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SUMMARY

This thesis is focused on the optimality of stochastic control in macroeconomics

and the fast algorithm of statistical inference. The first topic involves the modeling of

foreign exchange reserve management as an optimal drift control problem. The second

topic involves the fast computing algorithm of partial distance covariance statistics

with its application in feature screening in high dimensional data.

In the first part of the dissertation, we study the problem of optimally controlling

the level of foreign exchange reserves held by a country. When a reserve authority

accumulates foreign exchange reserves to meet changing economic conditions, it faces

the challenge of finding the right balance between the holding costs and the opera-

tional costs involved in adjusting the reserve size. We consider a foreign exchange

reserve whose inventory fluctuation is modeled by a Brownian motion with drift, and

at any moment the reserve manager can adjust the inventory level by varying the drift

at which the reserve accumulates or depletes, but incurs a cost which satisfies triangle

inequality. When the reserve is accumulating or depleting, it also incurs a maintain-

ing cost related to the current drift. The inventory level must be nonnegative at all

times and continuously incur a linear holding cost. The reserve manager’s problem is

to decide when and how to change the drift so that the long run expected discounted

cost of maintaining the foreign exchange reserve is minimized. We show that, un-

der certain conditions, the control band policies are optimal for the discounted cost

drift control problem and explicitly calculate the parameters of the optimal control

band policy. In the two drift case, this form of policy is described by two parameters

{L,U}, 0 < L < U . When the inventory falls to L (rises to U), the controller switches

the drift rate to depletion (accumulation). We also extend the result to the multiple

x



drift case and develop an algorithm to calculate the optimal thresholds of the optimal

control band policy.

In the second part of the dissertation we study the problem of fast computing

algorithm of partial distance covariance. If the computation of partial distance co-

variance is implemented directly accordingly to its definition then its computational

complexity is O(n2) which may hinder the application of an algorithm. To illustrate

it, if n is equal to 106, an O(n2) algorithm would need 1012 numerical operations,

which is impossible even for modern computers. In comparison, an O(n log n) algo-

rithm would only require around 106 numerical operations, which is doable. In this

part of the thesis, we show that an O(n log n) algorithm for a version of the partial

distance covariance exists. The derivation of the fast algorithm involves significant

reformulation of the original version of partial distance covariance. We also demon-

strate its application in feature screening in high dimensional data in the following

part of the thesis.

In the final part of the thesis we further study the feature screening problem in

high dimensional data. We propose an iterative feature screening procedure based

on the partial distance covariance. This procedure can simultaneously address the

following two issues when using sure independence screening (SIS) procedure. First,

an important predictor that is marginally uncorrelated but jointly correlated with the

response cannot be picked by SIS and thus not entering the estimation model. Second,

SIS works only for linear models, and performance is very unstable in other nonlinear

models. To the best of our knowledge, this is the first time that a “new metric” –

partial distance covariance – is used for feature screening in high dimensional data,

and the idea of conditional screening is formally developed.
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CHAPTER I

OVERVIEW

1.1 Management of foreign exchange reserves

1.1.1 Background

Foreign exchange reserves are assets held by central banks and monetary authorities,

usually in different reserve currencies, mostly the United States dollar, and used to

back its liabilities. These reserve assets allow a central bank to purchase domestic

currency, which is considered a liability for the central bank. Thus, the quantity of

foreign exchange reserves can change as a central bank implements monetary policy.

The cost in holding large foreign exchange reserves consists of two parts: The first

part is the maintaining cost, as fluctuations in exchange markets result in gains and

losses in the purchasing power of reserves. In addition to fluctuations in exchange

rates, the purchasing power of fiat money decreases constantly due to devaluation

through inflation. Furthermore, large currency reserves could have been invested in

higher yielding assets, which is the opportunity cost. The second part is the adjust-

ment cost, because any reserve accumulation change as a consequence of monetary

policy change can make an impact on the macro economic.

The massive accumulation of foreign reserves by many countries has challenged the

authorities regarding prudent reserve management. One strand of research adopted by

researchers is to apply impulse control. It describes the situation in which an injection

of reserves, perhaps from some institutions like the World Bank or the International

Monetary Fund (IMF), immediately restores the reserves to their target level when

reserves hit a lower bound. While this model is straightforward, it still has some

shortcomings. First, the pattern implied by the impulse control is not supported
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by the real data. Actually, the reserve patterns of many countries give evidence of

gradual decline and increase that are bounded from below and above, rather than

the shark-tooth pattern implied by the impulse control model. Second, in real life,

a more common method for reserve managers is to change monetary policy. This

change alters the financial flow which gradually increases or decreases the reserve

level.

In the first part of the dissertation, we apply a drift control model to foreign

exchange reserves management. The key feature of the drift control model is that the

reserve managers control the upward and downward drift rates of the reserve. The

objective is to minimize the cost subject to the constraint that reserve managers can

choose when and how to change the drift of the reserves. We model the reserve process

in the absence of any control, as a Brownian Motion with drift µ and variance σ2. The

reserve continuously incurs linear holding costs and maintenance costs associated with

the reserve drift, and it must remain non-negative at all times. The reserve managers

may, at any time, adjust the drift by, for example, executing different monetary

policies or intervening in the foreign exchange market, but incur a cost for changing

the drift that satisfies the triangle inequality.

1.1.2 Contributions of the work

In Chapter 2, we show that, under certain conditions, a simple form of policy, called

Control Band Policy, is optimal for the drift control problem in the two drifts case.

This form of policy is described by two parameters {L,U}, 0 < L < U . When

the reserve level rises to U (falls to L), the controllers switch the drift to depletion

(accumulation). Control band policy can be interpreted as maintaining the same

reserve drift each time and adjusting this quantity only when the reserve level is

either too high or too low. We also extend the result to the multiple drifts case and

develop an algorithm to calculate the optimal thresholds of the optimal control band

2



policy.

1.2 Fast computing algorithm of partial distance covari-
ance

1.2.1 Background

Distance covariance and distance correlation are scalar coefficients that characterize

independence of random vectors in arbitrary dimension. They were introduced in 2005

by G. J. Szekely, in several lectures to address the deficiency of Pearsons correlation,

namely that the Pearsons correlation can be zero for dependent variables.

The distance covariance, denoted V(X, Y ), of two random vectors X and Y char-

acterizes independence; that is

V(X, Y ) ≥ 0

with equality to zero if and only if X and Y are independent. This coefficient is

defined by L2 norm measuring the distance between the joint characteristic function

(c.f.) φX,Y of X and Y , and the product φXφY of the marginal c.f.’s of X and Y .

Properties, extensions and applications of distance covariance and distance corre-

lation have been discussed in the recent literature; see, for example, [16] and [18]. A

natural question then arises, “How do we define partial distance covariance (correla-

tion) which extends distance covariance (correlation) in a similar sense that partial

correlation extends correlation?” One could try to follow the definitions of the classi-

cal partial covariance and partial correlation that are based on orthogonal projections

in a Euclidean space, but there is a serious difficulty. Orthogonality in the case of

partial distance covariance and partial distance correlation means independence, but

when we compute the orthogonal projection of a random variable onto the condi-

tion variable, the “remainder” in the difference is typically not independent of the

condition.

Alternately, the form of sample distance covariance (Definition 3.1.2) may suggest

3



an inner product, so one might think of working in the Hilbert space of double centered

distance matrices defined as equation (116) in section 3.1, where the inner product is

the squared distance covariance statistic defined as equation (118) in the same section.

Here, we are facing another problem: what would the projections represent? The

difference D of double centered distance matrices is typically not a double centered

distance matrix of any sample. This does not affect formal computations, but if we

cannot interpret our formulas in terms of samples then inference becomes impossible.

To overcome these difficulties while preserving the essential properties of distance

covariance, [27] finally arrived at an elegant solution which starts with defining an al-

ternate type of double centering called “U -centering” (see Definition 3.2.1 and Propo-

sition 3.2.2). The corresponding inner product is an unbiased estimator of squared

population distance covariance. In the Hilbert space of U -centered matrices, all linear

combinations, and in particular projections, are zero diagonal U -centered matrices.

As a newly developed concept, partial distance covariance has the advantage that

it can capture nonlinear dependence [27]. It is expected that partial distance co-

variance has application in the broad field of life science, engineering, and finance.

Particularly as an example, we have successfully applied partial distance covariance

to feature screening in high dimensional data, see Chapter 4. If partial distance co-

variance was implemented directly as it is defined, its computational complexity can

be as high as a constant times n2 for a sample size n. This fact has been regarded as

a disadvantage of adopting partial distance covariance.

1.2.2 Contributions of the work

In Chapter 3, we demonstrate that an O(n log n) algorithm for a version of the partial

distance covariance exists. To illustrate how an O(n2) order of complexity may hinder

the application of an algorithm, assume that n is equal to 106. An O(n2) algorithm

would need 1012 numerical operations, which is impossible even for modern computers.

4



In comparison, an O(n log n) algorithm would only require around 106 numerical

operations, which is doable. The main idea behind the proposed new algorithm is to

use a technique rooted in the the AVL tree structure [1]. The same idea has been

utilized to develop a fast algorithm for computing the Kendalls τ rank correlation

coefficient ([15]; [6]). We extend it to make it suitable for our purpose. The derivation

of the fast algorithm also involves significant reformulation of the original version of

partial distance covariance.

1.3 High dimension feature screening using partial distance
covariance

1.3.1 background

The idea of feature screening came along as high-dimensional data were collected in

modern technology. It was aimed at dealing with the challenges of computational ex-

pediency, statistical accuracy, and algorithmic stability because of high dimensional-

ity. [10] proposed the sure independence screening (SIS) and showed that the Pearson

correlation ranking procedure possessed a sure screening property for linear regres-

sion with Gaussian predictors and responses. However, two potential issues might

arise with the screening procedures. First, an important predictor that is marginally

uncorrelated but jointly correlated with the response cannot be picked by SIS and

thus will not enter the estimation model. Second, this procedure works only for linear

models, and performance is very unstable in other nonlinear models.

To address the first issue, an iterative SIS (ISIS) was proposed in [10] as an exten-

sion of SIS. The ISIS works as follows: In the first step, we select a subset of variables

using an SIS-based model selection model. Then we have a vector of residuals from

regressing the response over the variables selected in the first step. In the next step,

we treat those residuals as the new response and utilize the same method as in the

previous step to the remaining variables. From the discussion above, the ISIS uses a

5



residual-based approach to circumvent the problem but the idea of conditional screen-

ing has never been formally developed. However, the performance of ISIS in nonlinear

models still remains unknown. To address the second issue, a new feature screening

procedure for high-dimensional data based on distance correlation, named DC-SIS,

was presented in [18]. DC-SIS retained the sure screening property of the SIS, and

because distance correlation was applicable to arbitrary distributions, DC-SIS could

also be used for screening features without specifying a regression model between the

response and the predictors and thus was robust to model mis-specification. However,

similar to the SIS, the DC-SIS may fail to identify some important predictors that

are marginally independent of the response.

In the third part of the dissertation, we propose an iterative feature screening

procedure based on partial distance covariance. In the initial step of variable selection,

the first variable to enter the model is the variable xj for which distance covariance

Cxj ,y with response y is largest. After the initial step, we have a model with one

predictor xj, and we compute partial distance covariance of (y, xk) conditional on

xj, for the variables xk 6= xj not in the model, then select the variable xk for which

partial distance covariance is largest. Then continue, at each step computing partial

distance covariance of (y, xj) conditional on w for every variable xj not yet in the

model, where w is the vector of predictors currently in the model. The variable to

enter next is the one that maximizes partial distance covariance. The stopping rule

is set at 5% significant level for zero partial distance covariance coefficient test.

1.3.2 Contributions of the work

In Chapter 4, we propose an iterative feature screening procedure based on partial

distance covariance. We show that pdcov(x, y; z) equals to the distance covariance of

U and y, where U is a random vector such that the U -centered distance matrix of

its sample is exactly equal to Pz⊥(x) (124), and U is independent of z. Therefore,

6



after selected variables enter the model, those that are marginally weakly correlated

with response purely due to the presence of variables in conditional set should now

be correlated with the response. This addresses the first issue that SIS may miss an

important predictor that is marginally uncorrelated but jointly correlated with the

response. Partial distance covariance also has the advantage of capturing nonlinear

dependence. It can be used for selecting variables without model specification. This

helps to solve the second issue that SIS may fail in nonlinear models. To the best of our

knowledge, this is the first time that a “new metric” – partial distance covariance – is

used for feature screening, and the idea of conditional screening is formally developed.

At the end, we demonstrate the performance of our procedure through simulations

and a real example.
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CHAPTER II

A STOCHASTIC CONTROL MODEL FOR FOREIGN

EXCHANGE RESERVE MANAGEMENT

2.1 Introduction

Foreign exchange reserves are assets held by central banks and monetary authorities,

usually in different reserve currencies, mostly the United States dollar, that are used to

back its liabilities. These reserve assets allow a central bank to purchase the domestic

currency, which is considered a liability for the central bank. Thus, the quantity of

foreign exchange reserves can change as a central bank implements monetary policy.

The costs in holding large foreign exchange reserves consists of two parts: The first

part is the maintaining cost, as fluctuations in exchange markets result in gains and

losses in the purchasing power of reserves. In addition to fluctuations in exchange

rates, the purchasing power of fiat money decreases constantly due to devaluation

through inflation. Furthermore, large currency reserves could have been invested

in higher yielding assets, which is the opportunity cost. The second part is the

intervention cost. Central banks or monetary authorities may approach IMF for

bail-out when countries are in deep financial crises or their reserve levels fall below

precautionary level. Furthermore, any reserves accumulation change as a consequence

of monetary policy adjustment will influence the cost of credit and debt.

The massive accumulation of foreign exchange reserves by many countries has

challenged the authorities about prudent reserve management due to the significant

role of foreign exchange reserves in macro economics. One strand of research adopted

by researchers is to apply impulse control. It describes the situation in which an

injection of reserves, perhaps from some institutions like the World Bank or IMF,

8



immediately restores the reserves to their target level when reserves hit a lower bound.

While this model is straightforward, it still has some shortcomings. First, the pattern

implied by the impulse control model is not supported by the real data. Figure 1

illustrates the reserve patterns for four countries over the 1985-2001 period. Observe

that reserves are not restocked immediately after hitting a lower threshold. In fact,

the reserve patterns show that reserve levels gradually increase and decrease.

Among all the popular stochastic control models, drift control is a widely adopted

one, in which the controller may change the drift when the diffusion process reaches

a threshold. The drift control model has been widely applied to problems of inven-

tories, queuing systems, and economics. [5] studied the problem of minimizing the

infinite horizon expected average cost of a one side reflected diffusion process in which

the controller can switch between two sets of drifts and volatility parameters. The

problem involves operating, switching, and holding cost. The author determined the

optimal policy via the dynamic programming. [19] extends this problem to a more

general setting in which we can select from multiple drifts, and they developed a novel

solution approach based on linear programming. [2] applied the drift control model

to minimize the infinite horizon expected discounted cost of managing international

reserves. They assume that the reserve authority chooses between two drifts: the up-

ward and downward drifts of the reserve. However, they take the form of the policy

as given and calculate the cost based on martingale stopping theory, then they derive

the optimal policy numerically.

Second, the impulse control is not the normal way that reserve authorities control

the reserve level. According to [23], the main drives for reserve accumulation of the

emerging market economies are self-insurance against financial crises and the pursuit

of export-led growth supported by exchange rates anchored de jure or de facto to

the US dollar. So the reserve authorities change monetary or exchange-rate policy on

their own initiative to alter financial account flows that gradually increase or decrease

9



the level of reserves. From the modeling point of view, the policy change alters the

drift of reserves accumulation, rather than restock reserves to their target level in the

abrupt manner characterized by the impulse control model.

We model the problem of managing demand for foreign exchange reserves as a

Brownian drift control problem and seek a policy that minimizes the long-run dis-

counted cost. The key feature of the drift control model is that the reserve managers

control the drift of the reserve. We model the reserve process in the absence of any

control, as a Brownian Motion with drift µ and variance σ2. Inventory continuously

incurs linear holding cost and maintaining cost associated with the reserve drift, and

it must remain non-negative at all times. According to [24], the holding cost of re-

serves equals to the spread between the private sector’s cost of short-term borrowing

abroad and the yield that the Central Bank earns on its liquid foreign assets. This

validates the assumption of linear holding cost. We also assume the reserve author-

ity can, at some cost, shift the rates of reserve accumulation and depletion among

a finite set of alternatives, for example by choosing different exchange-rate or mone-

tary/fiscal policies. We model the cost of changing the accumulation rate from u to

v as a fixed cost K(u, v) > 0 and assume the cost function K(·, ·) satisfies the usual

triangle inequality so that changing the processing rate from u to v in a single step

is no more expensive than accomplishing the same change via a series of intermedi-

ate steps. Even with higher accumulation rate, a series of bad financial shocks can

push the reserve level below zero. To ensure that the reserves remains nonnegative,

we impose instantaneous controls at the lower boundary, corresponding roughly to

obtaining additional reserves from the IMF or other countries, for instance, and this

creates the intervention cost.

Our model differs from the ones in the above cited works in many ways. While

[5] and [19] address the long-term average cost problem, we study the drift control

problem in the discounted cost case, as a discount factor is natural and intuitive in
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financial applications. While [2] studied the drift control problem in the discounted

cost case, they assumed that the reserve authority chooses between two drifts: the

upward and downward drifts of the reserves; however, they took the form of the control

band policy as given and calculated the cost based on martingale stopping theory,

then they derive the optimal policy numerically. We, on the other hand, extend the

control policy space to all the non-anticipated policy, and prove that under certain

conditions, the control band policy is optimal among all non-anticipated policy. Our

empirical results show that the value function derived from our optimal stopping

theory has superior performance to the value function derived from the martingale

approach in [2]. Furthermore, we extend the drift control problem with only two

drifts to the case in which we can switch from arbitrarily finite drifts, and develop an

algorithm to calculate the optimal thresholds of the optimal control band policy. The

drift control problem with only two drifts, the upward and downward drifts of the

reserve, is too simple to characterize the real dynamics of the reserves accumulation.

Normally, the central bank can adopt at least three main types of fiscal policy to

change the reserve accumulation: neutral fiscal policy, expansionary fiscal policy, and

contractionary fiscal policy. Therefore, our work is more general and more valuable

in decision making for reserve authorities.

The rest of the chapter is organized as follows. In Section 2.2, we present empirical

evidence on country reserve holdings to motivate the consideration of a drift control

model. In Section 2.3, we describe the discounted cost Brownian drift control problem

and its policy space. Section 2.4 sets up the preliminaries for the solution approach

to the problem. In Section 2.4 we establish a lower bound for the optimal expected

total discounted cost and prove the “Verification Theorem”. In Section 2.5 we define

a value function for control band policies with discounted cost criteria in the two-drift

case, and show that the expected total discounted cost can be calculated through this

function. In Section 2.6, we first find a control band policy which is optimal among

11



all control band policies. We then prove that, under certain conditions, the control

band policy is optimal for the discounted cost Brownian drift control problem among

all non-anticipated policies by applying the verification theorem, and derive explicit

equations for calculating the optimal control policy parameters. In Section 2.7, we

provide numerical examples illustrating the optimality of the drift control policy. We

extend the result to the drift control problem with three drifts case in Section 2.8 and

develop an algorithm for finding the optimal control band policy for the case with an

arbitrary number of drifts in Section 2.9.

2.2 Empirical Evidence

To motivate the modeling of the foreign exchange reserve management as a drift con-

trol problem, we present empirical evidence which illustrates the association between

changes in the direction of reserve drift and explicit policy-change decisions made by

the reserve authority to switch the drift. To document the dynamics of international

reserves, we examine the empirical properties of monthly international reserves for

90 countries over the sixteen-year period 1985 - 2001. Figure 1 illustrates the reserve

dynamics for a representative set of these countries.

To document evidence of policy changes and turning points in international reserve

holdings, we use a case study approach. We find the policy changes are motivated

primarily or in part by concerns about reserve levels, and the switch from different

drifts in reserves may also be triggered by an external shock rather than an explicit

policy change. In the aftermath of recent financial crises, some countries appear

to have extended the reserve holding period with upward drift in their desire to

accumulate reserves. To appreciate the nature of this evidence, we present some case

studies drawn from countries highlighted in Figure 1.

South Africa: South Africa began to use forward market to encourage and fa-

cilitate the use of foreign trade credits by domestic corporates as a mechanism for
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Figure 1: Reserves in Individual Countries from 1985 to 2001. Note: The vertical
axis measures reserves in billions of dollars; the horizon axis is the year. Data source
www.theglobaleconomy.com.

its Central Bank to accumulate foreign exchange reserves in September 1985. Re-

serves continued to drift upwards slowly until reaching a local peak in March 1995,

interrupted by several sharp drops in reserves associated with contagion from the

emerging markets crisis. After the crisis, however, capital flight from South Africa

continued and reserves fell further. Worried about its reserve position, South Africa

started accumulating reserves by buying foreign exchange reserves on a spot basis

after reserves reached a local trout in May 1998.

Italy : A few months before the first reserve peak in August 1990, the Italian gov-

ernment cited Italy’s strong balance of payments position and sizable reserve holdings

to justify its decision to adjust the lira’s value and adopt the narrower 2.25% band

of fluctuation used by fellow members in the European Exchange-Rate Mechanism

(ERM). Just after the reserve trough in August 1992, Italy expressed concern about

declining reserves in the face of strong speculation against the lira. It dropped out

of the ERM and let the lira float. In the months prior to the December 1997 reserve

peak, the Italian authorities noted that a stronger lira and stronger reserve position
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had loosened the constraints on monetary and exchange-rate policies. Italy rejoined

the ERM and started a period of interest-rate reductions, including one in the month

when reserves reached their local peak. Reserves then started to fall, reaching a new

low at the start of 1999 when Italy joined the European Monetary Union (EMU).

France: In the years 1985–2001, France’s reserve holdings reached local peaks

in 1987 and 1998, and local troughs in 1989, 1993, and 1997. In the years 1983-85

just before the first peak, the French authorities decided to move towards a strategy

geared to lowering inflation and to increasing the competitive position of the economy.

In the 1993 reserve trout, French authorities confirmed the commitment to a stable

exchange rate on August 2nd, with the decision to maintain unchanged the central

rate of the franc within a fluctuation band enlarged to 15%,after strong tensions which

affected the exchange markets notably in 1992-1993. Reserves then started to fall on

December 3, 1998, after French authorities decided to bring down the main rate to

3% within a coordinated movement of lowering interest rates.

Brazil : After a period of low and stable reserves, the reserve holdings of Brazil

began to rise dramatically as a result of fixed exchange rate policy starting from the

fall of 1991. Reserves continued to drift upwards until the end of 1997, interrupted by

three sharp drops in reserves associated with contagion from external financial crises–

the Mexican crisis (December 1994), the Asian crisis (July 1997), and the Russian

crisis (August 1998). After all three financial crises, Brazil reacted by increasing in-

terest rates sharply to reduce capital flight and improve its reserve position. However,

capital flight from Brazil continued and reserves fell further, causing the authorities

to seek a large support package from the IMF in the fall of 1998, and to increase the

exchange-rate band on January 13, 1999. Since 2001, Brazilian reserves have trended

upward, aided by periodic increases in domestic interest rates and external financing

extended by the IMF to protect Brazil from adverse spillovers from Argentina’s crisis

To summarize, the exchange reserve patterns of several countries have strongly
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supported a drift control model that associates changes in the direction of reserve drift

with explicit decisions made by the reserve authority to switch the drift by changing

monetary policy. A model that allows for finite periods of reserve accumulation and

depletion and finite drift rates in both directions also finds support in the data.

2.3 Brownian drift control model

Let X = {X(t), t ≥ 0} be a Brownian motion with drift µ(t) in some fixed finite

set Λ for each t ≥ 0, variance σ2(t), starting from x. Then X has the following

representation

X(t) = X(0) +

∫ t

0

µ(s) ds+

∫ t

0

σ(s) dB(s), t ≥ 0, (1)

where B = {B(t), t ≥ 0} is a standard Brownian motion that has drift 0, vari-

ance 1, starting from 0. We assume B is defined on some filtered probability space

(Ω, {Ft},F ,P) and B is an {Ft}-martingale. Thus, B is also known as an {Ft}-

adapted standard Brownian motion. To simplify notation, we consider the special

case in which σ(t) = σ. The process X(t) describes the difference between cumula-

tive input flow and cumulative output flow of the foreign exchange reserves by time t,

i.e., the “netput” process. The drift {µ(t), t ≥ 0}, which is adapted to the Brownian

motion {B(t), t ≥ 0}, is the average accumulation rate of the reserves. We assume

that the monetary authorities can, at some cost, shift the accumulation rate among

a finite set of alternatives by changing the monetary policy.

Furthermore, let A(t) denote the minimal amount of regulation (reserves injection

from the world bank or IMF) necessary to keep the reserve level from falling below

the boundary 0 up to time t, where A(t) is defined as

A(t) = −min{0,min
s≤t

X(s)}.

The regulation A(t) satisfies

(1) A(t) are adapted to the filtration {Ft}.
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(2) A(t) are right continuous, increasing, and non-negative.

The controlled process is

R(t) = R(0) +

∫ t

0

µ(s) ds+ σB(t) + A(t), t ≥ 0 (2)

where R(0) = X(0). We associated with A(t) the controlled process R(t) = X(t) +

A(t), and A(t) is said to be feasible if

Px(R(t) ≥ 0 for all t ≥ 0) = 1, ∀x ≥ 0. (3)

Ex
[∫ ∞

0

e−βtdA(t)

]
<∞, ∀x ≥ 0. (4)

where β denotes the discounted rate, and Px(∗) = P(∗|R(0) = x), Ex[∗] = E[∗|R(0) =

x].

The controlled process R(t) lives in the positive region [0,∞), and the controller

may adjust the drift by choosing them from the values in the finite set Λ. Let

D = {(a, λ) : a ∈ [0,∞), λ ∈ Λ} denote the domain of the controlled process.

We restrict our attention to the space P of all non-anticipated policy

Φ = {(τn, un) : n ≥ 0} (5)

where

(i) 0 = τ0 < τ1 < · · · is a sequence of stopping times,

(ii) each un is a random variable adapted to Fτn with value in Λ indicating the rate

to which we change the drift at time τn.

Under the policy Φ = {(τn, un) : n ≥ 0}, the drift has the value µ(t) = un for

τn ≤ t < τn+1.

To change the drift from µi to µj, the controller must pay a fixed cost K(µi, µj) >

0, for µi 6= µj, which satisfies a triangle inequality: K(µi, µj)+K(µj, µk) ≥ K(µi, µk)

for all drifts µi, µj, and µk.
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There is a cost ci = c(µi) per unit time for maintaining the drift µi. Let h be the

holding cost of $1 per unit time and we assume there is cost U per $1 of regulation at

the boundary 0. According to [24], the holding cost of reserves is equal to the spread

between the private sector’s cost of short-term borrowing abroad and the yield that

the Central Bank earns on its liquid foreign assets. This validates the assumption of

linear holding cost

We consider the following discounted cost Brownian control problem, which is to

obtain a non-anticipated policy that minimizes the expected discounted cost in infinite

horizon :

Vi(x) = min
Φ∈P

DC(x, µi,Φ)

=min
Φ∈P

Ex,i

[∫ ∞
0

e−βt(c(µ(t)) + hR(t)) dt+

∫ ∞
0

e−βtU dA(t) +
∞∑
n=1

e−βτnK(un−1, un)

]
.

(6)

where (R(0), u0) = (x, µi).

Note that when considering a function f defined on a subset of R × Λ, we treat

f as a family of functions {f(·, µi) : µi ∈ Λ, i = 1, 2, . . . , k}, each defined on the

corresponding subset of R; so for example, use f ′ and f ′′ to represent derivatives

with respect to the first argument. For a function f we define the following quasi-

variational inequalities.

Definition 2.3.1. We say that functions f(·, µi) : [0,∞) → [0,∞), i = 1, 2 . . . , k

satisfy the quasi-variational inequalities (QVI) for problem in equation (6) if for each

i = 1, 2 . . . , k

inf
x∈[0,∞)

{Lif(x, µi) + c(µi) + h · x, min
j 6=i
{f(x, µj) +K(µi, µj)} − f(x, µi)} = 0, (7)

where

Liw(x) =
1

2
σ2w′′(x) + µiw

′(x)− βw(x)
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We observe that a solution f(·, µi) of the QVI separates the interval [0,∞) into

two disjoint regions: a continuation region

Ci := {x ∈ [0,∞) : min
j 6=i
{f(x, µj) +K(µi, µj)} > f(x, µi),Lf(x, µi) + c(µi) +h ·x = 0}

and an intervention region

Si := {x ∈ [0,∞) : min
j 6=i
{f(x, µj) +K(µi, µj)} = f(x, µi)}

Definition 2.3.2. The following non-anticipated policy is called the QVI-control as-

sociated with {f(·, µi), i = 1, . . . , k}:

τ1 = inf{t > τ0 : f(R(t), u0) = min
µj 6=u0

{f(R(t), µj) +K(u0, µj)}}, (8)

u1 = arg min
µj 6=u0

{f(R(t), µj) +K(u0, µj)}, (9)

and, for n ≥ 2:

τn = inf{t > τn−1 : f(R(t), un−1) = min
µj 6=un−1

{f(R(t), µj) +K(un−1, µj)}}, (10)

un = arg min
µj 6=un−1

{f(R(t), µj) +K(un−1, µj)}. (11)

2.4 Verification theorem

In this section, we state and prove a theorem that establishes a lower bound for the

optimal expected total discounted cost. This theorem is also called the “Verification

Theorem” in the literature.

Theorem 2.4.1. Suppose that for each µi ∈ Λ, f(·, µi) ∈ C1([0,∞); [0,∞))
⋂
C2

([0,∞)\N ; [0,∞)) where N is a finite subset of [0,∞), is a solution of the QVI, and

there exists a constant M > 0 such that |f ′(x, µi)| < M for all x ∈ [0,∞). Assume

further that

f ′(0, µi) ≥ −U, i = 1, 2, . . . , k. (12)

Then, for every Φ ∈ P with initial state (R(0), u0) = (x, µi) ∈ D, we have

f(x, µi) ≤ DC(x, µi,Φ). (13)
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Furthermore, if the QVI-control Φ∗ associated with {f(·, µi), i = 1, . . . , k} is admissi-

ble and

f ′(0, µi) = −U, if 0 ∈ Ci i = 1, 2, . . . , k,

then Φ∗ is the optimal drift control policy, and for every initial state (R(0), u0) =

(x, µi) ∈ D, we have

f(x, µi) = Vi(x) = DC(x, µi,Φ
∗). (14)

Proof. For every T > 0 and every policy Φ with initial state (R(0), u0) = (x, µi), we

can write

e−βTf(R(T ), µ(T ))− f(x, µi)

=

N(T )∑
j=1

{e−βτjf(R(τj−), uj−1)− e−βτj−1f(R(τj−1), uj−1)}

+e−βTf(R(T ), µ(T ))− e−βτN(T )f(X(τN(T )), uN(T ))

+

N(T )∑
j=1

{e−βτjf(R(τj), uj)− e−βτjf(R(τj−), uj−1)}. (15)

Since R is a continuous martingale in the interval [τj−1, τj) and f(·, uj−1) is C2([0,∞)\

N ), where N is a finite subset of [0,∞), then we may apply an appropriate version

of Itô formula. Thus, for every i ∈ N,

e−βτjf(R(τj−), uj−1)− e−βτj−1f(R(τj−1), uj−1)

=

∫
[τj−1,τj)

e−βtLf(R(t), uj−1) dt+

∫
[τj−1,τj)

e−βtσf ′(R(t), uj−1) dB(t)

+

∫
[τj−1,τj)

e−βtf ′(R(t), uj−1) dA(t)

=

∫
[τj−1,τj)

e−βtLf(R(t), uj−1) dt+

∫
[τj−1,τj)

e−βtσf ′(R(t), uj−1) dB(t)

+

∫
[τj−1,τj)

e−βtf ′(0, uj−1) dA(t).

The last equality holds because A(t) increases only when R(t) = 0. According to
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inequality (12) and the fact that f(·, µi) is a solution for the QVI in (7), we have

Ex,i
[
e−βτjf(R(τj−), uj−1)− e−βτj−1f(R(τj−1), uj−1)

]
≥Ex,i

[∫
[τj−1,τj)

e−βt(−c(uj−1)− hR(t))) dt

]
+ Ex,i

[∫
[τj−1,τj)

e−βt(−U) dA(t)

]
, (16)

and

Ex,i[e−βτj(f(R(τj), uj)− f(R(τj−), uj−1)] ≥ Ex,i[e−βτj(−K(uj−1, uj)]. (17)

We note that the above two inequalities become equalities for the QVI-control as-

sociated with {f(·, µi), i = 1, . . . , k}, and f ′(0, µi) = −U if 0 ∈ Ci, i = 1, 2, . . . , k.

Combining the above inequalities, and applying them to equation (15), we obtain

Ex,i
[
e−βTf(R(T ), µ(T ))

]
− f(x, µi)

≥Ex,i
[∫ T

0

e−βt(−c(µ(t))− hR(t)) dt

]
+ Ex,i

[∫ T

0

e−βt(−U) dA(t)

]
+

N(T )∑
j=1

Ex,i
[
e−βτj(−K(uj−1, uj))

]
.

The boundedness of f ′ implies

f(x, µi) ≤M(1 + |x|), i = 1, 2, . . . , k,

which further implies

f(R(T ), µ(T )) ≤M(1 + |R(T )|) ≤M(1 + |x|+ max
i=1,...,k

|µi| ·T +σ|B(T )|+A(T ). (18)

Since (4) implies that

lim inf
T→∞

E[e−βTA(T )] = 0,

then we obtain

lim inf
T→∞

(
Ex,i[e−βTf(R(T ), µ(T ))]− f(x, µi)

)
≥ lim inf

T→∞

(
Ex,i

[∫ T

0

e−βt(−c(µ(t))− hR(t)) dt

]
+ Ex,i

[∫ T

0

e−βt(−U) dA(t)

])

+ lim inf
T→∞

N(T )∑
j=1

Ex,i[e−βτj(−K(uj−1, uj))]

 ,
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which implies

f(x, µi) ≤ DC(x, µi,Φ),

with equality when Φ is the QVI-control associated with {f(·, µi), i = 1, . . . , k}, and

f ′(0, µi) = −U if 0 ∈ Ci, i = 1, 2, . . . , k.

2.5 Explicit solution in the two drift case

In this section, we consider the case of two drifts, k = 2, for a one dimensional state

process in [0,∞) as in the previous section. We first assume that µ1 ≥ 0, µ2 < 0.

We restrict the feasible policies to be drift controls as given by (5). A drift control

band policy is defined by two parameters a, b with 0 < a < b. Under the policy, if

the current drift is µ1, the reserve authority changes the drift to µ2 when the reserve

level rises to b; if the current drift is µ2, the reserves authority changes the drift to

µ1 when the reserve level falls to a. Given a control band policy ΦD, we provide a

method for policy evaluation. We then establish the existence of a solution to the free

boundary problem with parameters (a∗, b∗) under certain conditions. Finally, under

certain conditions, the control band policy associated with (a∗, b∗) is indeed optimal

among all feasible policies.

2.5.1 Control band policies

Let {a, b} denote the control band policy associated with parameters a, b with 0 <

a < b. Fix a policy ΦD = {a, b}, the adjustment time and adjustment quantity are
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given by the following: For initial state (x, u0) = (x, µ1), we have

τ1 = inf{t ≥ τ0 : R(t) ≥ b},

u1 = µ2,

τ2 = inf{t > τ1 : R(t) ≤ a},

u1 = µ1,

...

n ≥ 1

τ2n+1 = inf{t > τ2n : R(t) ≥ b},

u2n+1 = µ2,

τ2n+2 = inf{t > τ2n+1 : R(t) ≤ a},

u2n+1 = µ1, (19)

Or for initial state (x, u0) = (x, µ2), we have

τ1 = inf{t ≥ τ0 : R(t) ≤ a},

u1 = µ1,

τ2 = inf{t > τ1 : R(t) ≥ b},

u1 = µ2,

...

n ≥ 1

τ2n+1 = inf{t > τ2n : R(t) ≤ a},

u2n+1 = µ1,

τ2n+2 = inf{t > τ2n+1 : R(t) ≥ b},

u2n+1 = µ2, (20)
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and the continuation and intervention regions are explicitly characterized by

C1 = [0, b), S12 = [b,∞).

C2 = (a,∞), S21 = [0, a].

Figure 2: The continuation and intervention regions in the two drift case

In the following theorem, we obtain an expression for the value function

DC(x, µi,Φ
D), the expected total discounted cost resulted from a control band policy

when the initial reserve level and initial drift are x and µi, respectively.

Theorem 2.5.1. Assume that we fix a control band policy ΦD = {a, b}. If there

exists twice continuously differentiable functions w1 : [0, b)→ R and w2 : (a,∞)→ R
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that satisfy

L1w1(x) + hx+ c(µ1) = 0, x ∈ [0, b) (21)

L2w2(x) + hx+ c(µw) = 0, x ∈ (a,∞) (22)

w′2(x) is bounded in (a,∞), (23)

with boundary conditions

w1(b) = w2(b) +K(µ1, µ2), (24)

w2(a) = w1(a) +K(µ2, µ1), (25)

w′1(b) = w′2(b), (26)

w′2(a) = w′1(a), (27)

w′1(0) = −U. (28)

then the expected total discounted cost is given by

DC(x, µ1,Φ
D) =

 w1(x) for x ∈ [0, b),

w2(x) +K(µ1, µ2) for x ∈ [b,∞),

and

DC(x, µ2,Φ
D) =

 w1(x) +K(µ2, µ1) for x ∈ [0, a],

w2(x) for x ∈ (a,∞),

where {wi(x), i = 1, 2} are defined in (21)-(22).

Proof. Let’s define

f(x, µ1) =

 w1(x) for x ∈ [0, b),

w2(x) +K(µ1, µ2) for x ∈ [b,∞),

and

f(x, µ2) =

 w1(x) +K(µ2, µ1) for x ∈ [0, a],

w2(x) for x ∈ (a,∞),
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then equations (21)-(22) and (24)-(27) imply that

f(·, µ1) ∈ C1([0,∞); [0,∞))
⋂

C2([0,∞) \ {b}; [0,∞)),

f(·, µ2) ∈ C1([0,∞); [0,∞))
⋂

C2([0,∞) \ {a}; [0,∞)),

and they are the solution of the QVI. Meanwhile, equations (23) and (28) imply that

{f(x, µi), i = 1, 2} are bounded and f ′(0, µ1) = −U , respectively.

Similar to the proof in Theorem 2.4.1, we have

DC(x, µi,Φ
D) = f(x, µi), i = 1, 2.

Remark 1. Equations (24)-(28) guarantee that value functions {C(x, µi,Φ
D), i =

1, 2} are C1on [0,∞). These are also known as the “smooth-pasting” condition.

To facilitate the presentation, we explicitly find a solution to (21)-(22). Define

m+
i =

1

2

−2µi
σ2

+

√(
2µi
σ2

)2

+ 4
2β

σ2

 > 0, i = 1, 2

m−i =
1

2

−2µi
σ2
−

√(
2µi
σ2

)2

+ 4
2β

σ2

 < 0, i = 1, 2.

For i = 1, 2, the general solution to the ordinary differential equation

Liwi(x) + hx+ c(µi) = 0, (29)

is

wi(x) = Aiϕi(x) +Biψi(x) + φi(x),

where Ai, Bi are real numbers,

ϕi(x) = em
+
i x, ψi(x) = em

−
i x,

and

φi(x) =
h

β
x+

hµi
β2

+
c(µi)

β
.
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We end this section by providing a criterion, which is equivalent to the smooth-pasting

condition (24)-(28), and easy to verify numerically.

Corollary 2.5.2. For a given control band policy ΦD = {a, b}, suppose the following

equation holds:ψ1(a)− m−1
m+

1

ϕ1(a) −ψ2(a)

ψ
′
1(a)− m−1

m+
1

ϕ
′
1(a) −ψ′2(a)


−1φ2(a)− φ1(a) +K12 +

h
β

+U

m+
1

ϕ1(a)

φ
′
2(a)− φ′1(a) +

h
β

+U

m+
1

ϕ
′
1(a)


−

ψ1(b)− m−1
m+

1

ϕ1(b) −ψ2(b)

ψ
′
1(b)− m−1

m+
1

ϕ
′
1(b) −ψ′2(b)


−1φ2(b)− φ1(b) +K12 +

h
β

+U

m+
1

ϕ1(b)

φ
′
2(b)− φ′1(b) +

h
β

+U

m+
1

ϕ
′
1(b)

 = 0. (30)

Then the following functions

H1(x) =

 A1ϕ1(x) +B1ψ1(x) + φ1(x) for x ∈ [0, b),

B2ψ2(x) + φ2(x) +K(µ1, µ2) for x ∈ [b,∞),

and

H2(x) =

 A1ϕ1(x) +B1ψ1(x) + φ1(x) +K(µ2, µ1) for x ∈ [0, a],

B2ψ2(x) + φ2(x) for x ∈ (a,∞),

are the expected total discounted cost corresponding to the given control band policy

ΦD = {a, b}, where the coefficients A1, B1, B2 are given byB1

B2

 =

ψ1(a)− m−1
m+

1

ϕ1(a) −ψ2(a)

ψ
′
1(a)− m−1

m+
1

ϕ
′
1(a) −ψ′2(a)


−1φ2(a)− φ1(a) +K12 +

h
β

+U

m+
1

ϕ1(a)

φ
′
2(a)− φ′1(a) +

h
β

+U

m+
1

ϕ
′
1(a)


=

ψ1(b)− m−1
m+

1

ϕ1(b) −ψ2(b)

ψ
′
1(b)− m−1

m+
1

ϕ
′
1(b) −ψ′2(b)


−1φ2(b)− φ1(b) +K12 +

h
β

+U

m+
1

ϕ1(b)

φ
′
2(b)− φ′1(b) +

h
β

+U

m+
1

ϕ
′
1(b)

 .

and

A1 =
−U − φ′1(0)−B1ψ

′
1(0)

ϕ1(0)
.

Moreover, {Hi(x), i = 1, 2} are in C1([0,∞); [0,∞))
⋂
C2([0,∞) \ N ; [0,∞)) where

N is a finite subset of [0,∞), and {H ′i(x), i = 1, 2} are bounded in [0,∞).
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Proof. By Theorem 2.5.1, if functions {Hi(x), i = 1, 2} satisfy conditions (21)-(28),

then they are the expected total discounted cost corresponding to the given control

band policy ΦD = {a, b}.

Conditions (21)-(22) hold automatically by definition. Furthermore, condition

m−2 < 0 implies that

B2ψ
′
2(x) + φ′2(x) = B2m

−
2 e

m−2 x +
h

β

is bounded in (a,∞).

Combine with equation (30), if we defineB1

B2

 =

ψ1(a)− m−1
m+

1

ϕ1(a) −ψ2(a)

ψ
′
1(a)− m−1

m+
1

ϕ
′
1(a) −ψ′2(a)


−1φ2(a)− φ1(a) +K12 +

h
β

+U

m+
1

ϕ1(a)

φ
′
2(a)− φ′1(a) +

h
β

+U

m+
1

ϕ
′
1(a)


=

ψ1(b)− m−1
m+

1

ϕ1(b) −ψ2(b)

ψ
′
1(b)− m−1

m+
1

ϕ
′
1(b) −ψ′2(b)


−1φ2(b)− φ1(b) +K12 +

h
β

+U

m+
1

ϕ1(b)

φ
′
2(b)− φ′1(b) +

h
β

+U

m+
1

ϕ
′
1(b)

 ,

and

A1 =
−U − φ′1(0)−B1ψ

′
1(0)

ϕ1(0)
,

then the boundary conditions

A1ϕ1(b) +B1ψ1(b) + φ1(b) = B2ψ2(b) + φ2(b) +K(µ1, µ2),

B2ψ2(a) + φ2(a) = A1ϕ1(a) +B1ψ1(a) + φ1(a) +K(µ2, µ1),

A1ϕ
′
1(b) +B1ψ

′
1(b) + φ′1(b) = B2ψ

′
2(b) + φ′2(b),

B2ψ
′
2(a) + φ′2(a) = A1ϕ

′
1(a) +B1ψ

′
1(a) + φ′1(a),

A1ϕ
′
1(0) +B1ψ

′
1(0) + φ′1(0) = −U,

hold automatically. Furthermore, these boundary conditions imply that {Hi(x), i =

1, 2} are in C1([0,∞); [0,∞))
⋂
C2([0,∞) \ N ; [0,∞)) where N is a finite subset of

[0,∞).
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Remark 2. The coefficient B2 can be represented as

B2 =
1

det(a)
[m−1 (em

+
1 a − em

−
1 a)(

h(µ2 − µ1)

β2
+
c(µ2)− c(µ1)

β
−K21)

+
m+

1 −m−1
m+

1

(
h

β
+ U)e(m+

1 +m−1 )a]

=
1

det(b)
[m−1 (em

+
1 b − em

−
1 b)(

h(µ2 − µ1)

β2
+
c(µ2)− c(µ1)

β
+K12)

+
m+

1 −m−1
m+

1

(
h

β
+ U)e(m+

1 +m−1 )b], (31)

where

det(x) =

∣∣∣∣∣∣∣
ψ1(x)− m−1

m+
1

ϕ1(x) −ψ2(x)

ψ
′
1(x)− m−1

m+
1

ϕ
′
1(x) −ψ′2(x)

∣∣∣∣∣∣∣ , for x ∈ (0,∞). (32)

2.6 Optimal policy and optimal parameters

Theorem 2.4.1 suggests the following strategy for obtaining the optimal policy. We

conjecture that the optimal policy is of the control band form policy. Therefore, the

first task is to find the optimal policy among all control band policies. We denote

this optimal control band policy by Φ∗ = {a∗, b∗} with the expected total discounted

cost

H1(x) := DC(x, µ1,Φ
∗) =

 A1ϕ1(x) +B1ψ1(x) + φ1(x) for x ∈ [0, b∗),

H2(x) +K(µ1, µ2) for x ∈ [b∗,∞),
(33)

and

H2(x) := DC(x, µ2,Φ
∗) =

 H1(x) +K(µ2, µ1) for x ∈ [0, a∗],

B2ψ2(x) + φ2(x) for x ∈ (a∗,∞).
(34)

We hope that {Hi(x), i = 1, 2} can be used as the functions {f(x, µi), i = 1, 2} in

Theorem 2.4.1. To find the corresponding {f(x, µi), i = 1, 2} that satisfy all of the

conditions in Theorem 2.4.1, we derive the conditions that should be imposed on the

optimal parameters.
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Corollary 2.5.2 provides a criterion to check whether functions {Hi(x), i = 1, 2}

satisfy the smooth-pasting condition. We then prove in the following Theorem that

if B2 > 0, the functions {Hi(x), i = 1, 2} are a solution of the QVI, therefore, Φ∗ is

optimal among all feasible policies.

Theorem 2.6.1. Let 0 < a∗ < b∗ be the solution of equation (30) in corollary 2.5.2.

Furthermore, if B2 > 0, which is defined in (31), then the functions {Hi(x), i =

1, 2} defined in (33)-(34) are the optimal value functions in equation (6), and the

corresponding control band policy Φ∗ = {a∗, b∗} is optimal among all non-anticipated

policies.

Proof. If 0 ≤ a∗ < b∗ is the solution of equation (30), then by corollary

2.5.2, the functions {Hi(x), i = 1, 2} defined in equations (33) -(34) are in

C1([0,∞); [0,∞))
⋂
C2([0,∞)\N ; [0,∞)) where N is a finite subset of [0,∞). More-

over, {H ′i(x), i = 1, 2} are bounded in [0,∞) with H ′1(0) = −U .

To prove ΦD is the QVI-control associated with {Hi(x), i = 1, 2}, we need to show

L1H1(x) + c(µ1) + hx = 0, for x ∈ [0, b∗),

H2(x) +K(µ1, µ2) > H1(x), for x ∈ [0, b∗), (35)

and

L2H2(x) + c(µ2) + hx = 0, for x ∈ (a∗,∞),

H1(x) +Kµ2, µ1) > H2(x), for x ∈ (a∗,∞). (36)

According to the definition of {Hi(x), i = 1, 2}, the above conditions are equivalent

to the following inequalities

g12(x) = H1(x)−H2(x)−K(µ1, µ2) < 0, for x ∈ (a∗, b∗),

g21(x) = H2(x)−H1(x)−K(µ2, µ1) < 0, for x ∈ (a∗, b∗).
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Since

g12(a∗) = H1(a∗)−H2(a∗)−K(µ1, µ2) = −K(µ2, µ1)−K(µ1, µ2) < 0,

g12(b∗) = H1(b∗)−H2(b∗)−K(µ1, µ2) = 0,

and

g21(a∗) = H2(a∗)−H1(a∗)−K(µ2, µ1) = 0,

g21(b∗) = H2(b∗)−H1(b∗)−K(µ2, µ1) = −K(µ1, µ2)−K(µ2, µ1) < 0,

then the inequality (35) (or, (36)) holds automatically if we can show g12(x) (or,

g21(x)) is monotonically increasing (or, decreasing) in (a∗, b∗), which is equivalent to

g′12(x) > 0 (or, g′21(x) < 0) for all x ∈ (a∗, b∗). Meanwhile,

g′12(x) = −g′21(x), for x ∈ (a∗, b∗)

implies that we only need to show

g′12(x) < 0, for x ∈ (a∗, b∗).

As {Hi(x), i = 1, 2} are C1, we get

H ′1(a∗) = H ′2(a∗), H ′1(b∗) = H ′2(b∗)

which implies

g′21(a∗) = −g′21(b∗) = 0.

Therefore, g′21(x) < 0 for all x ∈ (a∗, b∗), as required, provided that g′21(x) can not

attain nonnegative maximum in (a, b). This is indeed the case if we show

L1g
′
21(x) > 0, for x ∈ (a∗, b∗), (37)

and then appeal to the maximum principle. Simple calculation shows that

L1g
′
21(x) = B2m

2
2(µ1 − µ2)em

−
2 x.
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Therefore, the condition B2 > 0 implies that the inequality (37) holds. Now functions

{Hi(x), i = 1, 2} satisfy all of the conditions in Theorem 2.4.1. Hence, {Hi(x), i =

1, 2} are the optimal value functions in equation (6), and the corresponding control

band policy Φ∗ = {a∗, b∗} is optimal among all non-anticipated policies.

In order to apply Theorem 2.6.1, one needs to verify if the corresponding alge-

braic equation (30) admits solutions, and B2 > 0. The former one is easy to check

numerically, as shown in the next section. The remainder of this section will focus on

checking the condition of B2 > 0.

Lemma 2.6.2. For any x > 0, det(x) > 0, where det(x) is defined in (32).

Proof. According to equation (32), det(x) > 0 is equivalent to

e(m+
1 −m

−
1 )x >

m+
1 (m−1 −m−2 )

m−1 (m+
1 −m−2 )

.

1. m−1 > m−2 .

We have

e(m+
1 −m

−
1 )x > 0 >

m+
1 (m−1 −m−2 )

m−1 (m+
1 −m−2 )

.

2. m−1 > m−2 .

Since

m+
1 ·m−1 −m−2 ·m−1 < m+

1 ·m−1 −m−2 ·m+
1 ≤ 0,

then we have

e(m+
1 −m

−
1 )x > 1 >

m+
1 (m−1 −m−2 )

m−1 (m+
1 −m−2 )

.

Therefore, we conclude that det(x) > 0 for x > 0.

Corollary 2.6.3. Let 0 < a∗ < b∗ be the solution of equation (30) in corollary 2.5.2

which satisfies

m−1 (em
+
1 a
∗ − em

−
1 a
∗
)

(
h(µ2 − µ1)

β2
+
c(µ2)− c(µ1)

β
−K21

)
+
m+

1 −m−1
m+

1

(
h

β
+ U

)
e(m+

1 +m−1 )a∗ > 0, (38)
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or

m−1 (em
+
1 b
∗ − em

−
1 b
∗
)

(
h(µ2 − µ1)

β2
+
c(µ2)− c(µ1)

β
+K12

)
+
m+

1 −m−1
m+

1

(
h

β
+ U

)
e(m+

1 +m−1 )b∗ > 0, (39)

then the functions {Hi(x), i = 1, 2} defined in (33)-(34) are the optimal value func-

tions in equation (6), and the corresponding control band policy Φ∗ = {a∗, b∗} is

optimal among all non-anticipated policies.

Proof. The proof is just the application of Theorem 2.6.1 and Lemma 2.6.2.

Remark 3. In order to apply Corollary 2.6.3, one needs to evaluate if the corre-

sponding algebraic equations (30) admit solutions. This is easy to verify numerically,

as shown in Section 2.7.

2.7 Numerical Results

In this section, we provide numerical examples illustrating the optimality of the drift

control policy as well as sensitivity analysis. In the first part, we validate the optimal-

ity of the drift control policy by comparing its cost function with that of a suboptimal

policy. In the second part, we do the sensitivity analysis of the optimal costs and the

threshold levels with respect to different model parameters.

2.7.1 Optimal Cost Comparison

As mentioned in [2], a martingale approach was exploited to derive a closed-form

expression for the cost function for the threshold type policies. Specifically, the model

in [2] assume that at time 0 the reserve level is a and the drift is γ0. The drift is

switched to γ1 the first time reserves hit level b. The drift is controlled back to γ0

as soon as reserves hit level a again, and so forth. The model also assumes that the

cost of holding $1 of reserves per unit of time is h, and the cost per $1 of regulation
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Figure 3: The difference between c∗(β) and V1(am) for different parameters
h, U,K(µ1, µ2), and K(µ2, µ1) in two drift case
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at the boundary 0 is k. A cost π1 is incurred every time the drift is switched from γ0

to γ1, and a cost π0 is incurred when the drift is switched from γ1 to γ0.

Notations (k, π0, π1, γ0, γ1) in [2] correspond to notations

(U,K(µ2, µ1), K(µ1, µ2), µ1, µ2) in our problem formulation.

For each set of parameters h, k, π0, π1, σ, [2] obtains an analytic solution for the

cost function

C(β, a, b, γ0, γ1) = h
Ea
[∫ T0

0
e−βtR(t) dt

]
+ θ0(β)Eb

[∫ T0
0
e−βtR(t) dt

]
1− θ0(β)θ1(β)

+ k
Ea
[∫ T0

0
e−βt dL(t)

]
1− θ0(β)θ1(β)

+
π1θ0(β) + π0θ0(β)θ1(β)

1− θ0(β)θ1(β)
,

where θ0(β) = Ea
[
e−βT0

]
, θ1(β) = Eb

[
e−βT1

]
, and Ea[·] = E[·|R(0) = z]. The vector

of triggers and drifts (am, bm, γ
∗
0 , γ

∗
1) that minimizes the total discounted cost

C∗(β) = arg min
(a,b,γ0,γ1)

C(β, a, b, γ0, γ1) = C(β, am, bm, γ
∗
0 , γ

∗
1)

are numerically computed.

We then substitute

(γ∗0 , γ
∗
1 , h, k, π0, π1, σ),

which correspond to

(µ∗1, µ
∗
2, h, U,K(µ2, µ1), K(µ1, µ2), σ)

in our problem, into our optimal control problem with c(µ1) = c(µ2) = 0, and we

obtain the optimal value function

Vi(x) = arg min
φ∈Φ

DC(x, µ∗i , φ) ≤ DC(x, µ∗i , φ), ∀φ ∈ Φ, i = 1, 2.

with the optimal control band policy {a∗, b∗}.

From the construction of policy space in [2], it is expected that their optimal

policy is suboptimal for our problem due to the fact that the policy space in their

problem is a constrained subset of the policy space in our problem: it contains all
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the control band policies with lower threshold being equal to the starting point of the

reserves. Therefore, by setting the starting point and initial drift of reserves as am

and µ∗1, we have

V1(am) ≤ C∗(β).

The following set of parameters is chosen as our baseline.

(h, U, c1, c2, c3, K(µ1, µ2), K(µ1, µ3), K(µ2, µ3), K(µ2, µ1), K(µ3, µ2), K(µ3, µ1), β, σ)

=(0.07, 0.4, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.04, 1).

We compare our closed-form solution with the martingale approach solution, when

one of the model parameters varies. The difference between V1(am) and C∗(β) in

Figure 3 validates the conclusion that the drift control policy is optimal among all of

the non-anticipated policies.

2.7.2 Sensitivity Analysis

Here we do the sensitivity analysis of the optimal costs (with initial drift µ1 and

starting point x = 0.2) and the threshold levels with respect to h, U,K(µ1, µ2), and

K(µ2, µ1), when one of the parameters varies. Here, the drift rates are fixed as

(µ1, µ2) = (0.515916,−1.25482).

We first vary h and keep all other parameters fixed. The resulting optimal cost V1(0.2)

and the threshold levels (a∗, b∗) are listed in Table 1. The optimal cost increases, while

both threshold levels a∗ and b∗ decrease with the increase in h. This shows that a

larger h leads to a higher expected cost, and therefore as lower threshold levels.

We then vary U . The result in Table 2 implies that the optimal cost and the

threshold levels increase if U increases. Intuitively, we might expect the reserve

authority to react to higher regulation cost by raising the lower threshold level and

perhaps raising the upper threshold levels as well.
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We finally vary K(µ1, µ2) and K(µ2, µ1). Table 3 and Table 4 suggest that as

switching costs increase, the lower threshold level a∗ decreases while the upper thresh-

old level b∗ increases: this is because higher switching drift cost needs to be compen-

sated by a larger gap between the upper and the lower threshold levels.
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Table 1: Dependency on h
h V1(0.2) a∗ b∗

0.01 1.5189 1.3194 6.3986
0.03 2.7793 0.8570 4.1437
0.05 3.7286 0.6665 3.3842
0.07 4.5379 0.5516 2.9567
0.09 5.2616 0.4717 2.6698
0.11 5.9256 0.4117 2.4588
0.13 6.5450 0.3645 2.2946
0.15 7.1294 0.3260 2.1617
0.20 8.4758 0.2541 1.9147
0.30 10.8463 0.1652 1.6089
0.50 14.8890 0.0735 1.2857

Table 2: Dependency on U
U V1(0.2) a∗ b∗

0.20 3.9397 0.2416 2.6467
0.25 4.1084 0.3315 2.7366
0.30 4.2624 0.4119 2.8170
0.35 4.4049 0.4848 2.8899
0.40 4.5379 0.5516 2.9567
0.45 4.6630 0.6132 3.0183
0.50 4.7814 0.6704 3.0755
0.55 4.8941 0.7238 3.1289
0.60 5.0019 0.7740 3.1791

Table 3: Dependency on K(µ1, µ2)

K(µ1, µ2) V1(0.2) a∗ b∗

0.03 4.2065 0.6281 2.6903
0.05 4.3069 0.6030 2.7726
0.07 4.4023 0.5808 2.8495
0.10 4.5379 0.5516 2.9567
0.15 4.7476 0.5110 3.1188
0.20 4.9415 0.4776 3.2656
0.25 5.1229 0.4493 3.4011
0.30 5.2942 0.4247 3.5276

2.8 Explicit solution in the three drifts case

In this section, we consider the case where the number of drifts is k = 3 for a one

dimensional state process in [0,∞) as in the previous section. The drift control
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Table 4: Dependency on K(µ2, µ1)

K(µ2, µ1) V1(0.2) a∗ b∗

0.03 4.2292 0.6305 2.6934
0.05 4.3230 0.6047 2.7748
0.07 4.4119 0.5818 2.8508
0.10 4.5379 0.5516 2.9567
0.15 4.7317 0.5094 3.1166
0.20 4.9100 0.4745 3.2611
0.25 5.0760 0.4446 3.3943
0.30 5.2321 0.4186 3.5184

problem with only two drifts, the upward and downward drifts of the reserve, is too

simple to characterize the real dynamics of the reserves accumulation. Normally, the

central bank can adopt more than two types of fiscal policy to change the reserve

accumulation: neutral fiscal policy, expansionary fiscal policy, and contractionary

fiscal policy. Therefore, we extend the problem to a three drift control case with

drifts µ1 ≥ 0, µ2 = 0, and µ3 < 0, which is more realistic than the two-drift model for

decision making for reserve authorities. As before, the control policies are restricted

to drift controls specified in (5). A corresponding drift control band policy is defined

by five parameters y12, y13, x21, y23, x31, x32 with 0 < x21 = x31 < x32 < y12 < y13 =

y23 < ∞. Under the policy, if the current drift is µ1, the reserve authority changes

the drift to µ2 or µ3 when the reserve level rises to y12 or y13; if the current drift is

µ2, the reserve authority changes the drift to µ1 or µ3 when the reserve level falls to

x21 or rises to y23; if the current drift is µ3, the reserve authority changes the drift to

µ2 or µ1 when the reserve level falls to x32 or x31. Given a control band policy ΦD,

we provide a method for evaluating the cost of the policy.

2.8.1 Control band policies

Fixing a control band policy ΦD = {y12, y13, x21, y23, x31, x32} with

0 < x21 = x31 < x32 < y12 < y13 = y23 <∞,
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Figure 4: The continuation and intervention regions in the three drift case

the continuation region and the intervention region is explicitly characterized by:

C1 = [0, y12), S12 = [y12, y13), S13 = [y13,∞).

C2 = (x21, y23), S21 = [0, x21], S23 = [y23,∞).

C3 = (x32,∞), S31 = [0, x31], S32 = (x31, x32].

In the following theorem, we obtain an expression for the value function

DC(x, µi,Φ
D), the expected total discounted cost under a control band policy when

the initial reserve level and initial drift are x and µi, respectively.

Theorem 2.8.1. Assume that we fix a control band policy ΦD =

{y12, y13, x21, y23, x32, x31} with 0 < x21 = x31 < x32 < y12 < y13 = y23 < ∞.

If there exist twice continuously differentiable functions w1 : [0, y12) → R,
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w2 : (x21, y23)→ R, and w3 : (x32,∞)→ R that satisfy

L1w1(x) + hx+ c(µ1) = 0, x ∈ [0, y12) (40)

L2w2(x) + hx+ c(µ2) = 0, x ∈ (x21, y23) (41)

L2w3(x) + hx+ c(µ3) = 0, x ∈ (x32,∞) (42)

w′3(x) is bounded in (x32,∞), (43)

with boundary conditions

w1(y12) = w2(y12) +K(µ1, µ2), (44)

w2(x21) = w1(x21) +K(µ2, µ1), (45)

w1(y13) = w3(y13) +K(µ1, µ3), (46)

w3(x31) = w1(x31) +K(µ3, µ1), (47)

w2(y23) = w3(y23) +K(µ2, µ3), (48)

w3(x32) = w2(x32) +K(µ3, µ2), (49)

w′1(y12) = w′2(y12), (50)

w′2(x21) = w′1(x21), (51)

w′1(y13) = w′3(y13), (52)

w′3(x31) = w′1(x31), (53)

w′2(y23) = w′3(y23), (54)

w′3(x32) = w′2(x32), (55)

w′1(0) = −U. (56)

then the expected total discounted cost is given by

DC(x, µ1,Φ
D) =


w1(x) for x ∈ [0, y12),

w2(x) +K(µ1, µ2) for x ∈ [y12, y13),

w3(x) +K(µ1, µ3) for x ∈ [y13,∞),
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DC(x, µ2,Φ
D) =


w1(x) +K(µ2, µ1) for x ∈ [0, x21],

w2(x) for x ∈ (x21, y23),

w3(x) +K(µ2, µ3) for x ∈ [y23,∞),

and

DC(x, µ3,Φ
D) =


w1(x) +K(µ3, µ1) for x ∈ [0, x31],

w2(x) +K(µ3, µ2) for x ∈ (x31, x32],

w3(x) for x ∈ (x32,∞),

where {wi(x), i = 1, 2, 3} are defined in (40)-(42).

Same as in Remark 2 in the previous section, we have

wi(x) = Aiϕi(x) +Biψi(x) + φi(x), i = 1, 2, 3.

where Ai, Bi are real numbers,

ϕi(x) = em
+
i x, ψi(x) = em

−
i x, i = 1, 2, 3.

and

φi(x) =
h

β
x+

hµi
β2

+
c(µi)

β
, i = 1, 2, 3.

The following corollary explicitly express the smooth-pasting condition as a system

of 13 equations and nine unknowns.

Corollary 2.8.2. For a given control band policy ΦD = {y12, y13, x21, y23, x32, x31}

with 0 < x21 = x31 < x32 < y12 < y13 = y23 < ∞. If we can find A1, B1, A2, B2, B3
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which satisfy the following system of equations

A1ϕ1(y12) +B1ψ1(y12) + φ1(y12) = A2ϕ2(y12) +B2ψ2(y12) + φ2(y12) +K(µ1, µ2),

(57)

A2ϕ1(x21) +B2ψ2(x21) + φ2(x21) = A1ϕ1(x21) +B1ψ1(x21) + φ1(x21) +K(µ2, µ1),

(58)

A1ϕ1(y13) +B1ψ1(y13) + φ1(y13) = B3ψ3(y13) + φ3(y13) +K(µ1, µ3), (59)

B3ψ3(x31) + φ3(x31) = A1ϕ1(x31) +B1ψ1(x31) + φ1(x31) +K(µ3, µ1),

(60)

A2ϕ2(y23) +B2ψ2(y23) + φ2(y23) = B3ψ3(y23) + φ3(y23) +K(µ2, µ3), (61)

B3ψ3(x32) + φ3(x32) = A2ϕ2(x32) +B2ψ2(x32) + φ2(x32) +K(µ3, µ2),

(62)

A1ϕ
′
1(y12) +B1ψ

′
1(y12) + φ′1(y12) = A2ϕ

′
2(y12) +B2ψ

′
2(y12) + φ′2(y12), (63)

A2ϕ
′
2(x21) +B2ψ

′
2(x21) + φ′2(x21) = A1ϕ

′
1(x21) +B1ψ

′
1(x21) + φ′1(x21), (64)

A1ϕ
′
1(y13) +B1ψ

′
1(y13) + φ′1(y13) = B3ψ

′
3(y13) + φ′3(y13), (65)

B3ψ
′
3(x31) + φ′3(x31) = A1ϕ

′
1(x31) +B1ψ

′
1(x31) + φ′1(x31), (66)

A2ϕ
′
2(y23) +B2ψ

′
2(y23) + φ′2(y23) = B3ψ

′
3(y23) + φ′3(y23), (67)

B3ψ
′
3(x32) + φ′3(x32) = A2ϕ

′
2(x32) +B2ψ

′
2(x32) + φ′2(x32), (68)

A1ϕ
′
1(0) +B1ψ

′
1(0) + φ′1(0) = −U. (69)

Then the following functions

H1(x) =


A1ϕ1(x) +B1ψ1(x) + φ1(x) for x ∈ [0, y12),

A2ϕ2(x) +B2ψ2(x) + φ2(x) +K(µ1, µ2) for x ∈ [y12, y23),

B3ψ3(x) + φ3(x) +K(µ1, µ3) for x ∈ [y23,∞),
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H2(x) =


A1ϕ1(x) +B1ψ1(x) + φ1(x) +K(µ2, µ1) for x ∈ [0, x21],

A2ϕ2(x) +B2ψ2(x) + φ2(x) for x ∈ (x21, y23),

B3ψ3(x) + φ3(x) +K(µ2, µ3) for x ∈ [y23,∞),

and

H3(x) =


A1ϕ1(x) +B1ψ1(x) + φ1(x) +K(µ3, µ1) for x ∈ [0, x31],

A2ϕ2(x) +B2ψ2(x) + φ2(x) +K(µ3, µ2) for x ∈ (x31, x32],

B3ψ3(x) + φ3(x) for x ∈ [x32,∞),

are the expected total discounted cost corresponding to the given control band

policy ΦD = {y12, y13, x21, y23, x32, x31}. Moreover, {Hi(x), i = 1, 2, 3} are in

C1([0,∞); [0,∞))
⋂
C2([0,∞) \ N ; [0,∞)) where N is a finite subset of [0,∞), and

{H ′i(x), i = 1, 2, 3} are bounded in [0,∞).

Proof. The proof is similar to the proof of Corollary 2.5.2.

2.8.2 Optimal policy and optimal parameters

Theorem 2.4.1 suggests the following strategy for obtaining the optimal policy. We

conjecture that the optimal policy is of control band form policy. Therefore, we try

to find an optimal policy among all control band policies. We denote this optimal

control band policy by Φ∗ = {y∗12, y
∗
13, x

∗
21, y

∗
23, x

∗
32, x

∗
31} with 0 < x∗21 = x∗31 < x∗32 <

y∗12 < y∗13 = y∗23 <∞, and the corresponding expected total discounted cost

H1(x) := DC(x, µ1,Φ
∗) =


A1ϕ1(x) +B1ψ1(x) + φ1(x) for x ∈ [0, y∗12),

H2(x) +K(µ1, µ2) for x ∈ [y∗12, y
∗
13),

H3(x) +K(µ1, µ3) for x ∈ [y∗13,∞),

(70)

H2(x) := DC(x, µ2,Φ
∗) =


H1(x) +K(µ2, µ1) for x ∈ [0, x∗21],

A2ϕ2(x) +B2ψ2(x) + φ2(x) for x ∈ (x∗21, y
∗
23),

H3(x) +K(µ2, µ3) for x ∈ [y∗23,∞),

(71)
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and

H3(x) := DC(x, µ3,Φ
∗) =


H1(x) +K(µ3, µ1) for x ∈ [0, x∗31],

H2(x) +K(µ3, µ2) for x ∈ (x∗31, x
∗
32],

B3ψ3(x) + φ3(x) for x ∈ (x∗32,∞),

(72)

We hope that {Hi(x), i = 1, 2, 3} can be used as the functions {f(x, µi), i = 1, 2, 3}

in Theorem 2.4.1. To find the corresponding {f(x, µi), i = 1, 2, 3} that satisfy all of

the conditions in Theorem 2.4.1, we provide the conditions that should be imposed

on the optimal parameters.

Corollary 2.8.2 provides a criterion to check whether functions {Hi(x), i = 1, 2, 3}

satisfy the smooth-pasting condition. We then prove in the following theorem that

if B3 > 0, and A2(m+
2 )2em

+
2 x + B2(m−2 )2em

−
2 x > 0, x ∈ (x∗21, y

∗
12), the functions

{Hi(x), i = 1, 2, 3} is a solution of the QVI, therefore, Φ∗ is optimal among all feasible

policies.

Theorem 2.8.3. Let 0 < x∗21 = x∗31 < x∗32 < y∗12 < y∗13 = y∗23 be the solution of

equations (57)-(69) in corollary 2.8.2. Furthermore, if

B3 > 0 and A2(m+
2 )2em

+
2 x +B2(m−2 )2em

−
2 x > 0 for x ∈ (x∗21, y

∗
12). (73)

Then the functions {Hi(x), i = 1, 2, 3} defined in (70)-(72) are the optimal

value functions in equation (6), and the corresponding control band policy Φ∗ =

{y∗12, y
∗
13, x

∗
21, y

∗
23, x

∗
32, x

∗
31} is optimal among all non-anticipated policies.

Proof. If 0 < x∗21 = x∗31 < x∗32 < y∗12 < y∗13 = y∗23 is the solution of equations (57)-(69),

then by corollary 2.8.2, the functions {Hi(x), i = 1, 2, 3} defined in equations are in

C1([0,∞); [0,∞))
⋂
C2([0,∞) \ N ; [0,∞)) where N is a finite subset of [0,∞). And

{H ′i(x), i = 1, 2, 3} are bounded in [0,∞) with H ′1(0) = −U .

To prove ΦD is the QVI-control associated with {Hi(x), i = 1, 2, 3}, we need to
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show

L1H1(x) + c(µ1) + hx = 0, for x ∈ [0, y∗12)

H1(x) < min{H2(x) +K(µ1, µ2), H3(x) +K(µ1, µ3)} for x ∈ [0, y∗12)

H1(x) = H2(x) +K(µ1, µ2) ≤ H3(x) +K(µ1, µ3), for x ∈ [y∗12, y
∗
13)

H1(x) = H3(x) +K(µ1, µ3) ≤ H2(x) +K(µ1, µ2), for x ∈ [y∗13,∞) (74)

L2H2(x) + c(µ2) + hx = 0, for x ∈ [x∗21, y
∗
13)

H2(x) < min{H1(x) +K(µ2, µ1), H3(x) +K(µ2, µ3)} for x ∈ [x∗21, y
∗
13)

H2(x) = H1(x) +K(µ2, µ1) ≤ H3(x) +K(µ2, µ3), for x ∈ [0, x∗21)

H2(x) = H3(x) +K(µ2, µ3) ≤ H1(x) +K(µ2, µ1), for x ∈ [y∗13,∞) (75)

L3H3(x) + c(µ3) + hx = 0, for x ∈ [x∗32,∞)

H3(x) < min{H1(x) +K(µ3, µ1), H2(x) +K(µ3, µ2)} for x ∈ [x∗32,∞)

H3(x) = H1(x) +K(µ3, µ1) ≤ H2(x) +K(µ3, µ2), for x ∈ [0, x∗21)

H3(x) = H2(x) +K(µ3, µ2) ≤ H1(x) +K(µ3, µ1), for x ∈ (x∗21, x
∗
32) (76)

According to the definition of {Hi(x), i = 1, 2, 3}, the above conditions (74)-(76) are

satisfied if we can show

w1(x) < w2(x) +K(µ1, µ2), for x ∈ [x∗21, y
∗
12)

w2(x) +K(µ1, µ2) ≤ w3(x) +K(µ1, µ3), for x ∈ [y∗12, y
∗
13) (77)

w2(x) < w1(x) +K(µ2, µ1), for x ∈ [x∗21, y
∗
12)

w2(x) ≤ w3(x) +K(µ2, µ3), for x ∈ [x∗32, y
∗
13) (78)
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w3(x) ≤ w2(x) +K(µ3, µ2), for x ∈ [x∗32, y
∗
13)

w2(x) +K(µ3, µ2) ≤ w1(x) +K(µ3, µ1), for x ∈ [x∗21, y
∗
12) (79)

In the following, we will show if

B3 > 0 and A2(m+
2 )2em

+
2 x +B2(m−2 )2em

−
2 x > 0 for x ∈ (x∗21, y

∗
12),

then (79) holds. The other two can be proved in a similar way.

g32(x∗32) = w3(x∗32)− w2(x∗32)−K(µ3, µ2) = 0,

g32(y∗13) = w3(y∗13)− w2(y∗13)−K(µ3, µ2) = −K(µ2, µ3)−K(µ3, µ2) < 0,

If we can show g32(x) is monotonically decreasing in (x∗32, y
∗
13), in other words, g′32(x) <

0 for all x ∈ (x∗32, y
∗
13), then

w3(x) ≤ w2(x) +K(µ3, µ2), for x ∈ [x∗32, y
∗
13)

holds automatically. By similar argument as that in the proof of Theorem 2.6.1, this

is indeed the case if we show

L2g
′
32(x) > 0, for x ∈ (x∗32, y

∗
13),

and then appeal to the maximum principle. Simple calculation shows that

L2g
′
32(x) = B3.

Therefore, the condition B3 > 0 implies that

w3(x) ≤ w2(x) +K(µ3, µ2), for x ∈ [x∗32, y
∗
13).

Similarly,

g21(x∗31) = w2(x∗31) +K(µ3, µ2)− w1(x∗31)−K(µ3, µ1) = 0,

g21(y∗12) = w2(y∗12) +K(µ3, µ2)− w1(y∗12)−K(µ3, µ1)

= K(µ3, µ2)−K(µ1, µ2)−K(µ3, µ1) < 0,
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We only need to show

L1g
′
21(x) > 0, for x ∈ (x∗31, y

∗
12),

which is equivalent to

(µ1 − µ2)[A2(m+
2 )2em

+
2 x +B2(m−2 )2em

−
2 x] > 0 for x ∈ (x∗31, y

∗
12).

Remark 4. In order to apply Theorem 2.8.3, one needs to evaluate if the correspond-

ing algebraic equations (57)-(69) admit solutions. This is easy to verify numerically,

as shown in Section 2.8.3.

2.8.3 Numerical Results

In this section, we provide numerical examples illustrating the optimality of the drift

control policy as well as sensitivity analysis. In the first part, similar to the two-

drift case, a suboptimal value function constructed based on martingale approach is

used as a benchmark. In the Appendix A.0.4, we derive the closed-form expression

(146) for the cost function of the threshold type stopping rules under the three drift

assumption. Specifically, for each set of parameters

(h, U,K(µ1, µ2), K(µ1, µ3), K(µ2, µ3), K(µ2, µ1), K(µ3, µ2), K(µ3, µ1), β, σ),

we obtain an analytic solution for the cost function in (146). We find numerically

the vector of triggers and drifts (xm21, y
m
12, y

m
23, x

m
32, µ

∗
1, µ

∗
2, µ

∗
3) that minimizes the total

discounted cost

M∗(β) = arg min
(x21,y12,y23,x32,µ1,µ2,µ3)

M(β, x21, y12, y23, x32, µ1, µ2, µ3)

= M(β, xm21, y
m
12, y

m
23, x

m
32, µ

∗
1, µ

∗
2, µ

∗
3).

We then substitute

(µ∗1, µ
∗
2, µ

∗
3, h, U,K(µ1, µ2), K(µ1, µ3), K(µ2, µ3), K(µ2, µ1), K(µ3, µ2), K(µ3, µ1), β, σ),

47



into our optimal control problem with c(µ1) = c(µ2) = c(µ3) = 0, and we obtain the

optimal value function

Vi(x) = arg min
φ∈Φ

DC(x, µ∗i , φ) ≤ DC(x, µ∗i , φ), ∀φ ∈ Φ, i = 1, 2, 3.

with the optimal control band policy 0 < x∗21 = x∗31 < x∗32 < y∗12 < y∗13 = y∗23 <∞.

From the construction of policy space in Appendix A.0.4, it is expected that their

optimal policy is suboptimal for our problem due to the fact that the policy space in

their problem is a constrained subset of the policy space in our problem: it contains

all the control band policies with lower threshold x21 being equal to the starting point

of the reserves. Therefore, by setting the starting point and initial drift of reserves as

xm21 and µ∗1, we have

V1(xm21) ≤M∗(β).

We compare our closed-form solution with the martingale approach solution, when

one of the parameters varies. The following set of parameters is chosen as our baseline.

(h, U, c1, c2, c3, K(µ1, µ2), K(µ1, µ3), K(µ2, µ3), K(µ2, µ1), K(µ3, µ2), K(µ3, µ1), β, σ)

=(0.07, 0.4, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.04, 1).

The difference between V1(xm21) and M∗(β) in Figure 5 validates the conclusion that

the drift control policy is optimal among all of the non-anticipated policies.

In the second part, we do the sensitivity analysis of the optimal costs (with ini-

tial drift µ1 and starting point x = 0.2) and the threshold levels with respect to

h, U,K(µ1, µ2), and K(µ2, µ3), when one of the parameters varies. Here, the drift

rates are fixed as

(µ1, µ2, µ3) = (0.739756, 0,−1.01397).

We first vary h and keep all other parameters fixed. The resulting optimal cost

and threshold levels (y∗12, y
∗
13, y

∗
23, x

∗
21, x

∗
31, x

∗
32) are listed in Table 5. The optimal cost
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Figure 5: The difference between M∗(β) and V1(xm21) for different parameters
h, U,K(µ1, µ2), and K(µ2, µ3) in three drift case
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increases while all the threshold levels decrease with the increase in h. This shows

that a larger h leads to a higher expected cost, and therefore to lower threshold levels.

We then vary U . The result in Table 6 implies that the optimal cost and all

threshold levels increase if U increases. Intuitively, we might expect the reserve

authority to react to higher regulation cost by raising the lower threshold levels and

perhaps raising the upper threshold levels as well.

We finally vary K(µ1, µ2) and K(µ2, µ3). Table 7 and Table 8 suggest that as

K(µ1, µ2) (or, K(µ2, µ3)) increases, the lower threshold level x∗21 (or, x∗32) decreases

while the upper threshold level y∗12 (or, y∗23) increases. This is because higher switching

drift cost needs to be compensated for by a larger gap between the upper and the

lower threshold levels.

Table 5: Dependency on h

h y∗12 y∗13 x∗21 y∗23 x∗31 x∗32 V1(0.2)
0.06 2.0894 3.5112 0.1088 3.5112 0.1088 0.9884 4.1436
0.07 1.9874 3.2993 0.0816 3.2993 0.0816 0.9067 4.5645
0.08 1.9024 3.1249 0.0590 3.1249 0.059 0.8393 4.9644
0.09 1.8299 2.9776 0.0398 2.9776 0.0398 0.7823 5.3468
0.10 1.7669 2.8510 0.0233 2.8510 0.0233 0.7332 5.7144
0.11 1.7114 2.7404 0.0088 2.7404 0.0088 0.6903 6.0692

Table 6: Dependency on U

U y∗12 y∗13 x∗21 y∗23 x∗31 x∗32 V1(0.2)
0.33 1.9099 3.2218 0.0041 3.2218 0.0041 0.8292 4.4124
0.35 1.9331 3.2450 0.0273 3.2450 0.0273 0.8524 4.4575
0.37 1.9554 3.2673 0.0496 3.2673 0.0496 0.8747 4.5645
0.40 1.9874 3.2993 0.0816 3.2993 0.0816 0.9067 4.6252
0.43 2.0178 3.3298 0.1120 3.3298 0.1120 0.9371 4.6252
0.45 2.0373 3.3492 0.1315 3.3492 0.1315 0.9566 4.6644

2.9 Algorithm for an arbitrary number of drifts

In this section, we are going to develop an algorithm to systematically solve the

drift control problem with an arbitrary number of drifts. Consider the case where
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Table 7: Dependency on K(µ1, µ2)

K(µ1, µ2) y∗12 y∗13 x∗21 y∗23 x∗31 x∗32 V1(0.2)
0.02 1.6635 3.3041 0.2181 3.3041 0.2181 0.7083 4.3311
0.04 1.7547 3.3096 0.1750 3.3096 0.1750 0.7619 4.3986
0.06 1.8374 3.3102 0.1392 3.3102 0.1392 0.8122 4.4591
0.08 1.9143 3.3066 0.1085 3.3066 0.1085 0.8603 4.5141
0.10 1.9874 3.2993 0.0816 3.2993 0.0816 0.9067 4.5645
0.12 2.0580 3.2886 0.0577 3.2886 0.0577 0.9520 4.6110
0.14 2.1269 3.2744 0.0363 3.2744 0.0363 0.9966 4.6540
0.16 2.1952 3.2570 0.0168 3.2570 0.0168 1.0407 4.6937

Table 8: Dependency on K(µ2, µ3)

K(µ2, µ3) y∗12 y∗13 x∗21 y∗23 x∗31 x∗32 V1(0.2)
0.02 2.0505 3.1059 0.0919 3.1059 0.0919 0.9547 4.4555
0.04 2.0328 3.1576 0.0891 3.1576 0.0891 0.9414 4.4845
0.06 2.0165 3.2069 0.0865 3.2069 0.0865 0.9290 4.5122
0.08 2.0014 3.2540 0.0840 3.2540 0.0840 0.9175 4.5389
0.10 1.9874 3.2993 0.0816 3.2993 0.0816 0.9067 4.5645
0.12 1.9743 3.3430 0.0794 3.3430 0.0794 0.8966 4.5892
0.14 1.9620 3.3851 0.0773 3.3851 0.0773 0.8871 4.6131
0.16 1.9504 3.4259 0.0753 3.4259 0.0753 0.8781 4.6363
0.18 1.9395 3.4654 0.0733 3.4654 0.0733 0.8695 4.6587

the number of drifts is n for a one-dimensional state process in [0,∞). We first

assume that µ1 > µ2 > · · · > µn, and restrict our feasible policies to non-

anticipated policy as in (5). A drift control band policy is defined by parameters

({xi h}h<i,i=1,··· ,n, {yi j}i<j,i=1,··· ,n). Under the policy, if the current drift is µi, the

reserve authority changes the drift to µh(h < i) or µj(i < j) when the reserve level

falls to xi h or rises to yi j. Given a control band policy, we first provide a method

for performance evaluation, and then prove that under certain conditions, the control

band policy is optimal among all the non-anticipated policies. Finally, we generalize

an algorithm to solve the drift control problem systematically.
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2.9.1 Control band policies

Fixing a control band policy ΦD = ({xi h}h<i,i=1,··· ,n, {yi j}i<j,i=1,··· ,n), the continua-

tion region and the intervention region of drift µi, i = 1, . . . , n are explicitly charac-

terized by:

Ci = (xi i−1, yi i+1),

Sij = [yi j, yi j+1), i < j.

Sih = (xi h−1, xi h], h < i.

where

xi 0 = 0, yi n+1 =∞.

The fact that

Sij ⊂ Cj, i < j,

Sih ⊂ Ch, h < i,

implied by the triangle inequality

K(µi, µj) +K(µj, µk) > K(µi, µk)

indicates that the boundaries of the continuation and intervention region satisfy the

following condition:

xj j−1 < yi j < yi j+1 ≤ yj j+1, i < j,

xh h−1 ≤ xi h−1 < xi h < yh h+1, h < i.

In the following theorem, we obtain an expression for the value function

DC(x, µi,Φ
D), the expected total discounted cost under a control band policy when

the initial reserve level and initial drift is x and µi, respectively.
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Theorem 2.9.1. Assume that we fix a control band policy

ΦD = ({xi h}h<i,i=1,··· ,n, {yi j}i<j,i=1,··· ,n).

If there exist twice continuously differentiable functions

wi : (xi i−1, yi i+1)→ R, i = 1, 2, . . . , n,

that satisfy

Liwi(x) + hx+ c(µi) = 0, x ∈ (xi i−1, yi i+1), i = 1, 2, . . . , n,

w′n(x) is bounded in (xn n−1,∞),

with boundary conditions

wi(xi h) = wh(xi h) +K(µi, µh), i = 2, . . . , n, i > h, (80)

w
′

i(xi h) = w
′

h(xi h), i = 2, . . . , n, i > h, (81)

wi(yi j) = wj(yi j) +K(µi, µj), i = 1, . . . , n− 1, i < j, (82)

w
′

i(yi j) = w
′

j(yi j), i = 1, . . . , n− 1, i < j, (83)

w′1(0) = −U. (84)

then the expected total discounted cost is given by

DC(x, µi,Φ
D) =


wh(x) +K(µi, µh), for x ∈ (xi h−1, xi h], h < i,

wi(x), for x ∈ (xi i−1, yi i+1),

wj(x) +K(µi, µj), for x ∈ [yi j, yi j+1), i < j,

where

wi(x) = Aie
m+
i x +Bie

m−i x + φi(x), i = 1, . . . , n,

with An = 0.

Proof. The proof is similar to the proof of Theorem 2.5.1.
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The above theorem explicitly expresses the smooth-pasting condition as a system

of 2n2 − 2n + 1 equations with n2 + n − 1 variables. Let’s denote the system of

equations (80)-(84) by

{fi(s)}2n2−2n+1
i=1 = 0, i = 1, . . . , 2n(n− 1) + 1,

where the variable

s = ({xi h}h<i,i=1,··· ,n, {yi j}i<j,i=1,··· ,n, {Ai}n−1
i=1 , {Bi}ni=1).

Then

fi(s) = 0, i = 1, . . . , 2n(n− 1) + 1,

if and only if
2n(n−1)+1∑

i=1

|fi(s)|2 = 0.

The following corollary explicitly express the smooth-pasting condition as a least

square optimization problem.

Corollary 2.9.2. For a given control band policy

ΦD = ({xi h}h<i,i=1,··· ,n, {yi j}i<j,i=1,··· ,n).

If we can find {Ai}n−1
i=1 , {Bi}ni=1 such that the optimal value of the following least-square

optimization problem

Min
s

2n(n−1)+1∑
i=1

|fi(s)|2

subject to xj j−1 < yi j < yi j+1 ≤ yj j+1, i < j,

xh h−1 ≤ xi h−1 < xi h < yh h+1, h < i,

(85)

is zero, where {fi(s)}2n2−2n+1
i=1 are the equations in (80)-(84), and

s = ({xi h}h<i,i=1,··· ,n, {yi j}i<j,i=1,··· ,n, {Ai}n−1
i=1 , {Bi}ni=1),
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then the following functions

Hi(s) =


wh(x) +K(µi, µh) for x ∈ (xi h−1, xi h], h < i,

wi(x) for x ∈ (xi i−1, yi i+1),

wj(x) +K(µi, µj) for x ∈ [yi j, yi j+1), i < j,

i = 1, 2, · · · , n, are the expected total discounted cost corresponding to the given control

band policy

ΦD = ({xi h}h<i,i=1,··· ,n, {yi j}i<j,i=1,··· ,n),

where

wi(x) = Aie
m+
i x +Bie

m−i x + φi(x), i = 1, . . . , n,

with An = 0, and

({xi h}h<i,i=2,...,n, {yi j}i<j,i=1,...,n−1, {Ai}n−1
i=1 , {Bi}ni=1)

is the optimal solution of the minimization problem (85). Moreover, {Hi(x), i =

1, . . . , n} are in C1([0,∞); [0,∞))
⋂
C2([0,∞) \N ; [0,∞)) where N is a finite subset

of [0,∞), and {H ′i(x), i = 1, . . . , n} are bounded in [0,∞).

Proof. The proof is similar to the proof of Corollary 2.5.2.

2.9.2 Optimal policy and optimal parameters

Theorem 2.4.1 suggests the following strategy to obtain an optimal policy. We con-

jecture that a control band policy is optimal. Therefore, we try to find an optimal

policy among all control band policies. We denote this optimal control band policy

by

Φ∗ = ({x∗i h}h<i,i=1,··· ,n, {y∗i j}i<j,i=1,··· ,n),

with

x∗j j−1 < y∗i j < y∗i j+1 ≤ y∗j j+1, i < j,

x∗h h−1 ≤ x∗i h−1 < x∗i h < y∗h h+1, h < i,
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and the corresponding expected total discounted cost

Hi(x) := DC(x, µi,Φ
∗) =


wh(x) +K(µi, µh) for x ∈ (x∗i h−1, x

∗
i h], h < i,

wi(x) for x ∈ (x∗i i−1, y
∗
i i+1),

wj(x) +K(µi, µj) for x ∈ [y∗i j, y
∗
i j+1), i < j,

(86)

for i = 1, 2, . . . , n. We hope that {Hi(x), i = 1, 2, . . . , n} can be used as the functions

{f(x, µi), i = 1, 2, . . . , n} in Theorem 2.4.1. To find the corresponding {f(x, µi), i =

1, 2, . . . , n} that satisfy all of the conditions in Theorem 2.4.1, Corollary 2.9.2 provides

a criterion to check whether functions {Hi(x), i = 1, 2, . . . , n} satisfy the smooth-

pasting condition. Furthermore, for i = 1, . . . , n, if we can prove that

Hi(x) < min{{Hh(x) +K(µi, µh)}h<i, {Hj(x) +K(µi, µj)}i<j},

x ∈ (x∗i i−1, y
∗
i i+1), (87)

Hi(x) = Hh(x) +K(µi, µh) ≤ min{{Hg(x) +K(µi, µg)}g<i,g 6=h, {Hj(x) +K(µi, µj)}i<j},

x ∈ (x∗i h−1, x
∗
i h], h < i, (88)

Hi(x) = Hj(x) +K(µi, µj) ≤ min{{Hh(x) +K(µi, µh)}h<i, {Hk(x) +K(µi, µk)}i<k,k 6=j},

x ∈ [y∗i j, y
∗
i j+1), i < j, (89)

then the functions {Hi(x), i = 1, 2, . . . , n} are a solution of the QVI, therefore, Φ∗ is

optimal among all feasible policies.

In the remainder of this section, we are going to demonstrate how to check the

criterion in (87). The other two in (88) and (89) can be done in a similar way.

To check (87) holds, we need to prove

Hi(x) < Hh(x) +K(µi, µh), x ∈ (x∗i i−1, y
∗
i i+1) = Ci, h < i, (90)

and

Hi(x) < Hj(x) +K(µi, µj), x ∈ (x∗i i−1, y
∗
i i+1) = Ci, i < j. (91)

We only prove (90) in the following sections, (91) follows from the similar argu-

ments.
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Case 1: h = i− 1

In this case, Hi−1 can be expressed as

Hi−1(x) : = DC(x, µi−1,Φ
∗)

=


wg(x) +K(µi−1, µg) for x ∈ (x∗i−1 g−1, x

∗
i−1 g], g < i− 1.

wi−1(x) for x ∈ (x∗i−1 i−2, y
∗
i−1 i),

wj(x) +K(µi−1, µj) for x ∈ [y∗i−1 j, y
∗
i−1 j+1), j > i− 1.

with the constraint

x∗i−1 i−2 < x∗i i−1 < y∗i−1 i < y∗i−1 i+1 ≤ y∗i i+1.

Let

ĵ = max{j > i− 1 : y∗i−1 j+1 ≤ y∗i i+1},

then the inequality

Hi(x) < Hi−1(x) +K(µi, µi−1), x ∈ (x∗i i−1, y
∗
i i+1),

is equivalent to

wi(x) < wi−1(x) +K(µi, µi−1), x ∈ (x∗i i−1, y
∗
i−1 i), (92)

wi(x) < wi(x) +K(µi−1, µi) +K(µi, µi−1), x ∈ [y∗i−1 i, y
∗
i−1 i+1), (93)

...

wi(x) < wĵ(x) +K(µi−1, µĵ) +K(µi, µi−1), x ∈ [y∗
i−1 ĵ

, y∗
i−1 ĵ+1

), (94)

wi(x) < wĵ+1(x) +K(µi−1, µĵ+1) +K(µi, µi−1), x ∈ [y∗
i−1 ĵ+1

, y∗i i+1). (95)

Case 2: h = i− 2

In this case, Hi−2 can be expressed as

Hi−2(x) : = DC(x, µi−2,Φ
∗)

=


wg(x) +K(µi−2, µg) for x ∈ (x∗i−2 g−1, x

∗
i−2 g], g < i− 2,

wi−2(x) for x ∈ (x∗i−2 i−3, y
∗
i−2 i−1),

wj(x) +K(µi−2, µj) for x ∈ [y∗i−2 j, y
∗
i−2 j+1), j > i− 2.
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• y∗i−2 i−1 > x∗i i−1

We have the following constraint

x∗i−2 i−3 < x∗i i−1 < y∗i−2 i−1 < y∗i−2 i < y∗i−2 i+1 ≤ y∗i i+1.

Define

ĵ = max{j > i− 2 : y∗i−2 j+1 ≤ y∗i i+1},

then the inequality

Hi(x) < Hi−2(x) +K(µi, µi−2), x ∈ (x∗i i−1, y
∗
i i+1),

is equivalent to

wi(x) < wi−2(x) +K(µi, µi−2), x ∈ (x∗i i−1, y
∗
i−2 i−1),

(96)

wi(x) < wi−1(x) +K(µi−2, µi−1) +K(µi, µi−2), x ∈ [y∗i−2 i−1, y
∗
i−2 i),

(97)

...

wi(x) < wĵ(x) +K(µi−2, µĵ) +K(µi, µi−2), x ∈ [y∗
i−2 ĵ

, y∗
i−2 ĵ+1

),

(98)

wi(x) < wĵ+1(x) +K(µi−2, µĵ+1) +K(µi, µi−2), x ∈ [y∗
i−2 ĵ+1

, y∗i i+1).

(99)

• y∗i−2 i−1 ≤ x∗i i−1

We have the following constraint

y∗i−2 i−1 ≤ x∗i i−1 < y∗i−2 i < y∗i−2 i+1 ≤ y∗i i+1.

Define

ĵ = max{j > i− 2 : y∗i−2 j+1 ≤ y∗i i+1},
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then the inequality

Hi(x) < Hi−2(x) +K(µi, µi−2), x ∈ (x∗i i−1, y
∗
i i+1)

is equivalent to

wi(x) < wi−1(x) +K(µi−2, µi−1) +K(µi, µi−2), x ∈ (x∗i i−1, y
∗
i−2 i),

(100)

wi(x) < wi(x) +K(µi−2, µi) +K(µi, µi−2), x ∈ [y∗i−2 i, y
∗
i−2 i+1),

(101)

...

wi(x) < wĵ(x) +K(µi−2, µĵ) +K(µi, µi−2), x ∈ [y∗
i−2 ĵ

, y∗
i−2 ĵ+1

),

(102)

wi(x) < wĵ+1(x) +K(µi−2, µĵ+1) +K(µi, µi−2), x ∈ [y∗
i−2 ĵ+1

, y∗i i+1).

(103)

Case 3: h ≤ i− 3

In this case, Hh can be expressed as

Hh(x) : = DC(x, µh,Φ
∗)

=


wg(x) +K(µh, µg) for x ∈ (x∗h g−1, x

∗
h g], g < h,

wh(x) for x ∈ (x∗h h−1, y
∗
h h+1),

wk(x) +K(µh, µk) for x ∈ [y∗h k, y
∗
h k+1), k > h.

• y∗h h+1 ≤ x∗i i−1

Define

j∗ = min{j > h : y∗h j+1 > x∗i i−1},

j∗ = max{j > h : y∗h j+1 ≤ y∗i i+1}.

Now we have the following constraint

y∗h j∗ ≤ x∗i i−1 < y∗h j∗+1 < · · · < y∗h j∗+1 ≤ y∗i i+1,
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and the inequality

Hi(x) < Hh(x) +K(µi, µh), x ∈ (x∗i i−1, y
∗
i i+1)

is equivalent to

wi(x) < wj∗(x) +K(µh, µj∗) +K(µi, µh), x ∈ (x∗i i−1, y
∗
h j∗+1),

(104)

...

wi(x) < wj∗(x) +K(µh, µj∗) +K(µi, µh), x ∈ [y∗h j∗ , y
∗
h j∗+1),

(105)

wi(x) < wj∗+1(x) +K(µh, µj∗+1) +K(µi, µh), x ∈ [y∗h j∗+1, y
∗
i i+1).

(106)

• y∗h h+1 > x∗i i−1

Define

j∗ = max{j > h : y∗h j+1 ≤ y∗i i+1}.

We have the following constraint

x∗h h−1 ≤ x∗i i−1 < y∗h h+1 < · · · < y∗h j∗+1 ≤ y∗i i+1,

and the inequality

Hi(x) < Hh(x) +K(µi, µh), x ∈ (x∗i i−1, y
∗
i i+1)
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is equivalent to

wi(x) < wh(x) +K(µi, µh), x ∈ (x∗i i−1, y
∗
h h+1),

(107)

...

wi(x) < wj∗(x) +K(µh, µj∗) +K(µi, µh), x ∈ [y∗h j∗ , y
∗
h j∗+1),

(108)

wi(x) < wj∗+1(x) +K(µh, µj∗+1) +K(µi, µh), x ∈ [y∗h j∗+1, y
∗
i i+1).

(109)

We prove in the following theory that if certain conditions are satisfied, then the

inequalities (92)-(95) hold. Similar arguments hold for the criterion in other cases.

Theorem 2.9.3. If the following conditions hold

(µi − µi−1)[Ai(m
+
i )2em

+
i x +Bi(m

−
i )2em

−
i x] > 0, x ∈ (x∗i i−1, y

∗
i−1 i), (110)

...

(µi − µĵ)[Ai(m
+
i )2em

+
i x +Bi(m

−
i )2em

−
i x] > 0, x ∈ (x∗

ĵ i
, y∗
i ĵ

), (111)

(µi − µĵ+1)[Ai(m
+
i )2em

+
i x +Bi(m

−
i )2em

−
i x] > 0, x ∈ (x∗

ĵ+1 i
, y∗
i ĵ+1

), (112)

then the inequalities (92)-(95) hold automatically.

Proof. Since

x∗
ĵ+1 i

< y∗
i−1 ĵ−1

< y∗i i+1 ≤ y∗
i ĵ+1

,

and

x∗
ĵ i
< y∗

i−1 ĵ
< y∗

i−1 ĵ+1
< yi i+1 ≤ y∗

i ĵ
,
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then (92)-(95) hold if we can show

wi(x) < wi−1(x) +K(µi, µi−1), x ∈ (x∗i i−1, y
∗
i−1 i), (113)

...

wi(x) < wĵ(x) +K(µi−1, µĵ) +K(µi, µi−1), x ∈ (x∗
ĵ i
, y∗
i ĵ

), (114)

wi(x) < wĵ+1(x) +K(µi−1, µĵ+1) +K(µi, µi−1), x ∈ (x∗
ĵ+1 i

, y∗
i ĵ+1

). (115)

By similar arguments as those in the proof of Theorem 2.8.3, inequalities (113)-(115)

hold if conditions (110)-(112) are satisfied.

We end this section by describing an algorithm which obtains the optimal control

band policy based on the above arguments. The algorithm is used for checking case

1 of criterion (87). Intuitively, step 1 checks the smooth-pasting condition, and step

2 verifies one case of the QVI. Other cases of three different criteria (87), (88) and

(89) can be verified similarly.

Algorithm 1 Generic Algorithm for Finding the Optimal Control Band Policy

Inputs: Parameters
(
{µi}ni=1, {ci}ni=1, {K(µi, µj)}ni,j=1,i 6=j, h, U, β

)
.

Outputs: The optimal control band policy Φ1 =
(
{x1

i h}h<i,i=1,··· ,n, {y1
i j}i<j,i=1,··· ,n

)
.

1. Choose an initial point s0 =
(
{x0

i h}h<i,i=1,··· ,n, {y0
i j}i<j,i=1,··· ,n, {A0

i }n−1
i=1 , {B0

i }ni=1

)
and an tolerance δ.

2. Solve the constrained optimization problem (85) given the initial point s0 and
the tolerance δ in step 1. If no solution found, repeat step 1. Else, return the
solution s1 =

(
{x1

i h}h<i,i=1,··· ,n, {y1
i j}i<j,i=1,··· ,n, {A1

i }n−1
i=1 , {B1

i }ni=1

)
, and go to

step 3.

3. If conditions (87)-(89) hold, then Φ1 =
(
{x1

i h}h<i,i=1,··· ,n, {y1
i j}i<j,i=1,··· ,n

)
is the

optimal control band policy, return Φ1 as the output. Otherwise, repeat step 1.
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CHAPTER III

PARTIAL DISTANCE COVARIANCE: A FAST

COMPUTING ALGORITHM

3.1 Introduction

Distance covariance and distance correlation are scalar coefficients that characterize

independence of random vectors in arbitrary dimension. They were introduced in 2005

by G. J. Szekely, in several lectures to address the deficiency of Pearsons correlation,

namely that the Pearsons correlation can be zero for dependent variables. We start

with a definition of the distance covariance.

Definition 3.1.1. The population distance covariance between random vectors X and

Y with finite first moments is the nonnegative number V(X, Y ) defined by a weighted

L2 norm measuring the distance between the joint characteristic function (c.f.) φX,Y

of X and Y , and the product φXφY of the marginal c.f.’s of X and Y . If X and Y

take values in Rp and Rq, respectively, V(X, Y ) is

V(X, Y ) =‖ φX,Y (t, s)− φX(t)φY (s) ‖2
w

:=

∫
Rp+q
|φX,Y (t, s)− φX(t)φY (s)|2w(t, s) dtds,

where w(t, s) := (|t|1+p
p |s|1+q

q )−1. The integral exits provided that X and Y have finite

first moments.

This shows that distance covariance equals zero if and only if X and Y are inde-

pendent.

The distance correlation R(X, Y ) is a standardized coefficient, 0 ≤ R(X, Y ) ≤ 1,

63



that also characterizes independence:

R(X, Y ) =


V(X,Y )√

V(X,X)V(Y,Y )
, V(X,X)V(Y, Y ) > 0;

0, V(X,X)V(Y, Y ) = 0.

The definitions for the corresponding sample statistics have the following simple form.

For an observed random sample {(xi, yi) : i = 1, . . . , n} from the joint distribution

of random vectors X and Y , compute the Euclidean distance matrices (aij) = (‖

xi − xj ‖p) and (bij) = (‖ yi − yj ‖q), where ‖ · ‖p denotes the Lp norm in Rp. Define

Âij =

 aij − āi· − ā·j + ā··, i, j = 1, . . . , n;

0, i = j.
(116)

where

āi· =
1

n

n∑
j=1

aij, ā·j =
1

n

n∑
i=1

aij, ā·· =
1

n2

n∑
i,j=1

aij.

Similarly, define

B̂ij =

 bij − b̄i· − b̄·j + b̄··, i, j = 1, . . . , n;

0, i = j.
(117)

It is clear that the row sums and column sums of these double-centered matrices are

0.

Definition 3.1.2. The sample distance covariance Vn(X, Y ) and sample distance

correlation Rn(X, Y ) are defined by

V2
n(X, Y ) =

1

n2

n∑
i,j=1

ÂijB̂ij (118)

and

R̃2
n(X, Y ) =


Ṽ 2
n (X,Y )√

Ṽ 2
n (X)Ṽ 2

n (Y )
, Ṽ 2

n (X)Ṽ 2
n (Y ) > 0;

0, Ṽ 2
n (X)Ṽ 2

n (Y ) = 0.

(119)

respectively, where the squared sample distance variance is defined by

V2
n(X) = V2

n(X,X) =
1

n2

n∑
i,j=1

Â2
ij. (120)
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If X and Y have finite first moments, the population distance covariance coeffi-

cient V2(X, Y ) exists and equals zero if and only if the random vectors X and Y are

independent. Some of the properties of distance covariance and distance correlation

include:

(i) Vn(X, Y ) and Rn(X, Y ) converge almost surely to V(X, Y ) and R(X, Y ), as

n→∞.

(ii) Vn(X, Y ) ≥ 0 and Vn(X) = 0 if and only if every sample observation is identical.

(iii) 0 ≤ Vn(X, Y ) ≤ 1.

(iv) If Rn(X, Y ) = 1 then there exists a vector a, a nonzero real number b and an

orthogonal matrix R such that Y = a+ bXR, for the data matrices X and Y.

Properties, extensions and applications of distance covariance and distance correla-

tion have been discussed in the recent literature; see, for example, [16] and [18]. A

natural question then arises, “How do we define partial distance covariance (correla-

tion) which extends distance covariance (correlation) in a similar sense that partial

correlation extends correlation?” One could try to follow the definitions of the classi-

cal partial covariance and partial correlation that are based on orthogonal projections

in a Euclidean space, but there is a serious difficulty. Orthogonality in case of partial

distance covariance and partial distance correlation means independence, but when

we compute the orthogonal projection of a random variable onto the condition vari-

able, the “remainder” in the difference is typically not independent of the condition.

Alternately, the form of sample distance covariance (Definition 3.1.2) may sug-

gest an inner product, so one might think of working in the Hilbert space of double

centered distance matrices (116), where the inner product is the squared distance

covariance statistic (118). Here, we are facing another problem: what would the pro-

jections represent? The difference D of double centered distance matrices is typically
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not a double centered distance matrix of any sample. This does not affect formal com-

putations, but if we cannot interpret our formulas in terms of samples then inference

becomes impossible.

To overcome these difficulties while preserving the essential properties of distance

covariance, [27] finally arrived at an elegant solution which starts with defining an

alternate type of double centering called U -centering (see Definition 3.2.1 and Propo-

sition 3.2.2 below). The corresponding inner product is an unbiased estimator of

squared population distance covariance. In the Hilbert space of “U -centered” ma-

trices, all linear combinations, and in particular projections, are zero diagonal U -

centered matrices.

As a newly developed concept, partial distance covariance has the advantage that

it can capture nonlinear dependence [27]. It is expected that partial distance co-

variance has application in the broad field of life science, engineering, and finance.

Particularly as an example, we have successfully applied partial distance covariance

to feature screening in high dimensional data; see Chapter 4. If partial distance co-

variance was implemented directly as it is defined, its computational complexity can

be as high as a constant times n2 for a sample size n. This fact has been regarded

as a disadvantage of adopting partial distance covariance. As the main contribution

in this part of the thesis, we demonstrate that an O(n log n) algorithm for a version

of the partial distance covariance exits. To illustrate how an O(n2) order of com-

plexity may hinder the application of an algorithm, assume that n is equal to 106.

An O(n2) algorithm will need 1012 numerical operations, which is impossible even for

modern computers. In comparison, an O(n log n) algorithm will only require around

106 numerical operations, which is doable. The main idea behind the proposed new

algorithm is to use a technique rooted in the the AVL tree structure [1]. The same

idea has been utilized to develop a fast algorithm for computing the Kendalls τ rank
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correlation coefficient ([15]; [6]), and computing distance covariance ([13]). We ex-

tend it to make it suitable for our purpose. The derivation of the fast algorithm

also involves significant reformulation from the original version of partial distance

covariance. Details are presented in this chapter.

The rest of the chapter is organized as follows: In Section 3.2, we describe the

definition of partial distance covariance. Section 3.3 proposes and proves an algorithm

with O(n log n) time complexity. In Section 3.4, we demonstrate the performance of

the fast algorithm and compare it with the performance of the O(n2) algorithm.

Finally in Section 3.5 we state the fast algorithm explicitly.

3.2 Partial distance covariance

Here we introduce the definition of partial distance covariance statistics. First, we

look at “U -centered” matrices.

Definition 3.2.1. Let A = (aij) be a symmetric, real valued n× n matrix with zero

diagonal, n > 2. Define the U-centered matrix Ã as follows: the (i, j)-th entry of Ã

be

Ãij =

 aij − 1
n−2

∑n
l=1 ail −

1
n−2

∑n
k=1 akj + 1

(n−1)(n−2)

∑n
k,l=1 akl, i 6= j;

0, i = j.
(121)

“U -centered” is so named because as shown below, the corresponding inner product

(123) defines an unbiased estimator of squared distance covariance.

Proposition 3.2.2. Let (xi, yi), i = 1, . . . , n, denote a sample of observations from

the joint distribution (X, Y ) of random vectors X ∈ Rp and Y ∈ Rq. Let A = (aij)

be the Euclidean distance matrix of the sample x1, . . . , xn from the distribution of X,

and B = (bij) be the Euclidean distance matrix of the sample y1, . . . , yn from the

distribution of Y . Then if E(|X|p + |Y |q) <∞, for n > 3,

(Ã · B̃) =
1

n(n− 3)

∑
i 6=j

Ãi,jB̃i,j (122)
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is an unbiased estimator of squared population distance covariance V2(X, Y ).

The proof of the above proposition is in the appendix of [27].

Consider the linear span Sn of all n × n distance matrices of samples {x1, . . . , xn}.

Let A = (aij) be an arbitrary element in Sn. Then A is a real valued, symmetric

matrix with zero diagonal. Let Hn = {Ã : A ∈ Sn} and for each pair of elements

C = (Ci,j), D = (Di,j) in the linear span of Hn define their inner product

(C ·D) =
1

n(n− 3)

∑
i 6=j

CijDij. (123)

Theorem 3.2.3. The linear span of all n × n matrices Hn = {Ã : A ∈ Sn} is a

Hilbert space with inner product defined in (123).

The proof of the above theorem is also in [27].

In what follows, Hn denotes the Hilbert space of Theorem 3.2.3 with inner product

(123) , and |Ã| = (Ã, Ã)1/2 is the norm of Ã.

3.2.1 Sample pdCov and pdCor

Let Ã, B̃, and C̃ be elements of Hn corresponding to samples x, y and z, respectively,

and let

Pz⊥(x) = Ã− (Ã · C̃)

(C̃ · C̃)
C̃, Pz⊥(y) = B̃ − (B̃ · C̃)

(C̃ · C̃)
C̃ (124)

denote the orthogonal projection of Ã(x) onto (C̃(z))⊥ and the orthogonal projection

of B̃(y) onto (C̃(z))⊥, respectively. Clearly, Pz⊥(x) and Pz⊥(y) are elements of Hn,

their dot product is defined by (123) and we can define an estimator of pdCov(X,Y;Z)

via projections.

Definition 3.2.4. (Partial distance covariance) Let (x, y, z) be a random sample ob-

served from the joint distribution of (X, Y, Z). The sample partial distance covariance

(pdCov) is defined by

pdvCov(x, y; z) = (Pz⊥(x) · Pz⊥(y)), (125)
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where Pz⊥(x) and Pz⊥(y)) are defined by (124), and

(Pz⊥(x) · Pz⊥(y)) =
1

n(n− 3)

∑
i 6=j

(Pz⊥(x))i,j(Pz⊥(y))i,j. (126)

Combined with (124) and (125), we have

pdvCov(x, y; z) = ((Ã− (Ã · C̃)

C̃ · C̃
C̃) · (B̃ − (B̃ · C̃)

C̃ · C̃
C̃))

= (Ã · B̃)− (B̃ · C̃)

(C̃ · C̃)
(Ã · C̃). (127)

If the computation of inner product is implemented directly according to its definition

in (123), then the computation complexity of sample partial distance covariance is

O(n2) which is a disadvantage compared to other measures that have lower order of

complexity algorithms. Later we will prove that the sample partial distance covariance

in (125) can be computed in O(n log n) steps.

Let Ωn denote the inner product defined in (122). The following notations will be

used. Define the column and row sums as follows:

ai· =
n∑
l=1

ai,l, a·j =
n∑
k=1

ak,j,

bi· =
n∑
l=1

bi,l, b·j =
n∑
k=1

bk,j,

a·· =
n∑

k,l=1

ak,l, b·· =
n∑

k,j=1

bk,j.

Lemma 3.2.5. If Ωn is the inner product defined in (122) then we have

Ωn =
1

n(n− 3)

∑
i 6=j

aijbij−
2

n(n− 2)(n− 3)

n∑
i=1

ai·bi·+
a··b··

n(n− 1)(n− 2)(n− 3)
. (128)

For the proof see the Appendix. The formula (128) will be used to prove that the

estimator in (127) can be computed in O(n log n) steps.
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3.3 An O(n log n) algorithm

We argue that when X and Y are univariate, there is an O(n log n) algorithm to

implement (128).

Lemma 3.3.1. Denote

x· =
n∑
i=1

xi.

For 1 ≤ i ≤ n, we denote

αxi =
∑
xl<xi

1,

βxi =
∑
xl<xi

xl.

We have

ai· = xi· + (2αxi − n)xi − 2βxi . (129)

A proof is relegated to the Appendix

Due to symmetry, the following is the counterpart for Y . We state it without a proof.

Lemma 3.3.2. Denote

y· =
n∑
i=1

yi.

For 1 ≤ i ≤ n, we denote

αyi =
∑
yl<yi

1,

βyi =
∑
yl<yi

yl.

bi· = yi· + (2αyi − n)yi − 2βyi . (130)

Using formula (129) and (130), the following two equations can be easily established.

We state them without a proof.
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Corollary 3.3.3. We have

a·· = 2
n∑
i=1

αxi xi − 2
n∑
i=1

βxi , (131)

and

b·· = 2
n∑
i=1

αyi yi − 2
n∑
i=1

βyi . (132)

The following lemma will be used.

Lemma 3.3.4. We define a sign function, for ∀1 ≤ i, j ≤ n,

Sij =

 +1, if (xi − xj)(yi − yj) > 0,

−1, otherwise.
(133)

For any sequence {cj, j = 1, . . . , n}, for 1 ≤ i ≤ n, we define

γi({cj}) =
∑
j:j 6=i

cjSij.

The following is true:

∑
i 6=j

aijbij =
n∑
i=1

[xiyiγi({1}) + γi({xjyj})− xiγi({yj})− yiγi({xj})]. (134)

Lemma 3.3.5. For any sequence {cj, j = 1, . . . , n}, there is an O(n log n) algorithm

to compute for all γi({cj})(=
∑

j:j 6=i cjSij), where i = 1, . . . , n.

A proof is relegated to the Appendix.

We present the main result in the following theorem.

Theorem 3.3.6. The sample partial distance covariance that was defined in (125)

can be computed by an O(n log n) algorithm.

Proof. By (127), the theorem is proved if we can show all the inner products (Ã ·

B̃), (Ã · C̃), (B̃ · C̃), and (C̃ · C̃) can be computed by an O(n log n) algorithm. We

show it for (Ã · B̃). The other terms can be done in the same way.
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In Lemma 3.2.5, the unbiased statistic has been rewritten as in (128). For the

first term on the right hand side of (128), per Lemma 3.3.4 and 3.3.5, there is an

O(n log n) algorithm to compute it.

For the second term on the right hand side of (128), note that quantities

αxi , β
x
i , α

y
i , β

y
i that were defined in Lemma 3.3.1 and 3.3.2, respectively, are partial

sums, which can be computed for all i’s with O(n log n) algorithms. The log n fac-

tor is inserted, because one may need to sort x,is or y,is in order to compute for

αxi , β
x
i , α

y
i , β

y
i . Then by (129) and (130), all ai· and bi· can be computed at order

O(n log n). Consequently, the second term on the right hand side of (123) can be

computed by using an O(n log n) algorithm.

For the third term on the right hand side of (123), using (131) and (132) in

Corollary 3.3.3, we can easily see that it can be computed via anO(n log n) algorithms.

From all the above, the theorem is established.

3.4 Numerical Results

The fast algorithm was implemented in MATLAB, with the key step of dyadic updat-

ing implemented in C. It was then compared against the direct (i.e., slow) implementa-

tion. Table 9 presents the average running time for the two different implementations

in MATLAB with 2,000 replications at each sample size. The sample size goes from

64(= 26) to 8192(= 213). In all these cases, the two methods gave identical solutions,

which validates our fast algorithm. Note a comparison in MATLAB is not desirable

for our fast algorithm. The direct method calls some MATLAB functions, which

achieve the speed of a direct low-level language implementation, while the implemen-

tation of the fast method is not. In theory, the fast algorithm will compare more

favorably if both methods are implemented in a low-level language, such as in C or

C++.

Figure 6 provides a visual comparison of the two methods. All the experiments
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that are reported in this chapter are run on a Visual Lab computer (AMD Opteron

(tm) Processer 6376 CPU @ 2.30GHz) with allowable 2.72 GB memory in MATLAB

Version 8.2.0.89 (R2014a).

When the sample size is large, e.g., when n = 16, 384, the direct method will

generate an “out-of memory” message. Recall that the direct method computes for

all pairwise distances, hence it requires O(n2) memory. The fast method only requires

O(n) in memory. For illustration purpose, we run the fast algorithm for sample size

n going from 16,384 (which is 214) to 262,144 (which is 218). The running times are

reported in Table 10. When n = 262, 144, the running time is a little more than one

hundred seconds. The trend that is observable from Figure 7 verifies our claim that

the fast method is an O(n log n) algorithm. It is evident that the running time scales

approximately linearly with the sample size (n). We did not run experiments with

larger sample sizes, because their outcomes are predictable by the property of the fast

method.

Table 9: Running times (in seconds) for the direct and fast methods for computing
the partial distance covariances. The values in the parentheses are sample standard
errors. At each sample size, 1,000 repetitions were run.

Sample Size Direct Method Fast Method
64 0.0015 (0.0092) 0.0076 (0.0062)
128 0.0026 (0.0010) 0.0109 (0.0012)
256 0.0093 (0.0109) 0.0244 (0.0007)
512 0.0527 (0.0106) 0.0567 (0.0022)
1024 0.1929 (0.0163) 0.1339 (0.0065)
2048 0.8007 (0.0506) 0.3248 (0.0376)
4096 3.1398 (0.1177) 0.8130 (0.1037)
8192 12.6775 (0.2447) 1.8926 (0.1781)

3.5 Algorithms

Algorithm 3.5 realizes the idea that is described in the proof of Lemma. Algorithm

3.5 is a subroutine that will be called in Algorithm 3.5. Algorithm 3.5 is the algorithm
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Figure 6: A comparison of running time between the direct and fast methods for the
computation of the partial distance covariances

Table 10: Running times (in seconds) for the fast methods for computing the partial
distance covariances. The values in the parentheses are sample standard errors. At
each sample size, 1,00 repetitions were run.

Sample Size Fast Method
16384 4.1936 (0.2613)
32768 9.7005 (0.4598)
65536 22.446 (0.6833)
131072 49.1621 (0.9519)
262144 109.1116 (2.5407)
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Figure 7: An illustration of running times of the fast method for the computation of
the distance correlations. The red solid line corresponds to an O(n log n) algorithm.
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that can compute for the distance covariance at O(n log n).
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Algorithm 2 A subroutine that will be needed in the fast algorithm for the distance
covariance. This algorithm realizes the ideas in the proof of Lemma .

Algorithm: Fast Algorithm for a 2-D Partial Sum Sequence (PartialSum2D)

Inputs: Observations x1, . . . , xn, y1, . . . , yn, and c1, . . . , cn.
Outputs: Quantity γi({cj}) =

∑
j:j 6=i cjSij that is defined in Lemma 3.3.4.

1. Compute for the order statistics x(1) < · · · < x(n) for x1, . . . , xn. Then rearrange
triplets (xi, yi, cj)s such that we have x1 < · · · < xn. Each triplet (xi, yi, cj)
(1 ≤ i ≤ n) stay unchanged.

2. Let y(1) < · · · < y(n) denote the order statistics for y1, . . . , yn, and assume that
Iy(i), i = 1, 2, . . . , n, are the order indices; i.e., if Iy(i) = k, then yi is the k-
th smallest among y1, . . . , yn. Without loss of generality, we may assume that
yi = Iy(i).

3. Evidently aforementioned function Iy(i) is invertible. Let (Iy)(1)(j) denote its
inverse. Define the partial sum sequence: for 1 ≤ i ≤ n,

sy(i) =
i∑

j=1

c(Iy)(1)(j).

The following recursive relation enables an O(n) algorithm to compute for all
sy(i)′s,

sy(1) = c(Iy)(1)(1), sy(i+ 1) = sy(i) + c(Iy)(1)(i+1), for i ≥ 1.

4. For 1 ≤ i ≤ n, define

sx(i) =
i∑

j=1

cj.

Again the above partial sums can be computed in O(n) steps.

5. Compute c. =
∑n

j=1 cj.

6. Call Subroutine DyadUpdate to compute for
∑

j:j<i,yj<yi
cj for all i, 1 ≤ i ≤ n.

7. By (151), we have that

γi({cj}) = c. − ci − 2sy(i)− 2sx(i) + 4
∑

j:j<i,yj<yi

cj.
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Algorithm 3 A subroutine that will be called in Algorithm 3.5.

Subroutine: A Dyadic Updating Scheme (DyadUpdate)

Inputs: Sequence y1, . . . , yn and c1, . . . , cn, where y1, . . . , yn is a permutation of
{1, . . . , n}.
Outputs: Quantities γi :=

∑
j:j<i,yj<yi

cj, i = 1, 2, . . . , n.

1. Recall that we have assumed n = 2L. If n is not dyadic, we simply choose
the smallest L such that n < 2L. Recall that for l = 0, 1, . . . , L − 1, k =
1, 2, . . . , 2L−l, we define a close interval

I(l, k) := [(k − 1)2l + 1, . . . , k2l].

2. Assign s(l, k) = 0, ∀l, k, and γ1 = 0.

3. For i=2,. . . ,n, we do the following.

(a) Fall all (l, k)′s, such that yi−1 ∈ I(l, k). Then for these (l, k)’s, do update

s(l, k)← s(l, k) + ci−1

(b) Find nonnegative integers l1 > · · · > lτ ≥ 0 such that

yi − 1 = 2l1 + · · ·+ 2lτ

Let ki = 1. For j = 2, . . . , τ , compute

kj = (2l1 + · · ·+ 2lj−1) · 2−lj + 1.

(c) Compute γi =
∑τ

j=1 s(lj, kj).
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Algorithm 4 The O(n log n) algorithm to compute for the partial distance covari-
ances.

Algorithm: Fast Computing for Distance Covariance (FaDCor)

Inputs: Observations x1, . . . , xn, y1, . . . , yn, and z1, . . . , zn.
Outputs: The partial distance covariance that was defined in (125).

1. Sort x1, . . . , xn, and y1, . . . , yn. Let Ix and Iy denote the order indices; i.e.,
if for i, 1 ≤ i ≤ n, Ix(i) = k, then xi is the kth smallest observations among
x1, . . . , xn. Similarly if for i, 1 ≤ i ≤ n, Iy(i) = k, then yi is the kth smallest
observations among y1, . . . , yn.

2. Let x(1) < · · · < x(n), and y(1) < · · · < y(n) denote the order statistics. Denote
the partial sums:

sx(i) =
i∑

j=1

x(j), sy(i) =
i∑

j=1

y(j), i = 1, . . . , n− 1.

They can be computed using the following recursive relation: sx(1) =
x(1), s

y(1) = y(1),

sx(i+ 1) = sx(i) + x(i+1), sy(i+ 1) = sy(i) + y(i+1), for i = 1, . . . , n− 1.

3. Compute αxi , α
y
i , β

x
i , and βyi that are defined in Lemma 3.3.1 and 3.3.2,using the

following formula: for i = 1, . . . , n, we have

αxi = Ix(i)− 1, αyi = Iy(i)− 1,

βxi = sx(Ix(i)− 1), βyi = sy(Iy(i)− 1).

4. Compute x. and y. per their definitions in Lemma 3.3.1 and 3.3.2.

5. Using (129) and (130), compute
∑n

i=1 ai·bi·.

6. Using (131) and (132), compute a·· and b··.

7. Use Algorithm PartialSum2D to compute for γi({1}), γi({xjyj}), γi({yj}), and
γi({xj}).

8. Using (134) to compute
∑

i 6=j aijbij.

9. Apply the results of steps 6, 7, and 8 to (122).

10. Repeat the steps of 1 through 9 to compute (Ã · C̃), (B̃ · C̃), and (C̃ · C̃).

11. Using formula (127) to compute (125).
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CHAPTER IV

APPLICATION OF PARTIAL DISTANCE COVARIANCE

IN HIGH DIMENSIONAL FEATURE SCREENING

4.1 Introduction

Statisticians are nowadays frequently confronted with massive data sets from various

frontiers of scientific research. Fields such as genomics, neuroscience, finance and

earth sciences have different concerns on their subject matters, but nevertheless share

a common theme: they rely heavily on extracting useful information from massive

data and the number of covariates p can be huge in comparison with the sample size

n. In such a situation, the parameters are identifiable only when the number of the

predictors that are relevant to the response is small, namely, the vector of regression

coefficients is sparse. This sparsity assumption has a useful interpretation that only

a limited number of variables have a prediction power on the response. To explore

the sparsity, variable selection techniques are needed.

Over the last ten years, there has been many exciting developments in statistics

and machine learning on variable selection techniques for ultra-high dimensional fea-

ture space. They can basically be classified into two classes: penalized likelihood

and screening. Penalized likelihood techniques are well known in statistics: Lasso

[29], smoothly clipped absolute deviation (SCAD) [9] or other folded concave regu-

larization methods ([11], [30]), and Dantzig selector ([3], [4]), among others. These

techniques select variables and estimate parameters simultaneously by solving a high-

dimensional optimization problem. Despite the fact that various efficient algorithms

have been proposed ([8], [20], [21]), statisticians and machine learners still face huge

computational challenges when the number of variables is in tens of thousands of
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dimensions or higher. This is particularly the case as we are entering into the era of

“Big Data” in which both sample size and dimensionality are large.

The idea of feature screening came along as high-dimensional data were collected

in modern technology. It was aimed at dealing with the challenges of computational

expediency, statistical accuracy, and algorithmic stability because of high dimen-

sionality. [10] proposed the sure independence screening (SIS) and showed that the

Pearson correlation ranking procedure possessed a sure screening property for linear

regression with Gaussian predictors and responses. However, two potential issues

might arise with the screening procedures. First, an important predictor that is

marginally uncorrelated but jointly correlated with the response cannot be picked by

SIS and thus will not enter the estimation model. Second, this procedure works only

for linear models, and performance is very unstable in other nonlinear models.

To address the first issue, an iterative SIS (ISIS) was proposed in [10] as an

extension of SIS. The ISIS works as follows. In the first step, we select a subset of

variables using an SIS-based model selection model. Then we have an n-vector of

residuals from regressing the response over the variables selected in the first step. In

the next step, we treat those residuals as the new response and apply the same method

as in the previous step to the remaining variables. From the discussion above, the ISIS

use a residual based approach to circumvent the problem but the idea of conditional

screening has never been formally developed. To address the second issue, a new

feature screening procedure for high-dimensional data based on distance correlation,

named DC-SIS, was presented in [18]. DC-SIS retained the sure screening property

of the SIS and additionally possessed new advantages of handling grouped predictors

and multivariate responses by using distance correlation. Moreover, because distance

correlation was applicable to arbitrary distributions, DC-SIS could also be used for

screening features without specifying a regression model between the response and

the predictors and thus was robust to model mis-specification.
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In this part of the thesis, we propose an iterative feature screening procedure

based on partial distance correlation which is introduced in Chapter 3. To the best

of our knowledge, this is the first time that the partial distance correlation is ap-

plied to feature screening. We demonstrate our method through simulations and real

examples.

The rest of the chapter is organized as follows: In Section 4.2, we give introduction

to some preliminaries of partial distance covariance. In Section 4.3, we describe the

iterative feature screening procedure based on partial distance correlation. In Section

4.4, we demonstrate the performance of the proposed feature screening procedure by

simulations and real-data example.

4.2 Some preliminaries

4.2.1 Partial distance covariance

Before introducing the innovative feature screening procedure, we first review

the related important properties of partial distance correlation. Let (x, y, z) =

{(xi, yi, zi), i = 1, . . . , n} be a random sample observed from the joint distribution

of (X, Y, Z). The sample partial distance covariance is defined by

pdCov(X, Y ;Z) = (Pz⊥(x) · Pz⊥(y))

=
1

n(n− 3)

∑
i 6=j

(Pz⊥(x))i,j(Pz⊥(y))i,j. (135)

where

Pz⊥(x) = Ã− (Ã · C̃)

(C̃ · C̃)
C̃, Pz⊥(y) = B̃ − (B̃ · C̃)

(C̃ · C̃)
C̃

denote the orthogonal projection of Ã(x) onto (C̃(z))⊥ and the orthogonal projection

of B̃(y) onto (C̃(z))⊥, respectively. Here Ã, B̃, and C̃ are elements of Hn correspond-

ing to samples x, y and z, where Hn = {Ã : A ∈ Sn} contains the U -centered distance

matrix.

Since pdCov is defined as the inner product (135) of two U-centered matrices, and

(unbiased squared) distance covariance is computed as inner product (122), then a
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natural question is raised: are matrices Pz⊥(x) and Pz⊥(y) the U-centered Euclidean

distance matrices of samples of random vectors U and V, respectively? If so, then the

sample partial distance covariance (135) is distance covariance of U and V, as defined

by (122).

For every sample x = {x1, . . . , xn}, xi ∈ Rp of random vector X, there is a U -

centered matrix Ã = Ã(x) in Hn. Conversely, given an arbitrary element H of Hn,

does there exist a configuration of points u = {u1, . . . , un} in some Euclidean space

Rq, for some q ≥ 1, such that the U -centered Euclidean distance matrix of sample u

is exactly equal to the matrix H?

The following theorem, which is the Theorem 2 in [27], proves that the answer is

affirmative.

Theorem 4.2.1. Let H be an arbitrary element of the Hilbert space Hn of U-centered

distance matrix. Then there exists a sample v1, . . . , vn in a Euclidean space of dimen-

sion at most n− 2, such that U-centered distance matrix of v1, . . . , vn is exactly equal

to H.

[26] and [28] showed that the distance correlation of two random vectors equals

to zero if and only if these two random vectors are independent. Furthermore, the

distance correlation of two univariate normal random variables is a strictly increasing

function of the absolute value of the Pearson correlation of these two normal random

variables. These two remarkable properties together with the definition of partial

distance correlation motivate us to use the partial distance correlation for iterative

feature screening in high-dimensional data.

For the regression model where the response and predictors all follow normal

distribution, some important variables that are weakly correlated with the response

through their associations with Z will not be survive in SIS or DC-SIS because of the

low marginal Pearson correlation or distance correlation. However, after variables in
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Z enter the model as conditional variable, we have

pdCov(X, Y ;Z) = (Pz⊥(x) · Pz⊥(y)) = (Pz⊥(x) · B̃(y)) = DC(U, Y ).

Here pdCov(X, Y ;Z) equals to the distance covariance of U and Y , where U is a

random vector such that the U-centered distance matrix of its sample is exactly equal

to Pz⊥(x), and U is independent of Z. Therefore, if X is marginally weakly correlated

with Y purely due to the presence of Z in conditional set, it now should be correlated

with the response. This addresses the first issue, that an important predictor that is

marginally uncorrelated but jointly correlated with the response cannot be picked by

SIS or DC-SIS. Meanwhile, partial distance correlation has the advantage of capturing

nonlinear dependence. This virtue makes the proposed procedure robust to model

misspecification and therefore helps to solve the second issue, that SIS may fail in

nonlinear models.

4.3 An Iterative Screening Procedure

We prove the following theorem which will be implemented as a check for stopping

for our feature screening procedure.

Theorem 4.3.1. Let (x, y, z) = {(xi, yi, zi), i = 1, . . . , n} be a random sample ob-

served from the joint distribution of (X, Y, Z), and Let U be the random vector such

that the “U-centered” Euclidean distance matrix of its sample is Pz⊥(x). If U is

independent of Y , then

pdCov(X, Y ;Z) = 0 (136)

where pdCov is the sample partial distance covariance defined in (135)

Proof. Let Ã(x), B̃(y), and C̃(z) denote the U -centered distance matrix of x, y, and

z. U is independent of Y is equivalent to the fact that distance covariance of U and

Y is zero,

(Pz⊥(x) · B̃(y)) = 0.
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The above inner product is defined as in (122). Since Pz⊥(x) denotes the orthogonal

projection of Ã(x) onto C̃(z)⊥, then we have

(Pz⊥(x) · C̃(z)) = 0.

Therefore, we conclude

pdCov(X, Y ;Z) = (Pz⊥(x) · Pz⊥(y))

= (Pz⊥(x) · B̃(y))− B̃(y) · C̃(z)

C̃(z) · C̃(z)
(Pz⊥(x) · C̃(z))

= 0.

In reality, the test for zero partial distance covariance is implemented as a per-

mutation test, and the test statistic is defined as in (126). The sample indices of the

X sample are randomized for each replication to obtain the sampling distribution of

the test statistics under the null hypothesis.

Specifically, in each permutation test, R = 999 replicates are generated and the

estimated p-value is computed as

p̂ =
1 +

∑R
k=1 I(T (k) ≥ T0)

1 +R
,

where I(·) is the indicator function, T0 is the observed value of the test statistic, and

T (k) is the statistic for the kth sample. The test is rejected at significance level α if

p̂ ≤ α.

In this section, we propose an iterative screening procedure built upon partial

distance correlation. Let y be the response vector, and x = (X1, . . . , Xp)
T be the pre-

dictor vector. In the initial step, the first variable to enter the model is the variable Xj

for which distance covariance VXj ,y with response y is largest. After the initial step,

we have a model with one predictor Xj, and we compute pdCov(Xk,y;Xj) with the
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fast algorithm proposed in Chapter 3, for the variables {Xk}k 6=j, then select the vari-

able Xk for which pdCov(Xk,y;Xj) is largest. Then continue, at each step computing

pdCov(Xk,y;Z) for every Xk not yet in the vector of predictors Z currently in the

model. Then the variable entered next is the one that maximizes pdCov(Xk,y;Z).

The procedure takes the following steps, and we denote this procedure as PDCOV

method.

(1) Calculate the marginal distance covariances for Xj, j = 1, . . . , p with the re-

sponse. The variable Xk for which the marginal distance correlation is the

largest will enter the model as predictor variable, and set Z = {Xk}.

(2) Calculate the partial distance covariances pdCov(Xj,y;Z) for Xj /∈ Z. The

variable Xk for which the partial distance correlation is the largest will enter

the model as predictor variable, and update Z = Z ∪ {Xk}.

(3) Repeat Step (2) until the zero partial distance covariance test for the selected

variable is rejected at 5% significance level, i.e., p̂ ≤ 0.05.

4.4 Simulations Results

In this section, we assess the performance of the PDCOV procedure by Monte Carlo

simulation. Our simulation studies were conducted using Matlab code.

Example 1. The aim of this example is to examine the performance of the PDCOV

in the situation where the conditions of SIS fail. More specifically, an important

predictor that is marginally uncorrelated but jointly correlated with the response

cannot be picked by SIS and thus will not enter the estimation model. We evaluate

the methods by counting the frequencies that the selected models include all the

variables in the true model, namely the ability of correctly screening “unimportant”

variables.

Both linear and nonlinear models are tested in this example.
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(1.a:) Y = 5X1 + 5X2 + 5X3 − 15ρX4 + ε,

(1.b:) Y = 5X1 + 5X2 + 5X3 − 15ρ√
2
1{X4<0} + ε,

where X1, . . . , Xp are p predictors and ε ∈ N (0, 1) is noise that is independent of

the predictors, and 1{X4<0} is an indicator function. In the simulation, a sample of

X1, . . . , Xp with size n was drawn from a multivariate normal distribution N (0,Σ)

whose covariance matrix Σ = (σij)p×p has entries σii = 1, i = 1, . . . , p and σij = ρ, i 6=

j. In both models, the variable X4 is uncorrelated with the response Y . Therefore,

SIS ([10]) cannot pick up the true model except by chance.

We considered six such cases characterized by (p, n, ρ) with p = 500, 1000, n =

50, 70, 100 and ρ is fixed at 0.5. We simulated 200 data sets for each case. In Table

11, we report the percentages of SIS, ISIS, and PDCOV that include the true model

of four variables. In this simulation example, PDCOV always picks all true variables

in both linear and nonlinear models, while ISIS performs slightly worse in nonlinear

model. This demonstrates that PDCOV can effectively handle the first problem that

an important predictor which is marginally uncorrelated but jointly correlated with

the response cannot be picked by SIS. Furthermore, in Table 12, we also report the

average number of iterations in ISIS and PDCOV that are taken in order to include

all the variables in the true model.

Example 2. The aim of this example is to examine the performance of the PDCOV

in the situation where the model is nonlinear. In this example, the finite sample

performance of the PDCOV is evaluated through the criteria L: the minimum number

of iterations to include all active predictors. We redo the simulations as in [18] with

sample size n = 200. We generate x = (X1, X2, . . . , Xp)
T from normal distribution

with zero mean and covariance matrix Σ = (σij)p×p, and the error term ε from the

standard normal distribution N (0, 1). Two covariance matrices are considered to

assess the performance of the PDCOV and the DC-SIS: (1) σij = 0.8|i−j| and (2)

σij = 0.5|i−j|. Note that a covariance matrix with entries σij = ρ|i−j|, 0 < ρ < 1,
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Table 11: Results of simulated example I: accuracy of SIS, ISIS, and PDCOV in
including the true model {X1, X2, X3, X4}

p model method Results for the following value of n
n = 50 n = 70 n = 100

500 (a) SIS 0 0 0
ISIS 1 1 1
PDCOV 1 1 1

(b) SIS 0 0 0
ISIS 0.95 0.97 0.99
PDCOV 1 1 1

1000 (a) SIS 0 0 0
ISIS 1 1 1
PDCOV 1 1 1

(b) SIS 0 0 0
ISIS 0.83 0.87 0.87
PDCOV 1 1 1

Table 12: Results of simulated example I: average number of iterations in ISIS and
PDCOV are taken to include the true model {X1, X2, X3, X4}
p model method Average number of iterations for the following value of n

n = 50 n = 70 n = 100
500 (a) ISIS 5 5 4

PDCOV 20 18 16
(b) ISIS 7 7 5

PDCOV 25 21 19
1000 (a) ISIS 5 5 5

PDCOV 23 20 19
(b) ISIS 8 8 7

PDCOV 32 29 24

88



enjoys a known Cholesky decomposition: Σ = RTR, where R = (rij) ∈ Rp×p, rij = 0,

if j < i, and r1j = ρj−1, rij = c · ρj−i, for i ≥ 2 and j ≥ i, c2 + ρ2 = 1. In our

simulations, we take advantage of this known decomposition. The dimension p varies

from 2000 to 5000. Each experiment was repeated 500 times, and the performance

is evaluated through the criteria L: the minimum number of iterations to include all

active predictors. We report the 5%, 25%, 50%, 75%, and 95% quantiles of L out of

500 replications.

The L is used to measure the model complexity of the resulting model of an under-

lying iterative screening procedure. The smaller the minimum number of iterations

the L is, the better the screening procedure is.

In this example, we generate the response from the following four models:

(2.a): Y = c1β1X1 + c2β2X2 + c3β31{X12<0} + c4β4X22 + ε,

(2.b): Y = c1β1X1X2 + c3β21{X12<0} + c4β3X22 + ε,

(2.c): Y = c1β1X1X2 + c3β21{X12<0}X22 + ε,

(2.d): Y = c1β1X1 + c2β2X2 + c3β31{X12<0} + exp(c4|X22|)ε,

where 1{X12<0} is an indicator function.

The regression functions E(Y |x) in models (2.a)-(2.d) are all nonlinear in X12. In

addition, models (2.b) and (2.c) contain an interaction term X1X2, and model (2.d)

is heteroscedastic. Following [18], we choose βj = (−1)U(a + |Z|) for j = 1, 2, 3, and

4, where a = 4 log n/
√
n, U ∼Bernoulli(0.4) and Z ∼ N (0, 1). We set (c1, c2, c3, c4) =

(2, 0.5, 3, 2) in this example to be consistent with the experiments in [18]: challenging

the feature screening procedures under consideration. For each step of the iterative

screening procedure, we compute the associated utility between each predictor Xk

and the response Y . That is, we regard x = (X1, . . . , Xp)
T ∈ Rp as the predictor

vector in this example.
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Table 13: The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum number of
iterations L out of 500 replications in Example 2

L PDCOV
Model 5% 25% 50% 75% 95%

Case 1: p = 2000 and σij = 0.5|i−j|

(2.a) 24 24 26 30 32
(2.b) 25 27 28 32 44
(2.c) 35 37 37 39 41
(2.d) 37 40 45 70 301

Case 2: p = 2000 and σij = 0.8|i−j|

(2.a) 25 29 34 41 56
(2.b) 24 32 38 40 57
(2.c) 29 32 37 41 64
(2.d) 36 40 55 80 423

Case 3: p = 5000 and σij = 0.5|i−j|

(2.a) 34 36 48 59 88
(2.b) 38 41 55 70 97
(2.c) 39 43 60 85 118
(2.d) 56 58 79 100 785

Case 4: p = 5000 and σij = 0.8|i−j|

(2.a) 35 40 56 73 116
(2.b) 38 42 56 84 137
(2.c) 52 64 79 92 178
(2.d) 66 71 87 138 995
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Table 13 presents the simulation results for L. The performances of the PDCOV

are quite similar in models (2.a)-(2.d), indicating that the PDCOV has a pretty robust

performance without model specification.

4.5 Real application on the Leukemia data

4.5.1 Data description

Leukemia is a group of cancers that usually begins in the bone marrow and results in

high numbers of abnormal white blood cells. There are four main types of leukemia:

acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lym-

phocytic leukemia (CLL) and chronic myeloid leukemia (CML), as well as a number

of less common types. In 2012 leukemia developed in 352,000 people globally and

caused 265,000 deaths, and it occurs more commonly in the developed world [25].

It is the most common type of cancer in children, with three quarters of leukemia

cases in children being ALL[5]. However, about 90% of all leukemias are diagnosed

in adults, with AML and CLL being most common in adults. Thus, identification

and classification of patients with different types of leukemia thus become critical for

successful diagnosis and treatment.

The landmark study [12] represented the first demonstration that genomic ap-

proaches (in this case gene expression profiling) could be used to identify new cancer

subtypes or assign tumors to known classes. In the paper, they demonstrate success-

ful classification between acute myeloid leukemia (AML) and acute lymphoblastic

leukemia (ALL) without previous knowledge of these classes. The initial leukemia

data set they collected consists of 38 training samples (27 ALL and 11 AML) and 34

test samples (20 ALL and 14 AML), with 6,817 genes expression for each sample.

Here, we are going to demonstrate the performance of feature selection and clas-

sification of the two types of leukemia (AML and ALL) based on the partial distance

covariance metric, with the same data set used in [12].
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4.5.2 Partial distance covariance gene selection results based on all the
observations

Our feature screening procedure on the gene expression data for the 72 total samples

selected 13 genes (See Table 14), among which five were reported in the literature to be

related to leukemia. Zyxin, a LIM domain protein, is identified as a critical regulator

for the p53 Ser46 kinase HIPK2, which induces apoptosis in response to DNA damage.

Zyxin expression is important to maintain HIPK2 protein stability, as HIPK2 expres-

sion is reduced in breast and thyroid carcinoma, and is functionally compromised

by mutation in acute myeloid leukemia [7]. Microsomal Glutathione S-transferasesm

(MGST) is a subfamily of Glutathione S-transferases (GST) which comprise a series

of eukaryotic and prokaryotic phase II metabolic isozymes best known for their ability

to catalyze the conjugation of the reduced form of glutathione (GSH) to xenobiotic

substrates for the purpose of detoxification. [14] showed that microsomal GST-II

is highly expressed in the human cell line K-562, a chronic myelogenous leukemia

cell line. CD33 antigen (differentiation antigen) is a myeloid differentiation antigen

with endocytic properties. It is broadly expressed on acute myeloid leukemia (AML)

blasts and, possibly, some leukemic stem cells and has therefore been exploited as

target for therapeutic antibodies for many years [17]. Transcription factor 3 (E2A

immunoglobulin enhancer-binding factors E12/E47), also known as TCF3, is a pro-

tein that in humans is encoded by the TCF3 gene. This gene is involved in several

chromosomal translocations that are associated with lymphoid malignancies including

several types of leukemia [22].

Seven out of the 13 genes (in bold type in Table 14) were among the 50 genes

selected in [12] based on the Pearson correlation with AML-ALL distinction. This

shows that our PDCOV based iterative procedure is very effective in selecting the

most important features.
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Table 14: Partial distance covariance gene selection results based on all the obser-
vations. The genes in bold type are also among the 50 selected genes in [12].

Gene Ranking Gene Description
1 Zyxin (X95735)
2 GLUTATHIONE S-TRANSFERASE, MICROSOMAL

(U46499)
3 CD33 CD33 antigen (differentiation antigen)

(M23197)
4 TCF3 Transcription factor 3 (E2A immunoglobulin

enhancer binding factors E12/E47) (M31523)
5 ME491 gene extracted from H.sapiens gene for Me491/CD63

antigen (X62654)
6 GB DEF = Homeodomain protein HoxA9 mRNA

(U82759)
7 Nucleoside-diphosphate kinase (Y07604)
8 DF D component of complement (adipsin) (M84526)
9 Macmarcks (HG1612-HT1612)
10 C1NH Complement component 1 inhibitor (angioedema,

hereditary) (M13690)
11 MPO Myeloperoxidase (M19507)
12 CST3 Cystatin C (amyloid angiopathy and cerebral

hemorrhage) (M27891)
13 Epb72 gene exon 1 (X85116)
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4.5.3 Fivefold cross validation

In this section, we fit the nonlinear SVM models to the leukemia data sets. In order

to reduce the number of genes, we apply the PDCOV procedure and use the 13 genes

selected in Section 4.5.2. Here we applied a fivefold cross validation analysis on the

training data to determine the tuning parameter. The performance of the final model

is evaluated on test samples.

The implementation took the following steps.

(1) Randomly partition the 38 training samples into five non-overlapping folds

F1, . . . , F5.

(2) For k = 1, · · · , 5

• Take (xi, yi), i /∈ Fk as the training set and (xi, yi), i ∈ Fk as the validation

set.

• For each value of parameter θ ∈ Θ, build SVM model with the 13 genes

and the two leukemia status variables based on the training set. Let f̂−kθ

be the estimate on the training set, and record the loss on the validation

set

ek(θ) =
∑
i∈Fk

loss(f̂−kθ (xi), yi).

(3) For each tuning parameter value θ, compute the cross validation error

CV (θ) =
1

K

K∑
i=1

ek(θ) =
1

K

K∑
i=1

∑
i∈Fk

loss(f̂−kθ (xi), yi).

We choose the value of tuning parameter that minimizes this cross validation

error

θ̂ = arg min
θ∈Θ

CV (θ).
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(4) We train on the whole 38 training sample using the selected parameter θ̂. Let

f̃θ̂ be the estimate on the training set. The prediction error is given by

PE =
∑

(x,y)∈Test Sample

loss(f̃θ̂(x), y).

The accuracy of the predictors was first tested by cross-validation on the training

data set. The kernel used is the Gaussian radial basis function, which is defined as

k(xi, xj) = exp

(
−||xi − xj||

2

2σ2

)
.

Therefore, the parameter θ is a two dimensional vector (σ,C), where C is the soft

margin parameter. To avoid the local minimum of the cross-validation error, we

randomly choose a set of 20 initial values to search for the optimal tuning parameter

θ̂. As a result, 14 sets of θ̂ were found with zero cross-validation error.

We then build a final predictor based on the 38 training data set and assesses its

accuracy on the 34 testing set. We list the 14 optimal θs with corresponding prediction

errors in Table 15 shown below. In total, the predictor made strong predictions for

Table 15: The optimal tuning parameters with corresponding prediction errors

Optimal Parameter exp(θ̂) = (exp(σ̂) exp(Ĉ)) Prediction Error
1 (1.712 6.859) 0
2 (1.375 0.253) 0.0588
3 (35.816 15.949) 0
4 (2.181 0.938) 0
5 (2.043 0.814) 0
6 (4.092 4.125) 0
7 (1.957 0.281) 0
8 (2.048 5.317) 0
9 (1.591 2.963) 0
10 (2.073 0.736) 0
11 (1.322 0.437) 0.0588
12 (2.458 0.308) 0
13 (1.388 0.467) 0.0588
14 (3.936 0.180) 0

95



the 34 samples, and the accuracy were 100% for 13 optimal tuning parameters and

around 95% for three optimal tuning parameters. This shows the prediction strengths

were quite high.

In summary, the above numerical example illustrates that the iterative feature

screening procedure, based on partial distance covariance, successfully extracts the

features which are highly correlated with the class distinction in high dimensional

data. The resulting simplified model with selected variables also showed high predic-

tion strength.
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APPENDIX A

A STOCHASTIC CONTROL MODEL FOR FOREIGN

EXCHANGE RESERVE MANAGEMENT

In this section, we construct a control policy that the drift is altered based on the

threshold type stopping rules. The optimal threshold and the minimum cost were

obtained by numerically optimizing the value function, which is suboptimal for our

problem because the feasible solutions are chosen from a constrained subset of our

policy space.

In section A.0.4, we describe the dynamics of the reserve accumulation in three

drift case under the threshold stopping rule. The closed-form solution of the cost

function are derived subsequently in section A.0.5.

A.0.4 Dynamic of the reserve accumulation in three drift threshold stop-
ping rule

At time zero the reserve level is R(0) = x21. We describe the controlled reserve

process as a three stage process:

1. The reserve follows a reflected BM R = {R(t) : t ≥ 0} with parameters (µ1, σ
2)

and regulation part L(t) = −min[0,mins≤tR(s)] until it hits level y12, then it

goes to stage two. L(t) is the minimal amount of regulation (foreign reserves in-

jection) necessary to keep the reserve level R(t) from falling below the boundary

zero up to t.

2. The reserve follows a BM R = {R(t) : t ≥ 0} with parameters (µ2, σ
2) until it

hits level y23 or x21. If it hits level x21 before hitting level y23, then it goes back

to stage one; if it hits level y23 before hitting level x21, then it goes to stage
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three.

3. The reserve follows a BM R = {R(t) : t ≥ 0} with parameters (µ3, σ
2) until it

hits level x32, then it goes to stage two.

Figure 8: Dynamic of the reserve accumulation in three drift threshold stopping rule

To make it more intuitive, Figure 8 illustrates the dynamics of R(t).

Having described the dynamics of drift control, we now model the costs associated

with managing reserves. We identify three types of costs-the cost of holding reserves,

the cost of regulation, and the cost of controlling the drift.

Let the cost of holding reserves be hR(t), where h is the cost of holding $1 of

reserves per unit of time. The expected discounted cost of holding reserve is

A1(β) = hEx21,1
[∫ ∞

0

e−βtR(t) dt

]
, (137)

where β denotes the discounted rate and Ez,i[∗] = E[∗|R(0) = z, µ(0) = µi].
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Next we assume that there is cost k per $1 of regulation at the boundary 0. There

are an infinite and uncountable number of times that reserves hit the boundary level

0. To evaluate the regulation cost, we make use of L(t) defined above. The expected

discounted cost of regulation is

A2(β) = kEx21,1
[∫ ∞

0

e−βt dL(t)

]
. (138)

Finally, we assume that a cost K(µi, µj) is incurred every time the drift is switched

from µi to µj and K(µi, µj) satisfies the triangle inequality condition:

K(µi, µj) +K(µj, µk) > K(µi, µk), for i 6= j, j 6= k, k 6= i. (139)

The expected discounted cost of controlling the drift is denoted by A3(β).

By applying strong Markov property, we can simplify the representation of

Ai(β), i = 1, 2, 3, hence get an explicit form of the total cost M(β).
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Theorem A.0.1. Define the following notation as

θx21(β) = Ex21,1 [e−βTx21,y12 ], Tx21,y12 = inf{t > 0 : R(t) = y12|R(0) = x21},

γx21(β) = Ex21,1
[∫ Tx21,y12

0

e−βtR(t) dt

]
,

θ∗y12(β) = Ey12,2 [e−βTy12,x21∧y231{R(Ty12,x21∧y23 )=y23}],

θy12∗(β) = Ey12,2 [e−βTy12,x21∧y231{R(Ty12,x21∧y23 )=x21}],

Ty12,x21∧y23 = inf{t > 0 : R(t) = x21 or R(t) = y23|R(0) = y12},

γy12(β) = Ey12,2
[∫ Ty12,x21∧y23

0

R(t)e−βt dt

]
,

θy23(β) = Ey23,3 [e−βTy23,x32 ],

γy23(β) = Ey23,3
[∫ Ty23,x32

0

e−βtR(t) dt

]
, Ty23,x32 = inf{t > 0 : R(t) = x32|R(0) = y23},

θ∗x32(β) = Ex32,2 [e−βTx32,x21∧y231{R(Tx32,x21∧y23 )=y23}],

θx32∗(β) = Ex32,2 [e−βTx32,x21∧y231{R(Tx32,x21∧y23 )=x21}],

Tx32,x21∧y23 = inf{t > 0 : R(t) = x21 or R(t) = y23|R(0) = x32},

γx32(β) = Ex32,2
[∫ Tx32,x21∧y23

0

R(t)e−βt dt

]
.

Then we have

A1(β) = h ·
γx21(β) + θx21(β) · γy12(β) +

θ∗y12 (β)·θx21 (β)

1−θy23 (β)·θ∗x32 (β)
(γy23(β) + θy23(β) · γx32(β))

1− θx21(β) · θ∗y12(β)− θ∗y12 (β)·θy23 (β)·θx32∗(β)·θx21 (β)

1−θy23 (β)·θ∗x32 (β)

,

(140)

A2(β) = k ·
Ex21,1

[∫ Tx21,y12
0

R(t)e−βt dL(t)
]

1− θx21(β) · θ∗y12(β)− θ∗y12 (β)·θy23 (β)·θx32∗(β)·θx21 (β)

1−θy23 (β)·θ∗x32 (β)

, (141)

A3(β) =
θx21(β)K(µ1, µ2) + θx21(β)θy12∗(β)K(µ2, µ1) + θx21(β)θ∗y12(β)K(µ2, µ3)

1− θy23(β) · θ∗x32(β)

+

θx21 (β)θ∗y12 (β)θy23 (β)

1−θy23 (β)θx32∗(β)
(K(µ3, µ2) + θx32∗(β)K(µ2, µ1) + θ∗x32(β)K(µ2, µ3))

1− θy23(β) · θ∗x32(β)
.

(142)
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Proof. Because of the Markov property, we can write the three costs associated with

reserve management-the holding cost, the regulation cost, and the cost of changing

the drifts, as the following:

Ex21,1
[∫ ∞

0

e−βtR(t) dt

]
=Ex21,1

[∫ Tx21,y12

0

e−βtR(t) dt

]
+Ex21,1

[
e−βTx21,y12

]
· Ey12,2

[∫ ∞
0

e−βtR(t) dt

]
, (143)

Ey12,2
[∫ ∞

0

e−βtR(t) dt

]
=Ey12,2

[∫ Ty12,x21∧y23

0

e−βtR(t) dt

]
+Ey12,2

[
e−βTy12,x21∧y23 · 1{R(Ty12,x21∧y23 )=x21}

]
·Ex21,1

[∫ ∞
0

e−βtR(t) dt

]
+Ey12,2

[
e−βTy12,x21∧y23 · 1{R(Ty12,x21∧y23 )=y23}

]
·Ey23,3

[∫ ∞
0

e−βtR(t) dt

]
, (144)

Ex32,2
[∫ ∞

0

e−βtR(t) dt

]
=Ex32,2

[∫ Tx32,x21∧y23

0

e−βtR(t) dt

]
+Ex32,2

[
e−βTx32,x21∧y231{R(Tx32,x21∧y23 )=x21}

]
·Ex21,1

[∫ ∞
0

e−βtR(t) dt

]
+Ex32,2

[
e−βTx32,x21∧y231{R(Tx32,x21∧y23 )=y23}

]
·Ey23,3

[∫ ∞
0

e−βtR(t) dt

]
. (145)

Solving the system of linear equations, we can easily get (140), (141), and (142).

Adding together the three costs, the total expected discounted cost of managing

reserves is therefore

M(β) = A1(β) + A2(β) + A3(β). (146)

This completes the description of the drift control model of international reserves.
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A.0.5 Solving the threshold drift control model

In this section, we compute the total expected discounted cost, M(β) in (146). To

do so, we need to derive explicit solutions for the functions

θx21(β), θ∗y12(β), θy12∗(β), θy23(β), θ∗x32(β), θx32∗(β), (147)

γx21(β), γy12(β), γy23(β), γx32(β). (148)

Define

m+
i =

1

2

−2µi
σ2

+

√(
2µi
σ2

)2

+ 4
2β

σ2

 > 0, i = 1, 2, 3,

m−i =
1

2

−2µi
σ2
−

√(
2µi
σ2

)2

+ 4
2β

σ2

 < 0, i = 1, 2, 3.

The following lemma tells us how to explicitly calculate the functions in (147) and

(148):

Lemma A.0.2.

θx21(β) =
−m+

1 e
m−1 x21 +m−1 e

m+
1 x21

−m+
1 e

m−1 y12 +m−1 e
m+

1 y12
,

θy12∗(β) =
em

+
2 y23+m−2 y12 − em+

2 y12+m−2 y23

em
+
2 y23+m−2 x21 − em+

2 x21+m−2 y23
,

θ∗y12(β) =
em

+
2 x21+m−2 y12 − em+

2 y12+m−2 x21

em
+
2 x21+m−2 y23 − em+

2 y23+m−2 x21
,

θy23(β) = em
−
3 (y23−y12),

θx32∗(β) =
em

+
2 y23+m−2 x32 − em+

2 x32+m−2 y23

em
+
2 y23+m−2 x21 − em+

2 x21+m−2 y23
,

θ∗x32(β) =
em

+
2 x21+m−2 x32 − em+

2 x32+m−2 x21

em
+
2 x21+m−2 y23 − em+

2 y23+m−2 x21
, (149)
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Ex21,1
[∫ Tx21,y12

0

R(t)e−βt dL(t)

]
=
em
−
1 x21+m+

1 y12 − em+
1 x21+m−1 y12

−m−1 em
+
1 y12 +m+

1 e
m−1 y12

,

γx21(β) =

(
x21 − y12θx21(β) + Ex21,1

[∫ Tx21,y12
0

R(t)e−βt dL(t)
])
β + µ1(1− θx21(β))

β2
,

γy23(β) =
(y23 − x32θy23(β))β + µ3(1− θy23(β))

β2
,

γy12(β) =
(y12 − x21θy12∗(β)− y23θ

∗
y12

)β + µ2(1− θy12∗(β)− θ∗y12(β))

β2
,

γx32(β) =
(x32 − x21θx32∗(β)− y23θ

∗
x32

)β + µ2(1− θx32∗(β)− θ∗x32(β))

β2
. (150)

Proof. The proof is similar to the proof in the Appendix in [2].

103



APPENDIX B

PARTIAL DISTANCE COVARIANCE: A FAST

COMPUTING ALGORITHM

B.0.6 Proof of Lemma 3.3.1

Proof.

ai· =
n∑
l=1

ai,l =
n∑
l=1

|xi − xl|

=
∑
xl<xi

(xi − xl) +
∑
xl>xi

(xl − xi)

= xi(
∑
xl<xi

1−
∑
xl>xi

1)−
∑
xl<xi

xl +
∑
xl>xi

xl.

It is easy to verify that ∑
xl>xi

1 = n− 1− αxi ,

and ∑
xl>xi

xl = x· − xi − βxi .

Taking into account the above two equations, we have

ai· = (2αxi − n+ 1)xi − βxi + x· − xi − βxi

= x·(2α
x
i − n)xi − 2βxi ,

which is (129).
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B.0.7 Proof of Lemma 3.3.4

Proof. We have

∑
i 6=j

aijbij =
∑
i 6=j

|xi − xj| · |yi − yj|

=
n∑
i=1

∑
j:j 6=i

(xiyi + xjyj − xiyj − xjyi)Sij

=
n∑
i=1

[
xiyi

∑
j:j 6=i

+
∑
j:j 6=i

xjyjSij − xi
∑
j:j 6=i

yjSij − yi
∑
j:j 6=i

xjSij

]

Per the definition of γi({· · · }), one can verify that the above equates to (134).

B.0.8 Proof of Lemma 3.3.5

Proof. Without loss of generality (WLOG), we assume that x1 < x2 < · · · < xn. We

have

γi({cj}) =
∑
j:j 6=i

cjSij

=
∑

j:j>i,yj>yi

cj +
∑

j:j<i,yj<yi

cj −
∑

j:j>i,yj<yi

cj −
∑

j:j<i,yj>yi

cj.

Note that we can verify the following equations:

∑
j:j<i,yj<yi

cj +
∑

j:j>i,yj<yi

cj =
∑
j:yj<yi

cj,

∑
j:j<i,yj<yi

cj +
∑

j:j<i,yj>yi

cj =
∑
j<i

cj,

∑
j:j>i,yj>yi

cj +
∑

j:j<i,yj<yi

cj +
∑

j:j>i,yj<yi

cj +
∑

j:j<i,yj>yi

cj = c· − cj,

where c· =
∑n

j=1 cj. We can rewrite γi({cj}) as follows:

γi({cj}) = c· − ci − 2
∑
j:yj<yi

cj − 2
∑
j:j<i

cj + 4
∑

j:j<i,yj<yi

cj. (151)

We will argue that the three summations on the right hand side can be implemented

by O(n log n) algorithms. First, term
∑

j:j<iCj is a formula for partial sums. It is
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known that an O(n) algorithm exists, by utilizing the relation:

∑
j:j<i+1

cj = ci +
∑
j:j<i

cj.

Second, after sorting y,js at an increasing order, sums
∑

j:yj<yi
cj is transferred into

a partial sums sequence. Hence it can be implemented via an O(n) algorithm. If

QuickSort is adopted, the sorting of y,js is an O(n log n) algorithm.

We will argue that sums
∑

j:j<i,yj<yi
cj, i = 1, . . . , n, can be computed in an

O(n log n) algorithm. WLOG, we assume that yi, i = 1, 2, . . . , n, is a permutation

of the set {1, 2, . . . , n}. WLOG, we assume that n is dyadic; i.e., n = 2L, where

L ∈ N or L is a nonnegative integer. For l = 0, 1, . . . , L − 1, k = 1, 2, . . . , 2L−l, we

define an close interval

I(l, k) := [(k − 1) · 2l + 1, . . . , k · 2l].

We then define the following function

s(i, l, k) :=
∑

j:j<i,yj∈I(l,k)

cj,

where i = 1, . . . , n, l = 0, 1, . . . , L− 1, and k = 1, 2, . . . , 2L−l.

We argue that computing the values of s(i, l, k) for all i, l, k can be done in

O(n log n). First of all, it is evident that

s(1, l, k) ≡ 0,

for all l, k. Suppose for all i′ ≤ i, s(i′, l, k),s have been computed for all l and k. For

each 0 ≤ l ≤ L − 1 < log2 n, there is only one k∗, such that yi ∈ I[l, k∗]. By the

definition of s(·, ·, ·), we have

s(i+ 1, l, k) =

 s(i, l, k) + ci, if k = k∗,

s(i, l, k), otherwise.
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The above dynamic programming style updating scheme needs to run for n times

(i.e., for all 1 ≤ i ≤ n). However, each stage requires no more than log2 n updates.

Overall, the computing for all s(i, l, k) takes no more than O(n log n).

For a fixed i, 1 ≤ i ≤ n, we now consider how to compute for
∑

j:j<i,yj<yi
cj. If

yi = 1, obviously we have
∑

j:j<i,yj<yi
cj = 0. For yi > 1, there must be a unique

sequence of positive integers l1 > l2 > . . . > lτ > 0, such that

yi − 1 = 2l1 + 2l2 + · · ·+ 2lτ .

Since yi ≤ n, we must have τ ≤ log2 n. We then define kα, α = 1, . . . , τ, as follows

k1 = 1,

k2 = 2l1−l2 + 1,

...

kα = (2l1 + · · ·+ 2lα−1)/2lα + 1,

...

kτ = (2l1 + · · ·+ 2lτ−1)/2lτ + 1.

One can then verify the following: for 2 ≤ i ≤ n,

∑
j:j<i,yj<yi

cj =
τ∑

α=1

s(i, lα, kα).

Since τ ≤ log2 n, the above takes no more than O(log n) numerical operations. Con-

sequently, computing
∑

j:j<i,yj<yi
cj for all i, 1 ≤ i ≤ n, can be done in O(n log n).
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