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SUMMARY 

 

As a result of the requirements in the NCLB Act of 2001, subscale score reporting 

has drawn much attention from educational researchers and practitioners. Subscale score 

reporting has an important diagnostic value because it can give information about 

respondents’ cognitive strengths and weaknesses in specific content domains. Although 

several testing programs have reported their results in subscales, there have been many 

concerns about the reported subscale scores due to their lack of appropriate psychometric 

quality, especially in reliability. Various subscale scoring methods have been proposed to 

overcome the lack of reliability (Monaghan, 2006; Haberman, 2008). However, their 

efficiency in subscale scoring seems to fluctuate under different data conditions. The 

current study seeks the optimal data conditions for maximizing reliability or accuracy of 

subscale scores using CTT- and IRT-based methods. Both real-world data and simulation 

data are used to compute subscale scores, and their accuracies of these estimations (i.e., 

reliability) are compared. For a real-world data study, response data of a math 

achievement test from 5,000 eighth grade students in a Midwestern state are used. For the 

simulation study, response data are generated varying the subscale length, between-

subscales correlations, within-subscale correlations, and level of item difficulty. Each 

data condition has 100 replications.  
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CHAPTER 1 

INTRODUCTION 

 

Most educational tests are designed to rank examinees along a single continuum with 

regard to the measured construct for the purpose of assessing students’ educational progress and 

deciding whether they qualify for advancement to the next grade or graduation. However, current 

educational policies require student assessments to provide more information than just a single 

score, including diagnostic information about students’ specific cognitive strengths and 

weaknesses regarding knowledge or skills. In particular, the No Child Left Behind Act (NCLB) 

of 2001 demanded that states measure student achievement relative to state standards and report 

the results to students, parents, educators, and other educational stakeholders, so that the 

information from the results may be used to plan instruction or learning as well as modify 

educational programs. The goal was to enable that all U.S. students would ultimately reach the 

state-mandated achievement goals. Accordingly, testing institutes have devoted themselves to 

designing appropriate tests that offer diagnostic information or help in finding or developing 

psychometric models for diagnostic results. Practitioners’ interest in and need for diagnostic 

information naturally attracted researchers’ attention, spurring on the research and development 

of methodologies for diagnostic measurement. From this effort, one of representative research 

outcomes is the development of cognitive diagnostic assessment models (CDA).  

CDA models, combining cognitive psychology with measurement theory, are relatively 

new psychometric models for measuring respondent’s proficiency levels, with regard to skills or 

knowledge consisting of items. CDA models may provide diagnostic information for a 

respondent’s strength or weakness in content, skill, or knowledge areas. The development of 
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these CDA models was initially instigated by numerous researchers who have emphasized the 

role of cognitive psychology in measured constructs (Embretson, 1983; Messick, 1989; Nichols, 

Chipman, & Brennan, 1995; Mislevy, 1993; Snow & Lohman, 1989, 1993), and spurred by the 

NCLB Act, resulted in the development of many different CDA psychometric models. Despite 

the effort to develop CDA models and the advantage (i.e., diagnostic information) that they 

provide, practitioners have been reluctant to use CDA models for reporting diagnostic results. 

This is due to a number of factors, including their computational inefficiency relative to 

parameter estimation (i.e., large number of parameters), their insufficient evidence regarding the 

psychometric quality of resulting scores (e.g., accuracy of estimation, model-fit, etc.), and the 

substantially large number of items required for measuring each skill construct.  

Other researchers have considered using subscale scores (e.g., number-correct scores, 

percent-correct scores, IRT estimated domain scores, etc.) as diagnostic scores, which are 

available from traditional psychometric frameworks, such as classical test theory (CTT) and item 

response theory (IRT). They believe that these methods can provide relatively easy and simple 

methods for computing subscale scores. In practice, testing programs such as ETS, ACT, and 

LSAT reported these types of subscale scores, in order to provide their test users with diagnostic 

information (Sinhary, Puhan, & Haberman, 2011). However, there has been much disagreement 

among researchers with the appropriateness of subscale score reporting, their major argument 

being the lack of reliability or accuracy in subscale scores.  Many researchers criticize the fact 

that the reported subscale scores for the most part lack reliability or precision, and should not be 

reported.  

Not surprisingly, numerous studies have focused on the factors allowing subscale scores 

to yield better reliability or accuracy. In particular, these studies include the examination of the 
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impacts of the different lengths of a subscale or the different correlations between subscale 

scores or between subscale score and total score for reliability. Other studies were on the 

development of psychometric models, which can yield subscale scores without reducing 

reliability or estimation precision (Monaghan, 2006). Haberman (2008) believes that adding 

information from a total score to an observed subscale score can improve the accuracy of 

subscale score estimation, ensuring high reliability, and suggests a method of weighted averages, 

combining both an observed score from a subscale and a total score with different weights. 

Introducing the Objective Performance Index (OPI), Yen (1987) intends to yield more accurate 

subscale scores by setting each respondent’s global trait score 𝜃 as the prior distribution in 

subscale score estimation. Many other subscale scoring methods have been introduced; some of 

them based on the CTT framework, but others based on IRT. Subscale score estimates from 

these models show different levels of estimation accuracy, depending on various data structures 

(e.g., different correlation structure, internal consistency, the number of items, etc).  

In the present study, I intend to review various psychometric models that have been 

suggested for subscale scoring, and compare which models are able to provide better subscale 

score estimates. In addition, I will examine specific data conditions known to have an impact on 

the precision of estimation and examine which conditions will enable improvement, based on the 

addition of other conditions to those already specified. Throughout the paper, the term “subscale 

score” will be used as a generic term for the diagnostic proficiency score, the domain score, the 

dimension score, and so on.   

What Are Subscale scores? 

 Subscale scores refer to a test-taker’s performance levels on multiple subject areas or on 

the subscales making up a test. A test may be clearly partitioned into a few subscales, or may be 
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divided in a way that the test developer believes is appropriate (Sinharay, Puhan, & Haberman, 

2011). In the former case, where there are clearly defined subscale sections, it is relatively easy 

to decide how many subscale scores need to be reported. For example, two subscale scores 

should be reported in a general ability test that includes two subscales, such as reasoning and 

working memory scales, one subscale score for reasoning scale and the other for working 

memory scale. However, in most cases where subscale scores are being considered for reporting, 

a test is not clearly divided into subsections. For instance, large-scale assessments such as state 

assessments usually measure broad content areas, skills, or attributes in a subject, but the 

criterion for dividing an entire test into subscales is rather ambiguous, thus requiring an indicator 

to determine how many subscale scores should be offered. In these cases, a test blueprint may be 

used as an indicator for deciding the number of subscales (Haberman, Sinharay, & Puhan, 2006). 

Because the test blueprint specifies the skills, attributes, or knowledge structure that each item 

should measure, it is possible to categorize items that measure constructs that are more or less 

similar into the same or a different group.  

Not having clearly defined subscales may indicate that a test may have multiple sets of 

subscales, based on different standards. For example, educational test blueprints display different 

hierarchical structures, in which multiple contents levels (e.g., superior levels vs. subordinate 

levels) may be categorized, permitting different sets of subscale scores. According to a test 

blueprint from a Midwestern State Department of Education, a math test involves three levels of 

hierarchy in its structure—Standards, Benchmarks, and Indicators—in which Standards involves 

Numbers/Computation, Algebra, Geometry, and Probability, these then include two or three 

benchmarks each. In turn, these Benchmarks include six or seven indicators (i.e., indicator skills) 

within each. Given these types of test blueprints, a set of subscale scores may be considered for 
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one selection among Standards, Benchmarks, or Indicators. Besides this test blueprint example, 

other sets of subscale scores are possible or likely. Specifically, Embretson (2006) identified 

cognitive components influencing math item-solving rather than content variables as in the test 

blueprint in the comparison study of alternative models, based on these different subscale 

structures. Similarly, Jun, Lutz, Morrison, & Embretson (2013) created two different sets of 

subscales based on cognitive complexity variables and standards-based variables, and compared 

the fit of models based on both subscale structures. In these studies, subscale scores could be 

provided based on cognitive components defined by researchers, and not based on content 

variables.  

Multiple ways to constitute subscales seem to be plausible. A test may be partitioned into 

subscales by the test developer from the beginning. Alternatively, it may be divided based on 

either test blueprint or as defined by test developers or analysts. Once alternative subscale scores 

are available, the kind of subscale information given to test users must prioritize the purpose of 

testing or the test user’s interests (DiBello, Roussous, and Stout, 2007).  

Importance of Subscale Score Reporting 

There is socially increasing demand for subscale scores. U.S. Educational policy (e.g., the 

NCLB) requires states to implement standards-based assessments and provide descriptive score 

reports, including diagnostic information aligned with state academic achievement standards. In 

addition, according to a national survey by Goodman & Huff (2006), most teachers (i.e., 93%) 

participating in the survey responded that large-scale assessment results should provide 

diagnostic information, but most of these assessment are not including sufficiently detailed 

information on specific content or skill domains.   
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Why are subscale scores important? First, subscale scores provide diagnostic information 

about the strengths and weaknesses of test takers’ performance in specific knowledge, content, or 

skill domains. The knowledge of students’ cognitive strengths and weaknesses in the domains 

allow teachers to plan the future instruction or adjust their current lessons, so that they 

effectively intervene and properly address student’s academic needs. Next, diagnostic 

information can help students plan their own learning objectives. Based on the results, students 

will be more likely to direct their efforts towards their weak subject areas, and dedicate less or 

similar levels of effort to their strong subject areas. Diagnostic results may also be used when 

states and educational institutions appraise the effectiveness of their existing curriculum or need 

to propose modification. Furthermore, subscale scores may be considered a source of 

supplementary information in school admissions, personal selection, and placement. Monaghan 

(2006) indicates that subscale scores may be a valuable resource for the admission or the 

selection purposes to differentiate between candidates with identical total scores, thus when an 

additional criterion for selection of appropriate applicants is required. Besides, Haladyna and 

Kramer (2004) mentioned that subscale scores may also be useful as a tool for evaluating their 

training programs by comparing students’ performance before and after the training program.  

Although subscale scores are much needed and important for the advantages that they 

provide, it may not be easy to yield reliable and accurate subscale scores. The following section 

delineates several psychometric requirements that must be present in order for subscale scores to 

be reported.  

Psychometric Requirements of Subscale Scores 

 Although subscale scores serve multiple purposes, not all are not permitted to be 

reported. Certain psychometrical criteria must be met, in order for subscores to be reported. The 
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most important criteria are their reliability and validity. Standard 5.12 of the Standards for 

Educational and Psychological Testing (AERA, APA, NCME, 2014) mentions the features of 

reliability and validity that assessment results must maintain, stating that “Scores should not be 

reported for individuals unless the validity, the comparability, and the reliability of such scores 

have been established”. This requirement is applied to scores from subscales, as well as to the 

total score. Specifically, Standard 2.1 states that the reliability of subscale scores have to be 

given with that of the total score, highlighting the reliability that subscale scores must meet. 

Also, Standard 1.12 also states that subscale scores from different domains should be interpreted 

with relevant evidence and the rationale to support the interpretation, underlining that scores 

from different subscales must provide valid evidence towards the constructs being measured. 

According to the Standards, reliability refers to “the consistency of measurement when the 

testing procedure is repeated on a population of individuals or groups”. Subscale scores are 

defined as accurate and reliable when scores from multiple administrations of a subscale are 

consistent. Validity here refers to “the degree to which evidence and theory support the 

interpretations of test scores entailed by proposed uses of tests”. After ensuring that a subscale 

score measures the things that it intends to measure, the score would lead to meaningful 

interpretations. In other words, information from subscale scores would allow one to accurately 

assess a test taker’s ability on attributes, once sufficient evidence of validity has been 

established.  

Haberman (2008) claims that subscale scores must provide an added-value over the total 

test score. It mentions that subscale scores must provide additional or distinct information (i.e., 

added-value) over the total test score. Otherwise, if subscale scores do not provide information 

that is distinct from the total test score, there would be no reasons to report subscale scores, 
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along with the total test score. The distinctiveness of subscale scores seems to be related with the 

concept of validity in certain contexts. Suppose that we have a subscale measuring a set of 

constructs that are different from the other subscales. Subscales measuring different sets of 

constructs would lead to irrelevant subscale item responses, unless constructs are too closely 

correlated or too similar. The irrelevant item responses in different subscales would result in 

their decreased relevancy within the total score, probably increasing the added-value by subscale 

score over the total score. In other words, when subscales are assumed to measure different 

constructs, scores from a subscale will be probably irrelevant to those from the other subscales, 

having low or moderate correlations between any two subscales scores. On the other hand, if 

scores in any two different subscales are too similar, probably because they measure constructs 

that are too similar or equivalent, the correlations between scores of two different subscales will 

be quite high, which will, in turn, not provide any additional or distinct information over other 

subscale scores or the total test score.  

Factors Impacting the Psychometric Quality of Various Subscale Scores 

Various subscale scoring methods that provide subscale scores have been proposed. The 

simplest subscale scoring method is summed scores (i.e., number-correct scores) that are 

obtained by summing the number of correct responses for all items in a subscale. Although it is 

the easiest way to obtain subscale scores, the resulting subscale scores are reported to have 

greatly reduced reliability compared to the total test scores, mostly due to the short test length in 

a subscale. However, there are many other subscale scoring methods that yield more reliable and 

precise subscale scores in the shorten length. For example, Kelly’s (1947) regressed subscale 

score, Holland and Hoskens’ (2003) regressed subscale score, and Haberman’s (2008) weighted 

average methods, which belong to the CTT-based models, are known as methods that increase 
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the reliability of subscale scores by approximating the true subscale scores, using different types 

of observed scores. Yen’s (1986) objective performance index (OPI), Wainer et al.’s (2001) 

augmented scoring, and multidimensional item response theory (MIRT) models, which belong to 

the IRT-based models, are alternative subscale scoring methods that estimate subscale scores, 

without sacrificing the accuracy of subscale estimation under the condition which raw subscale 

scores are unreliable. Moreover, all types of CDA models can provide subscale scores.  

There have been several studies comparing subscale scoring methods with regard to 

subscale score reliability or accuracy. Different methods improved subscale score reliability or 

accuracy in different degrees. Dwyer, Boughton, Yao, Steffen, and Lewis (2006) compared raw 

subscale scores, Yen’s OPI subscale scores, and Wainer et al.’s augmented subscale scores in 

terms of their accuracy, and found that Wainer et al.’s augmented subscale scores generally 

provided the most reliable subscale score estimates, which were comparable to the MIRT model. 

Haberman and Sinharay (2010) examined the added-value of subscale scores from the MIRT 

model and several CTT-based models, and argued that subscale scores based on the MIRT model 

were more accurate than those from the CTT-based model, although their accuracy did not 

greatly differ. At most, the degree to which reliability or accuracy is enhanced differed under 

different data structures. Major factors known as influencing reliability or accuracy include 

subscale length, sample size, and between-subscales correlations. 

First, subscale scores have different levels of reliability depending on the subscale length. 

Boughton, Yao, and Lewis (2006) compared the impact of the subscale length, varying the 

number of items contributing to each subscale from three to eighteen, and identified that as the 

number of subscale items increases, the accuracy of subscale scores improves. Sinharay et al. 

(2011) illustrated some research examples, supporting that subscales consisting of sufficient 
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number of items can provide reliable or accurate subscale scores. It makes perfect sense that one 

may obtain more reliable estimates from a greater number of items, because one may obtain 

more information from a larger number of item responses than from a small number of item 

responses. Nevertheless, considering that testing times are limited, it is practically impossible to 

achieve maximum reliability by calibrating the test length. Note that different subscale scoring 

methods may be more or less sensitive or adjustable with respect to the length of a subscale. 

Second, subscale scores are accurate in their estimation to different degrees, depending 

on the sample size on which subscale score estimation was based. Yao and Boughton (2007) 

compared three sample groups of 1,000, 3,000, and 5,000 to examine how changes in sample 

sizes impact the estimation accuracy of subscale scores. They found that the increase in accuracy 

of subscale score parameter estimation is much greater when the sample size increases from 

1,000 to 3,000 rather than from 3,000 to 5,000, and concluded that a sample size of 

approximately 3,000 was large enough to obtain accurate subscale scores.  

Third, the different size of correlations between subscale scores could cause differences 

in subscale score reliability or accuracy. Yao and Boughton (2007) compared the accuracy of 

Yen’s OPI values and MIRT dimension scores under four different between-subscales 

correlation conditions of r = 0.0, 0.3, 0.5, 0.7, and 0.9. The results indicated that subscale scores 

from the OPI method were as accurate as MIRT dimension scores when the between-subscales 

correlations are as high as 0.9. It seems to be reasonable, if once considers the point that the OPI 

method borrows information from the total score. On the other hand, where between-subscales 

correlations were between 0.0 and 0.5, OPI produced less accurate estimates with more errors 

than the MIRT models. De la Torre, Song, and Hong (2011) compared four IRT subscale scoring 

methods, MIRT, augmented scoring, higher order IRT, and OPI, in different test length, different 
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number of subscales, and between-subscales correlation conditions. The results indicated that the 

MIRT, augmented scoring, and HO-IRT methods yielded similar results, performing better than 

OPI. The more accurate estimates were obtained, as there are a greater number of subscales in 

the test, and scores from the subscale are highly correlated.  

Different subscale scoring methods use somewhat distinct information to estimate more 

accurate or reliable scores, which may be from other subscale scores or the total test score. If a 

subscale scoring method borrows information from the total test or other subscales, the method 

will be able to improve subscale score reliability more effectively when between-subscales 

correlations are high. Skorupski and Carvajal (2010) argued that all augmentation approaches to 

subscale scoring, borrowing some information to increase subscale score accuracy, lead to the 

improvement of subscale score reliability, and the amount of increased reliability was greater, 

especially when the between-subscales correlations are high. However, Sinharay (2010) claims 

that in order for subscale scores to contain information that is distinct from other subscale scores 

or from the total test score, correlations between subscale scores should be less than a specified 

level (i.e., r = 0.85). The results show that correlations among subscale scores that are too high 

may cause validity issues regarding the measured constructs, because highly correlated subscale 

scores may be interpreted as evidence that the subscales are measuring the same constructs. That 

is, information from one subscale may be the duplicate of information found in the total test or 

other subscales.  

Other possible factors affecting subscale score reliability may exist, though these have 

not been discovered in the previous studies. The purpose of this study will involve identifying 

new factors influencing subscale score accuracy.  

The Purpose of This Study 
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 The purpose of this study is to comprehensively identify data circumstances under which 

the various methods of scoring subscales will have the most accurate estimates of true subscale 

scores.  Alternative subscale scoring methods are compared under all data conditions being 

considered. The various data conditions include: a) the levels of within-subscale correlations 

(i.e., internal consistency of subscale scores), b) item difficulty, c) subscale length, and d) 

between-subscales correlation. In turn, a total of seven alternative subscale scoring methods are 

employed to compare results: four different CTT-based subscale scoring methods including a) 

raw subscale scores, b) Kelly’s regressed subscale scores, c) Holland and Hoskens’ regressed 

subscale scores, and d) Haberman’s weighted average method, and three different IRT-based 

subscale scoring methods including a) unidimensional 2PL model, b) OPI, and c) a 

multidimensional 2PL model. Subscale scores from these methods are discussed relative to their 

accuracy of subscore estimation. Research hypotheses follow.  

Research Hypotheses 

1) The four conditions are expected to impact subscale score reliability or accuracy, as 

computed from observed subscale scores, as follows: 

a. The number of items in a subscale will influence the degree of subscale score 

reliability. Specifically, as the number of items in each subscale increases, 

subscale score reliability is expected to increase.  

b. The size of correlation between subscales will impact the reliability of subscale 

scores differently. High correlations between subscales are expected to result in 

lower reliability in raw subscale scores than in the total score. However, moderate 

or low correlations between subscales seem to lead higher reliability of raw 

subscale scores than of the total score. Using CTT-based and IRT-based subscale 
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scoring methods, the amount of improved reliability will differ based on the 

methods.  

c. The degree of within-subscale correlations (i.e., Subscale Consistency) will 

impact the reliability of subscale scores differently. As the within-subscale 

correlation will be high, the resulting subscale score reliability is expected to 

increase. 

d. Subscale score reliability may differ in different test types: ability vs. achievement 

tests, in which subscales consist of different levels of difficulty.  

2) The four conditions are expected to impact the relationship of observed subscale scores to 

true subscale scores as follows: 

a. The various subscale scoring methods are expected to interact with the accuracy 

of predicting true subscale scores, depending on the specified data conditions.  

For example, the use of total score to approximate true score (i.e., Holland & 

Hoskens) should be effective only under conditions in which the subscale score 

correlations are high and the subscale observed score is based on few items with 

low internal consistency. 

The data conditions described above may interactively influence the subscale score 

reliability, depending on alternative subscale scoring methods. 

Chapter Overview 

Large-scale assessments that are widely used for admission, selection, and evaluation 

often measure broad areas of content or skill domains, placing people on a single ability 

continuum relative to the measured construct. Recently, these types of assessments are 

considered useful in providing additional information regarding examinees’ cognitive strengths 
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and weaknesses in specific subdomains. The current study seeks data conditions under which a 

test that is not initially designed for diagnosis may provide diagnostic results with appropriate 

reliability or the added-value. The criteria of whether these can provide valuable information will 

be mainly based on the reliability of subscale score estimates.  

The current paper consists of four chapters. The following chapter (Chapter 2) introduces 

various subscale scoring methods based on the different measurement scaling models (CTT, IRT, 

and CDA models), and delineates reliability and validity measures as criteria for evaluating the 

psychometric quality of subscale scores. Chapter 3 includes the research methods and results 

from the real-world data study. The real-world study compares the psychometric quality of 

subscale scores from real data. Chapter 4 includes research designs (or methods) describing 

simulation procedures for the simulation data study and discusses the results of subscale scores 

obtained under various data conditions. Lastly, Chapter 4 includes a discussion in which results 

from the real-world and simulation data will be summarized and the significance and 

implications of this study will be discussed.  
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CHAPTER 2 

LITERATURE REVIEW 

  

 This chapter provides a broad overview of the several subscale scoring methods that are 

provided under CTT, IRT, and CDA frameworks. The basic and important concepts under these 

frameworks are presented. Then, how the methods influence reliability and score accuracy can 

be achieved is explained in detail.  

 It should be noted that the current studies examine a subset of these methods: 1) Raw 

subscale scoring, 2) Kelley’s method, 3) Holland-Hoskens’ method, 4) Haberman’s method, 5) 

Unidimensional IRT scoring, 6) Objective Performance Index (OPI) scoring, and 7) two-

parameter logistic Multidimensional IRT (MIRT-2PL) scoring.  

CTT-based Subscale Scores 

In CTT, the most intuitive method of obtaining subscale scores is to compute the 

summation of item scores from a subset of items (i.e., raw subscale scoring). Although this 

method provides quite clear and simple rationale for subscale scoring, the resulting subscale 

scores suffer from the lack of reliability in the short length of subscale. Several CTT-based 

subscale scoring methods have been proposed to solve the lack of reliability in raw subscale 

scores and improve the accuracy of subscale scores. These methods employ the linear regression 

model to approximate the true subscale score on one of the following types of predictors: a) the 

observed subscale score, b) the observed total score, and c) the weighted combination of the 

observed subscale score and the observed total score. In the methods, the true subscale scores are 

not directly observable, and thus, must be inferred through the relationship with pertinent 

observable subscale scores and subscale score errors.  
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The current section overviews some basic CTT concepts that are prerequisites for 

understanding CTT subscale scoring methods, and describes three different types of CTT-based 

subscale scoring methods. This section is followed by a detailed description of mean square error 

(MSE) and proportional reduction in mean square error (PRMSE), which are proposed as 

criterion of measuring the reliability and the added-value of subscale scores in CTT. 

Basic Concepts in CTT 

CTT specifies the relationship among variables (i.e., observable variables, unobservable 

variables, and error) under specific assumptions. There are five main assumptions that CTT 

adopts. The first assumption is below: 

 𝑋 = 𝑇 + 𝐸, (2.1) 

where 𝑋, 𝑇, and 𝐸 are, respectively, the observed, the true, and the error scores. In the 

assumption, the observed score, 𝑋, is assumed to be the sum of the true score, 𝑇, and the error 

score, 𝐸. 𝑋 is a score from each testing when the same test is repeatedly given to an examinee, 

and the true score is a fixed score that does not change over repeated testings. 𝐸 represents the 

difference between the observed score and the true score.  

The second assumption is as follows: 

 𝐸(𝑋) = 𝑇. (2.2) 

In CTT, the true score, 𝑇, is the theoretical mean of each person’s scores based on multiple 

independent testings on the same test. That is, the true score, T, can be achieved by the expected 

value of the observed scores over repeated testings, 𝐸(𝑋). 

 The third assumption is as follows: 
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  𝜎𝐸𝑇 = 0. (2.3) 

That is, the error scores, 𝐸s, and the true scores, 𝑇s, from all examinees in a population are 

assumed to be uncorrelated.  

 The forth assumption is as follows: 

  𝜌𝐸1𝐸2
= 0. (2.4) 

Supposing that 𝐸1 and 𝐸2 are the error scores for two different tests from all examinees in a 

population, the error scores on the tests are assumed to be uncorrelated.   

 The fifth assumption is as follows: 

  𝜌𝐸1𝑇2
= 0. (2.5) 

when 𝐸1 and 𝑇2 are, respectively, the error score for Test 1 and the true score for Test 2 from all 

examinees in a population, the error scores on Test 1, 𝐸1, are assumed to be uncorrelated with 

true scores on Test 2, 𝑇2. Note that equations (2.1) and (2.2) are based on repeated testings of an 

examinee, but the equations (2.3), (2.4), and (2.5) are based on all examinees in a population. 

The major assumptions above postulate relationships among the observed, the true, and 

the error scores. In the assumptions, only 𝑋s are observable. Because true scores, 𝑇s, and error 

scores, 𝐸s, are unobservable and theoretical variables, they should be indirectly inferred. Also, 

when the assumptions hold well enough, several other inferences among variables are derived. 

The following section includes major five equations that can be driven when assumptions are 

reasonably correct.   

First, the expected value of the observed scores, 𝑋, and the expected value of the true 

scores, 𝑇, are the same, which is shown below: 
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  𝐸(𝑋) = 𝐸(𝑇). (2.6) 

According to the equation (2.1), 𝐸(𝑋) = 𝐸(𝑇 + 𝐸) = 𝐸(𝑇) + 𝐸(𝐸). Because 𝐸(𝐸) = 0, 

𝐸(𝑋) = 𝐸(𝑇). 

 Second, the expected value of the products of the error scores and the true scores from all 

examinees in a population is zero, as shown below: 

  𝐸(𝐸𝑇) = 0. (2.7) 

Because 𝜎𝐴𝐵 = 𝐸(𝐴𝐵) − 𝐸(𝐴)𝐸(𝐵) and 𝐸(𝐸) = 0, 𝐸(𝐸𝑇) = 𝜎𝐸𝑇 + 𝐸(𝐸)𝐸(𝑇) = 𝜎𝐸𝑇. From 

the assumption equation (2.3), 𝜎𝐸𝑇 = 0. Thus, 𝐸(𝐸𝑇) = 0. 

Third, the variance of the observed scores, 𝑋s, is equal to the sum of variance of the true 

scores, 𝑇s, and the variance of the error scores, 𝐸s, as below: 

  𝜎𝑋
2 = 𝜎𝑇

2 + 𝜎𝐸
2. (2.8) 

From the assumption equation (2.1), 𝜎𝑋
2 = 𝜎𝑇+𝐸

2 = 𝜎𝑇
2 + 𝜎𝐸

2 + 2𝜎𝑇𝐸. Because 𝜎𝑇𝐸 = 0 from the 

equation (2.3), 𝜎𝑋
2 = 𝜎𝑇

2 + 𝜎𝐸
2. 

 Fourth, the squared correlation of the observed scores and the true scores across 

examinees in a population is the ratio of true score variance to observed score variance, as shown 

below: 

  𝜌𝑋𝑇
2 =

𝜎𝑇
2

𝜎𝑋
2 . (2.9) 

This formula can be driven as follows: 
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 𝜌𝑋𝑇
2 = [

𝜎𝑋𝑇

𝜎𝑋𝜎𝑇
]

2

 

= 
[𝐸(𝑋𝑇)−𝐸(𝑋)𝐸(𝑇)]2

𝜎𝑋
2 𝜎𝑇

2  

= 
[𝐸(𝑇(𝑇+𝐸))−𝐸(𝑋)𝐸(𝑇)]

2

𝜎𝑋
2 𝜎𝑇

2  

= 
[𝐸(𝑇2)−𝐸(𝑇)2]2

𝜎𝑋
2 𝜎𝑇

2  

=
[𝐸(𝑇2)+𝐸(𝑇𝐸)−𝐸(𝑋)𝐸(𝑇)]

2

𝜎𝑋
2 𝜎𝑇

2  

= 
[𝐸(𝑇2)−𝐸(𝑇)𝐸(𝑇)]

2

𝜎𝑋
2 𝜎𝑇

2  

= 
[𝜎𝑇

2]2

𝜎𝑋
2 𝜎𝑇

2 

= 
𝜎𝑇

2

𝜎𝑋
2. 

(2.10) 

The squared correlation among variables from the linear relationship indicates the maximum 

proportion of variance of the dependent variable that is predictable from the independent 

variable. When it comes to CTT, in which the linear relationship between the observed scores, 

𝑋s and the true scores, 𝑇s, is assumed, the squared correlation among 𝑋s and 𝑇s is equal to the 

ratio of true score variance to observed score variance, which corresponds to the definition of 

reliability in CTT.  

 Fifth, the correlation between observed scores from two parallel tests is equal to the 

squared correlation between observed scores and true scores, which is also identical to the ratio 

of true score variance to observed score variance, as shown below: 

  𝜌𝑋𝑋′ =
𝜎𝑇

2

𝜎𝑋
2 = 𝜌𝑋𝑇

2 . (2.11) 

In this equation,  
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𝜌𝑋𝑋′ =
𝜎𝑋𝑋′

𝜎𝑋𝜎𝑋′
 

= 
𝜎(𝑇+𝐸)(𝑇′+𝐸′)

𝜎𝑋
2  

= 
𝜎

𝑇𝑇′+𝜎
𝑇𝐸′+𝜎

𝑇′𝐸
+𝜎

𝐸𝐸′

𝜎𝑋
2  

= 
𝜎

𝑇𝑇′

𝜎𝑋
2  

=
𝜎𝑇

2

𝜎𝑋
2 

(2.12) 

That is, the correlation between scores from two parallel tests is equal to the reliability of scores.  

The basic notions from the CTT framework, described above, are often useful in 

computing subscale scores, with additional assumptions that each subscale scoring method takes. 

However, note that these notions are suitably used only when the CTT assumptions reasonably 

hold. For further details on CTT, see Lord and Novick (1968) and Allen and Yen (2002).  

CTT-based Subscale Scoring Methods 

This section includes the rationale of how three CTT subscale scoring methods, Kelley’s, 

Holland-Hoskens’, and Haberman’s methods, estimate subscale scores and the computation 

procedure of how they obtain subscale scores with details. 

Kelley’s Regressed Subscale Scores 

 Kelley (1927, 1947) suggested the linear regression model for approximating the true 

subscale score by the observed subscale score. The general linear regression equation of the 

predicted variable Y on the predictor variable X is expressed as follows:  

  �̂�𝑖 = 𝐵𝑌.𝑋(𝑋𝑖 − �̅�) + �̅� (2.13) 
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where 𝑋𝑖 is the observed score of examinee i, 𝐵𝑌.𝑋 is the regression coefficients, and �̅� and �̅� are, 

respectively, the means of predicting and predicted scores. 𝐵𝑌.𝑋 is determined based on a 

standard criterion of finding the best prediction line that minimizes the sum of the squared 

prediction errors. Based on the standard criterion, the regression coefficient, 𝐵𝑌.𝑋, can be 

estimated through the following equation: 

  𝐵𝑌.�̂� = 𝑟𝑋𝑌 (
𝑆𝑌

𝑆𝑋
), (2.14) 

where 𝑟𝑋𝑌 is the correlation coefficient between 𝑋 and 𝑌, and 𝑆𝑌 and 𝑆𝑋 are the standard 

deviations of 𝑋 and 𝑌, respectively.  

When it comes to the prediction of subscale scores, in which the observed subscale score, 

𝑆𝑥, is regressed to predict the true subscale score, 𝑆𝑡, the regression equation can be written as 

follows: 

 𝑆𝑡 = 𝐸(𝑆𝑡) + 𝑟𝑆𝑥𝑆𝑡
(

𝑠𝑆𝑡

𝑠𝑆𝑥

)[𝑆𝑥 − 𝐸(𝑆𝑥)], (2.15) 

where 𝐸(𝑆𝑡) = the expected value of the true subscale scores across examinees, 

          𝐸(𝑆𝑥) = the expected value of the observed subscale scores across examinees, 

          𝑠𝑆𝑡
 = the standard deviations of the true subscale scores,  

          𝑠𝑆𝑥
 = the standard deviations of the observed subscale scores, and 

          𝜌𝑆𝑥𝑆𝑡
= the correlation between the true subscale scores and the observed subscale      

scores.   

Although true subscale scores in the equation are unknown, the terms pertinent to the true 

subscale scores are attainable, considering specific relationships between the observed and the 

true scores from CTT assumptions. In the equation (2.15), 𝑆𝑥 is simply an examinee’s observed 
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score in a subscale, and 𝐸(𝑆𝑥) is obtainable from the sample score mean in the subscale. Also, 

similar to the equation (2.6), 𝐸(𝑆𝑥) would be equal to 𝐸(𝑆𝑡). Thus, the expected value of 

observed subscale scores across examinees can be substituted for that of true subscale scores. 

Then, correlations between the true and the observed subscale scores in a sample can be 

rewritten as below: 

  𝑟𝑆𝑡𝑆𝑥
=

𝑠𝑆𝑡

𝑠𝑆𝑥

, (2.16) 

because 𝜌𝑋𝑇
2 = 𝜎𝑇

2/𝜎𝑋
2  from the equation (2.9). Note that the terms 𝜎 and 𝑠 indicate the standard 

deviations, and the terms 𝜌 and 𝑟 indicate correlation coefficients. However, 𝜎 and 𝜌 are terms 

defined in the population, and the others terms are defined in a sample. Thus, the regression 

coefficient is 𝑟𝑆𝑥𝑆𝑡
(𝑠𝑆𝑡

/𝑠𝑆𝑥
) = 𝑠𝑆𝑡

2 /𝑠𝑆𝑥

2 , which corresponds to the reliability of subscale scores.  

Based on the relationships among the observed and the true subscale scores, the equation 

(2.15) can be simply rewritten as follows:  

 𝑆𝑡 = 𝐸(𝑆𝑥) +
𝑠𝑆𝑡

2

𝑠𝑆𝑥
2 [𝑆𝑥 − 𝐸(𝑆𝑥)]. (2.17) 

As mentioned earlier, 𝐸(𝑆𝑥) is obtainable through the sample mean of the corresponding 

subscale, and the regression coefficient, 𝑠𝑆𝑡

2 /𝑠𝑆𝑥

2 , is available through KR-20 or Cronbach α from 

items in the subscale.  

Holland and Hoskens’ Regressed Subscale Scores 

Holland and Hoskens (2003) suggested a subscale scoring method of approximating the 

true subscale score by the total test score. In some situations, the linear prediction based on the 

observed total score leads to better prediction based on the observed raw subscale score. For 
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example, the true subscale score based on the observed total score would have more accuracy 

with smaller prediction error than those based on the observed subscale score when the true 

subscale score and the true total score are highly correlated. However, this method requires 

caution when it is considered to use with data whose true subscale score and true total score are 

scarcely correlated.  

The linear regression equation, in which the observed total score, 𝑌𝑥, is regressed to 

predict the true subscale score, 𝑆𝑡, can be written as follows: 

𝑆𝑡 = 𝐸(𝑆𝑡) + 𝑟𝑌𝑥𝑆𝑡
(

𝑠𝑆𝑡

𝑠𝑌𝑥

)[𝑌𝑥 − 𝐸(𝑌𝑥)], (2.18) 

where 𝐸(𝑆𝑡) = the expected value of the true subscale scores across examinees, 

           𝐸(𝑌𝑥) = the expected value of the observed total scores across examinees, 

           𝑠𝑆𝑡
= the standard deviation of the true subscale scores,  

           𝑠𝑌𝑥
= the standard deviation of the observed total scores, and 

           𝑟𝑌𝑥𝑆𝑡
= the correlation between the observed total scores and the true subscale scores. 

𝑌𝑥 is simply an examinee’s observed total score in a whole test, and 𝐸(𝑌𝑥) is obtainable from the 

sample score mean in the whole test. Similar to the equation (2.6), 𝐸(𝑆𝑥) would be equal to 

𝐸(𝑆𝑡). Thus, the expected value of observed subscale scores across examinees is substituted for 

that of true subscale scores. Also, correlations between the true subscores and the observed total 

scores in a sample can be expressed as 𝑟𝑆𝑡𝑌𝑥
=  𝑠𝑆𝑡

/𝑠𝑌𝑥
. Thus, the linear regression equation 

(2.18) can be rewritten as below: 

𝑆𝑡 = 𝐸(𝑆𝑥) +
𝑠𝑆𝑡

2

𝑠𝑌𝑥
2 [𝑌𝑥 − 𝐸(𝑌𝑥)]. (2.19) 
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𝐸(𝑆𝑥) and 𝐸(𝑌𝑥) are available by the mean of the observed raw subscale scores and the total test 

scores across examinees. According to Lord & Novick (1968), 𝑟𝑌𝑥𝑆𝑡
 (i.e., 𝑠𝑆𝑡

2 /𝑠𝑌𝑥

2 ) is defined as 

the product of a) the correlation between the observed and true total test scores, 𝑟𝑌𝑥𝑌𝑡
, and b) the 

correlation between the true subscale scores and the true total test scores, 𝑟𝑆𝑡𝑌𝑡
. That is, 𝑟𝑌𝑥𝑆𝑡

=

 𝑟𝑌𝑥𝑌𝑡
∙ 𝑟𝑆𝑡𝑌𝑡

. In the equation, 𝑟𝑌𝑥𝑌𝑡
 is the square root of reliability of the total test score because 

𝑟𝑌𝑥𝑌𝑡
 = 𝑠𝑌𝑡

/𝑠𝑌𝑥
. In turn, 𝑟𝑆𝑡𝑌𝑡

 can be defined as follows (see Lord & Novick, 1968):  

𝑟𝑆𝑡𝑌𝑡
=  

𝑟𝑆𝑥𝑌𝑥

𝑟𝑆𝑥𝑆𝑡 ∙𝑟𝑌𝑥𝑌𝑡

−
𝑠𝑠𝑒

2

𝑠𝑆𝑡𝑠𝑌𝑥

. (2.20) 

Together, the linear regression equation (2.19) can be rewritten as below: 

𝑆𝑡 = 𝐸(𝑆𝑥) + [𝑟𝑌𝑥𝑌𝑡
∙ (

𝑟𝑆𝑥𝑌𝑥

𝑟𝑆𝑥𝑆𝑡 ∙𝑟𝑌𝑥𝑌𝑡

−
𝑠𝑠𝑒

2

𝑠𝑆𝑡𝑠𝑌𝑥

)]2[𝑌𝑥 − 𝐸(𝑌𝑥)].   (2.21) 

For estimating subscale scores, 𝐸(𝑆𝑥), 𝐸(𝑌𝑥), 𝑟𝑌𝑥𝑌𝑡
, 𝑟𝑆𝑥𝑌𝑥

, 𝑟𝑆𝑥𝑆𝑡
, 𝑠𝑠𝑒

2 , 𝑠𝑆𝑡
 and 𝑠𝑌𝑥

 need to be known. 

𝐸(𝑆𝑥) and 𝐸(𝑌𝑥) are, respectively, obtainable by computing the sample score mean in the 

subscale and the total test. Because 𝑟𝑌𝑥𝑌𝑡
 and 𝑟𝑆𝑥𝑆𝑡

, respectively, equal the square root of score 

reliability in the total test and the subscale, 𝑟𝑌𝑥𝑌𝑡
 and 𝑟𝑆𝑥𝑆𝑡

 are available from KR-20 or Cronbach  

α. Then, 𝑟𝑆𝑥𝑌𝑥
 is simply correlation between the observed subscale scores and the observed total 

scores which is available from Pearson correlation coefficient, and 𝑠𝑆𝑡
 and 𝑠𝑌𝑥

 are, respectively, 

the standard deviations of the true subscale scores and the observed total test scores in a sample. 

Although 𝑠𝑆𝑡
 is not directly computable from subscale scores, it is available from √𝑠𝑆𝑥

2 − 𝑠𝑠𝑒
2  (see 

the equation (2.8)). 𝑠𝑠𝑒
2  represents the standard error of measurement of the observed subscale 

score, which is defined as 𝑠𝑥√1 − 𝑟𝑥𝑡
2  .  
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Haberman’s Regressed Subscale Scores: Weighted Average Method  

Many educational tests have subscales that have moderately high correlations. Thus, 

using some information from the other subscale scores as well as the corresponding subscale for 

estimating the true subscale score may improve the accuracy of the true subscale score 

estimation. Haberman (2008) suggested to use the jointed information of the observed total score 

and the corresponding observed subscale score for improving the accuracy of subscale 

prediction, in its estimation. Specifically, Haberman’s (2008) weighted average method 

approximates the true subscale score by the weighted combination of the corresponding observed 

subscale score and the observed total score. 

The multiple linear regression equation of the true subscale score, 𝑆𝑡, on the observed 

subscale score, 𝑆𝑥, and the observed total score, 𝑌𝑥, is shown below: 

𝑆𝑡 = 𝐸(𝑆𝑡) + 𝛽𝑌𝑥∙𝑆𝑥
[𝑌𝑥 − 𝐸(𝑌𝑥)] + 𝛽𝑆𝑥∙𝑌𝑥

[𝑆𝑥 − 𝐸(𝑆𝑥)], (2.22) 

where 𝛽𝑌𝑥∙𝑆𝑥
 = the partial regression coefficient for the observed total score 𝑌𝑥, 

          𝛽𝑆𝑥∙𝑌𝑥
 = the partial regression coefficient for the observed subscale score 𝑆𝑥 ,  

         𝐸(𝑆𝑡) = the expected value of the true subscale scores across examinees, 

         𝐸(𝑌𝑥) = the expected value of the observed total scores across examinees, and 

         𝐸(𝑆𝑥) = the expected value of the observed subscale scores across examinees. 

𝛽𝑌𝑥∙𝑆𝑥
 refers to the changes in the true subscale scores associated with a one-unit change 

in observed total scores, holding the observed subscale scores constant, and 𝛽𝑆𝑥∙𝑌𝑥
 refers to the 

changes in the true subscale scores associated with a one-unit change in observed subscale 

scores, holding the observed total scores constant. These partial regression coefficients, 𝛽𝑌𝑥∙𝑆𝑥
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and 𝛽𝑆𝑥∙𝑌𝑥
, are determined based on the standard criterion of finding the best prediction line, in 

which the sum of squared errors in prediction line is minimized (i.e., Ordinary least-squares).  

The partial regression coefficient of 𝛽𝑆𝑥∙𝑌𝑥
 satisfying the standard criterion is obtained by 

the following equation:  

𝛽𝑆𝑥∙𝑌𝑥
=

𝑠𝑆𝑡
[𝑟𝑆𝑥𝑆𝑡

−𝑟𝑆𝑡𝑌𝑥𝑟𝑆𝑥𝑌𝑥]

𝑠𝑆𝑥[1−𝑟𝑆𝑥𝑌𝑥
2 ]

, (2.23) 

where 𝑠𝑆𝑡
 = the standard deviation of the true subscale scores, 

          𝑠𝑆𝑥
 = the standard deviation of the observed subscale scores, 

          𝑟𝑆𝑥𝑆𝑡
 = the correlation between the observed subscale scores and the true subscale scores, 

          𝑟𝑆𝑡𝑌𝑥
 = the correlation between the true subscale scores and the observed total scores, and 

          𝑟𝑆𝑥𝑌𝑥
 = the correlation between the observed subscale scores and the observed total scores. 

 Subsequently, the partial regression coefficient of 𝛽𝑌𝑥∙𝑆𝑥
 satisfying the standard criterion 

is obtained by the following equation:   

𝛽𝑌𝑥∙𝑆𝑥
=

𝑠𝑆𝑡[𝑟𝑆𝑡𝑌𝑥−𝑟𝑆𝑥𝑆𝑡𝑟𝑆𝑥𝑌𝑥]

𝑠𝑌𝑥[1−𝑟𝑆𝑥𝑌𝑥
2 ]

, (2.24) 

where 𝑠𝑌𝑥
 is the standard deviation of the observed total scores, and other terms are the same as 

in the equation (2.23). For estimating the true subscale scores, 𝐸(𝑌𝑥), 𝐸(𝑆𝑡), 𝐸(𝑆𝑥), 𝛽𝑆𝑥∙𝑌𝑥
, and 

𝛽𝑌𝑥∙𝑆𝑥
terms should be known. 𝐸(𝑌𝑥) and 𝐸(𝑆𝑥) are available from the sample means of the 

observed total scores and the observed subscale scores, respectively.  Because 𝐸(𝑆𝑥) would be 

equal to 𝐸(𝑆𝑡), 𝐸(𝑆𝑡) is substituted with 𝐸(𝑆𝑥). For the computations of 𝛽𝑆𝑥∙𝑌𝑥
, and 𝛽𝑌𝑥∙𝑆𝑥

, three 

terms, 𝑟𝑆𝑥𝑆𝑡
, 𝑟𝑆𝑥𝑌𝑥

, and  𝑟𝑆𝑡𝑌𝑥
have to be computed. 𝑟𝑆𝑥𝑆𝑡

 is the square root of score reliability in the 

subscale, achieved by KR-20 and Cronbach 𝛼, and 𝑟𝑆𝑥𝑌𝑥
is simply the correlation between the 
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observed subscale scores and total scores. Refer to the equation (2.20) for the computation of 

𝑟𝑆𝑡𝑌𝑥
.  

Mean Squared Error (MSE) 

 One statistic used to evaluate the CTT-based subscale scores is the mean squared error 

(MSE), based on observed scores. When a statistical model is considered, errors occur because 

observed scores and their model-predicted scores differ. For example, let an observed subscale 

score and an estimated subscale score based on a model, 𝑋𝑠 and 𝑇𝑠, respectively. In the context 

of CTT, the error of measurement is obtained by subtracting the estimated score from the 

observed score (i.e., 𝐸𝑠 = 𝑋𝑠 − 𝑇𝑠). That is, 𝑇𝑠 is based on the obtained estimate from the 

subscale score model rather than an actual true score as based on a simulation. Here, the 

expected value of squared errors is the mean squared error (MSE). In other words, MSE can be 

expressed by 𝐸((𝑋 − 𝑇)2) or 𝐸(𝑒)2. Because 𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))2, the following 

equation can be derived: 

𝐸((𝑋 − 𝑇)2) = 𝜎2(𝑋 − 𝑇) + (𝐸(𝑋 − 𝑇))2. (2.25) 

Because 𝑋 − 𝑇 = 𝑒, this equation can be rewritten as 𝐸(𝑒2) = 𝜎2(𝑒) + (𝐸(𝑒))2. Namely, the 

MSE, 𝐸(𝑒2), is the sum of the error variance and the square of error score mean. Because the 

expected value of errors, 𝐸(𝑒), is zero, the MSE is simply abbreviated by 𝜎2(𝑋 − 𝑇) or 𝜎2(𝑒). 

The MSE in a squared unit is often transformed into the same scale as scores by taking its 

squared root value and it will be described as the model-based root mean squared error (RMSE-

MB), √𝐸((𝑋 − 𝑇)2) or √𝐸(𝑒2) throughout the manuscript. 

The estimates of RMSE-MB vary somewhat across models. Specifically, the standard 

error of measurement based on the linear regression line from Kelley’s method is defined as 



28 

 

σ𝑆𝑡
√1 − 𝜌𝑆𝑥𝑆𝑡

2 , and the squared standard error of measurement, 𝜎𝑆𝑡

2 (1 − 𝜌𝑆𝑥𝑆𝑡

2 ). The standard 

error of measurement based on the linear regression from Holland-Hoskins’ method is 

σ𝑆𝑡
√1 − 𝜌𝑆𝑥𝑆𝑡

2 , and the MSE is 𝜎𝑆𝑡

2 (1 − 𝜌𝑌𝑥𝑆𝑡

2 ). Subsequently, the standard error of measurement 

based on the linear regression equation from Haberman’s method is 

σ𝑆𝑡
√(1 − 𝜌𝑆𝑥𝑆𝑡

2 )[1 − 𝜌𝑆𝑡𝑌𝑥∙𝑆𝑥

2 ]  or σ𝑆𝑡
√(1 − 𝜌𝑌𝑥𝑠𝑥

2 )[1 − 𝜌𝑠𝑡𝑠𝑥∙𝑌𝑥

2 ], and the MSE is 

𝜎𝑆𝑡

2 (1 − 𝜌𝑆𝑥𝑆𝑡

2 )[1 − 𝜌𝑆𝑡𝑌𝑥∙𝑆𝑥

2 ] or 𝜎𝑆𝑡

2 (1 − 𝜌𝑌𝑥𝑠𝑥

2 )[1 − 𝜌𝑠𝑡𝑠𝑥∙𝑌𝑥

2 ]. Large MSEs indicate high amount of 

prediction error, and vice versa, small MSEs indicate low prediction error.   

Proportional Reduction in Mean Squared Error (PRMSE-MB) 

The proportional reduction in mean squared error (PRMSE-MB), which measures the 

added-value of subscale scores over a total score, is the ratio of MSE reduced for a standard 

value. Specifically, the PRMSE-MB is computed by the ratio of MSE from subscale scores 

estimated based on a model and that from a constant predictor (i.e., standard or criterion value), 

in which the standard value is the resulting MSE value when the constant predictor 𝐸(𝑆) 

approximates the true subscale score. This can be written by 1 −
𝑀𝑆𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

𝑀𝑆𝐸𝐸(𝑆)
. By computing the 

MSEs, the PRMSE-MB is easily computed. First, the MSE of the constant predictor 𝐸(𝑆) is  

𝐸((𝐸(𝑆) − 𝑆𝑡)2) = 𝑠2(𝐸(𝑆) − 𝑆𝑡) +  [𝐸(𝐸(𝑆) − 𝑆𝑡)]2         (2.26) 

= 𝜎2(𝑆𝑡).  

Note that 𝜎𝑋+𝑐
2 = 𝜎𝑋

2 , where X is a variable and c is a constant. That is, inserting a constant into a 

variable does not influence the computation of variance. 
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 The PRMSE-MB of subscale scores from Kelley’s method, which approximates of the 

true subscale score, 𝑆𝑡, by an observed subscale score, 𝑆𝑥, is computed as follows: 

𝑃𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 = 1 −
𝜎𝑆𝑡

2 (1−𝜌𝑆𝑥𝑆𝑡
2 )

𝜎𝑆𝑡
2 = 𝜌𝑆𝑥𝑆𝑡

2    (2.27) 

Given the linear relationships between the true subscale scores and the observed subscale scores, 

the MSE from the prediction of the true subscale score by the observed subscale score is 𝜎𝑆𝑡

2 (1 −

𝜌𝑆𝑥𝑆𝑡

2 ), as shown earlier, and the resulting 𝑃𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 is the squared correlation between 

the observed and the true subscale scores, which is the reliability of raw subscale scores.  

Second, the PRMSE-MB of subscale scores from Holland-Hosken’s method, which 

approximates of the true subscale scores, 𝑆𝑡, by the observed total scores, 𝑌𝑥, is computed as 

follows:  

𝑃𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝐻 = 1 −
𝜎𝑆𝑡

2 (1−𝜌𝑌𝑥𝑆𝑡
2 )

𝜎𝑆𝑡
2 = 𝜌𝑌𝑥𝑆𝑡

2    (2.28) 

The ratio of reduced MSE (i.e., PRMSE-MB) in subscale scores based on the Holland-Hosken’s 

method can be computed by the squared correlations between the observed total scores and the 

true subscale scores. For the computation of 𝜌𝑌𝑥𝑆𝑡

2 , refer to the equation (5). Based on the 

equation (5), the observed total score can approximate the true subscale score better than the 

observed subscale score if the product of reliability coefficient of a total test and the squared 

correlation of the true total score and the true subscale score is higher than the reliability of the 

observed subscale score. However, because any types of reliability cannot exceed 1.0, the 

𝑃𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝐻 cannot be higher than that obtained from a whole test. Generally, if the 

PRMSE-MB from the linear regression of the true subscale score on the total score is quite 
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small, this method would not be considered as an appropriate method for obtaining subscale 

scores. The use of total score for approximating the true subscale score is favored in the 

following situations: a) high reliability of the total score is high enough, b) low correlation 

between the true subscale score and the true total score, and c) low reliability of the observed 

subscale scores.  

 Third, the PRMSE-MB based on the linear regression of the true subscale score on the 

observed total score and the observed subscale score can be obtained from either the first or the 

second equation below:  

𝑃𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 = 1 − [1 − 𝜌𝑠𝑡
2 ][1 − 𝜌𝑠𝑡𝑌𝑥∙𝑠𝑥

2 ], or            (2.29) 

= 1 − [1 − 𝜌𝑌𝑥𝑠𝑡

2 ][1 − 𝜌𝑠𝑡𝑠𝑥∙𝑌𝑥

2 ].  

According to Lord & Novick (1968), 𝜌𝑆𝑡𝑌𝑥∙𝑆𝑥
 and 𝜌𝑠𝑡𝑠𝑥∙𝑌𝑥

2 , respectively, are defined as follows: 

𝜌𝑆𝑡𝑌𝑥∙𝑆𝑥
=

𝜌𝑆𝑡𝑌𝑥−𝜌𝑆𝑡𝑆𝑥𝜌𝑆𝑥𝑌𝑥

[1−𝜌𝑆𝑡𝑆𝑥
2 ]1/2[1−𝜌𝑆𝑥𝑌𝑥

2 ]1/2, and            (2.30) 

𝜌𝑆𝑡𝑆𝑥∙𝑌𝑥
=

𝜌𝑆𝑥𝑆𝑡−𝜌𝑆𝑡𝑌𝑥𝜌𝑆𝑥𝑌𝑥

[1−𝜌𝑆𝑡𝑌𝑥
2 ]1/2[1−𝜌𝑆𝑥𝑌𝑥

2 ]1/2.           (2.31) 

For the computation of these partial correlation coefficients, sample correlations among the true 

subscale scores, the observed total scores, and the observed subscale scores can be used. Table 

2.1 summarizes the computations of MSEs and PRMSE-MBs of subscale scores from different 

subscale scoring methods.  

Table 2. 1. MSE and PRMSE-MB from Different Predictors 

Predictors MSE PRMSE-MB 
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Subscale score 𝜎𝑆𝑡

2 (1 − 𝜌𝑆𝑥𝑆𝑡

2 ) 𝜌𝑆𝑥𝑆𝑡

2  

Total score 𝜎𝑆𝑡

2 (1 − 𝜌𝑌𝑥𝑆𝑡

2 ) 𝜌𝑌𝑥𝑆𝑡

2  

Subscale score & 

Total score 

𝜎𝑆𝑡

2 (1 − 𝜌𝑆𝑥𝑆𝑡

2 )[1 − 𝜌𝑆𝑡𝑌𝑥∙𝑆𝑥

2 ] or 

𝜎𝑆𝑡

2 (1 − 𝜌𝑌𝑥𝑠𝑥

2 )[1 − 𝜌𝑠𝑡𝑠𝑥∙𝑌𝑥

2 ] 

1 − [1 − 𝜌𝑠𝑡
2 ][1 − 𝜌𝑠𝑡𝑌𝑥∙𝑠𝑥

2 ] or 

1 − [1 − 𝜌𝑌𝑥𝑠𝑡

2 ][1 − 𝜌𝑠𝑡𝑠𝑥∙𝑌𝑥

2 ] 

 

If the PRMSE-MB of subscale scores estimated based on the observed subscale scores 

and the total score is large enough compared to that of subscale scores based on only observed 

total score, the subscale scores are likely to be desirable for reporting. In the other way, if it is 

not sufficiently large, it may be inappropriate to report the resulting subscale scores, because it 

add only slight information over the total test score. 

IRT-based Subscale scores 

Several IRT-based subscale scoring methods are available. Similar to the raw subscale 

scores in CTT, unidimensional IRT models estimate an examinee’s scale score, 𝜃, based on a 

subset of items, which can be used as the subscale score. However, these types of subscale scores 

can have less accuracy than other methods, in that they use only information from items in the 

corresponding subscale, disregarding other available information from the other subscales in the 

test. As methods of improving the accuracy of subscale score estimation, Objective Performance 

Index (OPI; Yen, 1987), augmented subscale scoring (Wainer et al., 2001), and the 

multidimensional IRT models are available. This section reviews essential concepts in IRT 

models, including their model configurations, assumptions and estimation follow. Then, the 

descriptions of subscale scoring methods are followed.   

Basic Concepts in IRT 

Item response theory (IRT) models specify a relationship between the underlying traits 

and the probability of item response, which is nonlinear. Item Characteristic Curve (ICC) 
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represents such nonlinear relationship, in which the probability of item success is monotonically 

increasing as the trait level increases. In IRT, because the trait level is estimated based on both 

item properties (e.g., difficulty, discrimination, and guessing) and examinees’ response patterns 

on items. ICC is practically drawn based on the relationship among the probability of item 

success, item properties, and examinees’ item scores. Figure 2.1 presents examples of three ICCs 

from three dichotomous items. All three ICCs have S-shaped curves in which the probability of 

item success monotonically increases with escalations in the trait level. From the ICCs, small 

changes in the medium trait level appear to lead large changes in the probability of item success, 

whereas large changes in the extreme trait levels appear to lead relatively small changes in the 

probability of item success.  

 

Figure 2.1. Item Characteristic Curves of Three Dichotomous Items 

 Three dichotomous items used in Figure 2.1 differ in item difficulty. At the same level of 

trait estimate, the probability of correct item is always the highest for item of b = -1 and the 

lowest for item of b = 1. Thus, item of b = -1 seems to be the hardest and b = 1 seems to be the 
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easiest. Although not illustrated in the figure above, ICCs may differ in item discrimination (i.e., 

slope) and item guessing (i.e., low asymptote), making the interpretation of ICC somewhat 

complex. For example, when items differ in their discrimination levels, the ICCs from the items 

may be different in their slopes. Some ICCs may sharply increase as the trait estimates change, 

while other ICCs may gradually increase as the trait scores increase. Specifically, items with 

high discrimination values will have large changes in their probabilities in a narrow range of trait 

estimates, whereas those with low discrimination values will have relatively small probability 

changes over a broad range of trait estimates. The low asymptote of an ICC corresponds to item 

guessing that represents the probability of correct item response at the extremely low trait level. 

Various IRT models, depending on whether item difficulty, item discrimination, or item guessing 

parameters is involved, can be specified. One Parameter Logistic Model (1-PLM) is the simplest 

unidimensional IRT model, in which only item difficulty parameters are involved. Two 

Parameter Logistic Model (2-PLM) involve item discrimination parameters as well as item 

difficulty. In turn, Three Parameter Logistic Model (3-PLM) includes item guessing parameters 

as well as item difficulty and discrimination parameters. These models are all unidimensional 

IRT models because only a single latent trait underlies item-solving. Alternatively, there are 

several multidimensional IRT models, in which multiple latent traits are assumed, and complex 

dependency among items are considered. 

IRT Assumptions 

 A common assumption on all IRT models is local independence. Local independence 

refers to an assumption that an examinee’s response to items are independent of each other, after 

controlling the level of underlying latent traits. Under the assumption, an examinee’s 

performance on an item must not influence his or her performance on other items once his or her 
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trait level is fixed. Local independence is a key concept in IRT because all likelihood functions 

for estimating parameters are based on this idea. In IRT, the likelihood function indicates the 

probability that a person has specific item response patterns given 𝜃. When local independence is 

met, the likelihood function of an examinee’s response patterns on items consisting of a test is 

computable by the products of probabilities of score patterns on respective items.  

This assumption should be required in both unidimensional and multidimensional models 

as well. The only difference is the number of traits that should be controlled when local 

independency holds (Embretson & Reise, 2000). Wainer and Wang (2000) argued that the 

violation of local independence can overestimate test reliability by underestimating the standard 

error of ability estimates.  

Three Main IRT Models: 1-PLM, 2-PLM and 3-PLM 

 There are three popular IRT models based on which item parameters are involved: One-, 

Two-, and Three- Parameter Logistic Models. The 1-PLM is the simplest IRT model, in which 

only item difficulty parameter is involved. The 1-PLM assumes that items in a test have the same 

item discrimination and their lower asymptotes are low enough to be negligible. In the 1PLM, 

the probability that person s successfully performs item i is formulated as below: 

  𝑃𝑖(𝜃𝑠) =
𝑒𝑥𝑝 (1.7𝑎(𝜃𝑠−𝑏𝑖))

1+𝑒𝑥𝑝 (1.7𝑎(𝜃𝑠−𝑏𝑖))
, (2.32) 

where a is a common discrimination parameter, 𝑏𝑖 is the difficulty parameter for item i, and 𝜃𝑠 is 

the trait level for person s. The probability of solving an item correctly is determined by two 

factors: person 𝜃 and item difficulty. The constant of 1.7 is a scaling factor that transforms the 

logit scale into the probit scale. Item difficulty parameters are determined at the location on 𝜃 

continuum at which the probability of a correct response equals 0.5.  
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 The 2-PLM (Birnbaum, 1957, 1958) assumes variable item difficulty and discrimination 

parameters across items, still keeping the lower asymptotes trivially low. The probability that 

person s successfully performs item i in the 2-PL is formulated as follows: 

 𝑃𝑖(𝜃𝑠) =
𝑒𝑥𝑝 1.7𝑎𝑖(𝜃𝑠−𝑏𝑖)

1+𝑒𝑥𝑝1.7𝑎𝑖 (𝜃𝑠−𝑏𝑖)
, (2.33) 

where 𝑎𝑖 and 𝑏𝑖 are the item difficulty and the item discrimination parameters, respectively, and  

𝜃𝑠 is the trait level for person s. Items with different discrimination weights would differently 

influence item performance. For example, an item with a high discrimination value will 

discriminate respondents between low and high ability levels, and an item with a low 

discrimination value may not discriminate respondents, whose ability levels largely differ, 

making the ICC flat. Same as in the 1PLM, item difficulty values are the location of 𝜃 at which 

the probability of item equals 0.5 (i.e., p=0.5). Item discrimination values are defined as the slop 

at the level of p=0.5.  

 The 3-PLM is a model assuming that lower asymptote parameters are involved. In the 3-

PLM, the probability that person s successfully performs item i is shown below:  

𝑃𝑖(𝜃𝑠) = 𝑐𝑖 + (1 − 𝑐𝑖)
𝑒𝑥𝑝 (1.7𝑎𝑖(𝜃𝑠−𝑏𝑖))

1+𝑒𝑥𝑝 (1.7𝑎𝑖(𝜃𝑠−𝑏𝑖))
, (2.34) 

where 𝑐𝑖 is the lower asymptote for item i, and the remaining terms are the same as in 2-PLM. 

The lower asymptote is interpreted as the probability that a person with very low ability answers 

an item correctly.  

Estimation Methods for IRT Modeling 

For estimating item parameters, joint maximum likelihood (JML), marginal maximum 

likelihood (MML), and conditional maximum likelihood (CML) are popular. These three types 
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of methods differ in how they handle unknown person estimates. JML estimates person 

parameters with item parameters fixed, and then item parameters are re-estimated with the 

acquired person estimates. These calibration processes between items and persons are iterated 

until convergence criterion is satisfied. JML is not frequently recommended because it often 

yields biased and inconsistent estimators (Embretson & Reise, 2000). Similarly, the CML 

method treats person parameters as known, and uses total score as known thetas to estimate 

person parameters. CML is limitedly used in the Rasch model, in which the total scores are 

sufficient statistics. Therefore, the following method, MML, is the most common. 

The MML method estimates item parameters under the assumption that population 𝜃s are 

distributed with specific means and variances (e.g., normal distribution), although each 𝜃 is 

specifically unknown. MML includes the computation of integration when the likelihood of 

response patterns is weighted and added together across all rectangles that are created by setting 

several quadrature points in the prior distribution. When a large number of quadrature points are 

set, MML is reported to have some issues related to integration. The complexity of integration 

computation is also dramatically increased for multidimensional models. The more quadrature 

points selected, the more accurate estimates we can obtain. In addition, a number of examinees 

are required for more accurate estimation. Bock and Aitken (1981) employed the expectation-

maximization (EM) implementation procedure of MML and resolved this problem to some 

degree. In the Expectation stage, the number of people at each quadrature and the number of 

persons answering an item successfully are predicted, and in the Maximization stage, item 

parameters are determined based on the criteria to maximize the likelihoods. These two stages 

are iterated until the changes in likelihood values are minimalized. Estimators are determined 

based on a Newton-Gauss procedure (See Hambleton & Swaminathan, 1985 for more details).  
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Three methods for estimating person scores are common: maximum likelihood (ML), 

maximum a posteriori (MAP), and expected a posteriori (EAP) estimations. The ML method 

finds 𝜃 that maximizes the likelihood function of a response pattern, with item parameters 

assumed to be known. Specifically, given 𝜃, the likelihood of each item response pattern is 

computed and summed up over all items, and 𝜃 value that maximizes the likelihood value is 

determined as a person estimate. Although the ML method generally produces consistent 

estimators, the application of this method requires more caution because it may fail to locate 

appropriate estimates if all items or none are correctly answered.   

The next methods, MAP and EAP methods, estimates person scores based on the 

Bayesian approach. The basic concept of Bayes’ theorem is that the probability that an event will 

occur is conditioned on the event that was previously occurred. The Bayes’ theorem assumes that 

the information from the previous events influence the probability that the subsequent events 

occur. This can be formulated as follows: 

 𝑃(𝐴|𝐵) = (𝑃(𝐵|𝐴)𝑃(𝐴))/𝑃(𝐵), (2.35) 

where 𝑃(𝐴) is a prior distribution of latent variables, 𝑃(𝐵|𝐴) is the likelihood of observed 

responses given the prior distribution, 𝑃(𝐵) is the marginal distribution of the observed response 

pattern, and 𝑃(𝐴|𝐵) is the posterior distribution of latent variables given response data. If all 

parameters are assumed to have a prior distribution based on prior knowledge, estimation is fully 

Bayesian. This theorem is employed as a way of estimating continuous posterior estimates, 𝜃 

estimators, in MAP and EAP methods. Specifically, the formula above can be rewritten as 

follows: 
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 𝑓(𝜃|𝑈) = 𝑓(𝑈|𝜃)𝑓(𝜃)/𝑓(𝑈), (2.36) 

where 𝑓(𝜃|𝑈) indicates the posterior density function of 𝜃s that we try to obtain, 𝑓(𝑈|𝜃) is equal 

to the likelihood function, and 𝑓(𝜃) corresponds to the prior distribution. Because the probability 

of specific item response pattern is pre-specified for a given set of item responses,  𝑓(𝑈) is a 

constant. Thus, the posterior density function of 𝜃s is determined by the products of the 

likelihood function and prior distribution. Although both the MAP and EAP methods are based 

on the Bayes theorem, they differ in selecting the mode and the mean of the posterior distribution 

as ability 𝜃, respectively. Note that the Bayesian approach may not be properly used when there 

is not reasonable information on prior distribution of 𝜃s.    

IRT-based Subscale Scoring Methods 

Objective Performance Index (OPI) 

 Yen (1987) proposed a subscale scoring method, OPI, that estimates a true subscale score 

based on the performance of items in a subscale. OPI combines information about an examinee’s 

overall test performance into his or her subscale score. Yen’s approach to subscale scores is 

analogous to the Haberman’s weighted average method for subscale scores in that it uses 

collateral information from a total score so that it increases the accuracy of the true subscale 

score. However, unlike to Haberman’s method, OPI basically uses the IRT scale as prior 

information in the Bayesian procedure. Specifically, it estimates a global trait score based on the 

entire test for each examinee, and uses this information to build a prior distribution for estimating 

the subscale score. Thus, Yen’s method will provide more accurate estimation about one’s 

subscale score when subscales are highly correlated. In the meantime, the prior distribution for 

more stable estimation is person-specific. Each examinee has his or her own individual prior 
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distribution for estimating the subscale score because each examinee has his or her own ability 

estimate. OPI method may increase the estimation accuracy in that it uses an informative prior 

distribution based on examinees’ global ability estimates, rather than a random prior distribution 

(e.g., standard normal distribution). 

Estimation of the Prior Distribution of 𝑇𝑠 

The OPI procedure assumes that a test of N-items consists of S subscales with 𝑛𝑠 items, 

in which each item is related to only a single dimension rather than multiple dimensions. In OPI, 

the true subscale score, 𝑇𝑠, is defined as the expected value of P-values for observed number-

correct scores, 𝐸(𝑋𝑠/𝑛𝑠), where 𝑋𝑠 are obtained from an examinee’s repeated administration of a 

subscale. Yen (1987) believed that if there is additional information for the true subscale score 

estimation, we would be able to obtain more accurate and stable subscale scores by combining 

such information (i.e., prior distribution) into true subscale score estimation. 

In the OPI procedure, the prior distribution of 𝑇𝑠 for an examinee follows a beta 

distribution, 𝑏𝑒𝑡𝑎(𝛼𝑠, 𝛽𝑠), and is expressed by the equation as follows: 

 𝑔(𝑇𝑠) =
(𝛼𝑠+𝛽𝑠−1)!𝑇𝑠

𝛼𝑠−1
(1−𝑇𝑠)𝛽𝑠−1

(𝛼𝑠−1)!(𝛽𝑠−1)!
, (2.37) 

where 𝛼 and 𝛽 are shape parameters as exponents of the random variables and have larger values 

than zero. For estimating the prior distribution of 𝑇𝑠 in practice, several procedures are required. 

First, OPI estimates the trait level 𝜃 for each examinee and item parameters based on the whole 

test performance on a whole test using the 3PLM. Then, the mean and the variance of �̂�𝑠 is 

obtainable using the 3PLM parameter values as below: 

 𝜇�̂�𝑠
=

1

𝑛𝑠
∑ 𝑃𝑗𝑠(𝜃𝑗)

𝑛𝑠
𝑖=1 , and (2.38) 
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 𝜎�̂�𝑠

2 = 𝐼(𝑇𝑠, �̂�𝑠)−1, (2.39) 

where 𝜇�̂�𝑠
 approximately equal the mean and the variance of 𝑇𝑠, and 𝜎�̂�𝑠

2  equals the amount of 

information that �̂�𝑠 accounts for 𝑇𝑠. For estimating the variance of prior distribution,  

 𝐼(𝑇𝑠, �̂�𝑠)
−1

=  
𝐼(𝜃,�̂�𝑠)

[
𝜕𝑇𝑠
𝜕𝜃

]
2 , (2.40) 

where 
𝜕𝑇𝑗

𝜕𝜃
=  

𝜕[
1

𝑛𝑠
∑ 𝑃𝑗𝑠(𝜃𝑗)

𝑛𝑠
𝑖=1 ]

𝜕𝜃
=

1

𝑛𝑠
∑ 𝜕𝑃𝑗𝑠(𝜃𝑗)

𝑛𝑠
𝑡=1

𝜕𝜃
=  

1

𝑛𝑠
∑ 𝑃𝑗𝑠

′ (𝜃𝑗)
𝑛𝑠
𝑡=1  and 𝑃𝑗𝑠

′ (𝜃𝑗) =

𝐷𝑎𝑖𝑠[1−𝑃𝑗𝑠(𝜃)][𝑃𝑗𝑠(𝜃)−𝑐𝑖𝑠]

1−𝑐𝑖𝑠
.  From Lord (1980), 𝐼(𝜃, �̂�𝑠) can be approximately estimated by 𝐼(𝜃, 𝜃𝑠), 

and 𝐼(𝜃, 𝜃𝑠) =  ∑ ∑
[𝑃𝑗𝑠

′ (𝜃𝑗)]2

𝑃𝑗𝑠(𝜃)[1−𝑃𝑗𝑠(𝜃)]

𝑛𝑠
𝑡=1

𝑆
𝑠=1 . Thus, 𝜎�̂�𝑠

2  can be expressed as follows: 

 𝜎�̂�𝑠

2 =

1
𝑛𝑠

∑ 𝑃𝑗𝑠
′ (𝜃𝑗)

𝑛𝑠
𝑡=1

2

∑ ∑
[𝑃𝑗𝑠

′ (𝜃𝑗)]2

𝑃𝑗𝑠(𝜃)[1 − 𝑃𝑗𝑠(𝜃)]
𝑛𝑠
𝑡=1

𝑆
𝑠=1

. (2.41) 

Also, the prior distribution of 𝑇𝑠 follows the 𝑏𝑒𝑡𝑎(𝛼𝑠, 𝛽𝑠) distribution, where the shape 

parameter of the beta distribution can be expressed in terms of the mean, 𝜇�̂�𝑠
, and the variance, 

𝜎�̂�𝑠

2 , explained above. The mean and the standard deviation of the 𝑏𝑒𝑡𝑎(𝛼𝑠, 𝛽𝑠) are, respectively, 

𝛼𝑠

𝛼𝑠+𝛽𝑠
 and 

𝛼𝑠𝛽𝑠

(𝛼𝑠+𝛽𝑠)2(𝛼𝑠+𝛽𝑠+1)
. In the other way, the shape parameters, 𝛼𝑠 and 𝛽𝑠, can be expressed 

by formulation of these mean and variance. Thus,   

 𝛼𝑠 =
𝜇�̂�𝑠

2(1−𝜇�̂�𝑠
)

𝜎
�̂�𝑠
2 − 𝜇�̂�𝑠

, and (2.42) 

 𝛽𝑠 =
𝜇�̂�𝑠

(1 − 𝜇�̂�𝑠
)2

𝜎�̂�𝑠

2 + 𝜇�̂�𝑠
− 1. (2.43) 
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Given the prior distribution of 𝑇𝑠, 𝑋𝑠 is assumed to follow a binomial distribution and 

specified as follows:  

 𝑃(𝑋𝑠 = 𝑥𝑠|𝑇𝑠) = (𝑛𝑠
𝑥𝑠

) 𝑇𝑠
𝑥𝑠(1 − 𝑇𝑠)𝑛𝑠−𝑥𝑠, (2.44) 

where 𝑥𝑠 is the observed correct score for items in subscale s. When the posterior distribution of 

𝑇𝑠 is defined as 𝑔(𝑇𝑠|𝑋𝑠 = 𝑥𝑠) = 𝑏𝑒𝑡𝑎(𝛾𝑠, 𝛿𝑠), the parameters of the posterior distribution can be 

expressed in terms of the parameters of the prior information as below: 

 
𝛾𝑠 = 𝛼𝑠 + 𝑥𝑠, and 

(2.45) 

 𝛿𝑠 = 𝛽𝑠 + 𝑛𝑠 − 𝑥𝑠. (2.46) 

OPI is estimated by the mean of the posterior distribution as the true subscale score, 

𝛾𝑠

𝛾𝑠+𝛿𝑠
. If the term 𝑛∗ substitutes 

𝜇�̂�𝑠
(1−𝜇�̂�𝑠

)

𝜎
�̂�𝑠
2 − 1, the OPI value can be expressed as 

𝜇�̂�𝑠
𝑛𝑠

∗+𝑥𝑠

𝑛𝑠
∗+𝑛𝑠

. In 

turn, the variance of the posterior distribution is obtained by 
𝛾𝑠𝛿𝑠

(𝛾𝑠+𝛿𝑠)2(𝛾𝑠+𝛿𝑠+1)
. From Lord (1980), 

the standard errors of estimates can be derived by the square root of the variance. Yen (1987) 

also suggested the computation of weighted OPI value. Namely, the mean of the posterior 

distribution is 𝑤𝑠�̂�𝑠 + (1 − 𝑤𝑠)
𝑥𝑠

𝑛𝑠
, in which 𝑤𝑠 is the relative weight of the prior estimate and the 

observed proportion-correct score, 
𝑥𝑠

𝑛𝑠
, and is computed using 

𝑛𝑠
∗

𝑛𝑠
∗+𝑛

.  

The OPI procedure requires to compute the statistic Q in order to check how accurate and 

stable estimates the prior information can lead. In specific, the Q statistic identifies unexpected 

item responses on the subscales in a test.  
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𝑄 = ∑

𝑛𝑠(
𝑥𝑠
𝑛𝑠

−�̂�𝑠)2

�̂�𝑠(1−�̂�𝑠)

𝑆
𝑠=1 . 

(2.47) 

When 𝑄 > 𝑥2(𝐽, .10), 𝑛𝑠
∗ is set to zero in the equations above.  

Adjustment of OPI scores 

  Because the prior mean of 𝑇𝑠, �̂�𝑠, is calculated based on the performance of total items in 

a test, the prior mean is not independent of 𝑥𝑠. Although it seems to be reasonable to use only 

items that are not relevant to the 𝑥𝑠, it would make the computational procedure of OPI scores 

more complex. Thus, OPI values obtained by equations above can overestimate the amount of 

the prior information independent of 𝑥𝑠. Considering this situation, reducing the overlapping 

information may produce more accurate estimation. Yen (1987) suggested an adjusted OPI value 

by weighting the total test information by 
𝑛−𝑛𝑠

𝑛
. That is, the adjusted OPI value is obtained by 

multiplying the total test information by the ratio of the number of items that are not relevant to 

𝑥𝑠 to the total items.   

Augmentation Method 

Wainer et al. (2001) proposed the subscale score augmentation method, in which subscale 

scores are augmented by employing subsidiary information from the remaining subscale scores 

as well as a subscale score being considered.  This method estimates true subscale scores through 

multiple stages. In the first stage, unidimensional IRT ability scores or the observed subscale 

scores are estimated based on the responses of items within each subscale. Here, unidimensional 

IRT ability scores can be estimated based on one of the ML, MAP, or EAP methods as described 

earlier. In the second stage, the estimated IRT ability scores are approximated by weighted 

subscale scores, in which the weights of subscale scores depend on the IRT-based reliability 
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estimates and all subscale scores are involved. The following three equations present the formula 

for the augmented subscale scores: 

 
𝑀𝐿(𝜃) = 𝑀𝐿(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌(𝑀𝐿(𝜃) − 𝑀𝐿(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅),  

(2.48) 

 𝑀𝐴𝑃(𝜃) = 𝑀𝐴𝑃(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝜌(𝑀𝐴𝑃(𝜃) − 𝑀𝐴𝑃(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), and (2.49) 

 𝐸𝐴𝑃(𝜃) = 𝐸𝐴𝑃(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜌(𝐸𝐴𝑃(𝜃) − 𝐸𝐴𝑃(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ),  (2.50) 

where the estimated IRT-based ability scores substitute the true subscale scores, and 𝜌 indicates 

the reliability index of these estimates. Wainer et al. (2001) described two different ways of 

estimating the reliability: MAP based reliability and EAP based reliability. The reliability of 

𝑀𝐴𝑃(𝜃) values is computed as below: 

 �̂� =  
𝑉𝐴𝑅(𝜃𝑀𝐴𝑃)

𝑉𝐴𝑅(𝜃𝑀𝐴𝑃)+𝐸(𝑆𝐸2(𝜃𝑀𝐴𝑃))
,  (2.51) 

in which 𝑉𝐴𝑅(𝜃𝑀𝐴𝑃) is the variance of 𝜃s obtained based on the MAP method, and the 

𝐸(𝑆𝐸2(𝜃𝑀𝐴𝑃)) is the expected value of the squared errors of estimates. Also, the reliability of 

𝐸𝐴𝑃(𝜃) can be computed by the formula below: 

 
�̂� = 1 − 𝜎𝑒

2, 
(2.52) 

where 𝜎𝑒
2 is the expected value of error variance of 𝜃s.  

The subscale score augmentation method uses either the number-correct scores (i.e., raw 

subscale scores) or the IRT trait level estimates as the observed subscale score. The combination 

of scale scores is used for approximating a true subscale score. In IRT scaling, estimation errors 

vary among different scale scores. However, when the scaled scores are used to approximate the 

true subscale score, the equal levels of measurement errors are required. Thus, this method 
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ignores individual standard errors and substitutes them by a constant as the measurement error in 

CTT.  

The augmentation of raw scores by using all the available observed subscale scores may 

produce more reliable estimates by using information from other subscale scores in the test. It is 

reasonable to utilize available collateral sources of information as well as the information from 

the corresponding subscale items for computing more accurate subscale scores with the little 

number of items. This method seems to be working better when correlations among subscale 

scores are fairly high. However, note that the subscale scores do not have values over a total 

score if correlations among subscale scores are too high, indicating that test items are 

unidimensional. This approach is not applicable when items only have impacts only on a 

subscale with simple structure.  

Multidimensional Latent Trait Models 

 Multidimensional latent trait models yield a set of trait scores on multiple dimensions that  

may influence item performance by relating them to a set of item parameters. These types of 

models can be considered for uses in educational tests or personality tests that are designed for 

measuring broad areas and multiple subject domains. Multidimensional latent trait model can be 

categorized by compensatory and noncompensatory models. Compensatory models assume that 

high ability on a dimension can make up for low ability on other dimensions, whereas 

noncompensatory models assume that low ability on a dimension is not compensated by high 

ability on other dimensions. Compensatory models include Multidimensional Rasch Model 

(Adams, Wilson, and Wang, 1997), Multidimensional Two Parameter Logistic Model (Reckase 

& McKinley, 1991), and Multidimensional Three Parameter Logistic Model, and non-

compensatory models include the Multicomponent Latent Trait Model (MLTM; Whitely, 1980), 
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the Generalized Latent Trait Model (GLTM; Embretson, 1984), and an extension of the GLTM, 

the Multicomponent Latent Trait Model for Diagnosis (MLTM-D; Embretson, & Yang, 2013) 

Compensatory MIRT Models 

The multidimensional Rasch model is one of multidimensional models where multiple 

dimension 𝜃s are involved to formulate the probability of a correct item response. Specifically, 

multidimensional Rasch model is formulated as follows: 

 𝑃(𝜃𝑠) =  
exp (∑ 𝜃𝑠𝑚+𝛿𝑖

𝑀
𝑚=1 )

1+exp (∑ 𝜃𝑠𝑚+𝛿𝑖
𝑀
𝑚=1 )

,  (2.53) 

where 𝜃𝑠𝑚 is the trait estimate from person s on dimension m, 𝛿𝑖 is the intercept for item i, and M 

is the number of dimensions. The probability of answering an item correctly is determined by the 

combination of trait estimates with equal weights and an item difficulty (i.e., intercept). The 𝜃𝑠 

vector presents a set of latent trait estimates on multiple dimensions. 

 The multidimensional two parameter logistic model considers item discriminations (i.e., 

dimension weights) as well as an item difficulty as item properties. Unlike to Rasch model, these 

item discriminations are unequal across dimensions. Specifically, the probability of a correct 

item response is written as follows: 

 𝑃(𝜃𝑠) =  
exp (∑ 𝑎𝑖𝑚𝜃𝑠𝑚+𝛿𝑖

𝑀
𝑚=1 )

1+exp (∑ 𝑎𝑖𝑚𝜃𝑠𝑚+𝛿𝑖
𝑀
𝑚=1 )

,  (2.54) 

where 𝑎𝑖𝑚 is the item discrimination for dimension m related to item i. The probability of 

answering an item correctly is determined by a weighted combination of the trait estimates and 

item difficulty values (i.e., intercept). If a dimension weight is high for a specific dimension, the 

impact of the corresponding trait score to the item probability gets high. In contrast, a dimension 

weight is low for the other dimension, the impact of the corresponding trait score is less 
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influential to item performance. The multidimensional three parameter logistic model is 

formulated as follows:  

 𝑃(𝜃𝑠) = 𝑐𝑖 + (1 − 𝑐𝑖) 
exp (∑ 𝑎𝑖𝑚𝜃𝑠𝑚+𝛿𝑖

𝑀
𝑚=1 )

1+exp (∑ 𝑎𝑖𝑚𝜃𝑠𝑚+𝛿𝑖
𝑀
𝑚=1 )

, (2.55) 

where 𝑐𝑖 indicates the guessing parameter. The guessing parameter is interpreted in the same way 

as that of the unidimensional 3PL model.  

 These three types of models, as above, are compensatory in that weighted dimension 

scores are summed over dimensions related to an item to compute the probability of a correct 

item response. In compensatory models, a low weighted dimension seems to be compensated by 

a high weighted dimension to increase the probability of item success, implying that examinees 

do not require high dimension scores on all relevant dimensions. Marginal maximum likelihood 

estimators (MMLE) using expectation-maximization (EM) and Markov chain Monte Carlo 

(MCMC) algorithms have been developed for calibrating parameters.  

Non-compensatory MIRT Models 

According to the different interactions of dimensions underlying items, noncompensatory 

models include GLTM, MLTM, and MLTM-D, in which item probability is formulated with the 

product of relating parameters. 

MLTM 

The MLTM is one of the noncompensatory multidimensional models in which multiple 

processing or skill components (i.e., dimension) are involved in item solving. The MLTM 

assumes that each item consists of multiple subtasks measuring the processing or skill 

components, and the responses from all the subtasks are required. The MLTM models three 

situations depending on relationships among components: independent components, 
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sequentially-dependent components, and components of repeatable dependent-sequence. The 

independent component model of the MLTM is applied in the case in which components are 

independent and exhaustive, and the other two models are applied in cases in which components 

are assumed to be sequentially dependent.  

The MTLM requires both component responses and item responses, and estimate 

component parameters (i.e., component 𝜃s and component difficulty values) by linking the 

component responses to the corresponding item responses. The following formulas are the 

mathematical equations of defining the MLTM for independent components, in which 

components are independent: 

𝑃(𝑥𝑖𝑗 = 1|𝜃𝑗 , 𝑏𝑖) = 𝑎 ∏ 𝑃(𝑥𝑖𝑗𝑘 = 1|𝜃𝑗𝑘) + 𝑔(1 −𝐾
𝑘=1

∏ 𝑃(𝑥𝑖𝑗𝑘 = 1|𝜃𝑗𝑘)𝐾
𝑘=1 ), and  

(2.56) 

 𝑃(𝑥𝑖𝑗𝑘 = 1|𝜃𝑗𝑘) =
exp (𝜃𝑗𝑘−𝑏𝑖𝑘)

1+exp (𝜃𝑗𝑘−𝑏𝑖𝑘)
,  (2.57) 

where the probability of item success, 𝑃(𝑥𝑖𝑗 = 1), is termed by the products of component 

success probabilities, 𝑃(𝑥𝑖𝑗𝑘 = 1), related to the item performance. Here, the component 

probability is estimated by the Rasch model, in which component difficulty parameter, 𝑏𝑖𝑘, and a 

component level theta, 𝜃𝑗𝑘, score are involved. In the Rasch model, item discrimination is fixed 

to one. The a and g parameters, respectively, represent component information (i.e., meta-

component or executive functioning) and an alternative solving method of item (i.e., guessing or 

rote association to the stem). Specifically, a is the probability of item solving when all the 

required subtasks are responded, and g is the probability of item solving when at least one 

required subtask is not responded.  
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In the other two cases, where components are sequentially-dependent or with repeatable 

dependent-sequence, the correct response to a component requires information of prerequisite 

components.  Although the response from the lowest sequence of subtask reflects component 

outcomes, the responses from the second or higher sequence of subtasks are the jointed 

outcomes, in which the preceding component outcomes will be influenced by the jointed 

outcomes in the second sequence. The major distinction between these models is from that the 

sequentially-dependent component model requires that all components are executed only once, 

whereas the repeatable dependent-sequence component model allows components to be executed 

over and over. More detailed information about these specific cases, see Whitely (1980) and 

Embretson (1984, 1985).  

GLTM  

 The GLTM is an extended model of the MLTM, in which an item component difficulty is 

replaced by a linear combination of complexity factors for each component, as in the Log Linear 

Test Model (LLTM; Fischer, 1973). The GLTM equals the MLTM except that the probability of 

correct component is based on the LLTM instead of Rasch model. The GLTM generalizes both 

the MLTM and the LLTM. The formula of the GLTM is specified as below:  

𝑃(𝑥𝑖𝑗 = 1|𝜃𝑗) = 𝑎 ∏ 𝑃(𝑥𝑖𝑗𝑘 = 1|𝜃𝑗𝑘) + 𝑔(1 −𝐾
𝑘=1

∏ 𝑃(𝑥𝑖𝑗𝑘 = 1|𝜃𝑗𝑘)𝐾
𝑘=1 ), and  

(2.58) 

𝑃(𝑥𝑖𝑗𝑘 = 1|𝜃𝑗𝑘) =
exp (𝜃𝑗𝑘 − (∑ 𝑐𝑖𝑚𝑘𝑚 𝜂𝑚𝑘 + 𝑑𝑘))

1 + exp (𝜃𝑗𝑘 − (∑ 𝑐𝑖𝑚𝑘𝑚 𝜂𝑚𝑘 + 𝑑𝑘))
, (2.59) 

where 𝑐𝑖𝑚𝑘 is the complexity factor related to component m in item i, 𝜂𝑚𝑘 is the weight of the 

difficulty for complexity factor k related to component m, and 𝜃𝑗𝑘 is the complexity level of 
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examinee j. The remaining terms are equal to those in the MLTM. If there is only one component 

(a subtask) within an item, then the GLTM equals the LLTM, and if there are no complexity 

factors underlying each component and multiple subtasks are involved in an item, then the model 

equals the MLTM. 

MLTM-D 

 The MLTM-D is a noncompensatory latent trait model for diagnosis. The MLTM-D 

estimates dimension properties at two different levels with hierarchy: components and attributes. 

In the MLTM-D, the probability that examinee j solves item i is the products of the probabilities 

of the components that are relevant to the item, in which component probabilities are modeled 

with the weighted combination of the nested attribute variables and component 𝜃s. 

 𝑃𝑖𝑗 = 𝑃(𝑋𝑖𝑗 = 1) =  ∏ 𝑃𝑖𝑗𝑚
𝑐𝑖𝑚𝑀

𝑚=1 ,  (2.60) 

where 𝑐𝑖𝑚 is a binary variable presenting the involvement if component m is required to solve an 

item i, and 𝑃𝑖𝑗𝑚 represents the probability that person j performs component m in item i 

successfully. The probability of component success is similar to the LLTM as follows: 

𝑃𝑖𝑗𝑚 = 𝑃 (𝑋𝑖𝑗𝑚 = 1|𝜃𝑗𝑚 , 𝑞𝑖𝑚, 𝜂𝑚) =  
exp(1.7 (𝜃𝑗𝑚−∑ 𝜂𝑚𝑘𝑞𝑖𝑚𝑘+𝜂𝑚0))𝐾

𝑘=1

1+ exp(1.7 (𝜃𝑗𝑚−∑ 𝜂𝑚𝑘𝑞𝑖𝑚𝑘+𝜂𝑚0))𝐾
𝑘=1

,  
(2.61) 

where 𝜃𝑗𝑚 reprsents the examinee j on the component m, 𝜂𝑚𝑘 represents the weight of feature k 

on component m, and 𝑞𝑖𝑚𝑘 indicates the score of stimulus k on component m of item i.  

 The MLTM-D requires two Q-matrices, 𝐶𝑏𝑥𝑀 and 𝑄𝐼𝑥𝐾𝑚
, specifying both component 

structure and attribute structure. Specifically, the 𝐶𝑏𝑥𝑀 matrix specifies all possible patterns 

among components and items in a test, in which M components can yield 2𝑀 − 1 patterns. In 

practice, the matrix of items and components is usually one of the subsets of the possible 
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patterns. The 𝑄𝐼𝑥𝐾𝑚
 matrix specifies the relationship between attributes and items within each 

component. In the MLTM-D, trait level estimates are obtained at the component levels. For 

example, if there are two components required to solve items, trait levels on only these two 

components are to be estimated for each person rather than attribute level estimates. However, 

component estimates, 𝜃𝑗𝑚, can be linked and directly comparable to the attribute weights in 

special cases (i.e., attributes are linearly ordered) because they can be located on the common 

scale. Each person’s performance can be evaluated compared to the level of specific attributes as 

well as the level of components. 

 The MLTM-D is applicable in large-scale tests that are designed with hierarchical 

knowledge structures with broad skills and more specific skills. Especially when the number of 

attributes is large, the MLTM-D has an advantage in parameter estimation by decreasing the 

computational load.   

CDA Model Based Subscale scores 

CDA models embrace all psychometric models that were developed or utilized for the 

purpose of providing examinees for attribute mastery profiles on cognitive processes, skills, and 

knowledge structures underlying items. Although diagnostic models have been developed for the 

diagnostic use, they can be used for tests that are to be analyzed and reported for the purpose of 

providing diagnostic information. This section introduces several diagnostic models as 

measuring tools for diagnostic information. The models that are described here are limited to 

general classification models for diagnosis. For more details information about specific models, 

see Roussos, Templin, and Henson (2007) and Rupp and Templin (2008). A general model takes 

a form that can be expressed in various forms based on its parameterization. The log-linear 

cognitive diagnostic model (LCDM; Henson, Templin, & Willse, 2009), the general diagnostic 
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models (GDMs; von Davier & Yamamoto, 2004, 2007), generalized deterministic input, noisy 

“and” gate (G-DINA; de la Torre, 2011), and the MLTM-D can be categorized as general 

models.  

Diagnostic assessment models can be divided into two groups according to the type of 

measurement scale for attribute proficiency levels: diagnostic latent trait model vs. diagnostic 

latent classification model. Specifically, diagnostic latent trait model provides continuous scores 

on multiple attribute/dimensions, whereas diagnostic latent trait model provides discrete level of 

scores on these attributes. The selection of appropriate diagnostic models depends on multiple 

factors: the number of skills/attributes, data type of resulting attribute scores (e.g., 

dichotomous/polytomous), the structure of data (e.g., attributes hierarchy or attributes 

dependency), the availability of computer software, and so on. The following section includes 

the description of diagnostic latent class models. For the information of diagnostic latent trait 

models, see the previous section of multidimensional latent trait models. 

Diagnostic Latent Class Model 

 All diagnostic classification models (DCMs) provide item parameters and attribute 

mastery patterns as classes, which determine the probability of a correct response. DCMs 

commonly assume that examinees with the same attribute mastery profile have the same 

probabilities of item responses. Similar to the latent trait models for diagnosis (e.g., 

multidimensional latent trait models), diagnostic latent class models are also classified into 

compensatory and noncompensatory models based on the interaction of attributes required for 

successful task performance. The deterministic input, noisy “and” gate (DINA; Haertel, 1989; 

Junker & Sijtsma, 2001; de la Torre & Douglas, 2008), the reparameterized unified model 

(RUM; Hartz, 2002), and the unified model (DiBello, Stout, & Roussos, 1995) belong to 
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noncompensatory models, and the Compensatory RUM, the deterministic inputs, noisy, “or” gate 

(DINO; Templin & Henson, 2006), and the noisy inputs, deterministic “or” gate (NIDO; 

Templin, 2006) models belong to compensatory classification models. A full taxonomy of DCM 

is described with more details in Rupp, Templin, and Henson’s (2010) book. Their taxonomy 

includes eighteen diagnostic classification models according to the type of response data and 

attribute proficiency classes (i.e., dichotomous vs. polytomous) and the interactive relationships 

among attributes (i.e., compensatory vs. noncompensatory) 

GDM 

 A class of GDMs is the most general form among all kinds of developed diagnostic 

models in which both continuous and categorical latent variables are permitted. GDMs are also 

general in that they can handle both compensatory and noncompensatory skill interactions of 

item-solving. Based on the parameterization, GDMs can be specialized by various IRT models 

(e.g., the Rasch model, the two-parameter logistic IRT model, the generalized partial credit 

model) and diagnostic models (e.g., the latent class analysis; Maris, 1999; the fusion model; 

Hartz, Roussos, & Stout; 2002). In GDMs, the marginal probability of a vector of observed 

variables given attribute patterns can be expressed as follow: 

𝑃(𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑛) =  ∑ 𝑝(𝑔) ∫ 𝑝(𝑥𝑗1, … , 𝑥𝑗𝑛|𝑎, 𝑔)𝑑𝑎𝑔 , , (2.62) 

where p(𝑎|𝑔) represents the probability of a vector of latent attribute variables given g 

distribution, and 𝑝(𝑥𝑗1, … , 𝑥𝑗𝑛|𝑎, 𝑔) represents the conditional probability that person j has 

specific item responses (i.e., a vector of responses) given the vector of latent attribute variables 

(i.e., a = (𝑎𝑗1, 𝑎𝑗2, … , 𝑎𝑗𝑛)) and distribution g. The class of general diagnostic models is 

formulated in a logistic form as the following equation:  
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𝑃(𝑥|𝛽𝑖, 𝑞𝑖, 𝛾𝑖, 𝒂) =  
exp (𝛽𝑥𝑖+𝛾𝑥𝑖.

𝑇 ℎ(𝑞𝑖,𝒂))

1+∑ exp (
𝑚𝑖
𝑦=1 𝛽𝑦𝑖+𝛾𝑦𝑖.

𝑇 ℎ(𝑞𝑖,𝒂))
,  (2.63) 

where 𝛽𝑥𝑖, 𝑟𝑥𝑖, and ℎ(𝑞𝑖, 𝑎) indicates overall difficulty parameters, a k-dimensional slope 

parameter for each response category, and a linear combination of attribute level and Q-matrix, 

respectively. The slop parameter, 𝑟𝑥𝑖, represents the weight of attribute variables to determine the 

probability of an item success. In term ℎ(𝑞𝑖, 𝑎), the 𝑞𝑖 is a term to relate item i to skill k, and a is 

a vector of an examinee attribute proficiency. The h is a term to specify how Q-matrix elements 

are related to the skill patterns, which determines the specific cases of the GDMs. For example, 

if item i involves skill k (i.e., 𝑞𝑖𝑘 = 1), then the term is replaced by 𝛾𝑥𝑖𝑎𝑘.  

 While many other complex models depend on the MCMC estimation algorithm, an MML 

estimation using the EM-algorithm for the GDMs was developed, and the parameter estimation 

was successfully recovered with simulated data (von Davier, 2005). 

LCDM 

The LCDM is a log-linear model in which latent class variables are involved. The log-

linear model was originally formulated to predict the frequency in cells in which observable 

discrete variables intersect, but could be easily extended to latent variables. For such a reason, 

the log-linear model could be applied to formulate several cognitive diagnosis models (von 

Davier, 2005; Fu, 2005). The LCDM is a general log-linear model in which dichotomous latent 

variables and dichotomous response data are involved. The LCDM provides the probability of a 

correct item response given a binary item response and attribute patterns. The probability of a 

correct response is formulated as below:  

P(𝑋𝑖𝑗 = 1|𝛼𝑗) =
exp (𝜆𝑗

𝑇ℎ(𝛼𝑗,𝑞𝑖)−𝜂𝑖)

1+exp (𝜆𝑗
𝑇ℎ(𝛼𝑗,𝑞𝑖)−𝜂𝑖)

, (2.64) 
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where the vector 𝜆𝑗
𝑇is the vector of weights for item j, ℎ(𝛼𝑗 , 𝑞𝑖) represents linear combinations of 

the 𝛼𝑗(i.e., attribute variables involved in person j) and the Q-matrix values of attributes in item i, 

𝑞𝑖, and 𝜂𝑖 represents the probability of a correct response for examinees in class who have not 

mastered any attributes. Specifically, 𝜆𝑗
𝑇ℎ(𝛼𝑖 , 𝑞𝑗) can be expressed as below: 

𝜆𝑗
𝑇ℎ(𝛼𝑗 , 𝑞𝑖) =  ∑ 𝜆𝑖𝑘(𝛼𝑘𝑞𝑗𝑘)𝐾

𝑘=1 +  ∑ ∑ 𝜆𝑖𝑘𝑣(𝛼𝑘𝛼𝑣𝑞𝑖𝑘𝑞𝑖𝑣) + ⋯𝑣>𝑘
𝐾
𝑘=1 ,  (2.65) 

where 𝜆𝑖𝑘 and 𝜆𝑖𝑘𝑣 are terms that are relevant to the main effect for attribute k involved in item i 

and the two-way interaction effect for attribute k and v involved in item i, respectively. The 

remaining parts sum up all possible multiple interaction effects including three-way interaction, 

four-way interaction and so on. The natural logarithm of the probability of a correct response 

corresponds to a logit function. A logit function is directly expressed by a linear combination of 

intercept, main effects, and interaction effects. For example, once two attributes are involved in 

item-solving, the logit of a correct response to item j by examinee i can be expressed by 

logit(𝑋𝑖𝑗 = 1|𝛼𝑗) =  𝜆𝑖,0 + 𝜆𝑖,1,(1)𝛼𝑗1 + 𝜆𝑖,1,(2)𝛼𝑗2 + 𝜆𝑖,2,(1,2)𝛼𝑗1𝛼𝑗2. In this function, 𝜆𝑖,0 is the 

logit for nonmatery groups of both attribute 1 and 2 involved in item i. The 𝜆𝑖,1,(1) and 𝜆𝑖,1,(2) 

terms that correspond to main effects, respectively, account for the increases in the logits when 

mastering attribute 1 and 2 involved in item i. In turn, 𝜆𝑖,2,(1,2) as an interaction term of attribute 

1 and 2 represents the increase in the logit when mastering both attribute 1 and 2. The different 

combinations of attribute mastery patterns yield different size of logits combined with the effect 

of each attribute, and in turn producing the different probability of a correct response.  

A multiple-way ANOVA model resembles the LCDM in that an ANOVA model has 

main factors and interaction effect among factors. For example, a two-way ANOVA model is 

represented by a linear combination of main effects from two factors X and Y and an interaction 
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effect between X and Y. The factors from the ANOVA correspond to the attributes in the 

LCDM. However, they differ in that factors in the ANOVA are continuous, but the attributes in 

the LCDM are binary. Particularly, the ANOVA model becomes a very similar form to the 

LCDM by dummy-coding two factor variables. Both models predict an item response using a 

linear combination of main effects and interactions.   

 As a general model, the LCDM embraces both noncompensatory models such as the 

DINA, the NIDA, and the reduced NC-RUM and compensatory models such as the C-RUM, the 

DINO, and the NIDO. For example, when main effect terms in the LCDM are disregarded and 

the term estimates are set to 0, the LCDM is same as the DINA. On the contrary, if no interaction 

effects among attributes are assumed, only terms relevant to main effects remain, resulting in 

compensatory RUM (Hartz, 2002).  

G-DINA 

 The G-DINA model is one of general models based on the DINA model. The DINA 

model is the most simple and parsimonious CDA models, requiring only two parameters per 

each item, slip and guess parameters, regardless of the number of attributes involved in item-

solving. The DINA model as a conjunctive model assumes that all required attributes are 

required to answer an item correctly. The lack in at least one attribute drastically decreases the 

probability to answer the item correctly, and produce the same results as the case in which all 

required attributes were not acquired. That is, the DINA model may classify all examinees who 

did not master all the required attributes for item-solving, not considering the degrees of 

deficiency regarding the required attributes and simply classifying all examinees by two groups. 

The G-DINA model addresses this assumption of the DINA model that all kinds of attribute 

mastery patterns except for the case in which all required attributes were mastered by an 
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examinee have the same probability of item success by relaxing the assumption. Specifically, the 

G-DINA model divides the latent attribute groups into 2𝐾𝑖, where 𝐾𝑖
∗ =  ∑ 𝑞𝑗𝑘

𝐾
𝑘=1  is the number 

of attributes involved in item i. Then, the reduced attribute vector consisting of only 𝐾𝑖 attributes 

can be expressed as 𝛼𝑖
∗=(𝛼𝑖1, … 𝛼𝑖𝐾𝑖

∗)′ without considering a full attribute vector, 

α𝑖=(𝛼𝑖1, … 𝛼𝑖𝐾)′. In the G-DINA model, the probability that an examinee will answer an item 

successfully are conditioned on the specific attribute vector, 𝛼𝑖𝑗
∗  , represented by 𝑃(𝑋𝑖 = 1|𝛼𝑖𝑗

∗ ), 

and thus 2𝐾𝑖
∗
parameters need to be estimated for item i.  

 Three different types of link functions for the probability of an item success given 

attribute structure, identity, logit, and log, have been proposed. These link functions can be 

transformed into the DINA model, DINO model, NIDA model, or reduced RUM as special 

cases. All these link functions largely can be divided by two terms regarding the main effects of 

specific attributes and their interactions. Specifically, the identity link function is formulated as 

follow: 

𝑃(𝑋𝑖 = 1|𝛼𝑖𝑗
∗ ) =  𝛿𝑖0 + ∑ 𝛿𝑖𝑘𝛼𝑖𝑘

𝐾𝑖
∗

𝑘=1 +∑ ∑ 𝛿𝑖𝑘𝑘′𝛼𝑖𝑘𝛼𝑖𝑘′… +
𝐾𝑗

∗−1

𝑘=1

𝐾𝑗
∗

𝑘′=𝑘+1

𝛿𝑖12 … 𝐾𝑗
∗ ∏ 𝛼𝑖𝑘

𝐾𝑗
∗

𝑘=1 , 

(2.66) 

where 𝛿𝑖0 represents the intercept of item i, 𝛿𝑖𝑘 is the weight of the main effect due to 𝛼𝑖𝑘, and 

𝛿𝑖𝑘𝑘′ is the weight of the interaction effect due to 𝛼𝑖𝑘 and 𝛼𝑖𝑘′. 𝛿𝑖12 … 𝐾𝑗
∗ is the weight of 

interaction effect due to 𝛼𝑖1 ∗ 𝛼𝑖2 ∗ … ∗ 𝛼𝑖𝐾𝑗
∗. Specifically, the intercept 𝛿𝑖0 indicates the 

probability of a correct item response when any required attributes are not mastered. Next, the 

main effect of 𝛿𝑖𝑘 represents the increased probability by adding each attribute, and the 

interaction effect of 𝛿𝑖𝑘𝑘′  as a first-order interaction represents the changed probability of a 

correct response by interaction of 𝛼𝑘 and 𝛼𝑘′. Lastly, 𝛿𝑖12 … 𝐾𝑗
∗ represent the interaction effect 
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occurred when all required attributes were mastered. The logit link function of the G-DINA 

model provides a similar form of equation as other log-linear CDMs. The logit link is 

represented as below: 

logit[P(𝛼𝑖
∗)] = 𝜆𝑖0 + ∑ 𝜆𝑖𝑘𝛼𝑘

𝐾𝑖
∗

𝑘=1 + ∑ ∑ 𝜆𝑖𝑘𝑘′𝛼𝑘𝛼𝑘′
𝐾𝑖

∗−1

𝑘=1 … +
𝐾𝑖

∗

𝑘′=𝑘+1

𝜆𝑖12…𝐾𝑖
∗ ∏ 𝛼𝑘

𝐾𝑖
∗

𝑘=1 . 

(2.67) 

Next, the log link function is represented as below: 

logP(𝛼𝑖
∗)=𝜐𝑖0 + ∑ 𝑣𝑖𝑘𝛼𝑘

𝐾𝑖
∗

𝑘=1 + ∑ ∑ 𝑣𝑖𝑘𝑘′𝛼𝑘𝛼𝑘′
𝐾𝑖

∗−1

𝑘=1

𝐾𝑖
∗

𝑘′=𝑘+1
… +

𝑣𝑖12…𝐾𝑖
∗ ∏ 𝛼𝑘

𝐾𝑖
∗

𝑘=1 . 

(2.68) 

These three link functions are very similar except for the difference in the way that attribute 

mastery affects the probability of a correct item response (i.e., additive vs. multiplicative 

impact). Regardless of the type of functions, they represent that mastering only a few of the 

required attributes may increase the probability of a correct response. For parameter estimation 

of the G-DINA model, MMLE estimation was developed. For more details on special cases of 

CDMs by the G-DINA model, see de la Torre (2011). 

Measurement of the psychometric properties of subscale scores  

Measurement of Reliability 

 A reliable test allows precise measurement for the construct being measured. There are 

different approaches of defining test reliability across different measurement models. However, 

regardless of types of measurement models, reliability must assess the consistency of 

measurement so that test scores are trustworthy and precise. This section presents how each 

measurement model examines the concept of test reliability.  
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Measurement of Reliability in CTT   

 A test is considered to be reliable if the observed scores and the true scores are highly 

correlated. Therefore, CTT considers the squared correlation between the observed and true 

scores, 𝜌𝑋𝑇
2 , as an index of reliability in which the true scores and the observed scores are 

linearly related. The squared correlation between observed and true score, 𝜌𝑋𝑇
2 , can be also 

presented as the proportion of true score variance to the observed score variance, 
𝜎𝑇

2

𝜎𝑋
2. Also, the 

squared correlations between observed and true score are identical to the correlation between 

observed scores on two parallel tests, as proven in the statement k) in the section 3.1.1.  Thus, 

reliability can be also expressed as the correlation between observed scores from two parallel 

tests, 𝜌𝑋𝑋′. In CTT, parallel tests are assumed to have the same true score (i.e., 𝑇 = 𝑇′) and the 

same error variance (i.e., 𝜎𝐸
2 = 𝜎𝐸′

2 ), and high correlations between two parallel scores can be 

evidence that the scores on a test or on its parallel test are reliable. The reliability can be also 

easily transformed as 1 −
𝜎𝐸

2

𝜎𝑋
2  (i.e., see the equation h) in the section 3.1.1). Note that given the 

same error variances in an examinee group, the size of the reliability depends on the variance of 

observed scores among examinees. The reliability will be large when the observed score variance 

is large, and it will get small when the observed score variance is small. Thus, reliability will be 

estimated more highly for a homogeneous group than for a heterogeneous group. However, 𝜌𝑋𝑇
2  

and 𝜌𝑋𝑋′ are easily unobtainable because true scores are unobservable in general cases and it is 

difficult to create parallel tests.  Therefore, they should be indirectly estimated. There are several 

primary ways for obtaining the reliability coefficients: test-retest reliability, parallel-forms 

reliability, and internal consistency.  
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Test-retest reliability is estimated by correlating two observed scores by administering all 

examinees with the same test twice. If an examinee takes the same test twice and receives the 

same scores in both testings for all examinees, the correlations will be as high as 𝑟𝑡1𝑡2
= 1.0. 

Although this method seems to be reasonable and practically useful, it yields many types of 

carry-over effects. Carry-over effects can occur due to memory, practice, motivation, or 

maturation in cognitive ability, resulting in overestimating or underestimating the reliability.  

A parallel-forms reliability is estimated by correlating an observed score from a test with 

an observed score from its parallel test. Although the high correlation between observed scores 

from two parallel tests means that the score on a test is more reliable, it depends on how parallel 

those two tests are. However, it does not seem possible for tests to be parallel. Instead, they are 

considered to be parallel when test must exhibit equal observed score means, variances, and also 

show similar correlations with other criterion measures. This method may yield better estimates 

than the test-retest reliability because it may reduce carry-over phenomena to some degree by 

removing memory and practice effects.   

Internal consistency measures includes a split-half reliability, Coefficient 𝛼 (i.e., 

Cronbach 𝛼) , and Kuder-Richardson formula 20 (KR20). These methods compute reliability 

coefficients based on a single testing occasion. For example, a split-half reliability coefficient is 

obtained by dividing a test into two parallel parts, and computing the correlation of observed 

scores from two divided parts. Note that this correlation is based on only half of the test. Because 

the reliability based on a shorter test is generally smaller than based on a total test, some 

corrections are needed to estimate the reliability of an entire test. The Spearman-Brown formula 

was developed to correct these reduced reliability estimates due to the changes in test length. 

Two versions of Spearman-Brown formula are written as follows:  
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𝜌𝑋𝑋′ =
2𝜌

𝑌𝑌′

1+𝜌𝑌𝑌′
, and (2.69) 

𝜌𝑋𝑋′ =
𝑁𝜌

𝑌𝑌′

1+(1−𝑁)𝜌𝑌𝑌′
 , 

(2.70) 

where 𝜌𝑋𝑋′ is the corrected reliability based on the entire test, 𝜌𝑌𝑌′ is the reliability based on the 

half test, and N is the number of parallel sections. The first equation is applied only when a test 

measures a split-half reliability, and the second equation can be generalized to the case when 

multiple components are existing for reliability estimation. These formulas can be applied only 

under the assumption that parallel tests are added to form a longer test. Indeed, if a test that is 

added is not parallel, the reliability could decrease. However, a longer test generally tends to 

yield high reliability. It occurs from the fact that true-score variance escalates faster than error 

variance as the number of parallel tests gets bigger. Thus, adding a test that is not parallel with 

the original test may overestimate the actual reliability. Special care is needed when one tries to 

apply the Spearman-Brown formula to estimate reliability. See Allen and Yen (2002) for more 

details. A split-half reliability is available only when split sections are assumed to be parallel. 

However, it is possible to estimate reliability coefficient in a situation when two split sections are 

not parallel. Coefficient 𝛼, also called Cronbach 𝛼, yields a reliability coefficient when the split 

halves essentially 𝜏-equivalent (i.e., tests differ in their true score mean and observed score 

variances). Coefficient 𝛼 for the split haves is formulated as follows: 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝛼 =
2{𝜎𝑋

2 −(𝜎𝑌1
2 +𝜎𝑌2

2 )}

𝜎𝑋
2 =

2{2𝜎𝑌1𝑌2
2 }

𝜎𝑋
2 , (2.71) 

where 𝜎𝑋
2 is the variance of the observed score on the entire test, 𝑋, and 𝜎𝑌1

2  and 𝜎𝑌2

2  are, 

respectively, the variances of the observed scores on split haves, 𝑌1 and 𝑌2. As shown in the 

equation, Coefficient 𝛼 is the proportion of covariance between two split halves to the variance 
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of observed score on the entire test, multiplied by a constant, four. As the covariance between the 

split halves becomes larger, the Coefficient 𝛼 gets larger. The split-half reliability and 

Coefficient 𝛼 have the major advantage of being obtainable through only a single testing 

occasion. However, they may not appropriately estimate reliability when the split haves are not 

parallel or not essentially 𝜏-equivalent. KR 20 is a generalized form of the Coefficient α, in 

which dichotomous items are involved, and formulated as follows: 

𝐾𝑅20 = [
𝑁

𝑁−1
] [

𝜎𝑋
2 −∑ 𝜎𝑌𝑖

2𝑁
𝑖=1

𝜎𝑋
2 ] = [

𝑁

𝑁−1
] [

𝜎𝑋
2 −∑ 𝑝𝑖𝑞𝑖

𝑁
𝑖=1

𝜎𝑋
2 ], and  

𝑞𝑖 = 1 − 𝑝𝑖, 

(2.72) 

where 𝑁 is the number of split tests, 𝜎𝑋
2 is the variance of a total score, and 𝜎𝑌𝑖

2 is the variance of 

the ith split section of a test. When item responses are dichotomous, taking on only 0 or 1, the 

variance is same as the product of the proportion of examinees answering an item correctly (i.e., 

𝑝𝑖) and the proportion of examinees missing an item (i.e., 𝑞𝑖). KR20 estimates reliability by 

dividing a test into more than two sections and correlating observed scores from the multiple 

sections. When correlations among sections or sets of items get are high, the reliability would be 

larger. As a result, KR20 produces higher reliability as the test includes homogeneous items.  

Measurement of Reliability in IRT 

 In IRT, the measurement precision of a test score is determined by the amount of 

information that a test provides, which is the reciprocal of a variance of ability estimates, 

conditioned on 𝜃. Thus, 𝑆𝐸(𝜃) =
1

√𝐼(�̂�)

. Although the standard error of measurement in CTT is 

the same across different score levels, those in IRT vary at different trait levels. Thus, the error 

of measurement in CTT is given as a fixed value, and the size of errors in IRT are expressed by a 

function of 𝜃 fluctuating across different ability levels. An item that is more informative at a 
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specific ability level cannot be as informative at another level. Items are generally more 

informative when item discrimination, 𝛼, is high, item guessing, 𝛾, is low, and item difficulty 

parameter, 𝛽, is close to the specific 𝜃 level. The item information functions for the 1-PL, 2-PL, 

and 3-PL are shown in the Table 2.2 below. 

Table 2. 2. Item Information Functions for 1PL, 2PL, and 3PL IRT Models 

Model 1-PL 2-PL 3-PL 

𝐼(𝜃) 𝐷𝑝𝑖(𝜃)𝑞𝑖(𝜃) 𝐷𝛼𝑖
2𝑝𝑖(𝜃)𝑞𝑖(𝜃) 𝐷𝛼2 [

𝑞𝑖(𝜃)

𝑝𝑖(𝜃)
] [

𝑝𝑖(𝜃) − 𝛾2

1 − 𝛾2
] 

 

Test information function is defined by adding up all relevant item information functions 

as follows: 

𝑇(𝜃) = ∑ 𝐼𝑖(𝜃)𝑁
𝑖=1 , (2.73) 

where 𝑁 is the number of items and 𝐼𝑖(𝜃) is the amount of information for item i at the level of 

𝜃. Test information will increase as the number of items in a test increases, implying that a test 

with a high length would yield better measurement precision. In addition, as items in the test 

have better discriminating power among examinee and their difficulties are at the same or similar 

levels where examinees are located, the information function would be high and provide more 

precise measurement.  

 Assuming the normality of their distribution, ability estimates are distributed with the 

95% confidence interval ranging from 𝜃 − 1.96𝑆𝐸 to 𝜃 + 1.96𝑆𝐸. Given 𝜃, as information 

increases, the standard errors will be decreased, and the 95% confidence interval will be smaller. 

Hence, the accuracy of the estimate is increased. On the other hand, as information decreases, the 

standard errors will be increased, and the 95% confidence interval will be larger. Hence, the 
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accuracy of the estimate is decreased. This test information function can be used to measure the 

reliability of a test, but the information is given conditional on 𝜃. That is, some test would be 

more precise for high trait levels rather than other levels and other would be more precise for low 

trait levels.  

In IRT, small error of estimates indicates the accuracy of estimation, and improved 

accuracy of estimates increase the reliability of test scores. Andrich (1988) suggested that 

reliability can be computed for the sample using the average value of squared standard errors and 

the observed score variance (i.e., the variance of trait level estimates). Specifically, he 

formulated the reliability as shown below: 

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  1 −
∑ 𝜎𝑒𝑟𝑟𝑜𝑟

2𝑁
𝑛=1

𝑁𝜎𝜃
2 ,  (2.73) 

where N is the number of person, 𝜎𝑒𝑟𝑟𝑜𝑟
2  is the squared standard errors of estimates, and 𝜎𝜃

2 is the 

variance of estimates across person. As the standard error of estimates is smaller, the reliability is 

higher.   

Measurement of Reliability in CDA  

The reliability of attribute estimates approaches two different questions: 1) if estimated 

attribute profiles and true attribute profiles correspond, and 2) two attribute profiles that are 

obtained from a test administered at two different time points are consistent. Although the 

measurement of the reliability is an important aspect of a test, the studies of reliability in 

diagnostic assessment are very rare. Henson, Roussos, and Templin (2004) measured reliability 

using multiple datasets simulated from the posterior distributions from an analysis. Specifically, 

they simulated datasets from the calibrated model, and estimated attribute profiles. These 

estimated attribute profiles were compared with the known true attribute profile. Otherwise, 
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estimates from two simulated datasets were compared with regard to the proportion that an 

examinee is classified into same attribute patterns. Templin and Bradshaw (2013) also discussed 

how reliability based on attribute estimates from diagnostic models can be measured. They also 

examined reliability using hypothetically repeated observations. Repeated observations were 

drawn from an acquired posterior distribution of a marginal attribute probability. Given two 

hypothetically identical tests, the marginal attribute probabilities from the two occasions should 

be hypothetically the same. Reliability is attainable by observing the difference of the 

probabilities that an examinee would get the same attribute mastery pattern estimates from the 

two occasions.  

Measurement of Validity 

The traditional concept of validity has been changed, and the newly defined concept of 

validity demands the establishment of the evidence of validity in items and the test as well as 

content validity and criterion-related validity. This section describes the changes in the concept 

of validity over several decades, and how a test can be developed to be valid in the perspective of 

the modern concept of validity. 

Changes in the Concept of Validity 

Cronbach and Meehl (1955) originally framed the concept of construct as “some 

postulated attribute of people assumed to be reflected in test performance” and argued that 

identifying the structural network through relationships between a test and other measures (i.e., 

nomothetic span) is the most vital consideration for construct validation. However, Embretson 

(1983) argued that construct validity must be also proven with direct evidence related to whether 

a test should measure what it intends to measure. Thus, she suggested that construct 

representation be considered another crucial component for demonstrating construct validity. 
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Construct representation was defined as a process of identifying the cognitive processes, 

strategies, and knowledge structure that underlie task or item performance. While the nomothetic 

span accounts for the communalities of all possible components between a test and other 

measures, construct representation focuses on a more explicit relationship between theoretical 

mechanisms (constructs) and task performance by modeling the impact of the constructs on 

performance. Thus, the process of the construct representation requires knowledge from 

cognitive psychology that can provide theoretical rationale on cognitive processes (e.g., working 

memory, logic), strategies, and knowledge structure related to a construct. Subsequently, 

Messick (1989) reformulated the traditional concept of validity by Cronbach and Meehl (1955) 

and emphasized the importance of the substantive evidence in validity. The traditional concept of 

validity is mainly divided it into three categories (i.e., content validity, criterion-related validity, 

and construct validity), but Messick (1989) redefined the traditional concept of validity by 

unifying the three categories to include six aspects of evidence of validity (i.e., content aspect, 

substantive aspect, structural aspect, generalizability aspect, external aspect, and consequential 

aspect). Then, he claimed that these all six aspects individually function in order to establish and 

support “construct validity” to some degree, defining construct validity as “an integrated 

evaluative judgment of the degree to which empirical evidence and theoretical rationales support 

the adequacy and appropriateness of inferences and actions based on test scores or other modes 

of assessment.”  However, above all things, he emphasized that understanding the substantive 

structure underlying test performance should be a key factor for construct validity. These 

changes in the concept of validity suggested by Embretson (1983) and Messick (1989) 

highlighted the role of cognitive psychology in the validation procedure, test design, and test 

interpretation, attracting the interest and attention of many researchers. 
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Development of New Test Design Systems 

 Unintended constructs in a test can decrease test validity because the test does not 

measure the intended constructs. Once a test is developed, it seems of importance to ensure that 

test items are designed based on intended constructs.  In such meaning, the following two test 

design systems aid in the establishment of test validity.  

Cognitive Design System  

Cognitive design system (CDS; Embretson, 1998) is a test development framework that 

centralizes cognitive theory in a test design. CDS is processed within two separate frameworks: 

Conceptual framework vs. Procedural framework. The conceptual framework deals with the 

expanded concept of construct validation, and the procedural framework explains a series of 

stages in which cognitive theory is grafted.  

The conceptual framework focuses on the expanded concept of construct validation 

including both nomothetic span and construct representation. Nomothetic span and construct 

representation concerns different aspects of test scores (see Embretson, 1983). Specifically, 

nomothetic span concerns the significance of test scores through empirical relationship among 

measures, whereas construct representation primarily concerns their meaning by identifying 

underlying cognitive constructs for item solving. Because in construct representation phase, the 

impacts of cognitive variables involved in items on item properties are revealed, it is possible to 

freely manipulate item properties by including or removing specific cognitive variables. Also, 

although nomothetic span does not seem to provide direct rationale for the meaning of test 

scores, it contributes to establishing the meaning of test scores by the nomological network to 

some level. Thus, the conceptual framework emphasizes considering both nomothetic span and 

construct representation in designing CDA. 
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The procedural framework specifies the overall development procedures of CDA, 

focusing on the role of cognitive psychology in each stage. This framework consists of seven 

stages involving a) specifying measurement goals, b) identifying design features in the task 

domains, c) developing a cognitive model, d) generating items, e) evaluating models, f) creating 

an item bank by cognitive complexity, and g) test validation.  

Specifying the goals of measurement refers to describing the purpose of measurement. 

The purpose includes exactly what specific cognitive variables would be measured and how the 

relationships among the variables look like. The next stage, identifying design features, concern 

the decision of item features (e.g., mode, format, conditions, etc.). Because item features can 

affect cognitive processes, strategies, and knowledge structures for item-solving, knowledge for 

detecting these item features influencing item-solving is required. Then, cognitive theory models 

are determined and may be applied to available items. Cognitive models provide theory or 

knowledge on the processes underlying item solving. They may be obtained from the literature 

review of cognitive psychology or by altering the existing cognitive theory fitting the item type 

chosen. The chosen models are evaluated with regard to their plausibility with available test 

items using the overall fit test of a mathematical model. At this point, the impact of each 

stimulus feature on item properties can be examined as well. Based on the evaluation of the 

cognitive model, an item is generated through determination of regarding whether specific 

features would be included or not. Generating items requires work for operationalizing cognitive 

processing variables into stimulus features involving items as identifying item structures and 

substitution rules. Then, cognitive models are again tested with data from items developed. In 

this stage, the impact of cognitive variables on item discrimination, item difficulty, or response 

time is predicted. The results are utilized in item banking. An item bank can be easily created by 
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differing the cognitive processing demand across items. For example, if multiple stimulus 

features demanding similar or equal cognitive process are found, using many stimulus features 

within the same structure would not largely change item properties. In the stage of validation, 

nomothetic span is established. Nomothetic span must be supported by evidence of construct 

representation which is obtained in the previous stages. In this procedure, correlations with other 

tests are collected to ensure that the new test is valid. It should be confirmed that measures being 

compared represent similar cognitive processing demand. The applications of CDS in assessment 

development are illustrated in the development of the abstract reasoning test (Embretson, 1998), 

the spatial learning ability test (SLAT; Embretson, 1994), and the standardized mathematics 

achievement tests for middle school students (Embretson, 2014).  

Evidence Centered Design 

Similar to the CDS, evidence centered design (ECD; Mislevy, 1994; Mislevy, Almond, & 

Steinberg, 2003) provides the design framework for cognitive assessment development. The 

ECD focuses on maximally accumulating evidence to help inferences about an individual. 

Specifically, the goal of the ECD is to help test developers in designing a test, creating items, and 

reporting scores with the purpose of the tests so that they can appropriately make reasoning of 

what an individual really knows, can achieve, and can do in the real life. The ECD specifies five 

different layers pertaining to test design, task development, and score reporting: 1) domain 

analysis, 2) domain modeling, 3) conceptual assessment framework, 4) assessment 

implementation, and 5) assessment delivery. The first two layers are relevant to test designs, and 

the other three layers are related to task development and scoring or score reporting.  

The domain analysis layer concerns the comprehensive investigation of contents or 

subjects to be assessed. In this layer, information of the concept, terminology, and knowledge 
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related to a domain, and information of how the domain is applied in a real life are identified. 

The domain modeling layer organizes information from the domain analysis and creates 

assessment arguments in narrative form. Assessment argument includes three components: 1) the 

claim that one wants to make about an individual, 2) the data that are evidence that can support 

these claims, and 3) the warrant that is rationale of how particular data can be connected with 

particular claims. Domain experts, teachers, and assessment specialists cooperate to find specific 

attributes seen as claims, data, and warrant components. Next, the conceptual assessment 

framework layer concerns technical specification for designing a task. In this layer, various 

components are formalized in terms of student model, task model, and evidence model. The 

student model, also called the proficiency model, specifies what an assessment designer is trying 

to measure and make inference about an individual. The student model identifies variables 

reflecting knowledge, skills, or abilities that an individual might have. The task model concerns 

the forms in which an inference of a student performance (i.e., what a student say, do, or make) 

would be made and describes the important features of task materials and the presentation 

methods. The evidence model focuses on verifying the link of the task model and the student 

model. The evidence model is processed by two reasoning steps: Evaluation and measurement 

modeling. Evaluation involves how one identifies and evaluates student performance. For 

example, whether automated scoring procedures would be used or whether other methods should 

be considered are determined in this step. The measurement modeling steps concern the 

considerations of measurement models for dealing with task responses.  Next, the assessment 

implementation layer is much related to item writing and the assembly of test forms in traditional 

test development. Although tasks are generated based on the task model in the conceptual 

assessment framework layer, they require additional analysis and preparation for 
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implementation. Observing model fits with pilot test data is also an activity relevant to this layer. 

Lastly, the assessment delivery layer concerns test administration, evaluation of test 

performance, and feedback reports.  The Cisco System’s Networking Performance Skill System 

(NetPass; Behrens, Mislevy, Bauer, Williamson, & Levy, 2004) used ECD for designing 

simulation-based learning and assessment for training engineers.  
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CHAPTER 3 

REAL-WORLD DATA STUDY 

 

 Real-world data from math achievement tests were used to obtain subscale scores based 

on different psychometric methods. The first section includes detailed information about 

examinees and test material from which the real-world data are drawn. Next, subscale scores 

based on different methods are computed and their reliabilites are compared among subscale 

scores. Results are interpreted and summarized.  

Method 

Examinees 

 Approximately, 5,000 examinee response data were randomly sampled from 33,000 

Grade 8 students in a Midwestern state who administered a math test. All responses were 

recoded into two categories, zero for wrong answers and one for right answers.  

Testing Materials 

 The Grade 8 math achievement tests were designed for the purpose of measuring 

examinees’ general math skills and evaluating students based on their achievement goal in the 

math area. The math test consists of 71 items with four answer options. Items were originally 

written based on a test blueprint from the state, in which mathematical contents, skills, or 

knowledge that Grade 8 students have to accomplish are specified. The test blueprint represents a 

hierarchical structure in which three different levels exist: Standards, Benchmarks, and 

Indicators. Figure 3.1 illustrates the hierarchical structure of Standards, Benchmarks, and 

Indicators. The four Standards represent Number and Computation, Algebra, Geometry, and 
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Data. Each standard includes two or more specific benchmarks; in turn, each benchmark 

involves one or two indicator skills, although they are not specified in the figure. For the current 

study, only the four Standards were employed to define the subscales. Thus, four subscale scores 

were available. The test has 23 Number and Computation, 17 Algebra, 17 Geometry, and 14 

Data items with a total of 71 items. Each item was relevant to one out of four standards.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Grade 8 Math Test Blueprint with Hierarchical Structure 

Real-World Data Analysis and Results  

The current study employs seven different psychometric models based on CTT and IRT 

scaling frameworks. CTT-based methods include raw subscale scores, Kelley’s regressed 

method, Holland and Hoskens’ method, and Haberman’s weighted average method, and IRT-

based methods include unidimensional IRT model, the objective performance index (OPI), and 

multidimensional 2PL model. For understanding data structure, descriptive statistics and 
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reliability values are computed with total items and subscale items. Then, correlations between 

observed subscale scores and observed total scores are calculated. CTT-based subscale scores are 

computed and compared regarding the reliability of estimation with the RMSE-MBs and the 

PRMSE-MBs. IRT-based subscale scores are first compared in terms of goodness-of-fit index 

for evaluating estimation accuracy. In all procedures, computer software of SPSS 22.0 and 

FlexMirt Version 2 (Cai, 2013) are used.  

Descriptive Statistics 

Table 3.1 presents the means, the standard deviations, KR-20, and correlations between 

observed subscale scores and the total score. All statistics were based on the item responses of 

4,959 examinee. The total number of items was 71, and the number of items on each subscale, 

Number, Algebra, Geometry, and Data, was 23, 17, 17, and 14, respectively. The average 

proportion passing for the 71 items was 0.71, showing that items were moderately easy. The 

average proportion passing for the standards was 0.69 for the Number subscale, 0.74 for the 

Algebra subscale, 0.71 for the Geometry subscale, and 0.69 for the Data subscale. From the 

results, students seem to answer Algebra items somewhat more accurately than items in the other 

standards. The standard deviation was the largest in the Number subscale which had the highest 

number of items, while the smallest standard deviation was for the Data subscale in which the 

least number of items are included, as expected. The reliabilities of subscale scores and total 

score were computed by KR-20 index.  Specifically, reliability based on all 71 items was 0.92, 

while those based on subscales ranged between 0.74 and 0.76. Although the sizes of subscale 

score reliabilities are still acceptable (i.e., reliable), they dropped by a considerable degree 

compared to the total items. The correlations of subscale scores with total scores were very high, 



74 

 

ranging from r = 0.84 to r = 0.90. From these results, it is possible that additional information 

from total score can yield better estimates for each subscale score.  

Table 3. 1. Summary Statistics for a Math Test Scores Based on the CTT Model 

Subscale # of items Mean(p) SD KR-20 
Correlation with 

total score 

Number 23 15.76 (0.69) 4.06 0.75 0.90 

Algebra 17 12.68 (0.74) 3.27 0.76 0.85 

Geometry 17 12.04(0.71) 3.46 0.76 0.89 

Data 14 9.69(0.69) 3.02 0.74 0.84 

Total 71 50.17(0.71) 12.07 0.92 1.00 

 

Similar statistical results were obtained from subscale 𝜃s. Table 3.2 presents the means 

and the standard deviations for scale subscaores, empirical reliability, and the correlations among 

subscale score 𝜃s. These subscale scores 𝜃s were estimated based on the responses of the 

corresponding subscale items. The means of the subscale 𝜃s were close to zero, and the standard 

deviations were ranged between 0.29 and 0.51. The standard deviation of 𝜃s was the smallest in 

the total test. As expected, the empirical reliability was the highest for the whole test, and was 

reduced for the subscale scores 𝜃s. Correlations between subscale scores and total scores were 

usually high, similar to the results of the CTT based scores. However, the number subscale 

scores showed different patterns: high correlations based on the CTT model and moderate 

correlations based on the IRT model. 

Table 3.2. Summary Statistics for a Math Test Scores on the IRT Model 

Subscale # of items Mean(p) SD 
Empirical 

reliability 

Correlation 

between 𝜃s 

Number 23 0.02 0.46 0.78 0.76 

Algebra 17 0.00 0.48 0.76 0.83 

Geometry 17 -0.01 0.46 0.78 0.87 

Data 14 0.00 0.51 0.74 0.81 

Total 71 0.09 0.29 0.92 1.00 
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Correlation Structures 

Correlations among subscale scores can be examined. If correlations among subscale 

scores are too high, it may not be reasonable to yield and report subscale scores, because it 

cannot provide additional information over a total test score. Table 3.3 presents the correlations 

among subscale scores for raw observed subscale scores based on CTT. Correlations between 

subscale scores ranged from 0.59 to 0.71, presenting moderately high correlations.   

Table 3.3. Correlations among Raw Subscale Scores 

 
Subscale 

Number Algebra Geometry Data 

Number 1.00    

Algebra 0.66 1.00   

Geometry 0.71 0.71 1.00  

Data 0.70 0.59 0.69 1.00 

Similar results were found in the correlations among Subscale scores 𝜃s. In specific, 

correlations between subscale scores 𝜃s ranged between 0.53 and 0.69, which are rather smaller 

than those among raw subscale scores. The correlations structure among subscale 𝜃s are shown 

in Table 3.4.  

Table 3.4. Correlations among Subscale Score 𝜽s from the Unidimensional 2PL model 

 
Subscale 

Number Algebra Geometry Data 

Number 1.00    

Algebra 0.53 1.00   

Geometry 0.57 0.69 1.00  

Data 0.63 0.57 0.64 1.00 

 

Subscale score Estimates and their Reliability 

CTT-based Subscale Scores 
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Various psychometric methods for overcoming the reduced reliability in the shorter 

length subtests were introduced in the previous sections. For computing the subscale scores in 

the math achievement subscales, three CTT-based methods, using the regression technique, were 

employed. These methods approximate true subscale scores by using one of the following 

predictors: 1) the observed subscale score, 2) the observed total score, and 3) the combination of 

the observed subscale score and the total score.  

In these methods, regression coefficients and intercepts are calculated using information 

of the means, the SDs, the reliability measures, the correlations of observed subscale scores and 

observed total scores). Then, resulting regression equations are used to compute subscale scores. 

See Chapter 2 for the detailed information about procedures of computing the regression 

coefficient. Table 3.5 presents descriptive statistics for the raw subscale scores and the estimated 

true subscale scores from math achievement data. The means of all the raw subscale scores and 

the estimated true subscale scores remain equal, but the standard deviations differ across 

subscale scores. In particular, raw subscale scores had the largest standard deviations, and the 

true subscale scores approximated by corresponding observed subscale scores had the smallest 

standard deviations. Using the regression technique for approximating the true subscale scores 

general generally decreased the variability among examinee subscale scores.  
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Each subscale scoring method differs in the degree to which it increases the reliability of 

subscale scores. Table 3.6 presents the standard error of measurement from the observed 

subscale scores and the amount of errors (e.g., RMSE-MB) from approximations for true 

subscale scores using different predictors. The root mean squared error (RMSE-MB) is obtained 

by the average of the squared difference of the observed subscale scores and the predicted 

subscale scores. See Table 2.1 in Chapter 2 for the details of the RMSE-MB computations 

Table 3.6. Root Mean Squared Errors for Approximations for Estimated True Subscale Scores 

Subscale 𝜎(𝑒𝑥) 
RMSE − MB𝐾𝑒𝑙𝑙𝑒𝑦  

𝜎(𝑅(𝜏𝑠|𝑆𝑠) 

RMSE − MB𝐻𝐻 

𝜎(𝑅(𝜏𝑠|𝑆𝑇) 

RMSE − MB𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

𝜎(𝑅(𝜏𝑠|𝑆𝑠, 𝑆𝑇) 

Number 2.02 1.75 1.22 0.84 

Algebra 1.62 1.41 1.27 1.01 

Geometry 1.69 1.47 1.03 0.69 

Data 1.54 1.32 1.10 0.83 

 

The terms used in the table above, 𝑆𝑠 and 𝑆𝑇 are the observed subscale score and the observed 

total score from the math data, respectively, and 𝜏𝑠 is the estimated true subscale score. 𝜎(𝑒𝑥) is 

the term of the standard error of measurement for raw subscale scores. In turn, 𝜎(𝑅(𝜏𝑠|𝑆𝑠), 

𝜎(𝑅(𝜏𝑠|𝑆𝑇), and 𝜎(𝑅(𝜏𝑠|𝑆𝑠, 𝑆𝑇) are, respectively, the RMSE-MB values from the approximation 

of true subscale scores by predictors: observed subscale scores, observed total scores, and the 

combination of observed subscale scores and observed total scores. The standard error of 

measurements for raw subscale scores were always larger than the RMSE-MB values from 

approximations by predictors, regardless of the kinds of predictors. Number subscale scores 

showed the highest standard error of measurement, and Data subscale scores scores showed the 

lowest standard error of measurement. The smaller RMSE-MB was obtained when the true 

subscale scores were approximated by the observed total score rather than the observed subscale 

scores or the combination of observed subscale scores and observed total scores. The largest 
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decrease in errors was found in Number, and the smallest decrease in errors was found in 

Algebra. In the meantime, using the linear regression of the true subscale score on the observed 

subscale score and the combination with the observed total score produced only a slight 

reduction in errors, in which these predictors led reduction in errors to the similar degree. 

Generally, subscale scores obtained by regression techniques seem to be stable and accurate than 

raw subscale scores.  

 Table 3.7 presents the proportional reduction in MSE from different subscale scores. The 

PRMSE-MBs were used as an indicator for the amount of added-value. As described earlier, the 

PRMSE-MB measures the proportion of MSE reduced by using a predictor relative to a standard 

value. Here, the standard value is the MSE of mean observed subscale scores, which is obtained 

by approximating the true subscale score by the expected value of observed subscale scores 

across examinees approximates the true subscale score. The higher the PRMSE-MB, the more 

added-value the corresponding subscale scores have. Results show that PRMSE-MB values were 

largest in Haberman subscale scores, and smallest in Kelley’s regressed subscale scores. See 

Table 2.1 in Chapter 2 for more detailed descriptions of PRMSE-MB computations 

Table 3.7. Proportional Reduction in Mean Squared Errors for Four Math Subscale Scores  

Subscale 
𝑃𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 

𝜎(𝑅(𝜏𝑠|𝑆𝑠) 

𝑃𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝐻 

𝜎(𝑅(𝜏𝑠|𝑆𝑇) 

𝑃𝑅𝑀𝑆 − 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

𝜎(𝑅(𝜏𝑠|𝑆𝑠, 𝑆𝑇) 

Number 0.75 0.87 0.88 

Algebra 0.76 0.80 0.85 

Geometry 0.76 0.88 0.89 

Data 0.74 0.82 0.85 

 

Table 3.8 shows the partial regression coefficients used in Haberman’s method.  

𝛽(𝜏𝑠|𝑆𝑠 ∙ 𝑆𝑇) is the partial regression coefficient of the true subscale score on the observed 

subscale score given the observed total score, and 𝛽(𝜏𝑠|𝑆𝑇 ∙ 𝑆𝑠) is the partial regression of the 
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true subscale score on the observed total score given the observed subscale score. These indicate 

the relative strength of weights by using predictors of the observed total score or the observed 

subscale score. In the results, the observed total score seems to have more influence on 

estimating the true subscale score than the observed subscale scores. A linear regression of true 

subscale score on both observed subscale score and observed total score has high weight of the 

total score and seems to provide better predictor of true subscale score than observed subscale 

scores. 

Table 3.8. Partial Correlation Coefficients of Four Math Subscales 

Subscale 𝛽(𝜏𝑠|𝑆𝑠 ∙ 𝑆𝑇) 𝛽(𝜏𝑠|𝑆𝑇 ∙ 𝑆𝑠) 

Number 0.12 0.24 

Algebra 0.34 0.13 

Geometry 0.15 0.20 

Data 0.29 0.13 

IRT-based subscale scores 

Prior to the subscale scoring, overall fits for multiple models were compared. The given 

dataset was analyzed using multiple IRT models: unidimensional 1PL, 2PL, 3PL, and the 

multidimensional 2PL model. In all models, the MML-EM method for item parameters and the 

EAP method for person parameter estimation were used, with fifteen quadrature points. Table 

3.9 presents the overall goodness-of-fit statistics, Akaike Information Criterion (AIC) and the -

2loglikelihood (-2lnL). In both indices, the smaller the values, the better fit the model. The 

statistical significance of fit difference can be also examined through the -2lnL difference 

because the difference of -2lnL is considered to be asymptotically distributed chi-square with the 

difference of the degrees of freedom.  From the table below, the -2lnL values were obtained 

through the comparisons with 1PLM. The best fitting model was the 3PLM with ∆-2lnL of 

4611.86. The multidimensional 2PLM showed better fit than the 1PLM, but poorer fit than the 
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2PLM and the 3PLM, supporting the unidimensionality of math data. From the results, applying 

multidimensional 2PLM to the math data seems to be inappropriate.  

Table 3.9. Overall Goodness-of-Fit Comparison among IRT Models from a Math Test 

Type of Models 

(# of parameter) 
AIC -2lnL ∆-2lnL Comparing models 

1PL (72) 370,757.3 370,613.3   

2PL (142) 369,786.7 369,502.7 1629.0* 1PLvs.2PL 

3PL (213) 366,427.4 366,001.4 2982.9* 2PLvs.3PL 

MIRT-2PL (148) 369,273.8 368,977.8 6.5 2PLvs.MIRT-2PL 

Summary and Discussion 

The structure of data based on raw subscale scores was examined. The reliabilities of raw 

subscale scores were quite smaller than that of the total test score. Averaged correlation between 

subscale scores and total test scores was 0.82, indicating the possibility that subscales and total 

test may measure quite similar constructs. From the comparisons of RMSE-MBs of subscale 

scores, all three methods, Kelley’s, HH’s, and Haberman’s methods, yielded lower RMSE-MBs 

than raw subscale scores, and the lowest RMSE-MBs were found in Haberman’s method, having 

the highest accuracy of true subscale score prediction.  

However, PRMSE-MBs from the Haberman’s method showed that subscale scores did 

not provide much improvement relative to the PRMSE-MBs from the HH method, indicating 

that subscale scores from the Haberman’s method do not give added-value over the total scores. 

The results from IRT-based subscale scores also supported the CTT-based results. In order to 

determine whether subscale scores are valid for reporting, dimensionality of data was examined 

through the comparisons of overall goodness-of-fit from unidimensional models and a 

multidimensional 2PL model. The results of ∆-2lnL showed that the multidimensional 2PL 

model did not show significantly better fit than the unidimensional 2PL. That is, the 
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multidimensionality of the math test was not supported, indicating that subscale scores are not 

appropriate for reporting.  
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CHAPTER 4 

SIMULATION DATA STUDY 

 

 This chapter begins with the description of simulation procedures. Simulated data, varied 

in 1) subscale lengths, 2) the amount of subscale consistency, 3) between-subscales correlations, 

and 4) test types, are used to estimate subscale scores, using seven different psychometric 

methods. The resulting scores are evaluated with respect to their accuracy based on several 

criteria. The criteria include measurement-based root mean square error (RMSE-MB; Haberman, 

2008), simulation-based root mean square error (RMSE-SB), and correlation between estimated 

and true subscale scores.   

Simulation Procedures 

Data Generation 

Data were simulated with various conditions under the multidimensional 2PL IRT model 

(MIRT-2PL) that is one of the most complex models in the study, using a SAS 9.4 macro.  The 

number of subscales in all tests was fixed to four. In the MIRT model, simple structures were 

assumed; thus, each item was loaded on a single dimension. True trait level scores, 𝜃s, for four 

dimensions were generated for 3,000 samples. The scale of measurement for the MIRT models 

was set by fixing the means and the variances of 𝜃s as 0 and 1, respectively. Four subscales 

scores (i.e., the 𝜃s for the four dimensions) were distributed from a multinormal population 

distribution with the mean of (0, 0, 0, 0) and the variance of (1, 1, 1, 1), 𝜃𝑖~𝑀𝑉𝑁(0, ∑). The off-

diagonal elements in the variance-covariance matrix were set to vary, depending on the 

correlations defined in the specific condition.   
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Varied Simulation Conditions 

Simulation conditions were varied in subscale lengths, test types, between-subscales 

correlations, and subscale consistency. The simulation was designed to meet several goals of the 

study: 1) to understand the impacts of subscale length, correlation among subscales, subscale 

consistency, and item difficulty level on subscale score estimation, and 2) to demonstrate the 

accuracy of subscale score estimation under various data conditions based on various 

psychometric models. 

First, the Subscale Length condition was defined by the number of items within each 

subscale. Tests with 10 and 20 items per subscale were simulated. Tests with 10 items within a 

subscale, I = 10, are generally expected to be less reliable or less accurate than those with 20 

items, I = 20, although the impact of the subscale length may differ somewhat across different 

subscale scoring methods.  

Second, the Test Type condition was defined by item difficulty values that are typical of 

ability vs. achievement tests. By considering practical testing situations in which achievement 

tests are relatively easy and ability tests are difficult, two different item difficulty sets were 

generated. Specifically, items in the ability test type were randomly generated from a normal 

distribution of ~N (0.0, 0.5), which correspond to a mean p-value of 0.5, and those in the 

achievement test type were obtained from ~N (-1.2, 0.5), which correspond to a mean p-value of 

0.7. 

Third, the Between-Subscales Correlation condition was defined by the correlations 

between subscale scores in a test. Three different between-subscales correlation conditions of r = 

[0.3, 0.6, 0.9] were simulated, which, respectively, correspond to low, medium, and high 
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correlation level. Correlations between any two subscales within a test were set to be equal as 

below: 

∑ = [

13.03.03.0

3.013.03.0

3.03.013.0

3.03.03.01

],  ∑ = [

16.06.06.0

6.016.06.0

6.06.016.0

6.06.06.01

],  ∑ = [

19.09.09.0

9.019.09.0

9.09.019.0

9.09.09.01

]. 

 Fourth, the Subscale Consistency condition was defined by consistency of responses 

within a subscale. High subscale consistency indicates that there are high correlations among 

item responses within the subscale. On the other hand, low subscale consistency indicates low 

correlations among items within the subscale. Two different subscale consistency conditions, 

high vs. low, were simulated. Because subscale consistency is manipulable by the amount of 

item discrimination, high and low subscale consistency conditions were generated by simulating 

items with high and low discrimination values, respectively. Specifically, high item 

discrimination value sets were generated from a log normal distribution of ~lnN (0.0, 0.03), 

whose item discrimination value mean was 1.2.  In turn, low discrimination value sets were 

generated from ~lnN (-0.2, 0.08), and their mean discrimination was 0.8. High subscale 

consistency is expected to increase the score reliability in a subscale, whereas low subscale 

consistency is expected to decrease the subscale score reliability.  

These four simulation conditions described above yield a total of 24 conditions (i.e., 2 

Subscale Length x 2 Test Type x 3 Between-Subscales Correlation x 2 Subscale Consistency = 

24). Each condition was repeated with 100 replications. Thus, a total of 2,400 datasets were 

generated. Table 4.1 below presents all possible study conditions.  

Table 4.1. Simulation Study Conditions  

Test type Subscale length 
Subscale 

consistency 

Between-subscales correlation 

r=0.3 r=0.6 r=0.9 

Achievement  I=10 High x x x 
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Low x x x 

I=20 
High x x x 

Low x x x 

Ability 

I=10 
High x x x 

Low x x x 

I=20  
High x x x 

Low x x x 

Analysis of Simulated Data 

 Simulated data were used to estimate subscale scores. For the computation of the 

subscale scores, seven subscale scoring methods, including raw subscale scoring, Kelley’s, 

Holland-Hoskens’, and Haberman’s regressed subscale scoring, unidimensional 2PL, 

multidimensional 2PL, and OPI, were used. The accuracy of subscale scores from each method 

was evaluated according to the root mean square errors (RMSE) and correlations of estimated 

subscale scores with their true scores. Two different types of RMSE values, one based on true 

scores and the other based on observed scores, are available. Throughout the paper, the RMSEs 

based on true scores in the simulation are termed as RMSE-SB, and the RMSEs based on 

observed scores are termed as RMSE-MB.  

RMSE-SB can be defined as rooted mean of squared deviations between estimated scores 

and their true scores. RMSE-SB is the square root of the averaged squared deviations between 

estimated and true scores across a sample. The equation of RMSE-SB for subscale j can be 

written as follows:   

 𝑅𝑀𝑆𝐸 − 𝑆𝐵𝑗 = √
∑ (𝜃𝑖𝑗−𝜃𝑖𝑗

′ )2𝑁
𝑛=1

𝑁
 , (4.1) 

where N is the total number of examinees, 𝜃𝑖𝑗 and 𝜃𝑖𝑗
′  are, respectively, the true trait score and 

the estimated score in subscale j of examinee i. 
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RMSE-MB is a method of evaluating the reliability of subscale scores in CTT methods 

that Haberman (2008) suggested. It is available by obtaining the deviations between the observed 

subscale scores and the estimated subscale scores from a model. See Chapter 2 for more details.  

Results of Simulated Data 

Descriptive Statistics on Simulations  

 Descriptives on the simulation were computed for two reasons.  First, the simulations 

were analyzed to determine the adequacy of the parameter specifications, such as having the 

predicted impact on descriptive statistics.  Second, the simulations were analyzed to determine 

the plausibility of the overall properties of a test based on the specifications within each 

condition.  The results will be presented in two sections: true item and person parameters, and 

summary statistics of simulated item responses. 

True Item and Person Parameters 

Item and person parameters were randomly sampled from a specified distribution, as 

described above. Table 4.2 below shows the resulting means and standard deviations of true item 

and true person parameters of datasets under 24 different conditions (i.e., 100 datasets for each 

condition). All means and standard deviations were averaged over 100 replication data. In 

Achievement Test Type condition, the means of item difficulty values were mostly -0.90, 

indicating that item difficulties are set to be easy, as expected. In turn, in Ability Test Type 

condition, item difficulty means were -0.01, which is somewhat higher than those in achievement 

test type condition. The standard deviations of item difficulty were around 0.50 across all test 

type conditions. Also, the means of item discrimination values were 1.20 in the High Subscale 

Consistency condition, and 0.80 in Low Subscale Consistency condition, as expected. Their 
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standard values were approximately 0.1, showing that discrimination values were generated in a 

narrow range, as intended. Each Subscale Length condition was represented in the simulated 

data, as well.  

Table 4.2. Means and Standard Deviations for True Item Parameters of Simulated Data 

Data condition 
IRT Item parameters 

𝛼 𝛽 

Test type Subscale length 
Subscale 

consistency 

Correlations 

between 𝜃s 
Mean SD mean SD 

Achievement 

I=10 

High 

0.3 1.20 0.10 -0.90 0.50 

0.6 1.20 0.10 -0.90 0.50 

0.9 1.20 0.10 -0.89 0.50 

Low 

0.3 0.80 0.08 -0.90 0.50 

0.6 0.80 0.08 -0.90 0.50 

0.9 0.80 0.08 -0.90 0.50 

I=20 

High 

0.3 1.20 0.10 -0.90 0.50 

0.6 1.20 0.10 -0.90 0.51 

0.9 1.20 0.10 -0.90 0.50 

Low 

0.3 0.80 0.08 -0.90 0.50 

0.6 0.80 0.08 -0.90 0.50 

0.9 0.80 0.08 -0.89 0.50 

Ability 

I=10 

High 

0.3 1.20 0.10 -0.01 0.51 

0.6 1.20 0.10 -0.01 0.50 

0.9 1.20 0.10 -0.01 0.51 

Low 

0.3 0.80 0.08 -0.01 0.50 

0.6 0.80 0.08 -0.01 0.50 

0.9 0.80 0.08 0.00 0.50 

I=20 

High 

0.3 1.20 0.10 -0.01 0.49 

0.6 1.20 0.10 -0.00 0.50 

0.9 1.20 0.10 0.00 0.49 

Low 

0.3 0.80 0.08 0.01 0.50 

0.6 0.80 0.08 0.01 0.50 

0.9 0.80 0.08 0.01 0.49 

 

True person parameters, 𝜃s, were generated with means and standard deviations of 

approximately 0.0 and 1.0 in all conditions. The results of correlations among subscale 𝜃s, 

although not shown in the table, showed that Between-subscale Correlation conditions were well 

represented in simulated data, as intended. Table A1 presents the resulting means and standard 
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deviations of subscale score, 𝜃s, in the simulation conditions. Overall, the simulated data seem to 

appropriately represent test properties as defined in the specification of each condition.    

Summary Statistics of Simulated Item Responses 

 Summary statistics based on CTT and IRT were computed with the simulated data. The 

results include raw subscale scores from CTT and IRT, their standard deviations, subscale score 

based KR-20, and their correlation with the total test scores. Especially, the impact of specified 

conditions on reliability of subscale scores will be discussed.  

CTT-based Descriptive Statistics 

The descriptive statistics of item responses were computed from 3,000 examinee data 

simulated in each condition and were averaged over 100 replication data. The summary statistics 

for two Test Types, Achievement and Ability, are, respectively, shown in Table A2 and A3. The 

tables include the means, the standard deviations, and KR-20 values for four subscales and a 

total test score for each condition. Correlations between scores from a total test and the 

corresponding subscale are also included in the tables. Table 4.3 below includes the summary of 

KR-20 means within tests across four raw subscale scores.  

The means of raw subscale scores in the Achievement Test Type condition were higher 

than those in the Ability Test Type condition. Specifically, p-values ranged from 0.65 to 0.69 in 

the achievement test condition, but from 0.50 to 0.51 in the ability test condition, as specified in 

the simulation conditions of Achievement and Ability Tests.  

KR-20 values were computed for the reliabilities, and the results show that KR-20 values 

broadly ranged between 0.55 and 0.84 across different simulation conditions. Different test types 

showed small differences in the KR-20 values of subscale scores. Specifically, the mean KR-20 

in subscale scores was on average, 0.71 in the Achievement test, and 0.72 in the Ability test, 
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showing slightly higher reliabilities in the Ability test. The greatest differences in subscale score 

reliability were found in different Subscale Length and Subscale Consistency conditions. 

KR-20 values were larger when Subscale Length is I = 20, rather than I = 10, and 

Subscale Consistency is High rather than Low. Specifically, KR-20 values of subscale scores 

were on average, 0.78 in I = 20 Subscale Length condition, and 0.65 in the I = 0. In turn, KR-20 

values were greater in High Subscale Consistency condition than in Low Subscale Consistency 

condition. KR-20 values of subscale scores were on average, 0.78 in High Subscale Consistency 

condition, and 0.65 in Low Subscale Consistency condition. Also, the amount of reliability in 

different Subscale Consistency conditions largely differed depending on the length of the 

subscale. In the I = 10 Subscale Length condition, KR-20 values from subscale scores were 

averagely 0.72 in the High Subscale Consistency condition and 0.57 in the Low Subscale 

Consistency condition, representing large difference between High vs. Low Subscale 

Consistency conditions. In the I = 20 Subscale Length condition, KR-20 values were averagely 

0.83 in the High Subscale Consistency condition, and 0.72 in the Low Subscale Consistency 

condition, also showing large difference between two Subscale Consistency conditions, although 

the amount of the difference was smaller than in the I = 10 Subscale Length condition. This 

presenting higher reliability and less difference across Subscale Consistency conditions in I = 20.  

Table 4.3. KR-20 Means within Tests for the Four Raw Subscale Scores  

Data condition KR-20 mean 

Subscale  

length 

Subscale  

consistency 

Between-subscales 

correlation 
Achievement Ability  

I = 10 

High 

0.3 0.71 0.73 

0.6 0.71 0.73 

0.9 0.71 0.73 

Low 

0.3 0.56 0.58 

0.6 0.56 0.58 

0.9 0.56 0.58 
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I = 20 

High 

0.3 0.83 0.84 

0.6 0.83 0.84 

0.9 0.83 0.84 

Low 

0.3 0.72 0.73 

0.6 0.72 0.73 

0.9 0.72 0.73 

 

KR-20 values of raw subscale scores were the same across all three Between-subscales 

Correlation conditions, r = 0.3, r = 0.6, and r = 0.9, which shows that Between-subscales 

Correlation conditions do not have a direct impact on the reliability of raw subscale score across 

various Between-subscales Correlation conditions. Tables A6 and A7 present correlations among 

these raw subscale scores, respectively from achievement and ability tests. Specifically, the 

correlations among raw subscale scores ranged between 0.16 and 0.24 where r = 0.3 in the 

Between-subscales Correlation condition, between 0.33 and 0.49, where r = 0.6 condition, and 

between 0.50 and 0.74, where r = 0.9 for both achievement and ability tests.  

However, the amount of Between-subscales Correlation had a positive relationship with 

that of correlations between subscale scores and their total score. Specifically, in the Between-

subscales Correlation condition of r = 0.3, 0.6 and 0.9, the average subscale-total score 

correlations were, respectively, 0.64, 0.75, and 0.85, showing that as correlations among subscale 

scores get larger, correlation between subscale and total scores became greater. In turn, subscale-

total score correlations were pertinent to the size of reliability of the total test. As the subscale-

total score correlations were high, the reliability of the total test was high, and as the subscale-

total score correlations are low, the reliability of the total test was relatively low. Specifically, in 

the Between-subscales Correlation condition of r = 0.3, KR-20 values based on the total test 

were, on average, 0.80, making relatively small difference in reliabilities between the subscale 

and the total test. However, in the Between-subscales Correlation conditions of r = 0.9, KR-20 
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values based on the total test were, on average, 0.92, making large difference in reliabilities 

between the subscale and the total test.   

In summary, the highest subscale score reliabilities were found in I = 20 Subscale Length 

and High Subscale Consistency conditions across test types. That is, KR-20 values seem to be 

large enough, if a subscale has sufficient number of items, and is internally consistent. Two other 

conditions, I = 10 Subscale Length and High Subscale Consistency, and I = 20 Subscale Length 

and Low Subscale Consistency, yielded marginally acceptable levels of reliability of 0.72 on 

average. However, the condition of I = 10 and Low Subscale Consistency yielded very low 

subscale score reliability, which may not be acceptable in practical tests.  

IRT-based Descriptive Statistics 

Subscale scores, 𝜃s, were obtained using the unidimensional 2PL-IRT model for the 

simulated data, and their summary statistics are shown in Table A4 and A5, including the means, 

the standard deviations, and empirical reliabilities for both subscale scores and total score, 

respectively from achievement and ability tests. These results also include the correlations of the 

subscale scores with total score. In all cases, empirical reliability was computed based on the 

ratio of true score variance to the sum of true score variance and error variance from score 

estimation, because all IRT-based scores were estimated based on Expected A Posteriori (EAP) 

method. From the results, the means and the standard deviations of subscale 𝜃s were, 

respectively, close to 0.0 and 0.85 across all conditions. The amount of empirical reliability 

substantially varied across conditions. Table 4.4 includes the summary of IRT-based empirical 

reliability under each simulation condition. Empirical reliabilities ranged between 0.55 and 0.84 

across all conditions being considered. Generally, the large variance in empirical reliabilities 
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were due to the differences in Subscale Consistency and Subscale Length conditions, rather than 

Between-subscales Correlation and Test Type conditions.  

First, the mean empirical reliabilities of subscale scores were 0.63 in the I = 10 Subscale 

Length condition, and 0.77 in the I = 20 Subscale Length condition, showing substantially 

increased amount of reliability in the greater subscale length condition. The empirical reliability 

had a broad range between 0.55 and 0.74 in the I = 10 Subscale Length condition, and between 

0.71 and 0.83 in the I = 20 Subscale Length condition. The amount of the empirical reliability 

substantially varied across different subscale consistency and test type conditions.  

Second, the amount of empirical reliability largely differed in the different subscale 

consistency conditions. The average empirical reliability was 0.76 in the High Subscale 

Consistency condition, and 0.64 in the Low Subscale Consistency condition, indicating that 

subscale scores are more reliable when responses within a subscale are highly correlated. 

However, the empirical reliability varied across different test types and subscale lengths, ranging 

between 0.68 and 0.84 in the High Subscale Consistency condition, and between 0.55 and 0.74 in 

the Low Subscale Consistency condition, showing large variation in reliability across different 

subscale consistency conditions.  

Different test types showed only small differences in the empirical reliabilities of 

subscale scores. The average empirical reliability in the subscale scores was 0.69 in the 

Achievement test, and 0.72 in the Ability test, showing slightly higher reliability in the Ability 

test. The ranges of empirical reliabilities were very similar across test types, ranging between 

0.55 and 0.80 in the Achievement test, and 0.58 and 0.84 in the Ability test.  

Table 4.4. Empirical Reliability Means within Tests for the Four Subscale score 𝜽s  

Data condition Empirical reliability mean 
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Subscale  

length 

Subscale  

consistency 

Between-subscales 

correlation 
Achievement Ability  

I = 10 

High 

0.3 0.68 0.72 

0.6 0.68 0.72 

0.9 0.68 0.74 

Low 

0.3 0.55 0.57 

0.6 0.55 0.58 

0.9 0.55 0.58 

I = 20 

High 

0.3 0.80 0.83 

0.6 0.80 0.83 

0.9 0.80 0.84 

Low 

0.3 0.71 0.74 

0.6 0.72 0.74 

0.9 0.71 0.73 

 

Similar to the results from CTT, the amount of empirical reliabilities for the subscale 

scores were constant across three different between-subscales correlations, which shows that 

Between-subscales Correlation conditions do not have any direct impact on the reliability of raw 

subscale scores. Tables A8 and A9 present correlations among subscale 𝜃s. The correlations 

among scale scores of subscale scores ranged between 0.16 and 0.25, where r = 0.3 in the 

Between-subscales Correlation condition, between 0.33 and 0.5, where r = 0.6 in the Between-

subscales Correlation condition, and between 0.49 and 0.76, where r = 0.9 in the Between-

subscales Correlation condition across both achievement and ability tests. 

However, correlations among subscale scores had positive relationship with the 

correlation of subscale scores with their total score. As correlation among subscale scores is 

large, the correlation between subscale scores and their total score is expected to be large, 

denoting the indirect impact of the Between-subscales Correlation on subscale score reliability. 

Empirical reliabilities based on the total test were as low as those based on subscales in the 

Between-subscales Correlation condition of r = 0.3, thus showing little difference in reliabilities 

between the subscale and the total test. In contrast, in Between-subscales Correlation conditions 
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of r = 0.6 and r = 0.9, empirical reliabilities based on the total test were much higher than those 

based on the subscales.  

In summary, the highest subscale score reliabilities were found in the I = 20 Subscale 

Length and High Subscale Constancy conditions across test types (i.e., empirical reliability = 

0.82). Empirical reliabilities were large enough if a subscale has a sufficient number of items, 

and the subscale is internally consistent. Two other conditions, I = 10 and High Subscale 

Consistency, and I = 20 and Low Subscale Consistency, yielded marginally acceptable levels of 

reliabilities of 0.71 on average. However, the condition comprising I = 10 and Low Subscale 

Consistency yielded a very low subscale score reliability of 0.56, which probably would not be 

deemed sufficient for an operational test. 

Summary 

Generally, the simulated data represented appropriate test properties, based on the 

specification in each condition. First, the resulting means and standard deviations of true item 

and true person parameters supported the plausibility of the simulation. The mean of true item 

difficulty values was, on average, 0.00 in Ability Test Type conditions, and -0.90 in 

Achievement Test Type conditions, as expected. Similarly, the mean of true item discrimination 

values was, on average, 1.2 in High Subscale Consistency condition, and 0.8 in Low Subscale 

Consistency condition, as expected as well. In addition, three different conditions of correlations 

among true subscale 𝜃s were also appropriately represented in the simulated data.  

The reliability or accuracy of subscale scores based on CTT and IRT was influenced by 

conditions specified in the simulation for the study. The most dominant two factors on the 

accuracy of subscale scores were subscale length and subscale consistency. As expected, as the 

length of the subscale is I = 20 rather than I = 10, and subscale consistency is High rather than 
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Low, the accuracy or reliability of subscale scores was greater. Further, subscale score reliability 

or accuracy only slightly differed between the different test types (i.e., ∆ = 0.02). Lastly, the 

Between-subscales Correlation conditions did not appear to have an impact on the amount of 

reliability. However, between-subscale correlations were positively correlated with the amount 

of subscale-total correlation, indicating the possibility that between-subscale correlations may 

indirectly influence on reliabilities. From these results, the four factors that have been considered 

as variables affecting subscale score accuracy in the simulation, appear to be reasonable. Thus, 

the impact of these factors on various subscale estimates is worthy of being examined.  

Subscale Score Estimates Based on the CTT and IRT Methods 

Various CTT- and IRT-based subscale scoring methods are available. Seven subscale 

scoring methods were chosen for the study and used to compute subscale scores, with the 

simulated data. This section briefly summarizes the descriptives from the resulting subscale 

scores, and discuss how they differ from raw subscale scores.  

CTT-based Subscale Scores 

 Subscale scores were estimated using four different types of CTT subscale scoring 

methods: raw subscale scoring, Kelley’s regression, Holland-Hoskens’ (HH) regression, and 

Haberman’s weighted average methods (i.e., multiple regression). As explained earlier, the 

regression methods approximate the predicted values (i.e., subscale score estimates) with one of 

three types of predictive variables: observed subscale score (i.e., raw subscale score), the 

observed total score, and the weighted combination of observed subscale score and the total 

score.  

Descriptive Statistics of the CTT-based Subscale Scores 
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The means and the standard deviations of the resulting subscale score estimates in 

achievement and ability tests are shown in Tables A10 and A11, respectively. These means and 

standard deviations were obtained by averaging subscale score means and standard deviations 

from the 100 replications within each condition. The means from all three regression scores were 

the same as the raw subscale scores, but their standard deviations were somewhat smaller than 

those of the raw subscale scores.  

Measurement of Reliability in CTT-based Subscale Scores: PRMSE-MB 

 PRMSE-MB was suggested by Haberman (2008) as a measure of evaluating the added-

value of subscale score over total score. However, as described earlier, the PRMSE-MBs are 

known to be mathematically equal to traditional reliability estimates. Thus, the larger the 

PRMSE-MB values, the more reliable the subscale scores. PRMSE-MB values were computed 

from Kelley’s, Holland-Hoskens’ and Haberman’s methods, and compared across various 

conditions, and the results are shown in Tables A12 and A13, respectively for achievement and 

ability tests. See Chapter 2 for the details about the computation.  

 The square root of PRMSE-MB values from different methods were compared with the 

correlations between true subscale score 𝜃s and estimated subscale scores. Note that the 

correlations between true subscale scores and estimates are conceptually same as the square root 

of reliability of the subscale scores. The following three figures, Figures 4.1, 4.2, and 4.3 show 

high consistency between the square roots of PRMSE-MB from three different methods and 

correlations of true and estimated subscale scores.   
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Figure 4.1. Consistency between the Square Roots of PRMSE-MB from the Kelley’s Method and 

Correlations of True and Estimated Subscale Scores 

 

Figure 4.2. Consistency between the Square Roots of PRMSE-MB from the Holland-Hoskens’ 

Method and Correlations of True and Estimated Subscale Scores 
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Figure 4.3. Consistency between the Square Roots of PRMSE-MB from the Haberman’s Method 

and Correlations of True and Estimated Subscale Scores 

 

First, the PRMSE-MBs did not show much difference between Achievement and Ability 

tests. The mean PRMSE-MBs in Achievement test condition were 0.71, 0.60, and 0.77 in 

Kelley’s, HH, and Haberman’s methods, respectively, and those in Ability test condition were 

0.72, 0.61, and 0.78 in order.  

Second, the PRMSE-MBs were generally larger in I = 20 than I = 10 conditions and in 

the High Subscale Consistency condition than in the Low Subscale Consistency condition, with 

any other conditions fixed. In specific, P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 ranged in 0.56~0.73 in I = 10 

conditions, and 0.72~0.84 in I = 20 conditions, representing higher reliability in the Subscale 

Length of I = 20. With other conditions fixed, P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝐻 ranged in 0.33~0.84 in I = 10 

conditions and 0.39~0.88 in I = 20 conditions, which are widely spread.  P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

ranged between 0.58~0.86 in I = 10 conditions, and 0.73~0.91 in I = 20 conditions. In average, 

𝑃𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 had averages of 0.64 in I = 10, and 0.78 in I = 20, PRMSE − MB𝐻𝐻 had 

averages of 0.58 in I = 10, and 0.63 in I = 20, and P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 had averages of 0.73 
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in I = 10, and 0.83 in I = 20. With all other conditions held, the three different methods had high 

PRMSE-MB values in I = 20 condition, and the largest difference between I = 10 and I = 20 

conditions was observed in Kelley’s method. 

Third, the PRMSE-MBs were generally larger in the High Subscale Consistency 

condition than in the Low Subscale Consistency condition, with any other conditions fixed. Also, 

P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 were 0.71~0.84 in the High Subscale Consistency condition, and 0.56~0.73 

in the Low Subscale Consistency condition. P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝐻 were 0.38~0.88 in the High 

Subscale Consistency condition, and 0.33~0.84 in the Low Subscale Consistency condition. 

P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 were 0.72~0.91 in the High Subscale Consistency condition, and 

0.58~0.86 in the Low Subscale Consistency condition. In average, P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 had 

averages of 0.78 in the High Subscale Consistency condition, and 0.65 in the Low Subscale 

Consistency condition, and P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝐻 had averages of 0.63 in the High Subscale 

Consistency condition, and 0.58 in the Low Subscale Consistency condition, and 

P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 had averages of 0.82 in the High Subscale Consistency condition, and 

0.73 in the Low Subscale Consistency condition. With all other conditions held, the three 

different methods had high PRMSE-MB values in the High Subscale Consistency condition. 

Fourth, PRMSE-MBs varied in their amount in different Between-subscales conditions. 

With other conditions fixed, P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 were constant across three Between-subscales 

conditions of r = 0.3, r = 0.6, and r = 0.9, and exactly same as raw subscale score reliability. 

P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝐻 ranged between 0.33 and 0.43 in r = 0.3, between 0.54 and 0.65 in r = 0.6, and 

between 0.76 and 0.88 in r = 0.9, with all other conditions fixed. P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 ranged 

between 0.58 and 0.85 in r = 0.3, between 0.64 and 0.86 in r = 0.6, and between 0.77 and 0.91 in 

r = 0.9 across all other conditions. In average, P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 was 0.71 across all Between-
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subscales Correlation conditions, P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝐻 was averagely 0.39 in r = 0.3, 0.60 in r = 0.6, 

and 0.83 in r = 0.9, and P𝑅𝑀𝑆𝐸 − 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 was averagely 0.72 in r = 0.3, 0.76 in r = 0.6, 

and 0.85 in r = 0.9. When the Between-subscales correlation is 0.3, the highest average PRMSE-

MB was found in Haberman’s method (i.e., 0.72), and the lowest average PRMSE-MB was 

found in Holland-Hoskens’ method (i.e., 0.39). When the Between-subscales Correlation is 0.6, 

the highest PRMSE-MB was found also in Haberman’s method (i.e., 0.76), and the lowest 

average PRMSE-MB was found in Kelley’s method (i.e., 0.71). In turn, when the Between-

subscales Correlation is 0.9, the highest PRMSE-MB was found in Haberman’s method (i.e., 

0.85), and the lowest average PRMSE-MB was found in Kelley’s method (i.e., 0.71).  

From these results, the highest average PRMSE-MBs were found in Haberman’s method 

in each Between-subscales Correlation condition. The large variance in average PRMSE-MBs 

under three Between-subscales Correlation conditions was observed in the HH method. The HH 

method yielded the lowest PRMSE-MBs means in Between-subscales Correlations of 0.3 or 0.6, 

but as high as Haberman’s method in Between-subscales Correlation of 0.9. Kelley’s method, as 

noted above, yielded the constant PRMSE-MBs means across different Between-subscales 

Correlations, which is the same as in KR-20 of raw subscale scores.  

In summary, three out of four conditions, Subscale Length, Subscale Consistency, and 

Between-subscale Correlation influenced the amount of PRMSE-MBs. That is, subscale scores 

generally had higher PRMSE-MBs in Subscale Length of I = 20, High Subscale Consistency, 

and High Between-subscales Correlation conditions. Among four CTT-based methods, 

Haberman’s method yielded higher PRMSE-MBs than any other method across all conditions. 

HH method yielded improved PRMSE-MBs compared to raw subscale scores only when 
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Between-subscales Correlation is high (i.e., 0.9).  Further, Kelley’s method yielded the equal 

level of reliability. Figure 4.4 below presents these findings. 

 

Figure 4.4. PRMSE-MB means from Different CTT-based Subscale Scoring Methods across Test 

Type, Subscale Length, Subscale Consistency, and Between-subscale Correlation Conditions 

(Line 1=Kelley’s Method, Line 2 = HH Method, and Line 3 = Haberman’s Method) 

IRT-based Subscale Scores 

 Subscale scores were computed using unidimensional IRT models (1PL, 2PL, and 3PL), 

multidimensional IRT (MIRT-2PL), and the OPI method, with the simulated data. The results 

included descriptive statistics from these methods, overall goodness-of-fit comparisons, and 

empirical reliability values. For the IRT analyses, the marginal maximum likelihood estimation 
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based on the expectation-maximization (EM) algorithm and the Expected A Posteriori (EAP) 

were used, respectively for item and person parameter estimation, in which fifteen quadrature 

points were used.  

Descriptive Statistics of the IRT-based Subscale Scores 

 Because descriptives from the unidimensional 2PL IRT model were shown in the 

previous section, they would not be described in the current section. Note that the mean and the 

standard deviations of subscale trait scores 𝜃s based on the unidimensional 2PL IRT model were 

0.00 and 0.85, respectively.  

 OPI values are adjusted p-values based on the raw subscale scores and global trait scores 

from the unidimensional IRT analysis (i.e., mainly 3PL). Tables A14 and A15 include results of 

the means and the standard deviations of OPI scores in achievement and ability tests. OPI 

subscale scores showed only a slight difference from the raw subscale scores with slightly bigger 

score variances.  

Measurement of Multidimensionality 

Measuring the dimensionality of a test may be an important consideration in order for 

subscale scores to be reported. Three unidimensional IRT models (i.e., 1PL, 2PL, and 3PL) and 

the MIRT-2PL model were compared with respect to the overall goodness-of-fit. Tables A16 and 

A 17 presents two types of overall goodness-of-fit statistics, Akaike Information Criterion (AIC) 

and the -2loglikelihood (-2lnL), respectively with achievement and ability tests. The ∆-2lnL 

values based on the likelihood difference between models are also shown in the last column of 

respective tables. The statistical significance of fit difference may also be examined through the -

2lnL difference (i.e., ∆-2lnL), because the difference of -2lnL is considered to be asymptotically 

distributed chi-square with the difference of the degrees of freedom. These values were obtained 
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for 1PL vs. 2PL, 2PL vs. 3PL, and 2PL vs. MIRT-2PL. Note that in both AIC and -2lnL indices, 

the smaller values indicated better model fit.  

In most comparisons among unidimensional models, the 3PL models showed a better fit 

than 2PL models. However, the 3PL models generally had largely increased number of 

parameters relative to the 2PL models, which often led to a larger AIC in the comparisons, which 

indicates worse fit. In the comparisons of unidimensional and multidimensional models, 

evidently, in both achievement and ability data, the MIRT-2PL model showed a better fit than 

the 2PL model in all conditions. However, the amount of the -2lnL difference greatly differed in 

different Between-subscales correlation conditions. Namely, in the Between-subscales 

correlation condition where r = 0.3, the multidimensional 2PL model usually showed much 

better fit than the unidimensional 2PL model, as expected, since the resulting total test would be 

heterogeneous.  In the Between-subscales correlation condition where r = 0.9, the difference of -

2lnL between unidimensional and multidimensional models was not so large.  

Measure of Empirical Reliabilities 

The empirical reliabilities between the unidimensional 2PL and the MIRT-2PL model 

scores were compared. Tables A18 and A19 show the empirical reliabilities, respectively from 

achievement and ability tests. In order to compare reliabilities of subscale scores from 2PL and 

MIRT-2PL, the mean reliabilities within tests were computed. Table 4.5 shows average 

empirical reliability among subscale scores in Tests. Empirical reliabilities in the MIRT-2PL 

scores were higher than in the unidimensional 2PL subscale scores, for all conditions. The large 

increase in empirical reliabilities was found when correlations among subscales get high. 

Especially, as correlations among subscale scores are as high as 0.9, empirical reliability of 

MIRT-2PL scores were comparable to that of unidimensional 2PL scores.  
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In general, the total test reliability for all conditions could be deemed as acceptable, as all 

were above .70.  However, the subscale reliabilities often fell below .70 in the conditions with 

shorter tests and low subscale consistency. 

Table 4.5. Empirical Reliability Means from Total and Subscale Scores in Tests Based on the 

Unidimensional and the multidimensional 2PL Models 

Test type 
Subscale  

length 

Subscale  

consistency 

Between-subscales 

correlation 

Empirical reliability means 

Total test Subscale 

2PL 2PL 
MIRT-

2PL 

Achievement 

 

I = 10 

High 

r = 0.3 0.79 0.68 0.70 

r = 0.6 0.85 0.68 0.74 

r = 0.9 0.88 0.68 0.87 

Low 

r = 0.3 0.69 0.55 0.58 

r = 0.6 0.77 0.55 0.64 

r = 0.9 0.81 0.55 0.80 

I = 20 

High 

r = 0.3 0.88 0.80 0.81 

r = 0.6 0.92 0.80 0.83 

r = 0.9 0.93 0.80 0.93 

Low 

r = 0.3 0.82 0.71 0.72 

r = 0.6 0.87 0.71 0.76 

r = 0.9 0.90 0.71 0.89 

Ability 

I = 10 

High 

r = 0.3 0.81 0.72 0.73 

r = 0.6 0.87 0.72 0.77 

r = 0.9 0.90 0.72 0.90 

Low 

r = 0.3 0.70 0.57 0.60 

r = 0.6 0.78 0.58 0.66 

r = 0.9 0.83 0.58 0.81 

I = 20 

High 

r = 0.3 0.90 0.83 0.74 

r = 0.6 0.93 0.83 0.78 

r = 0.9 0.95 0.84 0.90 

Low 

r = 0.3 0.83 0.73 0.84 

r = 0.6 0.88 0.73 0.86 

r = 0.9 0.91 0.73 0.94 

 

Measuring Accuracy of Subscale Score Estimation: RMSE-MB and RMSE-SB 
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In the current study, the measurement of the subscale score accuracy was carried out by 

observing essentially two criteria: 1) measuring root mean square errors (RMSE) including 

RMSE-MB and RMSE-SB, and 2) examining correlations of estimated subscale scores with their 

true subscale scores. Results from the two criteria are interpreted in order.  

Approximation Errors from CTT-based Subscale Scores 

As explained earlier, RMSE-MB measures the difference between subscale scores 

predicted by a model and observed raw subscale scores. Applied to the CTT-based subscale 

scoring methods, the RMSE-MB may be a worthy measure of subscale score accuracy 

(Haberman, 2008). However, in a simulation approach, RMSE can be defined in a somewhat 

different way, as the difference between true scores and estimated scores. In this section, CTT-

based subscale scores are assessed by both RMSE-MB and RMSE-SB for their accuracy. The 

proportional reduction in MSE (PRMSE), which is also suggested by Haberman (2008) as an 

index of examining the added-value, are computed with the resulting subscale scores. In turn, for 

measuring the accuracy of IRT-based subscale scores, RMSE-SB is used. 

CTT-based Subscale Score Accuracy: RMSE-MB 

 The estimation of scores yields errors, in which the errors are expected to be small for the 

more accurate prediction. One index of the accuracy of subscale score estimation is root mean 

square error (RMSE-MB), which measures the error of approximation. RMSE-MB is obtainable 

by computing the squared mean of residual of observed subscale scores and their true subscale 

scores (i.e., predicted scores based on a linear regression model for subscale scoring) and rooting 

the mean residual. Tables A20 and A21 include RMSE-MB values based on different subscale 

scoring methods under various conditions, respectively for achievement and ability tests. The 

RMSE-MB means were obtained by averaging RMSE-MBs over 100 replications in each 
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condition, and for the comparisons of accuracy among raw subscale scores and the other 

subscale scores, the results of the standard error of measurement of the subscale score, 𝜎(𝑒𝑥), is 

presented as well. See Chapter 2 for more information on the details of the RMSE-MB 

computation.  

The means of SEs and RMSE-MBs across various subscale scores are shown in Table 

4.6. Comparing the different data conditions within a method, subscale scoring methods had 

different amount of approximation error in different data conditions. It should be noted that the 

true test score variability is directly impacted by the conditions.  That is, the larger the score 

variability for these conditions, the larger the RMSE-MB becomes.  However, in general, they 

were large in the I = 20 Subscale Length, and the Ability Test Type conditions, with the other 

conditions fixed. Specifically, the highest standard errors (SE) of measurement in raw subscale 

scores were found in the Ability Test Type, the I = 20 Subscale Length, the Low Subscale 

Consistency condition (i.e., 2.07), and the lowest SEs were found in the Achievement Test Type, 

the I =10 Subscale Length, and the High Subscale Consistency condition (i.e., SE = 1.28). The 

Kelley’s method yielded the highest RMSE-MBs in the Ability Test Type, the I = 20 Subscale 

Length, and the High Subscale Consistency condition (i.e., 1.78), and the lowest RMSE-MBs in 

Achievement Test Type, the I = 10 Subscale Length, and the Low Subscale Consistency 

condition (i.e., 1.05). The Holland-Hoskens’s (HH) method yielded the highest RMSE-MBs in 

the Ability Test Type, the I = 20 Subscale Length, the High Subscale Consistency, and the 

Between-subscales Correlation of r = 0.9 condition (i.e., 3.40), and the lowest RMSE-MBs were 

observed in the Achievement Test Type, the I = 10 Subscale Length, the Low Subscale 

Consistency, and High Between-subscale Correlation condition of r = 0.9 (i.e., 0.77). In turn, the 

Haberman’s weighted average method yielded the greatest RMSE-MBs in the Ability Test Type, 
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High Subscale Consistency, the I = 20 Subscale Length, the Between-subscales Correlation of r 

= 0.3 condition (i.e., 1.75), and the lowest RMSE-MBs in the Achievement Test Type, the I = 10 

Subscale Length, the Low Subscale Consistency, and High Between-subscales Correlation of r = 

0.9 conditions (i.e., 0.76).  

Compared to the raw subscale scoring method, Kelley’s and Haberman’s methods 

yielded less approximation error with smaller RMSE-MBs in all simulation conditions. In 

particular, the Haberman’s method considerably reduced amount of error, although the amount 

of reduction in error varied across different simulation conditions. Specifically, the large 

reduction in RMSE-MBs were observed in the Low Subscale Consistency and the Between-

subscales Correlation of r = 0.9 conditions. In the meantime, the HH method yielded even higher 

approximation error on average than the raw subscale scoring method, indicating that the HH 

method may not provide more reliable estimates. However, their performance substantially 

varied depending on the size of correlations among subscales. For example, in the Between-

subscales Correlation conditions where r = 0.9, the HH method yielded considerably decreased 

RMSE-MBs compared to those from the raw subscale method, whereas they poorly performed in 

the Between-subscales Correlation conditions where r = 0.3 or r = 0.6. 

Table 4.6. RMSE-MB Means from CTT Subscale Scores 

Test  

type 

Subscale 

Length 

Subscale 

consistency 

Between-

subscales 

correlation 
𝜎(𝑒𝑥) 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 

 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝐻 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

Achievement 

I = 10 

High 

r = 0.3 1.28 1.08 1.57 1.06 

r = 0.6 1.28 1.08 1.26 0.99 

r = 0.9 1.28 1.08 0.83 0.79 

Low 

r = 0.3 1.41 1.05 1.29 1.02 

r = 0.6 1.40 1.05 1.07 0.94 

r = 0.9 1.40 1.05 0.77 0.76 

I = 20 High 
r = 0.3 1.81 1.65 3.04 1.63 

r = 0.6 1.81 1.65 2.40 1.55 
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r = 0.9 1.81 1.65 1.43 1.27 

Low 

r = 0.3 1.98 1.68 2.48 1.65 

r = 0.6 1.98 1.68 1.98 1.54 

r = 0.9 1.98 1.68 1.29 1.22 

Ability 

I = 10 

High 

r = 0.3 1.37 1.17 1.74 1.14 

r = 0.6 1.37 1.17 1.40 1.07 

r = 0.9 1.37 1.17 0.90 0.85 

Low 

r = 0.3 1.46 1.11 1.38 1.08 

r = 0.6 1.46 1.11 1.15 1.00 

r = 0.9 1.46 1.11 0.81 0.80 

I = 20 

High 

r = 0.3 1.93 1.78 3.40 1.75 

r = 0.6 1.93 1.78 2.66 1.67 

r = 0.9 1.94 1.78 1.58 1.38 

Low 

r = 0.3 2.07 1.77 2.65 1.73 

r = 0.6 2.07 1.77 2.12 1.62 

r = 0.9 2.07 1.77 1.36 1.29 

 

The following two figures, Figure 4.5 and Figure 4.6, present these differences among 

RMSE-MB means for subscale scores, from different methods across different data conditions of 

Test Type, Subscale Consistency, and Between-subscales correlation conditions, respectively in I 

= 10 and I = 20 Subscale Length conditions. The means of error from Raw Subscale scores and 

Kelley Method were consistent across different Between-subscales Correlation conditions, but 

lower error means were found in Kelley’s method. Overall, Haberman’s method yielded the 

lowest RMSE-MBs regardless of test conditions. However, the HH method presented large 

changes in RMSE-MBs across Between-subscales Correlation conditions. The amount of 

RMSE-MBs were larger than the SEs in Low Between-subscales Correlation condition of r = 

0.3, and similar to or smaller than the SEs in High Between-subscales Correlation condition of r 

= 0.9. However, this pattern differed in different Subscale Consistency conditions. The largest 

difference across different Subscale Consistency conditions were found in Raw Subscale scores 

and HH method. Raw subscale scores had larger RMSE-MBs in high Subscale Consistency, and 

HH method showed the larger variance of the RMSE-MBs across different Between-subscales 
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Correlation conditions. Different Test Type conditions did not have significant difference with 

other conditions fixed. Similar patterns are found in the Subscale Length conditions of I = 20, 

but they generally showed higher RMSE-MBs, due to the increased variance in longer test length 

conditions.  

 
Figure 4.5. RMSE-MB Means from Different Four Methods across Test Type, Subscale 

Consistency, and Between-subscales Correlation Conditions in Subscale Length of I = 10  
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Figure 4.6. RMSE-MB Means from Different Four Methods across Test Type, Subscale 

Consistency, and Between-subscales Correlation Conditions in Subscale Length of I = 20  

Repeated Measures ANOVA: Comparisons of RMSE-MBs 

The repeated measures procedure was employed to examine the mean differences in 

RMSE-MB values. RMSE-MBs from different subscale scoring methods were repeated 

measures, and Test type, Subscale Consistency, and Between-subscales correlation variables 

were between-group factors. Because subscale items within a test were generated under the same 

conditions and their resulting subscale scores were mostly the same across subscales, they 

yielded the equivalent RMSE-MB means across subscales. Thus, RMSE-MB means were 
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averaged over subscales, and the average RMSE-MB means were used to conduct the repeated 

measures analysis.  

Table 4.7 below presents results of repeated measures for RMSE-MBs based on different 

methods across different simulation conditions. The results show that all within- and between-

groups effects were statistically significant. First, RMSE-MBs based on different methods (i.e., 

raw, Kelley, HH, and Haberman methods) were statistically and significantly different. That is, 

RMSE-MB values were statistically significantly different among subscale scoring methods. 

Also, the amount of RMSE-MB from different methods varied across all four simulation 

conditions. By comparing effect size (i.e., squared partial eta, 𝜂𝑝
2), the influential effects on the 

amount of RMSE-MB were found in the main effect of Method (i.e., 0.99), two-way interaction 

of Method x Test Type (i.e., 0.56), Method x Subscale Consistency (i.e., 0.98), Method x 

Subscale Length (i.e., 0.99), and Method x Between-subscales Correlation (i.e., 0.99), and three 

way interaction effect of Method x Subscale Consistency x Subscale Length (i.e., 0.87), Method 

x Subscale Consistency x Between-subscales Correlation (i.e., 0.90), and Method x Subscale 

Length x Between Subscale Correlation (i.e., 0.97). Although the four-way and five-way 

interactions were also statistically significant, their effect sizes were not so large. The following 

four figures, Figure 4.7 through Figure 4.10 correspond to the results of two-way interactions in 

which the Test Type, the Subscale Consistency, the Subscale Length, and the Between-subscale 

Correlation conditions are, respectively, involved. 

Table 4.7. Test of Repeated Measures of RMSE-MBs for Subscale Score Estimates 

Source df SS MS 𝐹𝑜𝑏𝑠 p 𝜂𝑝
2 

Method 3 329.93 109.98 648,332.4 <0.01 0.99 

2 way interaction       

Method*TestType 3 1.55 0.52 3,040.95 <0.01 0.56 

Method*SubscaleConsistency  3 63.48 21.16 124746.89 <0.01 0.98 
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Method*SubscaleLength 3 83.81 27.94 164,689.25 <0.01 0.99 

Method*BetweenSubscaleCorr 6 312.66 52.11 307,200.1 <0.01 0.99 

3 way interaction       

Method*TestType*SubscaleConsistency 3 0.37 0.12 732.40 <0.01 0.24 

Mixture  

     Method*TestType *SubscaleLength 3 0.43 0.14 835.98 <0.01 0.26 

Method*TestType*BetweenSubscaleCorr 6 0.95 0.16 929.03 <0.01 0.44 

     Method*SubscaleConsistency* 

     SubscaleLength 
3 8.26 2.76 16,239.24 <0.01 0.87 

     Method*SubscaleConsistency* 

     BetweenSubscaleCorr 
6 11.03 1.84 10,837.15 <0.01 0.90 

     Method*SubscaleLength*  

     BetweenSubscaleCorr 
6 46.11 7.69 45,301.86 <0.01 0.97 

4 way interaction       

Method*TestType*SubscaleConsistency*

SubscaleLength 
3 0.09 0.03 168.97 <0.01 0.07 

Method*TestType*SubscaleConsistency* 

BetweenSubscaleCorr 
6 0.15 0.02 144.25 <0.01 0.11 

Method*TestType*SubscaleLength* 

BetweenSubscaleCorr 
6 0.15 0.02 142.05 <0.01 0.11 

Method* SubscaleConsistency* 

SubscaleLength*BetweenSubscaleCorr 
6 1.37 0.23 1,349.48 <0.01 0.53 

5 way interaction       

Method*TestType*SubscaleConsistency *  

SubscaleLength*BetweenSubscaleCorr 
6 0.02 0.00 18.71 <0.01 0.02 

Error (Method) 7,128 1.21 0.00    

 

Figure 4.7 compares the RMSE-MB means based on different methods in the Ability vs. 

Achievement Test Type conditions. The Ability Test Type was expected to have larger RMSE-

MB means because it has higher variance than the Achievement Test Type, due to item difficulty 

mean of 0.5.  The actuall results show that RMSE-MB means were somewhat higher in the 

Ability Test Type than in the Achievement Test Type. The lowest RMSE-MB were found in the 

Haberman’s method, and the highest RMSE-MB means were observed in the HH method. 

RMSE-MB were lower in order of Haberman < Kelley < Raw < HH in both test type conditions. 

Specifically, in the Ability Test Type condition, the Haberman, the Kelley, the Raw, and the HH 

methods had the RMSE-MB means of, 1.28, 1.46, 1.71, and 1.76 respectively, and in the 
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Achievement Test Type condition, they had 1.20, 1.37, 1.62, and 1.62, in order. Notice that only 

the Kelley’s and the Haberman’s methods yielded less RMSE-MBs than the Raw subscale 

scoring in both test types, indicating that their subscale scores from these methods produces 

better approximation, with more accuracy. 

 

Figure 4.7. RMSE-MB Means in Distinct Test Types: Ability vs. Achievement Tests 

Figure 4.8 below shows the RMSE-MB means across different methods depending on the 

degree of subscale consistency: High vs. Low Subscale Consistency conditions. The high 

internal consistency of a subscale was expected to have larger RMSE-MB means because it has 

higher standard deviations than low subscale consistency condition. As expected, while Raw 

subscales scoring method yielded greatly decreased RMSE-MB means in the Low Subscale 

Consistency condition, other three subscale scoring methods performed in the other way. That is, 

they showed lower RMSE means in the Low Subscale Consistency condition than in the High 

Subscale Consistency condition. Such pattern was especially noticeable in the HH method. Also, 

the Kelley’s and the Haberman’s methods yielded less RMSE-MBs than the raw subscale 

scoring methods, with more accuracy.  
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Figure 4.8. RMSE-MB Means in Different Subscale Consistency Conditions: High vs. Low 

Subscale Consistency 

Next, Figure 4.9 present the amount of RMSE-MB means from different methods, 

depending on different subscale lengths. The I = 20 subscale length condition was expected to 

yield larger RMSE-MB means than the I = 10 subscale length condition because it includes more 

items, increasing variability of subscale scores. As expected, RMSE-MB means were smaller in I 

= 10 than in I =20. Similar to results for the other conditions, the smallest RMSE-MB means 

were observed in the Haberman’s method, and the largest RMSE-MB means were found in the 

raw subscale scoring methods in the I = 10 Subscale Length condition, and in the HH method in 

the I = 20 Subscale Length condition. Also, regardless of subscale lengths, Kelley’s and 

Haberman’s methods performed better than the raw subscale scoring.  
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Figure 4.9. RMSE-MB Means in Different Subscale Length Conditions: I = 10 vs. I = 20 

Subscale Lengths 

Figure 4.10 shows RMSE-MB values from different methods depending on the three 

Between-subscales Correlation conditions: r = 0.3, r = 0.6, and r =0.9. The lowest RMSE-MBs 

were observed in Haberman’s method regardless of the size of Between-subscales Correlation, 

and the next low RMSE-MBs were observed in Kelley’s method. Also, raw subscale scores and 

Kelley’s method yielded consistently high RMSE-MBs. Although HH method yielded the 

highest RMSE-MBs among methods in r = 0.3 conditions, their RMSE-MBs were as low as 

those in Haberman’s method in r = 0.9 condition.  
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Figure 4.10. RMSE-MB Means in Different Between-subscales Correlation Conditions: r = 0.3, 

0.6, vs., 0.9 

The following figures, Figure 4.11 through Figure 4.14, present results of three-way 

interactions, respectively of Method x different Subscale Consistency x Between-subscales 

Correlation, Method x Subscale Length x Between Subscales Correlation, and Method x 

Subscale Length x Subscale Consistency on RMSE-MB means. They present how RMSE-MBs 

values based on different methods differently perform depending on the combinations of other 

two between-group factors.  

Figure 4.11 and Figure 4.12 show the RMSE-MBs from different methods across 

Between-subscales Correlations, respectively in the High vs. Low Subscale Consistency 

conditions. The distinct appearance in different subscale-correlations among different subscale 

consistency conditions were mostly observed in the performance of the HH methods. In both 

subscale consistency conditions, RMSE-MB from the HH methods was very large in r = 0.3, and 

was dramatically dropped in r = 0.9, resulting in less accuracy in the Low Between-subscale 
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Correlation condition, and greater accuracy in the High Between-subscale Correlation condition 

than the raw subscale scoring method. The degree of how well the HH performs differed in the 

Between-subscales Correlation, where r = 0.6. The HH method poorly performed by having 

larger error in the High Subscale Consistency condition than the raw subscale scoring method, 

but it performed better in the Low Subscale Consistency condition. That is, HH method showed 

different appearance in different Subscale Consistency conditions. In High Subscale Consistency 

condition, the RMSE-MB mean from the HH method were higher than that from raw subscale 

scores in r = 0.3, but in the Low Subscale Consistency condition, it was lower than that of raw 

subscale scores.  

 

Figure 4.11. RMSE-MB Means across Different Between-subscales Correlation in the High 

Subscale Consistency Condition.  



119 

 

 

Figure 4.12. RMSE-MB Means across Different Between-subscales Correlation in the Low 

Subscale Consistency Condition 

The following figures, Figure 4.13 and Figure 4.14, shows the RMSE-MB means across 

different between-subscales correlations, respectively in I =10 Subscale Length and I = 20 

Subscale Length conditions. In both subscale length conditions, the distinction of RMSE-MB 

means across different between-subscales correlations was mainly found in the relationship in 

RMSE-Means between the raw subscale scoring and the HH methods. The HH method 

performed worse than the raw subscale scoring method in r = 0.3, but it performed better in r = 

0.9 in both subscale length conditions. However, the distinguishable difference in pattern was 

found in r = 0.6. Specifically, the HH method had lower RMSE-MB than the raw subscale 

scoring method in the I = 10 Subscale Length condition, whereas it had much higher RMSE-MB 

than the raw subscale scoring method in the I = 20 Subscale Length condition.  
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Figure 4.13. RMSE-MB Means across Different Between-subscales Correlation in the I = 10 

Subscale Length Condition 

 

Figure 4.14. RMSE-MB Means across Different Between-subscales Correlation in the I = 20 

Subscale Length Condition 

Summary.   The Kelley’s and Haberman’s methods generally yielded less error than the 

raw subscale scoring method. However, the HH method varied in error across the simulation 



121 

 

conditions, especially across between-subscale correlation conditions. All data conditions, being 

considered, were influencing the magnitude of RMSE-MB values, although the size of the 

impact was different. However, the impact of data conditions on the magnitude of RMSE-MB 

values were seemingly different from results expected in the research hypothesis. Such 

inconsistency was relevant to the magnitude of standard deviations (SDs). In general, RMSE 

values tend to increase, as SDs become larger. Thus, the High Subscale Consistency, the Ability 

Test Type, and the I = 20 Subscale Length conditions with large SDs were expected to have 

larger RMSE than the Low Subscale Consistency, the Ability Test Type, and the I = 10 Subscale 

Length conditions, respectively, simply due to the SD effect. In fact, RMSE-MB from different 

methods was greater error in I = 20 than I = 10, in the High Subscale Consistency than the Low 

Subscale Consistency. Unlike the other three conditions, there were no differences in the 

magnitude of SDs across different between-subscale correlations. Between-subscales correlation 

conditions also affected the amount of errors, although the impact substantially varied across 

different methods. For example, although the Haberman and the Kelley methods yielded less 

error than raw subscale scores in all between-subscales correlations, the HH method yielded less 

error than raw subscale scores only in r = 0.9. Overall results of RMSE-MB demonstrate that 

different data conditions may yield different amount of error at different degree depending on the 

subscale scoring methods. Although the Kelley’s method yielded less error, it was caused by 

decreased SDs. Kelley’s simply shrank scores toward the mean, resulting in reduced SDs and 

yielding less RMSE-MB.  

PRMSE-MB, excluding the impact of SDs, could be used to compare among various 

simulation conditions with different SDs. Based the PRMSE-MB results above, long subscale 

length and high subscale consistency conditions resulted in less error (i.e., high reliability) than 
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short subscale length and low subscale consistency conditions, respectively. As expected from 

classical test theory developments, accuracy of subscale scores was obtained in the I = 20, the 

High Subscale Consistency, and the Ability Test Type conditions. 

CTT-based Subscale Score Accuracy: RMSE-SB 

True subscale 𝜃s were transformed into the expected true subscale scores so that they are 

comparable to the CTT-based subscale scores. Then, RMSE-SB were obtained by computing 

difference between the expected true subscores and the CTT-based subscale scores. The 

expected true subscale scores (i.e., the mean in a replication), 𝑆𝐸𝑇, are computed by using the 

following equation: 

 𝑆𝐸𝑇 =
1

𝑁
∑ 𝑃𝑖(𝜃𝑗)𝐼

𝑖=1 ,  

where N is the sample size, I is the number of items in a subscale, and 𝑃𝑖(𝜃𝑗) is the probability 

that an examinee with the trait subscale score 𝜃𝑗  answers item i correctly. The means and the 

standard deviations of expected true subscale scores across replications for achievement and 

ability tests are, respectively, shown in Tables A22 and A23. The following Table 4.8 includes 

the expected true subscale scores averaged across four subscale scores. The mean of expected 

true subscale scores were the same as that of raw subscale scores, and the standard deviations of 

expected true subscale scores were somewhat low relative to those of the raw subscale scores.  

Table 4.8. Descriptive Statistics for Expected True Subscale Scores in Various Simulation 

Conditions 

Test type 
Subscale 

length 

Subscale 

consistency 

Between-subscales 

correlation 
Mean SD 

Achievement 

 
I = 10 

High 

r = 0.3 6.92 2.00 

r = 0.6 6.92 2.00 

r = 0.9 6.90 2.01 

Low r = 0.3 6.50 1.58 
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r = 0.6 6.49 1.59 

r = 0.9 6.48 1.59 

I = 20 

High 

r = 0.3 13.82 3.99 

r = 0.6 13.79 4.01 

r = 0.9 13.80 4.01 

Low 

r = 0.3 12.96 3.17 

r = 0.6 12.99 3.17 

r = 0.9 12.95 3.17 

Ability 

I = 10 

High 

r = 0.3 5.02 2.25 

r = 0.6 5.01 2.25 

r = 0.9 5.02 2.25 

Low 

r = 0.3 5.02 1.71 

r = 0.6 5.00 1.71 

r = 0.9 5.00 1.71 

I = 20 

High 

r = 0.3 10.03 4.50 

r = 0.6 10.02 4.50 

r = 0.9 9.99 4.50 

Low 

r = 0.3 9.95 3.42 

r = 0.6 9.97 3.42 

r = 0.9 9.99 3.42 

 

In order to determine the plausibility of using expected true subscale scores in place of 

true subscale 𝜃s for the RMSE-SB computation, the correlation between the true subscale 𝜃s and 

the expected true subscale scores was calculated. Tables A24 and A25 include the correlations of 

raw subscale scores (i.e., summed subscale scores) and true subscale scores 𝜃s with expected 

true subscale scores, respectively from achievement and ability tests. The results showed that the 

true subscale 𝜃s and expected true subscale scores are highly correlated in the corresponding 

subscales, ranging between 0.97 and 1.00. Moreover, the structure of correlations among 

expected true scores from different subscales were highly consistent with that of correlations 

among true trait subscale 𝜃s. For example, in the simulation condition where correlations among 

trait subscale 𝜃s are assumed to be 0.3, the off-diagonal correlations among the expected true 

subscale scores and the trait subscale scores were also 0.3. Therefore, the use of the expected 

true subscale scores in the RMSE-SB computation seems to be reasonable.  
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 Due to the difference of measurement in among subscale scores from different subscale 

length or subscale consistency, all subscale scores for computing the RMSE-SB were 

standardized with their subscale score means and standard deviations in each condition and each 

replication. The RMSE-SB means were obtained by averaging RMSE-SBs over 100 replications 

in each condition. Tables A26 and A27 include standardized RMSE-SB means based on different 

subscale scoring methods under varied conditions, respectively from achievement and ability 

tests. The results showed that the amount of standardized RMSE-SB varied across different 

methods and different data conditions. Also, they seemed to have interactive impacts on RMSE-

SB. Table 4.9 below present the results of standardized RMSE-SB means for four subscales. The 

results were very similar to the results from the RMSE-MB.  

First, subscale scoring methods yielded different amount of approximation error, 

depending on various data conditions within a method. In general, RMSE-SB means were 

smaller in the I = 20 Subscale Length, and the Ability Test Type conditions, with the other 

conditions fixed. Specifically, the lowest RMSE-SB means from the raw subscale scores were 

found in the Ability Test Type, I = 20 Subscale Length, High Subscale Consistency condition 

(i.e., 0.40), and the highest RMSE-SBs were found in the Achievement Test Type, I =10 

Subscale Length, and Low Subscale Consistency condition (i.e., 0.71). The Kelley’s method 

yielded the exactly same results as the Raw Subscale Scoring Method. The Holland-Hoskens’ 

(HH) method yielded the lowest RMSE-SBs in the I = 20 Subscale Length, the High Subscale 

Consistency and the Between-subscales Correlation of r = 0.9 condition (i.e., 0.36) regardless of 

test types. Also, the HH method yielded the highest RMSE-SBs in the Achievement Test Type, 

the I = 10 Subscale Length, the Low Subscale Consistency, and Low Between-subscale 

Correlation condition of r = 0.3 (i.e., 0.92). Lastly, the Haberman’s weighted average method 
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yielded the lowest RMSE-SB in the Ability Test Type, High Subscale Consistency, I = 20 

Subscale Length, Between-subscales Correlation of r = 0.9 condition (i.e., 0.31), and the highest 

RMSE-SB in the Achievement Test Type, I = 10 Subscale Length, Low Subscale Consistency, 

and Low Between-subscales Correlation of r = 0.3 condition (i.e., 0.69).  

Compared to the results from raw subscale scoring method, Only Haberman’s methods 

consistently yielded less approximation error with smaller RMSE-SBs in all simulation 

conditions. The Haberman’s method considerably reduced the amount of error, although the 

amount of reduction in error varied across different simulation conditions. Specifically, most 

large reduction in RMSE-MBs were observed in the Low Subscale Consistency and the 

Between-subscales Correlation of r = 0.9 conditions. In most simulation conditions, the HH 

method yielded even higher approximation error on average than the raw subscale scoring 

method, indicating that the HH method may not provide more reliable estimates. However, their 

performance substantially varied depending on the size of correlations among scores from 

different subscale scales. In the Between-subscales Correlation conditions where r = 0.9, the HH 

method yielded considerably decreased RMSE-MBs compared to those from the raw subscale 

method, whereas they yielded much higher RMSE-MB in the Between-subscales Correlation 

conditions where r = 0.3, or r = 0.6. The Kelley’s method yielded the same amount of RMSE-SB 

as the raw subscale scoring method.   

Table 4.9. RMSE-SB Means from CTT Subscale Scores 

Test type 

Subscal

e 

length 

Subscale 

consistenc

y 

Between-

subscales 

correlatio

n 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝑅𝑎𝑤 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐾𝑒𝑙𝑙𝑒𝑦 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐻𝐻 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

Achieveme

nt 

 

I = 10 High 

r = 0.3 0.56 0.56 0.88 0.55 

r = 0.6 0.56 0.56 0.67 0.51 

r = 0.9 0.56 0.56 0.42 0.40 
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Low 

r = 0.3 0.71 0.71 0.92 0.69 

r = 0.6 0.71 0.71 0.73 0.63 

r = 0.9 0.71 0.71 0.50 0.49 

I = 20 

High 

r = 0.3 0.42 0.42 0.84 0.42 

r = 0.6 0.42 0.42 0.63 0.39 

r = 0.9 0.42 0.42 0.36 0.32 

Low 

r = 0.3 0.55 0.55 0.87 0.54 

r = 0.6 0.55 0.55 0.66 0.50 

r = 0.9 0.55 0.55 0.42 0.39 

Ability 

I = 10 

High 

r = 0.3 0.54 0.54 0.86 0.53 

r = 0.6 0.54 0.54 0.66 0.49 

r = 0.9 0.54 0.54 0.41 0.39 

Low 

r = 0.3 0.69 0.69 0.91 0.67 

r = 0.6 0.69 0.69 0.72 0.61 

r = 0.9 0.69 0.69 0.49 0.48 

I = 20 

High 

r = 0.3 0.40 0.40 0.83 0.40 

r = 0.6 0.40 0.40 0.62 0.38 

r = 0.9 0.40 0.40 0.36 0.31 

Low 

r = 0.3 0.54 0.54 0.86 0.53 

r = 0.6 0.54 0.54 0.65 0.49 

r = 0.9 0.54 0.54 0.41 0.39 

 

Repeated Measures ANOVA: Comparisons of RMSE-SB 

The mean differences in RMSE-SB values across various simulation conditions within 

methods were examined using the Repeated Measure procedure. Subscale scoring methods were 

repeated measure factors, and Test type, Subscale Consistency, and Between-subscales 

correlation variables were between-group factors. Because subscale items within a test were 

generated under the same conditions and their resulting subscale scores were mostly the same 

across subscales, they yielded the equivalent RMSE-SB means across subscales. Thus, RMSE-

SB means were averaged over subscales, and the average RMSE-SB means were used to conduct 

the repeated measures analysis. 

Table 4.10 below presents results of repeated measures for RMSE-SBs based on different 

methods across different simulation conditions. Because raw subscale scores and Kelley’s scores 
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are the exactly same, Kelley’s scores were excluded in the analyses. The results show that all 

within- and between-groups effects were statistically significant. First, RMSE-SBs based on 

different methods (i.e., raw, HH, and Haberman methods) were statistically and significantly 

different (i.e., main effect), and the amount of RMSE-SB from different methods varied across 

all four simulation conditions (i.e., two-way interaction effects). The different effect sizes of 

factors by squared partial eta, 𝜂𝑝
2 were observed. The most influential effects on the amount of 

RMSE-SB were, particularly, found in the main effect of Method (i.e., 0.99), two-way 

interaction of Method x Subscale Consistency (i.e., 0.98), Method x Subscale Length (i.e., 0.98), 

and Method x Between-subscales Correlation (i.e., 0.99), and three way interaction effect of, 

Method x Subscale Consistency x Between-subscales Correlation (i.e., 0.85), and Method x 

Subscale Length x Between Subscale Correlation (i.e., 0.85). Although several four-way and 

five-way interactions were also statistically significant, their effect sizes were trivial. The 

following four figures, Figure 16, through Figure 19, correspond to the results of two-way 

interactions in which the Test Type, the Subscale Consistency, the Subscale Length, and the 

Between-subscale Correlation conditions are, respectively, involved. 

Table 4.10. Test of Repeated Measures of RMSE-SBs for Subscale Score Estimates 

Source df SS MS 𝐹𝑜𝑏𝑠 p 𝜂𝑝
2 

Method 2 37.079 18.539 
1,494,700.

83 
<0.01 0.99 

2 way interaction       

Method*TestType 2 0.019 0.010 774.98 <0.01 0.25 

Method*SubscaleConsistency  2 2.701 1.350 108,862.08 <0.01 0.98 

Method*SubscaleLength 2 2.597 1.299 104,707.16 <0.01 0.98 

Method*BetweenSubscaleCorr 4 42.300 10.575 852,578.46 <0.01 0.99 

3 way interaction       

Method*TestType*SubscaleConsistency 2 0.000 0.000 13.43 <0.01 0.00 

     Method*TestType *SubscaleLength 2 0.000 0.000 1.61 >0.01 0.00 

Method*TestType*BetweenSubscaleCorr 4 0.002 0.001 50.09 <0.01 0.04 

     Method*SubscaleConsistency* 2 0.004 0.002 180.11 <0.01 0.07 
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     SubscaleLength 

     Method*SubscaleConsistency* 

     BetweenSubscaleCorr 
4 0.338 0.084 6,808.39 <0.01 0.85 

     Method*SubscaleLength*  

     BetweenSubscaleCorr 
4 0.342 0.085 6,891.30 <0.01 0.85 

4 way interaction       

Method*TestType*SubscaleConsistency*

SubscaleLength 
2 0.000 0.000 2.28 >0.01 0.00 

Method*TestType*SubscaleConsistency* 

BetweenSubscaleCorr 
4 0.000 0.000 3.72 <0.01 0.00 

Method*TestType*SubscaleLength* 

BetweenSubscaleCorr 
4 0.000 0.000 0.69 >0.01 0.00 

Method* SubscaleConsistency* 

SubscaleLength*BetweenSubscaleCorr 
4 0.003 0.001 63.92 <0.01 0.05 

5 way interaction       

Method*TestType*SubscaleConsistency *  

SubscaleLength*BetweenSubscaleCorr 
4 0.000 0.000 1.08 >0.01 0.00 

Error (Method) 4,752 0.059 
0.00

0 
   

 

Figure 4.15 compares the standardized RMSE-SB means based on different methods in 

the Ability vs. Achievement Test Type conditions. Regardless of test types, RMSE-SB means 

were somewhat higher in the Achievement Test Type than in the Ability Test Type, although the 

RMSE-SB difference seems to be small. The lowest RMSE-SB was found in the Haberman’s 

method, and the highest RMSE-SB means was observed in the HH method. RMSE-SB were 

lower in order of Haberman < Raw < HH in both test type conditions. Notice that only 

Haberman’s method yielded less RMSE-SBs than the Raw subscale 
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Figure 4.15. RMSE-SB Means in Distinct Test Types: Ability vs. Achievement Tests 

Figure 4.16 below compares the standardized RMSE-SB means across different methods 

depending on the different subscale consistency: High vs. Low Subscale Consistency conditions. 

All subscales scoring method yielded lower RMSE-SB means in the High Subscale Consistency 

condition than in the Low Subscale Consistency condition. Although Haberman method yielded 

less RMSE-SB than the raw subscale scoring method, HH method made higher RMSE-SB 

means than the raw subscale scoring.  



130 

 

 

Figure 4.16. RMSE-SB Means in Different Subscale Consistency Conditions: High vs. Low 

Next, Figure 4.17 presents the standardized RMSE-SB means from different methods, 

depending on different subscale lengths. In all three methods, RMSE-SB means were smaller in I 

= 20 than in I = 10. Haberman method yielded lowest RMSE-SB than the raw subscale scoring 

method in both subscale length conditions, and HH method yielded highest RMSE-SB than raw 

subscale scoring.  
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Figure 4.17. RMSE-SB Means in Different Subscale Length Conditions: I = 10 vs. I = 20 

Figure 4.18 shows the standardized RMSE-SB means from different methods depending 

on the three Between-subscales Correlation conditions: r = 0.3, r = 0.6, and r =0.9. Across three 

types of between-subscales correlation conditions, Haberman’s methods always yielded lower 

RMSE-SB means than the raw subscale scoring method, and the decrease in RMSE-SB was the 

largest in the Between-subscales Correlations of r = 0.9. Although HH method yielded 

substantially higher RMSE-SBs among methods in r = 0.3 conditions than raw subscale scoring, 

it yielded RMSE-SBs as low as those from Haberman’s method in the Between-subscales 

Correlation condition of r = 0.9.  
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Figure 4.18. RMSE-SB Means in Different Between-subscales Correlation Conditions: r = 0.3 

vs. v = 0.6 vs. r = 0.9 

The following figures, Figure 4.19 through Figure 4.22, present results of three-way 

interactions, respectively of Method x different Subscale Consistency x Between-subscales 

Correlation, and Method x Subscale Length x Between Subscales Correlation on RMSE-SB 

means. They present how the standardized RMSE-SB means based on different methods perform 

depending on the combinations of other two between-group factors.  

Figure 4.19 and Figure 4.20 show the standardized RMSE-SBs from different methods 

across Between-subscales Correlations, respectively in the High vs. Low Subscale Consistency 

conditions. The noticeable difference in patterns between two subscale consistency conditions 

was especially found in the performance of the HH method. From both graphs, RMSE-SB from 

the HH methods was very large in r = 0.3, but low when r = 0.9. However, the patterns in 

different subscale consistency conditions differed in the Between-subscales Correlations. The 

RMSE-SB from the HH method were considerably high in r = 0.3 in the High Subscale 
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Consistency condition, but the difference in RMSE-SB among different methods were relatively 

small in the Low Subscale Consistency condition. 

 

Figure 4.19. RMSE-SB Means across Different Between-subscales Correlation in the High 

Subscale Consistency Condition 

 

Figure 4.20. RMSE-SB Means across Different Between-subscales Correlation in the Low 

Subscale Consistency Condition 
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The following figures, Figure 21 and Figure 22, shows the standardized RMSE-SB means 

across different between-subscales correlations, respectively in I =10 and I = 20 Subscale Length 

conditions. From the graphs, RMSE-SB means from the HH method greatly differed across 

between-subscale correlations. Although the patterns were very similar in both subscale length 

conditions: I = 10 vs. I = 20. The deviations of RMSE-SB means across different subscale 

lengths seemed to be large in Subscale length of I = 10. 

 

Figure 4.21. RMSE-SB Means across Different Between-subscales Correlation in the I = 10 

Subscale Consistency Condition.  
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Figure 4.22. RMSE-SB Means across Different Between-subscales Correlation in the I = 20 

Subscale Consistency Condition. 

Approximation Errors from IRT-based Subscale Scores 

As an index of the accuracy of estimation from IRT, RMSE-SBs were compared. RMSE-

SB was computed by obtaining the squared mean difference of true subscale 𝜃s and estimated 

IRT subscale 𝜃s in each replication. Tables A28 through A29 include the results of RMSE-SBs 

from two different methods across the simulation conditions.  

Table 4.11 includes RMSE-SB Means for IRT subscale scores. In all conditions, MIRT-

2PL yielded smaller RMSE-SBs than UIRT-2PL, indicating that MIRT-2PL models estimate 

subscale scores with more precision. Comparing two Test Type conditions, ability test yielded 

somewhat lower RMSEs than achievement test, although the difference was very trivial. Other 

three conditions, Subscale Length, Subscale Consistency, and Between-subscales correlation, 

showed more substantial difference in RMSE-SBs. Large difference in the amount of RMSE-

SBs across models were, especially, found in the Subscale Length and the Subscale Consistency 

conditions. For example, RMSE-SB values were averagely 0.57 in the I = 10 Subscale Length 
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condition and 0.46 in the I = 20 Subscale Length condition, with other conditions fixed. Also, 

RMSE-SB were, on average, 0.57 in the Low Subscale Consistency condition, and 0.47 in the 

High Subscale Consistency condition, with other conditions fixed, as well. However, without 

considering the type of methods, the lowest RMSE-SBs were found in the r = 0.9 Between-

subscales Correlation conditions, with an average of 0.49 across simulation conditions. In 

contrast, the highest RMSE-SBs were found in the r = 0.3 Between-subscales Correlation 

conditions, with an average of 0.54 across simulation conditions. However, this difference in the 

amount of RMSE-SB was wholly due to the RMSE-SB from the multidimensional IRT model. 

While RMSE-SB means based on the unidimensional IRT scores were constant across (i.e., 

0.55), the RMSE-SB means based on the multidimensional IRT scores varied depending on the 

type of Between-subscales Correlation conditions. For example, the RMSE means were 0.43 in 

the r = 0.3 Between-subscales Correlation condition, whereas they were 0.53 in the r = 0.9 

Between-subscales Correlation condition. When the MIRT-2PL model is applied to the data 

whose correlations get high, the MIRT-2PL model may perform better than the unidimensional 

model.  

Table 4.11. RMSE-SB Means from IRT scores in Various Simulation Conditions 

Test type 
Subscale  

length 

Subscale  

consistency 

Between-subscales 

Correlation 
UIRT-2PL MIRT-2PL 

Achievement 

 

I = 10 

High 

r = 0.3 0.57 0.56 

r = 0.6 0.57 0.52 

r = 0.9 0.57 0.45 

Low 

r = 0.3 0.68 0.66 

r = 0.6 0.68 0.61 

r = 0.9 0.68 0.50 

I = 20 

High 

r = 0.3 0.45 0.44 

r = 0.6 0.45 0.42 

r = 0.9 0.45 0.40 

Low 
r = 0.3 0.54 0.53 

r = 0.6 0.54 0.50 
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r = 0.9 0.54 0.44 

Ability 

I = 10 

High 

r = 0.3 0.54 0.53 

r = 0.6 0.54 0.49 

r = 0.9 0.53 0.42 

Low 

r = 0.3 0.66 0.64 

r = 0.6 0.66 0.59 

r = 0.9 0.66 0.48 

I = 20 

High 

r = 0.3 0.41 0.40 

r = 0.6 0.41 0.39 

r = 0.9 0.42 0.36 

Low 

r = 0.3 0.53 0.51 

r = 0.6 0.53 0.48 

r = 0.9 0.52 0.41 

Repeated Measures ANOVA: Comparisons of RMSE-SBs 

The mean differences of RMSE-SBs from two IRT-based scores: Unidimensional IRT-

2PL vs. Multidimensional IRT-2PL (i.e., UIRT-2PL vs., MIRT-2PL) were examined using the 

Repeated Measure analysis. Table 4.12 presents test results for repeated measures of the RMSE-

SB means. The results indicate that RMSE-SB means from the two models were statistically 

significantly different, with 𝐹(2,2376) = 38,382.27, 𝑝 < 0.01, 𝜂𝑝
2 = 0.94. Specifically, RMSE-

SBs were lower in the MIRT-2PL model than the unidimensional 2PL model, indicating that the 

MIRT-2PL scores have more accuracy.  

RMSE-SB means from the two models were statistically significantly different, 

depending on three simulation conditions: Subscale Length (𝐹(1,2376) = 2,704.43, 𝑝 <

0.01, 𝜂𝑝
2 = 0.53), Subscale Consistency (𝐹(1,2376) = 1,955.42, 𝑝 < 0.01, 𝜂𝑝

2 = 0.45), or 

Between-subscales correlation (𝐹(1,2376) = 10,134.79, 𝑝 < 0.01, 𝜂𝑝
2 = 0.90). These results show 

that RMSE-SB means for subscale scores from different models significantly differ across the 

Subscale Length, the Subscale Consistency, and the Between-subscales Correlation conditions. 

However, RMSE-SB means were not statistically significantly different across Test Type 

conditions. All types of three-way interaction effects were statistically significant, but only two 
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of six sources had significantly large effect size, Method * Subscale Consistency * Between-

subscale Correlation (i.e., 𝜂𝑝
2 = 0.36) and Method * Subscale Length * Between-subscale 

Correlation (𝜂𝑝
2 = 0.43). Although two sources of four-way interaction effect were also 

statistically significant, their effect sizes were ignorable, providing only a little affects the total 

variance of RMSE-SBs.   

Table 4.12. Test of Repeated Measures of PRMSE-SBs for Subscale Score 𝜽s 

Source df SS MS 𝐹𝑜𝑏𝑠 p-value 𝜂𝑝
2 

Method 1 4.152 4.15 38,382.27 <0.01 0.942 

2 way interaction       

     Method*TestType 1 0.001 0.001 6.14 >0.01 0.003 

     Method*SubscaleConsistency  1 0.212 0.21 1,955.42 <0.01 0.451 

     Method* SubscaleLength 1 0.293 0.29 2,704.43 <0.01 0.532 

     Method*BetweenSubscaleCorr 2 2.193 1.10 10,134.79 <0.01 0.895 

3 way interaction       

     Method* TestType * 

SubscaleConsistency 
1 0.002 0.001 19.47 <0.01 0.008 

     Method* TestType * SubscaleLength 1 0.001 0.001 12.17 <0.01 0.005 

     Method* TestType * 

BetweenSubscaleCorr 
2 0.002 0.001 7.93 <0.01 0.007 

     Method* SubscaleConsistency *  

     SubscaleLength 
1 0.001 0.001 9.87 <0.01 0.004 

     Method* SubscaleConsistency *  

     BetweenSubscaleCorr 
2 0.145 0.07 669.97 <0.01 0.361 

     Method* SubscaleLength *  

     BetweenSubscaleCorr 
2 0.196 0.10 906.62 <0.01 0.433 

4 way interaction       

     Method* TestType * 

SubscaleConsistency *     

     SubscaleLength 

1 0.001 0.001 6.78 <0.01 0.003 

     Method* TestType * 

SubscaleConsistency *  

     BetweenSubscaleCorr 

2 0.001 0.001 6.76 <0.01 0.006 

     Method* TestType * SubscaleLength *  

     BetweenSubscaleCorr 
2 0.003 0.001 11.78 <0.01 0.010 

     Method* SubscaleConsistency *  

     SubscaleLength * BetweenSubscaleCorr 
2 0.001 0.000 4.28 >0.01 0.004 

5 way interaction       

     Method* TestType * 

SubscaleConsistency *  
2 0.002 0.001 7.20 >0.01 0.006 
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     SubscaleLength * BetweenSubscaleCorr 

Error (Method) 2,376 0.257 0.000    

 

Figure 4.23 presents graphs for four types of two-way interaction effects: Method * Test 

Type, Method * Subscale length, Method * Subscale Consistency, and Method * Between-

subscales Correlation. RMSE-SB means are not seen as having much difference across different 

test types, but RMSE-SB means seem to substantially differ in different Subscale Length, 

Subscale Consistency, and Between-subscale Correlation conditions. Specifically, the RMSE-

SBs were a little bit lower in ability test than achievement test. Also, the RMSE-SBs were lower 

in the I = 20 Subscale Length condition than the I = 20 Subscale Length condition across models, 

where the MIRT-2PL had lower RMSE-SB. When it comes to the Subscale Consistency 

condition, RMSE-SB means were lower in the High Subscale Consistency condition than in the 

Low Subscale Consistency condition. Similarly, the MIRT-2PL had lower RMSE-SB values 

than the unidimensional model in both subscale consistency conditions. Comparing the RMSE-

SBs across different between-subscales correlations, as mentioned earlier, the unidimensional 

2PL model performed worse than the MIRT-2PL in all between-subscales correlations. Although 

the MIRT-2PL model always performed better than the unidimensional 2PL model, the degree of 

how better it performed differed across different between-subscales correlations. In addition, the 

MIRT-2PL model yielded lower RMSE-SBs in all conditions. However, RMSE-SBs from the 

MIRT-2PL model were dramatically reduced, as Between-subscales Correlations get higher. 

That is, the MIRT-2PL had greatly lowered RMSE-SBs relative to the UIRP-2PL in the r = 0.9 

Between-subscales Correlation condition. On the other hand, the difference for RMSE-SB was 

very small in the r = 0.3 Between-subscales Correlation condition. 
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Figure 4.23. Two-way Interaction Effects of RMSE-SBs in Each Between-group factor: Test 

Type, Subscale Length, Subscale Consistency, and Between-subscale Correlation  
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Correlations between Estimated and True Subscale Scores 

 Correlations between simulated true 𝜃s and estimated subscale scores were observed. 

Table A30 through Table A33 present the correlations between true 𝜃s and subscale scores 

estimated through multiple scoring methods in each condition. Observing correlations with true 

subscale scores will be assisted in determining which method can yield better estimates which 

approximate true subscale scores.  

Table A30 shows correlations between estimated and true subscale scores in 

Achievement tests and I = 10.  The size of correlation generally was larger in High internal 

consistency than in Low internal consistency with Between-Subscale scores correlations and 

Subscale scoring methods fixed. Within the same internal consistency conditions, different 

subscale scoring methods seem to fluctuate based on the size of Between-subscale scores 

correlations. In r = 0.3, HH and OPI methods had the lowest correlations with true subscale 

scores and all other methods had relatively high correlations with true subscale scores. Low 

correlations in HH and OPI methods makes sense if considering that the first two types of 

subscale scoring method (i.e., HH and OPI methods) combine information from the total test 

scores. But such tendency seemed to be different in other between-subscale scores correlations. 

For example, in r = 0.6, in which correlations between subscale scores gets somewhat higher, 

HH and OPI method showed improved correlations, and Haberman and MIRT-2PL methods 

showed better correlations than those from other methods. Such high correlations seem to come 

from the fact that Haberman method borrows some information from total scores and the MIRT-

2PL considers correlations among subscale scores. Lastly, in r = 0.9, HH, Haberman, MIRT-

2PL, and OPI methods showed high correlations compared to other methods. It also makes sense 
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when we consider that HH, Haberman, and OPI methods combine some or whole information 

from total test scores and the MIRT-2PL consider relationships between subscale scores.  

Table A31 shows correlations between estimated and true subscale scores in 

Achievement tests and I = 20.  Most of all, correlations between estimated and true scores in I = 

20 conditions were generally higher than in those in I = 10 conditions. For example, while 

average correlations between subscale scores were 0.79 in I = 10 conditions, they were 0.85 in I 

= 20 conditions, indicating that estimates from a subscale including more item is more accurate. 

Similar as in I = 10 conditions, the size of correlation was slightly larger in High internal 

consistency than in Low internal consistency with Between-Subscale scores correlations and 

Subscale scoring methods fixed. In both High and Low internal consistency conditions, when r = 

0.3, HH and OPI methods had the lowest correlations with true subscale scores and all other 

methods had relatively high correlations with true subscale scores. Such tendency was different 

in other between-subscale scores correlation conditions. For example, in r = 0.6, in which 

correlations between subscale scores gets somewhat higher, HH and OPI method showed 

improved correlations, and Haberman and MIRT-2PL methods showed better correlations than 

those from other methods. In turn, in r = 0.9, HH, Haberman, MIRT-2PL, and OPI methods 

showed high correlations compared to other methods.  

Similar patterns were also observed in Ability test conditions. Correlations between 

estimated and true scores from Ability test conditions were similar to those from Achievement 

test conditions. Specifically, average correlations between subscale scores were 0.82 in 

Achievement test conditions, and they were 0.83 in Ability test conditions, indicating that the 

accuracy of estimates was similar regardless of difficulty levels of items in a subscale. Table A32 

and A33, present correlations between true subscale scores and estimates from different models. 
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The relative size and patterns of correlations between true subscale scores and estimated subscale 

scores based on different method was analogous as in the Achievement test conditions. For 

example, correlations between estimated and true subscale scores were larger (r = 0.86) in I = 20 

than in I = 10 (r = 0.80). Also, HH and OPI scores showed high correlations with true subscale 

scores in r = 0.9 condition, but they had low correlations in r = 0.3 condition. In sequence, 

subscale score estimates from the Haberman method and the MIRT-2PL generally showed high 

consistency with true subscale scores in most conditions.  

 The following four figures, Figure 4.24 through 4.27, compare true and estimated 

subscale scores in different Test type, Subscale length, Between-subscales correlation, and 

Subscale consistency. Figure 4.23 presents the magnitude of correlations between true subscale 

scores and estimated scores from different methods with separate lines in different test types. 

Generally, Ability tests showed higher correlations than Achievement tests. However, the 

difference between both test types was not large.  

 

Figure 4.24. Correlations between True Subscale Scores and Estimated Subscale Scores from 

Different Methods in Distinct Test Types 
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Figure 4.25 compares correlations of true and estimated subscale scores based on 

different methods in different subscale length conditions. Generally, the correlations were higher 

in I = 20 conditions than in I = 10, showing high estimation accuracy when more items are 

included in a subscale. Comparing among methods, Haberman’s method yielded the highest 

correlations, and the HH method yielded the lowest correlation.  

 
Figure 4.25. Correlations between True Subscale Scores and Estimated Subscale Scores from 

Different Methods in Different Subscale Length Conditions 

The MIRT-2PL also showed similar level of correlation as Haberman’s method. In both Subscale 

Length conditions, the correlations were high in order of Haberman> MIRT-2PL > UIRT-2PL > 

Raw > Kelley > OPI > HH methods. The Haberman’s method and the MIRT-2PL yielded better 

correlations than raw subscale score and the UIRT-2PL.  

Next, correlations in High vs. Low Subscale Consistency conditions were compared, 

which is shown in Figure 4.26. In each method, the size of the correlation was larger in the High 

Subscale Consistency condition. The highest correlations were observed in the Haberman’s and 

the MIRT-2PL models, and the lowest correlations were observed in the HH method. Only the 
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Haberman method and the MIRT-2PL model yielded higher correlations than raw subscale 

scores and UIRT-2PL, respectively. High correlations between estimated and true subscale 

scores were found, in order of Haberman > MIRT-2PL > UIRT-2PL > Raw > Kelley > OPI > 

HH methods.  

 
 

Figure 4.26.  Correlations between True Subscale Scores and Estimated Subscale Scores from 

Different Methods in Different Subscale Length Conditions 

Correlations in r = 0.3, 0.6, vs., 0.9 were also compared across different methods as 

shown in Figure 4.27. The Haberman’s method yielded highest correlations, and HH method the 

lowest correlations. Kelley’s and Haberman’s methods showed higher correlations than Raw 

subscale scores. Similarly, the MIRT-2PL yielded higher correlation than the MIRT-2PL. The 

degree to which the estimated and the true subscale scores are correlated differed among 

different Between-subscales Correlation conditions. Both the MIRT-2PL and the Haberman’s 

methods showed largely increased correlations in high Between-subscales Correlation condition 

(i.e., r = 0.9). On the other hand, although the HH and the OPI methods showed lower 

correlations than raw and UIRT-2PL models, the degree to which the estimated and the true 
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subscale scores are correlated largely differed across Between-subscale correlations. That is, the 

HH and the OPI showed high variance of the correlations among different Between-subscale 

Correlation conditions. Specifically, the HH and the OPI methods showed very low correlations 

when Between-subscales Correlation is 0.3 and high correlations when Between-subscales 

Correlation is 0.9. Thus, when Between-subscales Correlation is 0.9, they yielded high 

correlations over Raw subscale scores and UIRT-2PL subscale scores, High correlations were 

observed in order of Haberman > MIRT-2PL > UIRT-2PL > Kelley > Raw > OPI > HH 

methods.  

Generally, the results from correlations between the estimated and the true subscale 

scores showed that high correlations over the Raw subscale score and UIRT-2L were only found 

in Haberman’s and MIRT-2PL models. Although the HH method and OPI method averagely 

showed low correlations between the estimated subscale scores and the true subscale scores in 

average, they yielded higher correlations than the raw or the UIRT-2PL subscale scores in the 

High Between-subscales correlation (i.e., r = 0.9).  

 
 

Figure 4.27. Correlations between True Subscale Scores and Estimated Subscale Scores from 

Different Methods in Different Subscale Correlation Conditions 
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CHAPTER 5 

DISCUSSION 

  

This chapter summarizes the major findings of the study. The primary focus is on both 

identifying specific data conditions in which subscale scores are more reliable and determining 

which subscale scoring methods can provide more accurate and reliable than others under 

various data structures. This chapter also discusses the implications of this study, followed by its 

limitations and future research.  

Findings and Discussion 

 Alternative subscale scoring methods were employed to yield subscale scores for both 

real world data and simulation data. These methods were evaluated with respect to their 

reliability in CTT or accuracy in IRT, primarily by two criteria: root mean square error (RMSE) 

and correlation of subscale score estimates with true subscale 𝜃s. Specifically, two types of 

RMSE indices were used as evaluation criteria of subscale score accuracy, including the 

measurement-based RMSE (RMSE-MB; Haberman, 2008) and the simulation-based RMSE 

(RMSE-SB). RMSE-MB is an index of difference between observed subscale scores and 

subscale scores estimated based on a model, whereas RMSE-SB computes the difference 

between subscale score estimated from a model and true subscale scores obtained from 

simulations. Further, proportional reduction in mean square error (PRMSE-MB) was also used as 

an additional index for evaluating the reliability of CTT subscale scores. Note that RMSE-SB for 

CTT subscale scores were standardized with the sample means and standard deviations within 

each replication and each condition, because RMSE-SB values fluctuate by the unit of 

measurement.  
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 The accuracy of CTT subscale scores were evaluated using both RMSE-MB and RMSE-

SB, where RMSE-MB was obtained by residual of true subscale scores and the true subscale 

scores based on linear regression models (i.e., 𝑆𝑡 − 𝐿(𝑆𝑡|𝑆𝑥)) and RMSE-SB was obtained by 

residual of model-based subscale scores and  expected subscale scores based on the true 

simulation values. For both indices, the low RMSE indicated better accuracy of subscale score 

estimation. On the other hand, the low PRMSE-MB indicated low reliability of subscales scores.   

All RMSE results (i.e., PRMSE-MB and RMSE-SB for CTT subscale scores and RMSE-SB for 

IRT subscale scores) showed that methods led very similar results in the measurement of 

subscale score accuracy across simulation conditions.   

In general, the RMSE-SB from IRT based scores indicated that the Haberman method 

and the multidimensional item response model (MIRT-2PL) performed better than the raw 

subscale scoring in estimating subscale scores. For example, Haberman’s method and the MIRT-

2PL model yielded the lowest RMSE-MB and the lowest RMSE-SB across simulation 

conditions, which was significantly smaller than in the raw subscale scoring or unidimensional 

scoring method. It seems reasonable when considering that Haberman’s method and the MIRT-

2PL model use more information, respectively, through total score or correlation with other 

subscales. Though Kelley’s method also showed the lower RMSE-MB than the raw subscale 

scoring method, it did not improve subscale score reliability, not providing any additional 

advantages over the use of the raw subscale scores. However, the Kelley’s method is simply a 

linear transformation of raw subscale scores, shrinking subscale scores toward the mean. The 

shrunken subscale scores led to reduced SDs, generating the lower MSE. In most simulation 

conditions, the HH and the OPI methods did not performed well relative to the raw subscale 

scoring method, except when subscale scores are highly correlated (i.e., between-subscales 
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correlations of r = 0.9). The HH and the OPI methods produced more reliable subscale score 

estimates when the between-subscales correlations are very high.  In contrast, these methods had 

less reliable subscale scores, even lower than the raw scores, when the correlations are very low.  

Similar results were observed from the correlations of subscale score estimates with their true 

subscale 𝜃s.  

The reliability or accuracy of subscale scores from different methods (i.e., models) varied 

across data conditions. From the hypotheses, described in Chapter 1, we expected that subscale 

score reliability or accuracy would increase in the following conditions: 1) when a subscale has 

sufficient number of items, and 2) item scores or item responses are consistent within a subscale 

and 3) item difficulties are close to .5. Also, we expected that the OPI and the HH methods 

would perform better when correlations among subscales are very high, because they use total 

score information. The impact of test types consisting of items with different difficulty levels has 

not been studied previously, so they were explored in the current study.  

The conditions in the study impacted both RMSE-SB from IRT subscale scores and 

standardized RMSE-SB from CTT subscale scores in the expected manner. That is, subscale 

scores yielded the lower RMSE when subscale length is longer (20 versus 10 items) and subscale 

consistency is higher. It was found that the MIRT 2PL model performed better than 

unidimensional 2PL model, in particular when between-subscales correlations are high (i.e., r = 

0.9). Similar results were also supported by investigating the correlation of subscale score 

estimation with their true trait subscale 𝜃s. The results also illustrated that ability test yielded 

lower RMSE-SB than achievement test. RMSE-SB from CTT subscale scores also showed the 

same results as these results of IRT scores.  
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 However, results of RMSE-MB from CTT-based subscale scores were seemingly 

inconsistent with the research hypotheses. CTT-based subscale scores had the low RMSE-MB 

when subscale length is shorter, and when subscale consistency is low rather than high. 

Similarly, the ability test yielded slightly higher RMSE-MB than the achievement test. However, 

it should be noted that RMSE depends on the measurement scale units for the test. Thus, when 

conditions such as test length, internal consistency and mean item difficulty impact score 

variances, differences in RMSE will also be found. Note that the Kelley’s method, for example, 

yielded lower RMSE values than the raw subscale scoring method, even though they did not 

improve reliability of subscale score at all. If considering Kelley’s subscale scores are shrunk 

toward the mean, the RMSE from Kelley’s were influenced by the decreased standard 

deviations. Thus, RMSE cannot be meaningfully compared across levels of the three conditions 

(i.e., subscale length, subscale consistency, and item difficulty) that impact score variances. 

Hence, it is important to consider reliability, or the proportional reduction in measurement error. 

PRMSE-MB measures the reliability of subscale scores, and thus free from the measurement 

scale unit. Actually, PRMSE-MB results showed high consistency with the research hypothesis. 

That is, the results report that high reliability was obtained when subscale length is rather longer, 

and subscale consistency is high.  

Implications  

The current study has several implications. The current study included several potential 

factors and subscale scoring models as variables to comprehensively understand the impact of 

various test data structures on subscale score estimation, and offered some insights for further 

investigation. The results of this study will help determine the most appropriate data structures 
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for subscale scores to be reported. When researchers are required to make decisions whether they 

report subscale scores, this study will guide them what they should consider above all things.  

Reliable subscale scoring methods can be worthwhile in providing diagnostic 

information. Diagnostic information can help teachers design the future instruction or adjust their 

current lesson, and can help students manage their learning time based on the information. That 

is, they devote more or less time in review areas their weak areas depending on their relative 

strength. Also, it may be useful for states and educational institutions to consider results from 

subscale score patterns in evaluating the effectiveness of their current curricular and considering 

to fixing their curriculum.  

Also, resulting reliable subscale scores can be used as supplementary criteria for selecting 

the best fitting ones among applicants with the same total score in school, personal selection, and 

placement. If subscale scores can be precisely estimated, the use of subscale scores seem to be an 

source of valuable information as supplementary criteria. 

Limitations 

In order to examine the exact impact of variables on subscale score accuracy, the 

simulation conditions used in the current study were thoroughly designed and controlled 

according to the research plan. However, practical testing situations may not be always 

standardized as in the simulation situation. For example, the subscale scores were assumed to 

have the same p-value across subscales for convenience of study. However, it may not be 

certainly possible in real life. Therefore, when the given information is used, careful 

interpretation and applications are required.  

 The current study fixed the number of subscales to four, which is the same across all 

conditions. However, considering that many subscale scoring methods utilize some information 
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from other subscales or total scores, including more or less subscales in a test can be another 

factor impacting on subscale accuracy, reflecting the effects of subscale length. Future study is 

recommended to include various number of subscales within a test.  

Furthermore, the current study used two types of RMSE indices for evaluating the CTT-

based subscale scores. As mentioned earlier, the indices had disadvantage of fluctuating the 

RMSE scores depending on the sample variances. Standardized RMSE may eliminate the issue. 

Future research is recommended to compare the results of standardized RMSE values.  
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APPENDIX A 

SIMULATION DATA RESULTS 
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 Table A2. CTT-based Summary Statistics for Achievement Tests 

Data condition 

Subscale Mean (p) SD 
KR-

20 

Correlation 

with 

total score 
Subscale 

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

I=10 

 

High 

0.3 

1 6.91(0.69) 2.37 0.71 0.63 

2 6.94(0.69) 2.36 0.71 0.63 

3 6.96(0.70) 2.36 0.71 0.63 

4 6.87(0.69) 2.39 0.71 0.64 

Total 27.68(0.69) 6.05 0.79 - 

0.6 

1 6.94(0.70) 2.37 0.71 0.75 

2 6.90(0.69) 2.36 0.71 0.75 

3 6.94(0.69) 2.37 0.71 0.75 

4 6.88(0.69) 2.48 0.71 0.75 

Total 27.66(0.69) 7.13 0.86 - 

0.9 

1 6.92(0.69) 2.38 0.71 0.85 

2 6.87(0.69) 2.38 0.71 0.85 

3 6.91(0.69) 2.37 0.71 0.85 

4 6.87(0.69) 2.38 0.71 0.85 

Total 27.57(0.69) 8.13 0.90 - 

Low 

0.3 

1 6.45(0.65) 2.11 0.56 0.61 

2 6.50(0.65) 2.11 0.56 0.61 

3 6.52(0.65) 2.11 0.56 0.61 

4 6.53(0.65) 2.11 0.56 0.61 

Total 26.00(0.65) 5.19 0.69 - 

0.6 

1 6.50(0.65) 2.11 0.56 0.71 

2 6.47(0.65) 2.12 0.56 0.71 

3 6.47(0.65) 2.12 0.56 0.71 

4 6.50(0.65) 2.11 0.56 0.70 

Total 25.95(0.65) 6.00 0.77 - 

0.9 

1 6.50(0.65) 2.12 0.56 0.79 

2 6.47(0.65) 2.11 0.56 0.79 

3 6.50(0.65) 2.11 0.56 0.79 

4 6.46(0.65) 2.12 0.56 0.79 

Total 25.93(0.65) 6.73 0.82 - 

I=20 High 

0.3 

1 13.81(0.69) 4.38 0.83 0.65 

2 13.80(0.69) 4.39 0.83 0.66 

3 13.83(0.69) 4.39 0.83 0.66 

4 13.86(0.69) 4.37 0.83 0.65 

Total 55.29(0.69) 11.51 0.89 - 

0.6 

1 13.84(0.69) 4.39 0.83 0.78 

2 13.80(0.69) 4.38 0.83 0.78 

3 13.76(0.69) 4.40 0.83 0.78 

4 13.77(0.69) 4.40 0.83 0.78 
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Total 55.18(0.69) 13.80 0.93 - 

0.9 

1 13.77(0.69) 4.41 0.83 0.90 

2 13.81(0.69) 4.40 0.83 0.90 

3 13.86(0.69) 4.38 0.83 0.90 

4 13.77(0.69) 4.40 0.83 0.90 

Total 55.21(0.69) 15.83 0.95 - 

Low 

0.3 

1 12.96(0.65) 3.73 0.72 0.64 

2 12.94(0.65) 3.74 0.72 0.64 

3 13.03(0.65) 3.73 0.72 0.64 

4 12.92(0.65) 3.74 0.72 0.64 

Total 51.85(0.65) 9.56 0.81 - 

0.6 

1 12.93(0.65) 3.74 0.72 0.76 

2 13.03(0.65) 3.72 0.72 0.75 

3 13.02(0.65) 3.74 0.72 0.76 

4 12.98(0.65) 3.74 0.72 0.76 

Total 51.95(0.65) 11.31 0.87 - 

0.9 

1 13.01(0.65) 3.73 0.72 0.86 

2 12.91(0.65) 3.74 0.72 0.86 

3 12.92(0.65) 3.74 0.72 0.86 

4 12.93(0.65) 3.74 0.72 0.86 

Total 51.77(0.65) 12.81 0.90 - 
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Table A3. CTT-based Summary Statistics for Ability Tests 

Data condition 

Subscale Mean (p) SD 
KR-

20 

Correlation 

with 

total score 
Subscale 

length 

Subscale 

consistency  

Between- 

subscales 

correlation 

I=10 

High 

0.3 

1 5.02(0.50) 2.62 0.73 0.64 

2 5.04(0.50) 2.63 0.73 0.64 

3 4.98(0.50) 2.63 0.73 0.64 

4 5.01(0.50) 2.62 0.73 0.64 

Total 20.01(0.50) 6.77 0.81 - 

0.6 

1 5.00(0.50) 2.63 0.73 0.76 

2 4.99(0.50) 2.63 0.73 0.76 

3 5.05(0.50) 2.63 0.73 0.76 

4 5.01(0.50) 2.63 0.73 0.76 

Total 20.06(0.50) 8.01 0.87 - 

0.9 

1 5.01(0.50) 2.63 0.73 0.86 

2 5.00(0.50) 2.63 0.73 0.86 

3 5.00(0.50) 2.62 0.73 0.86 

4 5.07(0.51) 2.62 0.73 0.86 

Total 20.09(0.50) 9.08 0.91 - 

Low 

0.3 

1 5.03(0.50) 2.25 0.58 0.62 

2 5.00(0.50) 2.24 0.57 0.61 

3 5.04(0.50) 2.24 0.57 0.62 

4 5.00(0.50) 2.25 0.58 0.62 

Total 20.07(0.50) 5.57 0.70 - 

0.6 

1 5.00(0.50) 2.25 0.58 0.71 

2 4.98(0.50) 2.25 0.58 0.71 

3 5.04(0.50) 2.25 0.58 0.71 

4 4.98(0.50) 2.25 0.58 0.71 

Total 20.00(0.50) 6.45 0.78 - 

0.9 

1 5.01(0.50) 2.24 0.58 0.80 

2 5.00(0.50) 2.25 0.58 0.80 

3 5.01(0.50) 2.25 0.58 0.80 

4 4.98(0.50) 2.25 0.58 0.80 

Total 19.99(0.50) 7.22 0.83 - 

I=20 High 

0.3 

1 10.02(0.50) 4.90 0.84 0.66 

2 10.07(0.50) 4.89 0.84 0.66 

3 9.99(0.50) 4.91 0.84 0.66 

4 10.00(0.50) 4.89 0.84 0.66 

Total 40.01(0.50) 12.97 0.90 - 

0.6 

1 10.01(0.50) 4.90 0.84 0.79 

2 9.95(0.50) 4.88 0.84 0.79 

3 10.04(0.50) 4.90 0.84 0.79 

4 10.03(0.50) 4.91 0.84 0.79 
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Total 40.11(0.50) 15.52 0.93 - 

0.9 

1 9.9(0.50) 4.92 0.84 0.90 

2 10.03(0.50) 4.90 0.84 0.90 

3 10.00(0.50) 4.88 0.84 0.90 

4 10.02(0.50) 4.88 0.84 0.90 

Total 39.95(0.50) 17.74 0.95 - 

Low 

0.3 

1 9.91(0.50) 4.00 0.73 0.64 

2 9.93(0.50) 4.00 0.73 0.64 

3 9.95(0.50) 3.98 0.73 0.64 

4 9.99(0.50) 3.98 0.73 0.64 

Total 39.79(0.50) 10.28 0.83 - 

0.6 

1 9.99(0.50) 4.00 0.73 0.76 

2 9.90(0.50) 3.99 0.73 0.76 

3 9.97(0.50) 3.99 0.73 0.76 

4 10.02(0.50) 4.00 0.73 0.76 

Total 39.87(0.50) 12.17 0.88 - 

0.9 

1 10.01(0.50) 3.99 0.73 0.86 

2 10.03(0.50) 4.00 0.73 0.86 

3 9.98(0.50) 3.99 0.73 0.86 

4 9.92(0.50) 3.98 0.73 0.86 

Total 39.93(0.50) 13.78 0.91 - 
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Table A4.  Summary Statistics of Subscale Scores from the unidimensional 2PL IRT Model for 

Achievement Tests 

Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale Mean SD 
Empirical 

Reliability 

Correlations 

with total scores 

I=10 

High 

0.3 

1 0.00 0.82 0.68 0.65 

2 0.00 0.82 0.67 0.62 

3 0.00 0.82 0.67 0.61 

4 0.00 0.83 0.69 0.65 

Total 0.00 0.89 0.79 - 

0.6 

1 0.00 0.82 0.68 0.75 

2 0.00 0.83 0.68 0.74 

3 0.00 0.82 0.68 0.74 

4 0.00 0.83 0.69 0.75 

Total 0.00 0.82 0.85 - 

0.9 

1 0.00 0.82 0.68 0.84 

2 0.00 0.83 0.68 0.85 

3 0.00 0.82 0.68 0.84 

4 0.00 0.82 0.68 0.84 

Total 0.00 0.94 0.88 - 

Low 

0.3 

1 0.00 0.74 0.55 0.60 

2 0.00 0.74 0.55 0.61 

3 0.00 0.74 0.55 0.61 

4 0.00 0.74 0.55 0.62 

Total 0.00 0.83 0.69 - 

0.6 

1 0.00 0.74 0.55 0.70 

2 0.00 0.74 0.55 0.70 

3 0.00 0.74 0.55 0.71 

4 0.00 0.74 0.55 0.70 

Total 0.00 0.88 0.77 - 

0.9 

1 0.00 0.74 0.55 0.79 

2 0.00 0.74 0.55 0.79 

3 0.00 0.74 0.55 0.78 

4 0.00 0.74 0.55 0.79 

Total 0.00 0.90 0.81 - 

I=20 High 

0.3 

1 0.00 0.90 0.80 0.64 

2 0.00 0.90 0.81 0.66 

3 0.00 0.90 0.80 0.66 

4 0.00 0.90 0.80 0.64 

Total 0.00 0.94 0.88 - 

0.6 

1 0.00 0.90 0.80 0.78 

2 0.00 0.90 0.80 0.78 

3 0.00 0.89 0.80 0.77 
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4 0.00 0.90 0.81 0.79 

Total 0.00 0.96 0.92 - 

0.9 

1 0.00 0.90 0.80 0.89 

2 0.00 0.90 0.80 0.89 

3 0.00 0.90 0.80 0.90 

4 0.00 0.90 0.80 0.89 

Total 0.00 0.97 0.93 - 

Low 

0.3 

1 0.00 0.84 0.71 0.62 

2 0.00 0.84 0.71 0.64 

3 0.00 0.84 0.71 0.65 

4 0.00 0.84 0.71 0.64 

Total 0.00 0.90 0.82 - 

0.6 

1 0.00 0.85 0.72 0.77 

2 0.00 0.84 0.71 0.75 

3 0.00 0.84 0.71 0.75 

4 0.00 0.84 0.71 0.75 

Total 0.00 0.93 0.87 - 

0.9 

1 0.00 0.84 0.71 0.85 

2 0.00 0.84 0.71 0.86 

3 0.00 0.84 0.71 0.85 

4 0.00 0.84 0.71 0.85 

Total 0.00 0.95 0.90 - 
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Table A5. Summary Statistics of Subscale Scores from the unidimensional 2PL IRT Model for 

Ability Tests 

Subscale  

length 

Subscale 

consistency 

Between- 

subscale 

correlation 

Subscale Mean SD 
Empirical 

Reliability 

Correlations 

with total scores 

I=10 

High 

0.3 

1 0.00 0.85 0.72 0.63 

2 0.00 0.85 0.72 0.65 

3 0.00 0.85 0.72 0.63 

4 0.00 0.85 0.72 0.65 

Total 0.00 0.90 0.81 - 

0.6 

1 0.00 0.85 0.72 0.76 

2 0.00 0.85 0.72 0.75 

3 0.00 0.85 0.72 0.76 

4 0.00 0.85 0.72 0.76 

Total 0.00 0.93 0.87 - 

0.9 

1 0.00 0.86 0.74 0.86 

2 0.00 0.85 0.72 0.86 

3 0.00 0.85 0.71 0.86 

4 0.00 0.85 0.71 0.86 

Total 0.00 0.95 0.90 - 

Low 

0.3 

1 0.00 0.76 0.57 0.62 

2 0.00 0.75 0.57 0.60 

3 0.00 0.76 0.58 0.63 

4 0.00 0.76 0.57 0.60 

Total 0.00 0.84 0.70 - 

0.6 

1 0.00 0.76 0.58 0.71 

2 0.00 0.75 0.56 0.70 

3 0.00 0.77 0.59 0.72 

4 0.00 0.76 0.58 0.72 

Total 0.00 0.89 0.78 - 

0.9 

1 0.00 0.76 0.58 0.80 

2 0.00 0.76 0.58 0.80 

3 0.00 0.76 0.58 0.80 

4 0.00 0.77 0.59 0.81 

Total 0.00 0.91 0.83 - 

I=20 High 

0.3 

1 0.00 0.91 0.83 0.66 

2 0.00 0.91 0.83 0.66 

3 0.00 0.91 0.83 0.66 

4 0.00 0.91 0.83 0.65 

Total 0.00 0.95 0.90 - 

0.6 

1 0.00 0.91 0.83 0.79 

2 0.00 0.91 0.83 0.79 

3 0.00 0.91 0.83 0.79 
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4 0.00 0.92 0.84 0.80 

Total 0.00 0.97 0.93 - 

0.9 

1 0.00 0.91 0.84 0.90 

2 0.00 0.91 0.83 0.90 

3 0.00 0.92 0.84 0.91 

4 0.00 0.91 0.83 0.90 

Total 0.00 0.97 0.95 - 

Low 

0.3 

1 0.00 0.86 0.74 0.67 

2 0.00 0.85 0.73 0.63 

3 0.00 0.85 0.73 0.64 

4 0.00 0.86 0.73 0.64 

Total 0.00 0.91 0.83 - 

0.6 

1 0.00 0.86 0.74 0.77 

2 0.00 0.85 0.73 0.76 

3 0.00 0.85 0.73 0.76 

4 0.00 0.85 0.73 0.76 

Total 0.00 0.94 0.88 - 

0.9 

1 0.00 0.86 0.73 0.86 

2 0.00 0.86 0.73 0.86 

3 0.00 0.86 0.73 0.86 

4 0.00 0.86 0.74 0.86 

Total 0.00 0.95 0.91 - 
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Table A6. Correlations among Raw Subscale Scores from Achievement Tests 

Data condition Subscale 

Subscale 

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale 1 2 3 4 

I=10 

High 

0.3 

1 1.00 0.20 0.20 0.21 

2  1.00 0.20 0.20 

3   1.00 0.21 

4    1.00 

0.6 

1 1.00 0.41 0.41 0.42 

2  1.00 0.41 0.42 

3   1.00 0.41 

4    1.00 

0.9 

1 1.00 0.64 0.63 0.63 

2  1.00 0.63 0.64 

3   1.00 0.63 

4    1.00 

Low 

0.3 

1 1.00 0.17 0.17 0.16 

2  1.00 0.17 0.17 

3   1.00 0.16 

4    1.00 

0.6 

1 1.00 0.33 0.33 0.33 

2  1.00 0.33 0.33 

3   1.00 0.33 

4    1.00 

0.9 

1 1.00 0.50 0.50 0.50 

2  1.00 0.50 0.50 

3   1.00 0.50 

4    1.00 

I=20 

High 

0.3 

1 1.00 0.24 0.24 0.24 

2  1.00 0.24 0.24 

3   1.00 0.24 

4    1.00 

0.6 

1 1.00 0.48 0.49 0.49 

2  1.00 0.49 0.49 

3   1.00 0.49 

4    1.00 

 

0.9 

1 1.00 0.74 0.74 0.74 

2  1.00 0.74 0.74 

3   1.00 0.74 

4    1.00 

Low 0.3 

1 1.00 0.21 0.21 0.21 

2  1.00 0.21 0.21 

3   1.00 0.21 
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4    1.00 

0.6 

1 1.00 0.43 0.43 0.43 

2  1.00 0.43 0.43 

3   1.00 0.43 

4    1.00 

0.9 

1 1.00 0.64 0.64 0.64 

2  1.00 0.64 0.64 

3   1.00 0.64 

4    1.00 

 



164 

 

Table A7. Correlations among Raw Subscale Scores from Ability Tests 

Data condition Subscale 

Subscale 

length 

Subscale 

consistency 

Between- 

subscales 

Correlation 

Subscale 1 2 3 4 

I=10 

High 

0.3 

1 1.00 0.21 0.21 0.22 

2  1.00 0.22 0.22 

3   1.00 0.21 

4    1.00 

 

0.6 

1 1.00 0.43 0.43 0.43 

2  1.00 0.43 0.43 

3   1.00 0.43 

4    1.00 

 

0.9 

1 1.00 0.66 0.66 0.66 

2  1.00 0.66 0.65 

3   1.00 0.65 

4    1.00 

Low 

0.3 

1 1.00 0.17 0.17 0.17 

2  1.00 0.17 0.17 

3   1.00 0.17 

4    1.00 

 

0.6 

1 1.00 0.35 0.35 0.34 

2  1.00 0.35 0.34 

3   1.00 0.34 

4    1.00 

 

0.9 

1 1.00 0.52 0.52 0.52 

2  1.00 0.52 0.52 

3   1.00 0.52 

4    1.00 

I=20 

High 

0.3 

1 1.00 0.25 0.25 0.25 

2  1.00 0.25 0.25 

3   1.00 0.25 

4    1.00 

 

0.6 

1 1.00 0.50 0.50 0.50 

2  1.00 0.50 0.50 

3   1.00 0.50 

4    1.00 

 

0.9 

1 1.00 0.76 0.76 0.76 

2  1.00 0.76 0.76 

3   1.00 0.76 

4    1.00 

Low 0.3 

1 1.00 0.22 0.22 0.22 

2  1.00 0.22 0.22 

3   1.00 0.22 
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4    1.00 

 

0.6 

1 1.00 0.43 0.44 0.44 

2  1.00 0.44 0.44 

3   1.00 0.44 

4    1.00 

 

0.9 

1 1.00 0.66 0.66 0.66 

2  1.00 0.66 0.66 

3   1.00 0.66 

4    1.00 
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Table A8. Correlations among Subscale θs for Achievement Tests 

Data condition Subscale 

Subscale  

length 

Subscale  

consistency 

Between- 

subscales 

correlation 

Subscale 1 2 3 4 

I=10 

High 

0.3 

1 1.00 0.20 0.20 0.21 

2  1.00 0.19 0.20 

3   1.00 0.20 

4    1.00 

 

0.6 

1 1.00 0.41 0.41 0.40 

2  1.00 0.40 0.40 

3   1.00 0.40 

4    1.00 

 

0.9 

1 1.00 0.61 0.61 0.61 

2  1.00 0.61 0.61 

3   1.00 0.61 

4    1.00 

Low 

0.3 

1 1.00 0.17 0.17 0.17 

2  1.00 0.16 0.17 

3   1.00 0.17 

4    1.00 

 

0.6 

1 1.00 0.33 0.33 0.33 

2  1.00 0.33 0.33 

3   1.00 0.33 

4    1.00 

 

0.9 

1 1.00 0.50 0.50 0.51 

2  1.00 0.49 0.51 

3   1.00 0.50 

4    1.00 

I=20 

High 

0.3 

1 1.00 0.24 0.24 0.24 

2  1.00 0.24 0.24 

3   1.00 0.24 

4    1.00 

 

0.6 

1 1.00 0.48 0.49 0.49 

2  1.00 0.48 0.49 

3   1.00 0.48 

4    1.00 

 

0.9 

1 1.00 0.73 0.74 0.73 

2  1.00 0.74 0.73 

3   1.00 0.74 

4    1.00 

Low 0.3 

1 1.00 0.22 0.22 0.22 

2  1.00 0.22 0.22 

3   1.00 0.22 
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4    1.00 

 

0.6 

1 1.00 0.43 0.44 0.43 

2  1.00 0.43 0.43 

3   1.00 0.43 

4    1.00 

 

0.9 

1 1.00 0.64 0.64 0.64 

2  1.00 0.64 0.64 

3   1.00 0.64 

4    1.00 
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Table A9. Correlations among Subscale θs for Ability Tests 

Data condition  Subscale 

Subscale  

length 

Subscale  

consistency 

Between- 

subscales 

correlation 

Subscale 1 2 3 4 

I=10 

High 

0.3 

1 1.00 0.21 0.21 0.22 

2  1.00 0.22 0.23 

3   1.00 0.21 

4    1.00 

 

0.6 

1 1.00 0.43 0.44 0.43 

2  1.00 0.43 0.43 

3   1.00 0.43 

4    1.00 

 

0.9 

1 1.00 0.66 0.65 0.65 

2  1.00 0.65 0.65 

3   1.00 0.65 

4    1.00 

Low 

0.3 

1 1.00 0.17 0.17 0.17 

2  1.00 0.17 0.16 

3   1.00 0.17 

4    1.00 

 

0.6 

1 1.00 0.34 0.35 0.35 

2  1.00 0.35 0.34 

3   1.00 0.34 

4    1.00 

 

0.9 

1 1.00 0.52 0.52 0.52 

2  1.00 0.52 0.52 

3   1.00 0.52 

4    1.00 

I=20 

High 

0.3 

1 1.00 0.25 0.24 0.25 

2  1.00 0.24 0.23 

3   1.00 0.24 

4    1.00 

 

0.6 

1 1.00 0.50 0.51 0.51 

2  1.00 0.50 0.51 

3   1.00 0.50 

4    1.00 

 

0.9 

1 1.00 0.75 0.76 0.75 

2  1.00 0.76 0.75 

3   1.00 0.75 

4    1.00 

Low 0.3 

1 1.00 0.22 0.23 0.22 

2  1.00 0.22 0.22 

3   1.00 0.21 

4    1.00 
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0.6 

1 1.00 0.44 0.44 0.44 

2  1.00 0.44 0.44 

3   1.00 0.44 

4    1.00 

 

0.9 

1 1.00 0.66 0.65 0.65 

2  1.00 0.65 0.66 

3   1.00 0.66 

4    1.00 
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Table A12. PRMSE-MBs of CTT Subscale Scores for Achievement Tests 

Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale 

𝑃𝑅𝑀𝑆𝐸
− 𝑀B𝐾𝑒𝑙𝑙𝑒𝑦 

𝜎(𝑅(𝜏𝑠|𝑆𝑠) 

𝑃𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝐻 

𝜎(𝑅(𝜏𝑠|𝑆𝑇) 

𝑃𝑅𝑀𝑆𝐸
− 𝑀B𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

𝜎(𝑅(𝜏𝑠|𝑆𝑠, 𝑆𝑇) 

I=10 

High 

0.3 

1 0.71 0.38 0.72 

2 0.71 0.38 0.72 

3 0.71 0.38 0.72 

4 0.71 0.39 0.73 

0.6 

1 0.71 0.60 0.76 

2 0.71 0.60 0.75 

3 0.71 0.60 0.75 

4 0.71 0.60 0.76 

0.9 

1 0.71 0.83 0.85 

2 0.71 0.83 0.85 

3 0.71 0.83 0.84 

4 0.71 0.83 0.85 

Low 

0.3 

1 0.56 0.33 0.58 

2 0.56 0.33 0.58 

3 0.56 0.33 0.58 

4 0.56 0.33 0.58 

0.6 

1 0.56 0.54 0.65 

2 0.56 0.54 0.65 

3 0.56 0.54 0.65 

4 0.56 0.54 0.64 

0.9 

1 0.56 0.76 0.77 

2 0.56 0.76 0.77 

3 0.56 0.76 0.77 

4 0.56 0.76 0.77 

I=20 

High 

0.3 

1 0.83 0.42 0.83 

2 0.83 0.42 0.83 

3 0.83 0.42 0.83 

4 0.83 0.42 0.83 

0.6 

1 0.83 0.64 0.85 

2 0.83 0.64 0.85 

3 0.83 0.64 0.85 

4 0.83 0.64 0.85 

0.9 

1 0.83 0.87 0.90 

2 0.83 0.87 0.90 

3 0.83 0.87 0.90 

4 0.83 0.87 0.90 

Low 0.3 

1 0.72 0.39 0.73 

2 0.72 0.39 0.73 

3 0.72 0.39 0.73 
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4 0.72 0.39 0.73 

0.6 

1 0.72 0.61 0.77 

2 0.72 0.61 0.76 

3 0.72 0.61 0.77 

4 0.72 0.61 0.76 

0.9 

1 0.72 0.84 0.85 

2 0.72 0.83 0.85 

3 0.72 0.83 0.85 

4 0.72 0.83 0.85 
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Table A13. PRMSE-MBs of CTT Subscale Scores for Ability Tests 

Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale 

𝑃𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 

𝜎(𝑅(𝜏𝑠|𝑆𝑠) 

𝑃𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝐻 

𝜎(𝑅(𝜏𝑠|𝑆𝑇) 

𝑃𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

𝜎(𝑅(𝜏𝑠|𝑆𝑠, 𝑆𝑇) 

I=10 

High 

0.3 

1 0.73 0.39 0.74 

2 0.73 0.39 0.74 

3 0.73 0.39 0.74 

4 0.73 0.39 0.74 

0.6 

1 0.73 0.61 0.77 

2 0.73 0.61 0.77 

3 0.73 0.61 0.77 

4 0.73 0.61 0.77 

0.9 

1 0.73 0.84 0.86 

2 0.73 0.84 0.86 

3 0.73 0.84 0.86 

4 0.73 0.84 0.86 

Low 

0.3 

1 0.58 0.35 0.60 

2 0.57 0.34 0.60 

3 0.57 0.34 0.60 

4 0.58 0.34 0.60 

0.6 

1 0.58 0.55 0.66 

2 0.58 0.55 0.66 

3 0.58 0.55 0.66 

4 0.58 0.55 0.66 

0.9 

1 0.58 0.77 0.78 

2 0.58 0.77 0.78 

3 0.58 0.77 0.78 

4 0.58 0.77 0.78 

I=20 

High 

0.3 

1 0.84 0.43 0.85 

2 0.84 0.43 0.85 

3 0.84 0.43 0.85 

4 0.84 0.43 0.85 

0.6 

1 0.84 0.65 0.86 

2 0.84 0.65 0.86 

3 0.84 0.65 0.86 

4 0.84 0.65 0.86 

0.9 

1 0.84 0.88 0.91 

2 0.84 0.88 0.91 

3 0.84 0.88 0.91 

4 0.84 0.88 0.91 

Low 0.3 

1 0.73 0.40 0.74 

2 0.73 0.40 0.74 

3 0.73 0.39 0.74 

4 0.73 0.39 0.74 
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0.6 

1 0.73 0.62 0.78 

2 0.73 0.62 0.77 

3 0.73 0.62 0.77 

4 0.73 0.62 0.78 

0.9 

1 0.73 0.84 0.86 

2 0.73 0.84 0.86 

3 0.73 0.84 0.86 

4 0.73 0.84 0.86 
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Table A14. Adjusted OPI Mean P-value and Variance in Achievement Test  

Data condition 

Subscale 

OPI 

Mean 

p value 

OPI 

score 

variance 
Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

I=10 

 

High 

0.3 

1 0.72 0.20 

2 0.71 0.19 

3 0.74 0.19 

4 0.73 0.20 

0.6 

1 0.73 0.21 

2 0.74 0.20 

3 0.73 0.21 

4 0.70 0.22 

0.9 

1 0.73 0.23 

2 0.73 0.23 

3 0.73 0.23 

4 0.71 0.23 

Low 

0.3 

1 0.69 0.15 

2 0.69 0.15 

3 0.68 0.15 

4 0.68 0.15 

0.6 

1 0.68 0.17 

2 0.67 0.17 

3 0.68 0.17 

4 0.68 0.17 

0.9 

1 0.69 0.19 

2 0.68 0.19 

3 0.69 0.19 

4 0.68 0.19 

I=20 

High 

0.3 

1 0.73 0.17 

2 0.72 0.18 

3 0.73 0.18 

4 0.71 0.17 

0.6 

1 0.72 0.20 

2 0.73 0.21 

3 0.73 0.20 

4 0.71 0.21 

0.9 

1 0.73 0.23 

2 0.72 0.23 

3 0.71 0.24 

4 0.73 0.23 

Low 0.3 

1 0.67 0.14 

2 0.68 0.14 

3 0.69 0.14 
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4 0.67 0.14 

0.6 

1 0.67 0.17 

2 0.67 0.17 

3 0.68 0.17 

4 0.68 0.17 

0.9 

1 0.68 0.19 

2 0.67 0.20 

3 0.68 0.19 

4 0.67 0.20 
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Table A15. Adjusted OPI Mean P-value and Variance in Ability Test 

Data condition 

Subscale 

OPI 

Mean 

p value 

OPI  

score  

variance 
Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

I=10 

High 

0.3 

1 0.50 0.22 

2 0.51 0.22 

3 0.51 0.22 

4 0.51 0.22 

0.6 

1 0.52 0.24 

2 0.49 0.24 

3 0.49 0.25 

4 0.49 0.24 

0.9 

1 0.52 0.27 

2 0.50 0.27 

3 0.51 0.26 

4 0.51 0.26 

Low 

0.3 

1 0.51 0.17 

2 0.51 0.16 

3 0.51 0.17 

4 0.49 0.16 

0.6 

1 0.51 0.19 

2 0.49 0.18 

3 0.51 0.19 

4 0.49 0.19 

0.9 

1 0.51 0.21 

2 0.48 0.21 

3 0.51 0.21 

4 0.49 0.21 

I=20 

High 

0.3 

1 0.49 0.20 

2 0.51 0.20 

3 0.52 0.21 

4 0.48 0.20 

0.6 

1 0.49 0.24 

2 0.50 0.24 

3 0.48 0.24 

4 0.49 0.25 

0.9 

1 0.49 0.27 

2 0.49 0.27 

3 0.51 0.27 

4 0.51 0.27 

Low 0.3 

1 0.49 0.16 

2 0.48 0.15 

3 0.50 0.16 
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4 0.49 0.16 

0.6 

1 0.51 0.19 

2 0.47 0.19 

3 0.48 0.19 

4 0.51 0.19 

0.9 

1 0.50 0.21 

2 0.49 0.22 

3 0.48 0.22 

4 0.48 0.22 
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Table A18. Comparisons of Empirical Reliability from Both Unidimemsional and 

Multidimensional Subscale Scores in Achievement Tests 

Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale 

Empirical reliability 

Total 

test 

U2PL 

Mean 

M2PL 

Mean 

I=10 

High 

0.3 

1 

0.79 

0.68 0.70 

2 0.67 0.69 

3 0.67 0.69 

4 0.69 0.70 

0.6 

1 

0.85 

0.68 0.74 

2 0.68 0.73 

3 0.68 0.74 

4 0.69 0.74 

0.9 

1 

0.88 

0.68 0.87 

2 0.68 0.87 

3 0.68 0.87 

4 0.68 0.87 

Low 

0.3 

1 

0.69 

0.55 0.57 

2 0.55 0.58 

3 0.55 0.58 

4 0.55 0.58 

0.6 

1 

0.77 

0.55 0.64 

2 0.55 0.64 

3 0.55 0.64 

4 0.55 0.64 

0.9 

1 

0.81 

0.55 0.80 

2 0.55 0.80 

3 0.55 0.80 

4 0.55 0.81 

I=20 

High 

0.3 

1 

0.88 

0.80 0.81 

2 0.81 0.81 

3 0.80 0.81 

4 0.80 0.81 

0.6 

1 

0.92 

0.80 0.83 

2 0.80 0.83 

3 0.80 0.83 

4 0.81 0.83 

0.9 

1 

0.93 

0.80 0.94 

2 0.80 0.94 

3 0.80 0.94 

4 0.80 0.94 

Low 0.3 
1 

0.82 
0.71 0.72 

2 0.71 0.72 
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3 0.71 0.72 

4 0.71 0.72 

0.6 

1 

0.87 

0.72 0.77 

2 0.71 0.76 

3 0.71 0.76 

4 0.71 0.76 

0.9 

1 

0.90 

0.71 0.89 

2 0.71 0.89 

3 0.71 0.89 

4 0.71 0.90 
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Table A19. Comparisons of Empirical Reliability from Both Unidimemsional and 

Multidimensional Subscale Scores in Ability Tests 

Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale 

Empirical reliability 

Total 

test 

U2PL 

Mean 

M2PL 

Mean 

I=10 

High 

0.3 

1 

0.81 

0.72 0.73 

2 0.72 0.73 

3 0.72 0.73 

4 0.72 0.73 

0.6 

1 

0.87 

0.72 0.76 

2 0.72 0.77 

3 0.72 0.77 

4 0.72 0.77 

0.9 

1 

0.90 

0.74 0.89 

2 0.72 0.90 

3 0.71 0.89 

4 0.71 0.90 

Low 

0.3 

1 

0.70 

0.57 0.60 

2 0.57 0.59 

3 0.58 0.60 

4 0.57 0.59 

0.6 

1 

0.78 

0.58 0.66 

2 0.56 0.65 

3 0.59 0.67 

4 0.58 0.66 

0.9 

1 

0.83 

0.58 0.81 

2 0.58 0.80 

3 0.58 0.81 

4 0.59 0.81 

I=20 

High 

0.3 

1 

0.90 

0.83 0.75 

2 0.83 0.74 

3 0.83 0.74 

4 0.83 0.74 

0.6 

1 

0.93 

0.83 0.78 

2 0.83 0.77 

3 0.83 0.78 

4 0.84 0.77 

0.9 

1 

0.95 

0.84 0.90 

2 0.83 0.91 

3 0.84 0.90 

4 0.83 0.90 

Low 0.3 
1 

0.83 
0.74 0.84 

2 0.73 0.84 
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3 0.73 0.84 

4 0.73 0.84 

0.6 

1 

0.88 

0.74 0.85 

2 0.73 0.86 

3 0.73 0.86 

4 0.73 0.86 

0.9 

1 

0.91 

0.73 0.94 

2 0.73 0.94 

3 0.73 0.94 

4 0.74 0.94 
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Table A20. RMSE-MBs for CTT Subscale Scores over 100 Replicated Achievement Data  

Data condition  Subscale 𝜎(𝑒𝑥) 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 

𝜎(𝑅(𝜏𝑠|𝑆𝑠) 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝐻 

𝜎(𝑅(𝜏𝑠|𝑆𝑇) 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

𝜎(𝑅(𝜏𝑠|𝑆𝑠, 𝑆𝑇) 

I=10 

High 

0.3 

1 1.28 1.08 1.57 1.06 

2 1.28 1.08 1.56 1.05 

3 1.28 1.08 1.56 1.05 

4 1.28 1.08 1.58 1.06 

 

0.6 

1 1.28 1.08 1.26 0.99 

2 1.28 1.07 1.26 0.98 

3 1.28 1.07 1.26 0.98 

4 1.28 1.08 1.27 0.99 

 

0.9 

1 1.28 1.08 0.83 0.79 

2 1.28 1.08 0.83 0.79 

3 1.28 1.08 0.83 0.79 

4 1.28 1.08 0.83 0.79 

Low 

0.3 

1 1.41 1.05 1.29 1.02 

2 1.40 1.05 1.29 1.02 

3 1.40 1.05 1.29 1.02 

4 1.40 1.05 1.29 1.02 

 

0.6 

1 1.40 1.05 1.07 0.94 

2 1.40 1.05 1.08 0.94 

3 1.40 1.05 1.07 0.94 

4 1.40 1.05 1.07 0.94 

 

0.9 

1 1.40 1.05 0.77 0.76 

2 1.40 1.05 0.76 0.75 

3 1.40 1.05 0.77 0.76 

4 1.40 1.05 0.77 0.76 

I=20 

High 

0.3 

1 1.81 1.65 3.04 1.63 

2 1.81 1.65 3.04 1.63 

3 1.81 1.65 3.04 1.63 

4 1.81 1.64 3.03 1.62 

 

0.6 

1 1.81 1.65 2.40 1.55 

2 1.81 1.65 2.38 1.55 

3 1.81 1.65 2.40 1.55 

4 1.81 1.65 2.39 1.55 

 

0.9 

1 1.81 1.65 1.43 1.27 

2 1.81 1.65 1.43 1.27 

3 1.81 1.65 1.42 1.26 

4 1.82 1.65 1.43 1.27 

Low 0.3 

1 1.98 1.68 2.48 1.65 

2 1.98 1.68 2.48 1.65 

3 1.98 1.68 2.47 1.64 

4 1.99 1.68 2.48 1.65 
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0.6 

1 1.98 1.68 1.98 1.54 

2 1.98 1.67 1.96 1.53 

3 1.98 1.68 1.98 1.53 

4 1.98 1.68 1.98 1.54 

 

0.9 

1 1.98 1.68 1.29 1.22 

2 1.98 1.68 1.29 1.23 

3 1.99 1.68 1.30 1.23 

4 1.99 1.68 1.29 1.22 
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Table A21. RMSE-MBs for CTT Subscale Scores over 100 Replicated Ability Data 

Subscal

e length 

Subscale 

consistenc

y 

Between- 

subscales 

correlatio

n 

Subscal

e 
𝜎(𝑒𝑥) 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐾𝑒𝑙𝑙𝑒𝑦 

𝜎(𝑅(𝜏𝑠|𝑆𝑠) 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝐻 

𝜎(𝑅(𝜏𝑠|𝑆𝑇) 

𝑅𝑀𝑆𝐸
− 𝑀𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

𝜎(𝑅(𝜏𝑠|𝑆𝑠, 𝑆𝑇) 

I=10 

High 

0.3 

1 1.37 1.17 1.74 1.14 

2 1.37 1.17 1.75 1.14 

3 1.37 1.17 1.75 1.14 

4 1.37 1.17 1.74 1.14 

0.6 

1 1.37 1.17 1.40 1.07 

2 1.37 1.17 1.40 1.07 

3 1.37 1.17 1.40 1.07 

4 1.37 1.17 1.40 1.07 

0.9 

1 1.37 1.17 0.90 0.85 

2 1.37 1.17 0.90 0.85 

3 1.36 1.16 0.90 0.85 

4 1.37 1.17 0.90 0.85 

Low 

0.3 

1 1.46 1.11 1.38 1.08 

2 1.46 1.11 1.38 1.08 

3 1.46 1.11 1.38 1.08 

4 1.46 1.11 1.38 1.08 

0.6 

1 1.46 1.11 1.15 1.00 

2 1.46 1.11 1.14 1.00 

3 1.46 1.11 1.14 1.00 

4 1.46 1.11 1.15 1.00 

0.9 

1 1.46 1.11 0.81 0.80 

2 1.46 1.11 0.82 0.80 

3 1.46 1.11 0.81 0.80 

4 1.46 1.11 0.82 0.80 

I=20 

High 

0.3 

1 1.93 1.78 3.40 1.75 

2 1.94 1.78 3.40 1.76 

3 1.94 1.78 3.41 1.76 

4 1.94 1.78 3.40 1.75 

0.6 

1 1.93 1.78 2.66 1.67 

2 1.93 1.78 2.65 1.67 

3 1.93 1.78 2.66 1.68 

4 1.93 1.78 2.66 1.68 

0.9 

1 1.94 1.78 1.58 1.38 

2 1.94 1.78 1.56 1.38 

3 1.93 1.78 1.56 1.37 

4 1.94 1.78 1.57 1.38 

Low 0.3 

1 2.07 1.77 2.65 1.73 

2 2.07 1.77 2.65 1.73 

3 2.07 1.77 2.65 1.73 
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4 2.07 1.77 2.65 1.73 

0.6 

1 2.07 1.77 2.12 1.62 

2 2.06 1.77 2.12 1.62 

3 2.07 1.77 2.11 1.62 

4 2.07 1.77 2.12 1.62 

0.9 

1 2.07 1.77 1.36 1.29 

2 2.07 1.77 1.37 1.29 

3 2.07 1.77 1.37 1.29 

4 2.07 1.77 1.36 1.29 
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Table A22. Expected True Subscale Scores in Achievement Tests 

Subscale 

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale Mean SD 

I=10 

High 

0.3 

1 6.91 2.00 

2 6.94 1.99 

3 6.96 1.99 

4 6.87 2.02 

0.6 

1 6.94 2.00 

2 6.91 1.99 

3 6.94 1.99 

4 6.88 2.02 

0.9 

1 6.92 2.01 

2 6.88 2.01 

3 6.91 2.00 

4 6.87 2.01 

Low 

0.3 

1 6.46 1.58 

2 6.50 1.58 

3 6.52 1.58 

4 6.52 1.57 

0.6 

1 6.50 1.58 

2 6.47 1.59 

3 6.47 1.59 

4 6.51 1.58 

0.9 

1 6.50 1.59 

2 6.47 1.58 

3 6.50 1.58 

4 6.46 1.59 

I=20 

High 

0.3 

1 13.80 3.99 

2 13.80 4.00 

3 13.83 4.00 

4 13.86 3.98 

0.6 

1 13.84 4.00 

2 13.80 4.00 

3 13.76 4.01 

4 13.77 4.01 

0.9 

1 13.77 4.02 

2 13.81 4.01 

3 13.86 3.99 

4 13.77 4.02 

Low 0.3 

1 12.96 3.16 

2 12.94 3.17 

3 13.03 3.16 

4 12.92 3.17 
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0.6 

1 12.93 3.18 

2 13.02 3.15 

3 13.03 3.16 

4 12.97 3.17 

0.9 

1 13.01 3.16 

2 12.91 3.17 

3 12.93 3.17 

4 12.93 3.17 
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Table A23. Expected True Subscale Scores in Ability Tests 

Subscale 

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale Mean SD 

I=10 

High 

0.3 

1 5.03 2.24 

2 5.05 2.25 

3 4.97 2.25 

4 5.01 2.24 

0.6 

1 5.00 2.25 

2 4.99 2.25 

3 5.05 2.24 

4 5.01 2.25 

0.9 

1 5.01 2.25 

2 5.01 2.25 

3 5.00 2.24 

4 5.07 2.24 

Low 

0.3 

1 5.03 1.71 

2 5.01 1.70 

3 5.04 1.71 

4 5.00 1.71 

0.6 

1 5.00 1.71 

2 4.98 1.71 

3 5.04 1.72 

4 4.98 1.71 

0.9 

1 5.01 1.71 

2 5.00 1.71 

3 5.01 1.71 

4 4.98 1.72 

I=20 

High 

0.3 

1 10.02 4.51 

2 10.08 4.50 

3 10.00 4.50 

4 10.00 4.50 

0.6 

1 10.10 4.51 

2 9.94 4.48 

3 10.03 4.50 

4 10.02 4.52 

0.9 

1 9.90 4.52 

2 10.03 4.50 

3 10.00 4.49 

4 10.02 4.49 

Low 0.3 

1 9.92 3.42 

2 9.94 3.42 

3 9.96 3.41 

4 9.98 3.41 
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0.6 

1 9.99 3.43 

2 9.89 3.41 

3 9.97 3.41 

4 10.01 3.43 

  0.9 

1 10.01 3.42 

2 10.02 3.42 

3 9.99 3.41 

4 9.92 3.41 
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Table 26. RMSE-SBs for CTT Subscale Scores over 100 Replicated Achievement Data 

Data condition  Subscale 
𝑅𝑀𝑆𝐸
− 𝑆𝐵𝑅𝑎𝑤 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐾𝑒𝑙𝑙𝑒𝑦 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐻𝐻 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

I=10 

High 

0.3 

1 0.56 0.56 0.88 0.55 

2 0.56 0.56 0.88 0.55 

3 0.56 0.56 0.87 0.55 

4 0.56 0.56 0.87 0.54 

0.6 

1 0.56 0.56 0.67 0.51 

2 0.56 0.56 0.67 0.51 

3 0.56 0.56 0.67 0.51 

4 0.56 0.56 0.67 0.51 

 

0.9 

1 0.56 0.56 0.42 0.40 

2 0.56 0.56 0.42 0.40 

3 0.56 0.56 0.42 0.40 

4 0.56 0.56 0.42 0.40 

Low 

0.3 

1 0.71 0.71 0.92 0.69 

2 0.71 0.71 0.92 0.69 

3 0.71 0.71 0.92 0.69 

4 0.71 0.71 0.92 0.69 

0.6 

1 0.71 0.71 0.73 0.62 

2 0.71 0.71 0.73 0.63 

3 0.71 0.71 0.73 0.63 

4 0.71 0.71 0.73 0.63 

0.9 

1 0.71 0.71 0.50 0.49 

2 0.71 0.71 0.50 0.49 

3 0.71 0.71 0.50 0.49 

4 0.71 0.71 0.50 0.49 

I=20 

High 

0.3 

1 0.42 0.42 0.84 0.42 

2 0.42 0.42 0.84 0.41 

3 0.42 0.42 0.84 0.41 

4 0.42 0.42 0.84 0.42 

0.6 

1 0.42 0.42 0.63 0.39 

2 0.42 0.42 0.63 0.39 

3 0.42 0.42 0.63 0.39 

4 0.42 0.42 0.63 0.39 

 

0.9 

1 0.42 0.42 0.36 0.32 

2 0.42 0.42 0.36 0.32 

3 0.42 0.42 0.36 0.32 

4 0.42 0.42 0.36 0.32 

Low 
0.3 

1 0.55 0.55 0.87 0.54 

2 0.55 0.55 0.87 0.54 

3 0.55 0.55 0.87 0.54 

4 0.55 0.55 0.87 0.54 

0.6 1 0.55 0.55 0.66 0.50 
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2 0.55 0.55 0.66 0.50 

3 0.55 0.55 0.66 0.50 

4 0.55 0.55 0.66 0.50 

 

0.9 

1 0.55 0.55 0.42 0.39 

2 0.55 0.55 0.42 0.39 

3 0.55 0.55 0.42 0.40 

4 0.55 0.55 0.42 0.39 
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Table 27. RMSE-SBs for CTT Subscale Scores over 100 Replicated Ability Data 

Data condition  Subscale 
𝑅𝑀𝑆𝐸
− 𝑆𝐵𝑅𝑎𝑤 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐾𝑒𝑙𝑙𝑒𝑦 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐻𝐻 

𝑅𝑀𝑆𝐸
− 𝑆𝐵𝐻𝑎𝑏𝑒𝑟𝑚𝑎𝑛 

I=10 

High 

0.3 

1 0.54 0.54 0.87 0.53 

2 0.54 0.54 0.86 0.53 

3 0.54 0.54 0.86 0.53 

4 0.54 0.54 0.86 0.53 

0.6 

1 0.54 0.54 0.66 0.49 

2 0.54 0.54 0.66 0.49 

3 0.54 0.54 0.66 0.49 

4 0.54 0.54 0.66 0.49 

 

0.9 

1 0.54 0.54 0.41 0.39 

2 0.54 0.54 0.41 0.39 

3 0.54 0.54 0.41 0.39 

4 0.54 0.54 0.41 0.39 

Low 

0.3 

1 0.69 0.69 0.91 0.67 

2 0.69 0.69 0.91 0.67 

3 0.70 0.70 0.91 0.67 

4 0.69 0.69 0.91 0.67 

0.6 

1 0.69 0.69 0.72 0.61 

2 0.69 0.69 0.72 0.61 

3 0.69 0.69 0.71 0.61 

4 0.69 0.69 0.72 0.61 

 

0.9 

1 0.69 0.69 0.49 0.48 

2 0.69 0.69 0.49 0.48 

3 0.69 0.69 0.49 0.48 

4 0.69 0.69 0.49 0.48 

I=20 

High 

0.3 

1 0.40 0.40 0.83 0.40 

2 0.40 0.40 0.83 0.40 

3 0.40 0.40 0.83 0.40 

4 0.40 0.40 0.83 0.40 

0.6 

1 0.40 0.40 0.62 0.38 

2 0.40 0.40 0.62 0.38 

3 0.40 0.40 0.62 0.38 

4 0.40 0.40 0.62 0.38 

0.9 

1 0.40 0.40 0.36 0.31 

2 0.40 0.40 0.36 0.31 

3 0.40 0.40 0.36 0.31 

4 0.40 0.40 0.36 0.31 

Low 
0.3 

1 0.54 0.54 0.86 0.52 

2 0.54 0.54 0.86 0.53 

3 0.54 0.54 0.86 0.53 

4 0.54 0.54 0.86 0.53 

0.6 1 0.54 0.54 0.65 0.49 
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2 0.54 0.54 0.66 0.49 

3 0.54 0.54 0.65 0.49 

4 0.53 0.53 0.65 0.49 

 

0.9 

1 0.54 0.54 0.41 0.39 

2 0.54 0.54 0.41 0.38 

3 0.54 0.54 0.41 0.39 

4 0.54 0.54 0.41 0.39 
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Table A28. RMSE-SBs for IRT Subscale 𝜃s over 100 Replicated Achievement Data 

Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale 𝑅𝑀𝑆𝐸𝑈𝐼𝑅𝑇2𝑃𝐿 𝑅𝑀𝑆𝐸𝑀𝐼𝑅𝑇2𝑃𝐿 

I=10 

High 

0.3 

1 0.57 0.56 

2 0.57 0.56 

3 0.58 0.56 

4 0.57 0.56 

0.6 

1 0.57 0.52 

2 0.58 0.52 

3 0.58 0.52 

4 0.57 0.52 

0.9 

1 0.58 0.45 

2 0.57 0.45 

3 0.58 0.45 

4 0.57 0.45 

Low 

0.3 

1 0.68 0.67 

2 0.68 0.67 

3 0.68 0.67 

4 0.68 0.66 

0.6 

1 0.68 0.60 

2 0.68 0.60 

3 0.67 0.61 

4 0.67 0.60 

0.9 

1 0.68 0.49 

2 0.68 0.49 

3 0.68 0.50 

4 0.67 0.49 

I=20 

High 

0.3 

1 0.45 0.44 

2 0.45 0.44 

3 0.45 0.44 

4 0.45 0.44 

0.6 

1 0.45 0.42 

2 0.45 0.41 

3 0.45 0.42 

4 0.45 0.41 

0.9 

1 0.46 0.39 

2 0.46 0.40 

3 0.45 0.40 

4 0.45 0.40 

Low 0.3 

1 0.55 0.54 

2 0.54 0.53 

3 0.54 0.53 

4 0.54 0.53 
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0.6 

1 0.54 0.49 

2 0.54 0.50 

3 0.55 0.50 

4 0.55 0.50 

0.9 

1 0.54 0.44 

2 0.54 0.45 

3 0.54 0.44 

4 0.54 0.44 
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Table A29. RMSE-SBs for IRT Subscale 𝜽s over 100 Replicated Ability Data 

Subscale  

length 

Subscale 

consistency 

Between- 

subscales 

correlation 

Subscale 𝑅𝑀𝑆𝐸𝑈𝐼𝑅𝑇2𝑃𝐿 𝑅𝑀𝑆𝐸𝑀𝐼𝑅𝑇2𝑃𝐿 

I=10 

High 

0.3 

1 0.54 0.53 

2 0.53 0.52 

3 0.54 0.52 

4 0.54 0.53 

0.6 

1 0.54 0.49 

2 0.54 0.48 

3 0.54 0.49 

4 0.54 0.49 

0.9 

1 0.52 0.42 

2 0.54 0.42 

3 0.54 0.42 

4 0.54 0.42 

Low 

0.3 

1 0.66 0.64 

2 0.66 0.64 

3 0.66 0.65 

4 0.67 0.65 

0.6 

1 0.66 0.60 

2 0.67 0.60 

3 0.65 0.59 

4 0.66 0.59 

0.9 

1 0.66 0.49 

2 0.66 0.48 

3 0.66 0.48 

4 0.66 0.48 

I=20 

High 

0.3 

1 0.41 0.41 

2 0.41 0.40 

3 0.41 0.40 

4 0.41 0.40 

0.6 

1 0.41 0.39 

2 0.41 0.38 

3 0.41 0.39 

4 0.41 0.38 

0.9 

1 0.42 0.36 

2 0.41 0.36 

3 0.41 0.36 

4 0.42 0.36 

Low 0.3 

1 0.52 0.51 

2 0.53 0.52 

3 0.53 0.52 

4 0.52 0.51 
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0.6 

1 0.53 0.48 

2 0.52 0.48 

3 0.53 0.48 

4 0.53 0.48 

0.9 

1 0.52 0.41 

2 0.53 0.41 

3 0.52 0.40 

4 0.52 0.41 
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Table A30. Correlations between True Subscale 𝜃s and Estimated Subscale Scores in 

Achievement Tests (I=10) 

Data condition 

Measurement 

framework 
Method 

Correlation with 

true subscale 𝜃s 

Subscale  

Length 

Subscale 

consistency 

Between- 

subscales 

correlation 

1 2 3 4 

I=10 

 

High 

0.3 

CTT-based 

Raw 0.82 0.82 0.82 0.83 

Kelley 0.82 0.82 0.82 0.83 

HH 0.61 0.61 0.61 0.62 

Haberman 0.83 0.83 0.83 0.83 

IRT-based 

U2PL 0.83 0.82 0.82 0.82 

M2PL 0.83 0.83 0.83 0.83 

OPI 0.75 0.74 0.74 0.75 

0.6 

CTT-based 

Raw 0.82 0.82 0.82 0.82 

Kelley 0.82 0.82 0.82 0.82 

HH 0.77 0.77 0.77 0.77 

Haberman 0.86 0.86 0.86 0.86 

IRT-based 

U2PL 0.83 0.82 0.82 0.83 

M2PL 0.86 0.86 0.86 0.86 

OPI 0.80 0.80 0.80 0.81 

0.9 

CTT-based 

Raw 0.82 0.82 0.82 0.82 

Kelley 0.82 0.82 0.82 0.82 

HH 0.90 0.90 0.90 0.90 

Haberman 0.91 0.91 0.91 0.91 

IRT-based 

U2PL 0.82 0.83 0.82 0.82 

M2PL 0.90 0.90 0.90 0.90 

OPI 0.86 0.86 0.86 0.86 

Low 

0.3 

CTT-based 

Raw 0.74 0.74 0.74 0.74 

Kelley 0.74 0.74 0.74 0.74 

HH 0.58 0.58 0.58 0.57 

Haberman 0.76 0.76 0.76 0.76 

IRT-based 

U2PL 0.73 0.74 0.74 0.74 

M2PL 0.75 0.76 0.76 0.76 

OPI 0.67 0.68 0.68 0.69 

0.6 

CTT-based 

Raw 0.74 0.74 0.74 0.74 

Kelley 0.74 0.74 0.74 0.74 

HH 0.74 0.74 0.73 0.73 

Haberman 0.80 0.80 0.80 0.80 

IRT-based 

U2PL 0.74 0.74 0.74 0.74 

M2PL 0.80 0.80 0.80 0.80 

OPI 0.77 0.77 0.77 0.77 

0.9 CTT-based Raw 0.74 0.74 0.74 0.74 
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Kelley 0.74 0.74 0.74 0.74 

HH 0.87 0.87 0.86 0.87 

Haberman 0.87 0.87 0.87 0.87 

IRT-based 

U2PL 0.74 0.73 0.74 0.74 

M2PL 0.87 0.87 0.87 0.87 

OPI 0.85 0.85 0.85 0.85 
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Table A31. Correlations between True Subscale 𝜽s and Estimated Subscale Scores in 

Achievement Tests (I=20) 

Data condition 

Measurement 

framework 
Method 

Correlation with 

True subscale 𝜃s 

Subscale  

Length 

Subscale 

consistency 

Between- 

subscales 

correlation 

1 2 3 4 

I=20 

High 

0.3 

CTT-based 

Raw 0.88 0.90 0.89 0.89 

Kelley 0.88 0.90 0.89 0.89 

HH 0.65 0.65 0.65 0.64 

Haberman 0.90 0.90 0.90 0.90 

IRT-based 

U2PL 0.89 0.90 0.90 0.90 

M2PL 0.90 0.90 0.90 0.90 

OPI 0.74 0.77 0.77 0.76 

0.6 

CTT-based 

Raw 0.89 0.89 0.90 0.90 

Kelley 0.89 0.89 0.88 0.89 

HH 0.80 0.80 0.80 0.80 

Haberman 0.91 0.91 0.91 0.91 

IRT-based 

U2PL 0.90 0.90 0.89 90 

M2PL 0.91 0.91 0.91 0.91 

OPI 0.83 0.84 0.84 0.85 

0.9 

CTT-based 

Raw 0.89 0.89 0.89 0.89 

Kelley 0.89 0.89 0.89 0.89 

HH 0.93 0.93 0.93 0.93 

Haberman 0.94 0.94 0.94 0.94 

IRT-based 

U2PL 0.90 0.89 0.90 0.90 

M2PL 0.92 0.92 0.92 0.92 

OPI 0.90 0.90 0.90 0.90 

Low 

0.3 

CTT-based 

Raw 0.84 0.84 0.84 0.84 

Kelley 0.84 0.84 0.84 0.84 

HH 0.62 0.62 0.62 0.62 

Haberman 0.85 0.85 0.85 0.85 

IRT-based 

U2PL 0.84 0.84 0.84 0.85 

M2PL 0.85 0.85 0.85 0.85 

OPI 0.72 0.73 0.74 0.73 

0.6 

CTT-based 

Raw 0.84 0.84 0.84 0.84 

Kelley 0.84 0.84 0.84 0.84 

HH 0.78 0.78 0.78 0.78 

Haberman 0.87 0.87 0.87 0.87 

IRT-based 

U2PL 0.85 0.84 0.84 0.84 

M2PL 0.87 0.87 0.87 0.87 

OPI 0.83 0.82 0.83 0.83 

0.9 CTT-based Raw 0.84 0.84 0.84 0.84 
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Kelley 0.84 0.84 0.84 0.84 

HH 0.91 0.91 0.91 0.91 

Haberman 0.92 0.92 0.92 0.92 

IRT-based 

U2PL 0.84 0.84 0.84 0.84 

M2PL 0.90 0.90 0.90 0.89 

OPI 0.90 0.90 0.90 0.90 
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Table A32. Correlations between True Subscale 𝜽s and Estimated Subscale Scores in Ability 

Tests (I=10) 

Data condition 

Measurement 

framework 
Method 

Correlation with 

True subscale 𝜃s 

Subscale  

Length 

Subscale 

internal 

consistency 

Between- 

subscales 

correlation 

1 2 3 4 

10 

 

High 

0.3 

CTT-based 

Raw 0.85 0.85 0.85 0.85 

Kelley 0.85 0.85 0.85 0.85 

HH 0.63 0.63 0.63 0.63 

Haberman 0.85 0.85 0.85 0.85 

IRT-based 

U2PL 0.85 0.85 0.85 0.85 

M2PL 0.85 0.86 0.85 0.85 

OPI 0.75 0.77 0.77 0.77 

0.6 

CTT-based 

Raw 0.85 0.85 0.85 0.85 

Kelley 0.85 0.85 0.85 0.85 

HH 0.78 0.78 0.78 0.78 

Haberman 0.87 0.87 0.87 0.88 

IRT-based 

U2PL 0.84 0.85 0.85 0.85 

M2PL 0.87 0.87 0.87 0.87 

OPI 0.83 0.83 0.83 0.83 

0.9 

CTT-based 

Raw 0.85 0.85 0.85 0.85 

Kelley 0.85 0.85 0.85 0.85 

HH 0.91 0.91 0.91 0.91 

Haberman 0.91 0.92 0.92 0.92 

IRT-based 

U2PL 0.85 0.84 0.85 0.85 

M2PL 0.90 0.90 0.90 0.90 

OPI 0.90 0.90 0.90 0.90 

Low 

0.3 

CTT-based 

Raw 0.76 0.76 0.76 0.76 

Kelley 0.76 0.76 0.76 0.76 

HH 0.59 0.58 0.58 0.59 

Haberman 0.77 0.77 0.77 0.77 

IRT-based 

U2PL 0.75 0.75 0.76 0.75 

M2PL 0.77 0.77 0.77 0.77 

OPI 0.70 0.68 0.70 0.68 

0.6 

CTT-based 

Raw 0.75 0.75 0.76 0.76 

Kelley 0.75 0.75 0.76 0.76 

HH 0.74 0.74 0.74 0.74 

Haberman 0.81 0.81 0.81 0.81 

IRT-based 

U2PL 0.75 0.75 0.76 0.76 

M2PL 0.81 0.81 0.81 0.81 

OPI 0.78 0.78 0.79 0.78 

0.9 CTT-based Raw 0.76 0.76 0.76 0.76 
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Kelley 0.76 0.76 0.76 0.76 

HH 0.88 0.88 0.88 0.88 

Haberman 0.88 0.88 0.88 0.88 

IRT-based 

U2PL 0.76 0.76 0.76 0.76 

M2PL 0.79 0.79 0.79 0.79 

OPI 0.87 0.87 0.87 0.87 

 

  



218 

 

Table A33. Correlations between True Subscale 𝜽s and Estimated Subscale Scores in Ability 

Tests (I=20) 

Data condition 

Measurement 

framework 
Method 

Correlation with 

True subscale 𝜃s 

Subscale  

Length 

Subscale 

internal 

consistency 

Between- 

subscales 

correlation 

1 2 3 4 

I=20 

High 

0.3 

CTT-based 

Raw 0.91 0.91 0.91 0.91 

Kelley 0.91 0.91 0.91 0.91 

HH 0.65 0.65 0.66 0.65 

Haberman 0.92 0.92 0.92 0.91 

IRT-based 

U2PL 0.91 0.91 0.91 0.91 

M2PL 0.92 0.92 0.92 0.92 

OPI 0.77 0.77 0.78 0.77 

0.6 

CTT-based 

Raw 0.91 0.91 0.91 0.91 

Kelley 0.91 0.91 0.91 0.91 

HH 0.81 0.81 0.81 0.81 

Haberman 0.92 0.92 0.92 0.92 

IRT-based 

U2PL 0.91 0.91 0.91 0.91 

M2PL 0.92 0.93 0.92 0.92 

OPI 0.85 0.85 0.85 0.85 

0.9 

CTT-based 

Raw 0.91 0.91 0.91 0.91 

Kelley 0.91 0.91 0.91 0.91 

HH 0.94 0.94 0.94 0.94 

Haberman 0.95 0.95 0.95 0.95 

IRT-based 

U2PL 0.91 0.91 0.91 0.91 

M2PL 0.92 0.92 0.92 0.92 

OPI 0.93 0.93 0.93 0.93 

Low 

0.3 

CTT-based 

Raw 0.85 0.85 0.85 0.85 

Kelley 0.85 0.85 0.85 0.85 

HH 0.63 0.63 0.63 0.63 

Haberman 0.86 0.86 0.86 0.86 

IRT-based 

U2PL 0.84 0.84 0.84 0.85 

M2PL 0.87 0.86 0.86 0.87 

OPI 0.76 0.74 0.76 0.76 

0.6 

CTT-based 

Raw 0.85 0.85 0.85 0.85 

Kelley 0.85 0.85 0.85 0.85 

HH 0.79 0.79 0.79 0.78 

Haberman 0.88 0.88 0.88 0.88 

IRT-based 

U2PL 0.85 0.85 0.85 0.85 

M2PL 0.88 0.88 0.88 0.88 

OPI 0.84 0.83 0.84 0.83 

0.9 CTT-based Raw 0.85 0.85 0.85 0.85 
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Kelley 0.85 0.85 0.85 0.85 

HH 0.92 0.92 0.92 0.92 

Haberman 0.92 0.92 0.92 0.92 

IRT-based 

U2PL 0.85 0.85 0.85 0.86 

M2PL 0.90 0.90 0.90 0.90 

OPI 0.92 0.92 0.92 0.92 
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APPENDIX B 

DATA SIMULATION AND SUBSCALE SCORING 

 

**************************ACHIEVEMENT & ABILITY TEST 

DATASETS****************************************/ 

/** simulated DATA for an ACHIEVEMENT test,and ABILITY test types.                                   

*/ 

/** where bs ranges between p=[0.6,0.8] for achievement tests and p=[0.4,0.6] for an ability test    

*/ 

/** therefore, b values were determined based on the criteria making p values like above             

*/ 

/** where achievement tests with ~N(0.0, 2.0) and ability tests with ~N(-1.2, 2.0)                   */ 

/** correlations between subscales are one of [0.3, 0.6, 0.9]                                        */ 

/** The possible number of subscale items is 10, and 20.                                             */ 

/** N = 3000.                                                                                        */    

/** The number of total items is 40 and 80 and the number of subscales will be fixed to 4.           

*/ 

/*****************************************************************************

************************/ 

 

LIBNAME dataGen 'C:\Users\CML Lab\Desktop\HJ\dissertation\simulation\dataGen'; 

LIBNAME scoring 'C:\Users\CML Lab\Desktop\HJ\dissertation\simulation\scoring'; 

LIBNAME corrSets 'C:\Users\CML Lab\Desktop\HJ\dissertation\simulation\scoreCorr'; 

 

 

%Macro subscale scores(seed,simulNum,testType,cstcy,nSub,nTotal,N,cor,Ncons); 

/* "Ncons" is determined by four types follows: ach/ab, homo/hetero, 10/20 subscale items, 

0.3/0.6/0.9 correlations */ 

/* <ach = 1, ab = 2/ homo = 1, hetero = 2 /10 = 1, 20 = 2/ 0.3 = 3, 0.6 = 6 0.9 = 9>                                

*/ 

 

%DO sim = 1 %TO &simulNum; 

%let realSeed=&seed+&sim*3; 

 

/*****************************************************************************

*******/ 

/* Randomly generate item estimates & true thetas                                   */ 

/* The as and bs were respectively created in log-normal and normal distributions   */ 

/* Items are generated with simple structures                                       */  

/*****************************************************************************

*******/ 

 

data dataGen.itemParams&Ncons&sim; 

 call streaminit(&realSeed+1);/*first simulation*/ 
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 if &testType="Ach" then 

  do s = 1 to 4; /* '4' is the number of subscales */ 

   do i = 1 to &nSub; 

    type = &testType; 

    totalItems = i + (s-1) * &nSub; 

    scale = cats("sub",s); 

    subItems = i; 

    if &cstcy = "homo" then 

     a = exp(rand("Normal",0.179,0.083)); /* ~logN(1.2,0.1)*/ 

    else if &cstcy = "hetero" then 

     a = exp(rand("Normal",-0.227,0.100)); /* ~logN(0.8,0.08) 

*/ 

    b = rand("Normal", -0.9, 0.5); /* most p value between 0.6 ~ 0.8 */ 

    drop s i; 

    output; 

   end; 

  end; 

 

 else if &testType="Ab" then 

  do s = 1 to 4; 

   do i = 1 to &nSub; 

    type = &testType; 

    totalItems = i + (s-1) * &nSub; 

    scale = cats("sub",s); 

    subItems = i; 

    if &cstcy = "homo" then 

     a = exp(rand("Normal",0.179,0.083)); 

    else if &cstcy = "hetero" then 

     a = exp(rand("Normal",-0.227,0.100)); 

    b = rand("Normal",0.0, 0.5); 

    drop s i; 

    output; 

   end; 

  end; 

run; 

 

/*****************************************************************************

**********/ 

/* Randomly generate true thetas for subscales from N examinees - with specific corrs  */ 

/*****************************************************************************

**********/ 

 

proc iml; 

 mean = {0, 0, 0, 0}; 

 corr = {1 &cor &cor &cor, 

   &cor 1 &cor &cor, 
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   &cor &cor 1 &cor, 

   &cor &cor &cor 1}; 

 var = {1 1 1 1}; 

 cov = corr # sqrt(var`*var); 

 numExaminees = &N;  

 call streaminit(&realSeed+2); /*second simulation*/ 

 theta = RandNormal(numExaminees, mean, cov); 

 print (theta[:,]); 

 sampleMean = mean(theta);  

 sampleCov = cov(theta); 

 print sampleMean;  

 print sampleCov; 

 create work.trueThetas from theta[colname={"trueTheta1" "trueTheta2" "trueTheta3" 

"trueTheta4"}]; 

 append from theta; 

 close work.trueThetas; 

 

/* Adding examinee ID and reorder variables */ 

data dataGen.trueThetas&Ncons&sim; 

 retain id; 

 set work.trueThetas; 

  id = _N_; 

run; 

  

/*****************************************************************************

****/ 

/*  0. Make a file with true thetas, id, and item Numbers. 

/*   1. Sort and then Merge item estimates & true thetas.  

/*   2. Compute item-solving probabilities from item estimates & true thetas. 

/*   3. Compare them with randomly generated univariate numbers. 

/*   4. Get responses. 

/*   5. Create two datasets with specific number of items using the given dataset. 

******************************************************************************

*****/ 

 

/* True thetas with id and item numbers */ 

 

data work.idItem; 

 do i = 1 to &N; 

  do t = 1 to &nTotal; 

   id = i; 

   totalItems = t; 

   drop i t; 

   output; 

  end; 

 end; 
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run; 

 

proc sort data = work.idItem; 

 by id; 

run; 

 

proc sort data = dataGen.trueThetas&Ncons&sim; 

 by id; 

run; 

  

data work.vecTrueThetas&Ncons&sim; 

 merge dataGen.trueThetas&Ncons&sim work.idItem; 

 by id; 

run; 

 

/* Sort item & true theta and Merge Item and True params */ 

 

proc sort data = work.vecTrueThetas&Ncons&sim; 

 by totalItems; 

run; 

 

proc sort data = dataGen.itemParams&Ncons&sim; 

 by totalItems; 

run; 

 

data work.params&Ncons&sim; 

 merge work.vecTrueThetas&Ncons&sim dataGen.itemParams&Ncons&sim; 

 by totalItems; 

run; 

 

/* Compute item-solving probabilities from Item estimates & True thetas */ 

/* Get responses based on the derived item and person estimates         */ 

 

data dataGen.probs&Ncons&sim; 

 set work.params&Ncons&sim; 

 call streaminit(&realSeed+3); 

 if scale = "sub1" then itemP = exp(a*(trueTheta1-b))/(1+exp(a*(trueTheta1-b))); 

 else if scale = "sub2" then itemP = exp(a*(trueTheta2-b))/(1+exp(a*(trueTheta2-b))); 

 else if scale = "sub3" then itemP = exp(a*(trueTheta3-b))/(1+exp(a*(trueTheta3-b))); 

 else if scale = "sub4" then itemP = exp(a*(trueTheta4-b))/(1+exp(a*(trueTheta4-b)));  

 r = rand("Uniform"); /*third simulation*/ 

 if itemP < r then resp = 0; 

 else resp = 1; 

 drop r; 

run; 
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proc sort data = dataGen.probs&Ncons&sim; 

 by id totalItems subItems; 

run; 

 

data work.tempResp; 

 set dataGen.probs&Ncons&sim; 

 drop scale totalItems subItems itemP trueTheta1 trueTheta2 trueTheta3 trueTheta4 type a 

b; 

run; 

 

proc transpose data = work.tempResp 

      out = dataGen.resp&Ncons&sim 

               prefix = r; 

      var resp; 

      by id; 

run; 

 

/* summing scores - one step to get subscale scores */ 

data work.summedScores; 

 set dataGen.resp&Ncons&sim; 

  sumTotal = sum(of r1-r40); 

  sumSub1 = sum(of r1-r10); 

  sumSub2 = sum(of r11-r20); 

  sumSub3 = sum(of r21-r30); 

  sumSub4 = sum(of r31-r40); 

run; 

 

/*mean of sumTotal, sumSub1-sumSub4 - another step to get subscale scores */ 

proc sql; 

 create table sumStats as 

 select id, mean(sumTotal) as meanTotal, mean(sumSub1) as meanSub1, mean(sumSub2) 

as meanSub2,  

 mean(sumSub3) as meanSub3, mean(sumSub4) as meanSub4, std(sumTotal) as SDTotal, 

std(sumSub1) as SDSub1, 

    std(sumSub2) as SDSub2, std(sumSub3) as SDSub3, std(sumSub4) as SDSub4 from 

work.summedScores; 

quit; 

 

data work.summedScores&Ncons&sim; 

 merge work.summedScores sumStats; 

run; 

 

/* This part was written to check if b values are properly set*/ 

proc univariate data=work.summedScores&Ncons&sim; 

 var sumTotal; 

 output pctlpre=P_ pctlpts=0 to 100 by 25; 
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run; 

 

proc print data=data1; 

run; 

 

/* Create correlation files */ 

proc corr data = work.summedScores&Ncons&sim outp=work.corrsub1Total; 

 var sumSub1 sumTotal; 

run; 

 

proc corr data = work.summedScores&Ncons&sim outp=work.corrsub2Total; 

 var sumSub2 sumTotal; 

run; 

 

proc corr data = work.summedScores&Ncons&sim outp=work.corrsub3Total; 

 var sumSub3 sumTotal; 

run; 

 

proc corr data = work.summedScores&Ncons&sim outp=work.corrsub4Total; 

 var sumSub4 sumTotal; 

run; 

 

 

/* Retrieve corr values from tables to use in the computation of regression Coefficients */ 

 

proc sql; 

 create table r1 as 

 select _TYPE_, RSub1Total  

 from work.Corrsub1total(rename = (sumTotal = RSub1Total)) 

 where _Type_= "CORR" and RSub1Total lt 1; 

 

 create table r2 as 

 select _TYPE_, RSub2Total  

 from work.Corrsub2total(rename = (sumTotal = RSub2Total)) 

 where _Type_= "CORR" and RSub2Total lt 1; 

 

 create table r3 as 

 select _TYPE_, RSub3Total  

 from work.Corrsub3total(rename = (sumTotal = RSub3Total)) 

 where _Type_= "CORR" and RSub3Total lt 1; 

 

 create table r4 as 

 select _TYPE_, RSub4Total  

 from work.Corrsub4total(rename = (sumTotal = RSub4Total)) 

 where _Type_= "CORR" and RSub4Total lt 1; 
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quit; 

 

/* Computing Cronbach alpha values based on responses */ 

 

proc corr data = work.summedScores&Ncons&sim alpha nocorr outp=alphaTotal; 

 var r1-r40; 

run; 

 

proc corr data = work.summedScores&Ncons&sim alpha nocorr outp=alphaSub1; 

 var r1-r10; 

run; 

 

proc corr data = work.summedScores&Ncons&sim alpha nocorr outp=alphaSub2; 

 var r11-r20; 

run; 

 

proc corr data = work.summedScores&Ncons&sim alpha nocorr outp=alphaSub3; 

 var r21-r30; 

run; 

 

proc corr data = work.summedScores&Ncons&sim alpha nocorr outp=alphaSub4; 

 var r31-r40; 

run; 

 

/* Retrieve the Cronbach alpha value from each table to use in the computation of regression 

Coefficients */ 

 

proc sql; 

 create table alpT as 

 select _TYPE_, alphaTotal  

 from work.alphaTotal(rename = (r1 = alphaTotal)) 

 where _Type_= "RAWALPHA"; 

 

 create table alp1 as 

 select _TYPE_, alpha1  

 from work.alphaSub1(rename = (r10 = alpha1)) 

 where _Type_= "RAWALPHA"; 

 

 create table alp2 as 

 select _TYPE_, alpha2  

 from work.alphaSub2(rename = (r20 = alpha2)) 

 where _Type_= "RAWALPHA"; 

 

 create table alp3 as 

 select _TYPE_, alpha3  

 from work.alphaSub3(rename = (r30 = alpha3)) 
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 where _Type_= "RAWALPHA"; 

 

 create table alp4 as 

 select _TYPE_, alpha4  

 from work.alphaSub4(rename = (r40 = alpha4)) 

 where _Type_= "RAWALPHA"; 

 

quit; 

 

data work.allCorrs; 

 merge r1 r2 r3 r4 alpT alp1 alp2 alp3 alp4; 

run; 

 

data work.reCoeffs&Ncons&sim; 

 merge work.summedScores&Ncons&sim work.allCorrs; 

run; 

 

proc sql; 

 create table dataGen.scores&Ncons&sim as 

 select *, sum(RSub1Total) as subr1, sum(RSub2Total) as subr2, sum(RSub3Total) as 

subr3, sum(RSub4Total) as subr4,  

    sum(alphaTotal) as alpTotal, sum(alpha1) as alp1, sum(alpha2) as alp2, sum(alpha3) as alp3, 

sum(alpha4) as alp4 

    from work.reCoeffs&Ncons&sim; 

quit; 

 

data dataGen.scores&Ncons&sim; 

 set dataGen.scores&Ncons&sim; 

 drop _Type_ rSub1Total rSub2Total rSub3Total rSub4Total alphaTotal alpha1 alpha2 

alpha3 alpha4; 

run; 

 

data scoring.finalSubscale scores&Ncons&sim; 

 set dataGen.scores&Ncons&sim; 

 /*Kelley's subscale scoring */ 

 kelleySub1 = meanSub1 + alp1*(sumSub1-meanSub1); 

 kelleySub2 = meanSub2 + alp2*(sumSub2-meanSub2); 

 kelleySub3 = meanSub3 + alp3*(sumSub3-meanSub3); 

 kelleySub4 = meanSub4 + alp4*(sumSub4-meanSub4); 

 kelleyTotal = kelleySub1 + kelleySub2 + kelleySub3 + kelleySub4;/* Kelley total sum 

scores */ 

 

 /*Holland-Hosken's subscale scoring */ 

 /* _nom2 computes the correlation between true subscale scores and observed total 

scores */ 

 HHb1_nom1 = (SDsub1*sqrt(alp1))/SDTotal;  
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 HHb1_nom2 = sqrt(alpTotal)*((subr1)/(sqrt(alp1)*sqrt(alpTotal))-(SDsub1*sqrt(1-

alp1))**2/(SDsub1*sqrt(alp1)*SDTotal*sqrt(alpTotal))); 

 HHb2_nom1 = (SDsub2*sqrt(alp2))/SDTotal; 

 HHb2_nom2 = sqrt(alpTotal)*((subr2)/(sqrt(alp2)*sqrt(alpTotal))-(SDsub2*sqrt(1-

alp2))**2/(SDsub2*sqrt(alp2)*SDTotal*sqrt(alpTotal))); 

 HHb3_nom1 = (SDsub3*sqrt(alp3))/SDTotal; 

 HHb3_nom2 = sqrt(alpTotal)*((subr3)/(sqrt(alp3)*sqrt(alpTotal))-(SDsub3*sqrt(1-

alp3))**2/(SDsub3*sqrt(alp3)*SDTotal*sqrt(alpTotal))); 

 HHb4_nom1 = (SDsub4*sqrt(alp4))/SDTotal; 

 HHb4_nom2 = sqrt(alpTotal)*((subr4)/(sqrt(alp4)*sqrt(alpTotal))-(SDsub4*sqrt(1-

alp4))**2/(SDsub4*sqrt(alp4)*SDTotal*sqrt(alpTotal))); 

 HHSub1 = meanSub1 + (sumTotal-meanTotal)*(HHb1_nom1*HHb1_nom2); 

 HHSub2 = meanSub2 + (sumTotal-meanTotal)*(HHb2_nom1*HHb2_nom2); 

 HHSub3 = meanSub3 + (sumTotal-meanTotal)*(HHb3_nom1*HHb3_nom2); 

 HHSub4 = meanSub4 + (sumTotal-meanTotal)*(HHb4_nom1*HHb4_nom2); 

 HHTotal = HHSub1 + HHSub2 + HHSub3 + HHSub4; /* Holland and Hosken's total 

sum scores */ 

 

 /* HABERMAN's subscale scoring */ 

 /* Regression coefficients for subscale scores */ 

 Haberb11 = (SDsub1*sqrt(alp1))*(sqrt(alp1)-HHb1_nom2*(subr1))/(SDsub1*(1-

subr1**2)); 

 Haberb21 = (SDsub2*sqrt(alp2))*(sqrt(alp2)-HHb2_nom2*(subr2))/(SDsub2*(1-

subr2**2)); 

 Haberb31 = (SDsub3*sqrt(alp3))*(sqrt(alp3)-HHb3_nom2*(subr3))/(SDsub3*(1-

subr3**2)); 

 Haberb41 = (SDsub4*sqrt(alp4))*(sqrt(alp4)-HHb4_nom2*(subr4))/(SDsub4*(1-

subr4**2)); 

 /* regression coefficients for total scores */ 

 Haberb12 = (SDsub1*sqrt(alp1))*(HHb1_nom2-sqrt(alp1)* subr1)/(SDTotal*(1-

subr1**2)); 

 Haberb22 = (SDsub2*sqrt(alp2))*(HHb2_nom2-sqrt(alp2)* subr2)/(SDTotal*(1-

subr2**2)); 

 Haberb32 = (SDsub3*sqrt(alp3))*(HHb3_nom2-sqrt(alp3)* subr3)/(SDTotal*(1-

subr3**2)); 

 Haberb42 = (SDsub4*sqrt(alp4))*(HHb4_nom2-sqrt(alp4)* subr4)/(SDTotal*(1-

subr4**2)); 

 

 /*Haberman Scores */ 

 HaberSub1 = meanSub1 + Haberb11*(sumSub1-meanSub1)+ Haberb12*(sumTotal-

meanTotal); 

 HaberSub2 = meanSub2 + Haberb21*(sumSub2-meanSub2)+ Haberb22*(sumTotal-

meanTotal); 

 HaberSub3 = meanSub3 + Haberb31*(sumSub3-meanSub3)+ Haberb32*(sumTotal-

meanTotal); 
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 HaberSub4 = meanSub4 + Haberb41*(sumSub4-meanSub4)+ Haberb42*(sumTotal-

meanTotal); 

 HaberTotal = HaberSub1+HaberSub2+HaberSub3+HaberSub4; 

 

 /*Computing RMSE */ 

 RMSE_RawSub1 = SDsub1*sqrt(1-alp1); 

 RMSE_RawSub2 = SDsub2*sqrt(1-alp2); 

 RMSE_RawSub3 = SDsub3*sqrt(1-alp3); 

 RMSE_RawSub4 = SDsub4*sqrt(1-alp4); 

 

 RMSE_KelleySub1 = (SDsub1*sqrt(alp1))* sqrt(1-alp1); 

 RMSE_KelleySub2 = (SDsub2*sqrt(alp2))* sqrt(1-alp2); 

 RMSE_KelleySub3 = (SDsub3*sqrt(alp3))* sqrt(1-alp3); 

 RMSE_KelleySub4 = (SDsub4*sqrt(alp4))* sqrt(1-alp4); 

 

 RMSE_HHSub1 =(SDsub1*sqrt(alp1))*sqrt(1-HHb1_nom2**2); 

 RMSE_HHSub2 =(SDsub2*sqrt(alp2))*sqrt(1-HHb2_nom2**2); 

 RMSE_HHSub3 =(SDsub3*sqrt(alp3))*sqrt(1-HHb3_nom2**2); 

 RMSE_HHSub4 =(SDsub4*sqrt(alp4))*sqrt(1-HHb4_nom2**2); 

 

 RMSE_HaberSub1 = RMSE_KelleySub1*sqrt(1-((HHb1_nom2-

sqrt(alp1)*subr1)/(sqrt(1-alp1)*sqrt(1-subr1**2)))**2); 

 RMSE_HaberSub2 = RMSE_KelleySub2*sqrt(1-((HHb2_nom2-

sqrt(alp2)*subr2)/(sqrt(1-alp2)*sqrt(1-subr2**2)))**2); 

 RMSE_HaberSub3 = RMSE_KelleySub3*sqrt(1-((HHb3_nom2-

sqrt(alp3)*subr3)/(sqrt(1-alp3)*sqrt(1-subr3**2)))**2); 

 RMSE_HaberSub4 = RMSE_KelleySub4*sqrt(1-((HHb4_nom2-

sqrt(alp4)*subr4)/(sqrt(1-alp4)*sqrt(1-subr4**2)))**2); 

 

 PRMSE_KelleySub1 = alp1; 

 PRMSE_KelleySub2 = alp2; 

 PRMSE_KelleySub3 = alp3; 

 PRMSE_KelleySub4 = alp4; 

 

 PRMSE_HHSub1 = HHb1_nom2**2; 

 PRMSE_HHSub2 = HHb2_nom2**2; 

 PRMSE_HHSub3 = HHb3_nom2**2; 

 PRMSE_HHSub4 = HHb4_nom2**
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