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SUMMARY 

This work details the development, test and application of a 

dynamic finite element capability for analysis of cracked linearly 

elastic two-dimensional structures. The dynamic capability was 

obtained by determining the inertia properties (consistent mass 

matrices) for two previously developed and well tested high-order 

cracked elements. The mass matrices for an eight-node element which 

can represent only symmetric (Mode I) displacements and a ten-node 

element able to represent both antisymmetric (Mode II) and symmetric 

displacements were constructed by the generalized coordinate method. 

The coordinate functions were the Williams' series displacement eigen-

functions and rigid body displacement functions. 

For computational economy, the cracked elements were homogene

ous, constant thickness and fixed as to geometrical shape. Matrix 

dependence on material properties was made explicit by appropriate 

nondimensionalization and arrangement of the coordinate functions. 

The matrix elements, generated by numerical quadrature, were stored as 

DATA statements in FORTRAN subroutines. The mass matrix construction 

process is given in detail, including the nondimensionalization, 

schematic representations of all matrices and vectors, and numerical 

quadrature methods. 

A UNIVAC 1108 FORTRAN V computer program with equilibrium, 

frequency eigenvalue, harmonic vibration and undamped transient 

dynamic response solution capability was written. The program library 



includes the two cracked elements, the constant-strain triangle, a 

linear spring and a point mass. A program listing is not given. 

The cracked element inertia properties were verified in two 

ways. First, the finite-element-model-predicted natural frequencies 

were compared with experimental frequencies for a square cracked plate. 

Model configurations and results are given. Predictions and experi

mental results agree very closely. Second, the time-dependent stress 

intensity factor for a finite crack opened by uniform pressure applied 

suddenly on the crack faces was computed and compared with a published 

analytic solution for an infinite plane. These results are presented 

in graphical form. The finite element values agree excellently with 

the analytic solution. 

Simplified tup load-time data from an instrumented impact test 

of a pre-cracked Type A Charpy specimen were used to illustrate the 

effectiveness and efficiency of this finite element capability in a 

typical application. The variation of stress intensity factor with 

time obtained from the finite element model agrees well with recent 

analytic and analog computer results. This example clearly demon

strates the high-order element's ability to accurately represent wave 

propagation phenomena. Detailed load-time and specimen time-to-

fracture records, "interpreted" by a finite element model, could 

provide a very economical means to determine material critical stress 

intensity factor (KTP) values. 
1U 

The finite element equations of motion for undamped linear 

elastodynamic systems, a complete derivation of the Williams' eigen-

function series solution for a cracked linearly elastic two-dimensional 



IX 

continuum and a derivation of the particular version of the Newmark-3 

time integration operator used in the computer program are given in 

appendices. 
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CHAPTER I 

INTRODUCTION 

Fracture mechanics, long a challenging area for research in 

solid mechanics, is currently of considerable technological impor

tance. Principally, this importance arises from the recent widespread 

use of high-strength, low-toughness materials in many structural appli

cations, particularly in military and commercial aircraft. 

For those configurations amenable to a two-dimensional treat

ment, the usual linear elastic fracture mechanics analysis of a given 

crack/structure/load system requires that the stress intensity factors 

KT and KTT be determined. These factors are measures of the crack-tip 

stress-singularity strength for the opening and sliding crack face dis

placement modes shown in Figure 1. The stress intensity factors are 

defined in terms of the near-tip stress field in equations (A66) and 

(A67), Appendix A. Symbolic mathematical solutions for KT and K are 

necessarily limited to simple configurations and boundary conditions, 

and extrapolation of such results to cracked structures of engineering 

interest is as much art as science. 

To circumvent this limitation, the power of the finite element 

method [1-7]* ™as brought to bear. Early attempts to solve crack 

problems by finite element techniques [8-12], used only conventional 

elements. These elements did not incorporate the characteristic 

•̂ Numbers in square brackets correspond to reference on page 88. 
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crack-tip stress singularity [13] and models using them were neces

sarily very detailed near a crack tip. The stress and displacement 

fields in the near-tip region were ill represented, and stress inten

sity factors had to be extrapolated from values of the stresses or 

displacements at points away from the crack tip. Such refined models 

were costly and inefficient. 

The situation for plane elastic analyses was much improved by 

the development of specific finite elements which incorporated the 

crack tip stress singularity. Such elements are called "singularity 

elements" or "cracked elements" and are based on the Williams' eigen-

functions [1^-16] (Appendix A). Several early investigators created 

elements which incorporated only the singular eigenfunction [17-20], 

although one [21] used the first four symmetric eigenfunctions. 

Generally, these elements provided improved accuracy and were more 

economical to use. 

Recently two "high-order" singularity elements were developed 

at the Georgia Institute of Technology and the Lockheed-Georgia 

Company [22]. The elements were called high-order elements because 

Williams' eigenfunctions of order higher than the first were incor

porated. The eight-node element shown in Figure 2, can represent only 

symmetric (Mode I) deformations. It incorporates the first thirteen 

symmetric Williams' eigenfunctions. The ten-node element shown in 

Figure 3 can represent both symmetric and antisymmetric (Mode II) 

deformations. It incorporates the first nine symmetric and the first 

eight antisymmetric Williams' eigenfunctions. These high-order ele

ments gave much more accurate results and were significantly more 



economical than earlier elements. 

With the success of the high-order singularity elements, the 

equilibrium analysis of plane elastic through-cracked structures by 

the finite element method was well in hand. The corresponding 

dynamic analysis seems to have been wholly neglected. This neglect 

is understandable, for although finite element dynamic solutions are 

well known [l-̂ -]j the computation times for such solutions are fre

quently orders of magnitude greater than those for the corresponding 

equilibrium problem. Thus, in the absence of an effective singularity 

element, dynamic finite element analysis of cracked structures is 

prohibitively expensive. 

Motivated by the successful application of high-order elements 

to the solution of equilibrium problems, this research was undertaken 

to establish a dynamic finite element analysis capability for linearly 

elastic plane structures. To do so, it was necessary to determine the 

inertia properties (consistent mass matrices) for the high order ele

ments, to incorporate these mass matrices (and the corresponding stiff

ness matrices [23,2̂ -]) into a computer program, and to verify element 

performance by application of the program to suitable test problems. 

This research advances the art of application of finite element methods 

to the dynamics of elastic fracture mechanics, providing a rational 

analysis capability for problems heretofore intractable. The major 

contribution is construction and verification of the mass matrices, 

since other aspects of the work are largely applications of existing 

concepts. 

Since the high-order elements incorporate a stress singularity 
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and do not satisfy interelement displacement compatibility conditions 

[1,3>25], some investigation of the finite element solution con

vergence properties vas required. 

The finite element method has been rigorously established as 

a generally applicable mathematical technique for approximate solution 

of a very vide class of problems [1,3.?^ 25]. Convergence to the exact 

solution has been shewn to occur, under very broad restrictions, as 

element size is reduced. For plane elasticity problems convergence 

is monotonic if the finite elements used to represent the continuum 

are compatible. For plane elasticity extensional solutions, elements 

are compatible if displacements along interelement boundaries are every

where continuous. If the elements are not compatible, convergence can 

still occur, but is not necessarily monotonic. In some cases incom

patible elements actually speed up the convergence [1*3]. Although 

the convergence proof in [25] assumes a nonsingular stress field, 

recent "work by Tong and Pian [26] shows that convergence is still 

obtained when the finite element method is applied to a problem where 

the stress field is singular. Convergence in this case is largely 

controlled by the nature of the singularity. The opinion of Tong and 

Pian that the crack tip singularity should be taken into consideration 

by including the singular terms in a finite region, not too small in 

comparison with the crack length, is supported by the results of this 

and of earlier investigations [22]. 

The mass matrices developed in this work are called "consistent" 

mass matrices. A consistent mass matrix is one which is constructed 

using the same coordinate functions used for the stiffness matrix [27]. 



Equations (B12) and (B13) of Appendix B show explicitly the relation

ship involved. 

While the consistent mass matrix is certainly a correct formu

lation, it is not the only choice [U,28]. There is considerable com

putational advantage in using a diagonal or "lumped" mass matrix [29] 

as well as some reduction [30] of the displacement oscillations pre-

ceeding wave front arrival, usually seen in consistent mass matrix 

model results. The question of an optimal diagonalization method is 

still open [29]. For the 10-node element, lumping the mass so as to 

preserve translational kinetic energy resulted in negative mass matrix 

elements corresponding to the y-displacement at two nodes. The "eigen-

frequency preserving" technique of [29], although undoubtedly worthy 

of further study, was not pursued in this investigation. 

The general small displacement equations of motion for a 

linearly elastic finite element are developed in Appendix B. The 

equations are then specialized to the particular elements developed 

in this research. The method for direct assembly of the element 

matrices into the structural matrices, which is not peculiar to this 

investigation, is not discussed. 

Appendix A presents a detailed development of the Williams' 

eigenfunction series used as coordinate functions in construction of 

the singularity elements. This series was originally found by M. L. 

Williams [1^], using the general stress function formulation for 

plane elasticity as developed by Love [31] and given in plane polar 

coordinates by Coker and Filon [32]. The derivation in the Appendix 

uses the stress function form given by Timoshenko and Goodier [33] and 
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an economical method of procedure used in [3i(]. The complete 

development was carried through in order to fully investigate the 

eigenvalue problem and because more displacement eigenfunctions were 

needed than -were given by Williams. The stress and displacement 

series, taking account of the modified notation, agree with Williams' 

results [1^] as corrected in [l6]). 

In Chapter 2, the displacement eigenfunctions of Appendix A 

and the finite element equations of Appendix B are used to construct 

the mass matrices. The equations implemented, the numerical techniques 

used and the checks made at each stage of the construction are described 

in detail. Tables show the structure of the necessary vectors and 

matrices. As part of the verification process the natural frequencies 

preducted by a finite element model for harmonically excited square 

cracked plates were compared with experimental values. This experi

mental work was carried out by Mr. John Malluck, a graduate student at 

the Georgia Institute of Technology [35]. 

Appendix C gives the detailed development of the time integra

tion algorithm used in the transient dynamic analysis subroutine. The 

method is a version of the Newmark-3 algorithm [36,37] a s developed in 

difference equation form by Chan, Cox and Benfield [38]. 

Chapter 3 presents a brief description of the computer program 

developed to use the singularity elements and the finite element 

solutions to two problems. The first problem is a finite length 

through crack in an initially quiet infinite medium, with the crack 

faces loaded by a Heaviside step function normal pressure. This 

problem was chosen because a solution has been published [39>^0]> an(3 



because it provided a severe test of element performance. The second 

problem, a Charpy impact test [^1], was selected as an example of a 

useful dynamic application of the cracked element. The results are in 

good agreement with recently published reports [41,̂ 4-2]. 

Finally, Chapter k summarizes the main results of this inves

tigation, points out some appropriate extensions of the work, and 

makes recommendations for further study in this area. 
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CHAPTER II 

CONSTRUCTION OF THE MASS MATRICES 

This chapter shows the construction of the consistent mass 

matrices for the eight-node (Figure 2) and the ten-node (Figure 3) 

high-order singularity elements. The notation used is that of 

Appendices A and B. 

Preliminary Considerations 

Element Shape and the Coordinate Functions 

Construction of the consistent mass matrices requires evalua

tion of equations (BIT). These equations, in turn, depend on the 

structure of the f matrix and on element shape. 

The f matrix consists of selected Williams' displacement eigen-

functions and rigid "body terms. Its form is largely arbitrary. In 

this investigation, the f matrices agree with those of [23,2^-], as do 

the element shapes. The f matrix arrangement for the eight-node ele

ment is schematically depicted in Table 1, and the ten-node element f 

matrix is shown in Table 6. Notation in both tables is that of equa

tions (A6lb) and (A62b) of Appendix A. 

Element shape is chiefly limited by the requirement that the A 

matrix be nonsingular. The A matrix for each of the elements is well 

conditioned with respect to Inversion, a single-precision inversion 

and check multiplication giving maximum off-diagonal terms of order 

10-6. 
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Computational Strategy and the Computer Program 

In many finite element applications, the magnitude of the 

computational task is a major concern. Both large structures and 

sophisticated elements tend to increase the amount of computation 

required. In most finite element programs, the element matrices are 

integrated anew each time a problem is run. If this were done with 

the cracked elements each use would require duplication of the stiff

ness matrix and mass matrix integrations. The experience of earlier 

investigators was that such integration-atf-each-use was economically 

unsound, considering the relative computer run times involved in per

forming the integration and. in solving a typical problem after the 

matrices were generated [23,2^]. This finding was confirmed. 

Attainment of adequately accurate mass matrix coefficients required 

UNTVAC 1108 run times of about five minutes, while problem solution run 

times for the problems in Chapter III were approximately three minutes. 

The strategy adopted was to compute accurate values of 

required matrix elements in a nondimensional form for an element of 

constant thickness t, homogeneous mass density p and fixed shape. 

These coefficients were then stored as DATA statements in FORTRAN sub

routines of the structural computer program. 

When nondimensionalized equation (BITa) becomes 

& = e"%ii + s&i2 + B\22^ > ( 2 a ) 

where 

&ii = J" & * ' ( 2-2 a ) 

A 
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&12 - / (£i£2 + £&<* ( 2 - 2 b > 
A 

and 

&22 = ^ £ 2 ^ • <2-2c> 
A 

A is the (nondimensionalized) element area, and L is a characteristic 

length, which in the program is element nodal point spacing. 

In addition to the M matrices, the K and the A matrices were 
r-JZ rsJ2 r**s 

stored in DATA statements. 

Integration 

Basic Considerations 

Equations (2.2) can "be evaluated as iterated integrals for each 

matrix component. Such families of integrals are sometimes reducible 

to combinations of a few standard types. For the eight-node and the 

ten-node elements the element boundaries are easily expressible in 

plane polar coordinates, but lead to unwieldy integrands for the second 

integration. Aside from the formidable amount of labor and certainty 

of algebraic error in reducing the hundreds of integrals involved, 

this approach offers no flexibility in the event a change in element 

shape is required. For these reasons and for ease of programming, 

numerical quadrature was used to calculate the mass matrix coeffici

ents. 

The integrands in equations (2.2) are all continuous over the 

region of integration and therefore may be treated by many numerical 

integration rules [^]. A factor which required careful consideration 



was the oscillatory nature of the integrands. Such oscillatory 

integrands are most effectively handled by Filon quadrature [̂ -5-̂ 7]• 

Unfortunately Filon quadrature could not be used since it requires an 

explicit expression for each integrand. The matrix elements corres

ponding to the most rapidly oscillatory integrands were closely moni

tored throughout the mass matrix development. For a small number of 

integration points these elements did display the erratic behavior men

tioned in [44] but became well behaved as the number of integration 

points was increased. These oscillatory integrands were not a con

trolling factor in this investigation. They might be more troublesome 

in construction of a more complex higher-order element involving 

Williams' eigenfunctions corresponding to a larger index. 

The mass matrices for the eight-node element, the first to 

be generated, were calculated using Riemann-sum quadrature. Numerical 

convergence was slow. Convergence was estimated by comparing changes 

in element values, normalized with respect to the newly computed 

-4 

element, for increasing numbers of integration points. A 10 magni

tude tolerance required the use of 10,800 points. With this large 

number of points, double precision arithmetic (about 19 decimal digits 

on the UWIVAC 1108) was required to control roundoff error. 

Such slow convergence motivated the use of a Gauss-Legendre 

(GL.) cartesian product quadrature rule [48] for the ten-node element. 

-4 
Convergence was significantly faster with this method. The 10 

tolerance was met with a 64 x 64 point rule (4096 integration points). 

Formulation and Programming Checks 

Algorithm and programming accuracy were checked in two ways. 



First, the M matrix elements corresponding to the rigid body terms 

(which are the element area and polar moment of inertia about the 

crack tip) were identified and checked. Second, selected elements 

were evaluated in closed form and compared with the numerical results. 

In every case, agreement was reached. 

The Eight-lode Element 

The C_ vector and the f matrices for the eight-node element 

are given in Table 2.1, along with a schematic matrix partition. The 

C_ vector arrangement was chosen to agree with [23,2^]. This choice 

dictated the arrangement of the other matrices. The A matrix also 

depends on nodal point ordering, which is that of [23,2^] (Figure 2). 

The product matrices of equations (2.2) are shown in Tables 2-k. The 

A matrix is shown in Table 5. In that Table, the notation f indi-
~ înn 

cates the f (m = 1,2) matrix evaluated at the nth (n = 1,2,...8) 
^JTl 

nodal point. 

The Riemann sum quadrature algorithm was essentially: 

1. Divide the element Into square subareas and calculate the 

incremental area, AA. 

2. Evaluate the f and f0 matrices at the center of each 

subarea. 

3. Form the matrix products of equations (2.2) and multiply 

by AA. 

k. Accumulate these incremental matrices - the sums being 

approximations to the required integrals. 
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The Ten-Node Element 

The C_ vector and the f matrices for the ten-node element are 

given in Table 6. The arrangement of the C_ vector, as for the eight-

node element, agrees with that of [23]. From the table it is apparent 

that the symmetric coefficients are arranged first, and the antisym

metric coefficients last. The rigid body x-translation parameter K 

was placed in the symmetric part since x-translation is a symmetric 

displacement. Similarly, the rigid body y-translation parameter H and 

the rigid body rotation parameter F were placed with the antisymmetric 

coefficients. Since (equations (A^k) - (A58b)) there is no antisym

metric Williams' eigenfunction corresponding to the eigenvalue n = 2 

(Cp = 0), that space was used for H. 

Because the ten-node element is square, a symmetric (equal 

number of function evaluation points in each coordinate direction) GL 

cartesian product quadrature rule "was particularly easy to implement. 

In the coordinate system of Figure 1.3> the (nondimensionalized) ele

ment covers the unit square. 

The function evaluation points (ordinates) for an n-point GL 

rule are the n roots of the nth order Legendre polynomial, which are 

symmetrically disposed about zero in the interval (-1,1). The weights 

associated with each ordinate (analogous to the AA of the Riemann-sum 

rule), are all positive and also symmetric about zero. 

In the GL algorithm used, the ordinates and weights were cal

culated rather than entered as data. A double precision version of a 

UJMTVAC library routine was used. The ordinates agreed to 17 decimal 

digits and the weights to 16 decimal digits with the values of [̂ -6]. 
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This approach markedly facilitated the convergence study and avoided 

errors in manual entry of many long numbers. 

The GL cartesian product algorithm was essentially: 

1. Calculate the ordinates and weights for the order operator 

desired. 

2. For every y-ordinate, evaluate the f and f matrices at 

each x-ordinate. 

3. Form the matrix products of equations (2.2) and multiply by 

the appropriate weights; for the (ith x-ordinate, jth y-ordinate) 

evaluation point, the appropriate weight is the product W.W.. 
<j 

k. Accumulate these incremental matrices - the sums being 

approximations to the required integrals. 

Confirmation Checks 

During the entire process, accuracy and correctness checks were 

made where possible. The A matrices were checked with those of 

[23,2^-]. Because of the way the computer program was written, this 

also checked much of the mass matrix integration program. 

Further checks were made after the structural program was run

ning. The elements' mass and polar moment of inertia were recovered, 

after the element matrices were dimensionalized and assembled by the 

structural program, by using the equation 

AT A 2 
2 T = v M v = m v . (2.3) 

Here T is the kinetic energy, v is the nodal point velocity vector and 

m is the total mass. For velocity vectors of unit magnitude, the 



element mass was correctly recovered. A velocity field corresponding 

to rotation about the origin of coordinates with angular velocity ob 

AT AT 

v =w [_-y x -y x -y x ...J = cud (2.*0 

where ou = w / | d | , g ives 

2T = ufo^Md = I a)2 . (2 .5 ) 

Here I is the moment of inertia about an axis normal to the plane of 
o 

the element through the origin. For unit angular velocity, the ele

ments' polar moment of inertia was recovered. 

In addition, the ten-node element was used to predict natural 

frequencies for steel and aluminum plates with a crack (experimentally 

simulated by a narrow saw cut). The experimental results were obtained 

by Mr. John Malluck, a graduate student at the Georgia Institute of 

Technology. The steel plate experiment was conducted to define experi

ment parameters and technique. Results were reported in [50]• The 

aluminum plate experimental procedure and results were reported in 

detail in [35]. 

The entire steel plate was modeled by the ten-node element 

alone. Plate configuration and results are shown in Figure h. The 

aluminum plate was modeled by the ten-node element alone and with the 

ten-node element as the central one-ninth of the plate, surrounded by 

constant strain triangles. The configurations, finite element results 

and experimental results are shown in Figure $• 

These results are significant in at least two respects. In the 
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first place; the close agreement of finite element and experimental 

results indicates that the high-order singularity element accurately 

represents the kinetic characteristics of a finite cracked plane 

elastic structure. Secondly,, the close ("within five percent) agree

ment between the crude (ten-node element alone) and refined model 

results for the aluminum plate implies that the high-order singularity 

element can "be expected to produce accurate results from relatively 

coarse-grid finite element models. 
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Table 5- Eight-node Element A Matrix 
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Steel Plate: 6 in. x 6 in. x 0.25 in, 

Figure h. Steel Plate Natural Frequencies. 
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ALUMINUM PLATE: 6 IN. X 6 IN. X 0.50 IN. 

Figure 5. Aluminum Plate Natural Frequencies 



CHAPTER III 

PROBLEM SOLUTIONS 

This chapter first briefly describes the structural computer 

program developed to Incorporate the two cracked elements and then 

presents the results of two problem solutions. The first problem, a 

finite length crack opened by a suddenly applied uniform normal 

pressure [39*^-0], was chosen because it gave a direct check on results 

and because it provided a severe test of element performance. The 

second problem, an instrumented Charpy impact test [̂-1, h2,51], was 

chosen as representative of useful applications of a dynamic fracture 

analysis capability. 

The Computer Program 

The computer program used in this investigation was a research 

tool. Hence, simplicity and ease of modification rather than execu

tion speed and economy were the primary considerations during its 

development. Even so problem solution times were relatively short. 

The program was written in UNIVAC 1108 FORTRAN V and designed for use 

from a remote terminal under the UNIVAC EXEC 8 operating system. 

The program library is given in Table 7. 

Due to the program's modular (driver-subroutine) organization, 

other elements can easily be added to the library. 

The solutions available are shown in Table 8. 



Table 7- Program Library. 

Element Mass Stiffness 

Eight-Node X X 

Ten-Node X X 

Constant 
Strain 
Triangle X X 

Linear 
Spring X 

Point 
[Mass x 1 

Table 8. Solution Types. 

Solution Type Equation 

Equilibrium 

Harmonic 

Transient 
i 

Ku = F 

(K - cu2M)u = F 

Mu + Ku = F(t) 
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The solution type is specified during execution "by input data,. A 

crude determinant-search eigenvalue capability is incorporated into 

the harmonic analysis subroutine. This subroutine can be exercised as 

many times as desired, "with different values of ob during a run. . The 

2 
eigenvalues of (K - ou M) are detected by very large displacement values 

accompanied by a phase shift. Although not economical, this method is 

simple and serviceable. 

Every program function "was checked and verified. The cracked 

element equilibrium solutions were checked against the values in 

[52-5^-]. Constant strain triangle mass and stiffness matrix formula

tion and assembly were verified by hand calculation, as was the equi

librium solution subroutine. The harmonic and transient solution sub

routines were checked against hand calculations for various linear 

spring-lumped mass configurations. In every case, agreement was 

reached. 

Crack Opened By Suddenly Applied Uniform Normal Pressure 

Sih and Embley [39] and Sih, Embley and Ravera [40] reported 

the transient response of a finite length through crack in an 

infinite medium face loaded by a Heaviside step function normal 

pressure pulse. The results are presented as a plot of normalized 

stress intensity factor, 

- , K , _ dynamic stress intensity factor / \ 
l ~ !PT'' Is " equilibrium stress intensity factor 

versus nondimensionalized time, 
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T = C,,t/a = t irno/shear wave ho I P-o rack- I ongth transit lime. (l-;0 

The equilibrium stress intensity factor for this problem [55] is 

KIs =p(na)* , (3.3) 

where p is the crack face pressure. Cp, the shear (distortional) wave 

speed, is related to the material shear modulus G and mass density p by 

C2 = (G/p)* . (3-M 

A comparison of the finite-element and analytic results is shown in 

Figure 7-

The Finite-Element Model 

The problem solved in [39]> an& "the finite element model used 

in this investigation are depicted in Figure 3-1- Because of symmetry 

only a quarter of the continuum was modeled. The material properties 

are given in Table 9« 

Table 9- Sih Problem Material Properties. 

Material Property Value Units 

E 2.9 X 10T lb/in2 

V 0.292 

P 
-k 

7.3 x 10 
2/- h 

lb-sec /m 



The Poisson's ratio of 0.292 was determined by the vave speed ratio, 

H = C2/C1 = 0.5̂ 2 , (3.5) 

used in [39]« In (3«5) C is the dilatational vave speed. K is 

related to Poisson's ratio by 

K
2 = (1 - 2v)/2(l - v) (3.6a) 

or 

v = (1 - 2H 2)/2(1 - K2) . (3.6b) 

The values for E and p are typical for steel. Finite element model 

parameters are given in Table 10. 

Table 10. Sih Problem Model Parameters. 

Parameter Value Units 

Thickness 1.0 inch 

Crack 
Half-Length 10 inch 

Model Radius 60 inch 

Numerical 
Integration 
Time Step Size 2.0163 microsecond 

0.12^ in/microsecond 

k 0.229 in/microsecond 



Model Response 

There were three major sources of discrepancy between the 

finite element solution and the infinite continuum solution of [39]-

The most obvious of these is that the finite element model, 

necessaryily, was of finite size. Thus, the stress intensity factor 

produced by the finite element model was expected to differ from the 

analytical solution value after boundary-reflected waves returned to 

the crack tip region. The finite-element model was sized so that the 

initial part of the K - T curve was not influenced by reflections. 

The effect of the reflected waves was investigated by running the 

problem with the remote boundary first free and then fixed. As 

expected, the results were identical until the first reflected wave 

returned to the crack tip, after which the fixed boundary results show 

the effects of the reflected tensile waves, while the free boundary 

results show the effects of the reflected compressive waves. The 

arithmetic average of the remote-boundary-fixed and the remote-

boundary-free results falls closely on the analytical solution. 

Apparently, the model was large enough for the crack to appear to the 

boundary as a point wave source, for which superposition of the two 

boundary conditions is equivalent to the unbounded medium response. 

Some of the finite element solution parameters are given in 

Table 11. 

A second source of discrepancy between the continuum and 

finite-element results is the wave front "smear-forward" inherent in 

the discrete model. Elements ahead of the wave front, which should 

be unaffected, have some "foreknowledge" of the approaching wave. 
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Table 11. Slh Problem Solution Times. 

Parameter Remote Boundary Free Remote Boundary Fixed; 

Degrees of Freedom 156 Ikk 

Number of Time Steps ^00 ^00 

Total Computer Time 129.5 sec 120.k sec J 

This effect, readily apparent in the graphical presentation of finite 

element results (Figure j), appears as an oscillation in nodal point 

displacement, and hence as noise in the stress intensity factor 

response. As mentioned in Chapter 1, some of the response irregular

ity preceeding a wave can be reduced by using a diagonalized mass 

matrix. This smoother initial response, judging from the results of 

[30], is obtained at the expense of a less accurate representation of 

wave front slope and rise time, and more erratic displacement values 

behind the wave front. The wave forms in [30] indicate that use of a 

diagonal mass matrix results in filtering out some of the higher 

frequency displacement components. 

A third source of error in this problem was application of the 

nodal forces representing the crack face pressure pulse only to crack 

face nodes. This procedure was simple to implement, but did not 

maintain the "consistent" approach used for generation of the mass 

matrix. The consistent nodal loads corresponding to any crack face 

traction distribution can be readily computed from equations (B15b) 

and (B15d) of Appendix B, using the f and f matrices. The f matrix 



construction is shown in Table 1. 

The F (surface traction consistent load vector with respect 
—sc v 

to the generalized coordinates) vector corresponding to a uniform 

crack face normal pressure was calculated analytically. The F 
SC 

components corresponding to even subscripted Williams' series 

coefficients were all zero,, while those corresponding to odd sub

scripted coefficients were all of the same order to magnitude. The 

F components corresponding to the rigid "body motion coefficients 

were an order of magnitude smaller. 

As is evident from equation (B15b), transformation of F into 

F (surface traction consistent load vector with respect to the nodal 

displacements) would result generally in a full (no zero components) 

vector. This result is interesting in at least two respects. First, 

it illustrates that the condition for interelement compatibility (that 

the element edge displacements be a function only of the nodal dis

placements along that edge) is also the necessary condition for con

sistent nodal loads corresponding to a loaded edge to appear only at 

the nodes along that edge. That is, it shows that one of the conse

quences of using an incompatible element is that the consistent sur

face traction load vector may explicitly introduce nodal loads at 

nodes other than on the loaded face, and thus at nodes in the interior 

of the modeled continuum. This effect is some sense compounds the 

"infinite wave speed" effect inherent in the discretized model. 

Secondly, the consistent nodal load vector corresponding to a uniform 

crack face normal pressure has both x and y components, while the 

normal pressure is statically equivalent to a force in the y direction. 
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These effects were not intuitively obvious, at least "when that 

intuition was developed in dealing "with constant strain triangle and 

other simple elements. 

Comparison of KT values for crack face nodes loaded and for 
Is 

remote boundary nodes loads shoved that the crack-face loaded K^ 
Is 

values "were inaccurate. Typically, errors of 20 to k-0 percent "were 

found, depending on the way the loads were distributed among the 

crack face nodes. The remote-boundary loaded K-,. value, on the other 
Is 

hand, "was within 2.5 percent of the finite width sheet value of 

Isida [5^]. 

The load distribution used for obtaining the results shown in 

Figure 3.2 was the one corresponding to the crack face nodal point 

reactions when those nodes were restrained against vertical deflections 

with the remote boundary loaded. Other crack-face-node load distribu

tions were tried during the course of the investigation. Varying the 

distribution resulted in different KT values, slightly affected the 

initial shape of the KT - j curve, and gave slightly different maximum 

values of K T(T)- The overall K - T response was essentially the same 

for each case. 

The results of the finite element solutions are graphically 

compared with those of [39] in Figure 7. As is evident, the agreement 

is excellent. 

Instrumented Charpy Impact Test 

Efforts to correlate instrumented Charpy impact test [̂ -1] data 

with other fracture toughness test data and with service experience 
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have a long and for the most part unsuccessful history [̂ -2]. Recent 

efforts [̂ -2,̂ 3,51] have met with more success. As discussed in [̂ -2], 

elastic fracture mechanics had little applicability to this area prior 

to the use of modified (sidegrooved, pre-cracked, sidegrooved and pre-

cracked) specimens, because most test failures were due to gross 

yielding and involved much plastic flow. The fracture phenomena of 

interest in service, on the other hand, were largely below-yield 

(brittle) fractures, to which elastic fracture mechanics concepts 

apply. Modified Charpy specimens more frequently fail in a brittle 

manner, and their low cost and ease of handling provided strong motiva

tion for fracture toughness correlation efforts. 

The simple approach of using the peak tup load in the three-

point bend formula [53]; with inertia effect corrections based on 

beam theory [̂ +2,51,56], produced fairly good results. The analog 

computer model of [̂ 3] gave nearly quantitative agreement with experi

ment and showed conclusively that there was no simple relation between 

tup load, specimen effective load and anvil load. Consequently, sim

plistic correlation attempts were strongly liable to error. 

The instrumented Charpy test problem was chosen as an example 

of a practical and useful application of the cracked structure dynamic 

analysis capability afforded by the singularity elements. That is, it 

was expected that the finite element model could be used to give an 

accurate value of fracture toughness (KJC) based on tup load-time and 

specimen time- to-fracture records from the Charpy test of a specimen 

which failed in a brittle fracture mode. The finite element model 
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K -time results are shown in Figure ]0. 

Assumptions and Simplifications 

A examination of published data [42,51*57] shoved that the tup 

load-time records of Charpy tests in which the specimen failed by 

brittle fracture were characterized by a nominally triangular or half-

sinusoidal shape. To simplify programming, triangular and half 

sinusoidal force inputs were used in the analysis. Of course, in 

application, the actual load-time trace would be used. Provision for 

this was made in the program. 

The gage lengths of the strain gages used to measure the 

tup load, in those tests for which information was available, were so 

large compared to the tup dimensions that the tup load-time curve 

could be considered as the spatially averaged effect of the rest of the 

striker head on the tup/specimen assembly. Using this rationale, only 

the tup tip, back to approximately the strain gage centerline, was 

modeled. Since the elastic waves involved in the force transmission 

have a finite wave speed, the applied load onset was delayed by an 

amount of time representing wave transit time from the strain gage 

centerline to the tup tip. 

In the absence of reported values of initial impact velocity, 

the impact velocity for the problem was chosen as 15 feet per second 

which is in the middle of the ASTM standard [4l] allowable range. 

The Finite Element Model 

Dimensional specifications from [4l] for the Type A Charpy 

specimen and for the impact test are shown in Figure 8. The finite 

element model and the tup load-time curve used are shown in Figure 9-
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Due to symmetry, only half the specimen and tup tip was modeled. The 

anvil support condition was enforced by fixing the node corresponding 

to the point in contact with the anvil edge. The relatively small 

singularity element size was due solely to the attempt to model the 

notch. It is most likely that a much larger singularity element 

would provide adequate results. For convenience, the tup and specimen 

were taken to be of the same material. In practice, of course, this 

would not necessarily be the case. The program can easily handle any 

combination of materials. 

The material properties are given in Table 12. 

Table 12. Charpy Problem Material Properties. 

Material Property Value Unit 

E 2.07 X 10^° 
3.0 x 10f 

dynesAim 
lb/in 

V 0.25 

P 8.3^ x io"{[ 
7.8 x 10"* 

2 / h 
dyne-sec /mm 
lb-sec / in 

Other model parameters of interest are given in Table 13. 

The computer solution for K (t) is shown in Figure 10. The 

run parameters are given in Table ik. 

Results 

A significant feature of the K (t) - t curve is the dive to 

negative values during the first two microseconds after impact. The 



Table 13. Charpy Problem Model Parameters. 

Parameter Value Unit 

[Precrack Depth 0.25 , millimeter | 

[Tup Initial Velocity ^.572 x 103 

15 
mm/sec 
ft/sec 

LLoad Onset Delay 3 microsecond^ 

Load Pulse Width 50 microsecond] 

Load Amplitude 

1.512 x 109 

3^oo 

dynes 

pounds 

1.99 mm/sec j 

r 
Pi 

3.̂ 5 | mm/sec 

Table lk. Charpy Problem Solution Times. 

Degrees of Freedom 225 

Number of Time Steps 600 

[Total Computer Time 215.39 sec| 
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negative stress intensity factor reflects the crack-closing compressive 

stress wave which initially propagates through the specimen. Until 

this wave is reflected from the notched side of the specimen as a 

tension wave, the crack is closed. This effect demonstrates rather 

conclusively the cracked elements' sensitivity to wave phenomena. 

Subsequently, the crack-opening effect dominates, and the stress 

intensity factor increases rapidly. 

In agreement "with the load-time variation reported in [̂ -3]̂  "the 

stress intensity factor increases "with time in a sensibly linear manner. 

When the tup load has peaked, KT(t) had not quite reached the equilib

rium K_ for the load, while the peak KT(t) occurred at about the time 

Is ' Iv ' 

the tup load had fallen back to zero. These results reinforce the con

clusions of [̂-2] concerning the importance of dynamic effects in the 

Charpy test. 
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Figure 6. Sih Problem Finite Element Model. 
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FINITE ELEMENT REPRESENTATION OF CHARPY SPECIMEN 

F i n i t e 9- Charpy Load and F i n i t e Element Model. 
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

The dynamic capability developed in this work is a unique 

advance in the analysis of cracked plane structures. It provides a 

rational, rigorous and accurate solution method for heretofore intrac

table problems. 

The high-order elements consistent mass matrices, which are the 

primary contribution, were constructed by the generalized coordinate 

method. The displacement coordinate functions were selected from the 

Williams' series of eigenfunctions for a stress-free crack. Rigid 

body terms were included. 

The computer program developed to use the elements is capable 

of equilibrium, harmonic excitation, eigenvalue and undamped transient 

response solutions for plane cracked structures -which can be modeled 

by a combination of cracked elements, constant strain triangles, 

linear springs and point masses. The modular construction of the 

program allows easy addition of other elements to the library and also 

permits easy addition of other functional modules. 

The equilibrium solution capability was checked against estab

lished values for particular configurations. In every case agreement 

was excellent. The high-order elements removed the need for highly 

detailed models with very significant economies in data preparation 

and problem execution time compared to previous finite element solutions. 
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The harmonic response analysis capability was used in its 

recursive mode to predict the natural frequencies of steel and alumi

num square cracked plates. The predicted frequencies agreed closely 

with experimentally determined frequencies. The models used, as for 

the equilibrium problems, had relatively few degrees of freedom and 

were very economical to construct and to run. 

The transient response analysis capability was checked against 

Sih and Ravera's transform method solution. The finite element model 

results were in excellent agreement with the analytic solution. 

As an example of a potential production application of the 

high-order cracked element dynamic capability, an instrumented Charpy 

impact test was modeled. The finite element results were in close 

agreement with recent analog computer results. This indicates a real 

potential for economical and quick fracture toughness determination by 

using detailed tup load-time and time-to-fracture records from brittle 

fracture Charpy tests "interpreted" by a finite-element model. 

The mass matrix generation programs could be considerably 

simplified and slightly speeded up by adoption of the formulation of 

equations (A26) rather than (A27). This change would avoid some zero 

denominators which in the present formulation require interruption of 

the orderly calculation of the f, K , M , and A matrices. 

Some considerations which were not critical in this investiga

tion are nevertheless worthy of further investigation. 

The matter of high-order singularity element optima should be 

on some interest. In view of the opinion of Tong and Pian that the 

special element size should not be too small in comparison to the 



k9 

crack length, there may be an optimum high-order element size for a 

given grid. There is no a priori reason to believe that the element 

shapes used in this investigation are optimum. A study of the effects 

of changes in accuracy with element height/width aspect ratio might 

prove fruitful. By the same token, the number of degrees of freedom, 

and hence the number of element nodal points, may be significant to 

accuracy. An increase in element complexity as reflected in a greater 

number of degrees of freedom is usually accompanied by increased model 

bandwidth and thus increased computation cost. The tradeoff between 

element complexity, model refinement and computation costs would cer

tainly be of interest to a "production" user of the elements. 

In the elements developed for this investigation, there is a 

one-to-one correspondence between nodal displacement degrees of 

freedom and generalized coordinates. This relationship is not essen

tial and more Williams* eigenfunctions, or other functions, could be 

built into the element by using internal nodes in the element formula

tion. These nodes could be eliminated by the usual condensation 

process, should bandwidth be excessive. Alternatively, the present 

elements, which are possibly too flexible, might benefit from fewer 

degrees of freedom, with the nodal displacements correlated with the 

generalized coordinates by the least squares technique. 

A diagonalized mass matrix for the high order cracked element 

would be very useful for several reasons. There is, of course, the 

resulting reduction in storage. Additionally, the diagonal mass 

matrix would enable use of an explicit time integration algorithm, 

with probable savings in problem run times for some problems. The 
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diagonal mass matrix could be of some benefit in wave propagation 

problems. In these problems it should show a smoother wave shape 

without the oscillations frequently apparent in consistent mass results. 

The question of an accurate and rational diagonalization method cer

tainly warrants further investigation. 

Finally, as pointed out by Williams, the stress function 

approach can be applied to elementary plate theory for bending 

analysis of a cracked plate [l6]. Given the displacement eigenfunc-

tions appropriate to the bending problem, construction of a plate-

bending high-order singularity element is straightforward. 

Such an element is of obvious utility for sonic fatigue, for 

plates loaded by transverse blast waves and for projectile impact 

problems. Most likely elementary plate theory will be inadequate for 

such an element, since the boundary radius of curvature near the 

crack tip is small relative to plate thickness. As discussed by 

Timoshenko and Woinowsky-Krieger [66], elementary plate theory is 

usually inaccurate in regions where the transverse shear stresses are 

of major importance. Whether a higher-order plate theory will yield 

results comparable in' utility to those for plane extension remains to 

be seen. 



APPENDIX A 

THE WILLIAMS' SERIES 

The displacement coordinate functions used in this investigation 

are developed in this appendix. 

Stress Eigenfunctions 

Fortuitously, a stress function of the form 

$ x=r
X + 1f(6) (Al) 

•will satisfy the governing differential equation, 

Vk$ = 0 , (A2) 

and the f ree crack face "boundary cond i t ions 

oQQ = ° ; crrQ = 0 ; a t 0 = + n . (A3) 

The v operator may he written 

7 = 7 V . (A^a) 

In plane polar coordinates 

V2( ) ̂ r-^d/arCrU/arO)) + r"2(a2/dr2()) . (A^b) 

Substitution of the stress function (Al) into the biharmonic 

equation (A2) yields the ordinary differential equation for f(6), 
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(I? + (X + 1 ) 2 ) (D^ + (X - l ) 2 ) f ( 0 ) = 0 , (A5) 

'here D = d /d8 . Equation (A5) has the gene ra l s o l u t i o n * 

f(e) = c s(\ + i)e + cx2c(x + i) 

+ cx3s(\ - i)e f c^c(x - i)e , (A6) 

where S has "been "written for sin, C for cos and the four integration 

constants have been designated C., - C j. Thus, the stress function 

(Al) can be written as 

r^ " 1(CUS(A + l)9 +
 C

X 2
C ^ + ^ 

+ C S(\ - 1)9 + C ^ C U - 1)0 . (AT) 

From (A7), via the usual stress-stress function relations [30], 

a r r = r ^ C d / S r C O ) + r " 2 ( a 2 / * 0 2 ( $ ) ) , (A8a) 

CJQO = d 2 / d r 2 ( $ ) , (A8b) 

and 

a = - (a/ard^Ca/aeU))) , (A8C) 
r0 

the stresses are 

arr = r
X"V'(e) + U + l)f(e)) (A9a) 

*In (A6) the values \ = 0, J- 1 produce special solutions. 
These will be considered subsequently. 
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These boundary conditions, applied to equation (A'j), give 

and 

in which the notation 
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aoa = \U + i)r
x " xf(e) (A9b) 

and 

are = -\rx " M e ) . 

The boundary conditions (A3) then require 

(A9c) 

f ( + TT) = 0 (AlOa) 

f ' ( + TT) = 0 (AlOb) 

C A l S c m + C X 2 C a T T + C X 3 S p n + C\kC®Tl = ° ' 

- C ^ S c m + C^Ccm - C Spn + C ^ C p n = 0 , 

QC Can - QC SOT + PC Cj3n - J3C^SJ3TT = 0 

( A l i a ) 

( A l l b ) 

( A l l c ) 

a C u C c m -f O C ^ S Q T T + PC^ 3TT + PC^Sprr = 0 , (Alld) 

a = X + 1 and 3 = A - 1 (A12) 

has been introduced. 

Simple additions and subtractions of equations (All) lead to 
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CX2C< i + CX1C$TT = 0 , (A13a) 

• + p C ^ S p n = 0 , (Al3h) 

and 

r c
A o S 3 ^ = 0 , ( A l 4 a ) 

a ^ * ^ + 3C, 0 C3n = 0 , (All+b) 
A-L A J 

from which It is apparent that the eigenfunction problem separates 

naturally into symmetric (A13) and antisymmetric (Al^) parts. 

The relationship between a and 3 (A12)_, along with the period

icity of circular functions, gives 

Scm = S(3 + 2)TT = S3TT (A15a) 

and 

Ccm = C(3 + 2) = C3TT , (A15"b) 

so that (A13) and (l̂ -) may be written as 

C. • >>•• + C ^ C a n = 0 , ( A l 6 a ) 

ryC SOTT + 0C ^Sc*n = 0 (Al6b) 

and a s 

C San + C San = 0 , ( A l 7 a ) 
Aj 

G ' C A l C a r r + p C A 3 C c m = ° (AlTb) 



respectively. 

Equations (Al6) and (A17) have the same characteristic equation 

aStfnCcm - 3Sc*nCcm = 0 . (Al8) 

Hence the eigenvalues are the same for both parts of the problem. 

Equation (Al8) reduces by trigonometric identity to 

sin(2\n) = 0 , (A19) 

so that the eigenvalues (including some that are physically inadmis

sible) are 

X = n/2 (A20) 

for n = 0, +1, +2, ... . 

The two constants associated "with each mode can now be related. 

In terms of the eigenvalues (A20), equations (Al6) become 

(Cn2 + C n^
) c o s ( n/ 2 + !) = 0 (A21a) 

and 

[(n/2 + l)Cn2 + (n/2 - l)CnJ+]sin(n/2 + l) = 0 , (A21b) 

where the constants C, have been renamed C . For even n, equation 
Am nm 

(A2la) requires 

(Cn2 + <W = ° > (A22a) 

while (A21b) is identically satisfied. Similarly, for odd n equation 

(A21b) requires 



(n/2 4- l )C n 2 + (n/2 - l j c ^ = 0 , (A22h) 

while (A21a) i s ident ica l ly sa t i s f ied . These equations can he consoli

dated into 

(n/2 + l )C n 2 + (n/2 + ( - l ) " ) ^ = 0 . (A23) 

In the same manner, equations (AIT) lead to the relation 

(n/2 + l)cnl + (n/2 - M ) " ) ^ = 0 . (A2U) 

Using relations (A23) and (A2^), the stress eigenfunctions may 

be written as 

$ (r,e) = r
(n/2 + 1}(f (e) + f (e)) , (A25) 

n v an sn v ' 

where 

fan(e) = Cna[-((n/2 - (-l)
n)/(n/2 + l))sin(n/2 + 1)9 

4- sin(n/2 - l)9] (A26a) 

and 

fsn ( 0 ) = C
ns»

( ( n/ 2 + (-DD)/(n/2 + l))cos(n/2 + l)G 

4- cos(n/2 - 1)9] (A26h) 

are respectively the antisymmetric and symmetric parts of f(9). Of 

course, (A26) is not the only representation possible. This form 

results when constants CL and C, are retained, and the constants Cn 
3n 4n In 
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and C0 replaced by use of (A23) and (A2M. If Cn and C0 are 2n \ ->/ \ i xn 2n 

retained instead, there results 

f (6) = (5 [sin(n/2 + l)0 
an na 

- ((n/2 + l)/(n/2 - (-l)n)sin(n/2 - l)e] (A2Ta) 

and 

fsn(9) = ^ns[
cos(n/2 + 1)9 

- ((n/2 + l)/(n/2 + (-l)n))cos(n/2 - l)0] . (A2Tb) 

Displacement Eigenfunctions 

The labor involved in constructing the displacement functions 

can be considerably reduced because each term of a given eigenfunction 

is itself a stress function. In what follows 

(A28) 
v (Poisson's ratio) for plane strain 

v/(l + v) for plane stress 

and G is the shear modulus. 

The constitutive relations for plane elasticity are 

and 

2Ge = (l - s)o - SCTAQ , (A29a) 
rr v ' rr 08 

2Ge0e = (1 - s)a e - s ^ (A29b) 

2Ge 0 = 2 C T a . (A29c) 
r0 r0 ' 
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The strain-displacement equations, slightly rearranged, are 

d/dr(2Gu ) = 2Ge , (A30a) 

5/39 (2Gv0) = r(2GeQe) - 2Gur (A30b) 

and 

2GerQ = r
_1(d/d0 (2Gur)) 4- r(d/dr (r'^Gu )) . (A30c) 

The symmetric terms of the stress function are of the form 

= r^ cosge , (A31) 

where & and 3 are related "by 

a = X + 1 (A32a) 

sn 

and 

= X + 1 ; 3 = \ - 1 , (A32b) 

so that the conditions 

2 2 
a = B (A32c) 

or 

{a - 2 ) 2 = 3 2 , (A32d) 

necessary for (A3l) to satisfy the hiharmonic equation, are satisfied. 

The stress function (A31) gives stresses 

crrr = (cv-3
2)ra"2cos3e , (A33a) 



and 

These stresses, via equations (A29), give strains 

and 

For s i m p l i c i t y i n l a t e r c a l c u l a t i o n s , t h e f u n c t i o n s 

and 

?y 

ona = a ( a - l ) r " cosp (A33Ta) 

CJ = 3(<* - l ) r ^ " 2 s i n 3 9 . (A33c) 

O O 

2Ge = ( ( 1 - s)(at - 3 ) - s<y(u - l))ra~ cos36 , 

2Ge e Q = ( ( 1 - s)of{a - l ) - s(cv - £ 2 ) ) r a " 2 c o s 3 8 

(A3^a) 

(A3^h) 

2 G e r Q = ( 2 3 ( a - l ) ) r ^ " 2 s i n { (A3^c) 

A = ( ( 1 - s)(or - 3 ) - sc*(a - 1 ) ) , 

B = ( ( 1 - s ) a ( a - 1) - s(a - 3 ) ) 

(A3^d) 

(A3^e) 

C = (23(cv - 1 ) ) (A3^f) 

a r e d e f i n e d . 

In t e r m s of t h e s e f u n c t i o n s , t h e s t r a i n - d i s p l a c e m e n t e q u a t i o n 

(A30a) bee omes 

d / 3 r (2Gu r ) = A r a 2 c o s 3 9 , (A35a) 

wh ich i n t e g r a t e s t o 



6o 

2Gu = ((A/(Q- - l))r cos39 + h'(9) . (A35b) 

Using (A35b) and (A3̂ -b) in the strain-displacement equation (A30b) and 

integrating gives 

2GvQ = (1/3)((B - (A/(a - l))r
a_1sin3e - h(6) + g(r) , (A36) 

so that equation (A30c) can be reduced to 

h"(6)/r + h(9)/r + r_1(d/dr(g(r)/r)) = D , (A37a) 

where 

D = (C + pA/(a - 1) - ((c* - 2)/0)(B - (A/(a - l)))) . (A3Tb) 

The result of using relations (A32a,b) to evaluate the coefficients in 

equations (A35b)J, (A36), and (A37) is shown in Table 15. 

Table 15. Displacement Derivation Symmetric Coefficient Values. 

Coef f i c i en t s or = 0 a - 2 = 3 

A/(c* - 1) 

(1 /3 ) (B - A/(or - 1)) 

D 

- a 

a 

0 

k - a - ks 

2 + Q> - ^s, 

0 

Since D = 0 for the admissible values of a and 3> equation 

(A3Ta) becomes 
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h"(6) +h(0) + r2(d/dr(g(r)/r)) = 0 , (A38) 

which can be separated into 

hn(G) + h(e) = M (A39a) 

and 

r2(d/ar(g(r)/r)) = -M (A39^) 

where M is the separation constant. The solutions to (A39)J> using 

integration constants F, H and K, are 

h(9) =M+Ksin(6) - Hcos(9) (A^Oa) 

and 

g(r) = M + Fr . (A^Ob) 

The contributions of equations (Â -0) to the displacements are: 

to u ; h'(9) =Kcos(9) 4- Hsin( 9) , (A^la) 

to vQ; -h(9) + g(r) = -Ksin(9) + Hcos(e) + Fr , (A^lb) 

so that the separation constant M is of no consequence. Equations 

(A4I) are, of course, the rigid-body displacement terms. 

In the derivation, of the antisymmetric displacement components 

the rigid body terms are ignored since they have been determined. 

The antisymmetric part of the stress function has the form 

I (r,6) = r^sin39 , (Ate) 
dll 
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and (A32) holds as before. The corresponding stresses are 

arr = (a - 3
2)^"2sin39 , (A^3a) 

aee = a(o> - l)ra"2sinpe (A43h) 

and 

^re = " 3(c* " l)r
Q/"2cos39 . (A^3c) 

The coefficient in the <j Q equation is the negative of that in the 
r 0 

corresponding symmetric equation (A33c). The antisymmetric strains are 

2Ge = ArQ/_2sing9 , (AUa) 

2GeQQ = Br
a~2sinB6 (AMrt)) 

and 

2Ge . = -Cr^"2cos39 . (A^c) 
r 0 

Proceeding as for the symmetric part, integration of the strain-

displacement equations gives 

2Gu = (A/(Q- - l))ra_1sin39 (A^a) 

and 

2Gv0 = (l/3)(A/(c* - 1) - B)r
a_1cos30 . (Â 5"b) 

Evaluation of the shear strain-displacement equation (A30c) gives, as a 

computational check, the right hand side 
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(C + 0A/(a - 1) + ((a - 2)/p)(A/(a - l) - B)) , (Ak6) 

which is identical to D (equation (A37~b)). 

The result of using (A32a,b) to evaluate the coefficients in 

equations (Â +5) and (Ah6) is shown in Table l6. 

Table l6. Displacement Derivation Antisymmetric Coefficient 
Values. 

C o e f f i c i e n t s 
i 

a = 6 a - 2 = e 

A / ( a - 1) 
1 

- a ! 
li- - cv - ^ s 

( l / 0 ) ( A / ( o r - 1) - B) 
i 

- a j ks - ex - 2 

(Aii-6) o i 0 

The coefficients in Table 15, along with equation (A27a), when 

substituted into equations (A35^) and (A36) lead to the symmetric 

displacement eigenfunctions, 

( 2 G u r ) s = < 5 n s r n / 2 [ - ( n / 2 + l ) s i n ( n / 2 = 1 )8 

- ( ( n / 2 + l ) / ( n / 2 + ( - l ) n ) ) ( 3 - ^ s - n / 2 ) s i n ( n / 2 - l ) 6 ] (AVfa) 

and 

( 2 G v e ) s = ( 5 n s r n / 2 [ ( n / 2 + l ) s i n ( n / 2 + l ) e 

- ( ( n / 2 + l ) / ( n / 2 + ( - l ) n ) ) ( 3 - ^ s + n / 2 ) s i n ( n / 2 - l ) e ] , ( A ^ T b ) 



while the coefficients in Table l6, with equation (A27b), substituted 

into (A^Qjt1); lead to the antisymmetric displacement eigenfunctions 

(2Gur)a = <?nar
n/2[-(n/2 + l)sin(n/2 + 1)8 

- ((n/2 + l)/(n/2 - (-l)n))(3 - hs - n/2)sin(n/2 - 1)8] (AWa) 

and 

(2Gv0)a = <5nar
n/2[-(n/2 + i)COs(n/2 + l)e 

- ((n/2 + l)/(n/2 - (-l)n))(-3 + ̂ s - n/2)cos(n/2 - l)e].(A>+8b) 

Special Eigenvalues 

The special values of X previously noted, and the corresponding 

eigenvalues n are shown in Table 17. 

Table 17. Special Eigenvalues. 

1 

s X n 

- 1 - 2 

i 0 0 

i +1 +2 

Physically, the displacements are necessarily everywhere 

bounded and continuous except at the crack faces. It is immediately 
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apparent that all negative eigenvalues must be discarded. 

The eigenvalue n=0 corresponds to the stress function 

So(r,9) = rfQ (9) (Ai+9) 

which, when substituted into equation (A2), gives the ordinary differ

ential equation 

(DQ + i)2f0(e) = o , (A50) 

with solution 

f ( 6 ) = K 1 s i n 9 + K2cosG -f K 9 s i n 0 + K^Gcose . (A5 l ) 

The c o r r e s p o n d i n g s t r e s s e s a r e 

a r r Q = ( 2 / r ) ( K 3 c o s 9 - K ^ s i n e ) , (A52a) 

a e e o = 0 (A52T3) 

and 

a r 9 o = 0 . ( A 5 2 c ) 

The crack face boundary conditions are identically satisfied. Calcula

tion of the displacements yields 

(2Gur)Q = 2(1 - s)ln(r)(K cose - K^sine) (A53a) 

and 

(2GvQ)Q = -2(s + (1 - s)ln(r))(K sinQ - K^cos0) , (A53b) 



so that hounded displacements require that the zero eigenvalue he 

discarded. 

The remaining special eigenvalue is n=2. The corresponding 

stress function is 

*2(r,e) = r
2f2(e) , (A5*0 

which satisfies the hiharmonic equation if 

Da(D2fl + *0fo(6) = 0 : (A^a) 

that is, for 

f2(9) =K1+ K20 + K sin20 + K^cc^e . (A55b) 

Calculation of stresses, substitution into the stress-strain equations 

and application of the crack face boundary conditions requires 

K2 = 0 , 

K3 = 0 (A56) 

and 

K1 + Kk = 0 , 

so that 

S2(r,9) =K1+r
2(cos26 - l) . (A5T) 

The general solution eigenfunctions for n = 2 are 

(52sr
2(cos20 - 1) 
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and 

<50 r 2 s i n 2 9 . (A58h) 
2a 

Clearly, the general solution n = 2 antisymmetric term must he dis

carded. Physically^ this term corresponds to a state of uniform 

shear, which obviously cannot be supported with stress free crack 

faces. 

Stress and Displacement Fields 

A two-dimensional displacement field which satisfies free-

crack-face boundary conditions can now be written as 

2Gu = KcosG + HsinG (A59) 

+ )" <5 rn/2[-(n/2 + l)cos(n/2 + l)e 
n/2 

U 2 

ns 
n=l 

,n - ((n/2 + l)/(n 2 + (-lD)(3 - ̂  - n/2)cos(n/2 - l)0] 

00 

+ I <5nar
n/2[-(n/2 + l)sin(n/2 + l)9 

n=l 
n^2 

- ((n/2 + l)/(n/2 - (-l)n))(3 - ̂ s - n/2)sin(n/2 - l)6] 

and 

2GvQ = Fr - Ksin6 + Hcos0 (A6o) 

+ 7 5 rn/2[(n/2 + l)sin(n/2 + 1)9 / i n s 
n=l 



- ((n/2 + l)/(n/2 + (-l)n))(3 - ̂ s + n/2)sin(n/2 - l)e] 

+ I 5nar L"(n/2 + l)cos(n/2 + 1)6 

n=l 
n ^ 

- ((n/2 + l)/(n/2 - (-l)n))(-3 + ̂ s - n/2)cos(n/2 - l)e] . 

It is convenient, for numerical calculation, to nodimensionalize 

the displacements and to separate the displacement equations into 

parts dependent upon, and independent of, the material property 

(Poisson's ratio) parameter. So doing, equation (A59) becomes 

Table 18. Nondimensionalized Coefficients 

t = (C L ( n / 2 • : ns v ns • l))/hG 

t = (C L ( n / 2 • 
1 na v na 

• 1 } )Ao 

u = u /L 
; r r 

*e = v e / L 
I 

jH = H/2GL £ 

IK = K/2GL 

[F = F/2G 
; 

. 

f _ 

jr = r/L 
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u = KcosG 4- HsinG (A6la) 
r 

00 

+ I C n s r n / 2 [ - ( n + 2 )cos (n /2 + l ) e 

n=l 

- ( (n + 2 ) / ( n 4- 2 ( - l ) n ) ) ( 6 - n ) cos (n / 2 - l ) 0 

+ 8s ( (n + 2 ) / ( n + 2 ( - l ) n ) ) c o s ( n / 2 - 1 )0 ] 

00 

+ V C ? n / / 2 [ - ( n 4- 2 ) s i n ( n / 2 + l ) e 

n=l 
n^2 

- ( (n + 2 ) / ( n - 2 ( - l ) n ) ) ( 6 - n ) s i n ( n / 2 - l ) 0 

+ 8 s ( ( n • + 2 ) / ( n - 2 ( - l ) n ) ) s i n ( n / 2 - 1 )9 ] , 

while (A6o) "becomes 

v„ = Fr - KsinG 4- HcosG (A62a) 

4- Y C n s r n / 2 [ ( n + 2 ) s i n ( n / 2 + 1)8 

n = l 

- ( (n + 2 ) / ( n + 2 ( - l ) n ) ) ( 6 + n ) s i n ( n / 2 - l ) e 

4- 8 s ( (n 4- 2 ) / ( n 4- 2 ( - l ) n ) ) s i n ( n / 2 - l ) e ] 

4- ) C ? n / 2 [ - ( n 4- 2 )cos (n /2 + l ) 
/_, na L ' ' ' 

n=l 
n^2 



+ ((n + 2)/(n - 2(-l)n))(6 + n)cos(n/2 - l)6 

- 8s((n + 2)/(n - 2(-l)n))cos(n/2 - l)0] . 

In these equations the symbols of Table 18 are used along 

characteristic length L defined in Chapter II. 

Using the notation 

u 
n s 

= r n / 2 [ - ( n + 2 ) c o s ( n / 2 + l ) 0 

- ( ( n + 2 ) / ( n + 2 ( - l ) n ) ) ( 6 - n ) c o s ( n / 2 - l ) 0 ] , 

v = r R / / 2 [ ( n + 2 ) s i n ( n / 2 + 1 )0 
n s 

- ( ( n + 2 ) / ( n + 2 ( - l ) n ) ) ( 6 + n ) s i n ( n / 2 - 1 ) 0 ] , 

J _ = 8 r n / 2 ( ( n + 2 ) / ( n + 2 ( - l ) n ) ) c o s ( n / 2 - l ) 0 ; 

= 8 r n / 2 ( ( n + 2 ) / ( n + 2 ( - l ) n ) ) s i n ( n / 2 - l ) 0 , 

u 
n s 

t\ 
v n s 

u = r n / 2 [ - (n + 2 ) s i n ( n / 2 + l ) na L \ ~r ; \ / / 

V 
na 

- ( ( n + 2 ) / ( n - 2 ( - l ) n ) ) ( 6 - n ) s i n ( n / 2 + 1 ) 0 ] , 

= r n / / 2 [ - ( n + 2 ) c o s ( n / 2 + l ) 0 

+ ( ( n + 2 ) / ( n - 2 ( - l ) n ) ) ( 6 + n ) c o s ( n / 2 - l ) Q ] , 

il = 8 r n / 2 ( ( n + 2 ) / ( n - 2 ( - l ) n ) ) s i n ( n / 2 - l ) 0 
na 

and 

V = 8 ? n ^ ( - (n + 2 ) / ( n - 2 ( - l ) n ) ) c o s ( n / 2 - 1 ) 6 , 
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equations (A6l) and (A62) may be written as 

u = KcosG + HsinG r 

+ ) C (u + s u ) + ) c ( i i + s u ) 
/_, ns ns ns {_* nax na na 
n=l n=l 

and 

v^ = Fr - KsinQ + HcosQ 

+ ; C (v + sv ) + ) C (v + sv ) i_j ns ns ns7 /_, na na na' 
n=l n=l 

n^2 

For completeness, the stress eigenfunctions, nondimensionalized 

with respect to the shear modulus (cr = a/G) are, from (A8), (A25) and 

(A26), 

0" r r = V C r ( n / 2 " i : ) ( n ) ( n + 2 ) [ - c o s ( n / 2 + 1 ) 6 (A63) 
i_i n s 

n = l 

+ ( ( n - 6 ) / ( n + 2 ( - l ) n ) ) c o s ( n / 2 - l ) G ] 

uu 

+ ) C r ^ n / / 2 " 1 ^ ) ( n ) ( n + 2 ) [ - s i n ( n / 2 + 1)Q 
Z_i n a 

n = l 
n^2 

+ ( ( n - 6 ) / ( n - 2 ( - l ) n ) ) s i n ( n / 2 - 1 ) 6 ] , 



72 

^99 = 1 5 n s ? ( n / 2 " ^ X 1 1 + 2 ) [ c ° s ( n / 2 + 1)9 (A6k) 

n=l 

- ( (n + 2 ) / ( n + 2 ( - l ) n ) ) c o s ( n / 2 - l ) 9 ] 

+ y C r ( n / 2 " l ) ( n ) ( n + 2 ) [ s i n ( n / 2 + 1)9 
/1 na 

n=l 
n ^ 

- ( (n + 2 ) / ( n - 2 ( - l ) n ) ) s i n ( n / 2 - l ) 0 ] 

and 

a r Q = I C n s r ( n / 2 " l ) ( n ) ( n + 2 ) [ s i n ( n / 2 + l ) 9 (A65) 

n=l 

- ( (n - 2 ) / ( n + 2 ( - l ) n ) ) s i n ( n / 2 - l ) 9 ] 

+ I e n a ^ n / 2 " l } ^ n ) ( n + 2 ) [ " c ° s ( * / 2 + 1) 
n=l 
n^2 

4- ( (n - 2 ) / ( n - 2 ( - l ) n ) ) cos (n /2 - l ) 9 ] 

Stress Intensity Factors 

The stress intensity factors KT and KTT are defined in terms 

of the near-tip stress "by 

Kx = ̂  (2rrr)* a (r,0) (A66a) 



and 

KII = r S (2™)2are(r,0) (A67a) 

The nondimensionalization of r and a requires the modification 

of these equations to 

Kj = £ £ (2TTLf)iGaee(f,0) (A66b) 

and 

KII = j?S (2TTl^)2GCTre(r,0) . (A67b) 

Use of CTQQ from (A6^), and of a fl from (A65) g ives 
00 r D 

JL 
K = 1 2 G ( 2 T T L ) 2 C 1 S ( A 6 6 C ) 

and 

! 
Klx = - UG(2nL)2C la . (A67c) 
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APPENDIX B 

FINITE ELEMENT EQUATIONS FOR LINEAR ELASTODYNAMIC SYSTEMS ,I 

In this appendix, the linear elasticity equations of motion are 

developed in matrix form. These equations are then specialized to the 

high-order singularity element, and the relationship between the 

Williams' eigenfunctions and the element stiffness, consistent mass, 

and consistent force matrices is shown. In Zienkiewicz [1] terminol

ogy, the "generalized coordinate" method is used, with the Williams' 

coefficients (Appendix A) as the generalized coordinates. This 

formulation is particularly appropriate here, since the coefficients 

C and C are directly proportional to the stress intensity factors 
1 s la 

K and K . 

General Equations 

As is well known [1-3] the governing equations of linear 

elasticity may be written in matrix form by arranging the stress and 

strain tensors as vectors, and Hooke's tensor as a square matrix. 

Using this artifice, the strain displacement relations become 

e = D u , (Bl) 

while the constitutive relation (Hooke's law) is 

a = H _e , (B2) 

and the arrangement of the various matrices depends on the exact 



formulation sought [2]. 

Hamilton's Principle 

Hamilton's principle [58] may be mathematically stated as 

6A = 0 , (B3a) 

where 6 is the variational operator [59] and 

*2 
A = f Ldt (B3b) 

is the action functional and the Lagrangian 

L = T - U - W (B3c) 
p ' 

is formed from 

m 

Kinetic energy; T = "? f p u u dV , (B̂ -a) 

v 

m 

Potential energy; U = \ f _e a dV (B^b) 
v 

ant 

External Force 
Potential; W = - f u X dV - [ J T dS . (B^c) 

V 

Here, X is the body force vector and T is the surface traction vector 

specified on the portion of the boundary S . 

Using (B^) and (B3c) in (B3a), the action functional is 



(O 

A = [i J ( ^ up -
h 

_eT a + 2uTX)dV + J uTm dS 
S l " 

dt (B5a) 

In applying Hamilton's principle, it Is necessary to write (B5a) 

in terms of displacements by use of the con" • tutive and strain-

displacement relations. The result is 

t 

A = f f \ f ( p u T u - uTDTHDu + 2uTX)dV + f uTT d s l d t . (B^b) 

t " v 

The f i r s t v a r i a t i o n of (B5b) i s 

*2 
6A = J [~J p6uTu - 6uTDTH D u + _6uTX dV + J ^u T T dS 

t x v s 2
 _ 

dt (B6a) 

and must be equal to zero. Since 

m T T 
_6u u = (d/dt(_6u u - _6u u)) , 

(BTa) 

the f i r s t term in (B6a) may be "written 

\ *2 
J J p 6uTu dV d t = - f J p _6uTu dV dt 

t± V t v 

T. 
+ J1 J p(d/dt(_6u u))dV dt , 

t v 
(BTb) 

and the last term in (BTb) transformed from 
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*2 
J J p(d7dt(_6uTu))dV dt (B7c) 
t v 

to 

t 2 

J (d/dt) f p_6u u dV))dt (B7d) 
t1 

and finally to 

* i 

\_J P i i ^ d V ] = ° > (B?e) 
2 

where the first transformation holds "because the region of interest V 

contains the same material at all times and the integrated term is 

zero since the displacement variations _6u vanish at the ends of the 

time interval. 

The result (B7e) reduces (B6a) to 

v 
J J" 6u (pu + D H D u - X) dV - f to T dS dt = 0 , (B6b) 

which is a form suitable for generation of the finite element equations 

of motion. 

Element Displacement Field 

The displacement field in an element can "be approximated in 

terms of a chosen set of functions f and the corresponding generalized 



coordinates £, by 

u = f C , (B8a) 

•wherê  for an n node element in plane elasticity, 

u is the (2 x l) displacement vector, 

f is the (2 x 2n) matrix of coordinate functions, and 

C is the (2n x l) vector of generalized coordinates. 

In the present formulation, the element geometry is most easily 

described in cartesian coordinates, -while the coordinate functions are 

expressed in polar coordinates. It is therefore necessary to modify 

(B8a) to 

u = R f C (B8b) 

vhere now u is a cartesian displacement vector, and R is the appropri

ate (2 x 2) rotation matrix. 

The element displacement field can be related to the element's 

nodal displacements by evaluating (B8b) at the nodal points, thus 

generating 

u = A C , (B9a) 

where 

u is the (2n X l) nodal point displacement vector, and 

A is a (2n x 2n) transformation matrix. 

For reasonable element topology (B9a) can be inverted to obtain 

the generalized coordinates in terms of the nodal point displacements 
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C = A_1u . (B9b) 

Equation (B9"b) substituted into (B8b) gives the expression for the 

element displacement field as 

u = R f A-1u , (BlOa) 
r*j /*w r^ 

or; defining 

N = R f A"1 , (BlOb) 

as 

u = N u . (BlOc) 

The N are called in [1] "shape functions" and need not be derived from 

generalized coordinates. 

Element Equations of Motion 

Proceeding "with development of the finite element equations of 

motion, (BlOc) substituted into (B6b) gives 

t2r. T 
J IJ iu (p A u + NTDTH D Nu - WTX) dV - J j>uTNTT dS dt = 0, (B6c) 
t l V " ~ ~ ~ ~ S l " 

in -which the time-independence of N has been used. Since the nodal 

displacements are independent of the volume and surface integrals., 

(B6c) may be rewritten as 

*2 
J _6uT[j pNTN dV u + J NTDTH D N dV u - J NTX dV 



- J HTT dsl dt = 0 , (B6d) 
Sl 

from "which the usual argument on independence of the displacement 

varia ons leads to the equations of motion 

M u + K u = F , + F , (Bll) 
~ — ~ — —b —s v ' 

where 

M = f p A dV y (B12a) 
V 

K = J NTDTH D N dV , (B13a) 
v ~ ~ ~ ~ ~ 

F, = f NTX dV (Bl4a) 
v 

and 

F = f NTT dS . (B15a) 
S J r*-i 

Sl 

This formulation is, of course, perfectly general within the 

framework of linear elasticity. 

Singularity Element Matrices 

For the high-order singularity elements used in this investiga

tion, the relevant consistent mass matrix becomes 

M = f p A"TfTRTR f A"1 dV (B12h) 
V 



or 

M = A"T J pfTf dV A"1 , (B12c) 

where the orthogonality of the R matrix was used. 

This last expression for the consistent mass matrix can he 

written as 

where 

M = A~TM A"1 , (B12d) 

M = T pfTf dV (B12e) 
roC J r^/ ">-> 

V 

is known as the "consistent mass matrix with respect to the generalized 

coordinates." A similar rearrangement for (B13a-B15a) yields 

K = A"TK A"1 , (B13c) 

K = f fTRTDTH D R f dV (B13d) 
V 

and 

F = A~T(F, + F ) , (B15b) 
— ~ —be -sc y ' \ y / 

-he = I £T£T- dv > (B15c) 

v ~ ~ 

F = f fTRTT dS . (B15d) 
s l 



Finally, vhen the dependence of the f matrix on the Poisson's 

ratio parameter s is made explicit, 

£ = £l + S^2 ' (Bl6a) 

so that 

A = A, + sAQ . (Bl6b) 

Substitution of (Bl6a) into (B12e) gives 

«c = i n + 4=12 + ^ 2 2 (B1Ta> 

where 

i u = J p £ i £ i d V > <B17b> 
v 

2L12 = I p(£l£2 + itj dV (B17c) 

V 

and 

^ 2 2 = J p£T£2 dV • (B1Td) 
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APPENDIX C 

THE TIME INTEGRATION ALGORITHM 

In this appendix, the reasons for choice of the constant-

average-acceleration variant of the Newnark-3 time integration 

algorithm are given, and the particular equations implemented in the 

computer program are derived. 

Operators Considered 

The time integration operators considered for use in solving 

the equation 

M u + K u = F (Gl) 

were: 

1. The "Precise Integration Operator" [60]; 

2. The Wilson averaging operator [6l]; 

3. The Gurtin averaging operator [62,63]; 

k. The modified central difference operator [29]; and 

5. The "Newnark-3" operator [36-38]. 

The first four operators were unsuitable for these reasons: 

1. The "Precise Integration Operator", as Its name implies, is 

precise. In fact, it has neither spurious (algorithm induced) damping 

nor period error. Unfortunately, it requires modal decomposition 

(solution of the frequency eigenvalue problem) of the entire structure, 

so that its use is prohibitively expensive for even moderately 
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large systems. 

2. Both the Wilson and Gurtin averaging operators have severe 

spurious damping, which requires short time steps if accurate higher 

mode response is to "be maintained [60,6^,65]. 

3. The modified central difference scheme is attractive in its 

ease of coding and computational economy, being little more complicated 

than matrix multiplication. It was unsuitable for this investigation, 

however, since it requires a lumped (diagonalized) mass matrix. 

The Newmark-3 method, then, remained. Its constant-average-

acceleration (3 = -f) variant provided: 

1. Numerical stability for any time-step size; 

2. Absence of spurious damping; 

3. Small and easily controlled phase error; 

h. Modest computer core requirements; and 

5. Ease of coding. 

The first four characteristics are discussed at length, with numerical 

and graphical comparisons, in [60,6^,65]. The fifth is evident in 

that the FORTRAN subroutine written to implement the algorithm, 

including special purpose sections peculiar to this investigation, 

required fewer than 250 statements. 

The Algorithm 

The algorithm used, a simplification of that developed in [38], 

is based on the relations proposed by Newmark in [36,37]; i.e. 

u - u = h(l - v) u + hY u n (C2a) 



and 

u - u = h u + h2(J - 3) u -f 3h2 u T1 , (C2b) 
—n+1 —n —n x ̂  K ' — n —n+1 

where 

( ) = d/dt 

h - At, the time step, and 

u is the displacement vector at t-t = nh. 
—n o 

Newmark proved that, unless y = \ , there is spurious damping, while 

Nickell [6^] showed 3 = ̂  to be optimum for numerical stability. With 

these values of the parameters, equations (C2) become 

u - u = h/2(u + u n) (C3a) 
-n+1 -n ' -n -n+1 ; 

and 

u - u = h u + h Ik (u + ii , J . (C3b) 
-n+1 -n -n ' -n -n+1' v ' 

Equations (C3) amount to successive applications of the trapezoidal 

rule, since if (C3a) is substituted into 

u _, - u = h/2 (u + u J (C^) 
-n+1 -n ' v-n -n+ly v y 

and the result simplified, (C3b) is obtained. 

The velocity-acceleration relation (C3a), left multiplied by 

the mass matrix, is 

M (u r1 - u ) = h/2 M (u + u . ) . (C5) 
~ -n+1 -ny ^ -n -n+1' ' 



Using the rearranged equation of motion 

M u = F - K u , (C6) 

•written for t imes t - t - nh and t - t = (n+l )h to e l im ina t e the 
o o 

a c c e l e r a t i o n s 1 (G5) y1 -ids 

M (u n - u ) = .7': (F - F n - K (u + u J ) . (CT) 
~ v - n + l n ' - n -n+1 ~ ' -n - n + l / y v ' 

The d i s p l a c e m e n t - a c c e l e r a t i o n r e l a t i o n (C3b) w r i t t e n for 

t - t = (n+l )h and sub t rac ted from the same equat ion w r i t t e n for 
o 

t - t = (n+2)h g ives 
o 

LI 0 - 2 u n + u = h (u - ^ ) + h2/^4 (u - u ) . (C8) 
-n+2 -n+1 - n —n+1 -rr ' -n+2 - n y ' 

Equation (C8), left multiplied by the mass matrix, with velocities 

eliminated by (C'f) and accelerations eliminated by (C6) becomes 

M (u n - 2 u . + u ) = h2/2(F + F - K(u + U .)) (C9) 
~ -n+2 -n+1 —n' ' -n -n+1 ~-n -n+l;' v yy 

+ h2/4(F n - F - K(u 0 - u )) , 
' -n+2 -n ~-n+2 -n'' 

which, upon collection of terms in u „, u -, , and u , becomes the 
^ -n+2' -n+1 -n 

following difference equation used in the computer program. 

(M + h 2A K)u 0 = 2(M - Y?/k K)u - (M + Y?/k K)u 
\, ~ —n+2 \^ ^ —n+1 ~ ' ~ — n 

+ h2A(F + 2F _ + F _) . (CIO) 
—n —n+1 —n+27 

Equat ion (CIO) agrees with (5) in [ 3 8 ] , when t h a t equat ion i s 



specialized to C = 0 (no damping) and 3 = -J-. 

The recurrence relation (CIO) enables calculation of displace

ments at time t-t = (n+2)h, if the displacements at the two earlier 

times t-t = (n+l)h and t-t = nh are known. Since the usual initial 
o ' o 

conditions are given velocity and displacement fields at time t , the 

algorithm requires a special starting step. 

The displacement-acceleration equation (C3b), written for 

t-t = h and rearranged, is 

\i, = u + h u + h 2A (u + u_) . (Cll) 
—1 —o —o ' — o —1 x J 

This equation, left multiplied by the mass matrix, with the accelera

tions eliminated by (c6), becomes after collection of terms, the start

ing equation, 

(M + h A K)un = (M - h A K)u + h M u + h2/A(F + FJ . (C12) 
~ ~ — 1 ~ ~ —o ~ —o —o —1 

This equation agrees with (7) in [38] when that equation is special

ized to C = 0 and 0 = £. 

Equations (CIO) and (C12) are the equations used in this 

investigation for numerical solution of the equations of motion. 
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