
Controlled Coverage Using Time-Varying Density
Functions ?

Sung G. Lee ∗ Magnus Egerstedt ∗

∗Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: {slee656, magnus}@gatech.edu)

Abstract: A new approach for controlling a system of multiple agents by choosing a time-varying
density function is presented, employing optimal coverage ideas. In this approach, we specify a time-
varying density function that represents where it is that want the agents to monitor, and how important
it is for each point to be covered. A new algorithm is presented under which the agents track the
time-varying density function while providing optimal coverage of the density function. Results from
robot implementation show that the proposed algorithm guides the agents well over the chosen density
functions, and that the effectiveness of the coverage is higher than other comparable algorithms.

Keywords: Coverage control, centroidal Voronoi tessellations, time-varying systems, tracking systems,
control algorithms, mobile robots

1. INTRODUCTION

In this paper, we present an approach to controlling a system of
multiple agents by choosing a time-varying density function. A
control law that causes the agents to track the density function
while providing optimal coverage of the density function is
proposed. The intention is to control the multi-agent system to
provide surveillance over the domain of interest by employing
optimal coverage ideas on general time-varying density func-
tions. This approach can have applications in diverse situations
where we specify what time-varying region in the domain we
want the robots to pay more attention to. One example is mon-
itoring of oil spills. A search and rescue scenario is another
example, where the density function represents the probability
of a lost person being at a certain point in an area. A variety of
military applications may exist as well.

We employ Voronoi tessellations of the domain in our design
of control law to provide optimal coverage over a time-varying
function. Voronoi tessellations have received considerable at-
tention for their usefulness in diverse application areas, such
as in image processing, statistics, and animal behaviors among
others (Du et al. (1999), Aurenhammer (1991)). In particular,
Voronoi tessellations have important implications in mobile
sensor networks and optimal coverage where the concept of
centroidal Voronoi tessellation (CVT) arises naturally. Given its
practical importance, various algorithms that guarantee conver-
gence to CVT have been proposed (Lloyd (2006), Cortés and
Bullo (2005), Du and Emelianenko (2006), Liu et al. (2009)).

Relatively little work has been done for the case when the
density function is time-varying. Some work done on the time-
varying case include Cortes et al. (2002), Lekien and Leonard
(2009). Cortes et al. (2002) presents an algorithm for opti-
mal coverage of time-varying density functions. Although the
purpose of the algorithm is identical to the one presented in
this paper, the algorithm in Cortes et al. (2002) assumes some
properties about the time evolution of the density function and
? This work was sponsored by the AFOSR through grant number FA9550-13-
1-0029.

that is not generally met. Also, some contributions from time
derivatives resulting from agent movements are ignored. In
Lekien and Leonard (2009), optimal coverage control of density
functions in generalized Voronoi tessellations using cartograms
is discussed. The authors define optimal in a slightly different
sense that each agent must have equal amount of ’resources’
in their generalized Voronoi cells. Nevertheless, the density
function is required to change slowly enough with time for
stability to be guaranteed for the algorithm presented in Lekien
and Leonard (2009).

In this paper, we propose a new algorithm that causes the agents
to maintain optimal coverage of the density function. This is
achieved in the sense that the agents are to first converge to
CVT under time-invariant choice of density function, and then
the density function is switched to a time-varying one. Under
the proposed algorithm, the agents maintain CVT for time-
varying density functions if the agents were in CVT initially.
We use the proposed algorithm to achieve desired behavior of
the network of agents while viewing the choice of the time-
varying density function as an input. The proposed algorithm
places no additional assumptions on the time evolution of the
density function, at the expense of becoming a centralized
control law.

2. PROBLEM STATEMENT

Let D ⊂ RN be a convex domain. Let f : D → R+
be a

non-decreasing, piecewise continuous function. Let φ : D×
R+ → R+ be bounded and continuously differentiable. Also,
let pi ∈ D be the position of the ith agent in the domain. Let
P = {P1, · · · ,Pn} be a partition of D such that pi ∈ Pi for all
i = 1, · · · ,n. A multi-agent system can be said to be optimally
covering a domain with respect to the density function φ if they
are in a configuration that minimizes the cost function

H(p,P, t) =
n

∑
i=1

∫
Pi

f (‖q− pi‖)φ(q, t)dq.

Therefore, it is of interest to find the control dynamics ṗi such
that the agents are driven to minimize the given cost function.



Here, t ≥ 0 represents time, and p is an aggregated variable
for pi, i = 1, · · · ,n. Throughout this paper, it will be assumed
that N = 2. Since we are interested in optimal coverage of the
density function of our choice, we are interested in the sensing
performance of each agent. The performance of a large class of
sensors deteriorate with a rate proportional to the square of the
distance (Meguerdichian et al. (2001), Adlakha and Srivastava
(2003)). Let us focus on this class of sensors and set f (x) = x2.

H(p,P, t) =
n

∑
i=1

∫
Pi

‖q− pi‖2
φ(q, t)dq. (1)

Then f can intuitively be interpreted to represent the decrease
in sensing abilities as the distance from the sensor to the point
in space increases, while φ represents the relative importance of
that point at time t. As such, when a configuration of positions
of the agents minimizes (1), then the agents can be said to be
providing optimal coverage of the domain.

For the case φ(q, t) = φ(q), that is, if φ is time-invariant,
Lloyd’s algorithm is known to cause the agents to converge to a
configuration such that (1) attains a local minimum. However,
as mentioned in the previous section, there does not yet exist an
algorithm that guarantees convergence to a local minimum for
general time-varying density function φ . We wish to be able to
use general time-varying φ in our approach of choosing density
functions as inputs to multi-agent systems.

Problem: Develop an algorithm that drives the multi-agent
system to converge to a configuration that minimizes (1) for
general time-varying density function φ .

3. REVIEW OF CENTROIDAL VORONOI
TESSELLATIONS

At each t, (1) is a function of two different variables, the choice
of partition P, and the position of the agents, and as such, must
be minimized over both variables. However, due to the non-
decreasing nature of f , the choice of P that minimizes (1) is
(Cortes et al. (2002))

Pi = {x ∈ D | ‖x− pi‖ ≤
∥∥x− p j

∥∥ , i 6= j}
which is the definition of Voronoi tessellations. We denote this
choice of partitions with the symbol Vi. Hence, with Pi =Vi, (1)
is minimized over P and we can rewrite (1) as

H(p, t) =
n

∑
i=1

∫
Vi

‖q− pi‖2
φ(q, t)dq =

n

∑
i=1

Hi(p, t) (2)

which is a function of positions of agents only at each t. It is
known that (Iri et al. (1984), Du et al. (1999))

∂H
∂ pi

=
∫

Vi

∂

∂ pi
f (‖q− pi‖)φ(q, t)dq.

Since we limit ourselves to discussion for the case f (x) = x2

only, we have
∂H
∂ pi

=
∫

Vi

−2(q− pi)
T

φ(q, t)dq.

Note, however, that
∂H
∂ pi
6= ∂Hi

∂ pi
due to the fact the derivative involves the integration area as
well. However, these contributions cancel out when computing
the first derivative of H. But, as will be seen, we need to
pay attention to these effects once we compute higher order
derivatives.

Let us define some quantities by appealing to physical interpre-
tation of the problem at hand.

mi(p, t) =
∫

Vi

φ(q, t)dq (3)

ci(p, t) =

∫
Vi

qφ(q, t)dq

mi
(4)

Since φ > 0, φ can be interpreted as a (time-varying) mass
density function. Then mi represents the mass and ci represents
the center of mass of the ith Voronoi cell. With these notations,
the partial derivative above can be written simply as

∂H
∂ pi

= 2mi(pi− ci)
T

From this expression, we can see that a critical point of (2) is
pi(t) = ci(p, t), i = 1, · · · ,n

and a minimizer for (2) is necessarily in this configuration (Du
et al. (2006)). This configuration of agents is defined as the
centroidal Voronoi tessellation. Note that CVT is not unique.
Also, it is known that agents being in CVT configuration does
not imply that the global minimum of (2) is attained (Cortes
et al. (2005)).

4. ALGORITHM FOR GENERAL TIME-VARYING
DENSITY FUNCTIONS

Let us assume the agents obey a first order behavior given by
ṗi = ui.

It is known that if φ (and hence (2)) is time invariant, by setting
ui =−k(pi− ci)

where k is a positive gain, the multi-agent system is driven
to CVT configuration. The way to see this is, as was done in
Cortes et al. (2004), is to take (2) as the Lyapunov function
candidate itself.

d
dt

H(p) =
n

∑
i=1

∂

∂ pi
H(p, t)ṗi

=
n

∑
i=1

2mi(pi− ci)
T (−k(pi− ci))

=−2k
n

∑
i=1

mi ‖pi− ci‖2

By LaSalle’s invariance principle, the multi-agent system
asymptotically converges to a configuration {‖pi− ci‖2 =
0, i = 1, · · · ,n}, which is the definition for CVT.

However, if φ is time-varying, the same control law does not
stabilize the multi-agent system to CVT. This point can be seen
intuitively from the following expression.

d
dt

H(p, t) =
n

∑
i=1

∂

∂ pi
H(p, t)ṗi +

∂

∂ t
H(p, t)

=−2k
n

∑
i=1

mi ‖pi− ci‖2 +
n

∑
i=1

∫
Vi

‖q− pi‖2 ∂φ

∂ t
(q, t)dq≮ 0

The difficulty in designing a control law for time-varying case
arises from the fact that we do not know how the term ∂φ

∂ t
behaves in general. Cortes et al. (2002) attempts to work around
this difficulty by assuming some properties about φ , but the
assumptions made are too restrictive and cannot be expected
to hold in general. On the other hand, we propose to specify



φ as the input signal, while the control law to be presented
ensures that the agents are guided well by the chosen φ . To
this end, let us define pT = [pT

1 · · · pT
n ], uT = [uT

1 · · · uT
n ] and

cT = [cT
1 · · · cT

n ].
Theorem 1. Assume first order dynamics ṗ = u. Further as-
sume that at some time t0, p(t0) = c(t0). Then for time-varying
density function φ(q, t) that is bounded and continuously differ-
entiable,

‖p(t)− c(p(t), t)‖= 0, ∀t ≥ t0
under the control law

u =

(
I− ∂c

∂ p

)−1
∂c
∂ t

. (5)

Proof : Since p(t0) = c(t0) at t0, we wish to pick ṗ = u such that
d
dt
(p(t)− c(p(t), t)) = 0 ∀t ≥ t0.

Let us choose

ṗ =

(
I− ∂c

∂ p

)−1
∂c
∂ t

.

It is easy to see that this can be rearranged to(
I− ∂c

∂ p

)
ṗ =

∂c
∂ t

ṗ− ∂c
∂ p

ṗ =
∂c
∂ t

ṗ =
∂c
∂ t

+
∂c
∂ p

ṗ

But

ċ(p, t) =
∂c
∂ t

+
∂c
∂ p

ṗ

Therefore, ṗ = ċ. Hence,
d
dt
(p(t)− c(p(t), t)) = 0 ∀t ≥ t0,

as was desired. Therefore,
‖p(t)− c(p(t), t)‖= 0, ∀t ≥ t0.

2

Note that we treat the density function φ as an input to the
multi-agent system, so we are able to pick φ = φ(q, t0) such that
φ̇ = 0 initially. At this point, we run time-invariant algorithms
such as the Lloyd algorithm until the agents converge to CVT.
Once the agents converge, we switch to (5) and let φ vary
with time. Note also that in practice, (5) is susceptible to
errors due to disturbances and the fact that the agent dynamics
were conveniently assumed to be in first order. In order to
compensate for these sources of error, we include a proportional
term as the following.

u =

(
I− ∂c

∂ p

)−1(
−k(p− c)+

∂c
∂ t

)
(6)

It is known that if the density function is log-concave, then(
I− ∂c

∂ p

)−1
exists (Du and Emelianenko (2006)). Since this

control law requires computation of the nontrivial partial
derivative ∂c

∂ p , let us now show an expression for it. We need
some additional facts in order to do so. We first present a lemma
that will allow us to find the partial derivative of a function with
respect to pi over a Voronoi cell (Du and Emelianenko (2006)).

Lemma 1. Let Ω = Ω(U) be a region that is a smooth function
of U. Also, let Ω have a well-defined boundary. Let

F =
∫

Ω(U)
f (q)dq.

Then
∂F
∂U

=
∫

∂Ω(U)
f (q)q̇ ·ndq

where ṫ the derivative of the boundary points of Ω with respect
to U, and n is the unit outward normal vector.

From the same paper, we also know that following fact that
allows us to find an analytical expression for a needed term
when we apply the previous lemma to our problem. Let Si j =
{v1, · · · ,vγ} be the set of vertices of the common surface ∂Vi, j
between two neighboring Voronoi regions generated by pi and
p j. Let λi, i = 1, · · · ,γ be nonnegative numbers such that

∑
i

λi = 1,

and therefore
∑

i
λivi ∈ ∂Vi, j.

Then (
∑

i
λivi−

pi + p j

2

)
· (p j− pi) = 0.

Taking partial derivatives of the last expression allows us to
conclude that for any point q ∈ ∂Vi, j (Du and Emelianenko
(2006)),

∂q

∂ p(b)j

· (p j− pi) =
1
2

eb · (p j− pi)− eb ·
(

q−
pi + p j

2

)
∂q

∂ p(b)i

· (p j− pi) =
1
2

eb · (p j− pi)+ eb ·
(

q−
pi + p j

2

)
where p(b) denotes b-th component of vector p and eb is
elementary unit vector. This expression can be divided by∥∥p j− pi

∥∥ and rearranged to

∂q

∂ p(b)j

·n = eb ·
p j−q∥∥p j− pi

∥∥ =
p(b)j −q(b)∥∥p j− pi

∥∥
∂q

∂ p(b)i

·n = eb ·
q− pi∥∥p j− pi

∥∥ =
q(b)− p(b)i∥∥p j− pi

∥∥ .
From (4) and lemma 1, we know that

∂c(a)i

∂ p(b)j

=

∫
∂Vi, j

φ(q)q(a)
∂q

∂ p(b)j

·ndq

/mi−∫
∂Vi, j

φ(q)
∂q

∂ p(b)j

·ndq

(∫
Vi(P)

φ(q)q(a)dq
)/

m2
i .

Substituting the result above, we obtain

∂c(a)i

∂ p(b)j

=

∫
∂Vi, j

φ(q)q(a)
p(b)j −q(b)∥∥p j− pi

∥∥ dq

/mi

−

∫
∂Vi, j

φ(q)
p(b)j −q(b)∥∥p j− pi

∥∥ dq

(∫
Vi(P)

φ(q)q(a)dq
)/

m2
i .

(7)



(a) t = 40s (b) t = 55s

(c) t = 71s (d) t = 91s

(e) t = 109s (f) t = 135s

Fig. 1. The proposed algorithm in action. The time constant was chosen to be τ = 20. An overhead projector is visualizing pertinent
information. The thick, white lines represent the Voronoi cells. The red dots on the floor visualizes the density function at
each t - the brighter red a point is, the higher is the density at the point. Lastly, the arrows accompanying each agent shows
the position and the orientation of the agent.



Fig. 2. Computed instantaneous cost with τ = 20s.

Fig. 3. Computed instantaneous cost with τ = 10s.

Similarly,

∂c(a)i

∂ p(b)i

=

(∫
∂Vi, j

φ(q)q(a)
q(b)− p(b)i∥∥p j− pi

∥∥ dq

)/
mi

−

(∫
∂Vi, j

φ(q)
q(b)− p(b)i∥∥p j− pi

∥∥ dq

)(∫
Vi(P)

φ(q)q(a)dq
)/

m2
i .

Note that for each ∂c(a)i

∂ p(b)i

, if NVi denotes the set of Voronoi

neighbors of agent i, then the contribution from each j ∈ NVi

must be considered in ∂c(a)i

∂ p(b)i

. That is,

∂c(a)i

∂ p(b)i

= ∑
j∈NVi

[(∫
∂Vi, j

φ(q)q(a)
q(b)− p(b)i∥∥p j− pi

∥∥ dq

)/
mi

−

(∫
∂Vi, j

φ(q)
q(b)− p(b)i∥∥p j− pi

∥∥ dq

)(∫
Vi(P)

φ(q)q(a)dq
)/

m2
i

]
.

(8)

We now have the complete expression for ∂c
∂ p . From (4),

∂ci

∂ t
=

mi
∫

Vi
qφ̇(q, t)dq− ∂mi

∂ t

∫
Vi

qφ(q, t)dq

m2
i

(9)

Fig. 4. Computed instantaneous cost with τ = 5s.

and
∂c
∂ t

T

= [
∂c1

∂ t

T

· · · ∂cn

∂ t

T

].

With this, we have all the expressions needed to compute the
control law (5) and (6).

5. ROBOTIC IMPLEMENTATION

In this section, an algorithm based on (6) is proposed. The algo-
rithm maintains CVT configuration given that initial positions
of the agents start close to a CVT. The utility of the algorithm
is demonstrated with a robotic implementation.

Algorithm 1
Require: p(t0) = c(t0)
Ensure: p(t) = c(t), t ≥ t0

1: while p(t) 6= c(t) do
2: Set u=−k(p−c) (Lloyd algorithm) with φ(q, t), t = t0.
3: end while
4: while t0 ≤ t do
5: Compute the Voronoi tessellations
6: for i = 1 : n do
7: Compute mi, ci according to (3), (4)
8: Compute ∂ci

∂ p j
for j ∈ NVi according to (7) and (8)

9: Compute ∂ci
∂ t according to (9)

10: end for
11: Form ∂c

∂ p and ∂c
∂ t .

12: Set u according to (6)
13: end while

The proposed algorithm was implemented for robotic experi-
ments. The ROS (Robot Operating System, version Diamond-
back) framework running on Ubuntu (version 11.04) machine
with Intel dual core CPU 2.13GHz, 4GB memory was used to
implement the algorithm and send control signals to individual
agents over a wireless router. Three Khepera III robots from K-
team were used as the team of mobile agents for the experiment.
The Khepera III robots each have a 600MHz ARM processor
with 128Mb RAM, embedded Linux, differential drive wheels,
and a wireless card for communication over a wireless router.
10 Optitrack S250e motion capture cameras provide very ac-
curate position and orientation data for the agents, which were
used to provide the information required for the algorithm and



the computation of Voronoi partitions. All codes were written
in C++. All integrations were performed numerically. The rviz
package in ROS was used to visualize many pertinent informa-
tion regarding the problem, such as the position and the heading
of the robots, the density function, and the Voronoi partitions.
The visualization was overlapped with the real physical envi-
ronment to give a real-time visual representation (Fig. 1).

The Khepera III robots are modeled as unicycles

ẋi = vi cosθi

ẏi = vi sinθi

θ̇i = ωi

where we choose
vi = ‖ ṗi‖

ωi = [−sinθi cosθi] ·
ṗi

‖ṗi‖
.

Here, the · symbol denotes the dot product. The time-varying
density function used was

φ(q, t) = e−(qx−2sin t
τ
)2−q2

y ,

where τ is a time constant that was varied to see how perfor-
mance of different algorithms changed as τ changed. Three
algorithms were compared: (i) Lloyd’s algorithm, (ii) the algo-
rithm from Cortes et al. (2002) for time-varying case, and (iii)
the algorithm proposed in this paper. A brief review of the other
two algorithms run for the experiments is as follows.

Algorithm (i) is the simplest of all three. It has the advan-
tage of being computationally cheap and the capability to be
implemented in distributed fashion. It involves simply setting
ṗi =−k(pi−ci). Note that this algorithm was not developed to
be used in time-varying applications, but we use it as a baseline
to compare the performance of other algorithms.

Algorithm (ii) is designed to be used in time-varying appli-
cations. It can also be implemented in distributed fashion. It
involves setting

ṗi = ci,t − (k+
mi,t

mi
)(pi− ci),

where

mi,t =
∫

Vi

φ̇(q, t)dq, ci,t =
1
mi

(∫
Vi

qφ̇(q, t)dq−mi,tci

)
.

Note that mi,t approximates d
dt mi and ci,t approximates d

dt ci.

For all runs, the robots started at the same initial position and
orientation, not necessarily in CVT. The proposed algorithm
was tested starting from line 4.

Fig.2-4 shows the graph of instantaneous coverage cost numer-
ically calculated by (2). For each graph, all three algorithms
were run with a fixed time constant τ . Table.1 shows the total
cost from each experiment, obtained by numerically integrating
the graphs on Fig.2-4. In essence, the entries of Table.1 are
obtained from numerically evaluating∫ T

0
H(t)dt (10)

where H is the instantaneous cost (Fig.2-4). For τ = 20s and
τ = 10s, T = 150s. For τ = 5s, T = 100s.

It can be seen from Fig.2-4 that in all three cases, (ii) performs
better than (i) in the sense that that the instantaneous cost

for running (ii) is less than the instantaneous cost for running
(i). Similarly, (iii) performs better than (ii) in terms of the
instantaneous cost. The total cost agrees with this observation,
as can be seen from Table.1. The total cost for running (iii)
is always less than the total cost for running (ii). Similarly,
the total cost for running (ii) is smaller than the total cost for
running (i), with the exception for the case τ = 10. But for
this case, inspection of Fig.3 shows that the agents converged
under (i) unusually quickly, and is very likely that this is an
anomaly. As time constant decreases – meaning as φ moves
more vigorously – the difference in performance between these
algorithms increases, measured by both instantaneous and total
costs. This results in the relative performance of the proposed
algorithm increasing as the time constant decreases. This shows
that the proposed algorithm is more suited for optimal coverage
when density functions are the more ’dynamic’ in time.

Table 1. Total cost for each cases, obtained from numerical
integration of instantaneous costs over time from t = 0 to final

time. See equation (10).

τ = 5s τ = 10s τ = 20s
Lloyd algorithm (Lloyd (2006)) 149.5 112.4 100.5
Cortes et al. (Cortes et al. (2002)) 140.0 113.0 99.5
Proposed algorithm 122.3 107.2 97.9

As mentioned before, (i) was not meant to be used for time-
varying applications, which is why its performance was rela-
tively low. However, it has a large advantage of being computa-
tionally cheap and still yielding results that are not too different
from algorithms that are specifically designed for time-varying
density functions if the time constant is low. Algorithm (ii) had
intermediate performance of the three. It yielded much better
results when the density function varies faster with time than (i).
While its performance was less than (iii), it must be noted that
(ii) has much lower computational complexity and the ability to
be implemented in distributed fashion. For some applications,
it may not be possible to give up on these traits, so (ii) may be
more suitable than (iii).

6. CONCLUSION

In this paper, a new approach to controlling a system of multiple
agents by manipulating time-varying density functions was pro-
posed. The time-varying density function is considered as the
input, while the proposed control law guides the agents to track
the chosen density function. Given that the agents start near a
CVT, the agents follow the density function while providing
optimal coverage of it on the motion. The choice of the density
function is limited only by the condition that it must be bounded
and continuously differentiable. The proposed algorithm has
the disadvantage of being a centralized control law, and more
computationally expensive then other comparable algorithms.
The experiments from actual robot implementation show that
the proposed algorithm performs better than other comparable
algorithms in terms of instantaneous and total cost when the
density function is time-varying. The faster the density function
varied with time, the better relative performance the proposed
algorithm showed.

REFERENCES

Adlakha, S., Srivastava, M. B., 2003. Critical density thresholds
for coverage in wireless sensor networks. In: WCNC. IEEE,
pp. 1615–1620.



Aurenhammer, F., Sep. 1991. Voronoi diagrams–a survey of a
fundamental geometric data structure. ACM Comput. Surv.
23 (3), 345–405.

Cortés, J., Bullo, F., October 2005. Coordination and geometric
optimization via distributed dynamical systems. SIAM Jour-
nal on Control and Optimization 44 (5), 1543–1574.

Cortes, J., Martinez, S., Bullo, F., 2005. Spatially-distributed
coverage optimization and control with limited-range inter-
actions 11, 691–719.

Cortes, J., Martinez, S., Karatas, T., Bullo, F., 2002. Coverage
control for mobile sensing networks: Variations on a theme.
In: Mediterranean Conference on Control and Automation.
Lisbon, Portugal, Electronic Proceedings.

Cortes, J., Martinez, S., Karatas, T., Bullo, F., Apr. 2004. Cover-
age control for mobile sensing networks. IEEE Transactions
on Robotics and Automation 20 (2), 243–255.

Du, Q., Emelianenko, M., 2006. Acceleration schemes for com-
puting centroidal voronoi tessellations. Numerical Linear Al-
gebra with Applications 13 (2-3), 173–192.

Du, Q., Emelianenko, M., Ju, L., Jan. 2006. Convergence
of the lloyd algorithm for computing centroidal voronoi
tessellations. SIAM Journal on Numerical Analysis 44 (1),
102–119.

Du, Q., Faber, V., Gunzburger, M., Dec. 1999. Centroidal
voronoi tessellations: Applications and algorithms. SIAM
Review 41 (4), 637–676.

Iri, M., Murota, K., Ohya, T., 1984. A fast voronoi-diagram
algorithm with applications to geographical optimization
problems. In: Thoft-Christensen, P. (Ed.), System Modelling
and Optimization. Vol. 59 of Lecture Notes in Control and
Information Sciences. Springer Berlin Heidelberg, pp. 273–
288.

Lekien, F., Leonard, N. E., Feb. 2009. Nonuniform coverage
and cartograms. SIAM Journal on Control and Optimization
48 (1), 351–372.

Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L.,
Yang, C., Sep. 2009. On centroidal voronoi tessellation –
energy smoothness and fast computation. ACM Transactions
on Graphics 28 (4), 1–17.

Lloyd, S., Sep. 2006. Least squares quantization in pcm. IEEE
Transactions on Information Theory 28 (2), 129–137.

Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M.,
2001. Exposure in wireless ad-hoc sensor networks. In: Pro-
ceedings of the 7th annual international conference on Mo-
bile computing and networking. MobiCom ’01. ACM, New
York, NY, USA, pp. 139–150.


