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SUMMARY 

With increasing computational cost of deep neural network (DNN), many efforts 

to develop energy-efficient intelligent system have been proposed from dedicated hardware 

platforms to model compression algorithms. Recently, hardware-aware quantization 

algorithms have shown further improvement in the energy efficiency of DNN by 

considering hardware architectures and algorithms together. In this work, a genetic 

algorithm-based energy-aware DNN quantization framework for Processing-In-Memory 

(PIM) architectures, named EGQ, is presented. The key contribution of the research is to 

design a fitness function that can reduce the number of analog-to-digital converter (ADC) 

access, which is one of the main energy overhead in PIM. EGQ automatically optimizes 

layer-wise weight and activation bitwidth with negligible accuracy loss while considering 

the dynamic energy in PIM. The research demonstrates the effectiveness of EGQ on several 

DNN models VGG-19, ResNet-18, ResNet-50, MobileNet-V2, and SqueezeNet. Also, the 

area, dynamic energy, and energy efficiency in the compressed models with various 

memory technologies are analyzed. EGQ shows 15%-103% higher energy efficiency with 

2% accuracy loss than other PIM-aware quantization algorithms. 
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CHAPTER 1. INTRODUCTION 

Processing-In-Memory (PIM) is an attractive hardware architecture for energy-

efficient deep neural network (DNN) inference since processing units are integrated into 

memory [1]-[3]. Along with the efforts in the dedicated hardware for DNN, algorithmic 

approaches such as weight and activation quantization are studied to reduce the model 

complexity of DNN [4]-[8]. Recently, hardware-aware quantization algorithms have 

shown that the energy efficiency of DNN inference can be further improved by considering 

hardware architectures and algorithms together [9], [10]. It is important to consider data 

movement such as memory access in conventional CMOS-based architectures to 

effectively improve the energy efficiency [11]. However, PIM architectures avoid the large 

number of memory access, and rather analog-to-digital converters (ADC) access is the 

main energy overhead. This motivates energy-aware quantization for PIM to differentiate 

from the quantization for CMOS-based architectures. 

Uniform bitwidth quantization is widely used and simple to adapt for various DNN 

models. However, significant accuracy loss is observed at very low bitwidth [12]. Sun et 

al. [13] shows uniform bitwidth quantization with negligible accuracy loss, but it needs to 

re-train models after the quantization. Flexible bitwidth quantization is a promising 

technique to improve compression ratio and/or reduce accuracy loss compared to uniform 

quantization [6], [8]. It is important to note that the bitwidth of DNN can be differently 

determined depending on quantization methods while showing the same accuracy level. In 

other words, optimizing the bitwidth only with the constraint of accuracy does not 

guarantee the optimal energy efficiency. However, most of the flexible quantization 
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algorithms for PIM do not explicitly consider energy consumption [14], [15]. There are 

few works on energy-aware quantization algorithms for PIM with simplified energy cost 

[13], [16]. As the energy consumption of hardware components is non-uniform in different 

layers [17], different bitwidth should be assigned with the consideration of the energy 

distribution to effectively improve the energy efficiency. It is still required to consider 

hardware components such ADC in flexible bitwidth quantization algorithms for PIM. 

In this research, a genetic algorithm-based energy-aware DNN quantization 

framework for PIM architectures (EGQ) is presented. EGQ optimizes weight and 

activation bitwidth for each layer and supports flexible bitwidth quantization by predicting 

layer-wise dynamic energy consumption in PIM platforms. The predicted dynamic energy 

is directly utilized to evaluate and search bitwidth candidates that achieve high energy 

efficiency with low accuracy loss. As the large amount of dynamic energy is consumed by 

ADC in PIM [1], we mainly focus on the number of ADC access to predict the layer-wise 

dynamic energy consumption. EGQ only requires the basic model information such as 

activation sizes (i.e. dimensions) and kernel sizes in convolution neural network (CNN) to 

predict dynamic energy. Also, EGQ does not need re-training, which means any pre-trained 

DNN models can be simply compressed by EGQ.  

EGQ uses genetic algorithm to automatically search appropriate layer-wise weight 

and activation bitwidth. The concept of using genetic algorithm for flexible bitwidth 

quantization was recently proposed [7]. However, it does not optimize activation bitwidth, 

and more importantly, it is a hardware-agnostic algorithm as ADC cost related to the PIM 

performance is not considered. The main contribution of this research is to develop an 

automatic framework for searching optimal layer-wise weight and activation bitwidth 
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considering the number of ADC access and the associated dynamic energy. The research 

mainly focus on designing a fitness function to estimate the number of ADC access, and 

genetic algorithm is used as an optimization method to prove that overall energy efficiency 

in PIM can be improved by the presented fitness function. It is important to note that EGQ 

is not limited to genetic algorithm as the fitness function can be applied to other problem 

solvers such as reinforcement learning [16]. 

EGQ is mainly evaluated with three CNN models, VGG-19 [18], ResNet-18, and 

ResNet-50 [19]. The effect of EGQ on the area, dynamic energy, and energy efficiency in 

PIM architectures are analyzed by NeuroSim [17]. As PIM platforms can be combined with 

various memory devices such as SRAM and embedded non-volatile memories (eNVMs), 

how the effectiveness of EGQ changes for PIM designs with different memory 

technologies is also studied. Finally, EGQ is compared with previous works on PIM-aware 

quantiztion and genetic algorithm-based quantization [7], [12], [13]. 

The research presents EGQ is an effective approach to reduce dynamic energy in 

various PIM designs with SRAM, RRAM, and FeFET technologies. In particular, 

embedded non-volatile memories (NVMs) show the higher improvement of energy 

efficiency with EGQ due to low leakage energy. EGQ improves the energy efficiency of 

ResNet-18 by 6.5 times compared to the 16-bit model. Also, EGQ shows 15% - 103% 

higher energy efficiency than the existing quantization algorithms for PIM with 2% 

accuracy loss.  
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CHAPTER 2. BACKGROUND 

2.1 Processing-In-Memory (PIM) Architecture 

 

Figure 1 – (a) SRAM-based subarray in PIM. (b) Dynamic energy of circuit 

components in PIM. Blue squares are SRAMs. 16-bit ResNet-18 is used for dynamic 

energy simulation. 

PIM-based DNN accelerators with various memory devices have attracted many 

interests due to high energy efficiency [1], [2], [24]. Most of the PIM architectures 

accelerate vector and matrix multiplication (VMM) operation based on parallel analog 

computations by bit-line current summation [1], [2], [24]. Figure 1(a) shows the basic 

schematic of a SRAM subarray in PIM architectures [25]. We also assume the weight 

within the subarray is stored as multi-bit words, where each cell represents a single bit. We 

assume the input to a word-line is a serial bit-wise binary value which does not require 

DAC [26]. Once the input vector is applied to the word-lines, the current flowing through 

the bit-line is determined by weight values stored in the SRAM. The current is converted 

to a digital value by ADC without row-by-row access, and then the converted value is used 

as an input feature map (IFM) of the next layer. The parallel operation significantly 

increases computational efficiency in PIM architectures.  
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2.2 Energy Consumption in PIM 

 

Figure 2 – Data flow and weight mapping of CNN in PIM. The left figure shows the 

schematic of convolution operation with blue IFMs and orange kernels. The right 

figure shows the weight mapping on subarrays and the serial bit-wise input of IFMs 

to subarrays. 

Most energy consumption in PIM comes from read peripheral circuits, mainly, 

ADC. Figure 1(b) shows the dynamic energy consumption of circuit components in a PIM 

platform estimated by modified NeuroSim [17]. We use ResNet-18 with ImageNet dataset 

for the inference simulation. 128× 128 subarray size, 5-bit ADC, and 7nm SRAM 

technology are used for the simulation. More details about modified NeuroSim are 

described in the next section. We observe that ADC consumes about 63% of total dynamic 

energy. As ADC dynamic energy is proportional to the number of ADC access, the lower 

number of ADC access can effectively reduce the total dynamic energy. EGQ assumes the 

hardware design parameters such as the size of subarrays and ADC precision are fixed and 

find optimal bitwidth for each layer to reduce the total number of ADC access.  

The number of ADC access in PIM architectures is determined by two factors, the 

length of input vectors and the number of subarrays to store weight matrices. All weight 

parameters are assumed to be stored on a single chip, and each layer uses different 

subarrays. Figure 2 shows the schematic of IFMs and kernels for convolution operation. 
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First, the number of subarrays for a weight matrix (i.e. kernel) is related to weight bitwidth 

and a weight dimension. Each kernel is unrolled along the columns in subarrays. The 

number of required rows are same with the multiplication of the width, height, and input 

channels of a kernel. (see gray rows in Figure 2.) The number of required columns for each 

kernel is same with weight bitwidth. Thus, the total memory size is determined by each 

kernel size, the number of kernels, and weight bitwidth. As we assume the size of subarrays 

is not flexible, the weight matrix should be partitioned by the subarray size. Red-dot lines 

in Figure 2 indicate subarray boundaries. Next, the length of input vectors is related to the 

bitwidth of IFMs. IFMs with high precision need to be converted to long serial binary 

vectors that proportionally increase the number of ADC access. For convolution layers, the 

length of input vectors also relies on an output feature map (OFM) size. Kernels capture 

partial information from IFMs, and each capture constitutes one OFM. Thus, the number 

of captures is determined by the OFMs size, not the IFMs size. Blue bars in Figure 2 show 

that the length of input vectors is proportional to IFM bitwidth and OFMs size.  
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CHAPTER 3. RELATED WORKS 

3.1 Prior Quantization Algorithms for PIM 

In this section, the details of related works on PIM-aware quantization are 

introduced [13], [15], [16], [20], [21], and they are compared with EGQ to state the 

differences between EGQ and these works. 

3.1.1 Energy-unaware Quantization Algorithms 

The paper by Z. Zhu et al. [15] showed flexible weight and activation quantization 

for a RRAM-based PIM architecture with the consideration of storage and latency. This 

RRAM-aware quantization quantifies the storage based on the number of crossbars and the 

latency by the number of digital-to-analog converters (DAC) access as optimization 

objectives. Each quantity is related to weight and activation bitwidth, respectively. The 

storage and latency can indirectly reduce energy consumption, but energy is not reflected 

into a loss function in the research. Also, re-training is required after every iteration of the 

weight and activation quantization. 

C. Zhang et al. [21] proposed a robust RRAM-based quantization framework by 

developing the quantization algorithm to minimize RRAM variation error. They calculate 

the numerical error between full-precision weight and weight with the noises introduced 

by quantization error and device variation. The error is used as a loss function to utilize 

gradient-descent and back-propagation algorithms. As the loss function is only related to 

weight parameters, activation bitwidth is not considered. Also, energy is not related to the 

loss function. Thus, the algorithm is only suitable for weight quantization.  
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Reinforcement learning is a widely used algorithm in AutoML. S. Qu et al. [21] 

used a reinforcement learning based deep deterministic policy agent to search flexible 

weight bitwidth to maximize memory utilization. The memory utilization is estimated 

based on the weight mapping in PIM subarrays. Bitwidth candidates that have the high 

memory utilization and accuracy give the agent high rewards, so the agent automatically 

searches an optimal bitwidth candidate. However, the memory utilization does not consider 

activation bitwidth. As the large amount of energy consumption is resulted from activtion 

[22], flexible weight and activation bitwidth are required for energy-aware quantization. 

3.1.2 Energy-aware Quantization Algorithms 

H. Sun et al. [13] proposed uniform bitwidth activation quantization for an energy-

efficient PIM accelerator. They show a non-linear quantization scheme to reduce required 

ADC bitwidth. As ADC results in critical energy overhead in analog PIM, decreasing ADC 

bitwidth is an effective method to enhance the energy efficiency [23]. However, changing 

ADC bitwidth depending on CNN models requires variable resolution ADC macros that 

are difficult to design. Also, energy-aware regularization in a loss function was introduced 

in the paper. The energy consumption is estimated with the simple multiplication of the 

voltage and current at RRAM devices in PIM subarrays. However, the improvement due 

to the energy-aware regularization is marginal since the dynamic energy consumed by 

eNVMs is not critical. 

S. Huang et al. [16] proposed reinforcement learning based flexible weight and 

activation quantization for PIM. A cost function is defined with weight, activation, and 

ADC bitwidth to incorporate hardware performance into the quantization algorithm. Two 
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fractions are mainly considered in the cost function. One is the fraction of the number of 

parameters over total parameters, and the other one is the fraction of bitwidth over full 

precision. ADC bitwidth is multiplied to the fractions as an exponential term to reflect the 

large energy overhead of high-precision ADC. However, as the fractions only represent the 

compression ratio of weight and activation parameters, the cost function cannot accurately 

estimate the layer-wise energy consumption in PIM architectures. 

3.1.3 Challenges in Prior Algorithms 

Prior quantization methods for PIM show the storage-aware, latency-aware, or 

utilization-aware algorithms. Although there are some energy-aware algorithms, they 

require complex multi-precision ADCs or used overly simplified energy cost without 

considering the details of data layout/flow for weight mapping and input data transfer. An 

energy-aware, flexible, and automated quantization algorithm for PIM designs is still 

missing. In contrast, EGQ is an energy-aware algorithm for PIM and uses a fitness function 

that includes weight and activation compression ratio, the number of ADC access, and 

accuracy loss. The fitness function estimates energy using the number of ADC access 

which needs to consider the weight mapping and input data transfer in PIM. Accordingly, 

EGQ is a more suitable quantization framework for energy-efficient inference in PIM.  
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CHAPTER 4. PROPOSED APPROACH 

4.1 Genetic Algorithm based Quantization 

Genetic algorithm is a well-known algorithm for complex search and optimization. 

As flexible bitwidth quantization is also a search problem, EGQ uses genetic algorithm to 

determine appropriate bitwidth for each layer.  

4.1.1 Overall Quantization Flow 

 

Figure 3 – (a) Overall flow of EGQ. (b) and (c) Upper and lower bound in ResNet-18. 

(d) Description of the first iteration in EGQ. Upper bound is heuristically determined. 

Left half of (d) is the result from the initialization step, and the right area means next 

candidates after the first evaluation and re-generation step. 

Figure 3 shows the overall flow and details of each stage in EGQ. The initialization 

step prepares weight and activation bitwidth candidates. The size of kernels and OFMs are 

stored at the initialization step as EGQ uses them repeatedly at the evaluation step. Figure 

3(b) and Figure 3(c) are the lower and upper bound of ResNet-18 which constrains the 

range of initial candidates. The candidates are randomly sampled based on the two 

boundaries. Detail process to determine the upper and lower bound is explained in the 
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previous study [7]. The candidates are evaluated based on fitness values at the evaluation 

step. Figure 3(d) shows 15 candidates and the fitness values of each candidate. The red 

fitness values mean three good candidates, and they become parent candidates at the re-

generation step. Other candidates are eliminated. The re-generation step includes crossover 

and mutation. Two parents from the three are randomly selected, and children candidates 

are again randomly sampled in the range of the two parents. EGQ repeatedly evaluates and 

reproduces candidates searching appropriate weight and activation bitwidth candidates. 

Final bitwidth can be further compressed by the greedy search based fine tuning [7]. 

4.1.2 Linear Quantization 

Linear quantization is a widely used scheme for DNN quantization. EGQ also uses 

linear quantizer for both weight and activation. The quantization of weight with n-bit 

precision is defined by 

 
𝑄(𝑥) = round(

𝑥(2𝑛−1 − 1)

max⁡(|𝑥|)
) ×

max(|𝑥|)

2𝑛−1 − 1
 (1) 

Weight range is first normalized and expanded to 2𝑛 range. As weight generally includes 

negative values, the range is from −2𝑛−1  to −2𝑛−1 − 1 . Round function makes the 

expanded float values to be integers, thus introduces quantization error. The other 

multiplication term is for dequantization from the integer range to the float range again. 

For activation quantization, range can be different depending on the location of a 

quantizing layer. If activation quantization is directly connected to the OFMs, activation 

quantization uses same formula with weight quantization. However, if activation 
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quantization is after ReLU function, there are no negative values. Thus, the range becomes 

from 0 to 2𝑛 − 1. EGQ quantizes activation after ReLU function. 

4.2 Energy-aware Fitness Function 

In this subsection, we present the fitness function of EGQ and compare it with the 

fitness function in the prior genetic algorithm-based quantization method, named Q-PIM 

[7]. The fitness function of EGQ is given by 

 𝐹(𝐶) = 𝛼 ∙ 𝐶𝑊 + 𝛽 ∙ 𝐶𝐴 + 𝛾 ∙ 𝐶𝐴𝐷𝐶 + 𝛿 ∙ Accuracy (2) 

where 𝐶 represents a bitwidth candidate; 𝐶𝑊, 𝐶𝐴, and 𝐶𝐴𝐷𝐶  are the compression ratio of 

weight, activation (i.e. IFMs), and the number of ADC access, respectively. 𝛼, 𝛽, 𝛾, and 𝛿 

are weighting factors. EGQ optimizes the fitness function to find a bitwidth candidate that 

has high compression ratio and energy efficiency with low accuracy loss. The fitness 

function of Q-PIM is given by [7] 

 

𝐹(𝐶) = −𝛼 ∙∑𝑊𝑖

𝑁

𝑖=1

∙ 𝑃𝑊,𝑖 − 𝛽 ∙ Error (3) 

where 𝑊𝑖 is the weight bitwidth of ith layer; 𝑃𝑊,𝑖 is the number of weight parameters; Error 

represents accuracy loss. There are two main differences between EGQ and Q-PIM. First, 

the fitness function of Q-PIM does not consider the activation compression ratio. As 

equation (3) has only two terms related to the weight compression ratio and accuracy loss, 

it cannot be used for flexible activation quantization. Next, equation (3) does not have the 

connection between the quantization algorithm and hardware platforms, which is the main 
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contribution of EGQ. The fitness function of EGQ considers the number of ADC access in 

PIM platforms. Thus, EGQ is more suitable for energy efficient quantization for PIM. 

𝐶𝐴𝐷𝐶 represents the compression ratio of the number of ADC access compared to 

the 32-bit model. It is assumed that the dynamic energy consumption is proportional to the 

number of ADC access as discussed above, so 𝐶𝐴𝐷𝐶 reflects the expected total dynamic 

energy to the fitness function. 𝐶𝐴𝐷𝐶 is defined by 

 
𝐶𝐴𝐷𝐶 = 1 −

∑ 𝐴𝐷𝐶𝑖(𝑊𝑖, 𝐴𝑖)
𝑁
𝑖=1

∑ 𝐴𝐷𝐶𝑖(32, 32)
𝑁
𝑖=1

 (4) 

 𝐴𝐷𝐶𝑖 = 𝑆𝑖 × 𝑂𝐹𝑀𝑤,𝑖 × 𝑂𝐹𝑀ℎ,𝑖 × 𝐴𝑖 (5) 

 
𝑆𝑖 = ⌈

𝐾𝐼𝐶,𝑖 × 𝐾𝑤,𝑖 × 𝐾ℎ,𝑖
𝑠

⌉ × ⌈
𝐾𝑂𝐶,𝑖 ×𝑊𝑖

𝑠
⌉ (6) 

where 𝐴𝐷𝐶𝑖 is the number of ADC access; 𝑊𝑖 and 𝐴𝑖 are weight and activation bitwidth; 

𝑆𝑖 is the number of subarrays. 𝑂𝐹𝑀𝑤,𝑖 and 𝑂𝐹𝑀ℎ,𝑖 are the width and height of a OFM. 𝐾𝐼𝐶,𝑖, 

𝐾𝑤,𝑖 , 𝐾ℎ,𝑖 , 𝐾𝑂𝐶,𝑖  are the input channel, width, height, and output channel of a kernel, 

respectively. 𝑠 is a subarray size such as 128. As EGQ reduces weight and activation 

bitwidth, the ratio in equation (4) also becomes smaller. The ratio is subtracted from 1 to 

make good candidates have high fitness values. 𝑂𝐹𝑀𝑤,𝑖 and 𝑂𝐹𝑀ℎ,𝑖 are varying depending 

on layers. Fully connected layers do not have width and height dimensions, so we regard 

both 𝑂𝐹𝑀𝑤,𝑖 and 𝑂𝐹𝑀ℎ,𝑖 as 1. 𝑆𝑖 is the multiplication of the row and column number of 

subarrays. The first operand in 𝑆𝑖 is the row number of subarrays, and the second operand 

is the column number of subarrays. Each operand is in a ceil function in equation (6). As 
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𝐴𝐷𝐶𝑖 changes depending on candidates and iterations, the size of OFMs and kernels should 

be saved in EGQ. For the accuracy in the fitness function, we set an accuracy threshold 

that can give the penalty value of -10, if a candidate shows lower accuracy than the 

threshold. All quantization experiments here use 2% accuracy threshold. The weighting 

factors would change the behavior of EGQ, but they are set to 1 as default. We compare 

the impact of the weighting factors in the next section. 

𝐶𝑊  and 𝐶𝐴  are determined by the ratio of the number of weight and activation 

parameters. Each of them are given by 

 
𝐶𝑊 = 1 −

∑ 𝑊𝑖 × 𝑃𝑊,𝑖
𝑁
𝑖=1

∑ 32 × 𝑃𝑊,𝑖
𝑁
𝑖=1

 (7) 

 
𝐶𝐴 = 1 −

∑ 𝐴𝑖 × 𝑃𝐴,𝑖
𝑁
𝑖=1

∑ 32 × 𝑃𝐴,𝑖
𝑁
𝑖=1

 (8) 

where 𝑃𝑊,𝑖  and 𝑃𝐴,𝑖  mean the number of weight and activation parameters. The total 

number of the binary bits for weight parameters is obtained by the product of 𝑃𝑊,𝑖 and 

weight bitwidth, 𝑊𝑖. We assume weights in batch normalization layers are floating point, 

so weights in convolution layers and fully connected layers are mainly compressed. As 𝑊𝑖 

at the denominator is 32, the ratio in equation (7) represents how much the weight of ith 

layer is compressed compared to the 32-bit model. 𝐶𝐴 can be explained in the same way as 

𝐶𝑊. EGQ calculates the compression ratio of each candidate every iteration. Hence, the 

number of layer-wise weight and activation parameters should be stored in the initialization 

step. 
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EGQ is chosen to be layer-wise granular to limit the search space and hence, 

improve convergence time. EGQ can be modified to support channel-wise optimization, 

but search space significantly increases. For example, ResNet-50 has 50 layers and 22,720 

channels. The granularity of EGQ can be switched if equation (5), (8), and (8) are modified. 

N in the each equation represents the number of layers. EGQ estimates the compression 

ratio of weight, activation, and ADC access with total N number of precision assigned to 

each layer. If N is modified to represent the number of channel, EGQ can be adapted to be 

channel-wise granular.  
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CHAPTER 5. EXPERIMENTAL RESULTS 

5.1 ResNet Quantization 

 

Figure 4 – Dynamic energy comparison between EGQ and NeuroSim. The prediction 

from EGQ is based on the number of ADC access. Both results are obtained from 

ResNet-18 with same precision. 

 

Figure 5 – (a) and (c) Effectiveness of γ in EGQ for ResNet-18 and ResNet-50. y-axis 

means the normalized number of ADC access. (b) and (d) Dynamic energy 

comparison of ResNet-18 and ResNet-50 with different γ. (c) and (g) Effectiveness of 

α, β to the number of ADC access. (d) and (h) Weight and activation bitwidth of 

ResNet-18 and ResNet-50 from (c) and (g). Weighting factors not mentioned in each 

figure are set to 1. 

Figure 4 shows the layer-wise normalized dynamic energy of quantized ResNet-18 

with flexible bitwidth. The prediction from EGQ based on the normalized number of ADC 

access closely matches the results from NeuroSim.  
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We compare ResNet-18 and ResNet-50 with energy-unaware (i.e. 𝛾 = 0 ) and 

energy-aware (i.e. 𝛾 = 1) cases in Figure 5. Also, compression-unaware (i.e. 𝛼, 𝛽 = 0) and 

compression-aware (i.e. 𝛼, 𝛽 = 1) cases are compared in the same figure. As 𝐶𝐴𝐷𝐶 is the 

ratio of the number of ADC access, the weighting factor of 𝐶𝐴𝐷𝐶 (𝛾) in the fitness function 

controls the energy awareness of EGQ. Similarly, 𝛼  and 𝛽  control the compression 

awareness for weight and activation, respectively. Other weighting factors in both 

experiments are set to 1. Normalized ADC access in Figure 5(a), (c), (e), and (g) means 

how much the number of ADC access is compressed compared to the 16-bit model. 

Table 1 – Energy-aware and Energy-unaware Quantization Results of ResNet-18 

Model ResNet-18 ResNet-50 

Parameter 𝜸 = 𝟎 𝜸 = 𝟏 𝜸 = 𝟎 𝜸 = 𝟏 

Normalized Number of ADC Access 0.30 0.26 0.36 0.28 

Weight Bitwidth 8.1 7.1 8.1 8.0 

Activation Bitwidth 7.6 7.6 8.0 8.3 

Total Dynamic Energy (μJ) 136.2 125.9 414.5 333.2 

ADC Dynamic Energy (μJ) 79.3 72.3 207.4 154.4 

Total Leakage Energy (μJ) 54.9 40.0 724.1 673.5 

Energy Efficiency (TOPS/W) 27.9 32.2 9.0 10.2 

Area (mm2) 18.7 17.5 49.1 47.7 

Baseline Accuracy (%) 69.8 69.8 76.2 76.2 

Compressed Accuracy (%) 67.6 68.0 74.3 74.2 

In both ResNet-18 and ResNet-50, the energy-aware cases effectively reduce the 

number of ADC access than the energy-unaware cases showing the effectiveness of 

including 𝐶𝐴𝐷𝐶 in the fitness function of EGQ. Figure 5(b) and (f) show the dynamic energy 

of the circled candidates in Figure 5(a) and (e). Both figures show the improved total 

dynamic energy in the energy-aware cases. As the difference in the normalized number of 

ADC access at the 100th iteration is larger in ResNet-50, we observe that the total dynamic 

energy of ResNet-50 is more reduced than ResNet-18. Table 1 summarizes the total 
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dynamic energy, total leakage energy, and energy efficiency of the ResNet models. As we 

assume all weight parameters in each model are mapped to on-chip memory in PIM 

platforms, large leakage energy is observed in both models during the layer-wise dynamic 

energy simulation. In particular, Table 1 shows the total leakage energy is even higher than 

the total dynamic energy in ResNet-50. The energy efficiency is improved by 15.4% for 

ResNet-18, and 13.3% for ResNet-50, but the two cases show almost same accuracy (Table 

1). 

We observe that compression awareness does not play a significant role in the 

number of ADC access in Figure 5(c) and (g). As both cases include 𝛾 = 1, the normalized 

ADC access is reduce to the similar level of the energy-aware case. Figure 5(d) and (h) 

compare the average weight and activation bitwidth at the circled candidates in Figure 5(c) 

and (g). The compression-aware cases show lower weight and activation bitwidth. In 

particular, the weight bitwidth of the compression-aware cases is 1.5 bit lower in ResNet-

18 and 1.8 bit lower in ResNet-50. Activation bitwidth is 0.3 bit difference in ResNet-18, 

and same in ResNet-50. We expect similar dynamic energy consumption in both 

compression-unaware and compression-aware cases, but the larger weight bitwidth will 

increase required memory footprint and leakage energy. Thus, 𝛼  and 𝛽  should be 

considered together with 𝛾 in the fitness function to achieve compact and energy efficient 

models. 
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Table 2 – Layer-wise Bitwidth of ResNet-18 Compressed by Energy-aware and 

Energy-unaware Quantization 

ResNet-18 

𝜸 = 𝟎 
Weight 12,12,10,7,12,11,15,13,14,12,8,7,11,10,9,5,6,12 

Activation 8,9,7,9,11,5,3,7,8,6,5,5,10,10,6,5,9,10 

𝜸 = 𝟏 
Weight 10,9,6,10,11,10,7,10,8,12,10,7,7,7,7,6,5,13 

Activation 8,9,6,6,3,8,13,12,7,9,4,10,10,8,5,9,9,8 

ResNet-50 

𝜸 = 𝟎 

Weight 

13,7,11,8,6,10,15,4,15,10,13,7,6,14,7,9,8,11,6,1

1,10,14,11,9,12,8,6,11,13,10,12,12,14,6,11,6,7,1

2,14,10,5,7,9,10,5,7,8,8,7,7 

Activation 

11,11,11,7,6,10,8,7,11,11,7,4,6,8,13,7,5,11,15,5,

13,8,6,6,11,11,12,8,14,11,7,8,10,9,5,12,12,8,11,

9,10,8,13,12,10,13,5,13,10,8 

𝜸 = 𝟏 

Weight 

8,14,9,9,8,7,4,12,8,10,5,12,9,13,6,12,11,12,11,1

0,13,6,14,6,7,5,8,10,10,7,14,8,10,10,10,11,10,13

,5,14,9,6,6,12,6,12,13,4,5,6 

Activation 

9,9,11,10,7,8,4,14,11,15,8,5,8,12,8,8,4,7,13,7,8,

11,6,8,11,5,7,6,11,6,8,4,9,4,6,10,6,8,4,5,5,12,10,

4,11,5,8,8,5,9 

 

Figure 6 – Distribution of weight and activation bitwidth in ResNet-18. Energy-aware 

case and energy-unaware case are compared. 
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Figure 7 – Distribution of the normalized number of ADC access in ResNet-18. 

Energy-aware case and energy-unaware case are compared. 

Table 2 summarizes the layer-wise weight and activation bitwidth for the energy 

awareness experiment. Figure 6 visualizes the layer-wise weight and activation bitwidth in 

the energy-aware and energy-unaware cases of ResNet-18. Figure 7 shows the normalized 

number of ADC access for both cases. The 5th layer shows huge difference in the 

normalized ADC access. This is because the 5th layer has the much higher activation 

precision in the energy-unaware case while the weight bitwidth is similar. The 7th layer has 

also higher activation precision in the energy-unaware case, but the smaller weight 

precision mitigates the effect of the activation precision to the normalized ADC access. We 

observe that most of the normalized ADC access is smaller in the energy-aware case due 

to the lower weight bitwidth. Thus, the improved energy efficiency in the energy-aware 

case is reasonable. 
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Figure 8 – (a) Dynamic energy and energy efficiency of ResNet-50 with different 

memory technologies. Single-bit SRAM, RRAM, and FeFET are applied. Energy-

unaware and energy-aware cases are compared with the memory devices. (b) 

Dynamic energy and energy efficiency of ResNet-50 with single-bit and multi-bit 

eNVMs. Energy-aware case is used for the comparison in (b). 

Figure 8 shows the performance comparison between the energy-unaware and 

energy-aware cases for ResNet-50 with various memory devices. We use single-bit SRAM, 

RRAM [27], and FeFET [28] in 22nm technology node in Figure 8(a). We do not consider 

non-ideality and stochastic variations of the memory devices for NeuroSim simulation and 

accuracy analysis. The SRAM case shows higher total dynamic energy than the RRAM 

and FeFET cases. Also, ADC dynamic energy is smaller in the RRAM and FeFET cases. 

We observe that the amount of the total dynamic energy differences are similar with the 

one of ADC dynamic energy. This indicates that RRAM and FeFET energy efficiently 

access ADC than SRAM decreasing the total dynamic energy. As we use same the ResNet-

50 model with same weight mapping and data transfer, the performance difference is 

mainly determined by memory device characteristics. The read dynamic energy of ADC is 

related to the resistance of the reading column in subarrays. Thus, the column resistance of 

RRAM and FeFET subarrays will be much smaller than SRAM subarrays. 

The proportion of the ADC dynamic energy over the total dynamic energy in the 

RRAM and FeFET cases are small, but EGQ assumes ADC consumes most of the dynamic 

energy. However, the RRAM and FeFET cases also show better energy efficiency in the 
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energy-aware cases. This is because the number of ADC access is related to the number of 

VMM operations in PIM. As read peripheral operations including ADC access are always 

followed by VMM operations, the energy-aware cases indirectly reduce the number of 

VMM operations and access to the other read peripheral circuits. The reduced total 

dynamic energy helps increasing the energy efficiency in the energy-aware cases, but total 

leakage energy also plays a significant role in the energy efficiency for large models such 

as ResNet-50. eNVMs can significantly reduce the total leakage energy. For these reasons, 

Figure 8(a) shows significant increases in the energy efficiency with RRAM and FeFET 

compared to the amount of the dynamic energy improvement.  

Figure 8(b) shows the dynamic energy and energy efficiency of the energy-aware 

cases for ResNet-50 with multi-bit memory devices. Total dynamic energy and ADC 

dynamic energy is significantly reduced in 2-bit RRAM and FeFET. This will be due to 

the lower number of required subarrays. As 2-bit memory devices use the half number of 

columns in subarrays, the number of required subarrays can be almost half of one for 1-bit 

memory devices. The number of ADC access is proportional to the number of subarrays. 

Hence, 2-bit memory devices achieve approximately two-times higher energy efficiency 

compared to 1-bit memory devices. Multi-bit eNVMs benefit not only the footprint of PIM 

platforms but also significantly the energy efficiency gain of EGQ. The key observations 

in the ResNet experiments are summarized: 

 The number of ADC access is an effective approach to predict dynamic energy 

consumption in PIM. 

 Including 𝐶𝐴𝐷𝐶 in fitness function decreases the number of ADC access improving 

overall energy efficiency.  
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 Including 𝐶𝑊 and 𝐶𝐴 in fitness function reduces weight and activation bitwidth. 

 EGQ is effective in SRAM, RRAM, and FeFET-based PIM 

5.2 VGGNet Quantization 

 

Figure 9 – (a) Effectiveness of γ in EGQ for VGG-19. (b) Dynamic energy comparison 

of VGG-19 with different γ. (c) Effectiveness of α, β to the number of ADC access in 

VGG-19. (d) Weight and activation bitwidth of VGG-19 from (c). The weighting 

factors not mentioned in each figure are set to 1. 

Figure 9(a) and (b) show the comparison between the energy-unaware and energy-

aware cases of VGG-19. EGQ shows the consideration of 𝛾 is also effective in VGG-19. 

Figure 9(c) shows the compression-unaware case effectively reduces the number of ADC 

access at the early stage of iterations. However, the saturated level of the number of ADC 

access is similar with the compression-aware case at the 100th iteration. The average 

bitwidth of weight and activation is similar to the ResNet cases. Weight bitwidth is much 

smaller in the compression-aware case, but the difference in activation bitwidth is marginal. 
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Table 3 – Energy Efficiency Comparison between VGG-19 with and without Fully-

Connected Layers 

Model VGG-19 VGG-19 without FC 

Parameter 𝜸 = 𝟎 𝜸 = 𝟏 𝜸 = 𝟎 𝜸 = 𝟏 

Normalized Number of ADC 

Access 
0.28 0.22 - - 

Weight Bitwidth 4.4 4.1 - - 

Activation Bitwidth 7.0 6.9 - - 

Total Dynamic Energy (μJ) 1801.1 1403.4 1796.6 1258.1 

ADC Dynamic Energy (μJ) 1088.0 795.0 1086.0 792.0 

Total Leakage Energy (μJ) 8160.8 9510.0 1662.3 766.4 

Energy Efficiency (TOPS/W) 3.9 3.6 11.3 19.3 

Area (mm2) 101.4 94.9 46.8 39.4 

Baseline Accuracy (%) 72.4 72.4 - - 

Compressed Accuracy (%) 71.2 71.1 - - 

Table 4 – Layer-wise Bitwidth of VGG-19 Compressed by Energy-aware and Energy-

unaware Quantization 

VGG-19 

𝜸 = 𝟎 
Weight 12,8,10,9,5,8,14,6,15,9,13,9,13,13,13,8,3,4,8 

Activation 12,5,13,8,7,6,4,6,12,9,6,7,9,12,14,7,9,9,11 

𝜸 = 𝟏 
Weight 14,4,7,7,11,7,7,13,11,6,4,9,7,13,11,11,3,4,7 

Activation 13,7,8,7,5,6,5,7,15,6,5,6,12,5,12,5,14,6,14 

Table 3 summarizes the energy comparison between the two cases including total 

leakage energy. Layer-wise weight and activation bitwidth are summarized in Table 4. We 

observe that VGG-19 consumes tremendous leakage energy. The total leakage energy of 

VGG-19 is much larger as fully connected layers have way more weight parameters than 

the ResNet models. Specifically, the first fully connected layer in VGG-19 has 

25088 × 4096 parameters, but one in ResNet-18 has 512 × 1000. Table 3 shows the 

energy efficiency of the energy-aware case is slightly smaller than the energy-unaware case. 

As EGQ does not consider leakage energy, unexpected and too high leakage energy 

introduces the error to the energy efficiency. 
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Figure 10 – (a) Dynamic energy and energy efficiency of VGG-19 with different 

memory technologies. Single-bit SRAM, RRAM, and FeFET are applied. (b) 

Dynamic energy and energy efficiency of VGG-19 with multi-bit eNVMs. Energy-

unaware and energy-aware cases are compared with the memory devices. 

We also compare the quantized VGG-19 and quantized VGG-19 without fully 

connected layers in Table 3 to clarify the impact of fully-connected layer to EGQ. VGG-

19 without FC in Table 3 uses same models with the energy-aware and energy-unaware 

case, but the fully connected layers are eliminated. Table 3 shows that the energy efficiency 

is improved by 70.8% in the energy-aware case without the fully connected layers. The 

energy efficiency tendency is flipped mainly because the total leakage energy is largely 

reduced. There is no meaningful change in the total dynamic energy as the length of input 

vectors is 1 in fully connected layers indicating the number of ADC access is negligible 

compared to convolution layers.  

Figure 10(a) shows the comparison between the energy-unaware and energy-aware 

cases with various memory devices. We use the same 22nm technology node and hardware 

setting in Figure 10. SRAM cases show energy-aware case has no longer lower energy 

efficiency than energy-unaware case. The energy efficiency in the SRAM cases is both 3.0 

TOPS/W. Compared to the 7nm technology node in Table 3, we observe slightly smaller 

energy efficiency due to the larger dynamic energy of 22nm technology node. However, 

the SRAM cases with the 22nm technology node shows lower total leakage energy than 
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the 7nm technology node. The RRAM and FeFET cases also decrease the total leakage 

energy significantly showing better the energy efficiency in energy-aware cases. By using 

eNVMs, we expect to reduce EGQ error to energy efficiency in VGG-like models.  

Figure 10(b) shows the comparison between the energy-unaware and energy-aware 

cases with multi-bit RRAM and FeFET. As multi-bit eNVMs can effectively reduce the 

number of subarrays, we observe much lower dynamic energy and leakage energy. Energy 

efficiency is improved by 12.3% in RRAM and 11.3% in FeFET. Large models including 

VGG-19 require the large number of subarrays to store them in on-chip memory, that 

increases leakage energy more than dynamic energy. Multi-bit eNVMs can be promising 

solution to effectively reduce the footprint of subarrays and the total leakage energy. As 

recent CNN models do not have large fully connected layers, we expect EGQ will not 

experience such error from the leakage energy in modern CNN models. The key 

observations in the VGGNet experiments are summarized:  

 Considering ADC access and weight/activation bitwidth in the fitness function, 

reduces dynamic energy in PIM for VGG-19, similar to the ResNet models. 

 Large fully connected layers in VGG-19 like network and appreciable leakage 

energy of SRAM reduce overall energy-efficiency of EGQ. 

 eNVMs mitigates the error and makes EGQ effective by decreasing leakage energy. 

5.3 Comparison with Prior Works 

Table 5 compares EGQ with recent quantization algorithms for PIM [12]-[14]. A 

flexible bitwidth quantization algorithm is used in the paper by Vasquez et al. [14], and the 

others apply uniform bitwidth quantization algorithms [12], [13]. All algorithms are based 
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on ResNet-18, but the dataset for test accuracy are different. Energy efficiency in the table 

means the improvement of the energy efficiency compared to ResNet-18 with 16-bit 

precision. EGQ achieves 6.5× higher energy efficiency compared to the 16-bit model with 

ImageNet dataset. Vasquez et al. shows small accuracy loss, but the improvement of energy 

efficiency is also small. The uniform quantization algorithms [12], [13] show very low bit 

quantization with CIFAR-10 dataset. Sun et al. [13] achieves 4 bit for both weight and 

activation. Cai et al. [12] shows more compressed model with 2-bit weight and 4-bit 

activation. However, huge accuracy loss of 7% is observed [12]. EGQ compresses weight 

and activation to 2.5 bit and 3.9 bit without huge loss of accuracy. Also, EGQ achieves 

lower energy consumption and memory size compared with the algorithm in [13]. 

Table 5 – Comparison against Various PIM-aware Quantization Algorithms 

Algorithm EGQ EGQ [14] [13] [12] 

Model 
ResNet-18 ResNet-18 ResNet-18 ResNet-18 ResNet-18 

Dataset 
ImageNet CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-10 

Weight 

Bitwidth 

6.1 2.5 flexible 4 2 

Activation 

Bitwidth 

6.3 3.9 Flexible 4 4 

Energy 

Efficiency 

6.5× 18.6× 3.2× 17.7× 29.8× 

Baseline 

Accuracy (%) 

69.8 88.6 70.9 88.9 89.1 

Compressed 

Accuracy (%) 

67.5 86.4 70.5 86.6 81.2 
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Table 6 – Comparison against Various Quantization Algorithms for ResNet-50 

Algorithm 
Re-

training 

Biwidth 

(W, A) 

Baseline 

Accuray (%) 

Compressed 

Accuracy (%) 

Energy 

Efficiency 

(TOPS/W) 

Dorefa [4] One-pass 2, 2 76.9 67.1 257.1 

PACT [5] One-pass 4, 4 76.9 76.5 83.0 

OMSE [29] No need 4, 32 76.0 75.0 9.3 

OCS [30] No need 8, 7 76.1 74.5 14.5 

EGQ (2%) No need 6.8, 7.2 76.2 74.4 25.3 

ACIQ [31] No need 8, 4 76.1 71.5 25.9 

EGQ (5%) No need 6.2, 6.3 76.2 71.5 31.7 

We also compare EGQ with five different quantization methods in ResNet-50. 

Energy efficiency for each method is estimated in 7nm SRAM based PIM by NeuroSim. 

There are several well-known works on extremely low-precision quantization such as 

Dorefa [4] and PACT [5]. We observe that 2-bit weight and activation by Dorefa achieves 

the best energy efficiency, but it shows highest accuracy loss (9.8%). PACT shows 4-bit 

weight and activation with only 0.4% of accuracy loss with high energy efficiency. We 

expect that models compressed by these methods will show higher energy efficiency as 

compression ratio is generally much higher than EGQ. However, most of them require at 

least one-pass of re-training, large training dataset, or handcrafted tuning to reduce 

accuracy loss. For this reason, we mainly compare EGQ with re-training free quantization 

algorithms such as OMSE [29], OCS [30], and ACIQ [31]. 

OMSE achieves 4-bit weight and 32-bit activation. It successfully reduces the large 

leakage energy of ResNet-50, but 32-bit activation introduces high read dynamic energy. 

Energy efficiency of OMSE is 9.3TOPS/W which is the lowest among the algorithms. OCS 

achieves 8-bit weight and 7-bit activation, and it shows relatively balanced leakage energy 

and read dynamic energy. Hence, higher energy efficiency of 14.5TOPS/W is observed. 
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EGQ shows 6.8-bit weight and 7.2-bit activation. Though average activation bitwidth is a 

bit higher than OCS, we observe that lower and more balanced leakage energy and read 

dynamic energy. EGQ achieves 25.3TOPS/W of higher energy efficiency with almost same 

accuracy compared to OMSE and OCS. We further investigate the performance of EGQ 

with ACIQ. ACIQ shows 8-bit weight and 4-bit activation with higher accuracy loss (4.6%). 

Energy efficiency of ACIQ is 25.9TOPS/W. We set the 5% of accuracy threshold for EGQ 

to achieve similar accuracy loss. We observe overall energy efficiency is improved by 

decreasing the accuracy threshold. EGQ shows 31.7TOPS/W energy efficiency and same 

accuracy with ACIQ. EGQ can automatically and efficiently find the optimal weight and 

activation bitwidth for energy efficient PIM. 
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5.4 Other Low-Complexity Networks Quantization 

Table 7 – Comparison against Various Quantization Algorithms for MobileNet-V2 

and SqueezeNet 

Algorithm 
Integer-only 

[34] 

Per-channel 

[35] 
EGQ OMSE EGQ 

Model MobileNet-V2 SqueezeNet 

Weight 

Bitwidth 
6 8 7.8 4 6.7 

Activation 

Bitwidth 
6 8 7.5 32 7.9 

Baseline 

Accuracy (%) 
- 71.9 71.8 58.0 58.0 

Compressed 

Accuracy (%) 
70.9 69.7 69.7 55.4 55.5 

Baseline Size 

(MB) 
13.4 13.4 13.4 4.8 4.8 

Compressed 

Size (MB) 
2.5 3.3 3.3 0.6 1.0 

Normalized 

Number of 

ADC Access 

0.16 0.25 0.23 0.47 0.26 

Energy 

Efficiency 

(TOPS/W) 

39.7 23.1 24.5 11.9 32.2 

We study the performance of EGQ with MobileNet-V2 [32] and SqueezeNet [33]. 

We also compare with the performance of several other quantization algorithms on these 

networks [29], [34], [35]. Table 7 summarizes the comparison for the two models. 

Hardware architecture is assumed to be 7nm SRAM based PIM same as preceding 

experiments. Normalized number of ADC access represents the number of ADC access of 

the compressed model divided by the one of 16-bit model. As NeuroSim does not support 

these models, we approximately calculate the total leakage energy and total read dynamic 

energy for the energy efficiency based on the energy model of NeuroSim. 
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For MobileNet-V2, Integer-only compresses weight and activation more than EGQ 

and Per-channel, and energy efficiency is also higher. However, it requires retraining while 

Per-channel and EGQ are retraining free quantization algorithms. EGQ shows lower 

weight and activation bitwidth than Per-channel with same accuracy. Also, normalized 

number of ADC access is lower than Per-channel, hence we observe higher energy 

efficiency in EGQ. EGQ shows relatively slight improvement of energy efficiency 

compared to ResNet-50. We observe that early layers in MobileNet-V2 is relatively more 

sensitive to quantization errors compared to VGGNet and ResNet models. Though early 

layers consume more number of ADC access, EGQ does not assign lower bitwidth to the 

layers to avoid the huge accuracy loss, and it makes relatively small improvement of energy 

efficiency in MobileNet-V2. As EGQ is based on linear quantization scheme with 

maximum clipping threshold to simplify the algorithm, we expect that more advanced 

clipping method or non-linear quantization scheme will enhance the performance of EGQ 

in MobileNet like models. For SqueezeNet, OMSE shows 4-bit weight quantization with 

floating-point activation. EGQ achieves 6.7-bit weight and 7.9-bit activation with similar 

accuracy. Similar to the comparison between OMSE and EGQ in Table 6, we observe that 

EGQ shows more balanced leakage energy and read dynamic energy. Also, EGQ achieves 

much lower number of ADC access with higher energy efficiency. Effectiveness of EGQ 

over the energy efficiency improvement can be variable depending on the models, but EGQ 

is still effective in MobileNet-V2 and SqueezeNet.  
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CHAPTER 6. CONCLUSION 

This thesis presents a genetic algorithm-based energy-aware quantization method 

(EGQ) to run DNN models energy efficiently on PIM platforms. We discuss how to 

combine energy efficiency to a genetic algorithm-based quantization method. EGQ 

predicts the dynamic energy consumption for inference based on the number of ADC 

access. ResNet-18, ResNet-50, and VGG-19 are used to evaluate the effectiveness of EGQ. 

We observe the ResNet models are more suitable for EGQ, and VGG-19 shows unexpected 

behavior due to too high leakage energy from large fully connected layers. However, the 

error in EGQ introduced by the leakage energy is mitigated by eNVMs, consequently 

showing better energy efficiency. As most of modern CNN models do not have such large 

fully connected layers, EGQ can effectively search quantization bitwidth of various CNN 

models for energy-efficient PIM. For future works, the consideration for more hardware 

details such as memory device types and ADC precision will further improve the energy 

efficiency of EGQ. We use a genetic algorithm due to the flexibility of the fitness function 

design. Other problem solvers can be adapted for future studies. Also, understanding the 

effect of device variation or non-ideality on mixed-precision design will be explored in the 

future.  
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APPENDIX A. PROPERTIES OF PROPOSED APPROACH 

A.1  Run-time 

 

Figure 11 – Changes of fitness value during EGQ iterations. Energy-aware cases are 

used for VGG-19, ResNet-18, and ResNet-50. The range of iteration time in three 

models is different, but the total number of EGQ iteration is same as 100. 90% and 

95% of final fitness value are marked. 

We observe one EGQ iteration takes 1.5 minutes for ResNet-18, 3.0 minutes for 

ResNet-50, and 4.0 minutes for VGG-19 in GTX 1080Ti and i7-7700K environment. 

Figure 11 shows saturation behavior of fitness values of three models. Fitness value 

abruptly decreases in VGG-19 and ResNet-50 sometimes because we set large penalty if 

the best candidate does not satisfy accuracy threshold. This time is mainly consumed at 

candidate evaluation step. Accuracy cost in the fitness function is estimated by average 

accuracy of 3,000 test images. The number of test data is heuristically determined, and it 

can be controlled depending on the required run-time. We can reduce the amount of the 

test data so that decrease the inference time proportionally. However, too small test dataset 

will not be desirable to correctly evaluate the average accuracy. 

A.2  Weighting Factors 
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Weighting factors ( 𝛼 , 𝛽 , and 𝛾 ) reflect the relative importance of weight 

compression, activation compression, and ADC access. We determine the weighting 

factors as 0 or 1 in the previous section only to consider compression awareness and energy 

awareness. However, the overall energy efficiency can be affected by both weight, 

activation compression and ADC access. For example in Table 3, we observe large fully-

connected layers in VGG models lead to tremendous leakage energy. In this case, higher 

𝛼, 𝛽 will be desirable as it can increase compression ratio and decrease leakage energy. 

Table 8 – Energy Efficiency of VGGNet, ResNet with Balanced Weighting Factors 

Model VGG-19 ResNet-18 ResNet-50 

Parameter (𝜶, 𝜷, 𝜸) 1.49, 1.49, 0.02 0.86, 0.86, 1.28 1.30, 1.30, 0.40 

Weight Bitwidth 4.2 7.1 8.0 

Activation Bitwidth 6.2 6.8 7.8 

Total Dynamic Energy (μJ) 1422.0 104.8 308.1 

ADC Dynamic Energy (μJ) 824.2 56.9 144.0 

Total Leakage Energy (μJ) 7263.1 43.0 526.9 

Energy Efficiency 

(TOPS/W) 
4.5 36.1 12.3 

Baseline Accuracy (%) 72.4 69.8 76.2 

Compressed Accuracy (%) 70.9 67.5 74.2 

We explore other weighting factors for VGG-19, ResNet-18, and ResNet-50. They 

are determined based on the ratio of leakage energy and read dynamic energy of the 16-bit 

models. Specifically, we assume that the desirable ratio of the weighting factors follows 

leakage energy: read dynamic energy = 𝛼: 𝛾 = 𝛽: 𝛾. We constrain the sum of the weighting 

factors to 3 as the sum in initial energy-aware case is also 3. For example, 16-bit ResNet-

50 shows 1.01mJ for leakage energy and 3.35mJ for read dynamic energy in 7nm SRAM 

based PIM. We set 𝛼, 𝛽, and 𝛾 for the model to 1.3, 1.3, and 0.4 as 3.35: 1.01 (mJ) = 1.3(𝛼):  

0.4(𝛾) = 1.3(𝛽): 0.4(𝛾). The weighting factors of VGG-19 and ResNet-18 can be similarly 
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balanced. Table 8 shows the energy efficiency of the three models with balanced weighting 

factors. We observe that VGG-19 shows slightly higher ADC dynamic energy while lower 

total leakage energy compared to energy-aware case in Table 3. ResNet-50 also shows 

similar results with VGG-19. However, ResNet-18 shows lower ADC dynamic energy 

with a bit higher total leakage energy. All three models prove that balancing weighting 

factors can further improve the overall energy efficiency compared with the energy-aware 

cases.  
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APPENDIX B. NEUROSIM 

DNN+NeuroSim is an integrated framework to benchmark processing-in-memory 

(PIM) accelerators for deep neural networks, with hierarchical design options from device-

level, to circuit-level and up to algorithm-level [17]. It supports flexible PIM array design 

options with different device technologies (from SRAM to eNVMs) with various 

peripheral circuitry modules, which have been validated with SPICE simulations and actual 

device data. The framework supports automatic algorithm to hardware mapping for diverse 

models, and evaluates chip-level performance like area, latency and energy consumption. 

The automatic floorplan and dataflow design of NeuroSim is inherently compatible with 

various algorithm and device precisions. NeuroSim is originally designed to simulate the 

uniform bit-width model. To accommodate the flexible bit-width, layer-wise quantization 

is employed to extract the real trace data to feed the hardware performance estimation, and 

the different activation and weight precisions are assigned to corresponding layers. The 

digital resources like shift-add, accumulator and activation are designed to accommodate 

the maximum precision. We set a subarray size to 128 × 128, and ADC precision to 5 bit 

for all simulation.  
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