METHODOLOGY FOR PROBABILITY OF KILL

AGAINST A MOVING TARGET IN
AIR-TO-GROUND GUNNERY

A THESIS
Presented to

The Facuity of the Division
of Graduate Studies

By
Robert W. Merritt

In Partial Fulfillment of the Requirements for the Degree
Master of Science
in the Schooi of Industrial and Systems Engineering
Georgia Institute of Technology
March, 1978

METHODOLOGY FOR PROBABILITY OF KILL
 AGAINST A MOVING TARGET IN AIR-TO-GROUND GUNNERY

Approved:

Leslie G. Callahan, Jr. Chairman

Date approved by Chairman: $\frac{\operatorname{Tan} 23}{1978}$,

I am very gratefiul and indebted to many who have made this thesis a reality for me: To my very good friend and associate, Mr. Gerald Solomon, for his contribution of knowledge and interest in the subject; to my graduate committee, especially Dr. Leslie Callahan, for his guidance and patience; to my teachers in graduate school; and to my wonderful and lovely wife for typing the draft copy of this thesis, for her encouragement, and the many lonely hours she spent patiently waiting while I struggled to write this thesis; to Dr. D. E. DePoy, and Mr. Ralph Shear for sending me information that I would have otherwise been unable to obtain.

TABLE OF CONTENTS

Page
AcKNOWLEDGMENTS 11
LIST OF ILLUSTRATIONS v
LIST OF TABLES vi
SUMMARY. vii
Chapter
I. INTRODUCTION. 1
Description of ProblemResearch ObjectiveSummary
II. REVIEW OF EFFECTIVEIESS STUDIES AND COMPUTER MODELS. 5
III. DEVELOPMENT OF METHODOLOGY. 8
Mission Set-Up
Target Tracking
Flight DynamicsGụn-Projectile Parameters
Target Model
Projectile/Target Encounter
Miss Distance with respect to target normal
to the trajectory
Target Presented Area
Target Vulnerable Area
Probability of Target Hit/Kill
IV. ATOG COMPUTER PROGRAM 44
Program Description
Overview Program Flow Chart
V. DEMONSTRATION OF RESULTS 49
VI. CONCLUSIONS AND RECOMMENDATIONS 54
Results
Comparison and ValidationRecommendation for Future Research
Appendix Page
I. MATHEMATICAL VARIABLE LIST 63
II. ATOG FORTRAN COMPUTER PROGRAM IISTIING 73
REFERENCES 91

LIST OF ILLUSTRATIONS

Figure Page
III-I. Sight Depression Geometry. 13
III-2. View of Target Through Sight 18
III-3. Airplane Body Axis Systern 22
III-4. Wind Axis System 23
III-5. Projectile Initial Position. 28
III-6. Generated Impact Points. 29
III-7. Linear Target Model 30
III-8. Target Turn Geometry 32
III-9. Projactile Impact Position Rotated Normal to the Dive Angle Theta 35
III-10. Projectile Impact Position Rotated Normal to the Heading Angle. 36
IV-I. Flowchart Overview of ATOG Somputer Program 47

LIST OF TABLES

Table Page
V-1. Effectiveness Against a Moving Ground Target for 250 Knots, 3 Degree Dive Angle. 51
V-2. Effectiveness Against a Moving Ground Target for 250 Knots, 15 Iegree Dive Angle 51
V-3. Effectiveness Arainst a Moving Ground Target for 250 Knots, 30 Degree Dive Angle 52
V-4. Effectiveness Against a Moving Ground Target for 250 Knots, 45 Degree Dive Angle 52
V-5. Sight System Comparison for Aircraft Speed of 250 Knots, 30 Degree Dive Angle 53
VI-l. Sight Tracking Data 55
VI-2. Aircraft Data 56
VI-3. Gun Projectile Data 57
VI-4. Target Data 58
VI-5. Gun Model Effectiveness Comparison. 60

SUMMARY

The present gun effectiveness methodology used by the Air Force is only capable of assessing the probability of kill on still point and area targets. This research paper is the result of an improved methodology designed to fill the gap that eurrently exists in air-to-ground gunnery methodology. This new methodology is designed to assess the probability of kill on a moving ground target in the air-to-ground close air support role.

The methodology is developed in seven areas of study: mission setup, target tracking, flight dynamics, gun/ projectile parameters, target model, projectile/target, encounter, and probability of target hit/kill. The mathematics are developed in the respective areas and programmed in FORTRAN IV.

The mission setup assumes a flat, nonrotating earth With an alrcraft located some distance from the target in three.dimensional space with five degrees of freedom. The aiperaft flies toward the target from some specified slant range, airspeed, and dive angle. The target begins at some specified X, Y coordinate on the ground; it attempts to evade the attacker by traveling in some direction or arc at a specified velocity. The aircraft sight system uses first
order lead prediction by looking at the future position of the target at a projectile time of flight later and then attempts to maneuver to that position. When the aircraft reaches some specified open fire slant range, the gun is turned on. It will fire until the specified burst time is reached if the target remains within three standard deviations of the specified aim error, and the aircraft remains above some specified safe pullup altitude. The gun has been programmed as a seven-barrel Gatling, General Electric GAU-8. Its time-to-rate has been incorporated into the computer program. This gun will accommodate other rounds as data input, but a gun change will require a change in the FORTRAN program. The probability of target hit/kill is cumulative for each round fired; therefore, at the end of the burst time, the expected hits and probability of kill are known. The probability of kill is calculated by using a nine-point Hermite-Gauss approximation. The computer program results were compared to the effectiveness of the Operation Evaluation Group (OEG) Program, which has been accepted by the Joint Technical Coordinating Group (JTCG) and documented in the Joint Munitions Effectiveness Manual (JMEM). The effectiveness results were very close with negligible differences. The new methodology will enable the analyst to evaluate the effectiveness. of a gun/aircraft unit against a moving target; however, it should be noted that vulnerability data for moving targets does not exist at this time. The
computer output results are printed in four areas, which are sight tracking, aircraft, gun projectile, and target data, with pertinent header information for each. This study has revealed several major ideas, some of which will require future research. Probably the most obvious discovery shows the evasive tactics for ground targets. Also the program could be used to generate sight depression/lead compensation tables for a pilot teaching aid in air-to-ground fixed gun sight systems. Another major finding is the need for lead computing sight systems even in air-to-ground guns if the target is moving.

Several areas of this study could be improved. First, a more realistic pilot model could be incorporated into the model; however, maximum limits, aimerror, g limit, alpha limit, range check, altitude check, stall rate, and various other limits attempt to simulate the pilot in this study. Second, the program could be used to evaluate the effectiveness against helicopters with a minimum program change. Third, the more important variables could be computer plotted, and fourth, a more realistic target could be employed if it was not predictable but random.

CHAPTER I

INTRODUCTION

Description of the Problem

The present gun effectiveness methodology used by the Air Force is only capable of assessing the damage inflicted on non-moving point and area targets [9]. This assessment is accomplished through the use of a computer simulation program which uses a Monte Carlo technique to determine the probability of hitting a rectangular target with one or more rounds from a single burst. It assumes that high rate-offire gunnery is a stationary Markov process and that the aiming and ballistic dispersions are independent in the range (along the flight path of the aircraft) and deflection (normal the flight path in the horizontal plane) coordinates. The effect of correlation of successive aim points is considered, and bi-variate normal aiming error and ballistic dispersion are assumed [1 and 2]. The strafing aircraft flies at a constant alrspeed and dive angle from a specified open fire slant range.

It was not until recertly that the correlation gun model was actually validated. In 1975 , the Atr Force conducted test firings at Nellis Air Force Base, Nevada, against potential ground tareets. The resuits from the
test were compared to the correlation gun model simulations. The model was found to be somewhat conservative and was updated to produce more accurate simulations.

In actual combat the target will most likely be moving, and the aircraft will not be able to strafe with wings level and a constant dive for every encounter. There are gun simulation models currently in use that employ some of these tactics but they are limited to certain targets, such as trains, and the aircraft is limited to specific maneuvers associated with the target [4].

The role of air-to-ground gun effectiveness has been one of the major areas of concern during all of our recent past wars and conflicts. With the new technological advances being made in armament development we face the problem of developing simulation models that resemble actual combat engagements.

Research Objective

This research paper is the result of an improved methodology which is designed to fill ir the gap that currently exists in air-to-ground gunnery methodology. It will assess the probability of kill on a moving ground target for high rate-of-fire guns in the air-to-ground role. The attacking aircraft will have complete maneuverability within the capabilities of the airframe. The ground target will have a given velocity, direction, and turn rate
specified at some initial engagement position.
The improved gun effectiveness mathematics will be developed and programmed in FORTRAN. The effectiveness results will be compared to the previously discussed validated air-to-ground gun model against similar targets. It has only been speculation in the past that ground targets cannot travel fast enough to evade an attacking aircraft. If this speculation should become a reality the mathematics and computer program will be designed so that it can be used to simulate effectiveness on targets such as helicopters or other aircraft flying near the ground in a level plane. The speed of these low flying targets could range from zero to some value which approaches the velocity of the pursuing aircraft.

Summary

This research paper is the result of an improved methodology to assess the probability of kill on a moving target for high rate-of-fire guns in the air-to-ground close air support role. The state of the art gun effectiveness methodology is only capable of assessing the damage inflicted on still point and area targets [9]. Chapter I begins by discussing the present gun methodology versus the improved methodology and ends with the research objective. Chapter II contains a description of two popular and widely accepted air-to-ground gun models. In Chapter III the mathematics
are developed for the new methodology described in Chapter I. The gun/aircraft unit is depicted in a dynamic and typical combat role of pursuing the evading ground target. In the final part of the chapter the probability of target hit/kill is calculated based on the strafing attack dynamics. Chapter IV describes the FORTRAN program that produces the effectiveness results, and Chapter V discusses the results. The final chapter discusses the new model with its limitations, validation, and recommendations for future research.

CHAPTER II

REVIEW OF EFFECTIVENESS STUDIES

AND COMPUTER MODELS

One of the most popular air-to-ground gun effectiveness models currently in use by the Air Force was developed by the Center for Naval Analyses, Operations Evaluation Group, Washington, D.C. [2]. This model was briefly described in the introduction in Chapter I. It employs a Monte Carlo technique which determines the probability of killing a stationary ground target from an aircraft equipped with a gun firing a single burst of a given number of rounds. The individual aimpoints cannot be specified in advance, therefore the program assumes that successive aimpoints are correlated. These aimpoints are normally distributed about the center of the target. Ballistic dispersion is also present, therefore the $i^{\text {th }}$ round does not impact at the aimpoint, but at some point nearby. The stationary target is in the form of a rectangular projection of the real target on the plane which is normal to the line of flight of the attacking aircraft. The actual target will seldom or never be rectangular in shape, but the projected target can always be approximated by a rectangle. The aircraft flies directly at the target at some predetermined slant range, air speed,
-
and dive angle. During this time the gun is being fired at the target for some specified burst time in seconds. Most of the input parameters are explicitly defined and printed in the output. The probability of target kill is printed for each projectile fired. The end result is a cumulative probability of target kill [9]. An analyst must be thoroughly familiar with this program in order to properly interpret the results. First of all, the accuracy of the results depends upon the number of Monte Carlo iteration that has been specified. Some compromise must be made here between computer run time and desired accuracy. Second, the aircraft will fly near or into the ground if the burst time is too long for a short slant range. In this case the user must exercise caution in setting up the input parameters so that the aircraft will have sufficient altitude to pull up safely after the specified burst time has elapsed.

Another popular air-to-ground gun simulation program is the RAND model [4]. This air-to-ground model was developed by the Rand Corporation. It computes kill probabilities for forward-firing air-to-ground guns and rockets versus stationary targets. It employs two types of kill mechanisms: blast-fragmentation and penetration. When high explosives (HE) projectiles are simulated the blast-fragmentation portion of the program is used. The interaction between projectile upon impact and target is described by the Carlton damage fiunction. If penetration is considered, the weapon-
target interaction is described by a kill probability conditional upon impacting the target presented area or vulnerable area. This program considers two types of targets: rectangular point targets, and rectangular area targets. Fixed guns are considered, but the aircraft can be assumed to be pulling up at a constant g force in order to allow the rounds to be aimed at different points in the ground plane. There is an option in the program to slew the guns in the azimuth plane. The strafing aircraft is assumed to dive or pull up at a constant angle, or constant g force. The aim and ballistic errors are assumed to be normally distributed. The simulation of the ballistic trajectories are straight Ine segments which are acceptable for rounds fired with high muzzle velocity from a high speed aircraft over slant ranges less than 5000 feet. This model is not as versatile as the previous air-to-ground gun model because: it does not have the capability to simulate a gun time-to-rate curve; it cannot evaluate a mixed round belt; i.e., an (HEI) high explosive incendiary, and an (API) armour piercing incendiary round mix in a single pass. It uses a constant conditional kill probability for an entire burst as opposed to one that changes as the aircraft/gun unit gets closer to the target. However, both models have the option to evaluate the effectiveness of a fuel sensitive target. An analyst desiring to evaluate gun effectiveness for point targets could use either model; however, area target erfectiveness can only be evaluated by using the RAND model [4].

DEVELOPMENT OF METHODOLOGY

This air-to-ground gun effectiveness model depicts an aircraft in three dimensional space with the ability to maneuver in a dynamic role of pursuing an evading ground target. The ability to maneuver in an aerial engagement is very important along with many other parameters such as muzzle velocity, aim error, ballistic djspersion, fire control, gun rate of fire, projectile size, drag, and pilot performance. These and other parameters will be considered within the following methodology.

Mission Set-Up

The initial conditions for the engagement problem can be selected or computed. If the conditions are selected, time must be allowed for the pilot to fly through the sight setting conditions. This is a standard mission planning procedure. Assume the initial sighting conditions are 300 knots, 30 degree dive angle, 2500 feet slant range, and 5 seconds allowed for tracking time. The aircraft velocity in feet per second is

$$
V_{\mathrm{A}}=\operatorname{VACK}{ }^{1} .6878
$$

where VACK is the speed of the aircraft in knots. The initial airspeed [ll] assuming thrust equals drag is given by integrating the following first order differential equation. (Since the independent variable is time, dot notation will be used to determine the order of the equation. This notation will be consistent throughout the report.)

$$
\dot{\mathrm{V}}_{\mathrm{A}}=-\mathrm{g} \sin \theta \quad[11]
$$

where g is acceleration due to gravity only (32.1687 ft/ $\sec)$, and θ is the dive angle, then

$$
\mathrm{dv}=-\mathrm{g} \sin \theta \mathrm{dt}
$$

Integrating both sides of the equation gives:

$$
\begin{aligned}
& \int_{V_{0}}^{V_{A}} d v=-g \sin \theta \int_{0}^{t} d t \\
& V_{A}-V_{0}=-(g \sin \theta) t \\
& V_{0}=V_{A}+(g \sin \theta) t
\end{aligned}
$$

which is the initial airspeed for a planned airspeed of V_{A} at open fire. For the planned conditions cited the initial
airspeed is

$$
\begin{aligned}
& V_{0}=506.34-16.08 * 5.00 \\
& V_{0}=425.94 \text { feet per second. }
\end{aligned}
$$

Note that θ is negative indicating a dive angle. Then

$$
\begin{aligned}
& R_{0}=R_{I}+V_{A}{ }^{* T_{T}} \\
& R_{0}=2500.0+506.34 * 5.0 \\
& R_{0}=5031.7 \text { feet }
\end{aligned}
$$

where R_{0} is the initial range in feet, R_{I} is the input line of sight range in feet, and T_{T} is the tracking time in seconds. Therefore, the initial range of the aircraft to the target is the velocity of the aircraft times the tracking time allowed for nulling tracking errors, plus the input line of sight range.

Target Tracking Assessment
The traditional depressed reticle sight used in air-toground gunnery is a simple form of impact predictor. It displays to the pilot where a round will impact on the ground if:

1. Aircraft altitude relative to target is equal to a predetermined value
2. Dive angle is equal to a predetermined value
3. Roll angle is zero
4. Speed and weight are equal to a predetermined value
5. Lift acceleration is slightly less than one g
6. Side slip is zero
7. Cross wind is zero
8. Gun boresight errors are zero.

A skilled pilot develops a significant negative correlation among the various error sources. He is, for example, able to adjust his firing altitude to approximately compensate for the deviation from planned dive angle. The sight system, commonly called the "pipper" is offset laterally to compensate for non-zero roll angle. Sensitivities to deviations in angle-of-attack and side slip are known to the pilot and the aimpoint is shifted off the target by an amount proportional to his estimate of these deviations. Many other factors such as crosswind can be estimated with considerable effectiveness by a well trained pilot, however, due to the nature of this study crosswind will not be considered in this report. The sources of error are so numerous that accurate air-to-ground gunnery with a fixed sight system seems impractical, and yet skilled pilots can consistently put fifty percent or more of their rounds in a $400-s q u a r e$ foot target traveling at speeds
up to 450 knots. Only two kinds of errors will be considered In this study: aim error, and ballistic dispersion. These two errors alone constitute an entire study and will not be derived or proven mathematically. These two errors will be inputs to the simulation program and based on actual test results.

When operating in a combat environment with modest defenses, the lengthy period of time required to set up the shot for practice range accuracy can be taken only at great risk to pilot and aircraft. This may, however, be the appropriate tactic to avoid the necessity for a repeated pass at the same target. Subsequent passes can be used to improve the pilot's accuracy, but has a similar, if not greater, benefit to the ground defenses. Accuracy cannot be realistically separated from the risk that is incurred in achieving that accuracy. Air-to-ground gunnery improvements should therefore result in longer range accuracy, as well as a reduced amount of time that must be committed to a specific target, a reduced amount of time spent on a predictable path, and a flexibility in approach tactics.

The location of the pipper on the sighting system is given by the sum of the gun bore axis angle, trajectory shift, gravity drop, and the correction for the vertical displacement of gun. See Figure III-l for a description of the sight depression geometry.

The sight depression for the planned firing condition

$$
S D=\varepsilon+\tau+\delta+C V D
$$

where

$$
\begin{aligned}
\varepsilon= & \text { angle between } F R L \text { and } G L^{\prime} \text { (rad) } \\
\tau= & \text { trajectory shift (rad) } \\
\delta= & \text { angular gravity drop (rad) } \\
C V D= & \text { correction for vertical displacement of } \\
& \text { gun (feet) }
\end{aligned}
$$

and $\quad C V D=V G P / R_{0}$.
The angular gravity drop δ is calculated by computing a projectile trajectory for the planned conditions. Delta is calculated in the gun/projectile parameters section. The trajectory shift due to gun bore angle of attack is

$$
\tau=V_{A}(\alpha-\varepsilon) /\left(V_{A}+V_{M}\right) \quad[13]
$$

The angle τ is the angle between the gun bore and the initial velocity vector of the projectile. V_{A} is the velocity for the planned firing condition, V_{M} is the gun muzzle velocity, and α is the angle of attack of the FRL. Assuming the aircraft is in non-accelerating fiight; i.e., Force [thrust] = Force [drag] then α is calculated as follows:

$$
\alpha=\frac{W \cos \theta-Q S A C_{L \alpha} \alpha}{Q_{\mathrm{OL}}}
$$

where

$$
\begin{aligned}
Q S A & =0.5 \rho V_{A}^{2} \mathrm{~S} \\
W & =\text { welght of the aircraft (pounds) } \\
S & =\text { aerodynamic reference area for aircraft (ft }{ }^{2} \text {) } \\
C_{L \alpha} & =\text { coefficient of lift versus } \alpha \text { slope (per degree) } \\
\alpha_{O L} & =\text { angle of attack at zero lift (degrees) } \\
\rho & =\text { air density (slugs) }
\end{aligned}
$$

The air density is given by the following [3],

$$
\rho=0.00237692\left[\frac{518.688-0.00356616\left|Z_{A}\right|}{518.688}\right]^{4.2561}
$$

and $\left|Z_{A}\right|$ is the absolute value of the altitude of the aircraft.

The thrust to counteract drag at the initial airspeed is given by

$$
T=D=0.5 \rho V_{O}^{2} S C_{D}
$$

where C_{D} is the aircraft coefficient of drag.
In attacking the target the aircraft makes a tracking pass at the target with a bank to the right or left depending on the azimuth position of the target. While tracking the target through the sight system the angular position of the target in sight or body coordinates is determined. The line of sight range to the target is

$$
R=\left[\left(X_{T}-X_{A}\right)^{2}+\left(Y_{T}-Y_{A}\right)^{2}+\left(Z_{T}-Z_{A}\right)^{2}\right]^{1 / 2}
$$

where X_{T}, Y_{T}, Z_{T} and X_{A}, Y_{A}, Z_{A} are the coordinates of the target and alrcraft respectively. The line of sight range will be calculated periodically at some small time increment into the engagement. This iterative process will be updated by a specified time increment and used as a check to determine the gun open-fire range. This range check will be discussed later in more detail.

The orientation in space is given by the transformation expressing body-fixed coordinates in terms of earthfixed coordinates. The line of sight vector (\hat{r}) is as follows:

$$
\hat{r}=r_{1} \hat{i}+r_{2} \hat{\jmath}+r_{3} \hat{k}
$$

where

$$
\begin{aligned}
& r_{1}=\frac{X_{T}-X_{A}}{R} \\
& r_{2}=\frac{Y_{T}-Y_{A}}{R} \\
& r_{3}=\frac{Z_{T}-Z_{A}}{R}
\end{aligned}
$$

and the line of sight unit vector in the aircraft body axis system is,

$$
\hat{r}_{A}=X_{L} \hat{i}_{B}+Y_{L} \hat{j}_{B}+Z_{L} \hat{k}_{B}
$$

where X_{L}, Y_{L}, and Z_{L} are transformed from r_{1}, r_{2}, r_{3} by

$$
\left|\begin{array}{l}
X_{L} \tag{13}\\
Y_{L} \\
Z_{L}
\end{array}\right|=\left|\begin{array}{ccc}
A X_{1} & A X_{2} & A X_{3} \\
A Y_{1} & A Y_{2} & A Y_{3} \\
A Z_{1} & A Z_{2} & A Z_{3}
\end{array}\right|\left|\begin{array}{l}
r_{I} \\
r_{2} \\
r_{3}
\end{array}\right|
$$

where


```
    sin(\phi) sin(\psi))
```



```
    sin(\phi)}\operatorname{Cos}(\psi)
AX3 = - Cos(\alpha) sin(0)-\operatorname{sin}(\alpha)\operatorname{Cos}(\phi)\operatorname{Cos}(0)
AYI= sin}(\phi)\operatorname{sin}(0)\operatorname{cos}(\psi)-\operatorname{Cos}(\phi)\operatorname{sin}(\psi
AY2 = sin(\phi) sin(0) sin(\psi) + Cos(\phi) Cos(\psi)
AY3 = sin(\phi) Cos(0)
```



```
    sin(\phi) sin(\psi))
```



```
    sin(\phi)}\operatorname{Cos}(\psi)
AZ3 = - sin(\alpha) sin(0) + Cos(\alpha) \operatorname{cos(\phi) Cos(0)}
Next the target angular coordinates in the field of view
along the aircraft X axis is
```

$$
\operatorname{EL}=\operatorname{ASIN}\left(Z_{L}\right) \text { and } \operatorname{AZ}=\operatorname{ATAN}\left[\frac{Y_{L}}{X_{L}}\right], \quad[12]
$$

when EL and $A Z$ are elevation and azimuth respectively.
The azimuth and elevation as computed in the previous section are graphically displaced in Figure III-2, and the target may be displaced from the pipper as shown.

Figure III-2. View of Target Through Sight

The aircraft bank angle is used to null the azimuth error. The amount of the bank angle increment should be proportional to the azimuth error. The maximum bank angle should be limited by the maximum bank rate which can be
assumed to be on the order of 180° per second. The maximum roll or bank increment is given by,

$$
\Delta \phi_{\operatorname{MAX}}=\dot{\phi}_{\operatorname{MAX}}{ }^{*} \Delta t,
$$

where Δt is the time increment of the engagement, and the bank increment is,

$$
\Delta \phi=C_{1} *_{A Z}
$$

C_{I} is the proportionality or bank angle gain constant. The commanded bank angle is,

$$
\phi_{1}=\phi_{i-1}+\Delta \phi
$$

 bank increment $(\Delta \phi)$ is set so that it cannot exceed the value $\Delta \phi_{\text {MAX }}$.

The tracking task in elevation is accomplished by commanding an angle of attack differential proportional to the elevation tracking error. In accomplishing this task the aircraft cannot exceed angle of attack limitations as defined by structural load factor and aerodynamic stall. The following equations are used to determine the angle of attack limits. Lift is defined as

$$
\mathrm{L}=1 / 2 \rho \mathrm{~V}_{\mathrm{A}}^{2} \mathrm{SC}_{\mathrm{L}}
$$

and the coefficient of lift C_{L} is

$$
C_{I}=C_{L \alpha} * \alpha+C_{L O}
$$

where $C_{\text {LO }}$ is the coefficient of Iift at $\alpha=0$. The aircraft load factor η is

$$
\eta=\frac{L+T^{*} \alpha}{W} \quad[13] .
$$

The angle of attack at aerodynamic stall is defined as

$$
\alpha_{S}=\frac{C_{\text {LMAX }}}{C_{L \alpha}+\alpha_{O L}}
$$

The structural load factor $\left(\eta_{s}\right)$ is an input quantity which the maximum load factor must not exceed to insure structural integrity of the airframe. The maximum allowable angle of attack ($\alpha_{S T}$) for structural limitations is

$$
\alpha_{S T}=\frac{\eta_{S}^{* W}}{1 / 2 \rho V_{A}^{2} S\left(C_{L \alpha}+C_{L O}\right)}
$$

The commanded angle of attack cannot exceed either α_{S} or $\alpha_{S T}$.

$$
\alpha_{1}=\alpha_{1-1}+\Delta \alpha
$$

where $\Delta \alpha$ is the commanded increment determined by

$$
\Delta \alpha=S D-E L .
$$

If the engagement integration interval is small the change in α must be limited by a maximum angle of attack rate ($\dot{\alpha}_{\text {MAX }}$). The maximum rate is

$$
\dot{\alpha}_{\mathrm{MAX}}=\dot{\mathrm{n}} * W /\left[I / 2 \rho V_{A}^{2} S\left(C_{L \alpha}+C_{L O}\right)\right]
$$

Thus $\Delta \alpha$ cannot exceed $\Delta \alpha_{M A X}$ defined by

$$
\Delta \alpha_{\mathrm{MAX}}=\dot{\alpha}_{\mathrm{MAX}}{ }^{*} \Delta t .
$$

Aircraft Flight Dynamics

The maneuvering stability is the static stability of an aircraft undergoing normal accelerations. In order to fully define the problem of stability two reference axes will be introduced, the body axes and the wind axes systems. These two axis systems form the basis of a system of notation used to describe the motions of an airplane. Each system consists of three mutually perpendicular axes passing through the center of gravity of the airplane, which adequately covers most of the aerodynamic probiems in stability
considerations.
The body axes system is fixed in the airplane and is the system of mutually perpendicular axes passing through the aircraft's center of gravity and whose X-axis is parallel to the thrust axis, the wing mean aerodynamic chord, or some other longitudinal reference and is positive in the direction of the nose of the aircraft. Figure III-3 shows this reference system.

Figure III-3. Airplane Body Axes System

The wind axes system differs from the body axes system in that the X-axis is parallel to the relative wind, positive backward. This Z-axis is positive down, and the

Y-axis is positive to the right; and the Y-force, as before, is the side force. Now the X, Y, Z velocity components represent the components of the relative wind. The wind axes system is the one used for basic aerodynamic performance work. In most cases the body axes system is used in stability work. The wind axes system is the one used for basic aerodynamic performance work. In most cases the body axes system is used in stability work. The wind axes system can be seen in Figure III-4.

Figure III-4. Wind Axes System

The wind axes equations [5] are as follows:

$$
\begin{gathered}
\mathrm{T}_{\mathrm{X}}-\mathrm{D}-\mathrm{mg} \sin \theta=\mathrm{m} \dot{\mathrm{~V}}_{\mathrm{A}} \\
\mathrm{~T}_{\mathrm{Y}}-\mathrm{C}+\mathrm{mg} \cos \theta \sin \phi=m \mathrm{~V}_{\mathrm{A}}(\dot{\psi} \cos \theta \cos \phi-\dot{\theta} \sin \phi) \quad[5] \\
\mathrm{T}_{Z}-L+m g \cos \theta \cos \theta=m V_{A}(\dot{\theta} \cos \phi+\dot{\psi} \cos \theta \sin \phi)[5]
\end{gathered}
$$

where T_{X}, T_{Y}, T_{Z} are the components of thrust in the aircraft body axes, and D is the drag force, C is side force, L is lift force, and $m=W / \mathrm{g}$.

Note: For most purposes T_{Y} and C are zero, and for unaccelerated flight $T_{X}=D$. For the first wind axes equation

$$
\dot{\mathrm{V}}_{\mathrm{A}}=-\mathrm{g} \sin \theta
$$

which is the acceleration due to gravity only. θ is negative for dives so $\dot{\mathrm{V}}_{\mathrm{A}}$ has a positive acceleration. From the second and third wind axes equations we have,

$$
\dot{\theta}=\frac{G}{V_{A}}\left\{\left[\frac{\left(C_{L \alpha}+C_{L O}\right)\left(.5 \mathrm{P} V_{A}{ }^{2} S\right)}{W}\right] \cos \phi-\cos \theta\right\}
$$

which is the first derivative for the aircraft dive angle. And

$$
\dot{\psi}=\frac{n g \operatorname{Sin} \phi}{V_{\mathrm{A}} \operatorname{Cos} \theta},
$$

Which is the first derivative for the aircraft heading. η is the g's that the aircraft will pull during the attack maneuver and was calculated in the target tracking section. The aircraft velocity vector components are

$$
\begin{aligned}
& \dot{\mathrm{x}}=\mathrm{V}_{\mathrm{A}} \cos \theta \cos \psi \\
& \dot{\mathrm{Y}}=\mathrm{V}_{\mathrm{A}} \cos \theta \sin \psi \\
& \dot{z}=-\mathrm{V}_{\mathrm{A}} \sin \theta
\end{aligned}
$$

Then integrating $\dot{\theta}, \dot{\psi}, \dot{X}, \dot{Y}$, and \dot{Z} will yield $\theta, \psi, X_{A}, Y_{A}$, and Z_{A} after one time interval. The motion of the center of gravity is described in terms of changes in heading, vertical inclination, and magnitude of the airplane's velocity vector relative to the ground. The magnitude of this vector is V_{A}. θ and Z_{A} should be checked against a dive recovery table which shows the altitude lost during a recovery maneuver from a given dive angle. If the current altitude Z_{A} is less than the value in the table, then terminate the engagement; i.e., cease fire and determine the probability of target kill at this point in time.

Time is updated by the following,

$$
t_{i}=t_{i-1}+\Delta t
$$

where t_{i} gives the present time, t_{1-1} is the previous time value, and Δt is the time increment in seconds.

Gun-Projectile Parameters

The gun muzzle velocity vector in the aircraft body axes is

$$
\overrightarrow{\mathrm{V}}_{\mathrm{M}}=\mathrm{V}_{\mathrm{M}} \cos (\varepsilon) \hat{\mathrm{I}}_{\mathrm{B}}+\mathrm{V}_{\mathrm{M}} \sin (\varepsilon) \hat{\mathrm{k}}_{\mathrm{B}}
$$

where ε is the gun bore angle below the fuselage reference line. Now we need the components of the muzzle velocity vector \vec{V}_{M} in the earth axes. The transformation for this is,

$$
\left|\begin{array}{c}
V_{M X} \tag{13}\\
V_{M Y} \\
V_{M Z}
\end{array}\right|=\left|\begin{array}{ccc}
A X I & A Y 1 & A Z I \\
A X 2 & A Y 2 & A Z 2 \\
A X 3 & A Y 3 & A Z 3
\end{array}\right|\left|\begin{array}{c}
V_{M} \operatorname{Cos}(\varepsilon) \\
0 \\
V_{M} \sin (\varepsilon)
\end{array}\right|
$$

where the components AXI through AZ3 were defined in the target tracking section. The projectile initial velocity components are,

$$
V_{P T}=\left(V_{P X}^{2}+V_{P Y}{ }^{2}+V_{P Z}{ }^{2}\right)^{I / 2}
$$

where

$$
\begin{aligned}
& v_{P X}=\dot{x}_{A}+v_{M X} \\
& v_{P Y}+\dot{Y}_{A}+v_{M Y} \\
& V_{P Z}=\dot{z}_{A}+v_{M Z}
\end{aligned}
$$

The gun position is described in terms of the sight system in the target tracking assessment section of this report. Therefore, the initial position of the projectile must be shifted by an amount proportional to the vertical gun placement. This is accomplished by

$$
\begin{aligned}
& X_{P}=X_{A}+V G P * A Z 1 \\
& Y_{P}=Y_{A}+V G P * A Z 2 \\
& Z_{P}=Z_{A}+V G P * A Z 3
\end{aligned}
$$

when AZ1, AZ2, and AZ3 are defined in the target tracking section. Now X_{P}, Y_{P}, Z_{P} is the corrected initial position of the projectile. Geometrically this is represented in Figure III-5.

The projectile trajectory equations are as follows,

$$
\begin{equation*}
\ddot{X}_{P}=-\frac{\pi}{8} \rho V_{P} d^{2} \dot{X}_{P} \tag{12}
\end{equation*}
$$

Figure III-5. Projectile Initial Position, $\psi=0, \phi=0$

$$
\begin{aligned}
& \ddot{Y}_{P}=-\frac{\pi}{8} \rho V_{P} d^{2} \dot{Y}_{P} \quad[12] \\
& \ddot{Z}_{P}=-\frac{\pi}{8} \rho V_{P} d^{2} \dot{z}_{P}+g \quad[12]
\end{aligned}
$$

where d is the diameter of the projectile in feet. Now integrate the three preceding, equations until Z_{p} is equal to zero. The corresponding $\left(X_{P}, Y_{P}\right)$ is the projectile impact point. The velocity of the projectile at impact is,

$$
V_{P}=\left(\dot{X}_{P}^{2}+\dot{Y}_{P}^{2}+\dot{Z}_{P}^{2}\right)^{1 / 2}
$$

and the slant range is,

$$
S R=\left[\left(X_{A}-X_{P}\right)^{2}+\left(Y_{A}-Y_{P}\right)^{2}+\left(Z_{A}-Z_{P}\right)^{2}\right]^{1 / 2}
$$

and the projectile gravity drop is defined as

$$
\begin{equation*}
\delta=A \operatorname{COS}\left[\frac{v_{P X} X_{P}+V_{P Y} Y_{P}+V_{P Z} Z_{P}}{V_{P T}{ }^{*} S R}\right] \tag{12}
\end{equation*}
$$

X_{P}, Y_{P} is an ideal aimpoint or impact point. The location of the coordinate (X_{P}, Y_{P}) is a function of the dynamics of the engagement as modeled. In general the coordinates $\left(X_{P I}, Y_{P I}\right) \ldots\left(X_{P n}, Y_{P n}\right)$ could be generated as indicated in Figure III-6.

Figure III-6. Generated Impact Points

Target Model

When the attack engagement begins the target is placed anywhere in the X, Y plane with one of two options for evasive tactics. The first option is exercised by giving the target a constant velocity and direction. V_{T} is the velocity of the target, and θ_{T} is the direction of the velocity. Orientation of the target is determined by θ_{T} which starts at any specified coordinate position and progressively increases to the angle desired. This option is graphically explained in Figure III-7.

Figure III-7. Linear Target Model

The initial position of the target is derined as ($\mathrm{X}_{\mathrm{TO}}, \mathrm{Y}_{\mathrm{TO}}$), and any position thereafter can be dofined by knowing the direction $\left(\theta_{T}\right)$, velocity $\left(V_{T}\right)$, and time into the engagement. Mathematically, velocity is constant ard is defined as below,

$$
\begin{aligned}
& \dot{X}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T}} \cos \theta_{\mathrm{T}} \\
& \dot{\mathrm{Y}}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T}} \sin \theta_{\mathrm{T}} .
\end{aligned}
$$

Then the initial position to some time in the future the target can be located by integrating the above equations to give,

$$
\begin{aligned}
& X_{T}=X_{T O}+V_{T} \cos \theta_{T} * t \\
& Y_{T}=Y_{T O}+V_{T} \operatorname{Sin} \theta_{T} * t
\end{aligned}
$$

The second option allows the target to turn in any direction from any orientation. The initial position of the target is also defined as $\left(X_{T O}, Y_{T O}\right)$, and ω_{T} is the turn rate. V_{T} is the velocity, and θ_{T} is the direction of the target velocity. The orientation in the X, Y coordinate system is the same as the previously described linear model. This is shown in the following Figure on Target Turn Geometry.

The mathematics which enables one to determine the target position is developed as follows,

$$
\begin{equation*}
\dot{\theta}_{T}=\omega_{T} \tag{11}
\end{equation*}
$$

Figure III-8. Target Turn Geometry
where w is defined as the angular velocity. If θ_{T} is measured in radians and t in seconds, ω_{m} is expressed in radians per second. When the angular velocity is constant, the angular displacement of the target in time (t) is given by integrating both sides of the previous equation as follows,

$$
\mathrm{d} \theta_{\mathrm{T}}=\omega_{\mathrm{T}} \mathrm{dt}
$$

$$
\begin{aligned}
& \int_{\theta_{T O}}^{\theta_{T}} d \theta_{T}=\omega_{T} \int_{t=0}^{t} d t \\
& \theta_{T}-\theta_{T O}=\omega_{T}, t \\
& \theta_{T}=\theta_{T O}+\omega_{T} t
\end{aligned}
$$

and the time rate of change for the X coordinate is

$$
\dot{X}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T}} \operatorname{Cos}\left(\theta_{\mathrm{TO}}+\omega_{\mathrm{T}} t\right)
$$

Now this equation can be integrated to find the X position of the target for any time into the engagement by

$$
\begin{aligned}
& \int_{X_{T O}}^{x_{T}} d x=\int_{0}^{t} v_{T} \cos \left(\theta_{T O}+\omega_{T} t\right) d t \\
& x_{T}-x_{T O}=\left.\frac{v_{T}}{\omega_{T}} \sin \left(\theta_{T O}+\omega_{T} t\right)\right|_{0} ^{t} \\
& x_{T}-x_{T O}=\frac{v_{T}}{\omega_{T}}\left[\sin \left(\theta_{T O}+\omega_{T} t\right)-\sin \theta_{T O}\right] \\
& x_{T}=x_{T O}+\frac{v_{T}}{\omega_{T}}\left[\sin \left(\theta_{T O}+\omega_{T} t\right)-\sin \theta_{T O}\right]
\end{aligned}
$$

The Y position is found similarly using the definition of \dot{X}_{T} from the linear model with time and velocity incorporated.

$$
\dot{\mathrm{Y}}_{\mathrm{T}}=\mathrm{V}_{\mathrm{T}} \sin \left(\theta_{\mathrm{TO}}+\omega_{\mathrm{T}} \mathrm{t}\right)
$$

Integrate both sides of the equation to find the Y position of the target for any time into the engagement by

$$
\begin{aligned}
& \int_{Y_{T O}}^{Y_{T O}} d y=\int_{0}^{t} V_{T} \sin \left(\theta_{T O}+\omega_{T} t\right) d t \\
& Y_{T}-Y_{T O}=-\left.\frac{V_{T}}{\omega_{T}} \cos \left(\theta_{T O}+\omega_{T} t\right)\right|_{0} ^{t} \\
& Y_{T}-Y_{T O}=\frac{V_{T}}{\omega_{T}}\left[\cos \theta_{T O}-\cos \left(\theta_{T O}+\omega_{T} t\right)\right] \\
& Y_{T}=Y_{T O}+\frac{V_{T}}{\omega_{T}}\left[\cos \theta_{T O}-\cos \left(\theta_{T O}+\omega_{T} t\right)\right] .
\end{aligned}
$$

Projectile/Target Encounter

Miss Distance with Respect to Target Normal to Trajectory
The mathematical flow returns to the target section to determine the target position at projectile impact. Where the target coordinate is $\left(X_{T}, Y_{T}\right)$, and the projectile coordinate is (X_{P}, Y_{P}) and the miss distance is,

$$
\begin{aligned}
& \text { XMISS }=X_{T}-X_{P} \\
& \text { YMISS }=Y_{T}-Y_{P}
\end{aligned}
$$

The X and Y projectile miss coordinates are rotated to a plane normal to the line of sight plane as described in Figure III-9.

Figure III-9. Projectile Impact Position Rotated Normal to the Dive Angle Theta

The new angle of rotation is described as

$$
\theta_{I}=\pi / 2-\operatorname{ASIN}\left[\frac{\dot{z}_{p}}{\bar{V}_{P}}\right]
$$

then in matrix form

$$
\left|\begin{array}{l}
X^{-} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \theta_{1} & 0 & -\sin \theta_{1} \\
0 & 1 & 0 \\
\sin \theta_{1} & 0 & \cos \theta_{1}
\end{array}\right|\left|\begin{array}{l}
X^{\prime \prime} \\
Y^{\prime \prime} \\
Z^{\prime \prime}
\end{array}\right|
$$

After the dive angle rotation we must consider the heading angle (ψ), by rotating it to the normal. Graphically this is shown in Figure III-10. The new heading angle of rotation is described as

$$
\psi_{I}=\operatorname{ATAN}\left[\frac{\dot{y}_{p}}{\dot{x}_{p}}\right]
$$

Figure III-10. Projectile Impact Position Rotated Nomal to the Heading Angle (ψ)
then written in matrix rotation

$$
\left|\begin{array}{c}
X^{\prime \prime} \\
Y^{\prime \prime} \\
Z^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
\operatorname{Cos} \psi_{1} & \operatorname{Sin} \psi_{1} & 0 \\
-\operatorname{Sin} \psi_{1} & \operatorname{Cos} \psi_{1} & 0 \\
0 & 0 & 1
\end{array}\right|\left|\begin{array}{l}
X \\
Y \\
Z
\end{array}\right|
$$

The matrix multiplication is then carried out as follows,

$$
\left|\begin{array}{l}
X^{-} \\
Y^{-} \\
Z^{-}
\end{array}\right|=\left|\begin{array}{ccc}
\operatorname{Cos} \theta_{1} & 0 & -\operatorname{Sin} \theta_{1} \\
0 & 1 & 0 \\
\operatorname{Sin} \theta_{1} & 0 & \cos \theta_{1}
\end{array}\right|\left|\begin{array}{ccc}
\operatorname{Cos} \psi_{1} & \operatorname{Sin} \psi_{1} & 0 \\
-\operatorname{Sin} \psi_{1} & \operatorname{Cos} \psi_{1} & 0 \\
0 & 0 & 1
\end{array}\right|\left|\begin{array}{l}
X \\
Y \\
Z
\end{array}\right|
$$

$$
\left.\left|\begin{array}{l}
\text { XMISS }^{-} \\
\text {YMISS }^{-} \\
\text {ZMISS }^{-}
\end{array}\right|=\left|\begin{array}{l}
X^{-} \\
Y^{-} \\
Z^{-}
\end{array}\right|=\left|\begin{array}{lll}
\operatorname{Cos} \theta_{1} \operatorname{Cos} \psi_{1} & \operatorname{Cos} \theta_{1} \operatorname{Sin} \psi_{1} & -\operatorname{Sin} \theta_{1} \\
-\operatorname{Sin} \psi_{1} & \operatorname{Cos} \psi_{1} & 0 \\
\operatorname{Sin} \theta_{1} \operatorname{Cos} \psi_{1} & \operatorname{Sin} \theta_{1} \operatorname{Sin} \psi_{1} & \operatorname{Cos} \theta_{1}
\end{array}\right| \begin{aligned}
& X M I S S \\
& Y M I S S \\
& Z M I S S
\end{aligned} \right\rvert\,
$$

Then the transformation is complete yielding $X^{\wedge}, Y^{\wedge}, Z^{\wedge}$ as follows,

$$
\begin{aligned}
& X^{\wedge}=X M I S S * \operatorname{Cos} \theta_{1} \operatorname{Cos} \psi_{1}+Y M I S S * \operatorname{Cos} \theta_{1} \operatorname{Sin} \psi_{1} \\
& Y^{\prime}=-X M I S S * \operatorname{Sin} \psi_{1}+Y M I S S * \operatorname{Cos} \psi_{1} \\
& Z^{\wedge}=X M I S S * \operatorname{Sin} \theta_{1} \operatorname{Cos} \psi_{1}+Y M I S S * \operatorname{Sin} \theta_{1} \operatorname{Sin} \psi_{1} .
\end{aligned}
$$

Now $X^{\bullet}, Y^{\wedge}, Z^{\wedge}$ is the projectile impact point rotated normal to the target.

Target Presented Area
The target presented area is the area of the target viewed from any direction normal to the projectile velocity at impact. The areas of the front side and top of the target will be A_{F}, A_{S}, A_{T}, respectively. The unit vector components which define the presented area are as follows

$$
\begin{aligned}
& \mu_{1}=\frac{\dot{x}_{P} \operatorname{Cos}(T G H D)+\dot{Y}_{P} \operatorname{Sin}(T G H D)}{V_{P}} \\
& \mu_{2}=\frac{\dot{Y}_{P} \operatorname{Cos}(T G H D)-\dot{X}_{P} \operatorname{Sin}(T G H D)}{V_{P}} \\
& \mu_{3}=\frac{\dot{\mathrm{Z}}_{P}}{V_{P}}
\end{aligned}
$$

where the target heading is TGHD, and is defined as

$$
T G H D=\omega_{\mathrm{T}} * \mathrm{t}+\theta_{\mathrm{TO}} .
$$

Then the presented area of the target is,

$$
\begin{equation*}
A_{P}=\left|A_{F}{ }^{*} \mu_{1}\right|+\left|A_{S}{ }^{*} \mu_{2}\right|+\left|A_{T}{ }^{*} \mu_{3}\right| \tag{12}
\end{equation*}
$$

Target Vulnerable Area
The vulnarable area of a target is the area that, if struck, with a projectile of sufficient velocity will yield
a target kill. The ratio of vulnerable area to presented area is defined as the probability of kill, given a hit, as follows,

$$
P_{K / H}=\frac{A_{V}}{A_{P}}
$$

The vulnerable area of a target in most cases is defined as a function of the projectile impact angle, and the projectile Impact velocity. These data can be obtained from tables for any specified target. Due to the nature and classification of these data none of the vulnerable area tables will be published with this report in order to keep it unclassified.

Probability of Target Hit/Kill

The single shot hit probability is determined by using the classical probability equations which assume a. bi-variate normal distribution. The mean point of projectile impact is located at ($X_{A I}, Y_{A I}$) relative to the target with a standard deviation ($\sigma_{X B}, \sigma_{Y B}$). The probability that a single round will hit the target given ($X_{A I}, Y_{A I}$) is:

$$
\begin{aligned}
\text { PHSSA }= & \frac{1}{2 \pi \sigma_{X B}^{\sigma_{Y B}}} \int_{-W D}^{W D} \int_{-L E}^{L E} \operatorname{EXP}\left\{-\frac{1}{2}\left[\left(\frac{X_{T}-X_{A I}}{\sigma_{X B}}\right)^{2}\right.\right. \\
& \left.\left.\quad+\left(\frac{Y_{T}-Y_{A I}}{\sigma_{Y B}}\right)^{2}\right]\right\} \mathrm{dxdy}
\end{aligned}
$$

where $W D$ and $L E$ are the half target width and length.
The previous probability equation can be integrated by using the error function, defined as,

$$
\begin{equation*}
E R F(X)=\frac{2}{\sqrt{\pi}}\left(X-\frac{X^{3}}{1!3}+\frac{X^{5}}{2!5}-\frac{X^{9}}{3!7}+\ldots-\ldots\right) \tag{8}
\end{equation*}
$$

therefore using the ERF function PHSSA is given by

$$
\begin{aligned}
\text { PHSSA }= & \frac{1}{4}\left\{\left[E R F\left(\frac{L E-X_{A I}}{2 \sigma_{X B}}\right)+E R F\left(\frac{L E-X_{A I}}{2 \sigma_{X B}}\right)\right]\right. \\
& {\left.\left[E R F\left(\frac{W D-Y_{A I}}{2 \sigma_{Y B}}\right)^{2}+E R F\left(\frac{W D-Y_{A I}}{2 \sigma_{Y B}}\right)^{2}\right]\right\} }
\end{aligned}
$$

and the probability density function for determining whether the burst pattern mean point of impact falls between X and $Y+d x$ and Y and $Y+d y$ is

$$
\begin{aligned}
\mathrm{f}_{\mathrm{AI}}\left(\mathrm{X}_{A I}, \mathrm{Y}_{\mathrm{AI}}\right)= & \frac{1}{2 \pi \sigma_{X_{A I}} \sigma_{Y_{A I}}} \operatorname{EXP}\left\{-\frac{1}{2}\left[\left(\frac{\mathrm{X}_{\mathrm{AI}}-\mathrm{X}^{\prime}}{\sigma_{X_{A I}}}\right)^{2}\right.\right. \\
& \left.\left.+\left(\frac{Y_{A I}-Y^{\prime}}{\sigma Y_{A I}}\right)^{2}\right]\right\}[7]
\end{aligned}
$$

This equation is also called the aiming error probability
density function, which is bi-variate normal, and uncorrelated with a mean at (X^{\prime}, Y^{\prime}). These coordinates locate the center of the distribution with respect to the target and are components of minimum miss.

The probability (PHSS) of a single round impacting the target when aiming error and ballistic dispersion are involved is

$$
\text { PHSS }=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{A I}(X, Y) \text { PHSSA }(X, Y) d x d y
$$

This equation can be solved by using the Hermite-Gauss quadrature method [7]. This technique is used to evaluate integrals in the form

$$
\int_{-\infty}^{\infty} e^{-x^{2}} f(x) d x
$$

by approximating the integral as

$$
\sum_{i=0}^{M} W_{1} f\left(X_{1}\right)
$$

The function $f\left(X_{i}\right)$ is evaluated with X_{1} values which are the roots of the Hermite polynomial of degree $n+1$. This numerical technique is used to evaluate PHSSA for each aimpoint $\left(X_{i}\right)$ weighting $\left(W_{1}\right)$ by the probability of the aimpoint occurring, then summing the products for all aimpoints [7].

PHSS can be expressed in the Hermite-Gauss integral form by separating the variables as,

$$
\begin{align*}
\text { PHSS }= & \frac{1}{8 \pi \sigma_{X} \sigma_{Y_{A I}}} \int_{-\infty}^{\infty}\left[E R F\left(\frac{L E-X_{A I}}{\sqrt{\sigma_{X B}}}\right)+E R F\left(\frac{L E+X_{A I}}{\sqrt{\sigma_{X B}}}\right)\right] \\
& \operatorname{EXP}\left[-\frac{1}{2}\left(\frac{X_{A I}-X^{\prime}}{\sqrt{2} \sigma_{X_{A I}}}\right)^{2}\right] d x_{A I} \int_{-\infty}^{\infty}\left[E R F\left(\frac{W D-Y_{A I}}{\sqrt{2} \sigma_{Y B}}\right)\right. \\
& +E R F\left(\frac{W D+Y_{A I}}{\sqrt{2} \sigma_{Y B}}\right) \operatorname{EXP}\left[-\frac{1}{2}\left(\frac{Y_{A I}-Y^{\prime}}{\sqrt{2} \sigma_{Y_{A I}}}\right)^{2}\right] d y_{A I} \tag{7}
\end{align*}
$$

Now apply the Hermite-Gauss approximation to the above equation. This will yield

$$
\text { PHSS }=\frac{1}{\pi} \sum_{j=1}^{n} \sum_{k=1}^{n} W_{j} W_{k} \operatorname{PHSSA}\left(X_{j}, Y_{k}\right) .
$$

PHSSA is multiplied by the probability of target kill, given a hit to yield the single shot probability of kill given an aimpoint.

$$
\text { PKSSA }=\mathrm{PHSSA} * \mathrm{P}_{\mathrm{K} / \mathrm{H}}
$$

For a given number of rounds (NR) the probability of survival (PSA) is,

$$
P S A=(1-P K S S A)^{N R}
$$

and for all aimpoints the probability of survival is

$$
P S=\frac{1}{\pi} \sum_{j=1}^{n} \sum_{k=1}^{n} W_{j} W_{k} \operatorname{PSA}\left(X_{j}, Y_{k}\right) ;
$$

and the probability of target kill is

$$
P_{K}=1-P S
$$

CHAPTER IV

ATOG COMPUTER PROGRAM

The mathematics developed in Chapter III has been programmed in FORTRAN IV in order to produce effectiveness results for comparison and validation. Results from the validated OEG air-to-ground gun simulation model discussed In Chapter II will be compared to the ArOG simulation results in the next chapter.

Program Description

The program begins by reading in all of the constants and input variables needed to produce effectiveness results. These data are read in under six different categories: program control and miscellaneous, projectile characteristics, target data, aircraft data, gun systems characteristics, and the target vulnerable area tables. The main program calls subroutine SIGHT to determine the sight depression, initial angle of attack based on altitude, range to target, projectile time of flight and gravity drop. There upor the flow returns again to the main program which calls subroutine TRACK which determines the range from the aircraft to the target, and relative position of target in the sight system in elevation and azimuth. The flow returns again to the main program which cails subroutine FLIGHT. This subroutine
determines the new velocity and position of the aircraft after some small time increment. Next subroutine GOTGT is called to determine the new target position after a specified time increment. At this point in time the main program attempts to make any corrections in roll, pitch and yaw that is necessary to keep the aircraft in pursuit of the evading, or still target. After some specified delta time increment there is a test to determine if the target is within the predetermined open fire slant range. If the target is within this specified range it will check to see if the target is within three standard deviations of aim and ballistic dispersions. If these conditions are not met the program flow returns to the TRACK subroutine and continues to fly the aircraft until the two previous checks determine that the target is possible to hit. At this time subroutine GUN is called to determine projectile position and velocity, impact velocity, and transforms the gun muzzle velocity components to earth axes components. After each round has been fired the probability of target kill is determined by calling subroutine PKI. This routine uses the nine point Hermite-Gauss quadrature method for generating aim points, which are used in determining if the projectile hit and/or killed the target. After the specified burst time or total time into the engagement has elapsed the flow returns to the main program where arrays of output data have been stored as it was generated. The output is printed in four sections:
the sight/tracking data, aircraft data, target data, and the gun/projectile data. The program will continue to read in and execute data for as many cases as desired.

Overview Program Flow Chart

The following flow chart graphically displays the
flow of the computer program ATOG described in the previous section.

Figure IV-1. Flowchart Overview of ATOG Computer Program

Figure IV-1. Flowchart Overview of ATOG Computer Program (continued)

CHAPTER V

DEMONSTRATION OF RESULTS

The results obtained from the computer program described in Chapter IV are Iimited to one particular aircraft, one gun, and one target. The aircraft characteristics used in this simulation closely resemble that of the A-10 in dynamic performance. The gun system is a 30 millimeter, seven barrel, Gatling which mimics the General Electric GAU-8. The target is defined only as an area in square feet that is still or moving a specified velocity and direction. The size target used for this analysis does not represent any potential ground target for the gun/ aircraft unit. This program is capable of accepting inputs from any aircraft, gun, target combination desired. The aim error and ballistic dispersion used was representative of the gun/aircraft unit based on actual test results. The aim error used for this analysis was 5.887 mils sigma, and the ballistic dispersion was 1.4 mils CEP as noted on the top of Tables VI-l and VI-3, respectively.

> Tables V-l through V-4 exhibit various target maneuvers with the gun effectiveness results recorded. Can an aircraft with a fixed sight system hit a moving target? This question frequently arises in air-to-ground gunnery
analysis. Table $V-5$ shows the effectiveness results for both fixed, and lead predicting sight, systems. The results (not shown) for a still target using both sight systems yield approximately the same effectiveness results. The lead prediction sight system uses first order lead, based on projectile time of filght and future position of the target.

Table V-1. Effectiveness Against a Moving Ground Target for 250 Knots, 3 Degree Dive Angle

MOVING CROUND TARGET										
$\left\lvert\, \begin{gathered} \text { VELOCITY } \\ \text { (MPH) } \end{gathered}\right.$	HEADING (DEGREES)					TURN RATE (DEGREES/SEC)				
	0	45	90	135	180	5	10	15	20	30
15	0.09	0.05	0.05	0.07	0.10	0.07	0.07	0.07	0.06	0.06
30	0.09	0.04	0.04	0.05	0.11	0.07	0.06	0.06	0.06	0.05
45	0.09	0.03	0.03	0.04	0.11	0.06	0.05	0.06	0.05	0.05
60	0.08	0.02	0.02	0.04	0.12	0.06	0.05	0.05	0.05	0.05

Table V-2. Effectiveness Against a Moving Ground Target for 250 Knots, 15 Degree Dive Angle

MOVING GROUND TARGET										
$\underset{(M P H)}{\text { VELOCITY }}$	HEADING (DEGREES)					TURN RATE (DEGREES/SEC)				
	0	45	90	135	180	5	10	15	20	30
15	0.11	0.09	0.10	0.10	0.12	0.10	0.09	0.10	0.10	0.08
30	0.11	0.09	0.09	0.10	0.12	0.09	0.09	0.09	0.09	0.07
45	0.11	0.08	0.09	0.10	0.12	0.09	0.08	0.09	0.08	0.07
60	0.11	0.08	0.09	0.11	0.12	0.09	0.08	0.08	0.08	0.05

Table V-3. Effectiveness Against a Moving Ground Target for 250 Knots, 30 Degree Dive Angle

MOVING GFOUND TARGET										
$\begin{aligned} & \text { VELOCITY } \\ & (\mathrm{MPH}) \end{aligned}$	HEADING (DEGREES)					TURN RATE (DEGREES/SEC)				
	0	45	90	135	180	5	10	15	20	30
15	0.16	0.14	0.16	0.18	0.21	0.14	0.13	0.13	0.14	0.14
30	0.15	0.12	0.15	0.20	0.24	0.13	0.12	0.13	0.13	0.11
45	0.14	0.12	0.14	0.22	0.25	0.12	0.12	0.12	0.12	0.09
60	0.14	0.11	0.13	0.22	0.26	0.11	0.11	0.11	0.11	0.06

Table V-4. Effectiveness Against a Moving Ground Target for 250 Knots, 45 Degree Dive Angle

MOVING GROUND TARGET										
$\underset{(\mathrm{MPH})}{\mathrm{VELOCITY}}$	HEADING (DEGREES)					TURN RATE (DEGREES/SEC)				
	0	45	90	135	180	5	10	15	20	30
15	0.46	0.42	0.45	0.46	0.50	0.42	0.41	0.41	0.43	0.42
30	0.43	0.39	0.44	0.47	0.52	0.38	0.37	0.38	0.40	0.32
45	0.38	0.36	0.42	0.42	0.52	0.34	0.34	0.35	0.36	0.23
60	0.33	0.32	0.40	0.37	0.50	0.31	0.31	0.32	0.36	0.18

Table V-5. Sight System Comparison for Aircraft Speed of 250 Knots, 30 Degree Dive Angle

SIGHT SYSTEM COMPARISON/GUN EFFECTIVENESS										
TARGET VELOCITY (MPH)	TARGET HEADING (DEGREES)									
	0		45		90		135		180	
	YES	NO								
15	0.16	0.13	0.14	0.11	0.16	0.10	0.18	0.12	0.21	0.14
30	0.15	0.10	0.12	0.05	0.15	0.02	0.20	0.06	0.24	0.10
45	0.14	0.05	0.12	0.01	0.14	0.00	0.22	0.02	0.25	0.04
60	0.14	0.02	0.11	0.00	0.13	0.00	0.22	0.00	0.26	0.01
80	0.12	0.01	0.10	0.00	0.12	0.00	0.22	0.00	0.28	0.00
100	0.12	0.01	0.09	0.00	0.11	0.00	0.23	0.00	0.29	0.00
	TARGET TURN RATE (DEGREES)									
	5		10		15		20		30	
	YES	NO	YES	NO	YES	No	YES	NO	VES	NO
15	0.14	0.12	0.13	0.09	0.13	0.08	0.14	0.08	0.14	0.10
30	0.13	0.08	0.12	0.03	0.13	0.02	0.13	0.02	0.11	0.06
45	0.12	0.03	0.12	0.01	0.12	0.00	0.12	0.00	0.09	0.04
60	0.11	0.00	0.11	0.00	0.11	0.00	0.11	0.00	0.06	0.02
80	0.10	0.00	0.10	0.00	0.11	0.00	0.11	0.00	0.04	0.00
100	0.10	0.00	0.10	0.00	0.11	0.00	0.12	0.00	0.04	0.00

NOTE: YES, means the pilot is using lead prediction NO, means the pilot is not using lead prediction

CHAPTER VI

CONCLUSIONS AND RECOMMENDATITONS

The objective of this research was to develop the mathematics for an improved air-to-ground gun model, designed to assess the probability of kill on a still, or moving ground target. In order to validate the mathematics it was necessary to program the model in FORTRAN, and then compare the results to the Operations Evaluations group (OEG) model effectiveness for similar engagements.

Results

The computer simulation model ATOG produces results in four areas of concern: (1) sight/tracking, (2) aircraft, (3) target, (4) gun/projectile. Each respective topic has its associated variables printed for each tenth of a second into the engagement. Other non-time related data for each subject can be found at the top of Tables VI-l through VI-4.

A typical attack engagement begins by observing the target on a flat, non-rotating earth at an X, Y coordinate. It may be still, or traveling at some constant velocity and direction, or turning at a constant rate and velocity. The aircraft is introduced into the system at some specified coordinate relative to the target with a predetermined velocity and dive ancie. The aircraft tracking system is

Table VI-1. Sight Tracking Data

Table VI-2. Aircraft Data

Table VI-3. Gun ProjectiIe Data

Table VI-4. Target Data
$t+t+t+t+t+t+\quad$ TARGET DATA
VELOCITY IN MILES PER HOUR................. 45.0000 INITIAL OIRECTION OF TAFGET VEL (UEGREES) 90.0000 angular turn rate in degrees.............. D. Duvo

time	$x-\mathrm{POS}$	Y-POS	IMP-VEL	PRES AREA	VUL AREA
5.4800	100 u	361.7	3034.3	215.7	1.528
5.5344	1000.0	363.3	3034.4	215.7	1.528
5.5289	1000.6	364.9	3034.5	215.7	1.584
5.5533	1000.0	J66.5	3041.1	215.7	1.597
5.5778	1060.0	358.1	3041.2	215.7	1.543
5.6022	1000.4	369.7	3041.3	215.7	1.532
5.6267	100us	371.4	334300	215.7	1.533
5.6511	100.00	373.0	3048.1	215.7	1.521
5.6756	10000	374.6	3048.2	215.7	1.509
5.7000	1000.0	376.2	3054.9	215.7	1.513
5.7145	1ucus	377.2	3055.0	215.7	1.503
5.7290	1000.0	378.1	3055.0	215.7	1.495
5.7435	1000.0	379.1	3055.1	215.8	1.487
5.758 u	1000.0	380.0	3061.8	215.8	1.494
5.7725	1000.0	381.4	3061.8	215.8	1.487
5.7870	1 OUT.	381.9	3061.9	215.8	1.481
5.8014	2000.0	382.9	3061.9	215.8	1.476
5.8159	1003.0	383.9	3368.6	215.8	1.485
5.8314	1403.0	384.8	3068.7	215.8	1.481
5.8449	1ucues	385.8	3063.8	215.8	1.476
5.8594	1000.0	386.7	3068.8	215.8	1.472
5.8739	1006.4	387.7	3068.9	215.8	1.469
5.8884	1000.0	388.6	3u75.6	215.8	1.479
5.9329	1u0506	389.6	3475.7	215.8	1.476
5.9174	1000.u	390.5	3375.7	215.8	1.473
5.9319	1000.0	331.5	3才75.8	215.8	1.470
5.9464	1000.0	392.5	3075.9	215.8	1.468
5.9609	1000.0	393.4	3082.6	215.8	1.479
5.9754	1 nou	394.4	3482.7	215.8	1.477
5.9899	1000.0	395.3	3082.7	215.8	1.474
6.0043	100000	396.3	3082.8	215.8	1.472
6.0188	1003.0	397.2	3 - 82.9	215.8	1.470
6.0333	100.03	398.2	3089.6	215.8	1.482
6.0478	1000.0	399.2	3089.7	215.8	1.480
6.0623	1003.0	400.1	3089.8	215.8	1.478
6.0768	1000.0	401.1	3089.8	215.8	1.476
6.1913	100000	402.0	3389.9	215.9	1.475

mathematically designed to pursue the target within certain limitations. Pertinent constraints on aircraft capabilities and turn rates are read in as a limitirg factor which allows the mathematical model to perform as a live model.

The aircraft continues to pursue the target for a specified engagement time. If the open fire range (specified In the input) is achieved before the engagement time elapses a check will be made to determine if it is possible to hit the target based on the aim error. After these two conditions are met the gun will commence to fire for a specified number of seconds, or until the engagement time elapses. Then the probability of target hit/kill is determined.

Comparison and Validation

One of the best ways to validate the new methodology is to check it with another model known to produce accurate results. The OEG model methodology and effectiveness results are documented in the Joint Munitions Effectiveness Manual (JMEM) and accepted by the armed services Joint Technical Coordinating Group (JTCG) [9]. Due to the OEG's popularity it became a prime subject for comparison to the new model. Table VI-5 shows four areas of comparison using a still target.

The data in Table VI-5 was collected from both models under similar attack conditions. The target, gun and aircraft were all the same. The OEG dive angle remains constant

Table VI-5. Gun Model Effectiveness Comparison

AIRCRAFT DIVE ANGLE (DEGREES)		AIRCRAFT SLANT RANGE (FEET)		PROJ IMPACT VEL (FT/SEC)		PROBABILITY OF KILL.	
OEG	ATOG	OEG	ATOG	OEG	ATOG	OEG	ATOG
15.0	16.1	2000	1951	3210	3212	0.32	0.27
15.0	16.3	3000	2951	3010	2998	0.13	0.11
15.0	16.4	4000	3951	2820	2737	0.05	0.05
30.0	31.1	2000	1946	3210	3221	0.42	0.40
30.0	31.3	3000	2946	3010	3012	0.17	0.18
30.0	31.4	4000	3946	2820	2816	0.08	0.10
45.0	45.8	2000	1942	3210	3221	0.87	0.79
45.0	46.0	3000	2942	3010	3017	0.53	0.50
45.0	46.1	4000	3942	2820	2827	0.33	0.34

for all cases while the ATOG dive angle increases slightly. This slight increase is due to the aircraft's dynamic characteristic to 'bunt' as it draws nearer to the target. The aircrafts' open fire siant rarges differ slightly between the two models. This difference is due to the way the open fire slant range is selected. In the OEG model it is a fixed input. In the ATOG program it is calculated based on the input sight harmonization range; then the mean gun burst time is equally divided on each side of this range. The OEG model uses projectile trajectories calculated from a trajectory program based on a constant altitude of four thousand feet. The ATOG's trajectory characteristics are all calculated within the program, and are representative of the altitude at which each round is fired. This should account for the projectile impact velocity differences. The vulnerable area of a target (not shown in the table) is a function of the dive angle, slant range, and projectile impact velocity. Since there are slight differences in all three areas between the two models it would be difficult to achieve the exact probability of target kill. However, the effectiveness results are very close and the differences are negligible.

The ATOG program is simpler to run, requires one tenth the set up time, and executes each case in three seconds less than that required for the OEG model. However, the OEG model has a plot option but the ATOG model does not. ATOG
has three times more information printed out than the OEG model. The largest and most obvious difference between the two models is the potenvial caparility of the ATOG program to evaluate the damage inflicted on a moving target.

Recommendations and Conclusions

This new simulation model has many and varying advantages over all of the air-to-ground gun models known to be in use at this time. There are several areas in the model that could be topics for future research. First, the target model could be improved upon by adopting a completely random target [10]. Second, sight depression/lead compensation tables could be generated for use as a teaching aid in air-to-ground fixed gun sight systems. Third, graphic output could be incorporated into the program to display each engagement. Fourth, the program can be modified with a minimum effort to be used to assess the probability of kill against low flying aircraft such as helicopters.

The ATOG computer program should prove to be a valuable tool in future air-to-ground gun studies. It is conservative, yet it uses some of the most sophisticated and accurate mathematical techniques known.

APPENDIX I

MATHEMATICAL VARIABLE LIST

A_{F}	- Front presented area of target (square feet)
A_{P}	- Target presented area (square feet)
A_{S}	- Side presented area of target (square feet)
A_{T}	- Top presented area of target (square feet)
A_{V}	- Target vulnerable area (square feet)
AXI	- C C C $\theta C \psi-S \alpha(C \phi S \theta C \psi+S \phi S \psi)$
AX2	- Caces $\psi-\mathrm{S} \alpha(\mathrm{C} \phi \mathrm{S} \theta \mathrm{S} \psi-\mathrm{S} \phi \mathrm{C} \psi)$
AX3	- - CaSe - SaCфC θ
AY1	- $S \phi S \theta C \psi-C \phi S \psi$
AY2	$-S \phi S \theta S \psi+C \phi C \psi$
AY 3	- S \quad C θ
A2	- Azimuth of target angular coordinates in the field of view along the aircraft X axis
AZA	- Target vulnerable area as a function of azimuth
AZ1	$-\mathrm{S} \alpha \mathrm{C} \theta \mathrm{C} \psi+\mathrm{C} \alpha(\mathrm{C} \phi \mathrm{S} \theta \mathrm{C} \psi+\mathrm{S} \phi S \psi)$
AZ2	- S α C θ S $\psi+C \alpha(C \phi S \theta S \psi-S \phi C \psi)$
A23	- - SaS $\theta+\mathrm{CaC} \phi \mathrm{C} \theta$
C	- Side force on the aircraft in the wind axis equation
$C_{\text {D }}$	- Aircraft coefficient of drag
C_{L}	- Aircraft coefficient of lift
$\mathrm{C}_{\mathrm{L} \alpha}$	- Coefficient of lift versus a slope
$\mathrm{C}_{\text {LO }}$	- Coefficient of lift at $\alpha=0$

CVD	- Correction for vertical displacement of gun (feet)
C1	- Proportionality roll angle gain constant
d	- Diameter of projectile (feet)
D	- Drag force
EL	- Elevation of target angular coordinates in the field of view along the aircraft's X axis
ELA	- Target vulnerable area as a function of elevation
ERF	- A function name used to describe a numerical evaluation techniaue
FPV	- Alrcraft flight path vector
FRL	- Fuselage reference line (horizontal plane of the air craft about which all angular measurements of the aircraft are made)
g	- Acceleration due to gravity
GL	- Gun bore axis
GL'	- Line parallel to the gun bore axis
GR	- Gun rate of fire (rounds/minute)
\hat{i}_{B}	- i component in the line of sight vector of the aircraft body axis system
$\hat{i}_{\text {T }}$	- Vector component of the transformed velocity vector
\hat{j}_{B}	- J component in the line of sight vector of the aircraft body axis system
\hat{j}_{T}	- Vector component of transformed velocity vector
\hat{k}_{B}	- k component in the line of sight vector of the aircraft body axis system
\hat{k}_{T}	- Vector component of the transformed velocity vector
L	- Lift force
LE	- Length of target (feet)

m	- Mass = weight/gravity
MDX	- Target miss distance in X coordinate rotated to the normal (feet)
MDY	- Target miss distance in Y coordinate rotated to the normal (feet)
NR	- A specified number of rounds fired in a burst
PHSS	- The probability of a single round impacting the target when aiming error and ballistic dispersion are involved
PHSSA	- The probability of hitting the target with a single round
PKSSA	- Single shot probability of kill given an aimpoint
$\mathrm{P}_{\mathrm{K} / \mathrm{H}}$	- Probability of target kill/given a hit
P_{K}	- Probability of target kill
PSA	- Probability of survival
PS	- Probability of survival for all aimpoints
PTV	- Projectile total velocity vector
PTV'	- Line parallel to the projectile total velocity vector
QSA	An intermediate variable used to calculate alpha
R	- Line of sight range to the target (feet)
\hat{r}	- The line of sight unit vector
$\hat{r}_{\text {A }}$	- Line of sight unit vector in the aircraft body axis system
R_{I}	- Input line of sight range to target from aircraft (feet)
R_{0}	- Initial range of aircraft to target (feet)

r_{1}	- i component of the line of sight unit vector \hat{r}
r_{2}	- j component of the line of sight unit vector \hat{r}
r_{3}	- k component of the line of sight unit vector \hat{r}
S	- Aerodynamic reference area of aircraft (square feet)
SD	- Sight depression (mils)
SR	- Projectile slant range (feet)
T	- Thrust of the aircraft
t	- Time (cumulative)
t_{B}	- Engagement duration time (seconds)
t_{f}	- Projectile time of flight (seconds)
TGHD	- Target heading (radians)
t_{i}	- Present time
T_{T}	- Tracking time (seconds)
T_{X}	- Component of thrust in the aircraft X-axis
T_{Y}	- Component of thrust in the aircraft Y-axis
T_{Z}	- Component of thrust in the aircraft Z-axis
V_{A}	- Velocity of the aircraft (feet/second)
VACK	- Velocity of the aircraft (knots)
VGP	- Vertical gun position with respect to the sight (feet)
V_{M}	- Gun muzzle velocity (feet/seconds)
V_{MX}	- Earth axis transformation for the gun muzzle velocity in the X direction
V_{MY}	- Earth axis transformation for the gun muzzle velocity in the Y direction

$V_{M Z}$ - Earth axis transformation for the gun muzzle velocity in the Z direction
V_{0} - Initial airspeed for a planned airspeed of V_{A} at open fire (feet/seconds)
V_{P} - Velocity of the projectile at impact (feet/second)
$V_{P T}$ - Projectile initial velocity (feet/second)
$V_{P X}$ - Projectile inttial velocity component in the X di- rection
$V_{P Y}$ - Projectile initial velocity component in the Y di-rection
$V_{P Z}$ - Projectile initial velocity component in the Z di- rection
V_{T} - Velocity of the target (feet/second)W - Weight of the aircraft (pounds)
WD - Width of the target (feet)
W_{1} - Weighting factor used in determining the probabilityof the aimpoint occurring
X - Change in the X aircraft position after delta time(feet/second)
X_{A} - The X coordinate position of the aircraft (feet)
$X_{A I}$ - The mean aimpoint of projectile impact position inthe X coordinate
$X_{i} \quad$ - Aimpoints
$X_{L} \quad-$ Line of sight coordinate in the aircraft body axissystem
XMISS - Projectile X miss distance from target (feet)
X_{P} - Projectile impact point in the X coordinate (feet)
\dot{X}_{P} - Projectile velocity in the X direction (feet/second)
$\ddot{X}_{p} \quad-\quad \begin{aligned} \text { Projectile } \\ \text { second) }\end{aligned}{ }^{2}$ acceleration in the X direction (feet/

X_{PT}	- X coordinate of projectile impact point relative to the target (feet)
$\mathrm{X}_{\text {T }}$	- The X coordinate position of the target at any time t (feet)
$\mathrm{X}_{\text {T }}$	- The target velocity in the X direction (feet/second)
$\mathrm{X}_{\text {TB }}$	- X coordinate in the target body
X_{TO}	- Initial X position of the target (feet)
X'	- The transformed projectile impact X coordinate (feet)
Y_{A}	- The Y coordinate position of the aircraft (feet)
$\mathrm{Y}_{\text {AI }}$	- The mean aimpoint of projectile impact position in the Y coordinate
$\dot{\mathrm{Y}}$	- Change in the Y position of the aircraft after delta time (feet/second)
Y_{L}	- Line of sight coordinate in the aircraft body axis system
YMISS	- Projectile Y miss distance from target (feet)
Y_{P}	- Projectile impact point in Y coordinate (feet)
$\dot{\mathrm{Y}}_{\mathrm{P}}$	- Velocity of the projectile in the Y direction (feet/second)
\ddot{Y}_{P}	- Acceleration of the projectile in the Y direction (feet/second) ${ }^{2}$
Y_{PT}	- Y coordinate of projectile impact point relative to the target (feet)
Y_{T}	- The y coordinate position of the target at any time t (feet)
Y_{T}	- The target velocity in the Y direction (feet/second)
Y_{TB}	- Y coordinate in target body
Y_{TO}	- Initial Y position of the target (feet)
	transformed projectile impact Y

2	- Change in the Z position of the aircraft after Δt (feet/seconds)
z_{A}	- The Z coordinate position of the aircraft, or altitude (feet)
z_{L}	- Line of sight coordinate in the aircraft body axis system
ZMISS	- Projectile 2 miss distance from the target (feet)
z_{P}	- Projectile impact point in the z coordinate (feet)
z_{P}	- Velocity of projectile in the z direction (feet/ seconds)
$z_{\text {P }}$	- Acceleration of the projectile in the Z direction (feet/second) ${ }^{2}$
z_{T}	- The Z coordinate position of the target (feet)
z^{\prime}	- The transformed projectile impact Z coordinate (feet)
α	- Alrcraft angle of attack (radians)
α_{1}	- Present commanded angle of attack (radians)
$\alpha_{\text {MAX }}$	- Maximum allowable angle of attack (radians)
${ }^{\alpha} \mathrm{OL}$	- Angle of attack at zero lift (radians)
${ }^{\alpha}$	- Aircraft angle of attack at aerodynamic stall (radians)
${ }^{\alpha} \mathrm{ST}$	- Maximum allowable angle of attack for structural limitations (radians)
δ	- Projectile angular gravity drop (radians)
$\Delta \alpha$	- Increment angle of attack (radians/ second)
Δt	- Time increment (seconds)
$\Delta \phi$	- Roll or bank increment (radians/second)
$\Delta \phi_{\text {MAX }}$	- Maximum roll angle (radians/second)
ε	- Angle between the FRL and the GL (radians)

θ $\dot{\theta}$	- Aircraft dive angle or pitch (radians) - The relative change in the aircraft dive angle after Δt (radians/second)
${ }^{\text {T }}$ T	- Linear direction of the target velocity (radians)
$\dot{\theta}_{T}$	- The target velocity change with time
θ_{1}	- The transformed angle of profectile impact for the aircraft dive angle
n	- Alrcraft load factor
${ }^{n}$ S	- Aircraft structural load factor
ρ	- Air density (slugs)
	- Standard deviation of the ballistic dispersion in range (mils CEP)
${ }^{\sigma}{ }_{\text {YB }}$	- Standard deviation of the ballistic dispersion in deflection (mils CEP)
$\sigma_{\text {AR }}$	- Standard deviation of the aim error in range
$\sigma_{\text {AD }}$	- Standard deviation of the aim error in deflection
τ	- Trajectory shift angle - deflection of the bullet due to the gun being at an angle of attack with respect to the aircraft flight path (radians)
ϕ	- Roll or bank angle of aircraft (radians)
$\phi_{\text {MAX }}$	- Maximum bank angle rate (radians/second)
ϕ_{i}	- Commanded roll angle (radians)
ψ	- Yaw or heading of aircraft (radians)
ψ	- Change in the heading of the aircraft after Δt (radians/second)
ψ_{T}	- Heading angle between the target axis and earth axis
* 1	- The new projectile rotation angle of impact for the aircraft heading angle
	- Pi (a constant approximately equal to 3.1415926)

ω_{T} - The target angular turn rate (radians/second)
μ_{1} - Component in the direction of the velocity of the projectile at impact
μ_{2} - The second component in the direction of the velocity of the projectile at impact
μ_{3} - The third component in the direction of the velocity of the projectile at impact

APPENDIX II

ATOG FORTRAN COMPUTER PROGRAM LISTING


```
    THETO=THFTO*PA 
    OMEGT=OMEGTMOAD
    ALPOL=1.O%DAT
    CLALPO=ALPOL*CLALP
    TIME=0.0
    J=0
    L=1
    XTT(L) =XT
    YTT(L) =YT
    TIMEAT(L) = TIME
    DALP(1)=0.0
    ELA(L)=0:C
    AZA(L)=0.0
    ELL(L)=0.0
    AZL(L)=0.0
    C TPACKING TIME (IN SECONDSS
    C INITIAL AIRSPEED
    V=VACK*1,F879
    C INITIAL FIRING PANGF
    RSHOT=(TR-TT)*V/2.04RI
    RTHETA=THETA*RAD
    VDOT=-SIN(RTHETA)*G
    VO=V-VOOT*TT
    VA=VO
    C INITIALQANGE (IN FEET)
            RO=PI+(VO}+V)*O.5*T
    R=RO
    RA(L)=R
    THE(L)=-RTHETA/RAN
    C INITIAL AIPCPAFT ALTITUDE AND AIR DENSITY
    ZA=RI*SIN(RTHFTA)
    RHO=.002377*((548.688-0 0 35662*ABS(ZA))/518.688)**4.2561
    TSIGHT=,5*RHO*S*VO*VO*ACD
    C SIGHT SETTIAGS
    XA=-RO*COS(RTHETA)*COS (RFSI)
    YA=-RO*COS(RTHFTA)*SIN(RPSI)
    ZA=RO*SIN(RTHETA)
    XAC(L)=XA
    YAC(L)=YA
    ZAC(L)=ZA
    VAA(L)=VA
    CALL SIGHT (YO% TO,TF,G,IFLAG,H,TSIGHT)
    CL=ALPHA*CLALS+CLALBO
    ALIFT=CL*O.5*RHO*VA*VA*S
    \triangleLP(1)=ALPHA
    PHIA(1)=PHI
    C SET IHFIST TO COUNTERACT DRAG AT INITIAL AIRSPEED
        T=0.5*RHO*S*ACD*VO*VO
            PNE(I= (ALTFT +T*ALPHA)/W
            GEES{L)=PNEU
    C WRITE 6, 204) XA,YA,ZA,T
    204 FORMAT(3X,4F10.3)
        10 CONTINUE
            L=L+1
            TIME=TIME+TII
            TIMFAT(L)=TIME GGT LOCATION IN HUD COOR AND SR TO TGT
            CALL TRACK
            OMEGA =THFTO+OMFGT*TIMF
    XT\capOT =VT*COS(OMEGA)
    YTOOT=VT*SIN(OMEGA)
    ZTOOT=0.?
    ELA(L)=FL
    AZA(L)=AZ
    RA(L)=R
    RSAV=R
    XTSAV =XT
```

YTSAV $=Y T$

```IF(ILFAO. EO.7) GO TO 22
    XT=XTSAV+XTOOT*TF
    YT=YTSAV +YTDOT*TF
    CALL TRACK
    22 CONTINUE
C LEAD ANGLE ARQAYS, ELEVATION, AZIMUTH, TOTAL LEAD ANGLE
    ELL (L)=(EL-SD)
    AZL (L) =AZ
    TLA(L)=ACOS(COS(AZL(L))*COS(ELL(L)))
    XT=XTSAV
    YT=YTSAV
    R=PSAV
C ROLL OR BANK INGREMENT HHERE CI IS THE BANK ANGLE GAIN CONSTANT
        OELPHM=PHIMAX*TII
        DELPHI=C1*AZ
        IF(AGS(OELPHT),GT.DELPHM) DELPHI=CELPMM*SIGN(1.0,DELPHI)
        COMMANCED SANK ANGLE
        PHI=PHI+DELPHI
        PHIA(L)=PHI/RAO
    C WRITE(6,2O5) DELPHM, PHIMAX,TII,DELPHI,C1,AZ,PHIA(L)
    206 FORMAT (3X,TF1C.3)
    CALL FLIGHT
    THE(L)=-RTHFTA/RAD
    SI(L)=RPSI/RAD
    XAC(L)=XA
    YAC(L)=YA
    ZAC(L)=ZA
C IF(ZAC(L).LT.ZMIN) GOTO 11
    VAA(L)=VA
    CALL GOTGT
    XTT(L)=XT
    YTT(L)=YT
    OALPHA=SO-EL
    CL=ALPHA*CLALP + CLALDO
    ALIFT=CL*C*5*RHO*VA*VA*S
    PNEU=(ALIFT+T*ALPHA)/W
    GEFS(L)=PNEU
C ANGLE OF ATTACK AT MAX LIFT
    AFSTAL=CLMAX/CLALP
C AIRCRAFT LOAD FACTOD LIMITEO OY STPUCTURAL LOAD FAGTOR
C AFGLIM=PNEUMX*W/(Q.5*VA*VA*S*RHO*CLALP)
C MAX ANGLE OF ATTACK NOT TO EXCEEO STALL RATE
    AFLIH=AMIN1 (AFGLIM,AFSTAL)
    ALDOMX=DOTN*W/(0.5*VA*VA*S*RHO*CLALP)
    DALPTI=ALDOMX*TII
C INCREMENT ANGLE OF ATTACK NOT TO EXCEED MAX LIMITS
    IF(ADS(DALDHA).GT.DALPTI) DALPHA=CALPTI*SIGN(1.0, DALPHA)
    DALP(L)=DALPHA
C THE COMMANDFO ANGLE OF \triangleTTACK
    AFNEW=ALPHA+DALDHA
    ALPHA=AMIN1 (AFNEW, AFLIM)
    ALP(L)=ALOHA
C CHECKP TO SFE IF AZIMUTH IS IN LIMITS
    RT=(AF+AS+AT)/2.O
    SIGAZ=SQRT(SIGAO*SIGAD+SIGBD*SIGBC)*ח. 103
    SIGEL = SNFT(SIGAR*STGAR+SIGBR*SIGGR)*O:OE3
    AZMIN=SIGAZ +DT/R
    ELMIN=SIGEL+RT/K
    IF(ABS (AZ),GT.AZMTN.OP,APS(EL).GT.ELMIN) GO TO 44
C CORPECTION FOQ VFFTICAL OISPLACEMENT OF GUN
        YO(A)=XA +VGP*(CIFI(ALPHA)*COS(PTHETA)*COS(PPSI) +COS(ALPHA)* (SIN(PHI
        1)*SIN(RTHETA)*SIN(RPSI)+SIH(PHI)* COS(POSI)J)
        YO(F)=YA+VGP*(NIN(ALOHA)*COS(RTHETA)*SIN(RFSI) +COS(ALPHA)* (COS(PHI
    1)*SIN(RTHFTA)*SIN(ROSI)-SIN(PHI)*SIN(ROSI)))
        YO(G)=ZA+VGP*(-SIN(ALPHA)*SIN(RTHETA) +COS(ALPHA)*COS (PHI)*COS (RTHE
        1TA))
    C NOW CHECK PANGETO SEE TF GUN SHOULO RE CALLEO
    IF(F.GT.PSHOT) GOTO 44
```

$J U M P=1$

```
    IF(JUMSAV.EO.O.ANO.JIJMP.EQ.1) TII=0.18
    IF(JUMSAV.EQ.D.AND.JUMP.EQ.1) GO TO }4
    TII=60.0/GR.
    TO=C.0
    TF=0.1
    IFLAG=1
    j=j+1
C 0.22
    SFCONOS/9 ROUNDS = 0.324444
    IF(J.GT. П.AND.J.LT.10) TII=,0244444
    CALL GUN(YO)
    25 CALL RKCUT(YO,TO,TF,6,IFLAG,H)
    TF=TO+H
    IF(YO(E)\cdotGT.-400.0) IFLAG=?
    IF(YO(6).GT.0.0) GO TO 30
    GO TO 25
        30 IFLAG=1
C THIS FINDS THE VALUES WHERE THE PROJ IMPACTS GROUND
        OTR=-YO(6)/YO(V)
    YO(4)=YO(4) +YO(1)*DTR
    YO(5)=YO(5) +YO(2)*OTR
    YO(6)=YO(6)+YO(3)*OTR
    TF=TF + DTR
    TIME=TIME +TF
C WRITE (6,103) XT,YT,ZT,TF,YO(4),YO(5),YO(6),TIME
    103 FOPAMT(4X,8F8.?)
    CALL GOTGG
C
    TGHO=OMEGT*TIME +THETO
    XTDOT = VT* COS(T(GHO)
    YTOOT=VT*SIN(TGHO)
    ZTOOT=0.3
    VPIM(J)=SORT((YO(1)-XTOOT)**2+(YO(2)-YTDOT)**2+(YO(3)-ZTOOT)**2)
    IIME=TIME-TF
    TIM(J)=TTME
    C NOW CALCULATE MTSS DISTANCE
    XMIS(J)=YO(4)-XT
```



```
    C PROJECTILE IMPACT POSITIONS
    XTPOS (J) =YO(4)
    YTOOS (J)=YO(5)
    ZTPOS (J)=YO(5)
    XPT=XMIS (J)*COS(TGHO) +YMIS (J)*SIN (TGHO)
    YPT=-XMIS(J)*SIN(TGHO)+YMIS(J)*COS(TGHO)
    ZPT=ZMIS (J)
    VPI(J)=SOPT (YO (1)*YO(1)+YO(2)*YO(2)+YO(3)*YO(3))
C PROJECTILE IMPACT POSITIONS ROTATEO TO THE NORMAL
    THFTA1=PIE/2;C-ASIN(YO(3)/VPI(J))
    SII=ATAN(YO(2)/YO(1))
    XPRI (J) =XMIS(J)*COS(THETA1)*COS(SI1)+YMIS(J)*COS(THETA1)*SIN(SI1)
    YPRI(J)=-XMIS(J)*SIN(SII)+YMIS (J)*COSPSI1)
```



```
    UNITV2=(YO(2)*COS(TGHD)-YO(1)*SIN(TGHD))/VPI(J)
    UNITV3=YO(S)/VPI(J)
    AP=ABS(AF*UNITV1) + ABS(AS*UNITV2) + ABS(AT*UNITV3)
    AREAP (J)=AP
    GUNR(J)=R
    CALL TABINT(THE(J),VDIM(J),VULAT, CIVET,VELT,VULT,4, 8)
    CALL PK1 (XPRI(J),YPRI(J),AB,VULAT,R,OKG,1.O,PHG)
    PROU=PROR*(1.0-PKG)
    EHITS=FHITS+PHG
    EHT(J)=EHITS
    PK=1.0-\overline{PROO}
    PKS (J)=PK
    VAT(J)=VULAT
    CALL GOTGT
    IF(J.EO.IBURST) GOTO 11
        44 CONTINUE
```



```
    SURPOUTINE SIGHT(YORTORTF,N,IFLAC,H,TSIGHT)
    COMMON/SIG/VIP,ALPOL,EPST,VM, RHO, SOROIGV
    COMMON/OOTAP/XJOT,YOOT,ZOOT, XJOTP, YOOTS,ZDOTP
    COMMON/ALL/PTHETA,VA, XA,Y,I,ZA,EL,FSI,R,ALPHA,PHI,AZ,S,CLALP,W
    OIMENSION YO(5)
    PHOI=0.C02377*((519.688-0.0435552*ABS(2A))/518.588)**4.2561
    OSA=0.5*DHOT*VA*VA*S
    ALPHA = (W*COS(PTHFTA) +OSA*CLALP*ALFOL)/(OSA*CLALP+TSIGHT)
    QSA=0.5*PHO*V*Y*S
    ALFIR=(W*COS(RTHFTA) + CSA*CLALP*ALFDL)/(OSA*CLALP +TSIGHT)
    TAU=(V*(ALFIR-EPSI))/(V+VM)
    CVD=VGF/RI
    IFLAG=1
    N=6
    TO=0.0
    TF=C.1
    YOOTP=0.0
    YP=C.0
THEHSH=RTHETA +ALFIR-FPSI-TAU
XOOTP = (V +VM)*COS (THEHSH)
ZOOTP=-(V +VM)*SIN(THEHSH)
XP=RI*COS(RTHETA)
ZP=PI*SIN(RTHETA)
YO(1)=X\capOTP
YO(2)=YCOTO
YO(3)=20OTP
YO(4)= XP
YO(5) =YP
YO(6)=2F
    TF=TORKGUT(YO,TO,TF,K,IFLAG,H)
    TF=TO+H
    IF(YO(f).GT.-400.C) IFLAG=2
    IF(YO(E).GT.0.2) GO TO 15
    GO T0 10
IFLAG=1
OYR=-YO(6)/YO(3)
YO(4)=YO(4)+YO(1)*OTR
YO(5) =YO(5)+Y\cap(2)*OTR
YO(6)=YO(6)+YO(3)*DTR
DELTA =-ATAN(TP/(YO(4)-XP))+THEHSH
SD=EPSI+TAU+DELTA+CVD
RETURN
END
```

15

```
    SUBPOUTINE TRACK
    COMMON/TOA/XT,YT,ZT
    COMMON/ALL/R'HEYA,VA,XA,YA,ZA,EL,RPSI,R,ALPHA,PHI,AZ,S,CLALP,N
    R=SQRT ((XT-XA)**2+(YT-YA)**2+(ZY-ZA)**2}
C LINE OF SIGHT UNIT VECTOP
    R1=(XI-X\Delta )/R
    R2=(YT-YA)/R
    R3=(ZT-ZA)/R
    STHETA=SIN(RTHETA)
    CTHETA=COS(DTHETA)
    SPSI= SIN(PPSI)
    CPSI=COS (OPSI)
    SPHI=SIN(FHI)
    CPHI= COS (DHI)
    SALPHA=SIN(ALPHA)
    CALPHA=COS (ALPHA)
    AXI=CALPHA*CTHETA*CPSI-SALPHA* (CPHI*STHFTA*CPSI + SPHI*SPSI)
    AXZ =CALDHA*CTHETA*SOSI-SALPHA* (CDHI*STHETA*SPSI-SPHI*CPSI)
    AX3=-CALPHA*STHETA-SALOHA*CPHI*CTHETA
    AYI=SPHT*STHFTA*CPSI-CPHI*SPSI
    AY}2=SPHI*STHETA*SPSI + CPHI*CPSI
    AY3=SDHI*CTHET\triangle
    AZI=SALPHA*CTHFTA*CPSI*CALPHA* (CPHI*STHETA*CDSI+SPHI*SPSI)
    AZZ=SALPHA*CTHETA*SPSI +CALPHA* (CPHI*STHETA*SPSI-SPHI*CPSI)
    AZ3=-SALPHA*STHETA +CALPHA*CPHI * CTHETA゙
    XL=AX1*R1 + AX Z*O2 +AXS*R 3
    YL=AY1*OI +AYD*R2+AYY*RZ
C TARGET ANGULAR COOPOINATES IN FIELO OF VIEW ALONG AIRCRAFT X AXIS
    EL=ASIN(ZL)
    AZ=ATAN(YL/XL)
    RETURN
    ENO
```

```
    SUBROUTINF FLIGHT
    COMMON/FLI/RAO,G,T,ACI,TII,TIME,FNEU,CLALPO,AP
    COMMON/DOTAD/XOOT,YDOT, ZOOT,XDOTO YOOTO,ZDOTO
    COMMON/ALL/RTHETA,VA,XA,YA,ZA,FL,RPSI,R,ALPHA,PHI,AZ,S,CLALP,H
    AMASS=W/T,
    RPHI=PMI
    RALPHA=ALPHA
    AP=0.C02377*((518.599-(1. 5035662*)E5(7A):/518.689)**4.2561
    YOOT=(T-(0.5*AP*VA*VA*S*ACO))/A*&&SS-(G*SIN(PTHFTA))
    THET90=(G/VA)* ((()CLALO*RALPHAFCLALOO)* (0.5*AP*VA*VA*S)) +T*
    1RALPHA)*COS (DPHI)/N-COS (RTHETA))
    SIDOT=PNEU*G*SIN(ROHI)/(VA*COS (RTHETA))
    VA=VA +VOOT*TII
    RTHETA=RTHETA +THETDO*TII
    RPSI=PPST+SIDOT*TII
    XDOT=VA*COS (RTHETA)* R,OS (RPSI)
    YOOT=VA*COS(RTHETA)*SIN(RPSI)
    ZDOT=-VA*SIN:(RTHETA)
    XA=XA+XOOT*TII
    YA=YA+Y\capOT*TII
    ZA =ZA +ZDOT*TII
    IF(ZA.GF,OQO)GOTO }7
56 THETA=RTHETA/RAD
SI=ROSI/RAD
ALT=-ZA
75 CONTINUE
RETURN
END
```

SUBROUTINE GOTGT
COYMOH/GOT/VT, XTOZYTO,THETO,OMEGT
COMMONFLI/OAR,G,Y, ACO,TII,TIME
COMMON/TDAOXT,YT,ZT
IF (OMEGT. ED. O. O) GO TO 4
XT $=X T O+(V T / O M E G T) *(S I N(O M F G T K T I M E+T H E T Z)-S I N(T H E T O))$
YT=YTO+(VT/OMEGT)*(COS (THETO)-COS (OWHETT*TME +THETO))
GO TO 5
$4 \times T=X T O+V T * \operatorname{COS}(T H E T O) * T T H E$
$Y T=Y T O+V T * S I N(T H E T O) * T \Psi A E$
5 CONTINUF
RETURN
END

SURPOUTTMF PKCUTGYO, TO, TF, N, TFLAC, H

SUBROUTINE VALUE (YO,K,N)

COMMON/VALUE/WPROJ, DIA,PIE
COMMON/FLI/RAD,G,T,ACC,TII,TIME,PNEU
REAL K
DIMENSION YO(N), K(N)

C***** CALCULATE PROJECTILE BPATS

DO $13 \mathrm{M}=1, \mathrm{~N}, 6$
RHOP $=0023769 *(1 .-(.3035683 * \Delta R S(Y C(M+5))) / 518.688) * * 4.2561$
VSPRO $J=1117.0-0.004 * A B S(Y O(M+5))$
VLPROJ=SQRT $(Y O(M) * * 2+Y O(M+1) * * 2+Y O(M+2) * * 2)$
AMACHP=VLPROJ/VSPPOJ
CALL CNI NT (AMACHP CO)

$K(M)=C O N S T 3 * Y O(M)$
$K(M+1)=$ CONS $T Z * Y O(M+1)$
$K(M+2)=$ CONST $3 * Y O(M+2)+G$
$K(M+3)=\quad Y O(M)$
$K(M+4)=\quad Y O(M+1)$
$K(M+5)=\quad Y O(M+2)$
13
CONTINUE
RETURN
END

SUBROUTINE CDINT (FMACH; COPAG)


```
SURROUTINE GUN(YO)
COMMON/DOTAO/XDOT,YNOF,ZOOT, XDOTO,YDOTP,ZDOTP
COMMOH/ALLLIOTHFTA,VA,XA,YA,ZA,EL,CPST,R,ALPHA,PHT,AZ,S,CLALP,W
COMMON/STr/VGGP;ALCOL,EPSI,VM,RHO,SO,FI,V
DIMENSION YO(G)
STHFTA=CTN(PTHETA)
CTHETA=COOS(OTHETA)
SPST=STN(EDST)
CPSI=COS (PPSI)
SPHI=SIM(PHT)
CPHI=COS (PHI)
SALPHA=STN(ALPHA)
CALPHA=COS (ALPHA)
AXI=CALPHA*C'HHCTA*CPSI SSALPHHA* (CPHT*STHETA*CPSI*SPHI*SPST)
```



```
AY1=SYHI*STHFTA*CPSI-CPHI*SPSI
AYI=SPHI*STHETA*SPSI +CPPHI*CPSI
AY3=SPHT*CTHETA
AZ1=SALPHA*CTHETA*CPCI + CALPHA* (CPHT*STHETA*CPSI*SPHI*SPSI)
AZZ=SALPHA*CTHFTA*SPCI+CALPHA* (CPHI*STHETA*SPSI-SPHI*CPSI)
AZS=-SALPHA*ETHETA COALPHA*CFHI*CTHETA
VMX = (AX1*VM*SOS(EPSI)) +(AZ1*VM*SINITOSI))
VMY = (AY2* v!4*COS (EPSI)) +(AZ2*VM*STN(EFSI))
VMZ = (AXZ*YM*COC (EPSI)) +(AZJ*VM*SIN(EPSI))
VPX = XDOT + VMX
VPY = YOOT &VMY
VFZ=ZDOT+VVZ
VPT=SORT (VFX*VPX+VPY*VPY+VPZ*VPZ)
VP=SORT (XOOTO* XDOTP +YDOTP*YOOTP + ZDOTP*ZDOTP)
YO(1)=VPX
YO(2)=vpy
YO(3)=VPZ
RETURN
ENO
```

```
```

 SUBPOUTINE TABINT \((X, Y, Z, X T, Y T, Z T, M, N)\)
    ```
```

 SUBPOUTINE TABINT \((X, Y, Z, X T, Y T, Z T, M, N)\)
 OIMENSION XT(M),YT(N),ZT(M,N)
 OIMENSION XT(M),YT(N),ZT(M,N)
 \(C \quad X\) ANO \(Y\) Y ARE INPUTS
 \(C \quad X\) ANO \(Y\) Y ARE INPUTS
 ZTIS OUTPUT \(A\) YT ARE TAGIE PARANETEFS
 ZTIS OUTPUT \(A\) YT ARE TAGIE PARANETEFS
 M AHIN NAPE OIMENSIONS OF TANLE MFRAYS
 M AHIN NAPE OIMENSIONS OF TANLE MFRAYS
 ILESS=0
 ILESS=0
 IF (M.EO. 1) GO TO 300
 IF (M.EO. 1) GO TO 300
 IF (X.EO.XT(1)) GO TO 300
 IF (X.EO.XT(1)) GO TO 300
 IF
 ILESS
$G O$
SO
500

```
```

 IF
 ILESS
$G O$
SO
500

```
```



```
```

 CONTINUE
 ILESS $=$?

```
```

 CONTINUE
 ILESS $=$?
GO TO 50 ?
GO TO 50 ?
IF (Y.EQ.YT(1)) GO TO 380
IF (Y.EQ.YT(1)) GO TO 380
IF (Y-GT.YT(1)) GO TO 240
IF (Y-GT.YT(1)) GO TO 240
ILESS=3
ILESS=3
240
240
250
250
260
260
300
300
340
340
350
350
360
360

380
380
500
500
$\begin{array}{ll}500 & \text { GONTINUE } \\ 1 & \text { GONTIN } 1,2,3,4,5,6), \\ 1 & \text { CONTESNS }\end{array}$
$\begin{array}{ll}500 & \text { GONTINUE } \\ 1 & \text { GONTIN } 1,2,3,4,5,6), \\ 1 & \text { CONTESNS }\end{array}$
11 FRITE $(6,11) \times$
11 FRITE $(6,11) \times$
2
2
12
12
3
3
13
13
4

```
```

4

```
```

```
C
```

C
C
C
C
C
C
C
C
C
C
C
00250 K
00250 K
IF (YT K K $=G E N$, ,, 0 TO 260
IF (YT K K $=G E N$, ,, 0 TO 260
CONTINUE
ILESS $=4$
CONTINUE
ILESS $=4$
GOTO 500
GOTO 500
$P=(X T(J-1)-X) /(X T(J-1)-X T(J))$
$0=(Y T(K-1)-Y),(Y T(K-1)-Y T(K))$
$P=(X T(J-1)-X) /(X T(J-1)-X T(J))$
$0=(Y T(K-1)-Y),(Y T(K-1)-Y T(K))$
$Q=(Y T(K-1)-Y),(Y T(K-1)-Y T(K))$
$Z=(1,-P) *(1,0 \sim Q) * Z T(J-1, K-1)+F *(1, \ldots D) * Z T(J, K-1)+Q *(1,-P) * Z T(J-1, K)$

```
    \(Q=(Y T(K-1)-Y),(Y T(K-1)-Y T(K))\)
\(Z=(1,-P) *(1,0 \sim Q) * Z T(J-1, K-1)+F *(1, \ldots D) * Z T(J, K-1)+Q *(1,-P) * Z T(J-1, K)\)
```



```
    IF (YOE GOT(1)) GO TO 370
```

 IF (YOE GOT(1)) GO TO 370
 ILESS=5
 ILESS=5
 \(\begin{array}{ll}\text { GO TO } \\ 00 & 50 \\ 0 & 0\end{array}\)
    ```
    \(\begin{array}{ll}\text { GO TO } \\ 00 & 50 \\ 0 & 0\end{array}\)
```



```
    CONTINUE
```

 CONTINUE
 ILESS \(=6\)
 GO TO 500
ILESS $=6$
GO TO 500
$Q=(Y T(K-1)-Y) /\left(Y Y\left(K-\frac{1}{2}\right)-Y T(K)\right)$
$Z=(1 .-Q) * T(1, K-1)+D^{*} Z T(1, K)$
$Q=(Y T(K-1)-Y) /\left(Y Y\left(K-\frac{1}{2}\right)-Y T(K)\right)$
$Z=(1 .-Q) * T(1, K-1)+D^{*} Z T(1, K)$
$Z=(1,-Q) * Z T(1, K-1)+D^{*} Z T(1, K)$
$Z=(1,-Q) * Z T(1, K-1)+D^{*} Z T(1, K)$
$Z=Z T(1,1)$
$Z=Z T(1,1)$
RETURN
RETURN
$P=(X T(J-1)-X) /(X T(J-1)-X T(J))$
$P=(X T(J-1)-X) /(X T(J-1)-X T(J))$
$Z=(1 \cdot-P) * Z T(J-1,1)+P * Z T(J, 1)$
$Z=(1 \cdot-P) * Z T(J-1,1)+P * Z T(J, 1)$
FETURN
FETURN
COHTINUE
COHTINUE
FORMAT (1H , $10 \times, E 16.8,3 X, 33 H X$ INPUT VALUE TOO LOW - $3-0$ TABLE)
FORMAT (1H , $10 \times, E 16.8,3 X, 33 H X$ INPUT VALUE TOO LOW - $3-0$ TABLE)
GOTO 51
CONTIMUE

```
    GOTO 51
CONTIMUE
```



```
    GOTO 510
```

 GOTO 510
 WPITE \((\overline{5}, 13)\) Y
    ```
    WPITE \((\overline{5}, 13)\) Y
```



```
        CONTINUE 14 Y
```

```
        CONTINUE 14 Y
```



```
        GO TO 510
```

 GO TO 510
 CONTITUE
    ```
        CONTITUE
```


15

WRITE $(6,15) \mathrm{Y}$
WRIMAT 1 H, $10 \mathrm{X}, \mathrm{E} 15.8,3 \mathrm{X}, 33 \mathrm{HY}$ INPUT VALUE TOO LOW-2-D TABLE)
GO TO 510 GONTO 510
WRITE $(6,16) \underset{y}{V}$
FORMÁT(1H', 19X, E16.8,3X, 34HY INPUT VALUE TOO HIGH - 2-D TABLE)
CONTINUE
TRACFS= $A S I N$ (1.1)
RETURN
END


```
C* THIS SURDOUTINF CALGILATES PK PER SUOET
C***************************************************************************
    DIMENSION 7X(9),WF(Q), TNE(9), EPS(a)
    OATA WF/,72年3522,42E5456%47265156,008847453,.08847453,
```



```
    $-2.26559r.58,3.19n99320,-3.490993261
    DATA SQX/1.4/,S SY/1.4/,S4X/5.8&7/ y SY/5.887/
    SQRT2=1.414
    PHG=0.0
    PLIVE=n.
    ZWIO=SORT (AREAT)*.5
    ZLEN=?WI!
    SAFY=SAY*RP/1C^T.0
    SAFX=SAX*PD/1OO!0.0
    SX=SORT2*SBK*(OP/1000.)
    SY=SQRT?*SBY*(OD/1OTO.)
C**************************************************************************
    00 170 JI=12%
    EPS(II)=SCOT2*CAFX*ZX(II) + BX
    100 ZNE (II)=SQRT2*SAFY*ZX(II)+9Y
    00 230 J=1,9
    00 200 k=1,9
    OUM1=EPPFEN((ZLFN-EPS(J))/SX)
    DUMZ=FPRFCN((ZLEN+EPS(J))/SX)
    DUM3=FPRFCN({TWID-TNE(K))/SY)
    DUMG=EORFCN((TWIN+ZNE(K))/SY)
    PKGA=(U.25*(DUM1+DUM2)*(DUM3+DUM4))*AV/AREAT
    PLTVA= (1. -DKCA) **RNDINR
    PLIVE=PLTVE+WF(J)*WF(K)*PLIVA/マ.14159
    PHGS= C.25*(CUN1+חUM2)*(OUMS*DU44)
    PHGA=(1.C-PHGA) **PHISINC
    200 PHG=OHG+WF(J)*WF(K)*PHGA/3.141592E
    PHG=1.0-PHG
    PKG=1.-PLIVE
    RETUSN
    END
```

FUNCTION ERRFCN(T)
 $A=1.0$
IF(T) 2,1,3
1 ERRFCN=0.3
RETURN
$2 \begin{aligned} & A=-1 \\ & 3 \\ & T\end{aligned}=A \cdot T$
IF (T-4,2) 5,4,4
4 ERRFCN=A
RETURN
5 FRAC=T
DUM=FD.AC*A $\mathrm{G}=1.5$
6 FPAC= (FPAC*TSO)/G IF (FQAC-1.E-R) 8,7,7
7 DUM $=7 U M+F R A C * A$ $G=G+1$.
GO TO 6
8 ERRFCN=1.1283792*DUM*EXP(-TSQ) RETURN
ENO

REFERENCES

I. Breit, G., Share, S. S., and Maddrill, J. D., Chance of at Least One Hit with Pattern Fire Control Errors Varying with Time, Technical Report 586, Aberdeen, Dallistic Research Laboratory, 15 May, 1945.
2. DePoy, P. E., Sanjour, W., "Air-to-Ground Gunnery Sjmulation; OEG Computer Program 18-63P," Interim Research Memorandum, Operations Evaluation Group, Center for Naval Analyses, Arlington, Virginia, 5 August, 1963.
3. Dommasch, D. O., Sherby, S. S., and Connolly, T. F., Airplane Aerodynamics, Pitman Publishing Corporation, New York, 1967.
4. Edwards, Jerry I., Documentation of Fand Air to Ground Gunnery Model, Technical Note AFATL-TN-72-14 Volumes I and II, Eglin Air Force Ease, Florida, October 1972.
5. Etkin, Bernard, Dynamics of Atmospheric Flight, John Wiley and Sons, Inc., New York, 1972.
6. Knight, Joel B., Computer Program for Computation of Delivery Tables, AFATL-TR-72-133, Eglin Air Force Base, Florida, July, 1972.
7. Kopal, Zdenek, Numerical 4nalysis, John Wiley and Sons, Inc., New York, 1955.
8. Kreyszie, Erwin, Advanced Engineewirg Mathematics, John Wiley and Sons, Inc., New York, 1967.
9. Merritt, Robert W., Air-to-Ground Gunnery Simulation Progrem, Technical Heport AFAlL-TR-76-115, Eglin Air Force Ease, Florida, July 1976.
10. Shear, Ralph E., Computation of Random Paths for Moving Tareets, BRL Memorandum Report 2344, Eallistic Research Laboratcries, Aberdeen Proving Ground, Maryland, Decemoer 1973.
11. Shortley, George, and Williams, Dudley, Elements of Physics, Prentice-Hall, Inc., Englewood Cliff's, New Jersey, 1965.
12. Solomon, G., Bazerque, B. H., Bomber Aerial Gunnery Effectiveness Model, Technical Report AFATL-TR-75-6, Eglin Air Force Base, Florida, January 1975.
13. Solomon, G., Caluda, M. J., Gunnery Analysis Modular Effectiveness Simulation (GAMES), Fechnical Report AFATL-TR-75-113, Eglin Air Force Base, Florlda, September 1975.

