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Abstract— This paper presents a method for controlling
formations of mobile robots. In particular, the problem of
maintaining so-called “persistent formations” while moving
the formation from one location to another is defined and
investigated. A method for accomplishing such persistent for-
mation motions is presented, and the method is demonstrated
in simulation and with a prototype network of robots.

I. I NTRODUCTION

This work is conducted in the contract of a National
Aeronautics and Space Administration (NASA) project to
implement a multi-robot system for research in Antarctica.
In this project, a team of geologists at NASA should be able
to use a mobile sensor network composed of mobile robots to
take sensor readings across ice shelves to better understand
the impacts of global climate change [1].

According to specifications, the network should be able to
automatically deploy and distribute itself across an area of in-
terest with a user-defined resolution, and to achieve specific,
user-defined geometric relationships among the members of
the network. This is generalized as the ability of the network
to assemble and deployformations(see [2], [3], [4], [5] for a
representative sample). However, the environment in which
the network is deployed is dynamic. The Antarctic ice sheets
are being studied to better understand, in part, why they
“break up” [6]. As such, the desired position of the formation
may change as the system collects data. This change may
occur due to the environment, such as a dangerous event on
the ice shelf. This may also occur when sensor data from
a different area, or repositioning of the sensors relative to a
moving target, is requested.

Our previous work on this topic with a prototype network
of mobile robots presents methods for the network assembly
in a decentralized fashion [7], [8]. This work was based
on models of formation specifications as weighted graphs
in the spirit of [9], [10], [11], [12]. In these graphs, the
vertices correspond to agents, and the edges correspond to
constraints, i.e. geometric relationships between robots that
are established and maintained. In particular, the method in
[8] uses graph-based rules for assembling the formation as
a sequence of graph operations. The result of these graph
operations is a final network graph that is isomorphic to
the formation specification graph, and the geometry of the
mobile sensor network matches the geometry of the desired
formation. In [7], [8], desired formations for the network
are modeled asminimally persistent graphs[14]. Persistent
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graphs are directed graphs, and the direction of the edge
corresponds to which agent is responsible for maintaining
the constraint.Minimally persistent, in turn, ensures that as
few such edges as possible are used.

In this paper, we address the issue offormation motion,
i.e. moving the agents from one location to another while
maintaining the formation. Specifically, we present control
laws for moving minimally persistent formations. Previous
work has presented control laws for a similar version of
this problem, using control strategies with both holonomic
and nonholonomic agents [13]. Due to the complexity of
the control laws in [13], explicit proofs of stability were
left to future work, even though they performed well in
simulation. In this paper, by addressing only holonomic
control strategies, we can make explicit claims as of the
stability of the formation error.

In Section II the problem of moving minimally persistent
formations is defined. Section III presents control strategies
for moving persistent formations. Section IV describes how
the robots determine their desired positions as dictated by
their constraints, as well as the permissible error of the
formation. Section V discusses simulation results and im-
plementation results with actual robots. Finally, SectionVI
concludes the paper.

II. PROBLEM DEFINITION

This section discusses the problem of maintaining a forma-
tion during motion. We introduce our model of the system,
preliminary information about the initial state of the network,
and the desired trajectory of the network. We also define a
network graph that models the network’s control topology.

A. Network and Trajectory Modeling

We definen ≥ 2 as the number of agents in the network,
andN = {1, . . . , n} as a set of indices such thati ∈ N is
the index of agenti. We represent each agent over an interval
of time T = [0,∞). Each agent is represented as a statexi :
T 7→ R

2 such that,∀i ∈ N , xi(t) is the planar position of
agenti at timet ∈ T . We assume that the dynamics of each
agent is given by a single integrator, i.e. for eachi ∈ N , ui :
T 7→ R

2 is the control for agenti such thaṫxi = ui. The state
of the entire network is represented by anetwork trajectory
X : T 7→ R

2n such thatX(t) =
[

x1(t)
T , . . . , xn(t)T

]T
.

We define adesired stateof each agenti as x∗

i : T 7→
R

2 ∀i ∈ N such thatx∗

i (t) is the desired state of agent
i at time t. Moreover, we assume thatx∗

i is continuously
differentiable∀i ∈ N . The desired state of the entire network
is represented by adesired network trajectoryX∗(t) =
[

x∗

1(t)
T , . . . , x∗

n(t)T
]T

.



We needX∗ to describe a trajectory that maintains a
desired formation. Therefore, for eachi ∈ N , we define a
nominal formation positionpi ∈ R

2. These positions define
the “shape” of the formation in that they define the desired
distances between all pairs of agents. For this problem, we
assume thatpi 6= pj ∀(i, j) ∈ N ×N . Each pair of positions
(pi, pj) definesdij = ‖pi − pj‖, ∀(i, j) ∈ N × N . To
satisfy this formation, we require that‖x∗

i (t)−x∗

j (t)‖ = dij

∀(i, j, t) ∈ N × N × T . This prerequisite forX∗ based on
the positions and the distances they define is sufficient to
guarantee thatX∗(t) represents the same formation∀t ∈ T

[11].
The goal for the network is to (asymptotically) maintain

formation while following the desired trajectory. In other
words, we desire thatlimt→∞ X(t) − X∗(t) = 0. To this
end, we define thenetwork formation errorX̃ = X − X∗,
and we wantlimt→∞ X̃(t) = 0. We represent theerror of
each agenti ∈ N by x̃i : T 7→ R

2 such thatx̃i = xi − x∗

i .
Initially, we assume that the network is close to defining

the perfect, error-free formation, i.e. for some smallǫ > 0,
we assume that‖X̃(0)‖ ≤ ǫ. Previous work shows that we
can assemble such formations with an arbitrarily bounded
error [8]. Thus,ǫ can be arbitrarily small.

B. Formations Represented with Persistent Graphs

We represent the control topology as a graphG = (V, E),
such thatV = {v1, . . . , vn} is the vertex set, andE ⊂ V ×V

is the edge set. Here, each vertex inV is associated with
its corresponding agent, i.e.vi is the index corresponding
to agent i. We also assume that each edge is directed,
in that the ordered pair(vi, vj) ∈ E indicates that the
control law of agenti depends on the position of agentj.
This control law should be designed to maintain a specified
relationship between agentsi and j. Thus, we say that
each edge(vi, vj) ∈ E represents anetwork constraintof
agent i with agentj. The number of constraints of agent
i corresponds to theout-degreeof vertex vi, defined as
|{(va, vb) ∈ E : va = vi}|.

For the purposes of this paper, we assume thatG is a
stably rigid, minimally persistent graph[14], [15] as shown
in Fig. 1(a). This implies several properties ofG. First, G

is a connected, directed acyclic graph (DAG). Also,G has
a leader vertex vl ∈ V with an out-degree of zero and a
first-follower vertexvf ∈ V with an out-degree of one, such
that(vf , vl) ∈ E. Thus, we say that our network has a leader
agentl and a first-follower agentf . Each remaining vertex is
a follower vertex, i.e. the follower vertices are all vertices in
V \ {vl, vf}. Each follower vertex has an out-degree of two.
Furthermore, each edge is in a directed path to the leader
vertex. Finally, our assumptions imply thatG is minimally
rigid [16] and constraint consistent[14]. We also assume
that∀k ∈ N such that{(vk, vi), (vk, vj)} ⊂ E, x∗

i (t), x∗

j (t),
andx∗

k(t) arenot collinear∀t ∈ T . For developments in this
paper, we define the indices of the agents such that 1 is the
index of the leader, 2 is the index of the first-follower, and all
other agent indices correspond to a reverse topological order
such that∀(vj , vi) ∈ E, j > i. This topological ordering is

possible because, by our assumptions,G is a DAG. Since
all followers have an out-degree of two, this implies that,
∀{k ∈ N : k ≥ 3}, agentk is a follower, and∃(i, j) such
that {(vk, vi), (vk, vj)} ⊂ E.

Due to the rigidity of the network, all inter-agent distances
are preserved if the constraints of each agent are maintained,
i.e. ‖xi(t)− xj(t)‖ = dij ∀(vi, vj) ∈ E ∀t ∈ T ⇔ ‖xi(t)−
xj(t)‖ = dij ∀(i, j, t) ∈ N×N×T . Therefore, the formation
is maintained by only maintaining a subset of inter-agent
distances (in this case, with2n−3 constraints). Qualitatively,
the constraint consistency ensures that no agent can satisfy its
constraints in a manner which forces another agent to violate
a constraint (for a more rigorous treatment of persistence and
constraint consistence, see [14]). Since the graph is acyclic,
the edges of the graph can be assembled from an empty set
by first adding the edge(vf , vl) between the leader and first-
follower, and then performing a sequence ofvertex addition
operations, in which a pair of edges(vk, vi) and(vk, vj) are
added for each vertex inV \ {vl, vf}, as shown in [7], [8].

Since the network has a leader whose vertex has an out-
degree of zero, this implies that the leader has no constraints;
it is free to move regardless of its relationship to other agents.
Similarly, the first-follower only has one constraint with
the leader. Therefore, the first-follower can rotate around
the leader. Rotating the first-follower around the leader
while the other followers maintain their constraints causes
the formation to rotate. This suggests a useful strategy for
positioning and rotating the formation by coordinating the
position and rotation of the leader and first-follower agents.

III. PERSISTENTCONTROL STRATEGIES

In this section, we define control strategies for maintaining
persistent formations. We discuss two different control laws,
each based on assumptions about the information available
to each agent in terms ofX∗ and its dynamics.

A. Relative Formation Geometry

The desired trajectoryX∗ defines the desired translation
and rotation of the formation. Specifically,x∗

1
defines the

location of the leader as a function of time, andx∗

2 defines the
rotation of the first-follower as a function of time. Similarly,
the geometry defined byX∗ defines therelative position
of all agents. For each follower agentk, there exists(i, j)
such that{(vk, vi), (vk, vj)} ⊂ E and a functionfk such
thatx∗

k = fk(x∗

i , x
∗

j ). Section IV discusses the equations for
definingfk for all followers.

We always assume that the leader and first-follower have
access to their desired states. We define persistent control
strategies for two cases. In the first case, we assume that
∀k ∈ N such that{(vk, vi), (vk, vj)} ⊂ E, follower agent
k has access tox∗

i and x∗

j , and can thus derivex∗

k. Here,
the agents are controlled with knowledge of their desired
states and their dynamics. In the second case, we assume
that each follower agentk can only estimatex∗

k by the actual
positions of the other agents asfk(xi, xj). Here, the agents
are controlled by estimating their desired states and their
dynamics.



B. Control With Knowledge of the Desired States and Their
Dynamics

We assume that the leader agent 1 and the first-follower
agent 2 have access tox∗

1 and x∗

2. For our first scenario,
we assume that, ifn ≥ 3, agents 1 and 2 communicate
these to agent 3. This implies that agent 3 can calculate
both x∗

3 and ẋ∗

3. In general, we assume that, for each agent
k ∈ N such that{(vk, vi), (vk, vj)} ⊂ E, agentsi and
j share (x∗

i , ẋ∗

i , x∗

j , ẋ∗

j ) with agent k. This could be
accomplished by agents sharing these as explicit functions
of time, or communicating these values as the formation is
executed. Then, agentk can derivex∗

k = fk

(

x∗

i , x
∗

j

)

and
ẋ∗

k = ∂fk

∂x∗
i

(

x∗

i , x
∗

j

)

ẋ∗

i + ∂fk

∂x∗
j

(

x∗

i , x
∗

j

)

ẋ∗

j . We can define each
agent’s control based on its desired state and the desired
state’s dynamics.

We define agenti’s control by ui = ẋ∗

i − Kix̃i, where
−Ki ∈ R

2×2 is a Hurwitz matrix. This implies that the
error dynamics are

˙̃xi = ẋi − ẋ∗

i = ui − ẋ∗

i = ẋ∗

i − Kix̃i − ẋ∗

i = −Kix̃i.

The system˙̃xi = −Kix̃i has a globally exponentially stable
origin. Further, the network error is described by the system
˙̃

X = −KX̃, where−K ∈ R
2n×2n is a Hurwitz matrix

with −K1, . . . , Kn on its diagonal. Therefore, the network
error has a globally exponentially stable origin. Hence,
limt→∞ X̃(t) = 0.

C. Control Without Knowledge of the Desired States and
Their Dynamics

Here, we consider the case of limited knowledge ofX∗.
We assume that the leader agent 1 has access tox∗

1, and
the first-follower agent 2 has access tox∗

2
. However, agents

k ∈ N such that{(vk, vi), (vk, vj)} ⊂ E do not have access
to eitherx∗

i , x∗

j , or x∗

k. However, we assume that agentk

has access to bothxi andxj , as in the case where agentk

can estimate the relative position of agentsi and j through
sensor information. For each agenti, we define anestimation
of its desired stateas x̂∗

i . The follower agents estimate the
desired state bŷx∗

k = fk (xi, xj) and ˙̂x∗

k = ∂fk

∂xi
(xi, xj) ẋi +

∂fk

∂xj
(xi, xj) ẋj . Since the leader and first-follower agents still

have access tox∗

1 and x∗

2, we definex̂∗

1 = x∗

1 and x̂∗

2 =
x∗

2
. We also define an estimation of the desired state of the

network asX̂∗ = [x̂∗T
1

, . . . , x̂∗T
n ]T . Similarly, we define an

estimation of the errorof agenti as x̂i = xi − x̂∗

i , and the
network error estimationasX̂ = X − X̂∗.

We define agenti’s control law byui = ˙̂x∗

i −Kix̂i, where
−Ki ∈ R2×2 is a Hurwitz matrix. This implies that̂̇xi =
−Ki

˙̂xi ∀i ∈ N , which has a globally stable origin. This
implies thatX̂ has a globally exponentially stable origin and
limt→∞ X̂(t) = 0.

If, for eachk ∈ N such that{(vk, vi), (vk, vj)} ⊂ E, we
assume thatlimt→∞ x̃i(t) = limt→∞ x̃j(t) = 0, then this

implies that

lim
t→∞

(x̂∗

k (t) − x∗

k (t))

= lim
t→∞

(

fk (xi (t) , xj (t)) − fk

(

x∗

i (t) , x∗

j (t)
))

= lim
t→∞

(

fk

(

x∗

i (t) , x∗

j (t)
)

− fk

(

x∗

i (t) , x∗

j (t)
))

= 0.

Also,

lim
t→∞

x̃k(t) = lim
t→∞

(xk(t) − x∗

k(t))

= lim
t→∞

(xk(t) − x̂∗

k(t) + x̂∗

k(t) − x∗

k(t))

= lim
t→∞

(x̂k (t) + x̂∗

k(t) − x∗

k(t)) = 0.

Note that, by our definition of the system,x̂∗

1
= x∗

1
and

x̂∗

2 = x∗

2. This implies thatlimt→∞ x̃1(t) = limt→∞ x̃2(t) =
0. Then, by the topological properties ofG, the topolog-
ical ordering of vertices, and induction, this implies that,
∀k ∈ N such that k ≥ 3, ∃(i, j) such that k > i,
k > j, {(vk, vi), (vk, vj)} ⊂ E, and limt→∞ x̃i(t) =
limt→∞ x̃j(t) = 0. Hence,limt→∞ X̃(t) = 0.

IV. C IRCLE-CIRCLE INTERSECTIONSOLUTIONS

Here, we describe how each agentk determines its desired
location and dynamics. As discussed in Section II, for each
pair (vi, vj) ∈ E, there is a constantdij such that the
formation is persistent if‖xi(t) − xj(t)‖ = dij ∀t ∈ T .
The leader and first-follower agents attempt to satisfy this
by stabilizing to their desired states. By our assumptions,the
error of the leader and first-follower exponentially stabilizes
to zero ast → ∞.

Each additional follower agent employs solutions to the
circle-circle intersection problem to determine their desired
states and their dynamics. Two circles whose centers are
at xi(t) ∈ R

2 and xj(t) ∈ R
2 with radii of ri and rj

respectively intersect at the pointfk(xi(t), xj(t)) defined by

fk(xi(t), xj(t)) =
xi(t) + xj(t)

2
+

1

2‖xj(t) − xi(t)‖2
·

(

(

r2

i − r2

j

)

(xj(t) − xi(t))

+ Q (xj(t) − xi(t)) ·
√

(

(ri + rj)
2
− ‖xj(t) − xi(t)‖2

)

·

√

(

‖xj(t) − xi(t)‖2 − (rj − ri)
2
)

)

where

Q1 =

[

0 1
−1 0

]

, Q2 =

[

0 −1
1 0

]

,

and whereQ = Q1 or Q2. The choice ofQ selects which
intersection point is desired, since there are (typically)two
solutions to the circle-circle intersection problem. For each
agentk such thatfk is defined, the appropriate equation is
used to define its desired state.



The radii ri and rj are defined by the desired net-
work trajectory X∗. For each agentk ∈ N such that
{(vk, vi), (vk, vj)} ⊂ E, ri = dki andrj = dkj . Therefore,
x∗

k(t) = fk(x∗

i (t), x
∗

j (t)). However, when operating onxi(t)
and xj(t), there is a discontinuity whenxi(t) = xj(t), i.e.
when the circles either do not intersect or completely overlap
each other. There are complex solutions when‖ri + rj‖

2 <

‖xj(t) − xi(t)‖
2 or ‖rj − ri‖

2 > ‖xj(t) − xi(t)‖
2. The

first condition indicates that the centers of the circles aretoo
far apart to intersect. The second condition implies that one
circle is inside the other so that they do not intersect. Since
we can assemble these formations with arbitrary initial error
[8], we place an upper bound on our initial errorǫ such that
we operate within a sufficiently tight neighborhood ofX∗

such that these conditions do not occur.

V. RESULTS

In this section, we present simulation results for the control
strategy using estimations of the desired states presentedin
Section III-C, as well as implementation results with the
prototype network of mobile robots.

A. Simulation Scenarios

First, we present a scenario of the NASA project. Us-
ing software based on previous work [7], [8], along with
a Graphical User Interface (GUI) for entering formation
positions, we assume that the geologists specify a hexagonal
formation ofn = 7 robots to track a moving terrain feature
with their sensors. A minimally persistent formation is deter-
mined such that, for each edge(vi, vj) ∈ E, dij = 10 m. The
software automatically configures the robots for assembling
the formation. The robots then assemble this formation and
begin collecting data. During the data collection, the terrain
feature begins moving with a velocity of[1, 1]

T . The leader
and first-follower begin moving in order to track this motion,
defining a desired velocity oḟx∗

i = [1, 1]
T , ∀i ∈ N . For each

agenti, we assume that−Ki = −I.
The simulation results for this motion are shown for three

different initial error assumptions. First, it is assumed that the
initial error of each agent is bounded to within 2 m. Then,
we perform two simulations to test the “robustness” of the
control laws defined byfk when the conditions discussed in
Section IV occur. In one simulation, it is assumed that all
the agents are very close initially to the initial desired state
of the leader, causingxi(0), xj(0) to be very close to each
other ∀(i, j) ∈ N × N . In the last simulation, we assume
that the initial position of each agent is within 20 m of the
initial desired leader state. These last two scenarios allow
sufficient error to produce complex results for the circle-
circle intersection solutions.

B. Simulation Results

Fig. 1 shows the results when the error of each agent
is initially bounded to 2 m. As the formation moves, the
error decreases. Fig. 1(a) shows the trajectory. In this figure,
dotted lines represent the desired trajectory, while solidlines
represent the actual trajectory. Arrows between the states
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Fig. 1. The network trajectory, network error, and constraint errors. Here,
we define an initial error bound of 2 m for each agent. As the agents move,
the error in the formation stabilizes to zero ast → ∞. Fig. 1(a) shows the
formation trajectory. Fig. 1(b) shows the errors of each agent with respect to
their desired states, and Fig. 1(c) shows the errors of each agent in satisfying
their constraints. All errors stabilize to zero ast → ∞.

correspond to the edges ofG. Fig. 1(b) shows the errors
of each agent with respect to their desired states, which
approach zero ast → ∞. Fig. 1(c) shows the errors of
each constraint of the network, which also approach zero
as t → ∞.

In the next simulation, we force each agent’s initial state
at time t = 0 to be within 10−60 m of x∗

1
(0). This can

produce complex results and large errors in the early portions
of the formation trajectory. However, the errors still stabilize
to zero ast → ∞. Fig. 2 shows the corresponding results of
this scenario.

To further test the robustness of the dynamics defined by
fk when it produces complex results, we enlarge the bound
on the initial error of each agent to 20 m. Fig. 3 shows
the real portion of the results for this scenario. As seen
in Fig. 3(b), this produces large initial errors, as well as
complex results. However, using these dynamics, the errors
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Fig. 2. The network trajectory, network error, and constraint errors. Here,
the agents all begin initially within10−60 m of x∗

1
(0). This can result in

large errors early in the trajectory. However, the error still approaches zero
as t → ∞.

still stabilize to zero ast → ∞.

C. Implementation Results

For the pre-Antarctic stages of this project, we use a pro-
totype network. The control strategy and equations presented
in Sections III and IV are implemented with only therelative
positions of the other robots. As such, these relative positions
are the only sensor information available to the follower
agents in the network. Only the leader and first-follower have
access to the relative position of their desired trajectories.

For this demonstration, we choosedij = 5 m ∀(vi, vj) ∈
E. After the triangle is assembled, the robots begin moving
while maintaining formation, as shown in Fig. 4. The robots
maintain a triangle formation during and after the formation
motion. The error is within the hardware limitations of
the network, approximately 2 m for each robot. A similar
formation motion is shown with a “diamond” formation in
Fig. 5. Fig. 5(a) shows the formation before assembly. Fig.
5(b) shows the assembled formation. Fig. 5(c) shows the
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Fig. 3. The network trajectory, network error, and constraint errors. Here,
the agents are all within 20 m ofx∗

1
(0), producing complex results forfk.

Here, the real parts of the solution are plotted. However, the trajectory error
still approaches zero ast → ∞.

formation after a formation motion.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presents a method for maintaining persistent
formations during motion of the formation. This allows
our prototype network to move from one location to an-
other while staying in a user-defined formation. Currently,
range limitations in the prototype network’s communications
equipment prevent a large-scale demonstration using the full
network and a large translation of the formation. Future
work will address this issue, allowing the network to deploy,
assemble, and move large formations longer distances using
the methods presented here.
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(a) t = 0 sec

(b) t = 27 sec

(c) t = 71 sec
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