
ENERGY-AWARE DNN QUANTIZATION FOR PROCESSING-IN-

MEMORY ARCHITECTURE

A Dissertation

Presented to

The Academic Faculty

by

Beomseok Kang

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2022

COPYRIGHT © 2022 BY BEOMSEOK KANG

ENERGY-AWARE DNN QUANTIZATION FOR PROCESSING-IN-

MEMORY ARCHITECTURE

Approved by:

Dr. Saibal Mukhopadhyay, Advisor

School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Shimeng Yu

School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Tushar Krishna

School of Electrical and Computer Engineering

Georgia Institute of Technology

Date Approved: April 29, 2022

 iii

ACKNOWLEDGEMENTS

First, I am deeply grateful to my advisor Dr. Saibal Mukhopadhyay for his

continuous guidance and advice. His passion to research keeps me motivated and I was

able to enjoy the first step to research with his assistance. I would also like to thank my

thesis committee members Dr. Shimeng Yu and Dr. Tushar Krishna for their invaluable

advice during the research. I would also like to thank especially Anni Lu, Yun Long,

Daehyun Kim, and other GREEN Lab members for their contribution to the research.

At last, I would like to extend my sincere thanks to my family, dog, and friends for

their continuous supports.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

LIST OF TABLES v

LIST OF FIGURES vi

SUMMARY vii

CHAPTER 1. Introduction 1

CHAPTER 2. Background 4

2.1 Processing-In-Memory (PIM) Architecture 4
2.2 Energy Consumption in PIM 5

CHAPTER 3. Related Works 7
3.1 Prior Quantization Algorithms for PIM 7

3.1.1 Energy-unaware Quantization Algorithms 7
3.1.2 Energy-aware Quantization Algorithms 8

3.1.3 Chanllenges in Prior Algorithms 9

CHAPTER 4. Proposed Approach 10
4.1 Genetic Algorithm based Quantization 10

4.1.1 Overall Quantization Flow 10
4.1.2 Linear Quantization 11

4.2 Energy-aware Fitness Function 12

CHAPTER 5. Experimental Results 16

5.1 ResNet Quantization 16
5.2 VGGNet Quantization 23
5.3 Comparison with Prior Works 26

5.4 Other Low-Complexity Network Quantization 30

CHAPTER 6. Conclusion 32

APPENDIX A. Properties of Proposed Approach

A.1 Run-time 33

A.2 Weighting Factors 33

APPENDIX B. NeuroSim

REFERENCES 37

 v

LIST OF TABLES

Table 1 – Energy-aware and Energy-unaware Quantization Results of ResNet-

18.

17

Table 2 – Layer-wise Bitwidth of ResNet-18 Compressed by Energy-aware

and Energy-unaware Quantization.

19

Table 3 – Energy Efficiency Comparison between VGG-19 with and without

Fully-Connected Layers.

24

Table 4 – Layer-wise Bitwidth of VGG-19 Compressed by Energy-aware and

Energy-unaware Quantization.

24

Table 5 – Comparison against Various PIM-aware Quantization Algorithms. 27

Table 6 – Comparison against Various Quantization Algorithms for ResNet-

50.

28

Table 7 – Comparison against Various Quantization Algorithms for

MobileNet-V2 and SqueezeNet.

30

Table 8 – Energy Efficiency of VGGNet, ResNet with Balanced Weighting

Factors.

34

 vi

LIST OF FIGURES

Figure 1 – (a) SRAM-based subarray in PIM. (b) dynamic energy of circuit

components in PIM.

4

Figure 2 – Data flow and weight mapping of CNN in PIM. 5

Figure 3 – (a) Overall flow of EGQ. (b) and (c) Upper and lower bound in

ResNet-18. (d) Description of the first iteration in EGQ.

10

Figure 4 – Dynamic energy comparison between EGQ and NeuroSim. 16

Figure 5 – (a) and (c) Effectiveness of gamma in EGQ for ResNet-18 and

ResNet-50. (b) and (d) Dynamic energy comparison of ResNet-18

and ResNet-50 with different gamaa. (c) and (g) Effectiveness of

alpha and beta to the number of ADC access in ResNet-18 and

ResNet-50. (d) and (h) Weight and activation bitwidth of ResNet-18

and ResNet-50 from (c) and (g).

16

Figure 6 – Distribution of weight and activation bitwidth in ResNet-18. 19

Figure 7 – Distribution of the number of ADC access in ResNet-18. 20

Figure 8 – (a) Dynamic energy and energy efficiency of ResNet-50 with

different memory technologies. (b) Dynamic energy and energy

efficiency of ResNet-50 with single-bit and multi-bit eNVMs.

21

Figure 9 – (a) Effectiveness of gamma for VGG-19. (b) Dynamic energy

comparison of VGG-19 with different gamma. (c) Effectiveness of

alpha and beta to the number of ADC access in VGG-19. (d) Weight

and activation bitwidth of VGG-19 from (c).

23

Figure 10 – (a) Dynamic energy and energy efficiency of VGG-19 with

different memory technologies. (b) Dynamic energy and energy

efficiency of VGG-19 with multi-bit eNVMs.

25

Figure 11 – Changes of fitness value during EGQ iterations. 33

 vii

SUMMARY

With increasing computational cost of deep neural network (DNN), many efforts

to develop energy-efficient intelligent system have been proposed from dedicated hardware

platforms to model compression algorithms. Recently, hardware-aware quantization

algorithms have shown further improvement in the energy efficiency of DNN by

considering hardware architectures and algorithms together. In this work, a genetic

algorithm-based energy-aware DNN quantization framework for Processing-In-Memory

(PIM) architectures, named EGQ, is presented. The key contribution of the research is to

design a fitness function that can reduce the number of analog-to-digital converter (ADC)

access, which is one of the main energy overhead in PIM. EGQ automatically optimizes

layer-wise weight and activation bitwidth with negligible accuracy loss while considering

the dynamic energy in PIM. The research demonstrates the effectiveness of EGQ on several

DNN models VGG-19, ResNet-18, ResNet-50, MobileNet-V2, and SqueezeNet. Also, the

area, dynamic energy, and energy efficiency in the compressed models with various

memory technologies are analyzed. EGQ shows 15%-103% higher energy efficiency with

2% accuracy loss than other PIM-aware quantization algorithms.

 1

CHAPTER 1. INTRODUCTION

Processing-In-Memory (PIM) is an attractive hardware architecture for energy-

efficient deep neural network (DNN) inference since processing units are integrated into

memory [1]-[3]. Along with the efforts in the dedicated hardware for DNN, algorithmic

approaches such as weight and activation quantization are studied to reduce the model

complexity of DNN [4]-[8]. Recently, hardware-aware quantization algorithms have

shown that the energy efficiency of DNN inference can be further improved by considering

hardware architectures and algorithms together [9], [10]. It is important to consider data

movement such as memory access in conventional CMOS-based architectures to

effectively improve the energy efficiency [11]. However, PIM architectures avoid the large

number of memory access, and rather analog-to-digital converters (ADC) access is the

main energy overhead. This motivates energy-aware quantization for PIM to differentiate

from the quantization for CMOS-based architectures.

Uniform bitwidth quantization is widely used and simple to adapt for various DNN

models. However, significant accuracy loss is observed at very low bitwidth [12]. Sun et

al. [13] shows uniform bitwidth quantization with negligible accuracy loss, but it needs to

re-train models after the quantization. Flexible bitwidth quantization is a promising

technique to improve compression ratio and/or reduce accuracy loss compared to uniform

quantization [6], [8]. It is important to note that the bitwidth of DNN can be differently

determined depending on quantization methods while showing the same accuracy level. In

other words, optimizing the bitwidth only with the constraint of accuracy does not

guarantee the optimal energy efficiency. However, most of the flexible quantization

 2

algorithms for PIM do not explicitly consider energy consumption [14], [15]. There are

few works on energy-aware quantization algorithms for PIM with simplified energy cost

[13], [16]. As the energy consumption of hardware components is non-uniform in different

layers [17], different bitwidth should be assigned with the consideration of the energy

distribution to effectively improve the energy efficiency. It is still required to consider

hardware components such ADC in flexible bitwidth quantization algorithms for PIM.

In this research, a genetic algorithm-based energy-aware DNN quantization

framework for PIM architectures (EGQ) is presented. EGQ optimizes weight and

activation bitwidth for each layer and supports flexible bitwidth quantization by predicting

layer-wise dynamic energy consumption in PIM platforms. The predicted dynamic energy

is directly utilized to evaluate and search bitwidth candidates that achieve high energy

efficiency with low accuracy loss. As the large amount of dynamic energy is consumed by

ADC in PIM [1], we mainly focus on the number of ADC access to predict the layer-wise

dynamic energy consumption. EGQ only requires the basic model information such as

activation sizes (i.e. dimensions) and kernel sizes in convolution neural network (CNN) to

predict dynamic energy. Also, EGQ does not need re-training, which means any pre-trained

DNN models can be simply compressed by EGQ.

EGQ uses genetic algorithm to automatically search appropriate layer-wise weight

and activation bitwidth. The concept of using genetic algorithm for flexible bitwidth

quantization was recently proposed [7]. However, it does not optimize activation bitwidth,

and more importantly, it is a hardware-agnostic algorithm as ADC cost related to the PIM

performance is not considered. The main contribution of this research is to develop an

automatic framework for searching optimal layer-wise weight and activation bitwidth

 3

considering the number of ADC access and the associated dynamic energy. The research

mainly focus on designing a fitness function to estimate the number of ADC access, and

genetic algorithm is used as an optimization method to prove that overall energy efficiency

in PIM can be improved by the presented fitness function. It is important to note that EGQ

is not limited to genetic algorithm as the fitness function can be applied to other problem

solvers such as reinforcement learning [16].

EGQ is mainly evaluated with three CNN models, VGG-19 [18], ResNet-18, and

ResNet-50 [19]. The effect of EGQ on the area, dynamic energy, and energy efficiency in

PIM architectures are analyzed by NeuroSim [17]. As PIM platforms can be combined with

various memory devices such as SRAM and embedded non-volatile memories (eNVMs),

how the effectiveness of EGQ changes for PIM designs with different memory

technologies is also studied. Finally, EGQ is compared with previous works on PIM-aware

quantiztion and genetic algorithm-based quantization [7], [12], [13].

The research presents EGQ is an effective approach to reduce dynamic energy in

various PIM designs with SRAM, RRAM, and FeFET technologies. In particular,

embedded non-volatile memories (NVMs) show the higher improvement of energy

efficiency with EGQ due to low leakage energy. EGQ improves the energy efficiency of

ResNet-18 by 6.5 times compared to the 16-bit model. Also, EGQ shows 15% - 103%

higher energy efficiency than the existing quantization algorithms for PIM with 2%

accuracy loss.

 4

CHAPTER 2. BACKGROUND

2.1 Processing-In-Memory (PIM) Architecture

Figure 1 – (a) SRAM-based subarray in PIM. (b) Dynamic energy of circuit

components in PIM. Blue squares are SRAMs. 16-bit ResNet-18 is used for dynamic

energy simulation.

PIM-based DNN accelerators with various memory devices have attracted many

interests due to high energy efficiency [1], [2], [24]. Most of the PIM architectures

accelerate vector and matrix multiplication (VMM) operation based on parallel analog

computations by bit-line current summation [1], [2], [24]. Figure 1(a) shows the basic

schematic of a SRAM subarray in PIM architectures [25]. We also assume the weight

within the subarray is stored as multi-bit words, where each cell represents a single bit. We

assume the input to a word-line is a serial bit-wise binary value which does not require

DAC [26]. Once the input vector is applied to the word-lines, the current flowing through

the bit-line is determined by weight values stored in the SRAM. The current is converted

to a digital value by ADC without row-by-row access, and then the converted value is used

as an input feature map (IFM) of the next layer. The parallel operation significantly

increases computational efficiency in PIM architectures.

 5

2.2 Energy Consumption in PIM

Figure 2 – Data flow and weight mapping of CNN in PIM. The left figure shows the

schematic of convolution operation with blue IFMs and orange kernels. The right

figure shows the weight mapping on subarrays and the serial bit-wise input of IFMs

to subarrays.

Most energy consumption in PIM comes from read peripheral circuits, mainly,

ADC. Figure 1(b) shows the dynamic energy consumption of circuit components in a PIM

platform estimated by modified NeuroSim [17]. We use ResNet-18 with ImageNet dataset

for the inference simulation. 128× 128 subarray size, 5-bit ADC, and 7nm SRAM

technology are used for the simulation. More details about modified NeuroSim are

described in the next section. We observe that ADC consumes about 63% of total dynamic

energy. As ADC dynamic energy is proportional to the number of ADC access, the lower

number of ADC access can effectively reduce the total dynamic energy. EGQ assumes the

hardware design parameters such as the size of subarrays and ADC precision are fixed and

find optimal bitwidth for each layer to reduce the total number of ADC access.

The number of ADC access in PIM architectures is determined by two factors, the

length of input vectors and the number of subarrays to store weight matrices. All weight

parameters are assumed to be stored on a single chip, and each layer uses different

subarrays. Figure 2 shows the schematic of IFMs and kernels for convolution operation.

 6

First, the number of subarrays for a weight matrix (i.e. kernel) is related to weight bitwidth

and a weight dimension. Each kernel is unrolled along the columns in subarrays. The

number of required rows are same with the multiplication of the width, height, and input

channels of a kernel. (see gray rows in Figure 2.) The number of required columns for each

kernel is same with weight bitwidth. Thus, the total memory size is determined by each

kernel size, the number of kernels, and weight bitwidth. As we assume the size of subarrays

is not flexible, the weight matrix should be partitioned by the subarray size. Red-dot lines

in Figure 2 indicate subarray boundaries. Next, the length of input vectors is related to the

bitwidth of IFMs. IFMs with high precision need to be converted to long serial binary

vectors that proportionally increase the number of ADC access. For convolution layers, the

length of input vectors also relies on an output feature map (OFM) size. Kernels capture

partial information from IFMs, and each capture constitutes one OFM. Thus, the number

of captures is determined by the OFMs size, not the IFMs size. Blue bars in Figure 2 show

that the length of input vectors is proportional to IFM bitwidth and OFMs size.

 7

CHAPTER 3. RELATED WORKS

3.1 Prior Quantization Algorithms for PIM

In this section, the details of related works on PIM-aware quantization are

introduced [13], [15], [16], [20], [21], and they are compared with EGQ to state the

differences between EGQ and these works.

3.1.1 Energy-unaware Quantization Algorithms

The paper by Z. Zhu et al. [15] showed flexible weight and activation quantization

for a RRAM-based PIM architecture with the consideration of storage and latency. This

RRAM-aware quantization quantifies the storage based on the number of crossbars and the

latency by the number of digital-to-analog converters (DAC) access as optimization

objectives. Each quantity is related to weight and activation bitwidth, respectively. The

storage and latency can indirectly reduce energy consumption, but energy is not reflected

into a loss function in the research. Also, re-training is required after every iteration of the

weight and activation quantization.

C. Zhang et al. [21] proposed a robust RRAM-based quantization framework by

developing the quantization algorithm to minimize RRAM variation error. They calculate

the numerical error between full-precision weight and weight with the noises introduced

by quantization error and device variation. The error is used as a loss function to utilize

gradient-descent and back-propagation algorithms. As the loss function is only related to

weight parameters, activation bitwidth is not considered. Also, energy is not related to the

loss function. Thus, the algorithm is only suitable for weight quantization.

 8

Reinforcement learning is a widely used algorithm in AutoML. S. Qu et al. [21]

used a reinforcement learning based deep deterministic policy agent to search flexible

weight bitwidth to maximize memory utilization. The memory utilization is estimated

based on the weight mapping in PIM subarrays. Bitwidth candidates that have the high

memory utilization and accuracy give the agent high rewards, so the agent automatically

searches an optimal bitwidth candidate. However, the memory utilization does not consider

activation bitwidth. As the large amount of energy consumption is resulted from activtion

[22], flexible weight and activation bitwidth are required for energy-aware quantization.

3.1.2 Energy-aware Quantization Algorithms

H. Sun et al. [13] proposed uniform bitwidth activation quantization for an energy-

efficient PIM accelerator. They show a non-linear quantization scheme to reduce required

ADC bitwidth. As ADC results in critical energy overhead in analog PIM, decreasing ADC

bitwidth is an effective method to enhance the energy efficiency [23]. However, changing

ADC bitwidth depending on CNN models requires variable resolution ADC macros that

are difficult to design. Also, energy-aware regularization in a loss function was introduced

in the paper. The energy consumption is estimated with the simple multiplication of the

voltage and current at RRAM devices in PIM subarrays. However, the improvement due

to the energy-aware regularization is marginal since the dynamic energy consumed by

eNVMs is not critical.

S. Huang et al. [16] proposed reinforcement learning based flexible weight and

activation quantization for PIM. A cost function is defined with weight, activation, and

ADC bitwidth to incorporate hardware performance into the quantization algorithm. Two

 9

fractions are mainly considered in the cost function. One is the fraction of the number of

parameters over total parameters, and the other one is the fraction of bitwidth over full

precision. ADC bitwidth is multiplied to the fractions as an exponential term to reflect the

large energy overhead of high-precision ADC. However, as the fractions only represent the

compression ratio of weight and activation parameters, the cost function cannot accurately

estimate the layer-wise energy consumption in PIM architectures.

3.1.3 Challenges in Prior Algorithms

Prior quantization methods for PIM show the storage-aware, latency-aware, or

utilization-aware algorithms. Although there are some energy-aware algorithms, they

require complex multi-precision ADCs or used overly simplified energy cost without

considering the details of data layout/flow for weight mapping and input data transfer. An

energy-aware, flexible, and automated quantization algorithm for PIM designs is still

missing. In contrast, EGQ is an energy-aware algorithm for PIM and uses a fitness function

that includes weight and activation compression ratio, the number of ADC access, and

accuracy loss. The fitness function estimates energy using the number of ADC access

which needs to consider the weight mapping and input data transfer in PIM. Accordingly,

EGQ is a more suitable quantization framework for energy-efficient inference in PIM.

 10

CHAPTER 4. PROPOSED APPROACH

4.1 Genetic Algorithm based Quantization

Genetic algorithm is a well-known algorithm for complex search and optimization.

As flexible bitwidth quantization is also a search problem, EGQ uses genetic algorithm to

determine appropriate bitwidth for each layer.

4.1.1 Overall Quantization Flow

Figure 3 – (a) Overall flow of EGQ. (b) and (c) Upper and lower bound in ResNet-18.

(d) Description of the first iteration in EGQ. Upper bound is heuristically determined.

Left half of (d) is the result from the initialization step, and the right area means next

candidates after the first evaluation and re-generation step.

Figure 3 shows the overall flow and details of each stage in EGQ. The initialization

step prepares weight and activation bitwidth candidates. The size of kernels and OFMs are

stored at the initialization step as EGQ uses them repeatedly at the evaluation step. Figure

3(b) and Figure 3(c) are the lower and upper bound of ResNet-18 which constrains the

range of initial candidates. The candidates are randomly sampled based on the two

boundaries. Detail process to determine the upper and lower bound is explained in the

 11

previous study [7]. The candidates are evaluated based on fitness values at the evaluation

step. Figure 3(d) shows 15 candidates and the fitness values of each candidate. The red

fitness values mean three good candidates, and they become parent candidates at the re-

generation step. Other candidates are eliminated. The re-generation step includes crossover

and mutation. Two parents from the three are randomly selected, and children candidates

are again randomly sampled in the range of the two parents. EGQ repeatedly evaluates and

reproduces candidates searching appropriate weight and activation bitwidth candidates.

Final bitwidth can be further compressed by the greedy search based fine tuning [7].

4.1.2 Linear Quantization

Linear quantization is a widely used scheme for DNN quantization. EGQ also uses

linear quantizer for both weight and activation. The quantization of weight with n-bit

precision is defined by

𝑄(𝑥) = round(

𝑥(2𝑛−1 − 1)

max(|𝑥|)
) ×

max(|𝑥|)

2𝑛−1 − 1
 (1)

Weight range is first normalized and expanded to 2𝑛 range. As weight generally includes

negative values, the range is from −2𝑛−1 to −2𝑛−1 − 1 . Round function makes the

expanded float values to be integers, thus introduces quantization error. The other

multiplication term is for dequantization from the integer range to the float range again.

For activation quantization, range can be different depending on the location of a

quantizing layer. If activation quantization is directly connected to the OFMs, activation

quantization uses same formula with weight quantization. However, if activation

 12

quantization is after ReLU function, there are no negative values. Thus, the range becomes

from 0 to 2𝑛 − 1. EGQ quantizes activation after ReLU function.

4.2 Energy-aware Fitness Function

In this subsection, we present the fitness function of EGQ and compare it with the

fitness function in the prior genetic algorithm-based quantization method, named Q-PIM

[7]. The fitness function of EGQ is given by

 𝐹(𝐶) = 𝛼 ∙ 𝐶𝑊 + 𝛽 ∙ 𝐶𝐴 + 𝛾 ∙ 𝐶𝐴𝐷𝐶 + 𝛿 ∙ Accuracy (2)

where 𝐶 represents a bitwidth candidate; 𝐶𝑊, 𝐶𝐴, and 𝐶𝐴𝐷𝐶 are the compression ratio of

weight, activation (i.e. IFMs), and the number of ADC access, respectively. 𝛼, 𝛽, 𝛾, and 𝛿

are weighting factors. EGQ optimizes the fitness function to find a bitwidth candidate that

has high compression ratio and energy efficiency with low accuracy loss. The fitness

function of Q-PIM is given by [7]

𝐹(𝐶) = −𝛼 ∙∑𝑊𝑖

𝑁

𝑖=1

∙ 𝑃𝑊,𝑖 − 𝛽 ∙ Error (3)

where 𝑊𝑖 is the weight bitwidth of ith layer; 𝑃𝑊,𝑖 is the number of weight parameters; Error

represents accuracy loss. There are two main differences between EGQ and Q-PIM. First,

the fitness function of Q-PIM does not consider the activation compression ratio. As

equation (3) has only two terms related to the weight compression ratio and accuracy loss,

it cannot be used for flexible activation quantization. Next, equation (3) does not have the

connection between the quantization algorithm and hardware platforms, which is the main

 13

contribution of EGQ. The fitness function of EGQ considers the number of ADC access in

PIM platforms. Thus, EGQ is more suitable for energy efficient quantization for PIM.

𝐶𝐴𝐷𝐶 represents the compression ratio of the number of ADC access compared to

the 32-bit model. It is assumed that the dynamic energy consumption is proportional to the

number of ADC access as discussed above, so 𝐶𝐴𝐷𝐶 reflects the expected total dynamic

energy to the fitness function. 𝐶𝐴𝐷𝐶 is defined by

𝐶𝐴𝐷𝐶 = 1 −

∑ 𝐴𝐷𝐶𝑖(𝑊𝑖, 𝐴𝑖)
𝑁
𝑖=1

∑ 𝐴𝐷𝐶𝑖(32, 32)
𝑁
𝑖=1

 (4)

 𝐴𝐷𝐶𝑖 = 𝑆𝑖 × 𝑂𝐹𝑀𝑤,𝑖 × 𝑂𝐹𝑀ℎ,𝑖 × 𝐴𝑖 (5)

𝑆𝑖 = ⌈

𝐾𝐼𝐶,𝑖 × 𝐾𝑤,𝑖 × 𝐾ℎ,𝑖
𝑠

⌉ × ⌈
𝐾𝑂𝐶,𝑖 ×𝑊𝑖

𝑠
⌉ (6)

where 𝐴𝐷𝐶𝑖 is the number of ADC access; 𝑊𝑖 and 𝐴𝑖 are weight and activation bitwidth;

𝑆𝑖 is the number of subarrays. 𝑂𝐹𝑀𝑤,𝑖 and 𝑂𝐹𝑀ℎ,𝑖 are the width and height of a OFM. 𝐾𝐼𝐶,𝑖,

𝐾𝑤,𝑖 , 𝐾ℎ,𝑖 , 𝐾𝑂𝐶,𝑖 are the input channel, width, height, and output channel of a kernel,

respectively. 𝑠 is a subarray size such as 128. As EGQ reduces weight and activation

bitwidth, the ratio in equation (4) also becomes smaller. The ratio is subtracted from 1 to

make good candidates have high fitness values. 𝑂𝐹𝑀𝑤,𝑖 and 𝑂𝐹𝑀ℎ,𝑖 are varying depending

on layers. Fully connected layers do not have width and height dimensions, so we regard

both 𝑂𝐹𝑀𝑤,𝑖 and 𝑂𝐹𝑀ℎ,𝑖 as 1. 𝑆𝑖 is the multiplication of the row and column number of

subarrays. The first operand in 𝑆𝑖 is the row number of subarrays, and the second operand

is the column number of subarrays. Each operand is in a ceil function in equation (6). As

 14

𝐴𝐷𝐶𝑖 changes depending on candidates and iterations, the size of OFMs and kernels should

be saved in EGQ. For the accuracy in the fitness function, we set an accuracy threshold

that can give the penalty value of -10, if a candidate shows lower accuracy than the

threshold. All quantization experiments here use 2% accuracy threshold. The weighting

factors would change the behavior of EGQ, but they are set to 1 as default. We compare

the impact of the weighting factors in the next section.

𝐶𝑊 and 𝐶𝐴 are determined by the ratio of the number of weight and activation

parameters. Each of them are given by

𝐶𝑊 = 1 −

∑ 𝑊𝑖 × 𝑃𝑊,𝑖
𝑁
𝑖=1

∑ 32 × 𝑃𝑊,𝑖
𝑁
𝑖=1

 (7)

𝐶𝐴 = 1 −

∑ 𝐴𝑖 × 𝑃𝐴,𝑖
𝑁
𝑖=1

∑ 32 × 𝑃𝐴,𝑖
𝑁
𝑖=1

 (8)

where 𝑃𝑊,𝑖 and 𝑃𝐴,𝑖 mean the number of weight and activation parameters. The total

number of the binary bits for weight parameters is obtained by the product of 𝑃𝑊,𝑖 and

weight bitwidth, 𝑊𝑖. We assume weights in batch normalization layers are floating point,

so weights in convolution layers and fully connected layers are mainly compressed. As 𝑊𝑖

at the denominator is 32, the ratio in equation (7) represents how much the weight of ith

layer is compressed compared to the 32-bit model. 𝐶𝐴 can be explained in the same way as

𝐶𝑊. EGQ calculates the compression ratio of each candidate every iteration. Hence, the

number of layer-wise weight and activation parameters should be stored in the initialization

step.

 15

EGQ is chosen to be layer-wise granular to limit the search space and hence,

improve convergence time. EGQ can be modified to support channel-wise optimization,

but search space significantly increases. For example, ResNet-50 has 50 layers and 22,720

channels. The granularity of EGQ can be switched if equation (5), (8), and (8) are modified.

N in the each equation represents the number of layers. EGQ estimates the compression

ratio of weight, activation, and ADC access with total N number of precision assigned to

each layer. If N is modified to represent the number of channel, EGQ can be adapted to be

channel-wise granular.

 16

CHAPTER 5. EXPERIMENTAL RESULTS

5.1 ResNet Quantization

Figure 4 – Dynamic energy comparison between EGQ and NeuroSim. The prediction

from EGQ is based on the number of ADC access. Both results are obtained from

ResNet-18 with same precision.

Figure 5 – (a) and (c) Effectiveness of γ in EGQ for ResNet-18 and ResNet-50. y-axis

means the normalized number of ADC access. (b) and (d) Dynamic energy

comparison of ResNet-18 and ResNet-50 with different γ. (c) and (g) Effectiveness of

α, β to the number of ADC access. (d) and (h) Weight and activation bitwidth of

ResNet-18 and ResNet-50 from (c) and (g). Weighting factors not mentioned in each

figure are set to 1.

Figure 4 shows the layer-wise normalized dynamic energy of quantized ResNet-18

with flexible bitwidth. The prediction from EGQ based on the normalized number of ADC

access closely matches the results from NeuroSim.

 17

We compare ResNet-18 and ResNet-50 with energy-unaware (i.e. 𝛾 = 0) and

energy-aware (i.e. 𝛾 = 1) cases in Figure 5. Also, compression-unaware (i.e. 𝛼, 𝛽 = 0) and

compression-aware (i.e. 𝛼, 𝛽 = 1) cases are compared in the same figure. As 𝐶𝐴𝐷𝐶 is the

ratio of the number of ADC access, the weighting factor of 𝐶𝐴𝐷𝐶 (𝛾) in the fitness function

controls the energy awareness of EGQ. Similarly, 𝛼 and 𝛽 control the compression

awareness for weight and activation, respectively. Other weighting factors in both

experiments are set to 1. Normalized ADC access in Figure 5(a), (c), (e), and (g) means

how much the number of ADC access is compressed compared to the 16-bit model.

Table 1 – Energy-aware and Energy-unaware Quantization Results of ResNet-18

Model ResNet-18 ResNet-50

Parameter 𝜸 = 𝟎 𝜸 = 𝟏 𝜸 = 𝟎 𝜸 = 𝟏

Normalized Number of ADC Access 0.30 0.26 0.36 0.28

Weight Bitwidth 8.1 7.1 8.1 8.0

Activation Bitwidth 7.6 7.6 8.0 8.3

Total Dynamic Energy (μJ) 136.2 125.9 414.5 333.2

ADC Dynamic Energy (μJ) 79.3 72.3 207.4 154.4

Total Leakage Energy (μJ) 54.9 40.0 724.1 673.5

Energy Efficiency (TOPS/W) 27.9 32.2 9.0 10.2

Area (mm2) 18.7 17.5 49.1 47.7

Baseline Accuracy (%) 69.8 69.8 76.2 76.2

Compressed Accuracy (%) 67.6 68.0 74.3 74.2

In both ResNet-18 and ResNet-50, the energy-aware cases effectively reduce the

number of ADC access than the energy-unaware cases showing the effectiveness of

including 𝐶𝐴𝐷𝐶 in the fitness function of EGQ. Figure 5(b) and (f) show the dynamic energy

of the circled candidates in Figure 5(a) and (e). Both figures show the improved total

dynamic energy in the energy-aware cases. As the difference in the normalized number of

ADC access at the 100th iteration is larger in ResNet-50, we observe that the total dynamic

energy of ResNet-50 is more reduced than ResNet-18. Table 1 summarizes the total

 18

dynamic energy, total leakage energy, and energy efficiency of the ResNet models. As we

assume all weight parameters in each model are mapped to on-chip memory in PIM

platforms, large leakage energy is observed in both models during the layer-wise dynamic

energy simulation. In particular, Table 1 shows the total leakage energy is even higher than

the total dynamic energy in ResNet-50. The energy efficiency is improved by 15.4% for

ResNet-18, and 13.3% for ResNet-50, but the two cases show almost same accuracy (Table

1).

We observe that compression awareness does not play a significant role in the

number of ADC access in Figure 5(c) and (g). As both cases include 𝛾 = 1, the normalized

ADC access is reduce to the similar level of the energy-aware case. Figure 5(d) and (h)

compare the average weight and activation bitwidth at the circled candidates in Figure 5(c)

and (g). The compression-aware cases show lower weight and activation bitwidth. In

particular, the weight bitwidth of the compression-aware cases is 1.5 bit lower in ResNet-

18 and 1.8 bit lower in ResNet-50. Activation bitwidth is 0.3 bit difference in ResNet-18,

and same in ResNet-50. We expect similar dynamic energy consumption in both

compression-unaware and compression-aware cases, but the larger weight bitwidth will

increase required memory footprint and leakage energy. Thus, 𝛼 and 𝛽 should be

considered together with 𝛾 in the fitness function to achieve compact and energy efficient

models.

 19

Table 2 – Layer-wise Bitwidth of ResNet-18 Compressed by Energy-aware and

Energy-unaware Quantization

ResNet-18

𝜸 = 𝟎
Weight 12,12,10,7,12,11,15,13,14,12,8,7,11,10,9,5,6,12

Activation 8,9,7,9,11,5,3,7,8,6,5,5,10,10,6,5,9,10

𝜸 = 𝟏
Weight 10,9,6,10,11,10,7,10,8,12,10,7,7,7,7,6,5,13

Activation 8,9,6,6,3,8,13,12,7,9,4,10,10,8,5,9,9,8

ResNet-50

𝜸 = 𝟎

Weight

13,7,11,8,6,10,15,4,15,10,13,7,6,14,7,9,8,11,6,1

1,10,14,11,9,12,8,6,11,13,10,12,12,14,6,11,6,7,1

2,14,10,5,7,9,10,5,7,8,8,7,7

Activation

11,11,11,7,6,10,8,7,11,11,7,4,6,8,13,7,5,11,15,5,

13,8,6,6,11,11,12,8,14,11,7,8,10,9,5,12,12,8,11,

9,10,8,13,12,10,13,5,13,10,8

𝜸 = 𝟏

Weight

8,14,9,9,8,7,4,12,8,10,5,12,9,13,6,12,11,12,11,1

0,13,6,14,6,7,5,8,10,10,7,14,8,10,10,10,11,10,13

,5,14,9,6,6,12,6,12,13,4,5,6

Activation

9,9,11,10,7,8,4,14,11,15,8,5,8,12,8,8,4,7,13,7,8,

11,6,8,11,5,7,6,11,6,8,4,9,4,6,10,6,8,4,5,5,12,10,

4,11,5,8,8,5,9

Figure 6 – Distribution of weight and activation bitwidth in ResNet-18. Energy-aware

case and energy-unaware case are compared.

 20

Figure 7 – Distribution of the normalized number of ADC access in ResNet-18.

Energy-aware case and energy-unaware case are compared.

Table 2 summarizes the layer-wise weight and activation bitwidth for the energy

awareness experiment. Figure 6 visualizes the layer-wise weight and activation bitwidth in

the energy-aware and energy-unaware cases of ResNet-18. Figure 7 shows the normalized

number of ADC access for both cases. The 5th layer shows huge difference in the

normalized ADC access. This is because the 5th layer has the much higher activation

precision in the energy-unaware case while the weight bitwidth is similar. The 7th layer has

also higher activation precision in the energy-unaware case, but the smaller weight

precision mitigates the effect of the activation precision to the normalized ADC access. We

observe that most of the normalized ADC access is smaller in the energy-aware case due

to the lower weight bitwidth. Thus, the improved energy efficiency in the energy-aware

case is reasonable.

 21

Figure 8 – (a) Dynamic energy and energy efficiency of ResNet-50 with different

memory technologies. Single-bit SRAM, RRAM, and FeFET are applied. Energy-

unaware and energy-aware cases are compared with the memory devices. (b)

Dynamic energy and energy efficiency of ResNet-50 with single-bit and multi-bit

eNVMs. Energy-aware case is used for the comparison in (b).

Figure 8 shows the performance comparison between the energy-unaware and

energy-aware cases for ResNet-50 with various memory devices. We use single-bit SRAM,

RRAM [27], and FeFET [28] in 22nm technology node in Figure 8(a). We do not consider

non-ideality and stochastic variations of the memory devices for NeuroSim simulation and

accuracy analysis. The SRAM case shows higher total dynamic energy than the RRAM

and FeFET cases. Also, ADC dynamic energy is smaller in the RRAM and FeFET cases.

We observe that the amount of the total dynamic energy differences are similar with the

one of ADC dynamic energy. This indicates that RRAM and FeFET energy efficiently

access ADC than SRAM decreasing the total dynamic energy. As we use same the ResNet-

50 model with same weight mapping and data transfer, the performance difference is

mainly determined by memory device characteristics. The read dynamic energy of ADC is

related to the resistance of the reading column in subarrays. Thus, the column resistance of

RRAM and FeFET subarrays will be much smaller than SRAM subarrays.

The proportion of the ADC dynamic energy over the total dynamic energy in the

RRAM and FeFET cases are small, but EGQ assumes ADC consumes most of the dynamic

energy. However, the RRAM and FeFET cases also show better energy efficiency in the

 22

energy-aware cases. This is because the number of ADC access is related to the number of

VMM operations in PIM. As read peripheral operations including ADC access are always

followed by VMM operations, the energy-aware cases indirectly reduce the number of

VMM operations and access to the other read peripheral circuits. The reduced total

dynamic energy helps increasing the energy efficiency in the energy-aware cases, but total

leakage energy also plays a significant role in the energy efficiency for large models such

as ResNet-50. eNVMs can significantly reduce the total leakage energy. For these reasons,

Figure 8(a) shows significant increases in the energy efficiency with RRAM and FeFET

compared to the amount of the dynamic energy improvement.

Figure 8(b) shows the dynamic energy and energy efficiency of the energy-aware

cases for ResNet-50 with multi-bit memory devices. Total dynamic energy and ADC

dynamic energy is significantly reduced in 2-bit RRAM and FeFET. This will be due to

the lower number of required subarrays. As 2-bit memory devices use the half number of

columns in subarrays, the number of required subarrays can be almost half of one for 1-bit

memory devices. The number of ADC access is proportional to the number of subarrays.

Hence, 2-bit memory devices achieve approximately two-times higher energy efficiency

compared to 1-bit memory devices. Multi-bit eNVMs benefit not only the footprint of PIM

platforms but also significantly the energy efficiency gain of EGQ. The key observations

in the ResNet experiments are summarized:

 The number of ADC access is an effective approach to predict dynamic energy

consumption in PIM.

 Including 𝐶𝐴𝐷𝐶 in fitness function decreases the number of ADC access improving

overall energy efficiency.

 23

 Including 𝐶𝑊 and 𝐶𝐴 in fitness function reduces weight and activation bitwidth.

 EGQ is effective in SRAM, RRAM, and FeFET-based PIM

5.2 VGGNet Quantization

Figure 9 – (a) Effectiveness of γ in EGQ for VGG-19. (b) Dynamic energy comparison

of VGG-19 with different γ. (c) Effectiveness of α, β to the number of ADC access in

VGG-19. (d) Weight and activation bitwidth of VGG-19 from (c). The weighting

factors not mentioned in each figure are set to 1.

Figure 9(a) and (b) show the comparison between the energy-unaware and energy-

aware cases of VGG-19. EGQ shows the consideration of 𝛾 is also effective in VGG-19.

Figure 9(c) shows the compression-unaware case effectively reduces the number of ADC

access at the early stage of iterations. However, the saturated level of the number of ADC

access is similar with the compression-aware case at the 100th iteration. The average

bitwidth of weight and activation is similar to the ResNet cases. Weight bitwidth is much

smaller in the compression-aware case, but the difference in activation bitwidth is marginal.

 24

Table 3 – Energy Efficiency Comparison between VGG-19 with and without Fully-

Connected Layers

Model VGG-19 VGG-19 without FC

Parameter 𝜸 = 𝟎 𝜸 = 𝟏 𝜸 = 𝟎 𝜸 = 𝟏

Normalized Number of ADC

Access
0.28 0.22 - -

Weight Bitwidth 4.4 4.1 - -

Activation Bitwidth 7.0 6.9 - -

Total Dynamic Energy (μJ) 1801.1 1403.4 1796.6 1258.1

ADC Dynamic Energy (μJ) 1088.0 795.0 1086.0 792.0

Total Leakage Energy (μJ) 8160.8 9510.0 1662.3 766.4

Energy Efficiency (TOPS/W) 3.9 3.6 11.3 19.3

Area (mm2) 101.4 94.9 46.8 39.4

Baseline Accuracy (%) 72.4 72.4 - -

Compressed Accuracy (%) 71.2 71.1 - -

Table 4 – Layer-wise Bitwidth of VGG-19 Compressed by Energy-aware and Energy-

unaware Quantization

VGG-19

𝜸 = 𝟎
Weight 12,8,10,9,5,8,14,6,15,9,13,9,13,13,13,8,3,4,8

Activation 12,5,13,8,7,6,4,6,12,9,6,7,9,12,14,7,9,9,11

𝜸 = 𝟏
Weight 14,4,7,7,11,7,7,13,11,6,4,9,7,13,11,11,3,4,7

Activation 13,7,8,7,5,6,5,7,15,6,5,6,12,5,12,5,14,6,14

Table 3 summarizes the energy comparison between the two cases including total

leakage energy. Layer-wise weight and activation bitwidth are summarized in Table 4. We

observe that VGG-19 consumes tremendous leakage energy. The total leakage energy of

VGG-19 is much larger as fully connected layers have way more weight parameters than

the ResNet models. Specifically, the first fully connected layer in VGG-19 has

25088 × 4096 parameters, but one in ResNet-18 has 512 × 1000. Table 3 shows the

energy efficiency of the energy-aware case is slightly smaller than the energy-unaware case.

As EGQ does not consider leakage energy, unexpected and too high leakage energy

introduces the error to the energy efficiency.

 25

Figure 10 – (a) Dynamic energy and energy efficiency of VGG-19 with different

memory technologies. Single-bit SRAM, RRAM, and FeFET are applied. (b)

Dynamic energy and energy efficiency of VGG-19 with multi-bit eNVMs. Energy-

unaware and energy-aware cases are compared with the memory devices.

We also compare the quantized VGG-19 and quantized VGG-19 without fully

connected layers in Table 3 to clarify the impact of fully-connected layer to EGQ. VGG-

19 without FC in Table 3 uses same models with the energy-aware and energy-unaware

case, but the fully connected layers are eliminated. Table 3 shows that the energy efficiency

is improved by 70.8% in the energy-aware case without the fully connected layers. The

energy efficiency tendency is flipped mainly because the total leakage energy is largely

reduced. There is no meaningful change in the total dynamic energy as the length of input

vectors is 1 in fully connected layers indicating the number of ADC access is negligible

compared to convolution layers.

Figure 10(a) shows the comparison between the energy-unaware and energy-aware

cases with various memory devices. We use the same 22nm technology node and hardware

setting in Figure 10. SRAM cases show energy-aware case has no longer lower energy

efficiency than energy-unaware case. The energy efficiency in the SRAM cases is both 3.0

TOPS/W. Compared to the 7nm technology node in Table 3, we observe slightly smaller

energy efficiency due to the larger dynamic energy of 22nm technology node. However,

the SRAM cases with the 22nm technology node shows lower total leakage energy than

 26

the 7nm technology node. The RRAM and FeFET cases also decrease the total leakage

energy significantly showing better the energy efficiency in energy-aware cases. By using

eNVMs, we expect to reduce EGQ error to energy efficiency in VGG-like models.

Figure 10(b) shows the comparison between the energy-unaware and energy-aware

cases with multi-bit RRAM and FeFET. As multi-bit eNVMs can effectively reduce the

number of subarrays, we observe much lower dynamic energy and leakage energy. Energy

efficiency is improved by 12.3% in RRAM and 11.3% in FeFET. Large models including

VGG-19 require the large number of subarrays to store them in on-chip memory, that

increases leakage energy more than dynamic energy. Multi-bit eNVMs can be promising

solution to effectively reduce the footprint of subarrays and the total leakage energy. As

recent CNN models do not have large fully connected layers, we expect EGQ will not

experience such error from the leakage energy in modern CNN models. The key

observations in the VGGNet experiments are summarized:

 Considering ADC access and weight/activation bitwidth in the fitness function,

reduces dynamic energy in PIM for VGG-19, similar to the ResNet models.

 Large fully connected layers in VGG-19 like network and appreciable leakage

energy of SRAM reduce overall energy-efficiency of EGQ.

 eNVMs mitigates the error and makes EGQ effective by decreasing leakage energy.

5.3 Comparison with Prior Works

Table 5 compares EGQ with recent quantization algorithms for PIM [12]-[14]. A

flexible bitwidth quantization algorithm is used in the paper by Vasquez et al. [14], and the

others apply uniform bitwidth quantization algorithms [12], [13]. All algorithms are based

 27

on ResNet-18, but the dataset for test accuracy are different. Energy efficiency in the table

means the improvement of the energy efficiency compared to ResNet-18 with 16-bit

precision. EGQ achieves 6.5× higher energy efficiency compared to the 16-bit model with

ImageNet dataset. Vasquez et al. shows small accuracy loss, but the improvement of energy

efficiency is also small. The uniform quantization algorithms [12], [13] show very low bit

quantization with CIFAR-10 dataset. Sun et al. [13] achieves 4 bit for both weight and

activation. Cai et al. [12] shows more compressed model with 2-bit weight and 4-bit

activation. However, huge accuracy loss of 7% is observed [12]. EGQ compresses weight

and activation to 2.5 bit and 3.9 bit without huge loss of accuracy. Also, EGQ achieves

lower energy consumption and memory size compared with the algorithm in [13].

Table 5 – Comparison against Various PIM-aware Quantization Algorithms

Algorithm EGQ EGQ [14] [13] [12]

Model
ResNet-18 ResNet-18 ResNet-18 ResNet-18 ResNet-18

Dataset
ImageNet CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-10

Weight

Bitwidth

6.1 2.5 flexible 4 2

Activation

Bitwidth

6.3 3.9 Flexible 4 4

Energy

Efficiency

6.5× 18.6× 3.2× 17.7× 29.8×

Baseline

Accuracy (%)

69.8 88.6 70.9 88.9 89.1

Compressed

Accuracy (%)

67.5 86.4 70.5 86.6 81.2

 28

Table 6 – Comparison against Various Quantization Algorithms for ResNet-50

Algorithm
Re-

training

Biwidth

(W, A)

Baseline

Accuray (%)

Compressed

Accuracy (%)

Energy

Efficiency

(TOPS/W)

Dorefa [4] One-pass 2, 2 76.9 67.1 257.1

PACT [5] One-pass 4, 4 76.9 76.5 83.0

OMSE [29] No need 4, 32 76.0 75.0 9.3

OCS [30] No need 8, 7 76.1 74.5 14.5

EGQ (2%) No need 6.8, 7.2 76.2 74.4 25.3

ACIQ [31] No need 8, 4 76.1 71.5 25.9

EGQ (5%) No need 6.2, 6.3 76.2 71.5 31.7

We also compare EGQ with five different quantization methods in ResNet-50.

Energy efficiency for each method is estimated in 7nm SRAM based PIM by NeuroSim.

There are several well-known works on extremely low-precision quantization such as

Dorefa [4] and PACT [5]. We observe that 2-bit weight and activation by Dorefa achieves

the best energy efficiency, but it shows highest accuracy loss (9.8%). PACT shows 4-bit

weight and activation with only 0.4% of accuracy loss with high energy efficiency. We

expect that models compressed by these methods will show higher energy efficiency as

compression ratio is generally much higher than EGQ. However, most of them require at

least one-pass of re-training, large training dataset, or handcrafted tuning to reduce

accuracy loss. For this reason, we mainly compare EGQ with re-training free quantization

algorithms such as OMSE [29], OCS [30], and ACIQ [31].

OMSE achieves 4-bit weight and 32-bit activation. It successfully reduces the large

leakage energy of ResNet-50, but 32-bit activation introduces high read dynamic energy.

Energy efficiency of OMSE is 9.3TOPS/W which is the lowest among the algorithms. OCS

achieves 8-bit weight and 7-bit activation, and it shows relatively balanced leakage energy

and read dynamic energy. Hence, higher energy efficiency of 14.5TOPS/W is observed.

 29

EGQ shows 6.8-bit weight and 7.2-bit activation. Though average activation bitwidth is a

bit higher than OCS, we observe that lower and more balanced leakage energy and read

dynamic energy. EGQ achieves 25.3TOPS/W of higher energy efficiency with almost same

accuracy compared to OMSE and OCS. We further investigate the performance of EGQ

with ACIQ. ACIQ shows 8-bit weight and 4-bit activation with higher accuracy loss (4.6%).

Energy efficiency of ACIQ is 25.9TOPS/W. We set the 5% of accuracy threshold for EGQ

to achieve similar accuracy loss. We observe overall energy efficiency is improved by

decreasing the accuracy threshold. EGQ shows 31.7TOPS/W energy efficiency and same

accuracy with ACIQ. EGQ can automatically and efficiently find the optimal weight and

activation bitwidth for energy efficient PIM.

 30

5.4 Other Low-Complexity Networks Quantization

Table 7 – Comparison against Various Quantization Algorithms for MobileNet-V2

and SqueezeNet

Algorithm
Integer-only

[34]

Per-channel

[35]
EGQ OMSE EGQ

Model MobileNet-V2 SqueezeNet

Weight

Bitwidth
6 8 7.8 4 6.7

Activation

Bitwidth
6 8 7.5 32 7.9

Baseline

Accuracy (%)
- 71.9 71.8 58.0 58.0

Compressed

Accuracy (%)
70.9 69.7 69.7 55.4 55.5

Baseline Size

(MB)
13.4 13.4 13.4 4.8 4.8

Compressed

Size (MB)
2.5 3.3 3.3 0.6 1.0

Normalized

Number of

ADC Access

0.16 0.25 0.23 0.47 0.26

Energy

Efficiency

(TOPS/W)

39.7 23.1 24.5 11.9 32.2

We study the performance of EGQ with MobileNet-V2 [32] and SqueezeNet [33].

We also compare with the performance of several other quantization algorithms on these

networks [29], [34], [35]. Table 7 summarizes the comparison for the two models.

Hardware architecture is assumed to be 7nm SRAM based PIM same as preceding

experiments. Normalized number of ADC access represents the number of ADC access of

the compressed model divided by the one of 16-bit model. As NeuroSim does not support

these models, we approximately calculate the total leakage energy and total read dynamic

energy for the energy efficiency based on the energy model of NeuroSim.

 31

For MobileNet-V2, Integer-only compresses weight and activation more than EGQ

and Per-channel, and energy efficiency is also higher. However, it requires retraining while

Per-channel and EGQ are retraining free quantization algorithms. EGQ shows lower

weight and activation bitwidth than Per-channel with same accuracy. Also, normalized

number of ADC access is lower than Per-channel, hence we observe higher energy

efficiency in EGQ. EGQ shows relatively slight improvement of energy efficiency

compared to ResNet-50. We observe that early layers in MobileNet-V2 is relatively more

sensitive to quantization errors compared to VGGNet and ResNet models. Though early

layers consume more number of ADC access, EGQ does not assign lower bitwidth to the

layers to avoid the huge accuracy loss, and it makes relatively small improvement of energy

efficiency in MobileNet-V2. As EGQ is based on linear quantization scheme with

maximum clipping threshold to simplify the algorithm, we expect that more advanced

clipping method or non-linear quantization scheme will enhance the performance of EGQ

in MobileNet like models. For SqueezeNet, OMSE shows 4-bit weight quantization with

floating-point activation. EGQ achieves 6.7-bit weight and 7.9-bit activation with similar

accuracy. Similar to the comparison between OMSE and EGQ in Table 6, we observe that

EGQ shows more balanced leakage energy and read dynamic energy. Also, EGQ achieves

much lower number of ADC access with higher energy efficiency. Effectiveness of EGQ

over the energy efficiency improvement can be variable depending on the models, but EGQ

is still effective in MobileNet-V2 and SqueezeNet.

 32

CHAPTER 6. CONCLUSION

This thesis presents a genetic algorithm-based energy-aware quantization method

(EGQ) to run DNN models energy efficiently on PIM platforms. We discuss how to

combine energy efficiency to a genetic algorithm-based quantization method. EGQ

predicts the dynamic energy consumption for inference based on the number of ADC

access. ResNet-18, ResNet-50, and VGG-19 are used to evaluate the effectiveness of EGQ.

We observe the ResNet models are more suitable for EGQ, and VGG-19 shows unexpected

behavior due to too high leakage energy from large fully connected layers. However, the

error in EGQ introduced by the leakage energy is mitigated by eNVMs, consequently

showing better energy efficiency. As most of modern CNN models do not have such large

fully connected layers, EGQ can effectively search quantization bitwidth of various CNN

models for energy-efficient PIM. For future works, the consideration for more hardware

details such as memory device types and ADC precision will further improve the energy

efficiency of EGQ. We use a genetic algorithm due to the flexibility of the fitness function

design. Other problem solvers can be adapted for future studies. Also, understanding the

effect of device variation or non-ideality on mixed-precision design will be explored in the

future.

 33

APPENDIX A. PROPERTIES OF PROPOSED APPROACH

A.1 Run-time

Figure 11 – Changes of fitness value during EGQ iterations. Energy-aware cases are

used for VGG-19, ResNet-18, and ResNet-50. The range of iteration time in three

models is different, but the total number of EGQ iteration is same as 100. 90% and

95% of final fitness value are marked.

We observe one EGQ iteration takes 1.5 minutes for ResNet-18, 3.0 minutes for

ResNet-50, and 4.0 minutes for VGG-19 in GTX 1080Ti and i7-7700K environment.

Figure 11 shows saturation behavior of fitness values of three models. Fitness value

abruptly decreases in VGG-19 and ResNet-50 sometimes because we set large penalty if

the best candidate does not satisfy accuracy threshold. This time is mainly consumed at

candidate evaluation step. Accuracy cost in the fitness function is estimated by average

accuracy of 3,000 test images. The number of test data is heuristically determined, and it

can be controlled depending on the required run-time. We can reduce the amount of the

test data so that decrease the inference time proportionally. However, too small test dataset

will not be desirable to correctly evaluate the average accuracy.

A.2 Weighting Factors

 34

Weighting factors (𝛼 , 𝛽 , and 𝛾) reflect the relative importance of weight

compression, activation compression, and ADC access. We determine the weighting

factors as 0 or 1 in the previous section only to consider compression awareness and energy

awareness. However, the overall energy efficiency can be affected by both weight,

activation compression and ADC access. For example in Table 3, we observe large fully-

connected layers in VGG models lead to tremendous leakage energy. In this case, higher

𝛼, 𝛽 will be desirable as it can increase compression ratio and decrease leakage energy.

Table 8 – Energy Efficiency of VGGNet, ResNet with Balanced Weighting Factors

Model VGG-19 ResNet-18 ResNet-50

Parameter (𝜶, 𝜷, 𝜸) 1.49, 1.49, 0.02 0.86, 0.86, 1.28 1.30, 1.30, 0.40

Weight Bitwidth 4.2 7.1 8.0

Activation Bitwidth 6.2 6.8 7.8

Total Dynamic Energy (μJ) 1422.0 104.8 308.1

ADC Dynamic Energy (μJ) 824.2 56.9 144.0

Total Leakage Energy (μJ) 7263.1 43.0 526.9

Energy Efficiency

(TOPS/W)
4.5 36.1 12.3

Baseline Accuracy (%) 72.4 69.8 76.2

Compressed Accuracy (%) 70.9 67.5 74.2

We explore other weighting factors for VGG-19, ResNet-18, and ResNet-50. They

are determined based on the ratio of leakage energy and read dynamic energy of the 16-bit

models. Specifically, we assume that the desirable ratio of the weighting factors follows

leakage energy: read dynamic energy = 𝛼: 𝛾 = 𝛽: 𝛾. We constrain the sum of the weighting

factors to 3 as the sum in initial energy-aware case is also 3. For example, 16-bit ResNet-

50 shows 1.01mJ for leakage energy and 3.35mJ for read dynamic energy in 7nm SRAM

based PIM. We set 𝛼, 𝛽, and 𝛾 for the model to 1.3, 1.3, and 0.4 as 3.35: 1.01 (mJ) = 1.3(𝛼):

0.4(𝛾) = 1.3(𝛽): 0.4(𝛾). The weighting factors of VGG-19 and ResNet-18 can be similarly

 35

balanced. Table 8 shows the energy efficiency of the three models with balanced weighting

factors. We observe that VGG-19 shows slightly higher ADC dynamic energy while lower

total leakage energy compared to energy-aware case in Table 3. ResNet-50 also shows

similar results with VGG-19. However, ResNet-18 shows lower ADC dynamic energy

with a bit higher total leakage energy. All three models prove that balancing weighting

factors can further improve the overall energy efficiency compared with the energy-aware

cases.

 36

APPENDIX B. NEUROSIM

DNN+NeuroSim is an integrated framework to benchmark processing-in-memory

(PIM) accelerators for deep neural networks, with hierarchical design options from device-

level, to circuit-level and up to algorithm-level [17]. It supports flexible PIM array design

options with different device technologies (from SRAM to eNVMs) with various

peripheral circuitry modules, which have been validated with SPICE simulations and actual

device data. The framework supports automatic algorithm to hardware mapping for diverse

models, and evaluates chip-level performance like area, latency and energy consumption.

The automatic floorplan and dataflow design of NeuroSim is inherently compatible with

various algorithm and device precisions. NeuroSim is originally designed to simulate the

uniform bit-width model. To accommodate the flexible bit-width, layer-wise quantization

is employed to extract the real trace data to feed the hardware performance estimation, and

the different activation and weight precisions are assigned to corresponding layers. The

digital resources like shift-add, accumulator and activation are designed to accommodate

the maximum precision. We set a subarray size to 128 × 128, and ADC precision to 5 bit

for all simulation.

 37

REFERENCES

[1] A. Shafiee et al., “Isacc: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars,” ACM SIGARCH Computer Architecture News, vol.

44, no. 3, pp. 14–26, 2016.

[2] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory,” ACM SIGARCH Computer

Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[3] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep neural

networks,” in 2018 ACM/IEEE 45th Annual International Symposium on Computer

Architecture (ISCA). IEEE, 2018, pp. 383–396.

[4] Z. Shuchang, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training

low bitwidth convolutional neural networks with low bitwidth gradients,” in arXiv

preprint arXiv:1606.06160, 2016.

[5] J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang, and P.

Chuang, “Accurate and efficient 2-bit quantized neural networks,” in SysML 2019,

2019.

[6] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated

quantization with mixed precision,” in Computer Vision and Pattern Recognition

(CVPR). IEEE/CVF, 2019, pp. 8612–8620.

[7] Y. Long, E. Lee, D. Kim, and S. Mukhopadhyay, “Q-pim: A genetic algorithm

based flexible dnn quantization method and application to processing-in-memory

platform,” in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020,

pp. 1–6.

[8] Y. Zhou, S. M. Moosavi-Dezfooli, N. M. Cheung, and P. Frossard, “Adaptive

quantization for deep neural network,” in Proceedings of the AAAI Conference on

Artificial Intelligence, 2018.

[9] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low precision

quantization for enabling deep network inference on microcontrollers,” in arXiv

preprint arXiv:1905.13082, 2019.

 38

[10] C. Ding, N. L. S. Wang, K. Xu, Y. Wang, and Y. Liang, “Req-yolo: A resource-

aware, efficient quantization framework for object detection on fpgas,” in

Proceedings of the 2019 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2019, pp. 33–42.

[11] T. J. Yang, Y. H. Chen, and V. Sze, “Designing energy-efficient convolutional

neural networks using energy-aware pruning.” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 5687–5695.

[12] Y. Cai, T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, “Low bit-width

convolutional neural network on rram,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 39, no. 7, pp. 1414–1427, 2019.

[13] H. Sun, Z. Zhu, X. Chen, Y. Wang, and H. Yang, “An energy-efficient quantized

and regularized training framework for processing-in-memory accelerators,” in 2020

25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,

2020, pp. 325–330.

[14] K. Vasquez, Y. Venkatesha, A. Bhattacharjee, A. Moitra, and P. Panda, “Activation

density based mixed-precision quantization for energy efficient neural networks,” in

arXiv preprint arXiv:2101.04354, 2021.

[15] Z. Zhu et al., “A configurable multi-precision cnn computing framework based on

single bit rram,” in 2019 56th ACM/IEEE Design Automation Conference (DAC).

IEEE, 2019, pp. 1–6.

[16] S. Huang et al., “Mixed precision quantization for reram-based dnn inference

accelerators,” in 2021 26th Asia and South Pacific Design Automation Conference

(ASP-DAC). IEEE, 2021, pp. 372–377.

[17] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “Dnn+neurosim: An end-to-end

benchmarking framework for compute-in-memory accelerators with versatile device

technologies,” in 2019 IEEE International Electron Devices Meeting (IEDM), 2019,

pp. 32.5.1–32.5.4.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” in arXiv preprint arXiv:1409.1556, 2014.

 39

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition. IEEE, 2016, pp. 770–778.

[20] S. Qu, B. Li, Y. Wang, D. Xu, X. Zhao, and L. Zhang, “Raqu: An automatic high-

utilization cnn quantization and mapping framework for general-purpose rram

accelerator,” in 2020 57th ACM/IEEE Design Automation Conference (DAC).

IEEE, 2020, pp. 1–6.

[21] C. Zhang and P. Zhou, “A quantized training framework for robust and accurate

reram-based neural network accelerators,” in 2021 26th Asia and South Pacific

Design Automation Conference (ASP-DAC). IEEE, 2021, pp. 43–48.

[22] K. Samal, M. Wold, and S. Mukhopadhyay, “Attention-based activation pruning to

reduce data movement in real-time ai: A case-study on local motion planning in

autonomous vehicles,” IEEE Journal of Emerging and Selected Topics in Circuits

and Systems, vol. 10, no. 3, pp. 306–319, 2020.

[23] S. Yin, Z. Jiang, J. S. Seo, and M. Seok, “Xnor-sram: In-memory computing sram

macro for binary/ternary deep neural networks,” IEEE Journal of Solid-State

Circuits, vol. 55, no. 6, pp. 1733–1743, 2020.

[24] Y. Long et al., “A ferroelectric fet based power-efficient architeture for data-

intensive computing,” in Proceedings of the International Conference on Computer-

Aided Design (ICCAD). ACM, 2018, pp. 1–8.

[25] X. Si et al., “24.5 a twin-8t sram computation-in-memory macro for multiple-bit

cnn-based machine learning,” in 2019 IEEE International Solid- State Circuits

Conference (ISSCC). IEEE, 2019, pp. 396–398.

[26] X. Peng, R. Liu, and S. Yu, “Optimizing weight mapping and data flow for

convolutional neural networks on processing-in-memory architectures,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 4, pp. 1333–

1343, 2020.

[27] W. Wu et al., “A methodology to improve linearity of analog rram for neuromorphic

computing,” in 2018 Symposium on VLSI Technology. IEEE, 2019, pp. 103–104.

 40

[28] K. Ni et al., “In-memory computing primitive for sensor data fusion in 28 nm hkmg

fefet technology,” in 2018 International Electron Devices Meeting (IEDM). IEEE,

2018, pp. 16–1.

[29] R. Zhao, Y. Hu, J. Dotzel, C. D. Sa, and Z. Zhang, “Improving neural network

quantization without retraining using outlier channel splitting,” in International

conference on machine learning. PMLR, 2019, pp. 7543–7552.

[30] C. Y, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit quantization of neural

networks for efficient inference,” in ICCV Workshops, 2019, pp. 3009–3018.

[31] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Aciq: Analytical clipping for

integer quantization of neural networks,” 2018.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 4510–4520.

[33] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model

size,” in arXiv preprint arXiv:1602.04354, 2016.

[34] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, A. Hartwig, and D.

Kalenichenko, “Quantization and training of neural networks for efficient integer-

arithmetic-only inference.” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 2704–2713.

[35] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient inference:

A whitepaper.” in arXiv preprint arXiv:1806.08342, 2018.

