policy makers can 

provide incentives and resources to encourage increased geographic accessibility of 

services provided by high-volume clinics. One approach would be for these facilities to 

partner with schools to deliver psychosocial services on school grounds [152-153]. Another 

approach would be to incentivize these clinics to provide home-based services, in which 

counselors or therapists travel to the child’s home to deliver care [154]. 

Policy makers could also consider approaches to encourage all providers to increase their 

supply of psychosocial services. These approaches would include increasing current levels 

of investment in policies to expand the mental health workforce capacity in clinics and 

practices that accept Medicaid, such as loan forgiveness programs [155, 156]. Another 

option would entail increasing Medicaid reimbursement rates for psychosocial services to 

enable clinics and practices to offer higher salaries than could be offered without the 

increased reimbursement rates as a strategy to improve recruitment and retention efforts of 

these providers [157]. 

4.4.1 Limitations 

This study had several limitations. First, our results were for 34 states; patterns in these 

states may differ from patterns in the rest of the country. Second, the latest data available 

were for 2013, before the Affordable Care Act went into effect. With an increase in the 

proportion of mental health services covered by health insurance after implementation of 
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the Affordable Care Act, the proportion of their caseload that providers dedicate to persons 

insured by Medicaid may have changed in recent years. For example, one study comparing 

a 2013-2014 survey with a 2016-2017 survey found that among outpatient substance use 

disorder treatment programs, the total number of clients remained constant but more clients 

used Medicaid during 2016-2017 than during 2013-2014 [158]. 

Third, our data relied on Medicaid claims. To be registered as a service to a child, a claim 

must have a child listed as the beneficiary rather than an adult family member. However, 

family therapies listing an adult family member as the beneficiary would still be of benefit 

for the child. Medicaid-enrolled children may also have other resources for obtaining 

psychosocial services, such as community or school programs, which do not bill Medicaid. 

However, we were unable to capture these data [122, 159]. 

Fourth, some providers bill solely through their organization’s NPI number. Our matching 

algorithm would link these providers only to the organization’s NPI number, preventing us 

from identifying the type of practitioner providing the service. This linkage of providers 

solely to an organization’s NPI number occurred for 20% of the psychosocial service 

providers. Similarly, some providers working for an organization may still bill as 

individuals, resulting in a lower caseload captured for that organization in the per-provider 

results than if the provider had billed through their organization. Although our address-

level analysis reduced the likelihood of these errors, it did not allow us to distinguish among 

individual provider types. Additionally, we assumed that all providers worked at their 

single practice address listed in NPPES, but some providers may travel to treat patients. A 

study in Georgia found that primary care providers had on average 2.6 practice locations 

whereas psychiatrists had 1.8 [160]. Finally, we examined only the caseload of 
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psychosocial services. Some providers may still see Medicaid beneficiaries for other 

mental health–related treatment, such as prescribing medication. 

4.5 Conclusions 

To our knowledge, this chapter presents the largest and most comprehensive to date 

examining Medicaid caseload for psychosocial services by a broad range of mental health 

providers. Most providers across all provider types had relatively low caseloads. Fewer 

than 10% of providers were responsible for more than half of services, with the largest 

proportion of services provided by mental health treatment centers. Services concentrated 

in few locations would reduce geographic access to services for the Medicaid-insured 

population. 
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CHAPTER 5. INTEGRATION OF PRIMARY AND 

SPECIALIZED CARE: A DECENTRALIZED APPROACH 

5.1 Introduction 

Currently, the US healthcare system is highly fragmented, with specialists and primary care 

physicians working independently of each other. A patient with multiple chronic conditions 

may have to visit up to 16 healthcare providers in a year [161]. This leads to system 

inefficiencies and treatment inconsistencies, such as patients having to undergo redundant 

tests due to missing information [161-163]. Surveys among adults with chronic conditions 

found that if patients were seeing at least four physicians, medical records were not made 

available in time for a scheduled visit or duplicate tests were ordered 43% of the time 

whereas these mistakes occurred only 22% of the time if patients were seeing a single 

physician [164]. A study of pediatrician referrals found that the referred specialist received 

no information 49% of the time while the referring physician received no feedback 45% of 

the time [165]. Service duplication, unnecessary hospitalizations, medical complications, 

and patient non-adherence to care resulting from poor coordination was responsible for an 

estimated $25-$45 billion in wasteful spending in 2011 [166]. These redundancies and 

costs can be reduced while maintaining the same or better health outcomes by effective 

collaboration among specialty and primary care providers [167-169]. 

Collaborative care is defined as “ongoing working relationship between clinicians, rather 

than a specific product or activity" [170]. In collaborative care, healthcare providers 

combine their skills and knowledge to identify problems and treatments, and continually 

adapt provision of healthcare as needed. The terms such as integrated care, coordinated 

care, and care coordination have been used in the medical community to represent closely 

related concepts [170]. Collaborative care in the healthcare sector is crucial for more 
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effective and efficient delivery of healthcare services [171, 172], and it has been recognized 

by the Institute of Medicine as a key strategy for transforming healthcare quality that could 

potentially make the US healthcare system more effective, more efficient, and safer [173]. 

In this chapter, we particularly focus on collaborative care for children with mental health 

disorders. Nearly one in five U.S. children suffer from mental health conditions [174]. 

Among those children, at least 80% do not receive treatment for their mental health 

conditions [175]. However, almost 75% of these patients are seen in the pediatrician’s 

office, and hence primary care providers (PCPs) often provide the first line of treatment, 

identifying, diagnosing, and sometimes treating mental health disorders. After proper 

diagnosis by PCPs, these children should be referred to mental health specialized providers 

(MHPs) to receive specialty care. During the treatment, regular communication between 

PCPs and MHPs is necessary, and effective coordination of mental health, medical, and 

social needs is crucial to prevent unnecessary hospitalizations and emergency department 

use [175, 176]. Despite this, communication between MHPs and PCPs is historically 

known to be poor, and unlikely to improve without a systematic approach [175]. To 

estimate the impact of such an approach on access to healthcare services, realistic 

partnerships among participating providers must first be determined. 

This study evaluates the potential impact of a systematic approach to collaboration between 

MHPs and PCPs by developing a congestion game framework to connect PCPs with 

MHPs. More specifically, this framework captures preferences of both PCPs and MHPs, 

and its resulting solution is an equilibrium of the game that specifies each PCP needs to 

work with which MHP to provide collaborative care to children. The congestion game 

framework is a simplified perspective into the collaboration of PCPs and MHPs; however 

it is useful in understanding how access to mental health services could improve under such 

collaboration. 
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Congestion games were originally introduced by Rosenthal [177], whose model involves 

a set of players who must choose a subset from among a set of resources. The cost of using 

each resource depends on congestion, defined as the number of players who selected that 

resource, and each player’s goal is to minimize her own total cost. [177] demonstrated the 

existence of a pure Nash equilibrium, where no player can unilaterally reduce her cost. 

Ever since [177] seminal work, there have been various extensions in the structure of 

congestion games. To model the collaborative care problem as a congestion game, we 

consider each PCP as a player and each MHP as a resource. However, none of the existing 

models in congestion game literature can fully describe the main elements of the interaction 

between PCPs and MHPs. The best available model for our purpose is that of [178], which 

would allow MHPs to limit the number of PCPs with whom they can work and prioritize 

PCPs according to their own preferences. However, it imposes a restrictive assumption, 

specifically, that the cost of working with an MHP should be the same for all PCPs. 

Motivated by this shortcoming, in this chapter, we extend congestion games into a more 

general setting in which resources have capacities and preferences and the cost to use a 

resource can vary by player. Our contributions in this paper are both methodological and 

applied.  

The methodological contributions of this paper are: (i) We establish the existence of a pure 

Nash equilibrium for our more general setting by developing a polynomial-time algorithm 

to find such an equilibrium. (ii)  We investigate the more challenging problem of finding 

the minimum social cost pure equilibrium, which we show to be NP-hard. (iii) We develop 

a mixed-integer program (MIP) to solve this problem.  

We apply our methodological results to the problem of providing collaborative care by 

PCPs and MHPs to children with mental health conditions using real data provided by the 

Centers for Medicare & Medicaid Services. We show that our equilibrium solution would  
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nearly double the number of children receiving mental health services under the 

coordinated care approach versus the traditional healthcare delivery, while meeting 

preferences of both PCPs and MHPs,  without significantly increasing the workload of the 

majority of MHPs. We additionally provide results demonstrating the efficiency of this 

healthcare delivery solution with respect to social cost. Finally, our model may be applied 

in other collaborative care applications, particularly between PCPs and secondary care 

providers. 

The remainder of this chapter is organized as follows. In Section 5.2, we review the relevant 

literature. In Section 5.3, we formally introduce our congestion game setting. In Section 

5.4, we present theoretical results regarding the existence of a pure equilibrium and the 

computational complexity of finding the minimum social cost pure equilibrium.  Section 

5.5 provides an MIP formulation for the problem of finding the minimum social cost pure 

equilibrium. In Section 5.6, we describe the parameters of the collaborative care approach 

and the results of applying the congestion game model to evaluate collaborative care 

between PCPs and MHPs. Finally, concluding remarks are presented in Section 5.7. 

5.2 Related Literature 

In this section, we review the relevant congestion game models to delineate distinctions of 

our model over the existing literature. 

Following the introduction of congestion games by [177], this class of games has been 

extended in various ways. Two particular classes of extensions which are of interest include 

(i) player-specific cost functions, and (ii) resources with preferences. We will elaborate on 

these two extensions below. 

Congestion games with player-specific cost functions (i.e., player-specific congestion 

games) allow players using the same resource to each have different cost rather than sharing 
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the same cost function. Such games are useful for modeling interference in wireless 

networks [179, 180], the service chain composition problem in network function 

virtualization [181], and the assignment of distribution facilities to population groups 

[182]. Congestion games with player-specific costs do not necessarily have a pure Nash 

equilibrium [183], and deciding in general whether a game has a pure Nash equilibrium is 

NP-complete [184]. To guarantee the existence of a pure Nash equilibrium, it is necessary 

and sufficient that for each resource the cost functions for every pair of players are affine 

transformations of each other [185]. However, in the case where each player chooses only 

a single resource (called singleton congestion games), a pure Nash equilibrium has been 

proven to always exist when all cost functions are non-decreasing in congestion by  [186] 

using the concept of finite improvement path introduced by [187]. This result has been 

established more generally for matroid games, in which each player’s action space has a 

special combinatorial structure, i.e., the bases of a matroid, over the resources [188]. 

The other class of extensions is in allowing each resource to have its own preferences over 

the set of players. This may be further subclassified into uncapacitated games and 

capacitated games. In uncapacitated games, the resource only accommodates the most 

preferred players who have proposed to the resource. Note that a resource may have the 

same preference for multiple players, and there is no capacity limit for each resource. [189] 

showed that such games with player-specific costs and a matroid structure for the action 

space of each player, including singleton games, possess a pure Nash equilibrium that can 

be computed in polynomial time. 

The other subclass, capacitated games, with resources having their own capacities and 

preferences over players but not player-specific cost functions, has been studied by [178]. 

They provided polynomial time approaches to compute a pure Nash equilibrium in 

singleton capacitated congestion games and in capacitated congestion games with only two 

resources. However, they showed that determining whether such an equilibrium exists in 
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non-singleton games with at least three resources is NP-complete, even in the case of two 

players and symmetric strategies. 

What distinguishes our study from the literature is that we consolidate the two above-

mentioned directions of extensions into a single general setting. More specifically, we 

introduce a class of singleton congestion games with both player-specific costs and 

resource capacity. For our more general setting, the results of  [178] imply that identifying 

the existence of a pure Nash equilibrium is NP-complete. Hence, we impose the assumption 

of non-decreasing cost in congestion under which we provide a polynomial-time approach 

to identify a pure Nash equilibrium. This assumption is natural and holds in many practical 

settings including our collaborative care problem. Moreover, we show that the more 

challenging problem of finding the least social cost pure equilibrium is NP-hard, which we 

solve by developing an MIP formulation. 

5.3 Capacitated Singleton Congestion Game Model 

A capacitated singleton congestion game, as studied by [178], may informally be described 

as a set of players and resources, in which each player should choose only one resource 

among the available resources to the player. Moreover, each resource has a limited capacity 

and a preference rule over players to select among the players who have proposed the 

resource. The player's cost of choosing each resource only depends on the number of 

players who have chosen that resource. The structure of this game makes it a natural choice 

for modeling of the collaborative care problem. To illustrate this, consider a general 

overview of interactions between PCPs and MHPs, described below. 

Each PCP based on her own preference offers an MHP to collaborate. Once each MHP has 

received the offers of collaborations from different PCPs, he should select which one to 
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accept, based on his preference and his available capacity. Moreover, the utility of each 

PCP is only affected by the number of PCPs who work with the same MHP, and each MHP 

has his own preference over different PCPs to work with. Therefore, it seems reasonable 

to model this application as a congestion game where PCPs and MHPs correspond, 

respectively, to players and resources. However, there is a major shortcoming in the 

congestion game model of [178] which prevents us from directly applying it to our 

collaborative care setting. More specifically, in the model of [178], the cost of choosing a 

specific resource is identical for all players while in our application, this cost varies across 

different players. This has motivated us to extend capacitated singleton congestion games 

into a more general setting with player-specific costs. We formally define this generalized 

class of congestion games in the rest of this section. 

Our capacitated singleton congestion game with player-specific costs consists of a set 𝒩 

containing 𝑛 players and a set ℛ containing 𝑚 resources. Each player 𝑖 has her own private 

cost function for utilizing resource 𝑗, denoted by 𝑑𝑖𝑗(⋅). Each resource 𝑗 has its own positive 

capacity 𝐾𝑗 and ranking for each player 𝑖, denoted by 𝑝𝑖𝑗, with lower ranks indicating 

higher preference. We assume preferences are strict, meaning at each resource, no two 

players share a rank. Each player's strategy consists of proposing to a single resource, and 

we denote σ𝑖 as the resource player 𝑖 proposed to and σ = (σ1, σ2, … , σ𝑛) as a vector 

containing the strategies of all players. We allow our games to be asymmetric, meaning 

player's action space Σ𝑖 (that is, the set of all possible strategies player 𝑖 can choose from) 

can be a nonempty subset of ℛ (i.e., σ𝑖 ∈ Σ𝑖 ⊆ ℛ). 



 89 

Once a player 𝑖 has proposed to a resource 𝑗 (i.e., σ𝑖 = 𝑗), the resource can decide whether 

to accommodate that player based on its capacity. If the player is not accommodated, that 

player will incur infinite cost. If the player is accommodated, that player will incur a cost 

according to her cost function for that resource, 𝑑𝑖𝑗(𝑛𝑗), where 𝑛𝑗  denotes the congestion 

at resource 𝑗, defined as the number of players who are being accommodated by this 

resource. Motivated by our healthcare application, we assume that 𝑑𝑖𝑗(𝑛𝑗) is non-

decreasing in congestion. Under strategy profile σ, the player’s final cost 𝑓𝑖 will therefore 

equal the following: 

𝑓𝑖 = {
𝑑𝑖σ𝑖

(𝑛σ𝑖
), σ𝑖 accommodates 𝑖

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

All players act simultaneously in this game, and a resource must accommodate all players 

that propose to it until its capacity is met. If the number of players who propose to a 

resource exceeds its capacity, the resource only accommodates players who are the most 

preferred based on the previously defined notion of rank. We say a resource is saturated if 

its congestion equals its capacity (i.e., 𝑛𝑗 = 𝐾𝑗). Otherwise, the resource is called 

unsaturated. 

5.4 Equilibrium: Existence, Selection, and Complexity 

In this section, we present our methodological results regarding the existence of an 

equilibrium and the computational complexity of finding one with minimum social cost. 

We provide all the proofs Appendix D. We start by demonstrating the existence of a pure 

equilibrium in our generalized setting of congestion games when all player-specific cost 

functions 𝑑𝑖𝑗 are non-decreasing in congestion. To fulfill this, we follow an inductive 
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approach to construct an equilibrium of an 𝑛-player game using an equilibrium of an 

(𝑛 − 1)-player game. This constructive approach is formally presented in the next theorem. 

Theorem 1: Suppose we have a player-specific singleton capacitated congestion game on 

𝑛 − 1 players at a pure equilibrium. Assume that all player cost functions accommodated 

by a resource 𝑗 are non-decreasing with the congestion of resource 𝑗. If an additional 

player 𝑃𝑛, with a cost function non-decreasing in congestion, is added, the new game can 

again reach a pure equilibrium. 

The existence of a pure equilibrium is an immediate consequence of Theorem 1, which is 

formalized in the next theorem. The proof of Theorem 1, provided in Appendix D, also 

gives the algorithm to find such an equilibrium. For a game with 𝑛 players and 𝑚 resources, 

this algorithm is able to reach an equilibrium with at most 𝑂(𝑛3𝑚2) strategy changes. 

Theorem 2: A pure Nash equilibrium exists for any player-specific singleton capacitated 

congestion game for which all player cost functions are non-decreasing with resource 

congestion. 

The proof of this theorem is in Appendix D. Theorem 2 establishes the existence of a pure 

Nash equilibrium, but we have not ascertained its uniqueness. In fact, each congestion 

game may have multiple pure equilibria; this naturally leads to the following equilibrium 

selection problem: Given a social cost function, which pure equilibrium has the minimum 

social cost? In this paper, we adopt the commonly used utilitarian social cost function, 

defined as the sum of all players' costs. The equilibrium selection problem is important for 

a couple of reasons as discussed below.   
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In many applications, including the motivating application of this paper, there exists a 

social planner who is in a higher level of decision making. This planner is interested in 

complying with the autonomy of the players while reaching a socially optimal outcome. 

This means the planner has the opportunity to choose an equilibrium with minimum social 

cost, which results into the above-mentioned equilibrium selection problem. The planner 

cannot enforce the obtained equilibrium, but she can provide recommendations to the 

players about which action they need to follow. Each player would not be better off by a 

unilateral deviation from the prescribed recommendation; this implies the enforceability of 

the minimum cost equilibrium. 

Measuring inefficiency of equilibria has gained considerable attention in game theory, 

when the social cost of the game is compared with that of a centrally designed system 

[190]. In other words, we measure how much cost the system incurs due to the autonomy 

of players. This cost is insightful for the social planner since it indicates how well the 

current system works. In fact, if the cost is high, the social planner may need to pursue 

possible initiatives to decrease it. Price of stability is one of the well-known metrics to 

measure such an inefficiency, and it is defined as the ratio of the social cost of a minimum 

cost equilibrium to that of a minimum cost strategy profile [191]. A variation of this notion 

is pure price of stability, for which the set of pure equilibria is considered in the numerator 

of the ratio. By finding a minimum cost pure equilibrium, we can compute the pure price 

of stability which has the above-mentioned managerial insights. 

In the following, we establish the computational complexity of the equilibrium selection 

problem. For the congestion game setting of [177], [192] showed that the problem of 

finding a pure equilibrium is PLS-complete. For our congestion game, the proof of 
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Theorem 2 presents a polynomial-time approach to find a pure equilibrium. However, the 

problem of finding a best pure equilibrium intuitively seems more challenging. The next 

theorem addresses this question formally. 

Theorem 3: The problem of finding a minimum social cost pure equilibrium is strongly 

NP-hard. 

5.5 MIP Formulation of Equilibrium Selection 

As the problem of finding a minimum cost pure equilibrium is NP-hard, no polynomial-

time algorithm can solve it unless 𝑃 = 𝑁𝑃. However, it is crucial to develop a solution 

method that can solve it in practice. Mixed-integer programming (MIP) is a powerful tool 

to model and solve discrete optimization problems, and it has already been used in the 

literature to identify equilibria of game theory models [193, 194]. In this section, we 

develop an MIP formulation to characterize pure equilibria of the congestion game, and 

subsequently find the one with the least social cost. The parameters and decision variables 

of our model are as follows: 

• 𝒩 ≔ {1,2, … , 𝑛} denotes the set of players.  

• ℛ ≔ {1,2, … , 𝑚} denotes the set of resources. 

• 𝒦𝒿 ≔ {1,2, … , 𝐾𝑗} denotes the set of possible positive values for congestion of each 

resource 𝑗 ∈ ℛ. 

• 𝑦𝑖𝑗: A binary variable where 𝑦𝑖𝑗 = 1 means that player 𝑖 chooses resource 𝑗, and 

𝑦𝑖𝑗 = 0 otherwise. 

• 𝑐𝑗: A variable denoting the congestion level of resource 𝑗. Clearly, 𝑐𝑗 = ∑ 𝑦𝑖𝑗𝑖 . 
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• 𝑥𝑖𝑗𝑘: A binary variable used to model the nonlinear cost function of player 𝑖. More 

specifically, 𝑥𝑖𝑗𝑘 = 1 if and only if 𝑦𝑖𝑗 = 1 and 𝑐𝑗 = 𝑘.  

• 𝑧𝑗𝑘: A binary variable used to model the nonlinear cost function of player 𝑖 if she 

chooses to switch to resource 𝑗. More specifically, 𝑧𝑗𝑘 = 1 if and only if congestion 

of resource 𝑗 is 𝑘. Note that 𝑧𝑗𝐾𝑗
= 1 implies that resource 𝑗 is saturated. Note that 

the index 𝑘 may take any integer value from 0 to 𝐾𝑗. 

• 𝑓𝑖: A variable denoting the cost of player 𝑖. 

• 𝑜𝑖𝑗: A binary variable where 𝑜𝑖𝑗 = 1 if and only if resource 𝑗 is saturated, and  

player 𝑖 is accommodated by the resource in the case where she chooses to switch 

her decision to resource 𝑗. 

• 𝑞𝑖𝑗: A binary variable where 𝑞𝑖𝑗 = 1 if and only if resource 𝑗 is saturated, and  

player 𝑖 is not accommodated by the resource in the case where she chooses to 

switch her decision to resource 𝑗. 

We present the following MIP polyhedron to characterize pure equilibria of the game.  

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑘∈𝒦𝒿𝑗∈ℛ = 1  ∀𝑖 ∈ 𝒩 (5.1a) 

  𝑥𝑖𝑗𝑘 ≤ 𝑦𝑖𝑗  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ, 𝑘 ∈ 𝒦𝒿 (5.1b) 

  ∑ 𝑦𝑖𝑗𝑗∈ℛ = 1 ∀𝑖 ∈ 𝒩  (5.1c) 

  𝑐𝑗 = ∑ 𝑦𝑖𝑗𝑖∈𝒩   ∀𝑗 ∈ ℛ (5.1d) 

  𝑐𝑗 = ∑ 𝑘𝑘∈{0}∪𝒦𝒿
𝑧𝑗𝑘  ∀𝑗 ∈ ℛ (5.1e) 

  ∑ 𝑧𝑗𝑘𝑘∈{0}∪𝒦𝒿
= 1  ∀𝑗 ∈ ℛ (5.1f) 

  0 ≤ 𝑐𝑗 − ∑ 𝑘𝑘∈𝒦𝒿
𝑥𝑖𝑗𝑘 ≤ 𝐾𝑗(1 − 𝑦𝑖𝑗)  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.1g) 

  𝑓𝑖 = ∑ ∑ 𝑑𝑖𝑗(𝑘)𝑥𝑖𝑗𝑘𝑘∈𝒦𝒿𝑗∈ℛ   ∀𝑖 ∈ 𝒩 (5.1h) 
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  𝑓𝑖 ≤ ∑ 𝑑𝑖𝑗(𝑘)𝑧𝑗(𝑘−1)𝑘∈𝒦𝒿
+ 𝑀𝑧𝑗𝐾𝑗

  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.1i) 

  𝑓𝑖 ≤ 𝑑𝑖𝑗(𝐾𝑗) + 𝑀(1 − 𝑜𝑖𝑗)  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.1j) 

  ∑ 𝑦𝑖′𝑗𝑖′:𝑝𝑖′𝑗>𝑝𝑖𝑗
≤ 𝑀(1 − 𝑞𝑖𝑗)  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.1k) 

  𝑜𝑖𝑗 + 𝑞𝑖𝑗 ≥ 𝑧𝑗𝐾𝑗
 ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ  (5.1l) 

  𝑥𝑖𝑗𝑘, 𝑦𝑖𝑗, 𝑧𝑗𝑘 , 𝑜𝑖𝑗 , 𝑞𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ, 𝑘 ∈ 𝒦𝒿  (5.1m) 

  𝑧𝑗𝑘 ∈ {0,1}  ∀𝑗 ∈ ℛ, 𝑘 ∈ {0} ∪ 𝒦𝒿 (5.1n) 

  𝑐𝑗 , 𝑓𝑖  unrestricted  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.1o) 

where 𝑀 denotes a large number. A specific number should be substituted for the big-M 

coefficients in constraints (5.1i), (5.1j), and (5.1k) when the polyhedron  (5.1a)-(5.1o) is 

given to an MIP solver. For this purpose, the big-M coefficients should be appropriate 

upper bounds such that the polyhedron (5.1a)-(5.1o) includes all pure equilibria.  The big-

M coefficient may be replaced by max
𝑗̅∈ℛ

{𝑑𝑖𝑗̅(𝐾𝑗̅)}, max
𝑗̅∈ℛ

{𝑑𝑖𝑗̅(𝐾𝑗̅)} − 𝑑𝑖𝑗(𝐾𝑗), and the size of 

the set {𝑖′: 𝑝𝑖′𝑗 > 𝑝𝑖𝑗} for constraints (5.1i), (5.1j), and (5.1k), associated with each 𝑖 ∈ 𝒩 

and 𝑗 ∈ ℛ, respectively. Note that constraints (5.1a), (5.1c), and (5.1f) are specially ordered 

sets of type 1, a set of variables of which exactly one member may be nonzero in each 

feasible solution. Moreover, we need an objective function to be able to  choose among all 

pure equilibria, and the utilitarian objective function (i.e., ∑ 𝑓𝑖𝑖∈𝒩 ) is a natural choice here 

as noted earlier. 

Theorem 4: When the sum of capacity of all resources are greater than or equal to the 

number of players, i.e., ∑ 𝐾𝑗𝑗∈ℛ ≥ 𝑛, the polyhedron (5.1a)-(5.1o) characterizes all pure 

equilibria of the congestion game. 
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The above theorem needs the regularity condition ∑ 𝐾𝑗𝑗∈ℛ ≥ 𝑛. If this condition is violated, 

we can easily transform the game to one which satisfies such a condition, and its equilibria 

has a one-to-one correspondence with those of the original game. For this purpose, we only 

need to add a dummy resource which has an unlimited capacity, and the cost of choosing 

this resource is strictly larger than the highest possible cost of choosing any other resource. 

An interesting special case of the game is when the cost function is linear with respect to 

congestion, i.e., 𝑑𝑖𝑗(𝑐𝑗) = 𝑑𝑖𝑗𝑐𝑗 + 𝑏𝑖𝑗. For such a case, we can present a more 

parsimonious MIP formulation to characterize pure equilibria of the game. In fact, we no 

longer need the variables 𝑥𝑖𝑗𝑘 and 𝑧𝑗𝑘, of the formulation (5.1a)-(5.1o). Following the same 

line of arguments as that of the formulation (5.1a)-(5.1o), we can develop the following 

formulation: 

  ∑ 𝑦𝑖𝑗𝑗∈ℛ = 1 ∀𝑖 ∈ 𝒩  (5.2a) 

  𝑐𝑗 = ∑ 𝑦𝑖𝑗𝑖∈𝒩   ∀𝑗 ∈ ℛ (5.2b) 

  𝑐𝑗 = 𝑧𝑗̃ + 𝑧𝑗̅  ∀𝑗 ∈ ℛ (5.2c) 

  −𝑀(1 − 𝑦𝑖𝑗) ≤ 𝑓𝑖 − 𝑑𝑖𝑗𝑐𝑗 − 𝑏𝑖𝑗 ≤ 𝑀(1 − 𝑦𝑖𝑗)  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.2d) 

  𝑓𝑖 ≤ 𝑑𝑖𝑗𝑐𝑗 + 𝑑𝑖𝑗 + 𝑏𝑖𝑗 + 𝑀𝑧𝑗̅  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.2e) 

  𝑓𝑖 ≤ 𝑑𝑖𝑗(𝐾𝑗) + 𝑀(1 − 𝑜𝑖𝑗)  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.2f) 

  ∑ 𝑦𝑖′𝑗𝑖′:𝑝𝑖′𝑗>𝑝𝑖𝑗
≤ 𝑀(1 − 𝑞𝑖𝑗)  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.2g) 

  𝑜𝑖𝑗 + 𝑞𝑖𝑗 ≥ 𝑧𝑗̅  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.2h) 

  𝑧𝑗̃ ≤ 𝐾𝑗 − 1 ∀𝑗 ∈ ℛ  (5.2i) 

  𝑦𝑖𝑗 , 𝑧𝑗̅, 𝑜𝑖𝑗, 𝑞𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ, 𝑘 ∈ 𝒦𝒿  (5.2j) 

  𝑧𝑗̃ ∈ 𝑍+  ∀𝑗 ∈ ℛ (5.1k) 

  𝑐𝑗 , 𝑓𝑖  unrestricted  ∀𝑖 ∈ 𝒩, 𝑗 ∈ ℛ (5.2l) 
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Note that the new variables 𝑧𝑗̅ and 𝑧𝑗̃ are introduced to identify whether resource 𝑗 is 

saturated. In fact, 𝑧𝑗̅ = 1 if and only if resource 𝑗 is saturated.   

5.6 Primary Care Physicians and Behavior Care Specialists Integration 

We can use the congestion game model introduced in Section 5.3 to obtain a potential 

matching between primary care providers (PCPs) and mental health (specialized) providers 

(MHPs) that could be used to coordinate primary care and mental health services, 

specifically, focusing on psychosocial services. We specifically consider collaborative 

care, in which PCPs and MHPs form an ongoing relationship and work together to deliver 

care to patients [170]. There are different levels of collaborative care ranging from minimal 

collaboration, in which providers rarely communicate, to merged practices where providers 

share a practice space and act as a unified team [195]. We focus on collaborative care in 

which PCPs regularly consult with MHPs about their patients. Such collaboration is 

especially important for children as most children with behavioral health conditions are 

treated in primary care settings rather than mental health settings [196]. Communication 

and treatment can occur through the use of telehealth tools such as videoconferencing 

rather than co-location [197-200]. This is particularly useful in areas where patients do not 

have access to mental health providers. Collaborative care has been implemented in various 

clinics and has been shown to be effective [195, 201]. 

We illustrate our analysis for the Medicaid-insured child population (age ≤ 18) in the state 

of New York. New York was selected since we were able to attribute over 90% of 

psychosocial services in that state to individual mental health providers. However, our 
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methodology can be applied to any state and healthcare setting for which the necessary 

provider data can be obtained.  

Data primarily comes from two sources: the 2013 National Plan and Provider Enumeration 

System (NPPES) [38], which lists the National Provider Identifier (NPI) of all providers 

that electronically bill for services along with their primary taxonomy and practice address, 

and the 2013 Medicaid Analytic eXtract (MAX) [40], which contains all Medicaid claims 

made in 2013 as well as the age, county, and zip code of Medicaid beneficiaries. Urbanicity 

of each provider was determined using the 2010 Rural-Urban Commuting Area (RUCA) 

code [144] of their practice location census tract and urbanicity of each child was 

determined using Zip Code RUCA Approximation [144], with RUCA codes 1-3 

representing large urban areas, codes 4-6 representing small urban areas, and codes 7-10 

representing rural areas. 

5.6.1 Model Calibration 

In this subsection, we illustrate how we apply the congestion game framework to model 

our healthcare application. For this purpose, we should identify components of the game, 

i.e., players, resources, costs, capacities, preferences, and action spaces. 

Players, resources, and action space: We identified individual PCPs and MHPs in New 

York through their primary taxonomy code and practice location as listed in the NPPES 

data. We considered only those serving Medicaid-insured children, that is PCPs who billed 

at least 11 Medicaid-insured children and MHPs who provided psychosocial services to at 

least 11 Medicaid-insured children, determined using the MAX claims. A minimum of 11 

children was selected because that is the minimum required to maintain patient 
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confidentiality when using the MAX claims. We assumed PCPs working in the same office 

as an MHP already have a working relationship with that MHP and would therefore 

collaborate with that MHP. Thus, we further considered only PCPs not co-located with an 

MHP and MHPs not co-located with a PCP. 

We additionally assumed that PCPs sharing an office with each other would realistically 

work with the same MHP when possible. For such a restriction to be incorporated into our 

model, PCPs sharing a location should be treated as the same player. However, a location 

with a large number of PCPs or especially busy PCPs matched to a single MHP may 

overwhelm that MHP. Therefore, we grouped PCPs sharing a location together up to a limit 

representing the demand an MHP can handle. We set this limit to be the median number of 

Medicaid-insured child visits among all PCPs. Specifically, we grouped PCPs together 

such that the number of PCP groups (PCPGs) at each primary care location was 

min (𝑞, ⌈
𝑣

250
⌉), where 𝑞 is the number of PCPs at the location, 𝑣 is the number of visits by 

Medicaid-insured children observed from those PCPs in 2013, and 250 is the median 

number of Medicaid-insured child visits among all PCPs in 2013. We used these PCPGs 

as our players. Thus, our player set 𝒩 consisted of 4,337 PCPGs (representing 4,637 

PCPs), and our resource set ℛ consisted of 1,000 MHPs. We assumed any MHP could be 

matched to any PCPG. That is, Σ𝑖 = ℛ ∀𝑖 ∈ 𝒩. 

Cost Functions: The cost 𝑑𝑖𝑗 for player 𝑖 to utilize resource 𝑗 was set equal to 𝑤𝑖
𝑑𝑖𝑠𝑡𝑖𝑗

𝑀
+

(1 − 𝑤𝑖)
𝑛𝑗

𝐶
 where 𝑤𝑖 is a weight associated with PCPG 𝑖 which was randomly generated 

from a uniform distribution between 0 and 1, 𝑑𝑖𝑠𝑡𝑖𝑗 is the travel distance between the 

practice locations of PCPG 𝑖 and MHP 𝑗 (obtained using ArcGIS software), 𝑀 is the 
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maximum permissible distance between two providers (set to be 500 miles), 𝑛𝑗  is 

congestion of resource 𝑗, and 𝐶 is the maximum capacity across all resources. Note that 

both the distance and congestion measures are normalized so that 𝑑𝑖𝑗 is within the interval 

[0,1]. 

Capacities and preferences: Capacity 𝐾𝑗 of resource 𝑗 was assumed to scale with the 

number of psychosocial service visits provided to Medicaid-insured children in 2013. 

Specifically, it was equal to 1 if the number of observed visits was less than 500 

(representing approximately 10 visits available a week), equal to 2 if the number of 

observed visits was between 500 and 1,000, and equal to 3 if the number of observed visits 

was greater than 1,000. Finally, for each MHP, PCPGs at locations that share patients with 

the MHP were given first preference, in order of the number of patients shared between 

that location and the MHP. Remaining PCPGs followed in order of distance between the 

MHP and the PCPG location. 

Before concluding this subsection, we highlight a simplification that we have made in the 

decision-making sequence of the congestion game, compared to our collaborative care 

problem. The interaction between PCPGs and MHPs occur over a dynamic setting where 

PCPGs are not enforced to act simultaneously. Despite this, the congestion game captures 

important characteristics of this interaction for the following reasons: (i) When a PCPG 

finds an MHP, it barely changes its decision over a short period of time due to the 

inconvenience of finding a new MHP.  (ii) In our proof for the existence of a pure 

equilibrium for the congestion game, we add one player at a time and allow players to 

iteratively follow their cost minimizing strategy, and show that players will converge to an 
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equilibrium in a finite number of iterations. This informally implies that in a dynamic 

environment where PCPGs choose their favorite MHPs with available capacity at each 

point of time, they will reach within a finite time to the equilibrium derived from our static 

simultaneous-move congestion game. 

5.6.2 Computation and Efficiency of Equilibria 

In this subsection, we report and derive insights from our computational results regarding 

finding an equilibrium and measuring its inefficiency, as discussed earlier in Section 5.4. 

For this purpose, we have investigated the following three decision-making approaches, 

and have measured the performance of their outputs using the utilitarian objective function 

(i.e., the sum of all players' costs). 

(i) The proof of Theorem 2 provides a polynomial-time algorithm to find an 

equilibrium of the game. We refer to this approach as Algorithm. 

(ii) The MIP formulation (5.2a)-(5.2l) presents an approach to find the least social 

cost equilibrium. We refer to this approach as Decentralized MIP. Note, in our 

implementation, we provided the equilibrium found by the first approach as a 

warm-start solution for this MIP.  

(iii) A centralized decision-making setting is defined as when players have no 

autonomy, and each player has to follow the strategy prescribed by a social 

planner who seeks to minimize the utilitarian objective function. This strategy 

profile prescribed by the social planner may be computed by dropping the 

equilibrium constraints, i.e., (5.2e)-(5.2h), in the MIP formulation (5.2a)-(5.2l). 

We refer to this approach as Centralized MIP. 
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Note, since the total number of players is higher than the total capacity across all resources, 

we added a dummy resource with a cost of 1.1 to Decentralized MIP and Centralized MIP 

for the technical reasons discussed after Theorem 4. 

All three approaches were implemented in Python 2.7.16 and run through HTCondor 

version 8.8.9. Decentralized MIP and Centralized MIP were solved using CPLEX version 

12.8.0 through the Python API with a maximum runtime of 10 hours and maximum 

memory available for working storage of 16GB. As expected, both Decentralized MIP and 

Centralized MIP were computationally demanding, exceeding memory limitations when 

trying to solve the instance associated with the complete set of PCPGs and MHPs in our 

application. Hence, we generated and solved smaller-size instances selected by randomly 

sampling a subset of PCPGs and MHPs.  

The specifications of these instances and the computational results for the three above 

decision-making approaches are reported in Table 19. In this table, “PCPG” and “MHP” 

are the number of players and resources, respectively, and “Accom” is the total number of 

accommodated players. “Tot Cost” is the total cost over all players, with unaccommodated 

players assigned a value of 1.1 while “Acc Cost” is the cost over only the accommodated 

players. “Gap” is the relative optimality gap of the given solution, computed within 

CPLEX.  

Table 19 indicates that Algorithm is able to quickly find an equilibrium that is desirable 

with respect to the utilitarian objective function as demonstrated in the following.  

Centralized MIP searches over all strategy profiles while the search space of Decentralized 

MIP is only restricted to equilibria. Hence, the optimal objective value of Centralized MIP 
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provides a lower bound on that of Decentralized MIP, and on the objective value of the 

resulting equilibrium from Algorithm. Since all these values are close to each other, it 

indicates that Algorithm finds an equilibrium with nearly the least social cost among all 

pure equilibria. As the social cost of the equilibrium is close to that of Centralized MIP, it 

implies that there is not much gain to move into a centralized setting as illustrated in more 

detail next. 

Table 19. Solution quality and runtime under three decision-making approaches for 

small-size instances. 

PCPG MHP Accom Algorithm Decentralized MP Centralized MP 
Tot Cost Acc Cost Tot Cost Acc Cost Tot Cost Acc Cost 

251 140 154 140.02 33.319 140.02 33.319 124.22 17.522 

469 244 269 276.31 56.309 276.31 56.309 271.62 50.519 

1050 342 378 819.01 79.807 819.00 79.807 790.82 51.616 

628 400 446 304.54 104.343 304.54 104.343 304.54 104.343 

PCPG MHP Accom Algorithm Decentralized MP Centralized MP 
Time (s) Time (s) Gap (%) Time (s) Gap (%) 

251 140 154 0.1 36035.9 19.4 36011.6 14.1 

469 244 269 0.4 36077.9 20.4 36031.9 19.0 

1050 342 378 3.3 36578.2 9.4 36078.7 6.5 

628 400 446 1.9 36112.6 34.3 36013.4 34.3 

Recall that in a centralized setting, players have no autonomy and are imposed to act 

according to the decision making of the social planner. Since in such a setting, the social 

planner only seeks to minimize the social cost without being restrained by incentives of 

individual players, it always leads to a lower social cost compared to a decentralized 

setting. However, this advantage comes at the cost of depriving the players from their 

ability to choose, which makes the proposed solution unstable and not necessarily 

enforceable. When the difference of social cost between the centralized and decentralized 

settings are small (i.e., the price of stability is close to 1), it implies that the marginal gain 

of a centralized setting is low, and hence there is not enough motivation and justification 
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to the social planner to intervene in the natural interaction among the players presented by 

the decentralized setting.  In summary, our discussion implies that the resulting equilibrium 

from Algorithm is efficient. 

For the full-size instance of our congestion game model with 4,337 PCPGs and 1,000 

MHPs, Algorithm finds an equilibrium within 18 seconds. Under this equilibrium, 1,100 

PCPGs (25.36%) were accommodated by a resource. Total cost among those 

accommodated was 233.2632. The MIP was unable to find a solution for this instance 

within the memory limits. However, the result of Centralized MIP suggests that this 

equilibrium is efficient. In the remainder of this paper, we will investigate this equilibrium 

with respect to other criteria and measure its gains over the existing practice. 

5.6.3 Implications for Patients 

For the equilibrium solution to be beneficial if implemented, it must increase access to 

mental healthcare for children, quantified as the number of children who receive 

psychological service. Our algorithm does not directly maximize the number of children 

with access to collaborative care. Instead, it assigns as many PCPGs to MHPs as possible. 

We assumed that if a child's PCP was accommodated by an MHP, that child received access 

to collaborative care. In this subsection, we first quantify the proportion of children granted 

access to collaborative psychosocial services, overall and by urbanicity. We then verify 

that access improved under our model when compared with a matching approach based on 

current practices; this improvement occurred throughout the entire state. 

To quantify access resulting from our congestion game model, we used the MAX data to 

assign each Medicaid-insured child to a single PCP. This was the PCP in the state (not 
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limited to those in our player set) with whom they had the most visits. If that PCP belonged 

to a PCPG within our player set, we defined that child's assigned PCPG to be that PCPG. 

We then measured the percentage of children with access, that is, the percentage of children 

assigned a PCPG within our player set that received access to collaborative psychosocial 

services under our model equilibrium solution. We additionally computed this percentage 

considering only children that received psychosocial services in 2013 since these are the 

children most likely to utilize psychosocial services. Results are shown in Table 20. 

Table 20. Access metrics under two matching scenarios. 

Metric Congestion Game Algorithm Observation-based Matching 

PCPGs 

Accommodated (%) 
25.36 15.40 

Children with Access 

(%) 
48.74 14.13 

Psychosocial service-

receiving children with 

access (%) 

52.10 15.25 

 

As intended, our algorithm granted children access to psychosocial services via their PCP. 

In particular, the proportion of children who received access and the proportion of 

psychosocial service-receiving children who received access under the collaborative 

framework were both around twice as high as the proportion of PCPGs accommodated by 

an MHP, suggesting our parameter settings for MHP preferences resulted in our algorithm 

giving some priority to PCPGs responsible for more children. That is, MHPs shared more 

of their patients with PCPGs who had a large patient caseload than with PCPGs who had a 

smaller caseload, leading to high-patient-volume PCPGs being more preferred and 

therefore being more likely to be accommodated. Specifically, while only 25.36% of 
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PCPGs were accommodated by an MHP using our algorithm, these accommodated PCPGs 

accounted for 48.74% of children and 52.10% of the children who received psychosocial 

services. Of the 414 PCPGs that were assigned to fewer than 30 children, only 5.8% were 

accommodated whereas of the 456 that were assigned to more than 1,000 children, 63.8% 

were accommodated. 

Access was expanded throughout the state rather than concentrated in one geography. 

Across urbanicity levels, the percentage of players accommodated ranged from 20% in 

rural areas to 25% in large urban areas to 30\% in small urban areas, and the percentage of 

psychosocial service-receiving children ranged from 44.96% in small urban areas to 

47.15% in rural areas to 53.56% in large urban areas (Table 21). 

Table 21. Access metrics by urbanicity, under two matching scenarios. 

Metric Congestion Game Algorithm Observation-based Matching 
Large Urban Small Urban Rural Large Urban Small Urban Rural 

PCPGs 

Accommodated (%) 
25.38 29.92 20.17 13.91 21.65 32.77 

Children with Access 

(%) 
49.06 46.57 44.68 12.98 25.61 23.51 

Psychosocial service-

receiving children with 

access (%) 

53.56 44.96 47.15 12.69 26.72 25.25 

 

To determine whether access has increased, we should compare our algorithm with current 

practices. However, as we do not know exactly which PCPGs already practice 

collaborative care, we instead compared our algorithm with an alternate matching method 

that more closely resembles how providers were behaving, which we called the 

observation-based matching approach. This approach was used to represent current 
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practices and provide a baseline access measurement. In this observation-based matching 

approach, for each PCP location, we considered the Medicaid-insured children that were 

assigned a PCPG at that location and sought psychosocial services. If a large proportion of 

these children visited the same MHP, we assumed PCPs at that location had a collaborative 

relationship with that MHP. Specifically, for every 1/3 of these children visiting the same 

MHP, we matched one PCPG at that location with that MHP. 

Our algorithm does perform better than matching PCPs with MHPs based on current 

behaviors. Compared with the observation-based matching approach, our algorithm 

accommodated 9.95% more PCPGs, granting integrated care to over twice as many 

children (48.74% versus 14.13%). For all urbanicity levels and for 55 of New York's 62 

counties, more psychosocial service-receiving children had integrated care access under 

our algorithm than under the observation-based method (Figure 15). Much of this 

difference can be explained by all MHPs being assigned to at least one PCP under our 

algorithm while only 29.1% of MHPs were under the observation-based method. 
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PCPGs Accommodated (%) 

  

Congestion Game-based Algorithm Observation-based Matching 

Psychosocial Service-receiving Children Accommodated (%) 

  

Congestion Game-based Algorithm Observation-based Matching 

Figure 15. County-level maps of percent of primary care groups (PCPGs) and percent 

of psychosocial service-receiving children accommodated under two matching 

methods. Grey counties had fewer than 11 children assigned to PCPGs in our player 

set. 

5.6.4 Implications for Providers 

For providers to elect to participate in collaborative care using our equilibrium solution, 

their preferences must be met and their workload cannot heavily increase. In this 

subsection, we examine the effect our solution would have on providers. Specifically, we 
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first investigate the extent that preferences of both PCPs and MHPs are met and we next 

assess that MHP caseload is not negatively impacted. 

We assumed that PCPGs would prefer nearby MHPs and MHPs with less congestion. 

These preferences were incorporated into the cost functions of each PCPG as described in 

subsection 5.6.1, and our congestion game-based algorithm was designed to make the least-

cost move for each PCPG in each iteration. Among the 1,100 accommodated PCPGs, 

average cost per PCPG was 0.2121, but it ranged from 0.0008 to 0.9612. The resulting 

distances ranged from near 0 miles to around 364 miles, with the majority being under 12 

miles (Figure 16). Costs and distances do depend on the selected components of the player 

cost functions. For example, under our parameter settings, costs per PCPG at equilibrium 

are generally positively correlated with the weight given to congestion (i.e. 1 − 𝑤𝑖, as 

described in subsection 5.6.1). That is, PCPGs placing more importance on reducing 

distance generally had lower costs due to the wider range of possible distances. Some 

PCPGs, however, were forced to have large distances despite having a higher weight on 

distance than congestion due to few nearby MHPs. For example, Chautauqua county, the 

westernmost county in New York, had 31 PCPGs in their player set but only 6 MHPs in 

their resource set, each with a capacity of 1 and some preferring PCPGs in the neighboring 

counties, resulting in 3 PCPGs being accommodated by MHPs 364 miles away who had 

the available capacity and 25 remaining unaccommodated. Providers matched at such large 

distances can still communicate with each other and provide care to patients through 

telehealth services, thus these distances should not prevent our solution from being 

implementable. 
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Figure 16. Histogram of the distance between each accommodated player and their 

matched resource. 

Although each step of our algorithm involved finding the least-cost MHP for each PCPG 

rather than finding the most-preferred PCPG for each MHP, MHPs still generally received 

their preferred choices of PCPG. This is due to children typically seeking providers to 

whom they can easily travel, creating a relationship between providers being close in 

distance (considered in PCPG preferences via their cost functions, with lower distances 

preferred) and providers sharing patients (considered in MHP preferences, with more 

shared patients preferred). Statistically, 38% of MHPs were paired with their most 

preferred PCPG, and 65.8% only work with PCPGs that were among their three most 

preferred. Only 0.62% of MHPs had to work with a PCPG outside their top ten, with the 

worst preference rank being 40. 
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Next, we examine the effect of collaborative care on MHP caseload. We consider for each 

MHP their child caseload, defined as the number of Medicaid-insured children receiving 

psychosocial services from that MHP in 2013, and their visit caseload, defined as the total 

number of psychosocial service visits they provided to Medicaid-insured children in 2013. 

We compare the caseloads observed in 2013 with those after implementing collaborative 

care, estimated by considering a scenario where children assigned to accommodate PCPGs 

received all their psychosocial service visits in 2013 from the matched MHP rather than 

from their original providers. 

The majority of MHPs were not heavily burdened by increased annual caseload after 

collaborative care implementation. In 2013, median child psychosocial patient caseload 

and visit caseload for the MHPs were observed to be 19 patients and 129 visits. Boxplots 

comparing the psychosocial caseload per MHP observed in the 2013 claims, after 

collaboration under our algorithm, and after collaboration under the observation-based 

matching approach described in subsection 5.6.3 are shown in Figure 17. Per provider 

caseload under both matching methods was similar to that observed in the 2013 claims. 

Using our algorithm, median caseload was only 1 child and 7 visits higher than that 

observed. In fact, only 101 of the 1,000 MHPs (10.1%) experienced a caseload increase of 

at least 10 children under our algorithm as compared with that observed in 2013. Only 

9.5% experienced an increase of at least 100 visits. This means most MHPs would have 

needed to add no more than 2 visits a week to satisfy the demand observed in 2013. 
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Mental Health Provider Patient Caseload 

  

Mental Health Provider Visit Caseload 

  

Figure 17. Boxplots of mental health provider caseload, measured in visits and 

children, as observed in 2013 and under two matching methods, with and without 

outliers displayed. 

 

County-level maps displaying median caseload are given in Figure 18, and caseload by 

urbanicity is given in Table 22. Caseload increase was primarily driven by large urban 

areas, where 89.3% of the MHPs practice. For rural areas, the difference was lessened, with 

median caseload under our algorithm being just 1 visit higher. For small urban areas, 

median caseload was instead reduced by 13 visits. 
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Median Patient Caseload 

  

Congestion Game-based Algorithm Observed in 2013 

Median Visit Caseload 

  

Congestion Game-based Algorithm Observed in 2013 

Figure 18. County-level maps of median psychosocial caseload per mental health 

provider, in children and visits, observed in 2013 and under our algorithm. Grey 

counties had no mental health providers in our resource set. 

 

Table 22. Median caseload among mental health providers, by urbanicity. 

 
Congestion Game Algorithm Observed in 2013 
Full 

State 

Large 

Urban 

Small 

Urban Rural 

Full 

State 

Large 

Urban 

Small 

Urban Rural 

Child Caseload 20 20 22 21 19 19 21 21 

Visit Caseload 136 136 140 123 129 129 153 122 
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5.7 Conclusion 

In this chapter, we introduced a method of partnering PCPs with MHPs while considering 

the capacities and preferences of both provider types for the purpose of evaluating 

collaborative care. This method extends singleton congestion games to consider cases in 

which each player has its own private cost function and each resource has a capacity and 

preferences over the players. In proving that such games have a pure Nash equilibrium, we 

developed a polynomial time algorithm to find an equilibrium solution. While this 

algorithm may not produce the Nash equilibrium resulting in the greatest social good, in 

the context of collaborative primary care and psychosocial services in New York, it can 

still produce a solution comparable to the optimal found using an MIP in a fraction of the 

time.  If the solution would be implemented, it suggests that collaborative care can increase 

access to mental health services without greatly burdening healthcare providers. 

Specifically, 49% of children would have access to psychosocial services via their PCP. 

Increase in access occurs for all three urbanicity levels and for the majority of counties, 

suggesting that it does not favor one portion of the state over the rest. In spite of this 

increase, the median patient caseload for MHPs would only have to increase by 1 child. 
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CHAPTER 6. CONCLUSION 

Understanding disparities in healthcare access is important when designing effective policy 

interventions to improve the healthcare system. In this thesis, we demonstrated the value 

of using local-level data to obtain spatial access estimates that can be used to identify 

significant disparities and inform on their underlying cause. We also simulated policy 

interventions to assess their impact on access to care. We focused on three healthcare 

settings: pediatric primary care, adult primary care, and pediatric mental health. 

For pediatric primary care, we found among our seven selected states, between-state and 

within-state differences in median travel distance and median congestion were mostly not 

significantly greater than 1 mile and 10%, respectively. However, significance maps 

created using nonparametric regression and simultaneous confidence bands revealed 

variations in the locations where children eligible for public insurance had significantly 

lower access than those not eligible. For some states such as Georgia and Minnesota, 

locations where these children had lower accessibility were concentrated in large urban 

areas despite such areas having high accessibility overall, suggesting the need to improve 

public insurance acceptance in these areas. For other states such as Tennessee and North 

Carolina, eligible children had lower accessibility and availability throughout the state, 

suggesting the need for statewide interventions. 

For adult primary care, our projections to year 2025 showed implementation of the 

Affordable Care Act in Georgia would overall decrease the percentage of unmet needed 

primary care visits, improving accessibility while reducing availability. Additionally 

expanding Medicaid does not substantially burden the privately-insured population. 
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Implementing a statewide Medicaid parity program or increasing the number of residency 

positions have little impact on reducing unmet need and improving access to care. 

Finally, for pediatric mental health, we found that the majority of psychosocial services 

available to publicly-insured children were concentrated to only a few locations. Only 15% 

of children received services from providers not associated with a mental health center or 

other organization.  We designed a system to match mental health specialists with primary 

care providers while considering both groups’ preferences using a novel extension of 

congestion games to evaluate the potential impact of collaborative care on access to 

psychosocial services. Results for New York indicated 49% of children could be granted 

access to collaborative services without greatly increasing mental health provider caseload. 

Overall, our results suggest interventions to improve access to primary care should be 

targeted for specific communities and that access to psychosocial services would benefit 

from increased community-based services or collaborative care. While our analyses were 

performed on only a select number of states, the models we use are flexible and can be 

extended to other states and even other healthcare services given appropriate data on the 

supply and need of those services. We hope the findings of this thesis and the methodology 

introduced will be used to make more informed health policy decisions. 
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

A.1 Sensitivity Analysis on Child Allocation 

In order to assess the sensitivity of the optimization model with respect to the assumption 

that 10% of the workload of internists’ and family practitioners' practices is allocated for 

children, we perform a sensitivity analysis of the model by varying these parameters. In 

particular, we run the model multiple times by varying the percentage of the internists 

workload devoted to children between 0% and 10%, and by varying the percentage of the 

family practitioners workload devoted to children between 7% and 15%. 

The analysis shows that the results of the optimization model are not very sensitive to a 

change in the values of these parameters, being the level of accessibility (i.e., distance), 

availability (i.e., congestion) and coverage (i.e., served visits) very close to each other when 

parameters’ values change.  

We report in Figure 19 the graphs for accessibility, availability and coverage at the state 

level for the each state and for each population when the values of these parameters are 

varied. 
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CALIFORNIA 

   

GEORGIA 

   

LOUISIANA 

   

MINNESOTA 

   

MISSISSIPPI 

   

Figure 19. State-level travel distance, congestion, and coverage versus family 

medicine, internist percent caseload devoted to children. 
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NORTH CAROLINA 

   

TENNESSEE 

   

Figure 19 continued. 

 

A.2 Experimental Settings for Total Caseload 

This section describes the experimental analysis we carry out to test the sensitivity of the 

optimization model with respect to providers’ workload parameter. Each model is run 50 

times, where the caseload of each provider is sampled each run. 

We use data from the Health Resources and Services Administration (HRSA) [53] and 

Organization for Economic Co-operation and Development (OECD) [52] to determine our 

sampling distributions. Specifically, based on surveys conducted in 2002, 2003, and 2006, 

the HRSA data reports Average Patient Care Hours Worked per Week by General Internal 

Medicine Physicians, by age class and gender in full-time equivalent (FTE) units. By 

considering a work schedule of 45 hours per week, 50 weeks per year, and an average visit 

duration equal to 16 minutes (equivalent to a panel size of 2500 patients per year per 
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physician [39] and approximately 8400 visits per year), we derived the annual number of 

visits per physician by age and gender  (Table 23). 

OECD provides the number of physicians in each of five age classes separated by gender 

for the United States in 2013 using data from the American Medical Association (Table 

24). We fit a Normal Distribution to the data for each gender by calculating the sample 

mean and standard deviation assuming frequency weights are at the midpoints of each age 

interval (Figure 20). 

Table 23. Annual number of visits per primary care physician by age and gender. 

Total Number of yearly visits   

Age Male Female 

<40 8736 6888 

40-44 8988 7224 

45-49 9240 7644 

50-54 9912 8064 

55-59 9576 7896 

60-64 8904 6216 

> 64 7056 7560 

Table 24. Physicians by age and gender (from OECD). 

Number of Physicians 

Age Male Female 

<35 71867 13174 

35-44 112769 83115 

45-54 130264 67710 

55-64 137081 45240 

65-74 81787 13174 
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Figure 20. Age distribution with fitted normal curve for male physicians and for 

female physicians. 

For our sampling procedure, we follow three steps: 

First, we determine the gender of each physician at physician location j. A physician’s 

gender can be found in the NPI database [38]. However, not all physicians list their gender. 

We use the NPI database to obtain the gender of all physicians at j who have their gender 

listed. We then calculate the proportion of physicians who are female at j based on the 

providers who have their genders listed.  If no providers’ genders are known at j, we instead 

use the 2013 national ratio of 0.3409 female found in the OECD data table. Then for each 

physician of unknown gender, we generate a random number between 0 and 1. If the 

number is less than the proportion female at j, we say that physician is female. Otherwise 

we say they are male. 

Second, we generate a random age for each physician based on their gender by sampling 

from the corresponding Normal Distribution depicted in Figure 20. Finally, using each 

physician’s sampled age and gender, we find the total yearly visits for that physician in 

Table 23.  
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APPENDIX B. SUPPLYMENTARY MATERIAL FOR CHAPTER 3 

B.1 Supply Model Validation 

This section presents a comparison of our results with existing results in the literature for 

a validation of our supply projection model. 

To validate the Student Module, we compared our output with data from the Georgia Board 

for Physician Workforce’s Graduate Medical Education Survey Reports, 2002-2013 [202]. 

Results are shown in Figure 21 for different growth scenarios. We found the number of 

Georgia GME graduates projected by the Student Module to be comparable to the number 

of graduates recorded in previous years. 

 

Figure 21. Number of Georgia GME graduates, 2002-2025. 

To validate the Workforce Module, we compare our predicted growth in physicians to 

national projections made by HIS Inc in 2013 [97] and HRSA in 2006 [203] and 2013 [53]. 
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Because the 2014 numbers were not explicitly given, we assumed a constant increase in 

providers per year between 2010 and 2015 for the HRSA 2006 study and between 2010 

and 2020 for the HRSA 2013 study. Results including the different scenarios for growth in 

GME entrants are given in Table 25 and Table 26. Our projected increase is consistent with 

those produced by HIS Inc. and HRSA. 

Table 25. Percent growth in primary care providers, 2013-2025. 

Source Physicians in 2013 Physicians in 2025 Percent Growth (%) 

GA model (0% growth) 6,699 7,314 9.1 

GA model (12% growth) 6,699 7,376 10.1 

GA model (30% growth) 6,699 7,483 11.7 

IHS 240,800 266,700 10.8 

Table 26. Percent growth in primary care providers, 2014-2020. 

Source Physicians in 2014 Physicians in 2020 Percent Growth (%) 

GA model (0% growth) 6,794 7,241 6.6 

GA model (12% growth) 6,814 7,290 6.9 

GA model (30% growth) 6,800 7,285 7.3 

HRSA 2013 211,320 220,800 4.5 

HRSA 2006 – Total PCPs 280,998 298,680 6.3 

HRSA 2006 – FTE PCPs 205,204 216,890 5.7 

 

We additionally compared the age distribution projected for year 2020 by our Workforce 

Module with the age distribution of all physicians at the national level in 2020 as given in 

the HRSA 2006 study [203] and by [68] considering initial numbers both from the US 

Census Bureau Current Population Survey (CPS) and from the American Medical 

Association Physician Masterfile (Masterfile). This is shown in Figure 22. 
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Figure 22. Primary care provider age distribution, 2020. 

 

B.2 Medicaid Insurance Eligibility Forecast Model 

This section details the steps taken to produce estimates of the number of adults eligible 

for Medicaid each year between 2013 and 2025 under each of the three ACA 

implementation scenarios. That is, our intended output is: 

- 𝑇𝑐,𝑡
𝑀𝐸𝐷,𝑁𝐸

: The number of nonelderly adults eligible for Medicaid under non-

expansion in county c in year t 

- 𝑇𝑐,𝑡
𝑀𝐸𝐷,𝐸

: The number of nonelderly adults eligible for Medicaid under expansion in 

county c in year t 

- 𝑇𝑐,𝑡
𝑀𝐸𝐷,𝑁𝑃

: The number of nonelderly adults eligible for Medicaid under the no-ACA 

implementation scenario in county c in year t 
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The Medicaid eligibility criteria are the same under the no-ACA implementation scenario 

and the no-expansion scenario, hence 𝑇𝑐,𝑡
𝑀𝐸𝐷,𝑁𝑃 = 𝑇𝑐,𝑡

𝑀𝐸𝐷,𝑁𝐸 . 

To obtain these values, the following data are needed: 

- 𝐴𝑐,𝑡
𝑀 and 𝐴𝑐,𝑡

𝐹 : Median age for males and females in county c in year t (2012 ACS 

Table B01002) 

- 𝐶𝑐,𝑡: Proportion of the population age 25 and over with a bachelor’s degree or higher 

in county c in year t (2012 ACS Table S2301) 

- 𝐷𝑐,𝑡: Average gross rent in county c in year t (2012 ACS Table B25064) 

-  𝐸𝑐,𝑡
1 and 𝐸𝑐,𝑡

2 : Average household size over 18 and under 18 in county c in year t 

(2010 Census Table PCT7) 

- 𝐺𝑐,𝑡 and 𝐺𝑐,𝑡
𝑁 : Total population and total non-elderly adult population in county c in 

year t (Governor’s Office of Planning and Budget Population Projections) 

- 𝑞𝑐,𝑡: Proportion of the total population that is non-elderly adults in county c in year 

t (2010 Census Table PCT3) 

- 𝑝𝑐,𝑡
𝑀 , 𝑝𝑐,𝑡

𝐹  and 𝑝𝑐,𝑡: Proportion of male adults, proportion of female adults, and 

proportion of all adults that are non-elderly in county c in year t (2010 Census Table 

PCT3) 

- 𝐻𝑐,𝑡: Proportion of Caucasian residents in county c in year t (2012 ACS Table 

B02001) 
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- 𝐼𝑐,𝑡: Median income in county c in year t (ESRI) 

- 𝑄𝑐,𝑡: Population in group quarters in county c in year t (2012 ACS Table B26001) 

- 𝑆𝑐,𝑡: Number of non-elderly adult householders living alone in county c in year t 

(2012 ACS Table B11010) 

- 𝑇𝑐,𝑡: Number of nonfamily householders not living alone in county c in year t (2012 

ACS Table B11010) 

- 𝑢𝑐,𝑡: Proportion of adults with income less than 138% of the FPL in county c in 

year t (2012 ACS Table B17024) 

The method for obtaining the final outputs takes the following steps: 

1. Forecast family household counts 

Multiple regression models were used to forecast the following: 

- 𝑁𝑐,𝑡,∙
𝑀𝐴: The number of households with married families with children under 

18 in county c during year t in all income ranges 

- 𝑁𝑐,𝑡,∙
𝑆𝐹 : The number of households with single fathers with children under 18 

in county c during year t in all income ranges 

- 𝑁𝑐,𝑡,∙
𝑆𝑀: The number of households with single mothers with children under 

18 in county c during year t in all income ranges 
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- 𝑁𝑐,𝑡,∙
𝑁𝐶 : The number of family households with no children under 18 in county 

c during year t in all income ranges 

The regression models are as follows: 

- log 𝑁𝑐,𝑡,∙
𝑀𝐴 = .0253 log 𝐶𝑐,𝑡 + .0393 log 𝐷𝑐,𝑡 + .1329𝐸𝑐,𝑡

2 − .0060𝐸𝑐,𝑡
1 +

1.1728 log 𝐺𝑐,𝑡 + .1657𝐻𝑐,𝑡 

- log 𝑁𝑐,𝑡,∙
𝑆𝐹 = −.0471𝐴𝑐,𝑡

𝐹 + .0878𝐸𝑐,𝑡
1 + 1.1509 log 𝐺𝑐,𝑡 

- log 𝑁𝑐,𝑡,∙
𝑆𝑀 = −.0964 log 𝐶𝑐,𝑡 − .0466 log 𝐷𝑐,𝑡 + .0370𝐸𝑐,𝑡

2 − .0582𝐸𝑐,𝑡
1 +

1.2801 log 𝐺𝑐,𝑡 − .1705𝐻𝑐,𝑡 

- log 𝑁𝑐,𝑡,∙
𝑁𝐶 = .0407𝐴𝑐,𝑡

𝑀 + .0686𝐴𝑐,𝑡
𝐹 − .0665𝐸𝑐,𝑡

2 + .0361𝐸𝑐,𝑡
1 +

1.1796 log 𝐺𝑐,𝑡 + .0346𝐻𝑐,𝑡 + .0024 log 𝐼𝑐,𝑡 

The predictors 𝐶𝑐,𝑡, 𝐸𝑐,𝑡
1 , 𝐸𝑐,𝑡

2 , are assumed constant with time through year 2025 whereas 

the other predictors had to be forecasted for future years. 𝐴𝑐,𝑡
𝑀  and 𝐻𝑐,𝑡 are forecasted using 

Holt-Winters method with historical median age data from the UN database. 𝐷𝑐,𝑡 and 

𝐼𝑐,𝑡 are forecasted using Holt-Winters method with historical Consumer Price Index data 

from the Bureau of Labor Statistics. Forecasts for 𝐺𝑐,𝑡 are given in the census tables. 

2. Split the household count into income ranges 

Each of the resulting household counts is divided into income-to-poverty (IPL) ranges 

using the 2012 household proportions from ACS Table B17022. For example, the 

proportion of married adults in county c that are in income range i is 𝑁𝑐,2012,𝑖
𝑀𝐴 𝑁𝑐,2012,∙

𝑀𝐴⁄  with 
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𝑖 = {

1, 𝑖𝑓 𝐼𝑃𝐿 ≤ 0.37
2, 𝑖𝑓 0.37 < 𝐼𝑃𝐿 ≤ 1.00
3, 𝑖𝑓 1.00 < 𝐼𝑃𝐿 ≤ 1.38

 

3. Calculate the number of eligible adults in family households 

Define 𝐹𝑐,𝑡
𝑀𝐸𝐷,𝑁𝐸

to be the number of nonelderly adults living in family households that are 

eligible for Medicaid in county c and year t under the non-expansion scenario and 𝐹𝑐,𝑡
𝑀𝐸𝐷,𝐸

to 

be the same number under the Medicaid-expansion scenario.  These numbers can be 

calculated using the following equations based on the eligibility criteria: 

- 𝐹𝑐,𝑡
𝑀𝐸𝐷,𝑁𝐸 = (𝑝𝑐,2010

𝑀 + 𝑝𝑐,2010
𝐹 ) ∗ 𝑁𝑐,𝑡,1

𝑀𝐴 + 𝑝𝑐,2010
𝑀 ∗ 𝑁𝑐,𝑡,1

𝑆𝐹 + 𝑝𝑐,2010
𝐹 ∗ 𝑁𝑐,𝑡,1

𝑆𝑀  

- 𝐹𝑐,𝑡
𝑀𝐸𝐷,𝐸 = (𝑝𝑐,2010

𝑀 + 𝑝𝑐,2010
𝐹 ) ∗ (𝑁𝑐,𝑡,1

𝑀𝐴 + 𝑁𝑐,𝑡,2
𝑀𝐴 + 𝑁𝑐,𝑡,3

𝑀𝐴 ) + 𝑝𝑐,2010
𝑀 ∗

(𝑁𝑐,𝑡,1
𝑆𝐹 + 𝑁𝑐,𝑡,2

𝑆𝐹 + 𝑁𝑐,𝑡,3
𝑆𝐹 ) + 𝑝𝑐,2010

𝐹 ∗ (𝑁𝑐,𝑡,1
𝑆𝑀 + 𝑁𝑐,𝑡,2

𝑆𝑀 + 𝑁𝑐,𝑡,3
𝑆𝑀 ) + 𝑝𝑐,2010 ∗

𝐸𝑐,2010
1 ∗ (𝑁𝑐,𝑡,1

𝑁𝐶 + 𝑁𝑐,𝑡,2
𝑁𝐶 + 𝑁𝑐,𝑡,3

𝑁𝐶 )  

4. Calculate the number of adults in group quarters and nonfamily households 

The number of non-elderly adults 𝑁𝐹𝑐,𝑡 living in group quarters and nonfamily households 

in county c and year t is determined as follows. 

For year 2012 we have: 

- 𝑁𝐹𝑐,2012 = (𝑄𝑐,2012 ∗ 𝑞𝑐,2010) + 𝑆𝑐,2012 + (𝑇𝑐,2012 ∗ 𝐸𝑐,2010
1 ∗ 𝑝𝑐,2010) 

For future years, we assume the ratio of non-elderly adults in group quarters and nonfamily 

households to all non-elderly adults remains the same: 
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- 𝑁𝐹𝑐,𝑡 = (
𝑁𝐹𝑐,2012

𝐺𝑐,2012
𝑁 ) ∗ 𝐺𝑐,𝑡

𝑁  

5. Calculate the number of eligible adults in group quarters and nonfamily households 

We assume only adults in family households have children under age 18. Thus, adults in 

group quarters and nonfamily households are only eligible for Medicaid under the 

Medicaid-expansion scenario. 

- 𝑁𝐹𝑐,𝑡
𝑀𝐸𝐷,𝐸 = 𝑁𝐹𝑐,𝑡 ∗ 𝑢𝑐,2012 

6. Compute the desired outputs 

- 𝑇𝑐,𝑡
𝑀𝐸𝐷,𝑁𝐸 = 𝐹𝑐,𝑡

𝑀𝐸𝐷,𝑁𝐸
 

- 𝑇𝑐,𝑡
𝑀𝐸𝐷,𝐸 = 𝐹𝑐,𝑡

𝑀𝐸𝐷,𝐸 + 𝑁𝐹𝑐,𝑡
𝑀𝐸𝐷,𝐸

 

Final values are given at the county level. These are distributed to census tracts according 

to the percent of the county’s population that reside in each census tract. 
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APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

Table 27 shows how taxonomy codes were classified into the 11 different provider 

categories used in our analysis. The National Uniform Claim Committee structures 

taxonomy codes into three levels: Provider Type, Classification, and Area of 

Specialization. Each of our provider categories consists of all taxonomy codes with an Area 

of Specialization listed under the corresponding “Included Specializations” or with a 

Classification listed under the corresponding “Included Classifications” except for codes 

that also have an Area of Specialization listed under the corresponding “Excluded 

Specializations”. For example, federally qualified health centers (taxonomy code 

261QF0400X) and rural health clinics (261QR1300X) are both specializations listed under 

the Classification Clinic/Center (261Q00000X) and would therefore be categorized as 

‘Other Care Centers’. 
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Table 27. Taxonomy code classification. 

 
Provider 
Category 

Included 
Entity 
Types 

Included Specializations Included Classifications Excluded Specializations 

Mental 
Health 

Psychiatrist 
(PST) 

1   Psychiatry & Neurology 

Clinical Neurophysiology, 
Diagnostic Neuroimaging, 
Neurodevelopmental 
Disabilities, Pain 
Medicine, Sports 
Medicine, Vascular 
Neurology 

Psychologist 
(PSG) 

1   
Psychologist, Clinical 
Neuropsychologist 

  

Counselor 
(CLR) 

1   Counselor   

Social Worker 
(SW) 

1   Social Worker   

Other Entity 1 
Mental Health 

(OM1) 
1 

Psychiatric/Mental Health 
Registered Nurse, 
Psychiatric/Mental Health 
Nurse Practitioner, 
Psychiatric/Mental Health 
Clinical Nurse Specialist 

Marriage and Family Therapist, 
Psychoanalyst, Behavior Analyst 

  

Other Entity 2 
Mental Health 

(OM2) 
2 

Psychiatric/Mental Health 
Registered Nurse, 
Psychiatric/Mental Health 
Nurse Practitioner, 
Psychiatric/Mental Health 
Clinical Nurse Specialist 

Psychiatry & Neurology, Psychologist, 
Clinical Neuropsychologist, Counselor, 
Social Worker, Marriage and Family 
Therapist, Psychoanalyst, Behavior 
Analyst 

Clinical Neurophysiology, 
Diagnostic Neuroimaging, 
Neurodevelopmental 
Disabilities, Pain 
Medicine, Sports 
Medicine, Vascular 
Neurology 

Mental Health 
Center (MHC) 

1,2 

Adolescent and Children 
Mental Health 
Clinic/Center, Adult 
Mental Health 
Clinic/Center, Mental 
Health Clinic/Center 

Community/Behavioral Health 
Agency; Psychiatric Residential 
Treatment Facility; Community Based 
Residential Treatment Facility, Mental 
Illness; Residential Treatment Facility, 
Emotionally Disturbed Children; 
Psychiatric Hospital; Psychiatric Unit 
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Table 27 continued. 

 
Provider 
Category 

Included 
Entity 
Types 

Included Specializations Included Classifications Excluded Specializations 

Related 
Care 

Primary Care 
(PC) 

1   

Registered Nurse, Nurse Practitioner, 
Clinical Nurse Specialist, Physician 
Assistant, General Practice, Family 
Medicine, Internal Medicine, 
Obstetrics & Gynocology, Pediatrics 

Psychiatric/Mental Health 
Registered Nurse, 
Psychiatric/Mental Health 
Nurse Practitioner, 
Psychiatric/Mental Health 
Clinical Nurse Specialist, 
Surgical Physician 
Assistant 

Rehabilitative/ 
Developmental 

Care (RC) 
1 

Neurology, Neurology 
with Special Qualifications 
in Child Neurology, 
Clinical Neurophysiologist, 
Neuromuscular Medicine 
(Psychiatry & Neurology), 
Pain Medicine (Psychiatry 
& Neurology), Sports 
Medicine (Psychiatry & 
Neurology), Vascular 
Neurology (Psychiatry & 
Neurology) 

Art Therapist, Dance Therapist, 
Developmental Therapist, 
Kinesiotherapist, Massage Therapist, 
Music Therapist, Occupational 
Therapist, Occupational Therapy 
Assistant, Orthotist, Pedorthist, 
Physical Therapist, Physical Therapy 
Assistant, Prosthetist, Recreation 
Therapist, Rehabilitation Counselor, 
Rehabilitation Practitioner, 
Respiratory Therapist Certified, 
Respiratory Therapist Registered, 
Poetry Therapists, Speech Language 
Pathologist,  Physical Medicine & 
Rehabilitation, Pain Medicine 

  

Other Entity 2 
Related Care 

(PR2) 
2 

Neurology, Neurology 
with Special Qualifications 
in Child 
Neurology, Clinical 
Neurophysiologist, 
Neuromuscular Medicine 
(Psychiatry & Neurology), 
Pain Medicine (Psychiatry 
& Neurology), Sports 
Medicine (Psychiatry & 
Neurology), Vascular 
Neurology (Psychiatry & 
Neurology) 

Registered Nurse, Nurse Practitioner, 
Clinical Nurse Specialist, Physician 
Assistant, General Practice, Family 
Medicine, Internal Medicine, 
Obstetrics & Gynocology, Pediatrics, 
Art Therapist, Dance Therapist, 
Developmental Therapist, 
Kinesiotherapist, Massage Therapist, 
Music Therapist, Occupational 
Therapist, Occupational Therapy 
Assistant, Orthotist, Pedorthist, 
Physical Therapist, Physical Therapy 
Assistant, Prosthetist, Recreation 
Therapist, Rehabilitation Counselor, 
Rehabilitation Practitioner, 
Respiratory Therapist Certified, 
Respiratory Therapist Registered, 
Poetry Therapists, Speech Language 
Pathologist,  Physical Medicine & 
Rehabilitation, Pain Medicine 

Psychiatric/Mental Health 
Registered Nurse, 
Psychiatric/Mental Health 
Nurse Practitioner, 
Psychiatric/Mental Health 
Clinical Nurse Specialist, 
Surgical Physician 
Assistant 
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Table 27 continued. 

 
Provider 
Category 

Included 
Entity 
Types 

Included Specializations Included Classifications Excluded Specializations 

Related 
Care 

Other Care 
Center (OCC) 

1,2   

Multi-Specialty Group; Single Specialty 
Group; Day Training, Developmentally 
Disabled Services; Early Intervention 
Provider Agency; Home Health Agency; 
Home Infusion Agency; Hospice Care, 
Community Based; In Home Supportive 
Care Agency; Local Education Agency; 
Nursing Care Agency; PACE Provider 
Organization; Public Health or Welfare 
Agency; Supports Brokerage; Voluntary 
or Charitable Agency; Alzheimer 
Center/Dementia Center/ Dementia 
Special Care Unit; Assisted Living 
Facility; Custodial Care Facility; Hospice, 
Inpatient; Intermediate Care Facility, 
Mentally Retarded; Intermediate Care, 
Mental Illness; Nursing 
Facility/Intermediate Care Facility; 
Skilled Nursing Facility; Community 
Based Residential Treatment Facility, 
Mental Retardation and/or 
Developmental Disabilities; Residential 
Treatment Facility, Mental Retardation 
and/or Developmental Disabilities; 
Residential Treatment Facility, Physical 
Disabilities; Substance Abuse Disorder 
Rehabilitation Facility; Respite Care; 
Clinic/Center; Epilepsy Unit; 
Rehabilitation Unit; Rehabilitation, 
Substance Use Disorder Unit; Chronic 
Disease Hospital; General Acute Care 
Hospital; Long Term Care Hospital; 
Military Hospital; Rehabilitation 
Hospital; Religious Nonmedical Health 
Care Institution; Special Hospital 

Adolescent and Children 
Mental Health 
Clinic/Center, Adult 
Mental Health 
Clinic/Center, Mental 
Health Clinic/Center 
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APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

D.1 Proofs for Nash Equilibrium Existence 

In this section, we provide the necessary background for the proofs of Theorems 1 and 2 

regarding the existence of a pure equilibrium. For this purpose, we allow players to 

iteratively change their strategy to one that will result in their lowest cost given the current 

state of the game. Specifically, we define a step 𝑠 (𝑠 = 1,2, …) as the act of a single player 

changing strategy or of a newly added player playing her initial strategy. We define stage 

𝑠 as the state of the game (i.e. the values of all variables determined by σ) after step 𝑠. 

Stage 𝑠 = 0 represents the initial game state before any players move. When referring to a 

variable at a specific state, we use superscripts (σ𝑖
𝑠 is player 𝑖’s strategy at stage 𝑠, 𝑓𝑖

𝑠 is 

player 𝑖’s final cost at stage 𝑠, etc.). We further define 𝑓𝑖𝑗(σ𝑠) as the cost player 𝑖 will incur 

if it moves to resource 𝑗 during step 𝑠 + 1. We say resource 𝑗 is player 𝑖’s least-cost 

resource during stage 𝑠 if σ𝑖
𝑠 = 𝑗 and 𝑓𝑖

𝑠 ≤ 𝑓𝑖𝑗′(σ𝑠) ∀𝑗′ ∈ Σ𝑖. Finally, we say a game is at 

equilibrium at stage 𝑠, if players cannot reduce their cost by unilaterally changing their 

strategy (i.e. 𝑓𝑖
𝑠 ≤ 𝑓𝑖𝑗(σ𝑠) ∀𝑖 ∈ 𝒩, 𝑗 ∈ Σ𝑖). We breakdown the proof of Theorem 1 into 

four lemmas. 

When a player proposes to a saturated resource, the resource will accommodate that player 

if her rank at that resource is lower than the rank of at least one player currently 

accommodated by that resource. We define a resource 𝑗’s cutoff rank 𝑝𝑗 as the rank a player 

must be below in order to be accommodated by 𝑗. That is, 
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𝑝𝑗 = {
max {𝑝𝑖𝑗|𝜎𝑖 = 𝑗, 𝑖 is accommodated}, 𝑗 is saturated

∞, 𝑗 is unsaturated
 

If a player gets accommodated by a saturated resource, for the resource to stay within its 

capacity, the highest-ranked accommodated player at that resource must be displaced, 

meaning the player will no longer be accommodated and her incurred cost will rise to 

infinity. If a player accommodated by a saturated resource decides to change her strategy 

(i.e., leave her current resource and newly propose to a different resource), that saturated 

resource must immediately accommodate the lowest-ranked player that is proposing to it 

but had not been accommodated, if any such player exists. 

The next lemma shows that if initially all players are at equilibrium and a new player has 

proposed to her least-cost resource, at each stage, only one resource’s players will have an 

incentive to change strategies. 

Lemma 1: Suppose a congestion game is at equilibrium.  If a new player 𝑖𝑛 joins to the 

game and proposes to her least-cost resource 𝑗1 at step 1, either the game remains at 

equilibrium, or both the following hold: (1) the only players that could achieve lower cost 

changing strategies at the next step are also at 𝑗1 and (2) once one of those players leaves 

𝑗1 for a different resource 𝑗2, all players except those at 𝑗2 will again be playing their least-

cost resource. 

Proof. If cost incurred for each player is still minimum after player 𝑖𝑛 proposes to 𝑗1, the 

game remains at equilibrium. We consider the case when the game has not remained at 

equilibrium. Note because an additional player was added to resource 𝑗1, we have 𝑛𝑗1

1 ≥

𝑛𝑗1

0  and 𝑛𝑗
1 = 𝑛𝑗

0 ∀𝑗 ≠ 𝑗1. Consider the player 𝑖 at some resource 𝑗′ ≠ 𝑗1. Since player costs 
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functions are non-decreasing with congestion, we have 𝑓𝑖
1 = 𝑓𝑖

0 = min
j

(𝑓𝑖𝑗(𝜎0)) =

min
j

(𝑓𝑖𝑗(𝜎1)). Thus players not at 𝑗1 are still matched to their lowest cost resource, so any 

player that may want to move must be at 𝑗1. This shows (1). To show (2), we consider two 

cases: 

1. 𝑗1 was initially unsaturated 

2. 𝑗1 was initially saturated 

In the first case, let any player 𝑖 at resource 𝑗1 move to some other resource 𝑗2 at the next 

step. Then we have 𝑛𝑗
2 = 𝑛𝑗

0 ∀𝑗 ≠ 𝑗2 and 𝑛𝑗2

2 ≥ 𝑛𝑗2

0 . Additionally, 𝑝𝑗
2 = 𝑝𝑗

0 ∀𝑗 ≠ 𝑗2 and 

𝑝𝑗2

2 ≤ 𝑝𝑗2

0 . This means all congestions and cutoff ranks stay the same as they were initially 

at every resource except at 𝑗2 (whose congestion does not decrease and cutoff rank does 

not increase). Since all players were initially matched to their least-cost resource, all 

players not at 𝑗2 must still achieve their lowest cost. Note as a consequence of this, if the 

game is still not at equilibrium, the next player to change strategy must be at 𝑗2. 

In the second case, a single player 𝑖 at 𝑗1 will be displaced by player 𝑖𝑛. Note the other 

players at 𝑗1 would retain their lowest-possible costs since 𝑛𝑗
1 = 𝑛𝑗

0 ∀𝑗 ∈ ℛ and 𝑝𝑗
1 =

𝑝𝑗
0 ∀𝑗 ≠ 𝑗1 (i.e. all congestions and cutoff ranks at the other resources would not have 

changed from their initial state), so the displaced player must change strategy. Let the 

displaced player 𝑖 move to some other resource 𝑗2 at the next step. Then we have 𝑛𝑗
2 =

𝑛𝑗
0 ∀𝑗 ≠ 𝑗2 and 𝑛𝑗2

2 ≥ 𝑛𝑗2

0 . Additionally, 𝑝𝑗
2 = 𝑝𝑗

0 ∀𝑗 ≠ 𝑗1, 𝑗2, 𝑝𝑗1

2 < 𝑝𝑗1

0 , and 𝑝𝑗2

2 ≤ 𝑝𝑗2

0 . 

Again, this means all congestions stay the same as they were initially except at 𝑗2 (where 

it does not decrease), and all cutoff ranks stay the same as they were initially except at 𝑗1 
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and 𝑗2 (which do not increase). Since all players were initially matched to their least-cost 

resource, all players not at 𝑗2 must still achieve their lowest cost. ∎ 

As a consequence of this lemma, after each step, it is enough to focus on the behavior of 

the players at the resource that just got added a player. This leads to the following 

definition: 

Definition 1: The addition of a player starts a chain, that is a sequence of resources where 

the 𝑘-th resource in the sequence is the resource that a player newly proposed to at step 

𝑘. If 𝑘 > 1, that player would have previously been proposing the 𝑘 − 1-th resource in the 

sequence. A resource can appear multiple times in the chain. 

An example chain resulting from a new player 𝑖1 proposing to a resource 𝑗1 is depicted in 

Figure 23. At each proceeding step 𝑘, a player 𝑖𝑘 leaves her previous resource 𝑗𝑘−1 to be 

accommodated by a lower-cost resource 𝑗𝑘. The chain ends after step 𝑛 when no players 

can achieve lower cost by leaving resource 𝑗𝑛. 

 

Figure 23. Chain Consisting of Resources 𝒋𝟏,𝒋𝟐,𝒋𝟑,...,𝒋𝒌−𝟏,𝒋𝒌,...,𝒋𝒏 

Given a chain, we can know the congestions of every resource relative to its initial value. 
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Corollary 1: Suppose resource 𝑗 is added to the chain at steps 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛. Then for 

all steps 𝑠 ∉ 𝑆, 𝑛𝑗
𝑠 = 𝑛𝑗

0. For steps 𝑠 ∈ 𝑆, if resource 𝑗 was initially saturated, 𝑛𝑗
𝑠 = 𝑛𝑗

0, 

and if resource 𝑗 was initially unsaturated, 𝑛𝑗
𝑠 = 𝑛𝑗

0 + 1. 

Proof. From the definition of chain, the players proposing to 𝑗 will remain unchanged until 

𝑗 is added to the chain, meaning its congestion will remain 𝑛𝑗
0 until that first occurs, if that 

occurs at all. Say 𝑗 is added to the chain at step 𝑠1. That is, 𝑛𝑗
𝑠 = 𝑛𝑗

0 ∀𝑠 < 𝑠1. Then at step 

𝑠1, a player 𝑖 will newly propose to resource 𝑗. 

If 𝑗 was saturated (i.e. 𝑛𝑗
0 = 𝐾𝑗), that player would either not be accommodated (indicating 

the game is at equilibrium) or that player would displace a previously-accommodated 

player. This means the congestion will remain the same (i.e. 𝑛𝑗
𝑠1 = 𝑛𝑗

0). If 𝑠1 is not the last 

step, by Lemma 1, the displaced player must leave 𝑗. A displaced player leaving does not 

affect the congestion at 𝑗, so the congestion will not change at the following step (i.e. 

𝑛𝑗
𝑠1+1

= 𝑛𝑗
0). 

If 𝑗 was unsaturated (i.e. 𝑛𝑗
0 < 𝐾𝑗), player 𝑖 would be accommodated, causing the 

congestion to increase by 1 (i.e. 𝑛𝑗
𝑠1 = 𝑛𝑗

0 + 1). Again if 𝑠1 is not the last step, by Lemma 

1, a player must leave 𝑗 at the next step, reducing the congestion by 1. That is, 𝑛𝑗
𝑠1+1

=

𝑛𝑗
𝑠1 − 1 = 𝑛𝑗

0. 

Thus in both the saturated and unsaturated case, we have 𝑛𝑗
𝑠1+1

= 𝑛𝑗
0. Again by definition 

of chain, the congestion at 𝑗 will remain unaffected until the next step 𝑗 appears in the chain 

if such a step exists. If there is no such step, we have 𝑛𝑗
𝑠 = 𝑛𝑗

𝑠1+1
= 𝑛𝑗

0 ∀𝑠 ≥ 𝑠1 + 1. 
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Otherwise if 𝑠2 denotes the next step 𝑗 is added to the chain, we have 𝑛𝑗
𝑠 = 𝑛𝑗

𝑠1+1
=

𝑛𝑗
0 ∀𝑠 ∈ [𝑠1, 𝑠2 − 1]. Then at step 𝑠2 the same consequences from a player newly 

proposing to 𝑗 will occur. ∎ 

As a consequence of this corollary, a resource that was saturated at stage 0 will remain 

saturated for all stages, and a resource that was unsaturated at stage 0 will remain 

unsaturated for all stages not immediately following a step where a player newly proposed 

to that resource (i.e. the step the resource appears in the chain). Thus, we can characterize 

each resource by its initial saturation. 

We can additionally characterize subsequences of a chain. 

Definition 2: We refer to any contiguous subsequence of the chain where the first resource 

was either the first resource in the chain or saturated at stage 0, the last resource was 

either the last resource in the chain or saturated at stage 0, and any resources in between 

were unsaturated at stage 0 as a leg of the chain. The length of a leg refers to the number 

of these unsaturated resources. 

An example chain with four legs is depicted in Figure 24.  In this figure, Shaded circles are 

saturated resources while unshaded circles are unsaturated resources. The four legs consist 

of resources 1,2,3 (a leg of length 2); 3,4 (of length 0); 4,5,6 (of length 1); and 6,7 (of 

length 1). 
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Figure 24. An example chain consisting of seven resources and four legs. 

We can also find limits for the length of a chain. 

Lemma 2: Whenever a player newly proposes to and is accommodated by a saturated 

resource, the cutoff rank of that resource must decrease. 

Proof. Let 𝑖1 be the player, 𝑗 the saturated resource, and 𝑠 the step in which 𝑖1 proposed to 

𝑗. Additionally, let ℐ𝓈−1 and ℐ𝓈 denote the set of all players accommodated by 𝑗 during 

stages 𝑠 − 1 and 𝑠 respectively. Before 𝑖1 proposed, 𝑗’s cutoff rank 𝑝𝑗
𝑠−1 is by definition 

𝑗’s ranking of its least-preferred (or equivalently, its highest-ranked) accommodated 

player, say 𝑖2. That is, 𝑝𝑗
𝑠−1 = 𝑝𝑖2𝑗 > 𝑝𝑖𝑗 ∀𝑖 ∈ ℐ𝓈−1 ∖ {𝑖2}. For 𝑖1 to be accommodated by 

𝑗 during step 𝑠, it is required that 𝑝𝑖1𝑗 < 𝑝𝑗
𝑠−1. When 𝑖1 is accommodated, 𝑖2 must be 

displaced. Therefore we have 𝑝𝑗
𝑠−1 > max(𝑝𝑖𝑗: 𝑖 ∈ {𝑖1} ∪ ℐ𝓈−1 ∖ {𝑖2}) = max(𝑝𝑖𝑗: 𝑖 ∈

ℐ𝓈) = 𝑝𝑗
𝑠.∎ 

Lemma 3: Within a chain, a player cannot return to a resource from which they have been 

displaced. 

Proof. If a player 𝑖 is displaced from resource 𝑗 at step 𝑠, the cutoff rank of 𝑗 must decrease, 

as described in Lemma 2. (i.e. we have 𝑝𝑗
𝑠 < 𝑝𝑗

𝑠−1 = 𝑝𝑖𝑗). For player 𝑖 to return to resource 

𝑗 at some future step 𝑠 + 𝑑, we would need 𝑝𝑖𝑗 < 𝑝𝑗
𝑠+𝑑−1 ≤ 𝑝𝑗

𝑠−1 = 𝑝𝑖𝑗, a contradiction. 

Note the middle inequality holds because each step, if a player is added to a saturated 
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resource, it must displace another player with a higher rank 𝑝𝑖𝑗 thereby decreasing the 

cutoff rank.∎ 

Lemma 4: Within a leg, a player cannot return to an unsaturated resource they have left. 

Proof. Suppose at step 𝑡, a player 𝑖 changed strategies from initially unsaturated resource 

𝑗 to unsaturated resource 𝑗′. This means 𝑑𝑖𝑗′(𝑛𝑗′
𝑡 ) < 𝑑𝑖𝑗(𝑛𝑗

𝑡−1). We show through 

contradiction that player 𝑖 will not return to 𝑗 at some future step 𝑡 + 𝑑 in the leg. 

Suppose player 𝑖 did switch to resource 𝑗 from some other resource 𝑗′′ at step 𝑡 + 𝑑. Let 

𝑡∗ ∈ [𝑡, 𝑡 + 𝑑 − 1] be the earliest step such that σ𝑖
𝑠 = 𝑗′′ for all stages 𝑠  in the interval 

[𝑡∗, 𝑡 + 𝑑 − 1]. Note 𝑖 would only switch to 𝑗 at step 𝑡 + 𝑑 if its cost decreased. That is, 

𝑑𝑖𝑗(𝑛𝑗
𝑡+𝑑) < 𝑑𝑖𝑗′′(𝑛𝑗′′

𝑡+𝑑−1). We have three cases: 

1. 𝑗′′ = 𝑗′ 

2. 𝑗′′ ≠ 𝑗′ and σ𝑖
𝑡∗−1 = 𝑗′  (i.e. player 𝑖 proposed to 𝑗′ at stage 𝑡∗ − 1) 

3. 𝑗′′ ≠ 𝑗′ and σ𝑖
𝑡∗−1 ≠ 𝑗′ 

The resources appearing in the chain at each step are given in Table 28. Recall by 

definition, the same resource cannot appear in the chain across consecutive steps. Also, by 

Corollary 1, if some resource 𝑘 appears in the chain at steps 𝑠1 and 𝑠2, we have 𝑛𝑘
𝑠1 = 𝑛𝑘

𝑠2. 

Similarly, if a resource 𝑘 does not appear in the chain at steps 𝑠1 and 𝑠2, we still have 𝑛𝑘
𝑠1 =

𝑛𝑘
𝑠2. 
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Table 28. Resource appearing in the chain sequence per step, under three cases. 

Step 𝒕 − 𝟏 𝒕 … 𝒕∗ − 𝟏 𝒕∗ … 𝒕 + 𝒅 − 𝟏 𝒕 + 𝒅 

Case 1 𝑗 𝑗′ … Unknown 𝑗′ … 𝑗′ 𝑗 

Case 2 𝑗 𝑗′ … 𝑗′ 𝑗′′ … 𝑗′′ 𝑗 

Case 3 𝑗 𝑗′ … Not 𝑗′ 𝑗′′ … 𝑗′′ 𝑗 

 

In the first case, 𝑑𝑖𝑗′′(𝑛𝑗′′
𝑡+𝑑−1) = 𝑑𝑖𝑗′(𝑛𝑗′

𝑡+𝑑−1) = 𝑑𝑖𝑗′(𝑛𝑗′
𝑡 ) < 𝑑𝑖𝑗(𝑛𝑗

𝑡−1) = 𝑑𝑖𝑗(𝑛𝑗
𝑡+𝑑), 

contradicting that player 𝑖's cost decreased at step 𝑡 + 𝑑. Note the second equality holds 

because resource 𝑗′ appears in the chain sequence at both step 𝑡 + 𝑑 − 1 and step 𝑡, 

meaning it has the same congestion at both those stages as shown in Corollary 1. The third 

equality holds for similar reasons with regards to resource 𝑗 at steps 𝑡 − 1 and 𝑡 + 𝑑. 

In the second case, for 𝑖 to have switched to 𝑗′′ rather than staying at 𝑗′ at step 𝑡∗, we must 

have 𝑑𝑖𝑗′′(𝑛𝑗′′
𝑡∗

) < 𝑑𝑖𝑗′(𝑛𝑗′
𝑡∗−1) = 𝑑𝑖𝑗′(𝑛𝑗′

𝑡∗
+ 1) (i.e. the cost must be lower). Then, 

𝑑𝑖𝑗′′(𝑛𝑗′′
𝑡+𝑑−1) = 𝑑𝑖𝑗′′(𝑛𝑗′′

𝑡∗
) < 𝑑𝑖𝑗′(𝑛𝑗′

𝑡∗−1) = 𝑑𝑖𝑗′(𝑛𝑗′
𝑡 ) < 𝑑𝑖𝑗(𝑛𝑗

𝑡−1) = 𝑑𝑖𝑗(𝑛𝑗
𝑡+𝑑), 

resulting in the same contradiction. 

In the third case, for 𝑖 to have switched to 𝑗′′ rather than switching to 𝑗′ at step 𝑡∗, we must 

have 𝑑𝑖𝑗′′(𝑛𝑗′′
𝑡∗

) ≤ 𝑑𝑖𝑗′(𝑛𝑗′
𝑡∗−1 + 1) (i.e. the cost cannot be higher than it would have been 

had it switched to 𝑗′ at step 𝑡∗). Note 𝑛𝑗′
𝑡∗−1 + 1 = 𝑛𝑗′

𝑡−1 + 1 by Corollary 1, and 𝑛𝑗′
𝑡−1 +

1 = 𝑛𝑗′
𝑡  since player 𝑖 moved to resource 𝑗′ at step 𝑡. Then 𝑑𝑖𝑗′′(𝑛𝑗′′

𝑡+𝑑−1) = 𝑑𝑖𝑗′′(𝑛𝑗′′
𝑡∗

) ≤

𝑑𝑖𝑗′(𝑛𝑗′
𝑡∗−1 + 1) = 𝑑𝑖𝑗′(𝑛𝑗′

𝑡 ) < 𝑑𝑖𝑗(𝑛𝑗
𝑡−1) = 𝑑𝑖𝑗(𝑛𝑗

𝑡+𝑑), again resulting in the 

contradiction. ∎ 
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Using the previous lemmas, we can now prove the existence of an equilibrium for the 

player-specific singleton capacitated congestion games described in Section 5.3 when 

player cost functions are non-decreasing with congestion.  We start proving that we can 

add one player to a game already at equilibrium and reach a new equilibrium in a finite 

number of steps. We then use induction to show we can find an equilibrium for any given 

game. 

Proof of Theorem 1. If player 𝑃𝑛 cannot be accommodated by any resource because all 

resources are saturated and 𝑃𝑛 is not preferred over any accommodated player, match it to 

the first resource. The resulting strategy tuple σ defines an equilibrium as congestions and 

cutoff ranks and therefore costs for remaining players would not change, and player 𝑃𝑛 

would achieve its lowest possible cost of infinity. 

Now consider the case where 𝑃𝑛 can be accommodated. We aim to show the resulting chain 

will consist of a finite number of finitely-long legs, so the game must have an equilibrium. 

Specifically, Lemma 3 showed players cannot return to resources they have been displaced 

from. This means each saturated resource can appear at most 𝑛 times in the chain, limiting 

the number of legs. Additionally, Lemma 4 showed within a leg, a player cannot return to 

an unsaturated resource they have left. Again, this means each resource can appear at most 

𝑛 times within a leg, limiting the length of the leg. ∎ 

Proof of Theorem 2. We prove this theorem using induction on the number of players. 

When 𝑛 = 1, we can find an equilibrium by allowing the single player to propose to its 

least-cost resource. That is, σ1 = arg min
j∈Σ1

𝑑1𝑗(1). Assume the theorem holds for all 𝑛 =

1,2, … , 𝑘. We consider the case where the game has 𝑘 + 1. By the induction hypothesis, a 
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game with 𝑘 players has an equilibrium. It is enough to show we can add the final player 

to that at-equilibrium game and again reach an equilibrium. This is simply an application 

of Theorem 1. ∎ 

D.2 Proofs for Finding a Minimum Cost Pure Equilibrium 

Proof of Theorem 3. We provide a proof by a reduction from Minimum Vertex Cover, a 

well-known strongly NP-hard problem [204, 205]. Consider the graph 𝐺 = (𝑉, 𝐸) where 

𝑉 ≔ {𝑣1, 𝑣2, … , 𝑣𝑚} and 𝐸 ≔ {𝑒1, 𝑒2, … , 𝑒𝑛}, respectively, denote its vertices and edges. 

In the following, we construct an instance of the congestion game whose best pure 

equilibrium coincides with the minimum vertex cover of 𝐺. The primary idea is to consider 

the vertices and edges of the graph as resources and players of the game, respectively. 

• ℛ ≔ {𝑉, 𝑉̅} where 𝑉̅ ≔ {𝑣1̅̅ ̅, 𝑣2̅̅ ̅, … , 𝑣𝑚̅̅ ̅̅ }. This means that associated with the set of 

vertices 𝑉, we have considered a set 𝑉̅. All these vertices build up resources for the 

instance of our congestion game. 

• 𝒩 ≔ {𝐸, 𝐸̅} where 𝐸̅ ≔ {(𝑣1, 𝑣1̅̅ ̅), (𝑣2, 𝑣2̅̅ ̅), … , (𝑣𝑚, 𝑣𝑚̅̅ ̅̅ )}. This is illustrated by an 

example in Figure 25. 

• For each 𝑖 ∈ ℛ, the action space is the vertices forming the edge 𝑖. Specifically, if 

(𝑣𝑘, 𝑣𝑙) ∈ 𝐸, then the player (𝑣𝑘, 𝑣𝑙) is allowed to choose the resource 𝑣𝑘 or 𝑣𝑙. 

Similarly, for each (𝑣𝑘, 𝑣𝑘̅̅ ̅) ∈ 𝐸̅, the player (𝑣𝑘, 𝑣𝑘̅̅ ̅)  is allowed to choose either the 

resource 𝑣𝑘 or 𝑣𝑘̅̅ ̅. 
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• 𝐾𝑗 ≔ 𝑛 + 𝑚 + 1. This means that each resource 𝑗 ∈ ℛ may accommodate 𝑛 + 𝑚 +

1 players. Since the total number of players is 𝑛 + 𝑚, this implies that no resource 

will ever be saturated under any strategy profile. 

• For each 𝑖 ∈ 𝒩 and 𝑗 ∈ ℛ, 𝑝𝑖𝑗 may be arbitrarily assigned without affecting the set 

of equilibria of the game. The reason is that no resource will ever be saturated for 

this instance of the game, so a resource never needs to rank among those players 

who have proposed to it. 

• The players' cost function are as follows. For each (𝑣𝑘, 𝑣𝑙) ∈ 𝐸, the player cost 

function is equal to zero for each possible action and congestion. More formally, 

for each congestion 𝑛 ∈ ℤ+,  

 𝑑(𝑣𝑘,𝑣𝑙),𝑣𝑘
(𝑛) = 𝑑(𝑣𝑘,𝑣𝑙),𝑣𝑙

(𝑛) = 0. (D.1) 

For each (𝑣𝑘, 𝑣𝑘̅̅ ̅) ∈ 𝐸̅, the cost function is as follows: 

 𝑑(𝑣𝑘,𝑣𝑘̅̅̅̅ ),𝑣𝑘
(𝑛) = {

0, 𝑛 ≤ 1
2, 𝑛 ≥ 2

 (D.2) 

 𝑑(𝑣𝑘,𝑣𝑘̅̅̅̅ ),𝑣𝑘̅̅̅̅ (𝑛) = 1  ∀𝑛 ∈ ℤ+. (D.3) 
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Figure 25. An example of the game instance depicting the connection between 

resources (vertices) and players (edges) as used in the proof of Theorem 3. 

Note that this is a polynomial-time reduction of the minimum vertex cover to an instance 

of the congestion game. Now, we demonstrate that there is a one-to-one correspondence 

between each feasible solution of the minimum vertex cover and pure equilibria of this 

game. For this purpose, let us represent a solution of the vertex cover by (𝑥𝑒1
, … , 𝑥𝑒𝑛

) 

where 𝑥𝑒𝑘
 denotes the assigned vertex to edge 𝑒𝑘 in the cover. Moreover, let us represent 

an equilibrium of the game by the vector 𝛔 ≔ (σ1, … , σ𝑛, σ𝑛+1, … , σ𝑛+𝑚). Consider the 

following transformation: 

 σ𝑖 ≔ 𝑥𝑒𝑖
                                    ∀𝑖 ∈ {1, … , 𝑛} (D.4) 

 
σ𝑛+𝑖 ≔ {

𝑣̅𝑖 , if ∃𝑗 ∈ {1, … , 𝑛}: 𝑥𝑒𝑗
= 𝑣𝑖

𝑥, otherwise
           ∀𝑖 ∈ {1, … , 𝑚} (D.5) 
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This implies that given a solution of the vertex cover problem, in its associated congestion 

game, each edge in 𝐸 should choose the same vertex as the vertex cover solution, and each 

edge (𝑣𝑘, 𝑣𝑘̅̅ ̅) ∈ 𝐸̅ should choose 𝑣𝑘̅̅ ̅ if and only if 𝑣𝑘 has already been chosen by some 

edge in 𝐸. 

It can easily be shown that 𝛔 is an equilibrium of the game. For this purpose, note that 

equation (D.1) implies that all players in 𝐸  satisfy the equilibrium conditions under any 

arbitrary selection of the vertices, including the strategy profile 𝛔.  For each player 

(𝑣𝑘, 𝑣𝑘̅̅ ̅) ∈ 𝐸̅, equations (D.2)-(D.3)  implies that  the equilibrium condition is satisfied if 

and only if  (𝑣𝑘, 𝑣𝑘̅̅ ̅) chooses 𝑣𝑘  whenever the congestion of this vertex is 1, i.e.,  𝑣𝑘 has 

not been chosen by any player in 𝐸, and it follows from equation (D.5)  that this condition 

is satisfied at the strategy profile 𝛔, so 𝛔 is an equilibrium. 

So far, we have shown that each solution of the vertex cover is associated with an 

equilibrium of the game through the transformation (D.4) and (D.5). On the other hand, 

given an equilibrium 𝛔, it is trivial to find a solution of the vertex cover by only considering 

the first 𝑛 components of 𝛔, i.e., 𝑥𝑒𝑖
≔ σ𝑖 for each 𝑖 ∈ {1, … , 𝑛}. 

Now, let us consider the problem of finding a best pure equilibrium induced by the 

objective function ∑ 𝑓𝑖
𝑛+𝑚
𝑖=1  where 𝑓𝑖 denotes the cost of player 𝑖. Note that it follows from 

equation (D.1) that 𝑓𝑖 = 0 for each 𝑖 ∈ {1, … , 𝑛}. As noted earlier, under an equilibrium 𝛔, 

each (𝑣𝑘, 𝑣𝑘̅̅ ̅) ∈ 𝐸̅ chooses 𝑣𝑘  whenever the congestion of this vertex is 1, and this leads 

to 𝑓𝑛+𝑘 = 0; otherwise, (𝑣𝑘, 𝑣𝑘̅̅ ̅) ∈ 𝐸̅ chooses 𝑣𝑘̅̅ ̅, and then 𝑓𝑛+𝑘 = 1. Therefore, ∑ 𝑓𝑖
𝑛+𝑚
𝑖=𝑛+1  

is equal to the number of edges in 𝐸̅ which have chosen its resource in 𝑉̅. Therefore, 

minimizing ∑ 𝑓𝑖
𝑛+𝑚
𝑖=1  is identical to minimizing the number of edges in 𝐸̅ which have chosen 
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its resource in 𝑉̅. Once again we use the fact that the each (𝑣𝑘, 𝑣𝑘̅̅ ̅) ∈ 𝐸̅ chooses 𝑣𝑘̅̅ ̅  

whenever the congestion of 𝑣𝑘 is greater than or equal to 1, i.e., 𝑣𝑘 has been chosen by 

some players in 𝐸; therefore, number of edges in 𝐸̅ which have chosen its resource in 𝑉̅ is 

the same as the number of vertices in 𝑉 which have been chosen by an edge in 𝐸, which is 

the objective function of the minimum vertex cover problem.∎ 

Remark: Note that we use an uncapacitated instance of singleton congestion game in our 

computational complexity proof. This also implies that the same complexity result holds if 

the game is non-singleton. 

Proof of Theorem 4. Note that the condition ∑ 𝒦𝒿𝑗∈ℛ ≥ 𝑛 guarantees that each player is 

accommodated by some resource in an equilibrium. We show that there is a one-to-one 

correspondence between pure equilibria of the game and feasible points of the polyhedron 

(5.1a)-(5.1o). 

⇒: Given an equilibrium σ = (σ1, σ2, … , σ𝑛), we can initially set 𝑦𝑖𝑗 = 1 if and only if 

σ𝑖 = 𝑗; otherwise let 𝑦𝑖𝑗 = 0. Then set 𝑐𝑗, 𝑥𝑖𝑗𝑘, 𝑧𝑗𝑘, and 𝑓𝑖 by above-mentioned 

interpretation of the variables. We will set the value for 𝑜𝑖𝑗 and 𝑞𝑖𝑗 in the rest of this proof. 

We show that these values of the variables is feasible for (5.1a)-(5.1o), in the following. 

It immediately follows from the definition of the variables that constraint (5.1a)-(5.1e) and 

(5.1h)  are satisfied. Constraint (5.1g) is met since: (i) when 𝑦𝑖𝑗 = 1, then 𝑐𝑗 = 𝑘 if and 

only if 𝑥𝑖𝑗𝑘 = 1, and (ii) when 𝑦𝑖𝑗 = 0, the constraint is trivial. 

Constraints (5.1i)-(5.1l) enforces that no player is better off by a unilateral deviation. 

Specifically, constraint (5.1k) is met since when resource 𝑗 is unsaturated (i.e., 𝑧𝑗𝐾𝑗
= 0) 
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and σ𝑖 ≠ 𝑗, if player 𝑖 decides to unilaterally deviate by switching to resource 𝑗, then she 

will be accommodated by the resource, and her new cost, 𝑑𝑖𝑗(𝑐𝑗 + 1) =

∑ 𝑑𝑖𝑗(𝑘)𝑧𝑗(𝑘−1)𝑘∈𝒦𝒿
, is at least as large as her cost, 𝑓𝑖, under strategy profile σ. Note that if 

σ𝑖 = 𝑗 and resource 𝑗 is unsaturated, constraint (5.1k) is met because 𝑓𝑖 = 𝑑𝑖𝑗(𝑐𝑗) ≤

𝑑𝑖𝑗(𝑐𝑗 + 1) = ∑ 𝑑𝑖𝑗(𝑘)𝑧𝑗(𝑘−1)𝑘∈𝒦𝒿
, which holds since the cost function of each player is 

non-decreasing with congestion. 

When resource 𝑗 is saturated (i.e., 𝑧𝑗𝐾𝑗
= 1) and σ𝑖 ≠ 𝑗, if player 𝑖 decides to unilaterally 

deviate by switching to resource 𝑗, then there are two possible cases: (i) She is 

accommodated by  resource 𝑗, then let 𝑜𝑖𝑗 ≔ 1 and 𝑞𝑖𝑗 ≔ 0. Therefore, player 𝑖's new cost 

is equal to 𝑑𝑖𝑗(𝐾𝑗), which is at least as large as her current cost 𝑓𝑖. This implies that 

constraint (5.1j) is met. Moreover, constraint (5.1k) is trivially met. (ii) She is not 

accommodated by resource 𝑗, then let 𝑜𝑖𝑗 ≔ 0 and 𝑞𝑖𝑗 ≔ 1. This implies that no player 

with a higher rank than player 𝑖 is accommodated by resource 𝑗, and hence, constraint 

(5.1k) is met, and constraint (5.1j) is trivially met. Constraint (5.1l) is met since at least 

either 𝑜𝑖𝑗 = 1 or 𝑞𝑖𝑗 = 1. Note that when resource $j$ is saturated (i.e., 𝑧𝑗𝐾𝑗
= 1) and σ𝑖 =

𝑗, we let 𝑜𝑖𝑗 ≔ 1 and 𝑞𝑖𝑗 ≔ 0. Constraint (5.1j) is met since 𝑓𝑖 = 𝑑𝑖𝑗(𝐾𝑗), constraints (5.1k) 

and (5.1l) are trivial. 

⇐: The proof is similar to above except for reversing the direction. 

∎  
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