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Abstract

Distributed Shared Memory (DSM) has become an accepted abstraction for programming
distributed systems. Although DSM simplifies the programming of distributed applications,
maintaining a consistent shared memory can be expensive.

Weakly ordered systems which use synchronization information have been proposed to re-
duce the frequency of communication between processors. We have implemented a weakly
ordered system based on the Causal memory model. We provide language and runtime sup-
port which allow programs to run efficiently on Causal memory.

Actual implementation results show a significant reduction in the number of messages when
compared to a system maintaining a consistent shared memory.
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1 Introduction

Distributed Shared Memory (DSM) has become an accepted abstraction for programming dis-
tributed systems. DSM simplifies programming of distributed applications since the user need not
distinguish between local and remote memory operations. This simplification is at the cost of
maintaining a consistent shared memory. Most DSM implementations use variants of multiproces-
sor cache consistency algorithms, which however perform poorly in distributed systems, where the
message latencies are much higher.

A program interacts with the memory through a sequence of reads and writes. The DSM is an
interface between the program and the memory which provides an ordering on the reads and writes,
consistent with the memory model chosen. Ideally a distributed shared memory should provide all
the consistency guarantees of a true shared memory. Lamport [23] defined a memory model called
sequential consistency which provided such properties. Atomic memory [27] is a stronger memory
model which requires that the memory maintain the real time order in which the reads and writes
occur. Kai Li’s Ivy system [24] is based on a writer invalidate-readers protocol which implements
atomic memory. Such implementations maintain the real time order by restricting a page (which is
the smallest unit of sharing) to a single writer or multiple readers at the same time.

In [13, 3] delayed invalidations and buffered writes are used to capture more efficient executions
permitted by sequential consistency. Maintaining sequential consistency on a network of distributed
machines, can be shown to limit performance and does not lend itself to scaling [25].

Dubois et al. [16] observe that parallel programs define their own consistency requirements
through the means of synchronization operations. They define a weakly ordered system, where

synchronization operations are made explicit to the memory system and consistency maintenance
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is only performed at synchronization points. The DASH multiprocessor [18] is a weakly ordered
system which implements a memory model called Release Consistency. Release Consistency allows
remote memory accesses to be propagated asynchronously, as long as they complete by the end
of the critical section. Such systems guarantee sequentially consistent behavior only for programs
which do not have data races [1]. The Munin system [9] implements Release Consistency in software,
by delaying propagating the changes made inside a critical section till the the lock is released. Entry
Consistency [10] and Lazy Release Consistency [20] reduce communication further by propagating
changes only to the processor which acquires the lock.

We explore a weakly ordered memory system, based on Causal memory [5]. The Causal memory
model requires that a read of a location return a value that is consistent with all causally related
reads and writes to that location. We extend the synchronization operations and implement a
programming system supporting the Causal memory model, which allows a user to exploit the
benefits of a weakly ordered system. The language and runtime mechanisms in conjunction with
the DSM system provides demonstrably improved overall system performance.

The goals of this paper are to show:

e Causal Memory can be efficiently implemented and is a viable architecture since most pro-

grams would port without change in the code.

e Causal memory requires far less communication compared to implementations where a con-

sistent DSM is maintained.

e Scalable shared memory systems can be built using the Causal memory model, since global
synchronization (e.g. invalidation of copies at several nodes, which requires broadcasts or

atomic multicasts) is not required.
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We define Causal memory in the next section and the actual implementation is described in Section
3. Section 4 discusses the programming support required to run applications efficiently on Causal
memory. In Section 5 we describe how to program applications and give performance results. We

talk about related work in Section 6 and conclude in Section 7.

2 Causal Memory

In [4] we define correct execution on Causal memory by the possible set of values a read to a shared
location can return. We use a more generalized framework here, since this can be used to classify

a range of different memory models [21].

2.1 Formal Definition

This section formally describes the system that underlies our implementation. We use a model
that is similar to those used by Misra [27] and by Herlihy and Wing [19]. We define a system
to be a finite set of processors that interact via a shared memory that consists of a finite set of
locations. A processor’s interaction with the memory is through a series of read and write operations
on the memory. Each such operation acts on some named location and has an associated value.
For example, a write operation by processor p denoted w,(x)v stores the value v in location z; a
similarly denoted read operation, r,(x)v, reports that v is stored in location x. A processor initiates
an operation by issuing an invocation. After doing so, the processor waits until the memory issues
a response to the invocation. In the case of read operations, this response includes the value
that was read. Upon receiving a response, the processor can continue, issuing other invocations.

For any operation o, let inv(o) be o’s invocation and let rsp(o) be its response. An execution
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history (or history) H is thus a sequence of invocation and response events. The order of events
in H corresponds to the order in which they occur in the global time; this is a total order.! The
execution of an operation corresponds to the interval in time that is bounded by its invocation and
response; this is called the operation’s execution interval. A history is sequential if every invocation
in immediately followed by its corresponding response. In such a history, there is no overlap between
the execution intervals of different operations on the memory and we can replace the events(inv
and rsp) by the corresponding operation(read or write). A sequential history is legal if every read
operation from a location returns the value of the most recent write to that location (this write is
uniquely defined because the history is sequential and thus there is a total order). The definition
of an execution history assumes a total ordering on invocation and response events. This can be
extended to the operations comprising these events. Specifically, we say that operation o; precedes
0y in H, written o A oy if rsp(o1) precedes inv(oz) in the sequence of events that H comprises.
Note that order 2 is partial, as the execution intervals of operations may overlap. If history H has
operations 0, = w(z)v and o, = r(x)v, then o, reads the value written by o,,. We express this using
a new relation, ri, writing o, & 0,. We call & the read-by relation and assuming all writes have
distinct values (this just simplifies the model but the general case can be easily handled), for each
read operation o,, there is a unique o,, such that o, A, o,. A “happens before” relation in the sense
defined by Lamport [22] can also be defined for shared memory. We denote this causal relation by
A and it combines the — relation with the read-by relation . The relation %A partially orders

causally related operations; two operations are related by the causal relation if any of the following

hold:

'We assume a notion of global time, which linearly orders all invocation and response events and that no two
events occur at precisely the same global time. Global time is used only to impose this order on events and is not,
in general, available to the processors or to the subsystem that implements the shared memory.
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o If 0 and o' are operations in H of some process p such that o LN o', then o A o (program

order dependence).

) H H .
e if 0, and o, are such that o, = o,, then o, ~> o, (inter-processor dependence).
e if 01 ~> 0y and 0y ~> 03, then 01 ~> o5 (transitivity).

Given this formalism we can define a variety of memory consistency models, by putting con-
straints on the allowable histories for any execution. [21] defines different memory models based
on this formalism. Let H,y, be the history obtained from H by deleting all events of all read

operations executed by processes other than p. A history is causal if it satisfies the following:

Causal Memory for each processor p, there is a legal sequential history S,, such that, for all

. . . H Sp
operations o; and oy in Hyt,, if 01 ~> 0y then 0, — o0,.

To illustrate, Figure 1 shows an execution (the history of inv and rsp events can be easily
constructed) and the corresponding legal sequential causal histories. We assume that all variables
have an initial value of zero. This history is not sequentially consistent since both processors would

not “agree” on a common sequence of operations.

Pr:ow(x)]l w(y)2 r(2)0 Sp, o wi(x)] wi(y)2 r1(2)0 wy(z)1
Py:ow(z)l r(2)0 r(y)2 r(z)l Sp, + wa(2)] ra(2)0 wi(x)]l wi(y)2 ra(y)2 re(x)l
(a) Two Process Execution (b) Causal Sequential Histories

Figure 1: An Execution which is Causal but not Sequentially Consistent
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2.2 Atomic, SC and Causal

Atomic and sequentially consistent memories provide strong consistency guarantees, since they re-
quire that all processes “agree” on a single global sequential history that includes read and write
operations of all the processes. In contrast, Causal memory does not require a global consistent
view of all the operations and as a consequence, operations might appear delayed at certain pro-
cessors. For instance, a processor could perform a write locally, even though readers which have
cached the location could continue seeing the old value. The earliest time at which writes have to
be propagated (or made visible), depends on the memory model, and has a significant influence
on performance. Certain cooperative distributed applications, for example a distributed calendar
service, may tolerate stale values. On the other hand, data used to achieve implicit synchronization
may require writes to be immediately made visible. Other such examples are given in [15]. With
adequate programming support, such application related information can be utilized by a causal

memory system to enhance performance.

2.3 Synchronization and Forking

Causal memory has been defined using the read/write model of shared memory. But, communica-
tion between processors is not limited to the read/write operations. Programs very often contain
synchronization operations for access and sequence control. Also, programs contain forks or invoca-
tions (in object based systems) for expressing concurrency. We discuss the effect of these operations
on the Causal memory model.

Parallel and distributed programs, typically, define their consistency requirements through the

use of synchronization operations. Synchronization is achieved through explicit language provided
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mechanisms, such as semaphores, locks and barriers, or implicitly by busy-waiting. Dubois et al. [16]
define a weakly ordered system where dependency conditions between processes are limited to the
synchronization variables. Adve & Hill [1] formalize this by defining a happens-before relation,
which orders two operations on different processes, only if, there is a synchronization operation
between them. Since a critical section guarantees that only a single process is active in it at a
time and if shared data is accessed only inside a critical section, the synchronization dependences
would subsume the read-by dependences. Weakly ordered systems require that the synchronization
operations are made explicit to the memory system. Inter-processor dependences can be then
limited to the synchronization operations [1, 20, 10].

Parallel and distributed programs achieve parallelism by forking computation onto different pro-
cessors. Domain decomposition is a commonly used method for developing parallel programs, where
a “parent” process initializes the domains, and then forks “child” processes on different processors,
each working on a different partition. While programming, it is assumed that the initializations done
by the parent will be visible to the children. Similarly, at fork-joins the programmer assumes that
the changes made by the children are visible to the parent. In effect, inter-processor dependences
would arise due to such operations too, and must be handled.

The formal model can be extended to include synchronization and forking events. Causal order-
ings would now arise between synchronization acquires and releases and also between the forking

parent thread and the forked child thread.

2.4 Implementation on Clouds

The key features of the implementation of the algorithm that is described in this section include:

(1) use of page fault mechanisms for accesses to shared data by processes on different nodes, (2)
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use of vector timestamps for maintenance of data version information, and (3) use of multiple page
invalidation schemes.

The Clouds Distributed Operating System has been used as the test-bed for implementing
Causal memory. Although the implementation is general, certain optimizations we discuss are in
the context of an object based system and so some understanding of the computation model is

required.

2.4.1 System Model

Clouds is an object based distributed operating system which provides the programmer with the
notion of a globally shared memory. An object in Clouds contains, minimally, a code and a data
segment. A node in the Clouds system may be a data or a compute server. Computations are carried
out at the compute servers and a data server is responsible for managing the objects owned by it.
A data server supplies pages on demand, for objects it owns, and is responsible for maintaining the
consistency requirements. Threads are the active entities in the system and are used for expressing

concurrency and may span machine boundaries by invoking an object on different nodes.

2.4.2 Basic Protocol

We have implemented Causal memory by rewriting the existing DSM protocol on Clouds. We use
the page fault mechanism for sharing state between processors. Accessing a page which is not
present generates an access violation. A protection violation is generated when a page with only
read access is written into.

The data and compute server actions are described in Figure 2. The procedures described are

performed either at page faults or on receipt of a message. Each procedure is executed atomically.
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The implementation we describe allows a single writer to coexist with multiple readers. False
sharing might create the problem of multiple processors writing to different parts of the same page.
With language support which allows such data to be put on different pages, this problem can be
alleviated to some extent. But false sharing cannot be avoided altogether, especially in cases where
dynamic data partitioning is done. The implementation can be extended to allow multiple writers
by having the data server merge the changes. The relative costs of merging to restricting to a single
writer has still to be studied. It must be noted that false sharing where there is a single writer and
multiple readers is tolerated. A page shuttles only when multiple writers write to data on the same
page.

C; is the set of shared data pages which are cached at processor P,. Each page has the fields
owner, keeper and access. The owner field for a page x identifies its data server. The keeper field
indicates the node which has the latest copy of the page; if it is ¢ the data server supplies the page.
The access field specifies the access privileges to the page on the local processor.

We use vector timestamps[26] to capture the evolving causal relationships. A vector timestamp
is associated with each page and each processor P; carries a timestamp V7. Three operations can

be performed on vector timestamps, which are described below:
e ncrement: inc(V1') by processor P; increments V1" by adding one to its ith component, V1'[¢].
e update: update(VT, VTI) returns the component wise maximum of the two vectors.

o comparison: VT < VT  returns true if all components of VT are less than or equal to VT

and there is at least one component which is less.

Notice the handling of timestamps. The same page cached on different processors may have

different timestamps. The page timestamp reflects the updates to the page that the processor has
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ReadAccessFault ::
send [READ_REQ,y| to y.owner
recv[R_REPLY,y, V1'] from y.owner
y.access ;= read
y VT :=VT'
VT, := update(VT;, VT')
VYee Cp:x. VT < VT A x.access = read

local_invalidate(x)

WriteAccessFault ::
ProtectionFault ::
send [WRITFE_REQ,y] to y.owner
recv [W_REPLY,y,VT'] from y.owner
y.access := wrile
y VT .= VT’
VT; := update(VT;, VT")
VT, :=inc(VT))
VYee C;:x. VT < VT' A z.access = read
local_invalidate(x)

[FORWARD_REQ,y,j] :
recv [FORWARD_REQ),y| from y.owner
local invalidate(y)

send [FF_REPLY.y, VT to j

[FWD_COPY _REQ,y,7j]

recv [FWD_COPY _REQ,y,j]| from y.owner

VT :=inc(VT))
send [FC_REPLY,y, VT to j

(a) Compute Server Actions

10

[READ_REQ, ] ::
recv [READ_REQ,z] from i
if (z.keeper = ¢)
send [REPLY,z,2.VT] to 1
else

send [FWD_COPY, z,i] to z.keeper

(WRITE_REQ, x] =
recv [WRITE_REQ,z] from 1
if (z.keeper = ¢)
send [REPLY,z,2.VT] to 1
else
send [FORW ARD, x,1] to x.keeper

x.keeper ;=1

(b) Data Server Actions

Figure 2: Causal Implementation
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seen. A processor’s timestamp is incremented on a writefault and if it gets a request to forward
a copy of a page. This is sufficient to order the writes. Comparing page timestamps allows us to
determine if the modifications to shared data happened concurrently, or have to be ordered. At a
page fault, we locally tnvalidate any cached pages that contain values that could potentially violate
causal memory correctness if read. The local_invalidate function is responsible for invalidating all

mappings to a page, so that any future access to data in the page would generate an access fault.

2.4.3 Handling Local Invalidations

Locally invalidating pages obviates the need for explicit invalidation messages. Performing local
invalidations does not just reduce the number of messages but also does not have the extra software
overheads of network interrupts and context switches, associated with invalidation messages. The
saving in the number of messages is at the cost of the extra computation required to determine and
invalidate causally older pages. Also, we might invalidate more pages than strictly necessary. This
is because, not all pages that are older (w.r.t timestamps) are outdated. For instance, consider the

execution in figure 3.

Figure 3: Page containing x will get invalidated

Assume that z and y are on different pages. When P, reads the value y, the page containing x
would get invalidated even though it holds the current value of z.

We allow user provided information to reduce unnecessary invalidations and also to reduce the
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frequency of doing the local invalidations. We have considered the following approaches that allow
application specific knowledge to be used to control the invalidation operation. We further elaborate

on how this is achieved in the next section on programming support.

e User annotations - Pages which are only written into during initialization and never again,
will not have their timestamps incremented. Such pages would get unnecessarily invalidated
at each pagefault. The Munin system[9] has identified various classes of data access patterns
which are characteristic of shared memory programs. Typical data access patterns identified
are Private, WriteOnce and WriteShared among others. We provide language mechanisms,
described in the next section, for a user to pass this information to the memory system. Data

which is Private or WriteOnce is never invalidated.

e synchronization based - for programs which are “properly” synchronized, invalidates need
only be done when a process acquires a lock. For this, synchronization mechanisms have been
extended to work on causal memory, and data used for implicit synchronization has to be

made explicit to the memory system.

e Object information - Context switching between processes, also introduces the problem where
cached pages not related to the computation could get invalidated. The data segment of an
object is directly accessed by the code in the code segment, and not by any other object.
When timestamps are compared, only pages with lower timestamps belonging to the object

being accessed are discarded.

Another approach is to perform the invalidations periodically to ensure that updates will even-

tually get propagated. The user can specify a time interval after which the page is unmapped. It
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is useful for programming asynchronous algorithms [8] and certain distributed applications which

tolerate stale values.

2.5 A note on Scalability

The implementation we sketched requires at the maximum, three messages to satisty a pagefault
request. Unlike traditional implementations of atomic DSM, Causal memory does not require
expensive multicasts or broadcasts. This bound on the number of messages allows scalable shared
memory systems to be built. But it must be noted that with each page a vector timestamp has
to be propagated. Since the timestamp is of the order of the number of processors, the size of
the messages increases with increasing the number of messages. Also to do local invalidates, our
implementation considers all pages in the cache for pages which are causally older. As cache sizes

grow this overhead could be significant. Currently we are investigating ways to reduce this cost.

3 Programming Support

Programming on Causal memory requires language and runtime support. The Clouds Distributed-

C++ [7] compiler and the runtime system have been extended to achieve the following.

e The language provides the ability to define multiple user data segments within an object. A

segment is an aggregate of data with similar access patterns.

e The synchronization operations have been extended to carry a vector timestamp, which allow

consistency preserving operations to be done at synchronization points.
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e On object invocations and returns, the thread of control carries with it a vector timestamp

which indicates the modifications to shared data it is aware of.

3.1 User Defined Segments

Segments provide the means to partition data and group data structures which have similar access
patterns. The keyword segment specifies the smallest logical unit of consistency maintenance.
Segments can be tagged as Static or Causal. In contrast to Munin [9], this labeling for ordinary data
does not imply multiple protocols. We use this information to reduce the unnecessary invalidations
that would otherwise occur. Data which is used privately by a processor, globally initialized data and
data which is written only once during an initialization phase is tagged as Static. Data structures
which exhibit a general read and write sharing pattern are labeled Causal. Only data labeled as
Causal are considered for invalidation during the local invalidate operation. For programs which
are data-race-free, the data must be one of Static or Causal.

We provide another annotation, Transient, which is useful for programming asynchronous ap-
plications and certain distributed cooperative applications which are non data-race-free. Transient
is used where the writes need not get immediately propagated. Currently our implementation pe-
riodically locally invalidates Transient data which is cached in the read mode. This ensures that
the writes will eventually get propagated. In the next section, we program applications to illustrate

how these annotations are used.
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Figure 4: Synchronization and Invocations

3.2 User Synchronization

Explicit synchronization mechanisms have been modified so that programs run correctly on Causal
memory. The semaphore acquire and release actions are shown in Figure 4. Each semaphore has
an associated vector timestamp. On a release operation the processor F;’s timestamp is assigned to
the semaphore. The processor P; which acquires the semaphore uses this timestamp to invalidate
causally older pages in its cache, updates its timestamp and only then executes the critical section.
By updating its timestamp, the processor P; ensures that F;’s changes will be visible to it, when it
page faults.

Read-write locks are implemented similarly. Barriers are implemented by having a barrier server
do an update of the timestamps of every thread at the barrier. This new timestamp is transmitted

with the barrier release and every node performs the local invalidate operation using the timestamp.
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3.3 Forks and Invocations

Forking is a mechanism for achieving parallelism in parallel and distributed systems. In object
based systems this is achieved through object invocations on different nodes. Object invocations on
Causal memory are handled as shown in Figure 4. When processor F; invokes an object on F;, the
processor P; uses F;’s timestamp to invalidate causally older pages and updates its own timestamp
before executing code. This ensures that if P; faults on a page, it will see the changes done by F;.
Similarly, at a fork-join or invocation return, the processor F;’s timestamp has to be updated to
ensure that the modifications made by P; fall in its causal history. Asynchronous invocations can
be handled similarly by locally invalidating pages and updating the timestamp, when the results

are claimed.

4 Writing Programs

In our experience, we have found it convenient to develop programs in two phases. Programs
are written without using the keyword segment. If data is not annotated, a centralized manager
invalidation protocol similar to the one described in [24] is used. Once the program is shown to run
correctly, we annotate the data.

In this section, we program an iterative linear equation solver and a distributed calendar service.
These programs are simple enough to illustrate how the data annotation is done. In [6], we use
NAS kernel applications, a traveling salesperson program and a matrix multiplication to compare

performance on Causal memory with other implementations of DSM.
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4.1 Linear Equation Solver on Causal Memory

Large systems of linear equations often arise in many scientific and engineering applications. Li [24]
investigated such an application and found that good speedups can be obtained on atomic DSM’s.
We show here that even better performance can be obtained on Causal memory.

Consider a parallel iterative algorithm that solves Az = b, where A is a n X n matrix and z
and b are vectors of size n. A parallel implementation of the iterative method partitions the task
of computing the vector x among available processors. At the beginning of each iteration, each
processor reads the results from the previous iteration and computes the new vector x; which it
stores in a private local vector. Processors synchronize twice in each iteration, once to ensure that
the new values have been computed and then to store these values into the vector x.

Figure 5 shows the code for the linear solver. The vector ¢; is local to processor P;; the function
converged checks for convergence after each iteration. We used a 128 x 128 size matrix. A parent
thread initializes the matrix A and the vector b and then creates the workers on different nodes.
The array z is partitioned so that there is no false sharing.

We compare its performance on Causal memory with an atomic DSM implementation. The
atomic DSM implementation uses a centralized manager writer-invalidate-readers protocol [24].
Multicast communication is not used for invalidating readers caching a dirty page; rather separate
messages need to be sent. The data partitioning was done identically in both cases. The computa-
tion was done on Sun 3/60’s. In Figure 6 we show the reduction in completion time and messages
obtained on Causal memory. Also, since Causal memory allows a writer to co-exist with multiple
readers there are fewer pagefaults. In particular, for the 3 processor case, Causal memory has 50 %
fewer pagefaults than atomic memory.

As we increase the number of workers, it can be analytically shown, that the reduction in
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object linear_solver {

segment { float AIMAX_SIZE][MAX_SIZE]; } [Static];

segment { float bIMAX_SIZE]; } [Static];
segment { float x[MAX_SIZE]; } [Causall;

main()

{
initialize A & b;

for(i = 1; i < num-of nodes; i++) {

create_process(worker, nodel[i], i, dim, num_of_nodes);

}

worker(int i, int n, int num_of_nodes)

{

while (—converged())
ti = (bi = o i ) = Y ai l‘f)/a“
barrier();
I; = tz'
barrier();

}

}

Figure 5: Iterative Linear Equation Solver
#Workers 2 3 4 5 6
%Reduction in messages | 66.67 | 57.14 | 52.63 | 50.00 | 48.27
% Reduction in time 18.08 | 22.74 | 30.11 | 35.21 | 37.99

Figure 6: Performance Results
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messages would approach 40 percent. It must, however, be noted that because of the small problem
size, the communication cost dominates the completion time. In practice, the problem sizes would
be much larger and the computation cost would dominate. In these cases, although the reduction
in the number of messages would be still significant, its effect on the total completion time will be

reduced.

4.2 Distributed Calendar

Consider the problem of implementing a distributed calendar service [14]. Every user in the system
maintains an appointment calendar, which can be browsed by others. In addition, occasionally
there could be a need to schedule a common meeting time for some group of people. We would
also like a feature where a user is alerted if his/her calendar has been updated. The code for such
a service is shown in figure 7.

Access to a user’s calendar is protected by a read-write lock. This is required since we allow
users to modify and browse any other person’s calendar. Browse_calendar allows a user to look
at anyone’s appointment calendar. The function update_calendar permits one to add and delete
appointments from one’s own calendar. The function set_up_meeting is invoked when a user needs
to schedule a group meeting. The locks are acquired in some pre-defined order to prevent deadlocks.
The listener_daemon is responsible for notifying a user that his calendar has been modified. It
periodically reads a flag to determine if any change has been done to the calendar. The flag is of
type Transtent, since updates need not be immediately propagated.

The local invalidations of causally outdated pages are carried out at lock acquires, as described
previously. In figure 8 we compare the message cost due to our approach and contrast it with the

cost due to atomic DSM’s. We have assumed that each user’s calendar data would not require
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object calendar {

segment { calendar_type calendar[MAX_USERS]; } [Causal;

segment { lock mutex]MAX_USERS]; } [Causall;

segment { boolean changed[ MAX_USERS]; } [Transient];

browse_calendar(user_id i)

{
acquire_read lock(mutex[i]);
display calendar;
release lock(mutex[i]);

}

update_calendar()

{
acquire_write_lock(mutex[my.id]);
update entry in calendar;
release lock(mutex[my.d]);

}

set_up_meeting(group-id group)

{

Y members i in group acquire_write_lock(mutexz[i]);
insert entry into calendar of each member of group,

V i changed[i] = TRUE;

V ¢ release lock(mutex[i]);

}

listener_daemony()

while(1) {
if (changed[my_id] == TRUE) {
beep();
changed[my_id] = FALSE;
}
sleep(NUM_SECS);
}
}

} // end of calendar object.

Figure 7: Shared Memory Distributed Calendar
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Operations browse | update | set_up_meeting | daemon
Maz Messages(Atomic) 3 2r+3 k(2r+3) | (3,642r)
Maz Messages(Causal) 3 3 3k (3,6)

r: number of readers
k: number of members in meeting group

Figure 8: Message counts for different memory models

storage more than a page. This assumption just simplifies the message count analysis.

Causal memory requires just 3 messages to service a page fault. On the other hand, the number
of messages on atomic memory depends on the number of concurrent readers. The two values for
the listener_daemon case correspond to the cases where the if statement is false or true ( in which

case, there is a write to the flag).

5 Related Work

Boyer [12] describes an implementation of causal DSM on Mach using external pagers. Simple
message counting arguments are presented to show its superior performance to conventional atomic
DSM’s.

Munin [9] implements release consistency in software by delaying propagating the changes made
inside a critical section, till the lock is released. Modifications to shared data is tracked by using the
page fault mechanism. Dirty pages are compared with a copy of the original page and the modified
data is propagated to all processors.

Lazy Release Consistency [20] tracks the causal dependencies between writes, acquires and

releases and propagates the writes by piggy-backing the modified data on lock transfer messages.
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LRC uses a history based mechanism to record the modified data which has to be transmitted with
the lock transfers.

Entry Consistency [10] requires that all shared data be associated with a synchronization vari-
able. When a processor acquires a synchronization variable, only modified data associated with the
synchronization variable need to be transferred. Compile time support is used to track data items
which have been modified. Extra programming effort may be required to identify just the right
data to be associated with a synchronization variable.

There have been several hardware implementations of weakly ordered systems and are described

in [18, 2, 28, 11, 17].

6 Conclusions

We have shown that a causal DSM can be efficiently implemented. With adequate programming
support, causal DSM significantly reduces the frequency of communication between processors.
Also, scalable systems can be built since accesses to data do not require expensive global syn-
chronization. Performance on systems with slow networks and fast processors can be especially

significant. We are currently investigating other applications which promise better performance on

causal DSM.
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