
Automatic Generation of Interactive Systems from

Declarative Models

A THESIS

Presented to

The Academic Faculty

By

R. E. Kurt Stirewalt

In Partial Ful�llment

of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Georgia Institute of Technology

December, 1997

Automatic Generation of Interactive Systems from

Declarative Models

Approved:

Spencer Rugaber, Chairman

Gregory Abowd, Co-Chairman

Edmund Clarke

James Foley

Scott Hudson

H. Venkateswaran

Date approved by Chairman

Contents

List of Tables vii

List of Figures viii

Summary 11

Chapter 12

1 Introduction 12

1.1 Design and Generation in Mastermind . 13

1.2 Remainder of Dissertation . 16

2 A Motivating Example 18

2.1 A Motivating Example . 18

2.2 MDL and User Task Modeling . 19

2.2.1 Events . 19

2.2.2 Tasks . 21

2.3 MDL and Presentation Binding . 22

2.4 Generating Code from MDL . 26

2.4.1 Example of Generated Code . 27

2.4.2 Shifting the Complexity of Code Generation 30

3 Background and Related Work 32

3.1 Interactive System Design . 32

3.2 Automated Interactive System Development . 34

3.2.1 Lexical Tools and Technology . 34

3.2.2 Syntactic Tools and Technology . 35

3.2.3 The Multiple Level Problem . 35

iii

3.3 Model Based System Development . 37

3.3.1 Model-Based Analysis and Generation . 37

3.3.1.1 Application Modeling . 37

3.3.1.2 Task Modeling . 38

3.3.1.3 Presentation Modeling . 39

3.3.2 The MASTERMIND Approach . 39

3.3.3 The Multi-Model Binding Problem . 40

3.4 Formal Approaches to Composition . 41

3.4.1 Decomposition Heuristics . 41

3.4.2 A Connection Oriented View of Composition 42

3.4.3 A Constraint Oriented View of Composition 44

3.5 Virtual Machine Design . 46

3.5.1 Temporal Logic . 46

3.5.2 Model Checking . 47

3.5.3 Compositional Model Checking . 48

3.6 Summary . 49

4 The MDL Language 50

4.1 Structure of MDL . 51

4.2 A Notation for Semantics . 53

4.3 The Building Blocks of Processes . 54

4.4 Parallel Composition . 56

4.5 Enabling and Disabling . 58

4.6 Interruption . 59

4.7 Optional and Looping behavior . 60

4.8 Event Hiding . 62

4.9 Data Parameters and Communications . 63

4.10 Dynamic Task Management . 64

5 The Mastermind Toolkit (MMTK) 66

5.1 The Control Model . 67

iv

5.1.1 A Run-time Scenario . 67

5.1.2 A Formal Model of Control . 69

5.2 Control Components . 71

5.3 Event Components . 75

5.3.1 Events and Communication . 75

5.3.2 Events with Feedback . 78

5.3.3 An Example . 80

5.4 The Runtime Scheduler . 80

5.5 Data and Event Management . 82

5.5.1 Data Extension . 82

5.5.2 Data Forwarding . 83

5.5.3 Event Locators Through Parameterization . 85

5.5.4 Summary . 87

5.6 UI Toolkit Interoperation . 87

5.6.1 The Amulet Input Model . 88

5.6.2 Command Objects Satisfy Linkage Constraints 89

5.6.3 Connecting MMTK and Amulet Components 90

5.7 Discussion . 90

5.7.1 Run-time Control Policy . 90

5.7.2 Presentation Communication . 92

6 Control Correctness of MMTK 93

6.1 Mealy Machines . 93

6.1.1 The MTREE Notation . 94

6.1.2 Detailed Design of Mealy Machines . 96

6.1.3 MM: A Notation for Mealy Machine Finite Control 97

6.1.4 Generating MMTK Components from MM 99

6.1.5 Carrying On . 99

6.2 Mealy Machine Inter-Operation . 100

6.2.1 Property 1: Receptiveness . 100

6.2.2 Property 2: Freedom from Divergence . 101

v

6.2.3 Formalizing The Properties . 102

6.2.3.1 Receptiveness . 103

6.2.3.2 Freedom From Divergence . 103

6.3 Testing Machine Inter-Operation . 104

6.3.1 Model Checking . 104

6.3.2 Mealy Machine Closures . 105

6.3.3 Generating SMV Input from MM Descriptions 106

6.3.4 Testing Adequacy . 107

6.3.5 Summary . 107

7 The Composition Adequacy Theorem 109

7.1 Formal Statement of the Theorem . 110

7.2 Proof Technique: Symbolic Model Checking . 111

7.2.1 A More Realistic Use of Model Checking . 112

7.3 Formalizing the Abstraction . 113

7.3.1 Domain Knowledge . 113

7.3.2 Projections . 115

7.4 The Su�ciency Theorems . 117

7.4.1 Receptiveness . 117

7.4.2 Freedom From Divergence . 118

7.5 The Coverage Theorem . 120

8 Validation 123

8.1 The Quality of Generated Interfaces . 124

8.1.1 Test I: The Save/Print Task Model . 125

8.1.2 Test II: The Air Tra�c Control Task Model 125

8.1.2.1 Qualitative Analysis . 126

8.1.2.2 Quantitative Analysis . 128

8.2 Multi-model Compositionality . 134

8.2.1 Correctness of Control Component Interoperation 134

8.2.2 Completeness of Presentation Linkage . 135

vi

8.3 Summary and Future Work . 137

8.3.1 Lessons Learned . 137

8.3.2 Future Work . 138

Bibliography 139

Vita 146

vii

List of Tables

1 High Level Syntax of MDL . 51

2 Syntax of MDL behavior expressions. 53

3 The syntax of communications in MDL. 63

4 Mealy machine implementations of MDL operators. 95

5 Mealy machine (MM) syntax. 98

viii

List of Figures

1 The Conceptual Architecture of the Mastermind environment. 13

2 Mastermind design process model. 14

3 Run-time components of systems generated by Mastermind 16

4 MDL description for the task of managing a plane in ight. 20

5 Presentation of the Air Tra�c Control (ATC) system. 23

6 MDL description of the behavior of an airplane presentations 25

7 MDL description of the manage plane task binding to the airplane presentation. . . 26

8 C++ header �le implementation of ManageFlight binding. 28

9 C++ constructor for ManageFlight binding implementation. 30

10 Example of disabling operator in MDL description. 31

11 Composition by Connection in the PAC architecture. 43

12 An example process synchronization tree. 55

13 MDL model of a co�ee vending machine. 61

14 MDL description of task for manging planes in an airspace. 65

15 C++ header �le implementation of ManageFlight binding. 68

16 Example run-time communication of MMTK components. 70

17 Example MMTK control event component connectivity. 72

18 High level design of MMTK control components. 73

19 The transition algorithm for binary MMTK components. 74

20 High level design of MMTK event components. 75

21 Time series diagram of event synchronization. 77

22 High level design of MMTK feedback-event components. 79

23 Time series diagram of feedback-event synchronization. 81

ix

24 C++ template parameterization of input component. 83

25 C++ template parameterization of event locator logic. 86

26 C++ template parameterization of concealed event locator logic. 87

27 Amulet DO method to activate an MMTK output component. 89

28 MM description of seq machine transitions. 101

29 MM description of leaf machine transitions. 102

30 Use of abstraction to incorporate model checking into the proof of a theorem. 112

31 MDL task model for print/save dialogue. 126

32 The ATC user interface. 127

33 The ATC user interface after adding a new plane. 128

34 The ATC user interface after landing a plane. 129

35 �t interaction graph with a load of 8 planes. 131

36 #S graph with a load of 8 planes. 132

37 Interaction signal urrying with 24 planes, up-front usage. 133

38 #S graph with a load of 24 planes. 133

39 �t graph with a load of 24 planes (varied usage). 133

40 #S graph with a load of 24 planes (varied usage). 134

10

Summary

This dissertation applies formalmethods to the automatic generation of interactive systems from

multiple declarative models. We are interested in two kinds of models: user-task and presentation.

The Mastermind Dialogue Language (MDL) is presented. MDL is a notation for describing

interactive system behavior in terms of user tasks. MDL task models are expressed independently

of other models, like presentation, but are later composed with the behavior of these other models.

Such separation is important for preserving the integrity of models over the lifetime of a system.

The technical challenge in this approach is to generate code that combines the functionality of task

and presentation models without violating that integrity. To meet this challenge we implement

MDL task models as run-time dialogue constraints that synchronize with presentation components.

The constraint engine is implemented as a virtual machine that simulates the execution of tasks

and resolves the dependencies that arise as a result of task and presentation model composition.

To simplify the generation process, a toolkit of reusable run-time components is provided. Each

component in this toolkit implements an MDL operator, and components aggregate into trees

whose structure corresponds one-to-one with the abstract syntax tree of a corresponding MDL

model. Thus implementations can be generated through a simple syntactic transformation of the

MDL source code. The design correctness of these components is validated by a novel application

of symbolic model checking. The run-time attributes of systems generated using this approach are

measured, and we conclude that this strategy of model composition is feasible for use with real

interactive systems.

11

Chapter 1

Introduction

Interactive systems are di�cult to analyze, design, and implement. The model-based approach to

interactive system design alleviates this problem by basing analysis, design, and implementation

on a common repository of models. Unlike conventional software engineering, in which designers

construct artifacts whose meaning and relevance easily drift from that of the delivered code, in

the model-based approach, designers build models of critical system attributes and then analyze,

re�ne, and synthesize these models into running systems. This research focuses on those models

which most directly inuence the user interface of an interactive system: user task models and

presentation models. Speci�cally, we investigate the synthesis of these models into running systems

and the techniques for automating this synthesis. Szekely[98] laments that while several model-

based interface development tools have been built, none has achieved a level of maturity to generate

industrial strength applications. It is the thesis of this work that these weaknesses are symptomatic

of an unclear delegation of responsibility in model-based code generation technology.

Unlike traditional programming language compilers, interactive system code generators seems

to require input from multiple models. The Mastermind project[18, 74] is concerned with the

design, integration, and automatic generation of interactive systems from declarative models. In

the Mastermind environment[74, 97, 18], interactive systems are subject to three kinds of models:

� User task models specifying the protocols of end user interaction in the context of performing

a task. This includes a description of end user actions, how they are ordered, and how they

a�ect the presentation and the application.

� Presentation models specifying the appearance of user interfaces in terms of their widgets and

how they behave.

� Application models specifying which parts (functions and data) of applications are accessible

12

Models

End

User

Designer
Critics

Design

Application

Core

Graphical

User

Interface

Run-Time

Design-Time

Figure 1: The Conceptual Architecture of the Mastermind environment.

from the interface.

These models often make overlapping and inter-dependent prescriptions about the behavior of a

system. Moreover, resolving these dependencies is complex. It is the thesis of this work that a

rigorous de�nition of model composition and a run-time virtual machine which implements such

composition is required in order for multi-model based code generation to overcome the weaknesses

noted by Szekely.

This research presents a solution. The Mastermind Dialogue Language (MDL) is a formally

grounded notation for expressing task models and the binding of task and presentation behavior

(multi-model composition). The Mastermind Toolkit (MMTK) is a collection of components

which implement MDL operators and execute on top of a virtual machine. MDL models are easily

encoded as trees of MMTK components which execute over the virtual machine. We claim that this

approach solves the multi-model code generation problem thereby enabling the generation of more

powerful user interfaces from declarative models. We present the details of the MDL language and

MMTK and then validate our claims.

1.1 Design and Generation in Mastermind

Mastermind is an interactive system development environment that supports task based design

through a repository of shared models and a suite of tools for de�ning, analyzing, and prototyping

these models. Figure 1 shows the high level architecture of the Mastermind environment. At the

core of this approach is a collection of models. Designers create models and can use automated

13

TASK

ANALYSIS

Task Decomposition

MODEL

BEHAVIORAL

TASK

MODEL

PRESENTATION

ENRICHED TASK

IMPLEMENTATION

Binding

Reification

Figure 2: Mastermind design process model.

design critics to validate and critique these models. At some point, the designer invokes the code

generator to synthesize the models into an executable user interface. This interface provides the

end-user with access to core application functionality.

A view of the process of model design and generation is given in Figure 2. Designers perform user

task analysis[30] to begin to gain an understanding of the requirements of the system. This analysis

results in the initial design model (an hierarchical decomposition of user tasks). Tasks are speci�ed

in the Mastermind Dialogue Language (MDL). Once speci�ed, task models are augmented with

functionality from a presentation model (which is de�ned separately). This augmentation is called

binding. Binding enriches task models with behavior de�ned in a separate presentation model.

Finally, a code generation process implements these models on top of a virtual machine which

simulates the execution of MDL. Components of this virtual machine comprise the Mastermind

toolkit (MMTK).

One of the chief technical contributions of this research is the Mastermind Dialogue Language

(MDL). MDL is a formal notation for representing user task decompositions. The design of MDL

was inuenced primarily by the Lotos notation[17] with inuences from CSP[51], and the User

Action Notation (UAN)[46, 49]. Designers can use MDL to specify the behavior of tasks in terms

14

of objects, actions, and the sequencing of actions.

Binding enriches task models with presentation functionality. Binding is necessary because task

descriptions are abstract control directives; whereas presentations describe physical entities which

the user may observe and inuence. Presentation functionality re�nes task models into a more

concrete speci�cation of an interactive system.

By design, task models are neutral with respect to the presentation aspects of an interactive

system. Yet clearly tasks impact presentation. Presentation events like a mouse click symbolize

user-events in task models, and task state must be communicated to the end user by reection in

presentation entities. In this sense, presentation entities implement tasks which lends credence to

the re�nement analogy of binding. Moreover, binding is not fully automatable, but rather must

be supported by design tools. In the Mastermind [74] vision, binding is postulated as a design

phase in which tasks are treated as obligations which must be resolved by attaching presentation

functionality.

Figure 3 illustrates the runtime rei�cation of task and presentation models and how they inter-

operate. Solid line shapes represent actual run-time components; whereas dashed line shapes repre-

sent the models fromwhich these components are generated. The Control Scheduler is a run-time

entity which simulates the task virtual machine mentioned earlier. It dispatches control to the Task

Components which implement the MDL operators. Note that the task components are connected

into a tree. This tree connection reects the abstract syntax of MDL expressions. The idea is

that, with a task component for each MDL operator, run-time systems can be rapidly constructed

from MDL models by a syntactic transformation of the MDL expression. On the presentation side,

there are Presentation Components which get generated from a presentation model. These

components are typically organized into part-hierarchies and are controlled by a run-time system.

Mastermind uses the Amulet[72] toolkit for presentation support, and so the run-time controller

for presentation components is the Amulet Run-time system.

Systems with this structure must be generated from the bound task models. Implementation

adds detail in the following dimensions:

Manifestation What tasks become in a running interface (i.e. objects, modules, or perhaps

speci�cations of objects or modules),

Cooperation How, precisely, run-time tasks cooperate with other user interface objects, and

15

Task Components Presentations

Amulet Run-timeControl Scheduler

Figure 3: Run-time components of systems generated by Mastermind .

Behavior How, precisely, task ordering invariants are implemented.

Each MDL task manifests itself as a tree of task components whose leaves are connected to presen-

tation components. Cooperation is supported through a binding scheme which composes arbitrarily

with task tree leaves. Behavior is supported through a signaling protocol between the components

in the task tree. This protocol expresses status information like enabling and disabling which even-

tually propagates over to presentation components (the dashed lines in the diagram). We went to

great lengths to argue the correctness of this protocol, for without it, this seamless composition of

run-time components would be moot.

1.2 Remainder of Dissertation

The existence of multiple models makes model-based code generation challenging. This thesis

identi�es two conditions we think are necessary to meet this challenge:

1. The composition mechanisms in modeling notations must be formalized (especially the inter-

model composition mechanisms), and

16

2. There must be a virtual machine which correctly implements all of these composition opera-

tors.

Under these conditions, model-based code generation is feasible because code generators can con-

centrate on mapping models into software without worrying about dependencies introduced by

other models. These dependencies will be resolved correctly by the virtual machine. In support of

this thesis, we present a task modeling language (MDL) and toolkit which embodies a virtual task

machine (MMTK). Components in MMTK compose in accordance with the MDL operators. We

claim that MDL into MMTK satis�es the conditions mentioned above.

The remainder of this dissertation supports these claims. We begin by exploring the background

of this problem (Chapter 3). We then introduce MDL and the generation of a running user interface

from MDL through a motivating example (Chapter 2). This introduces a user interface for an

air-tra�c controller in a modern airport. It serves as a running example and helps to motivate

the complexity of a toolkit to support the composition of MDL operators. We then formally

introduce MDL (Chapter 4) and MMTK (Chapter 5). In de�ning MMTK, we identify a body of

theory which must be eshed out in order to validate that components cooperate to implement

MDL operators. This theory culminates in a formal model of MMTK components and a pair of

correctness properties that these components must respect (Chapter 6). In order to demonstrate

that the correctness properties hold, we use an automated state space analysis tool called a model

checker. This serves as a testing sca�olding. It allowed us to debug MMTK component logic

without having to build large applications. We hypothesized that a �nite number of such tests

su�ciently tests the components in arbitrary compositions. We then proved this hypothesis to be

true through a testing theorem (Chapter 7). With the testing theorem, we can claim the MMTK

components are guaranteed to exhibit certain correctness properties. We then validate MDL and

MMTK on examples and observe the system in operation (Chapter 8).

17

Chapter 2

A Motivating Example

In this chapter, we introduce MDL through an example which we refer to and extend throughout

the document. The example is a system to support the tasks of an air-tra�c controller in a modern

airport. We use MDL to de�ne the task model and then show how to bind this task model to a

model of presentation (the graphical part of the system). We then demonstrate the C++ code that

implements this bound task model and comment on the technical obstacles implied by this mode

of code generation. The commentary frames the technical challenges which are the subject of this

research. We conclude the chapter with a high level description of our solution to these technical

challenges and a road-map of the remainder of the dissertation.

2.1 A Motivating Example

We introduce MDL by using it to model the tasks of an air-tra�c controller in a modern airport.

This section gives some background on the nature of these tasks. An air tra�c controller must

coordinate the airspace of an airport having a small number of runways. Flights enter the airspace

at random and request permission to land. At the same time, ights on the ground request per-

mission to takeo�. The controller must make sure that ights are serviced fairly, that throughput

is maximized, and that safety is never threatened. An hierarchical task analysis of this domain

describes the objects, actions, and action sequences. The analyst identi�ed four high level tasks:

1. Monitor Air Space,

2. Assign Aircraft to Runway,

3. Land Aircraft, and

18

4. Handle Emergency Landing.

Further re�nement identi�ed the following subtasks:

1. Record ight information for new aircraft.

2. Assign ight to a runway.

3. Grant ight permission to land.

4. Put ight in a holding pattern.

5. Modify course of a ight.

Runway objects are passive in that they are not modi�ed or acted upon, but rather are resources

which inuence the performance of tasks. In case of emergency landings, controllers dispatch

emergency vehicles to the runway upon which the accident occurred.

2.2 MDL and User Task Modeling

MDL describes tasks in terms of their behavior patterns. The behavior pattern of a task is expressed

as a process. A process can be thought of as a machine for performing actions in some prescribed

manner. Processes perform and observe actions and interact with other processes. processes.

Process interactions are built up out of atomic units of synchronization called events. Complex

processes may be built by either combining sub-processes through an ordering operator (i.e.- pro-

cess C is the sequential composition of sub-processes A and B) or by conjoining sub-processes

making them synchronize on common events. Figure 4 lists the MDL description of a task called

ManagePlaneInFlight . As its name suggests this task describes the sequence of actions (events) a

controller must perform to service planes in the air. To understand the task, we �rst describe the

events which make up the behavior and then the task description which speci�es how the events

are sequenced.

2.2.1 Events

Events represent basic actions which a user will perform. Figure 4 declares two events: commitToLand ,

and newPosition (lines 1 and 2). These correspond to the air tra�c controller choosing a plane

19

event commitToLand ; (1)
event newPosition : int; (2)

task ManagePlaneInFlight (3)
parameters (4)

ight : string ; pos : integer; (5)
is (6)

ModifyPosition� >> InstructToLand (7)
where (8)

task ModifyPosition (9)
is (10)

newPosition?pos � stop (11)
endtask (12)

task InstructToLand (13)
is (14)

commitToLand? � stop (15)
endtask (16)

endtask (17)

Figure 4: MDL description for the task of managing a plane in ight.

from the many within the airspace and entering a new position for a plane respectively. All events

in MDL must be declared before they are used. This is done using the event declarator. Once an

event has been declared, it may be used to specify the behavior of a task.

When declaring an event, the data type of the event must be speci�ed. Events are used to

synchronize interacting tasks, and, in the course of synchronization, data may be transferred be-

tween the tasks participating in the synchronization. For this reason, the type of data must be

declared and associated with the event. In the �gure, newPosition is declared to be an event with

data type string. By associating a data type with the event newPosition, we may form input and

output communications using the ? and ! operators respectively. Communications are event

synchronizations which are accompanied by the ow of data. An input communication is expressed:

e?x where e names an event and x names a data storage location. The type of x must match the

data type declared for e in an event statement. An output communication is expressed e!x where

e names a parameter and x names a value. There are two input communications speci�ed in Figure

4 at lines (11) and (15). Note that the types of data expressed in the communication are consis-

tent with the data type of the event. In newPosition?pos, the data parameter pos is of type int

20

which matches the type of the event newPosition. Some events, like commitToLand are declared to

carry no data (line 1). Communications involving this event are expressed commitToLand?. The

distinction between an event and a communication (which names an event) is important, and we

will assume the distinction in subsequent discussion.

2.2.2 Tasks

Like any MDL task, ManagePlaneInFlight contains three sections:

1. a list of parameters,

2. a behavior expression, and

3. a list of subtasks.

We now describe the meaning of each of these sections.

The parameter section of an MDL task description speci�es zero or more names that denote

either local events or data locations. The name parameter was chosen because MDL supports

task instantiation by providing values for these parameters. Parameterization allows designers to

specify an in�nite number of task instances, and it provides local storage for values and events used

in computations internal to the task. A parameter names either a data values or an event. The task

in Figure 4 has two parameters: ight and pos (line 5). The �rst parameter is a string containing

the unique ight number of a ight and the second is an indicator of position within the airspace.

Examples of ight numbers include Delta 111 and USAir 763. An example of a position includes

10000 (feet). Flight numbers are used by controllers to uniquely distinguish ights in the air (as

well as by passengers to make reservations and check gate location). Positions are used to record the

location of ights in the airspace. Since this task has two parameters, it must be instantiated with

two values. Instances are speci�ed in MDL by a�xing the task with a bracketed comma-separated

list of parameter values. An instance ofManagePlaneInFlight for the ight mentioned above would

be expressed in MDL as:

ManagePlaneInFlight [Delta111; 10000]

21

Of course, the parameter need not be speci�ed by a literal during instantiation. In fact, the most

common use instantiates a task from a value which is input from some external source as in:

newFlight?x � position?y � ManagePlaneInFlight [x ; y]

which speci�es an instance of the task to be instantiated with values input by the events newFlight

and position.

In addition to these two data values,ManagePlaneInFlight contains information designating how

its instances will behave. This information follows the is keyword and is called a behavior expression.

Behavior expressions specify how the task decomposes into subtasks and events. The behavior

expression forManagePlaneInFlight (line 7 in Figure 4) indicates two subtasks, ModifyPosition and

InstructToLand , and an ordering which is to be imposed over these subtasks. The ModifyPosition

task is designated to execute zero or more times by the unary operator �, while InstructToLand

is enabled by the successful completion of ModifyPosition. The enabling operator >> speci�es

sequential composition, and we read it to mean that InstructToLand may be performed after zero

or more complete performances of ModifyPosition, but that it may not be performed during the

performance of ModifyPosition.

Unlike newFlight and position, which are primitive events, ModifyPosition and InstructToLand

are themselves tasks which decompose further. This further decomposition is speci�ed in the where

section of a task, and it contains complete task descriptions. The ModifyPosition task decomposes

into a simple input event followed by the empty task stop (line 11). The � operator pre�xes a task

stop by a communication newPosition?pos. The result of pre�xing a task by a communication is

a new task. Note that the input event newPosition deposits its input value into the parameter pos

of the containing task ManagePlaneInFlight . That is, subtasks may reference the parameter scopes

of containing tasks in block structure.

2.3 MDL and Presentation Binding

While the description of the task in Figure 4 documents the way an air-tra�c controller performs

one aspect of his job, it does not lend any insight into how this task manifests itself in a graphical

user interface. For this we need to express the presentation aspect of the system. Figure 5 shows

how the interface will look to the controller. The light gray bars demarcate legal air-tra�c lanes;

22

Figure 5: Presentation of the Air Tra�c Control (ATC) system.

23

whereas the dark gray bars demarcate bu�er lanes which are needed to ensure a safe distance

between planes in ight. In this interface, planes are represented as buttons positioned throughout

the tra�c lanes to reect the real position of planes in the airspace. New planes are incorporated

into the airspace when the controller enters a new ight number in the text entry box at the top

left of the interface.

In the Mastermind environment, the code for presentation objects, like the airspace back-

ground and the plane widgets, is generated from a declarative presentation model [25] which is

speci�ed separately from the task model. Of course, task and presentation models are not entirely

orthogonal. When an air-tra�c controller performs the ManagePlaneInFlight task, for example,

he does so by interacting with the buttons generated by the presentation model. It is, therefore,

necessary that some aspect of the presentation model be represented in the task model. In this

example, the controller indicates a change of position by dragging a particular button to another

spot in a legal air-tra�c lane, and he indicates the desire to land a plane by double-clicking on

a particular button. These gestures, pressing a button and dragging and dropping a button, rep-

resent actions which have meaning in both the presentation and the task world. We, therefore,

model these gestures in MDL so that we may reason about the binding of task and presentation

behavior. Speci�cally, gestures are modeled as output communications (e!x for some event e and

data value x), and the cumulative behavior of a presentation is modeled as a process. Since the

behavioral aspect of presentations is modeled using processes, tasks and presentations are bound

by synchronizing these events.

Figure 6 describes the behavior of a single air-plane widget (a button). The description resembles

that of a task, but note two important di�erences. The process is bracketed with the keywords

pres and endpres as opposed to task and endtask, and the communications reference a wild-

card symbol (#) as opposed to literals or parameters. This notation describes that aspect of

presentations which can be reasoned about in the task model. In this example, the select event

represents the result of double clicking on the button; whereas the drag event represents the result

of dragging and dropping the button onto a new location. Even though some detail is missing,

we can understand what type of data the select and drag events communicate by looking at their

declared data types. The select event communicates only control, which means that a corresponding

input communication of the select event must be of the form select? as opposed to select?x . The

24

pres Airplane

parameters

ight : string; pos : int;
select : event; drag : event(int);

is

((select !# � stop) j (drag !# � stop))�
endpres

Figure 6: MDL description of the behavior of an airplane presentations

drag event communicates an integer, which corresponds to the newly selected position of the plane.

When these speci�cations are realized in code, the communications will actually be initiated by

interactors. Interactors[70] are user-interface toolkit devices which manage stereotypical gesture

behavior and perform actions at various points during a gesture.

In Mastermind , a task T is bound to a presentation P using the notation: P k T . The

operator k (read \parallel") declares that T and P execute independently and concurrently, but

that they synchronize on common events. We can see how this works by looking at the binding of

task ManagePlaneInFlight to the presentation Airplane in Figure 7. Bindings are declared with the

bind : : : endbind keywords. Figure 7 de�nes a binding called ManageFlight with two parameters

ight and pos (line 3). These parameters are local to the binding. The binding behavior is expressed

in lines 7, 8, and 9. An instance of the ManagePlaneInFlight task is composed with an instance of

the Airplane presentation through the k operator. Line 7 instantiates ManagePlaneInFlight with

the values of ight and pos local to the binding. Line 9 instantiates Airplane with these same

two values and also the two events, newPosition and commitToLand . These events guard input

communications in task ManagePlaneInFlight . Since the events also occur in the instance of the

Airplane presentation, and since these two instances are composed by the k operator, the instances

will synchronize on these two events.

The binding behavior is wrapped up in a larger declaration that begins with the hide key-

word. Hiding allows one to make events unobservable outside the scope of the hide declara-

tion. Unobservable events are local to the binding in the sense that tasks within the binding

(like ManagePlaneInFlight and Airplane) can synchronize on the events, but tasks external to the

binding cannot. Hiding tends to be used in bindings like ManageFlight because there will be many

run-time instances of this binding, and we do not want these separate instances to synchronize on

25

bind ManageFlight (1)
parameters (2)

ight : string; pos : int; (3)
is (4)

hide commitToLand ; newPosition (5)
in (6)

ManagePlaneInFlight [ight ; pos] (7)
k (8)
Airplane[ight ; pos; commitToLand ; newPosition] (9)

endbind (10)

Figure 7: MDL description of the manage plane task binding to the airplane presentation.

each others' events!

The operation and utility of MDL should now be more clear. Designers can de�ne tasks and the

behavior of presentations and then compose them to arrive at the actual behavior of an interactive

system. That is the essence of MDL. As we will now see, these bound speci�cations can then be

implemented by a model-based code generator.

2.4 Generating Code from MDL

Once task and presentation models have been de�ned and bound together, these bound speci�ca-

tions can be translated into a program in a conventional programming language. It is the job of a

model-based code generator to perform the translation, and it must do so without input from the

designer. Our goal was to make the translation as straight-forward as possible. To support this

goal, we created a toolkit (called the Mastermind Toolkit or MMTK) of reusable components

that directly implement MDL speci�cations on a run-time virtual machine. We now demonstrate

the use of this toolkit in implementing the behavior speci�cation ofManageFlight and comment on

the complexity of the toolkit components. This commentary motivates the technical contributions

which follow.

26

2.4.1 Example of Generated Code

Mastermind implements bound task models in C++ using the Amulet[72] user interface toolkit

for presentation support. The general strategy is to create a C++ class for each declared binding.

The class declarations aggregate:

1. local data corresponding to binding parameters,

2. MMTK components corresponding to MDL communications and ordering operators, and

3. locally managed events (those which result from applying the MDL hide operator).

The constructor associated with such a class must then:

1. establish the location of data parameters are used by input and output communications and

initialize these communications so that they know the locations,

2. establish the location of hidden events, and initialize communications that synchronize on

these events so that they know the locations,

3. connect all of the aggregate MMTK components for communication.

To see this in action, consider again the binding ManageFlight of Figure 7. The implementation of

this binding appears in Figure 8. The binding has become the C++ class Binding ManageFlight. As

the comments suggest, constituents within this class correspond to the task (ManagePlaneInFlight),

the presentation (Airplane), the data parameters (ight and pos), and the events (newPosition and

commitToLand) in the MDL binding.

To understand the design of the MMTK components, we now look at the details of these con-

stituents and how they interoperate. The data parameters ight and pos ofManageFlight appear as

private data members in class Binding ManageFlight. The values of these parameters can be queried

using the getFlight() and getPos() methods and can be set using the setFlight() and setPos()

methods. Immediately we must consider the visibility of this data. MDL speci�cations, require

these values to be visible to input and output communications both within and external to the bind-

ing which houses the data. To support this, the class exports (public) methods for querying and

setting these values. Thus, when the implementation of the input communication newPosition?pos

needs to set the pos parameter, it can do so by invoking the method setPos(x) where x is the value

the input receives during synchronization. This leads to the following observation.

27

class Binding_ManageFlight : public MdlParOrdering, // The binding operator.

// The events.

public MMBlockingEvent_NewPosition,

public MMBlockingEvent_CommitToLand f
public:

Binding_ManageFlight();

virtual ~Binding_ManageFlight();

// Parameter access methods.

string& getFlight();

void setFlight(const string&);

int getPos();

void setPos(const int&);

protected:

//

// Implementation of the task ManagePlaneInFlight.

//

MdlSeqOrdering inputNewPositionThenLand;

MdlLoopOrdering loopInputNewPosition;

InputConcealedEvent<string,

Binding_ManageFlight,

MMBlockingEvent_NewPosition,

Binding_ManageFlight> inputNewPosition;

InputConcealedEvent<string,

Binding_ManageFlight,

MMBlockingEvent_CommitToLand,

Binding_ManageFlight> inputCommitToLand;

//

// Implementation of the presentation Airplane.

//

MdlLoopOrdering loopoutputNewPositionOrLand;

MdlAltOrdering outputNewPositionOrLand;

PresOutputConcealedString<MMBlockingEvent_NewPosition,

Binding_ManageFlight> outputNewPosition;

PresOutputConcealedString<MMBlockingEvent_CommitToLand,

Binding_ManageFlight> outputCommitToLand;

protected:

virtual void MMenable();

private:

// The parameters.

string flight;

int pos;

g;

Figure 8: C++ header �le implementation of ManageFlight binding.

28

Observation 2.4.1. MMTK components need a uniform facility for connecting input (respectively

output) communications to target (respectively source) data that are a�ected when the communica-

tions synchronize on an event.

The next thing to note is that both task ManagePlaneInFlight and presentation Airplane are

implemented as data members in this class. Consider the implementation of ManagePlaneInFlight .

Recall that this task has the following behavior:

(newposition?pos � stop)� >> (commitToLand? � stop)

This protocol involves two MDL operators: >> and �, and two input communications:

newposition?pos and commitToLand?. These coincide with the four declarations under the comment

\implementation of task : : :" in Figure 8. Speci�cally, >> is implemented by the member of

type MdlSeqOrdering, � is implemented by the member of type MdlLoopOrdering, and the input

communications are implemented by members of the parameterized class InputConcealedEvent<>.

The parameters to the InputConcealedEvent<> template specialize it with data type, data location,

and event location information. This is discussed in detail in Chapter 5. The reader should note the

strong structural similarity between the MDL expression and its MMTK/C++ implementation.

Observation 2.4.2. Data members in the implementation of an MDL behavior expression occur in

one-to-one correspondence with the operators and communications in a corresponding MDL behavior

expression.

Figure 9 shows the constructor for class Binding ManageFlight. The code in this constructor

relates the objects that implement task ManagePlaneInFlight . Speci�cally, it organizes them into

a tree. The same is done for the presentation. And of course, the binding itself links the task and

the presentation as siblings in the tree. One thing to note is that any class created from an MDL

behavior expression may itself be aggregated into a containing class. It is therefore necessary that

such classes aggregate the top-most MMTK tree component by inheritance rather than creating a

data member of that type. This is why the class Binding ManageFlight subclasses MdlParOrdering

(which implements the MDL ordering k). In fact, because bindings tend to be of the form P k T

for some presentation P and task T , they typically subclass MdlParOrdering. There is a one-to-one

syntactic correspondence between MDL behavior expressions and the MMTK components which

are aggregated by the C++ class generated from these expressions.

29

Binding_ManageFlight::Binding_ManageFlight()

: inputNewPosition("ppp" ,"ppp"), inputCommitToLand("pp" ,"pp"),

outputNewPosition("ppp"), outputCommitToLand("ppp")

f
addChild(&inputNewPositionThenLand);

addSecondChild(&loopoutputNewPositionOrLand);

// Task part.

inputNewPositionThenLand.addChild(&loopInputNewPosition);

inputNewPositionThenLand.addSecondChild(&inputCommitToLand);

loopInputNewPosition.addChild(&inputNewPosition);

// Presentation part.

loopoutputNewPositionOrLand.addChild(&outputNewPositionOrLand);

outputNewPositionOrLand.addChild(&outputNewPosition);

outputNewPositionOrLand.addSecondChild(&outputCommitToLand);

g

Figure 9: C++ constructor for ManageFlight binding implementation.

Observation 2.4.3. The syntactic structure of a behavior expression is preserved in the imple-

mentation of that expression.

2.4.2 Shifting the Complexity of Code Generation

The correspondences noted in Observations 2.4.2 and 2.4.3 greatly simplify MDL code generation.

The code generator merely aggregates MMTK components into a class and generates a constructor

which connects these aggregates into a tree (isomorphic with the abstract syntax tree (AST) of the

MDL behavior expression). This simplicity satis�es our design goals because code generation does

not require input from the designer and does not arbitrarily make choices for the designer. We have

e�ectively shifted the complexity of code generation into the design of a reusable toolkit. The idea

is that we will carefully design the MMTK toolkit and then deploy a simple code generator that

leverages it.

Of course, shifting the complexity of code generation into toolkit design means that the toolkit

is di�cult to design! That is, it is di�cult to design correctly. The power of MDL operators makes

correct design non-trivial. One such problem occurs when one task can e�ectively terminate another

task. The MDL expression A [> B (read \A is disabled by B") expresses that the performance

of task B terminates any further performance of task A. A familiar application of this operator

comes up in Internet browsers like the NetScape Navigator. The task model for this is shown in

Figure 10. The ([>) operator is implemented by the MMTK component MdlDisOrdering. In the

class Binding ChaseLink, which is generated from the MDL in Figure 10, there is an instance class

30

task ChaseLink

is

choose?url � LoadURL[url]
where

task LoadURL

parameters

url : string
is

(httpRequest !url � httpComplete? � stop) [> (quit? � stop)
endtask endtask

Figure 10: Example of disabling operator in MDL description.

MdlDisOrdering. This instance is connected to an instance of class MdlSeqOrdering, which imple-

ments the sequencing of the http requests, and to a member of class InputEvent<>which implements

the quit communication. The semantics of [> ensure that if the quit? communication synchronizes

before the httpComplete? communication synchronizes, that the whole process controlled by the

MdlSeqOrderingwill be terminated. This means objects of the class MdlDisOrdering need to be able

to sense activity in their right component and terminate their left components. It also means that

any object which could be the left component of an object of class MdlDisOrderingmust know how

to be terminated! This leads to the following observation:

Observation 2.4.4. To implement MDL ordering operators as tree controllers, the internal logic

of these controllers must take into account the contexts in which they may occur.

This observation implies an ination in the size of MMTK component speci�cation and, con-

sequently, the complexity of MMTK component design. Here is the problem. MMTK ordering

components must internalize some aspect of the internal states of machines with which they might

connect in a run-time tree. This makes the number of states in even the most seemingly simple

of components (like MdlSeqOrdering) grow into the hundreds. It is di�cult to design components

with this much state, and it is even more di�cult to do it correctly. After introducing MDL in

more detail (Chapter 4) we return to the problem of MMTK component design and address these

correctness issues (Chapter 5).

31

Chapter 3

Background and Related Work

The last chapter provides context for the application of automated tools to interactive system design

and generation. This problem has been studied extensively throughout the history of HCI research,

but to date the most widely used tools are rapid prototyping tools and static GUI layout generators.

The model-based approach aims to increase the degree of design support and code generation using

multiple explicit models of user interfaces. We believe that in order to achieve these lofty goals,

model-based code generators requires a new mechanism of software composition. The purpose of

this chapter is to frame this assumption in its historical context and introduce ideas we used when

crafting the MDL/MMTK solution.

3.1 Interactive System Design

Interactive systems are a subclass of reactive systems, the main distinguishing characteristic being

that humans are an active component of an interactive system. Interactive system design, therefore,

must take human factors into account. Systems which accommodate a human actor must provide

user interfaces through which the actor receives input from and issues output to other system

components. Experience has shown that user interfaces are di�cult and costly to design and

maintain. In fact, a survey done by Myers[73] points out that up to half of the development

cost and delivered application are associated with designing and implementing the user interface.

HCI researchers and software engineers have concentrated on this domain because of the huge

potential in development savings. Interactive system design is characterized by two novel aspects:

the ontology of interactive system software and the software engineering process which supports

interactive system development.

Ontologies de�ne the concepts and relationships that make up a problem domain. They form

32

the objective grounding to which designers appeal when talking about the structure of a problem.

There have so far been two ontologies proposed for the structure of the user interface. The �rst was

proposed by Foley [38, 39] and de�nes the user interface as an input language for the user, an output

language for the machine, and a protocol for interaction. The other ontology, due to Moran[69],

considers the user interface to be \those aspects of the system that the user comes in contact

with{physically, perceptually, or conceptually." Foley's linguistic model has proven particularly

inuential for automatic generation technology. The idea is that interface design is similar to

programming language design. There is an input language, through which the user communicates

with the computer and an output language, through which the computer communicates to the

user. The act of engineering the interface is then thought of as the simultaneous design of these

two languages. The Foley ontology suggests the existence of three levels of user-interface software.

The lexical level describes atomic entities in the language like mouse motion, key clicks, and visible

output. The syntactic level describes the sequencing of these tokens. The semantic level groups

syntactic structures into collections of functionality which take on meaning in the speci�c problem

space an interactive system is built to support.

The software engineering process side of interactive system design admits the human designer

as an evaluator of the �tness of a user interface. The paradigm is one of rapid prototyping and con-

tinual evaluation[48]. Bass and Coutaz[11] re�ne this description into an iterative process model

similar to the spiral model of Boehm[16]. Within this paradigm, analysis and evaluation occur

throughout the life-cycle of a product. The focus of analysis in this domain are user tasks. Ac-

cording to Diaper[30, preface], task analysis is potentially the most powerful method for producing

interactive system requirements speci�cations. There are many di�erent approaches to task anal-

ysis. Some, like Task Analysis for Knowledge Description (TAKD)[31], produce a generalization

hierarchy of tasks. Others, like Task Knowledge Structures (TKS)[56, 65] provide a theory of the

structure of task knowledge and a methodology for identifying and modeling this knowledge. Oth-

ers, like Goals, Operators, Methods, and Selection (GOMS)[23] and Cognitive Complexity Theory

(CCT)[60], incorporate a model of human psychology in order to evaluate the performance of users

on tasks.

The Mastermind environment, which will be discussed below, uses a task modeling notation

derived from Lotos[17] in support of an incremental design, evaluate, iterate development model.

33

3.2 Automated Interactive System Development

Automated approaches to interactive system development reduce the complexity of development by

raising the level of abstraction in system speci�cation. There have been many approaches to this

in the history of HCI. It turns out that the linguistic ontology is useful for classifying approaches.

The lexical level, for example, represents the issues addressed by palette-based interface builders;

whereas the syntactic level represents issues of dialogue and global sequencing in a User Interface

Management System (UIMS), and the semantic level represents issues of domain-based user interface

component selection. Within the con�nes of a speci�c level, application-generation tools perform

well, but each level embodies system informationwhich is inuenced by, but cannot be derived from,

the system information embodied by other levels. This motivates the conclusion of this section

which states that a solution to the automatic-generation problem must deal with the simultaneous

expression of information at multiple levels.

3.2.1 Lexical Tools and Technology

Tools at the lexical level provide designers with the ability to choose and specialize the presentation

of a system with little support for behavior. Commercial tools like the User Interface Manager

for X (UIMX)[101] allow designers to rapidly construct and specialize presentations from a palette

of reusable widgets. Once the designer is satis�ed with the display, the tool generates the source

code which creates and initializes the display. It is then up to the designer to add the behavior

to the widgets. In the case of UIMX-generated code, this activity amounts to providing call-back

functions which are invoked when the end user interacts with the widgets at run-time.

With the emergence of the Java language[7] and user interface library AWT[43], palette-based

presentation generators have become popular. These allow designers to rapidly construct pre-

sentations and then generate code which creates and initializes these presentations. Like UIMX,

designers must follow this generation step with a programming step in which they add behavior to

the call-backs of these widgets.

Incidentally, not all lexical tools are graphically based. The User Interface Language (UIL)

compiler produces presentation code from a textual description of the display[11].

Tools at this level generate code which programmers then specialize. This specialization usually

34

takes the form of extension, i.e.-adding call-back functions. Often however, programmers modify

the parameters or application of the generated code itself. It is typical for example, to �nd code

that was originally generated by UIMX and then extended without going through the generator

again. This behavior is certainly a drawback to these kinds of approaches because the delivered

code easily drifts from the model which generated it. Still, tools which support the lexical level of

design are very popular and have proven successful commercially.

3.2.2 Syntactic Tools and Technology

Tools at the syntactic level allow designers to express the sequencing of behavior in a user interface.

Most of the tools at this level provide designers with a dialogue language through which sequencing

constraints can be speci�ed. Dialogue notations are so-called because they specify the syntax of

interaction. Tools in this genre can be classi�ed and di�erentiated by the power and style of

their dialogue languages. Dialogue notations assume an underlying machine model which is either

sequential or concurrent. Sequential dialogue notations tend to be based on formal language and

automata theory (formal grammars, state transition diagrams, etc); whereas concurrent dialogue

notations tend to be based on production rules which react to asynchronous events by performing

some action.

The production rule model of dialogue �ts well with the architecture of user-interface toolkits.

The model does not require machine concurrency, but it has an expressive feel which is event based

rather than thread based. The Propositional Production System (PPS)[76] is an example of such a

model, and many UIMS's adopt it. The Serpent[11] UIMS, on the other hand, takes a more domain-

independent approach. Using Slang (the Serpent dialogue language), functionality is assigned to

graphical objects through guarded actions. These actions �re whenever the guards are satis�ed

(the standard production rule model).

3.2.3 The Multiple Level Problem

The approaches mentioned thus far have two recurring similarities. First, each approach adopts the

same general framework for automating interactive system generation:

1. A run-time system that implements some form of virtual machine (be it an event loop, control

scheduler, constraint engine, etc),

35

2. A language (visual or textual) for expressing the features of a system, and

3. A translator that maps expressions written in the language onto the virtual machine.

Second, these languages do not express the entire functionality of an application. This means that

code generators must either:

1. generate a partial application which must then be augmented with programmer-written code,

or

2. infer system attributes which are not expressible in the language (usually taking advantage

of a knowledge-base).

This second feature is a source of di�culty and inadequacy of the current approaches to automated

generation. In a truly automated development environment, programmers should not need to

complete the user interface with hand-written code. Conversely the designer should expresses

salient detail of an interface as opposed to a code generator.

We shall henceforth refer to this problem as the multiple-level problem in interactive system

speci�cation. Systems are not a product of structure at any one level, but rather are the conuence

of structure at all three levels simultaneously. We believe this problem is inherent in automated

approaches to interactive system development. As evidence of the problem, consider the follow-

ing. In their work on the George Washington UIMS, Sibert et al. [90] commented that designers

experienced di�culty when having to understand behavior at the boundary of the semantic, syntac-

tic, and lexical levels. The success of tools and techniques that focus on a speci�c level, however,

demonstrates that levels contain salient information which cannot be inferred from decisions made

at higher levels. A semantic level decision, for example, cannot be derived from a lexical decision.

Likewise, a lexical decision cannot necessarily be derived from a semantic decision. Designers need

to be able to express interface detail at the appropriate level using tools and concepts appropriate

to the level. Levels contain salient information that does not exist at other levels. At the same

time, the information contained in a level is not independent with the information contained in

other levels. Successful approaches to automated generation of interactive systems support the

conuence of detail from all three levels. The model-based approach adopts this paradigm.

36

3.3 Model Based System Development

The model-based approach to interactive system design bases system analysis, design, and imple-

mentation on a common repository of models. Unlike conventional software engineering, in which

designers construct artifacts whose meaning and relevance can diverge from that of the delivered

code, in the model-based approach, designers build models of critical system attributes and then

analyze, re�ne, and synthesize these models into running systems. Model-based user interface

development environments (MB-UIDE's) work on the premise that development and support envi-

ronments may be built around declarative models of a system. Developers using this paradigm build

interfaces by building models that describe the desired interface, rather than writing a program that

exhibits the behavior[97].

Pre-cursors to the model based approach were UIMS architectures and application generators

that began to support the semantic level of UI design. Foley et al.[39] describe two types of models

at this level: user-task models and application models. All of the model-based approaches contain

at least one of these models, though, at present, di�erent approachs use di�erent models[87]. This

section investigates current approaches to model-based code generation and identi�es a software

composition problem inherent in the approach. This problem, which we call the binding problem,

motivates one of the technical contribution of this thesis.

3.3.1 Model-Based Analysis and Generation

The model-based approach is relatively new, but many precursors have been developed. These

tools vary in the models they support and the notations used to express the models[87]. All of the

approaches contain either a user task model, an application model, or both, with other models (like

presentation) augmenting their functionality. We use these models as a basis for comparison.

3.3.1.1 Application Modeling

The earlier model-based approaches chose the application model as the cornerstone. Many of these

approaches operate directly on software engineering models. The earliest applications of this ap-

proach began as semantic level extensions to UIMS architectures and technology. In Genius[55],

designers specify data models and augment these with a behavior abstraction called a dialogue net

37

(similar to a Petri-net[86]). From these speci�cations, Genius uses a knowledge base to select in-

teraction objects, arrange layout, and incorporate the dynamics into an executable implementation.

In the context of our earlier distinction, Genius provides languages for the semantic level (data

models) and the syntactic level (dialogue nets) but no language for the lexical level. As a result,

interfaces generated by Genius have stereo-typical forms-based presentations.

A similar data/behavior approach is used in the Trident environment[100]. Data models in

Trident are expressed using entity-relationship diagrams, and the behavior is expressed using a

notation called an activity chaining graph (ACG). In addition,Trident represents lexical attributes

in the form of Abstract Interaction Objects (AIOs) and Concrete Interaction Objects (CIOs).

Though Trident does not contain an explicit task model, its representations are derived from a

TKS[57] speci�ed hierarchical task model. The melding of methodology and model representation

in Trident is impressive. In [15], Bodart et al. demonstrate how TKS models suggest entities and

relationships, from which the data model can be derived, and temporal ordering cues from which

the Activity Chaining Graph can be derived. Furthermore, these models suggest candidate abstract

interaction objects that constitute the presentation of an interactive system[14].

The pinnacle of application modeling is the User Interface Design Environment (UIDE)[37, 95].

Systems are expressed in terms of an application model, and the environment provides run-time

support for model inferencing. Salient features include explicit pre- and post-conditions which can

be attached to any actions in the model. Rather than inferring dialogue once, UIDE actually infers

dialogue at run-time by computing actions whose pre-conditions are satis�ed. This requires an active

dialogue manager component that observes the state of the system and reacts by disabling actions

whose pre-conditions are not satis�ed and enabling actions whose pre-conditions are satis�ed.

3.3.1.2 Task Modeling

According to Diaper[30, preface], task analysis is potentially the most powerful method for pro-

ducing interactive system requirements speci�cations. If this is truly the case, it makes sense to

include task models in a model-based development environment. The idea is that user interfaces

will be more usable if they comfortably implement the user's mental model of the task he or she is

attempting to perform. Just as dialogue notations became a unifying feature of UIMS generators,

user task models have become the unifying model of di�erent model-based approaches. On the

38

analysis side, tools like Glean[61] allow designers to analyze task models in terms of human mental

cognition and observable human action (GOMS[22]).

Other approaches view task models as evolving entities within the life cycle of an interactive

system. The Adept environment[58, 102] supports the evolution of task models throughout a

system's lifetime. In addition to iterative task model support, Adept models can be re�ned into

an implementation model for which there is a code generator. The Mastermind environment[74,

97, 18], uses a task model as its design requirements model.

3.3.1.3 Presentation Modeling

Systems generated from task and application models often have interfaces that are not highly graph-

ical. Szekely et al.[98] demonstrate the magnitude of this point in a side-by-side comparison of a

screen-shot from a tree visualization tool (TreeViz) and the small portion of it that is describable

using a UIMS. This is an important point because many of the model-based approaches gener-

ate UIMS scripts as their output. A natural conclusion is to extend these approaches with new

models. The most common addition is an explicit presentation model. Humanoid[98], and now

MASTERMIND[74], provide a more elaborate presentation model.

3.3.2 The MASTERMIND Approach

TheMastermind (ModelsAllowingShared Tools andExplicitRepresentationsMaking Interfaces

Natural to Develop) project uses explicit task, presentation, and application models for the design

and implementation of interactive systems. The research in this thesis began with an attempt to

generate applications from the integration of Mastermind models.

The Mastermind vision is to provide support for designers of interactive systems. There may

be more than one designer, and they may be broken into teams. Support for model analysis and

multiple design teams requires infra-structure for modularization and integration of models. To

this end, the Mastermind environment has a model server for storing and retrieving models at

run-time. With dynamically queryable models, the Mastermind environment can support design

critics and the management of context sensitive run-time help[94]. A similar vision was undertaken

by the Mecano (now Mobi-D) project[85, 84]. Mobi-D uses an object oriented modeling language

called MIMIC to describe and relate a multitude of models.

39

Mastermind is intimately concerned with generating applications from the models. The code

generation meta-model is one in which each Mastermind model has an associated code generator

and an elaborate model-based linking process connects data and behavior in the code generated

from each model. The presentation model generates code using features from the Amulet[72] toolkit,

the task model generates code using features from the Mastermind toolkit (MMTK), and the

application model code generator is currently under development.

3.3.3 The Multi-Model Binding Problem

Models are not programming languages. They represent some aspects of a system and are neutral

with respect to others. Inevitably, in an executable application, model-generated code depends

upon (and is depended upon by) non-model generated code. Consider, for example, compilers built

in part using parser generator technology like yacc[59]. Part of these systems is generated from a

model (the grammar), and the other part is written by a programmer. Often the generated code

must include snippets of programmer written code in the form of embeddable actions. The code

in these actions is a�ected by the parse, and conversely, action code can a�ect the parse. The

point is that there are (often complex) dependencies between model-generated code and human-

written code. When multiple models generate code that must cooperate, the complexity of these

dependencies can be greatly exacerbated. We call this the multiple model binding problem.

The binding problem is inherent in interactive system design. A task modeling notation, for

example, is useful for describing and reasoning about the sequencing of activity necessary to perform

a user's task. In actual implementations, however, users do not directly engage in tasks. Rather,

they perform tasks by observing and manipulating graphical entities (like menus, draggable icons,

and buttons). As run-time components, tasks must inter-operate with these graphical entities in

order to share control, communicate status, and exchange data. What's more, in the Mastermind

vision, these graphical entities are generated from a presentation model.

Whereas the binding problem refers to the dependencies that arise when di�erent components

need to co-operate, binding is the act of resolving these dependencies. At the level of models,

binding is the uni�cation of behavior in one model with behavior in another. At run-time, binding

is a policy for sharing data and control among components generated from separate models.

40

Unfortunately, at the implementation level, binding is non-trivial because the presentation com-

ponents with which task components must cooperate are designed to encapsulate the very function-

ality that must be woven together through binding. As a result, implementation binding is di�cult

to express declaratively. Our research overcomes this obstacle by:

1. formally de�ning binding within the con�nes of our task language (MDL), and

2. designing composable software toolkit abstractions which implement bindings directly.

3.4 Formal Approaches to Composition

Composition and de-composition in user interface software has been the subject of many di�er-

ent projects. On one end of the spectrum are conceptual \architectures" like Seeheim and its

derivatives[82, 9], Model-View-Controller (MVC)[62], and Presentation-Abstraction-Control (PAC)

[29]. These give general guidelines for separating functionality into components and then linking

these components into a �nal system. On the other end are rigorous semantic models of interactive

software structure like Paterno's theory of interactors[80]. The thesis of our work is that multi-

model composition must be rigorously speci�ed. We, therefore, follow in the spirit of Paterno, but

we end up with radically di�erent systems because of a di�erence in modeling philosophy.

3.4.1 Decomposition Heuristics

In the early days of UIMS systems the need for user interface structuring guidelines became clear.

The �rst so-called UIMS architecture was presented at the Workshop on User Interface Management

Systems in Seeheim Germany[82]. This architecture equated each of Foley's linguistic levels with a

software component. In making the levels components, detail is encapsulated with access provided

only through an application programming interface (API).

Problems with the rigid approach in the Seeheim architecture led researchers to consider other

manifestations of levels. The so-called multi-agent architectures, which include SmallTalk's Model-

View-Controller (MVC)[62] and Coutaz's Presentation-Abstraction-Control (PAC)[29], fall into this

category. Multi-agent architectures structure a system as a collection of cooperating agents. An

agent is a complete information processing system with attributes from each level. Agents commu-

nicate with other agents by observing, acting on, and issuing events rather than making sequential

41

procedure calls and waiting for their return. Multi-agent architectures support a higher degree of

interface concurrency, feedback, and locality than layered architectures.

At present, there is no consensus on the proper interactive system decomposition[11]. The

current population of generic decompositions serve rather as design heuristics which may or may

not be appropriate to a speci�c application. Of course, being heuristics, these decomposition

mechanisms are not rigorous enough to model software composition to the extent we require.

3.4.2 A Connection Oriented View of Composition

The connection-oriented approach views composition as a mechanical process of connecting outputs

of one component to inputs of another to synthesize a new component. This new component itself

has input and output connections and may be connected with other components to synthesize still

larger components. Connection-oriented composition is a natural formalization of decomposition

heuristics (like PAC) that decompose a problem recursively into smaller instances of the same

problem. The view is conceptually appealing because it evokes images of constructing an interactive

system by wiring together independent components in much the same way one would wire up a

hardware device. The most formal treatment of the approach is Paterno's theory of interactors[80].

The approach begins historically with the PAC architecture.

The multi-agent frameworks like PAC decompose a user interface implementation by hierar-

chically distributing functionality. A PAC triad (presentation, abstraction, control), for example,

decomposes into PAC sub-triads whose constituents are wired together to implement the higher

level functionality. The resulting structure distributes semantic, syntactic, and lexical properties

across a hierarchy of entities. Figure 11 demonstrates how this works. The example is a presenta-

tion which has a pie chart and a numeric display �eld. The abstraction maintains the values to be

displayed, and the controller C , which controls the panel containing the pie chart and the numeric

�eld, decomposes into two smaller controllers C1, which controls the pie chart presentation, and C2,

which controls the numeric �eld presentation. The controller C aggregates these sub-controllers

and resolves their presentation/abstraction connection needs. It is claimed by Coutaz[29] that this

distribution allows the structure of the software to better match the cognitive organization of human

knowledge because it does not organize functionality into hermetic layers[6].

42

Value = 45
Max = 360

Value = 45
Max = 360

Abstraction Control Presentation

C

C1

C2Value = 45 45

Figure 11: Composition by Connection in the PAC architecture.

Paterno's theory of interactors[80] adds precision and mathematical rigor to this connection-

oriented view of interface composition. An interactor (not to be confused with the Amulet notion

of an interactor) is a software component with a �xed set of incoming and outgoing data-ow

paths. These paths support the transfer of control, data, and presentation and may be connected

to paths of the opposite polarity in other interactors. In fact, Paterno identi�es �ve di�erent

classes of composition which may be attained by connecting data paths in various con�gurations.

Interactors are de�ned formally as Lotos processes[81], and can be related to task models speci�ed

in Lotos. This theory culminates in a methodology called TLIM for analyzing task models and

system models (interactor-based). This is discussed in [78]. The idea is that by expressing a task

as a Lotos process PT , an interactor-based solution can be derived from this speci�cation. The

interactor solution is the synchronous composition PI1 k PI2 k : : : k PIn where each PIi is the

Lotos process describing an interactor. Related to Paterno's work is that of Markopoulos et.

al.[63, 64] which use a slightly di�erent formalization of interactor called the ADC interactor. ADC

interactors are more PAC-like than the interactors used by Paterno.

One consequence of connection-oriented composition techniques is the distribution of function-

ality among independent components. The components view themselves (and their neighbors) as

concurrent processes which occasionally receive input data, compute some function of this input

43

and then issue the output down an output data path. Concurrency and data-ow are implicit in

this model of control; yet modern PC's and workstations typically only have one processor. Some-

how the concurrency assumed by these frameworks is removed and implemented on a sequential

architecture. This aspect of control will, in general, be di�cult to detect in a Lotos speci�cation,

although many task and interactor speci�cations use only a regular subset of Lotos.

A concurrent modeling notation which captures this distributed locus of control is the Petri-

net[86]. Petri-nets represent complex concurrent control by passing tokens along control paths in

a graph. Palanque et al.[77] use a special variant of nets called hierarchical Petri-nets to represent

the relationship of task models and system models in user interface software. In this work, they

demonstrate a degree of completeness by modeling the operators of Hartson's User Action Notation

(UAN). This allows them to de�ne complex dialogues in terms of an hierarchical net and then

analyze this net for properties like deadlock freedom. Petri-nets can not only express concurrency

but can also be simulated on sequential machinery by an interpreter. For this reason, they are

often used as a target of translation from more abstract user interface description notations. The

TADEUS environment[88] adopts this approach.

3.4.3 A Constraint Oriented View of Composition

The connection-oriented approach to composition is familiar, but it is not the only possible mech-

anism for composing interactive system software. The approach we appeal to in this thesis views

composition as the simultaneous satisfaction of multiple constraints. This constraint-oriented view

seems a better �t for composing software generated from models as diverse as the Mastermind

models, but it is not as visually familiar as the connection oriented approach. This section intro-

duces the constraint-oriented by �rst discussing drawbacks of the connection-oriented approach and

then motivating the view in its historical context.

We noted that the PAC and interactor-based approaches necessarily interleave and distribute

task, presentation, and application detail among inter-dependent software components. This is

feasible when designers are building the components from the bottom up, but it has a consequence

which seems inconsistent with the Mastermind vision of modeling. Recall that Paterno's in-

teractors have a rigid structure of data paths and connection obligations. Mastermind models,

particularly the presentation model[25], have features which do not easily map into this world.

44

We believe that this aspect of Mastermind models makes the connection-oriented approach to

implementation unfeasible.

Mastermind models match a specialized speci�cation paradigm to a particular problem. The

presentation model uses concepts and terminology from graphic design and employs a declarative,

constraint based, model of interface layout. The task model, on the other hand, expresses explicit

sequencing within the global control of the system and employs a process notation. The problem of

binding models is actually a problem of multi-paradigm composition[106]. Zave argues that in such

situations, conceptual structures other than the familiar inter-language procedure call are necessary

for composition.

The conceptual structure we used views the realization of di�erent models as processes and their

binding as synchronizing composition. In her work on the CSP speci�cation of concurrent dialogue,

Alexander[4] presents a technique for modularizing dialogue through synchronous parallel com-

position. In her examples, dialogue speci�cations are separated into presentation and application

components which are speci�ed independently and then combined using the k (parallel composition)

operator. Under this approach, binding can be thought of as the simultaneous satisfaction of two

constraints (the presentation and application in Alexander's case) and can be represented formally

as an operator in a process calculus. The constraint-oriented model of composition seems natural for

composing models de�ned top-down (as is done inMastermind); whereas the connection-oriented

approach is natural for composing models de�ned bottom-up (as is done in Paterno's interactor

approach).

Of course, constraint oriented composition requires a di�erent way of thinking about software

synthesis[106]. Zave[105] suggests synthesizing a program by applying a series of transformations

to an initial abstract program. Each transformation in the series incorporates a di�erent con-

straint. Successive transformations enrich a program from an abstract speci�cation into a concrete

executable application. Transformations enrich programs without violating their meaning. That

is, constraints are additive[104]. We feel this is characteristic of how presentation models should

relate to task models, and we contend that model-based environments which support task models

should use the transformational constraint-oriented techniques for code generation. We, therefore,

designed the MMTK to support this.

45

Others have looked at using constraint-oriented methods for separating user interface function-

ality. An interesting application of the constraint view of decomposition comes in the de�nition

of simultaneous constraints over control and data. Su�rin and He[93], for example, combine CSP

constructs with the ability to precisely de�ne states using Z [91] schemas. Abowd's agents[1, 2] use

a similar mixing of CSP and Z to support usability analysis.

3.5 Virtual Machine Design

Our strategy for designing the MDL virtual machine and the MMTK toolkit is a twist on what

has become a popular idea. The popular idea is the use of model checking to validate properties

of formal user interface speci�cations. This idea was �rst presented by Paterno[79], and has been

followed by Abowd et al.[3] and Paterno et al.[67]. The basic idea is that often formal speci�cations

of user interfaces use only regular subsets of formal notations (like CSP and Lotos) and that

many usability properties can be expressed using temporal logic. This opens the door to using

a model checker to exhaustively validate that the speci�cation satis�es the temporal properties.

We have used model checking to validate compositional properties of software components which

implement formal notations like CSP and Lotos. This section introduces model checking, the

application of model checking to validate dialogue speci�cations, the use of model checking to

validate compositional properties, and the limit of temporal logic for expressing the semantics of a

notation like Lotos.

3.5.1 Temporal Logic

Temporal logic is an extension of predicate logic with operators that express the time-relation of

predicates. An introduction to the use of temporal logic in concurrent systems programming is pro-

vided by Schneider [89]. Temporal operators include � (read \henceforth"), � (read \eventually"),

and (read \next") to name a few. If P is a predicate, the temporal formula �P states that P

will hold from now on, �P states that P will hold at some point in the future, and P states that

P will hold at the next moment in time. Di�erent sets of temporal operators are supported by

di�erent models of time. A model of time is a representation of the instants of time. For example,

the linear model of time represents instants of time as a sequence. This means that any instance

46

has a unique next state and a unique history. Alternatively, the branching model of time represents

instants of time as nodes in a state graph. Being a graph, instants of time have multiple futures

and indeterminable histories. Dense models of time represent instants as numbers in the set R.

With a dense model of time, there can be no operator (because in R, there is no \next" instant.

With a branching model of time, there are no past operators because the past is non-determinable

in a graph based model of time.

The branching model has recently been incorporated into model checking tools. One particular

variant, called Computation Tree Logic (CTL)[27], is a branching time logic with temporal operators

and path quanti�ers. Since the model of time in a branching time logic is a graph, temporal

predicates can be applied to one or all paths emanating from the current instant in time. Moreover,

CTL allows the existential and universal quanti�cation of a temporal predicates over paths.

3.5.2 Model Checking

Model checking is a technique for validating �nite automata for adherence to constraints phrased in

temporal logic[26]. A model checker is a tool which inputs a description of a �nite state model and

a set of temporal constraints, builds a representation of all executions of this model, exhaustively

checks these executions for adherence to the constraints, and reports violations. Model checking

has become popular as a design tool in software and hardware engineering because of its ability to

detect subtle design aws and report the failures in a way which helps track the aw. Some classes

of failure can be reported in the form of a counter-example that demonstrates the violation of a

predicate. A counter-example is a sequence of machine behaviors (changes in state or the issuing of

events) which serve to demonstrate the failure of a temporal constraint. Recent work in symbolic

model checking[21] utilizes an e�cient representation of �nite state spaces to make the checking of

large models (on the order of 1020 states) feasible.

Model checking has been used to validate many types of software speci�cations. Atlee and

Gannon[8] verify safety properties of requirements expressed in the SCR notation. Their approach

maps a �nite subset of SCR onto a state machine which is then fed into the model checker.

Jackson[53] has investigated using model checking to validate properties of Z and VDM speci�-

cations. Since these speci�cations often describe in�nite state spaces, a �nite state abstraction

must be applied in order to use the model checker. Jackson takes advantage of equivalence classes

47

on relations to create this abstraction. In [54], Jackson and Damon apply these techniques to the

design of a style editor in a word processor. Wing et al. also demonstrate the need for abstraction

by applying model checking in a case study verifying the cache coherency protocol of a distributed

�le system[103]. Allen and Garlan[5] use the FDR[40] tool to check whether or not one CSP pro-

cess is a re�nement of another. In this thesis, we use the Symbolic Model Veri�er (SMV)[66] from

Carnegie Mellon University to verify the safe composition of our ordering components.

Many interface usability properties can be expressed concisely through temporal constraints.

Abowd et al.[3] lists several, including:

1. task completeness, which states whether or not the user can always accomplish a goal,

2. state inevitability, which states that a user can always �nd a way into some critical state (like

saving a �le),

3. reversibility, which states that an action can be reversed (by the next action).

They express dialogue using Olsen's Propositional Production System (PPS)[76] which has been

shown to be equivalent in expressive power to the regular expressions. Abowd uses CTL to express

these properties and uses SMV to check them. Paterno[67] uses a logic called ACTL[75] which

can express equivalence relationships between CCS[68] terms. This relates task and system models

which are both de�ned as Lotos processes in Paterno's framework. They use an ACTL[42] model

checker to carry out these validations. The problem they had to overcome is that, in general, Lotos

speci�cations denote in�nite state processes and are, therefore, not checkable using model checking

techniques. However, as noted by Fantechi et. al.[35], subsets of Lotos operators yield regular

languages which can be synthesized into �nite state models.

3.5.3 Compositional Model Checking

Model checking is inherently limited by the size of a state space it can analyze. When a state

space is too large, a model checker cannot perform its analysis in a reasonable time. This problem

is exacerbated by use of concurrency as a means of separating concern in speci�cations. Given

n process speci�cations each of size m, the parallel composition of these is a process whose state

space can be of size mn . This is commonly referred to as the state explosion problem. Attempts

to overcome this obstacle appeal to a technique called compositional model checking. The

48

idea behind compositional model checking is to validate global properties by model checking local

properties. In practical terms this means performing n separate model validations on the processes

whose state spaces are of size m as opposed to one single model validation on the composed process

whose state space is of size mn . If the di�erent components did not interact, then this is trivial;

but in real speci�cations, components interact.

Compositional model checking takes advantage of the fact that, for many speci�cations, the

size of the composed state space is really much smaller than mn . As an example, consider two

processes, P1 and P2, and their composition, P1 k P2. When P1 and P2 are composed, P1 doesn't

observe every action of P2, and P2 doesn't observe every action of P1. Clarke et al.[28] suggested

abstracting that portion of a processes externally observed behavior into a smaller process called an

interface process. Say, for example, that I1 is an interface of P1 and I2 is an interface of P2. Clarke

et al. list a set of rules stating when a property � of P1 k P2 can be checked by checking � in P1 k I2

and I1 k P2. Applications of this general approach to the validation of Ada task compositions have

been performed by Fischer and Gerber [36] and Bultan, Fischer, and Gerber[20].

We use model checking to validate properties of MMTK component compositions. Our use

deviates from the approaches mentioned above in that we handle compositionality without artic-

ulating an explicit interface process. Rather, we prove a theorem about testing adequacy for two

compositional properties (receptiveness and freedom from divergence). In some sense, this theorem

demonstrates the existence of an implicit interface process, but it does so without us having to

de�ne this process.

3.6 Summary

In summary, the composition ofMastermind models requires a strategy for software composition

based on synchronization of concurrent processes. We de�ne the MDL language to express task

models and binding within a notation that expresses synchronized concurrency as a primitive oper-

ator. We then develop a toolkit of reusable components (MMTK) which implement MDL operators

and act as an MDL virtual machine. The remainder of this document outlines the MDL language,

the MMTK toolkit, our use of model checking to validate the behavior of toolkit components, and

the testing adequacy theorem. We conclude with validation of our approach on examples.

49

Chapter 4

The MDL Language

The Mastermind Dialogue Language (MDL) is a notation for specifying interactive system task

models and composing these with presentation models. MDL was designed to ease the speci�cation

of these models and precisely articulate their composition. MDL has three features which make it

novel. The �rst is a distinction between tasks, presentations, and bindings of tasks to presentations.

This distinction shields designers from subtleties which complicate the use of process-oriented no-

tations for interactive system design. The second is a rich set of primitive ordering operators that

are useful for specifying interactive systems. The third is a mechanism for declaring dynamically

instantiable tasks. Taken together, these features make MDL a suitable foundation for model-based

interactive system development environments.

MDL describes systems as a hierarchy of process de�nitions. A process can be thought of as a

mechanism for performing actions in a prescribed manner. Processes perform actions and interact

with other (concurrent) processes. Process interactions are built up out of atomic units called

events. Processes which participate in a common event are said to synchronize. That is, each

process observes the event at the same moment in time. Complex processes may be built by either

combining sub-processes through an ordering operator (i.e.- process C is the sequential composition

of sub-processes A and B) or by conjoining sub-processes so that they run independently but

synchronize on common events. In interactive system design, processes serve as the formal basis

for task models and for the binding of task and presentation models.

We present MDL in four sections. The �rst (Section 4.2) gives the basic syntax of MDL and

describes the di�erent avors of process which combine to form an interactive system speci�cation.

We then describe the di�erent ways to construct MDL behavior expressions. Behavior expressions

are the language for specifying how processes decompose into subprocesses and events. We present

the control side of behavior expressions �rst and then talk about adding data. This allows the

50

Table 1: High Level Syntax of MDL

model ::= (event declktask declkpres declkbind decl)�
event decl ::= event identi�er f data type g ;
task model ::= task identi�er process endtask
pres model ::= pres identi�er process endpres
bind model ::= bind identi�er process endbind
process ::= paramlist

is behavior expression

submodels
endtask

paramlist ::= parameters parameter�

parameter ::= identi�er ':' type
submodels ::= (task declkpres declkbind decl)�
identi�er ::= ['a'-'z''A'-'Z']['a'-'z''A'-'Z''0'-'9'' ']�

de�nition of communications and local parameters. The chapter concludes with a discussion.

4.1 Structure of MDL

MDL allows designers to specify task models and the binding of task and presentation models.

The language consists of two kinds of de�nitions: event de�nitions, which declare atomic user and

system actions, and process de�nitions, which declare complex behaviors in terms of sub-processes

and events. Table 1 lists the high level syntax of MDL.

There are three kinds of process de�nitions:

task which encodes the procedure by which a user performs a task,

presentation which is an abstraction of the behavior of code generated by the presentation model,

and

binding which connects task and presentation behavior.

To make an analogy with programming languages, task processes are like programs, presentation

processes are like external declarations (e.g. the C language extern statement), and bindings are

the linkage rules which specify how to connect to an external behavior so that it can be used by a

program. The general scenario of design and development is:

1. create a task model, which is a collection of MDL task processes;

51

2. create a presentation model and extract MDL presentation process descriptions from this

other model;

3. combine task and presentation processes into binding processes in MDL;

4. invoke the model-based code generator to render an executable user interface from all of these

pieces.

The de�nition of MDL processes factors heavily into this procedure.

After beginning the declaration of a process using either the task, pres, or bind keywords,

designers then declare data and event parameters which the processes will manipulate during ex-

ecution. The parameter section of an MDL task description speci�es zero or more data values

and/or event names. Parameters serve two purposes. They act as local data that can be used

during the execution of a task, and they can be supplied when the process is instantiated.

After de�ning any parameters, the designer then describes the behavior of the process. This

is done by either composing sub-processes through an ordering operator or pre�xing sub-processes

with communications. These descriptions are called behavior expressions. Behavior expressions

order the occurrence of events and sub-processes in time. MDL contains a rich set of operators for

de�ning behavior expressions.

After de�ning the behavior expression, designers can elaborate the de�nition of sub-processes

referenced in the behavior expression. Sub-process de�nitions have exactly the same structure as

process de�nitions. Furthermore, the parameters of parent processes may be referenced within

sub-processes.

The dynamic aspect of a process is described in its behavior expression. The syntax of these

expressions is listed in Table 2. In this table, lower case letters like e represent events; whereas cap-

ital letters like B represent behavior expressions. Using this syntax, complex behavior expressions

can be built. In the sections that follow, we describe the meaning of each operator by means of an

example and a formal de�nition.

52

Table 2: Syntax of MDL behavior expressions.

Name Syntax

inaction stop

action pre�x e � B

event concealment hide e1; e2; : : : ; en in B

choice B1 j B2

interleaving B1 jjj B2

parallel synchronization B1 k B2

sequential composition B1 >> B2

disabling B1 [> B2

mutual disabling B1 $ B2

interruption B1 4 B2

optional Bopt

loop B�

4.2 A Notation for Semantics

We use a formal notation to help describe the semantics of MDL operators. Speci�cally, we use

structural operational semantics[83] (SOS). SOS provides a way to systematically derive the mean-

ing of a behavior expression from the syntax of the expression and is, therefore, a natural mechanism

for describing the operators.

In process notations like MDL, progress is made when a process performs an observable action.

In order to perform an observable action, two parties must observe the action simultaneously. To

make this idea precise, let the environment of a process P be the set of processes with which P

interacts and an unspeci�ed human observer (the user of an interactive system). Then P performs

an observable action e when P and the environment of P both observe the same event e at the

same time. We call this mutual observation of an action a synchronization. If P is a process, �(P)

(read the \alphabet of P") is the set of events which P can observe.

SOS is a vehicle for building synchronization trees from the syntactic structure of a process

de�nition. Synchronization trees are tree structures whose nodes are behavior expressions and

whose directed edges represent event synchronizations. Given the behavior expression: e � ((f �

stop) j (g � h � stop) we can describe all of its possible behaviors using the tree in Figure 12. Edges

in the tree are interpreted as event synchronizations which transform the behavior expression named

in the source node into the behavior expression named in the target node. When the behavior

53

expression in our example synchronizes with its environment on event e, it continues to behave

as the process (f � stop) j (g � stop). This process is prepared to synchronize on either f or g ,

as represented by branching in the synchronization tree. We denote the tree edge which maps a

process A into another process B as a result of synchronizing on event e, by: A
e
 B .

Plotkin[83] observed that we can de�ne the meaning of an ordering operator as a pattern for

constructing synchronization trees. Furthermore, these patterns can be expressed using axioms and

inference rules. The inference rule for the choice operator j, for example, looks like this:

P
e
 P 0

P j Q
e
 P 0

This rule says that if process P can synchronize on event e to become process P 0, then process

P j Q can synchronize on event e to become process P 0. This de�nes the meaning of choice. This

rule tells us that the reason there was a branching in the synchronization tree of Figure 12 was that

two behavior expressions could be inferred from the expression: (f � stop) j (g � stop). Inference

rules can also contain conditions which are not part of the antecedent. These appear in square

brackets to the right of the inference bar. In the rule that follows, C is such a condition:

P
[C]

Q

We adopt SOS as a means of expressing the meaning of MDL ordering operators.

4.3 The Building Blocks of Processes

MDL includes an inactive process called stop. Inactive means that stop cannot synchronize with

any external events. In many notations, stop means deadlock. In MDL, however, stop is intended

as a terminator so that we can de�ne pre�xing in a standard way. Pre�xing, is the act of creating

a new process by prepending another process with an event. If P is a behavior expression and e is

an event, then e � P (read \e pre�x P") is another process which �rst synchronizes on e and then

behaves like P . We have already seen an example of building up a process by pre�xing in Chapter

2. Recall the task InstructToLand was created by pre�xing the event commitToLand with stop.

Pre�xing a process with an event yields another process.

54

(f; stop) | (g; stop)

g; stop f; stop

stopstop

e ; ((f ; stop) | (g; stop))

e

gf

g f

Figure 12: An example process synchronization tree.

The SOS behavior of a pre�xed processes is as follows:

[e 2 �(P)]

e � P
e
 P

This says that a process P pre�xed by an event e can synchronize on e, and that the resulting

process behaves like P .

With pre�xing, we can create arbitrarily long event sequences, but as yet, there is no way to

express any user choice. For this, MDL provides an operator j (called choice) that combines two

behavior expressions into another that behaves like one or the other of them but not both. In MDL,

the environment actually decides which choice is taken.

More formally, the MDL choice operator j combines two processes P and Q into another P j Q

(read \P choice Q") which behaves like either P or Q but not both. Furthermore, the committal

of a choice is made by the �rst event synchronization happening in either P or Q . The following

55

SOS rule formalizes these concepts:

P
e
 P 0

Q
f
 Q 0

P j Q
e
 P 0

P j Q
f
 Q 0

This says that if P can successfully transform into P 0 by synchronizing on event e, then the choice

expression P j Q , upon synchronizing event e will signify that P was chosen and will, thus, transform

into P 0. Ditto for f and Q . What happens if P
e
 P 0 and Q

e
 Q 0? That is, what is the meaning of

choice if both P and Q can synchronize on the same event e? The choice will be non-deterministic.

4.4 Parallel Composition

The MDL operator which establishes contexts for event synchronization is the parallel composition

operator k. This operator conjoins two processes, stating that they may behave concurrently and

independently, but that any events in the shared alphabet of the processes must be synchronized.

The functionality of this operator is often used to separate complex behavior into a collection of

interacting processes using a principle called composition by conjunction [104]. The idea is that

complex temporal orderings can be expressed as the simultaneous satisfaction of multiple ordering

constraints. The synchronization implied by the k operator is the agent of this simultaneity. This

synchronization is the mechanism for the Mastermind notion of binding, and as will be discussed,

the MDL syntax bind : : : endbind always combines a task and presentation process using k.

The expression P k Q describes the interleaved execution of P and Q with the exception that if

an event occurs in the alphabets of both P and Q , that event can only be observed in one process

when it can simultaneously be observed in the other. The practical implication of this idea is that

these common events block a process from continuing until it can synchronize with another process.

If some event e is in the alphabet of both P and Q , and if P is prepared to synchronize on e but

Q is not, then P will block until Q reaches the synchronization point. Events which are not in

the alphabets of both processes do not block. The following rules capture the semantics of this

56

operator:

P
e
 P 0

Q
e
 Q 0

P k Q
e
 P 0 k Q 0

This is the usual case. In situations where both P and Q can engage in the same event e, they

do so by synchronizing on e. As we will later see, event synchronization may be augmented with

the passing of data between the processes. The other rules deal with cases in which P and Q may

proceed independently (without synchronization). This is only possible when the event is not in

the alphabet of the other process:

P
e
 P 0

[e 62 �(Q)]

P k Q
e
 P 0 k Q

Q
e
 Q 0

[e 62 �(P)]

P k Q
e
 P k Q 0

A variant on the k operator is a non-synchronizing version called interleaving (jjj). Interleav-

ing speci�es that two processes run concurrently, and if they have common events, they do not

synchronize. The rules for interleaving are:

P
e
 P 0

P jjj Q
e
 P 0 jjj Q

Of course, since jjj is commutative, this rule works for Q without loss of generality. And of course:

stop jjj P

P

57

4.5 Enabling and Disabling

Processes can be ordered using the enabling operator (>>). Given two processes P and Q , we say

that P precedes Q by saying P >> Q (read P enables Q). The rules for enabling are:

P
e
 P 0

P >> Q
e
 P 0 >> Q

and, of course,

stop >> Q

Q

Disabling (denoted [>), which we use to implement all of the interruptible operations, is handled

as follows:

P
e
 P 0

P [> Q
e
 P 0 [> Q

If the left process completes before being disabled, then the result is exit:

stop [> B

stop

Finally, if the disabling process observes activity before the �rst process completes, then the �rst

is disabled:

Q
e
 Q 0

P [> Q
e
 Q 0

In graphical user interface design, disabling is common. During a long operation, user interfaces

often provide a cancel button. When a process can be disabled by another process, a symmetric

disabling may occur in the other direction. This occurs, for example, with activities governed by

an hierarchical radio button panel. With an hierarchical radio-button panel, complex interactions

58

are enabled by choices in a radio button panel. If a di�erent button is pressed during one of these

complex interactions, the activity initiated by the �rst button is terminated and another enabled.

This may happen many times. The User Action Notation (UAN)[49] de�nes a special operator $

(called \mutual disabling") just for such a purpose. We adopt this operator in MDL. It is de�ned

in terms of disabling as follows:

P
e
 P 0

P $ Q
e
 P 0 [> (Q $ P)

Note that if the P in this rule ever completes we have:

stop [> (Q $ P)

which, by the exit rule of [> yields stop. The symmetric rule is:

Q
e
 Q 0

P $ Q
e
 Q 0 [> (P $ Q)

4.6 Interruption

It is often the case that certain tasks need to be performed in extra-ordinary situations, but that in

the normal case they are not required. The need for these tasks is dictated by some unpredictable

asynchronous event like a system failure. Tasks that must be performed in response to such events

have a preemptive nature which designers must express relative to other tasks. In CSP, there is an

\interruption" operator (4) which e�ectively terminates the interrupted task. We adopt the same

notation with a slightly di�erent meaning. In MDL, the4 operator establishes an interrupt/resume

relationship between two tasks.

Suppose during the normal course of operation, a �le browser interface supports the task

BrowseFiles. If some catastrophe occurs, perhaps a �le system corruption, then the user must

perform a �le system check and repair (fsck) before continuing. Let the task FileSystemCheck

describe this repair task, and �nally, let the event corruption denote the �le system corruption.

Then:

BrowseFiles 4 (corruption � FileSystemCheck)

59

describes the interruption of the normal BrowseFiles task when the corruption occurs. Interaction

with BrowseFiles will be suspended until the FileSystemCheck task is completed. Note that this use

of interruption with an asynchronous guard event preceding the preemptive task is stereo-typical.

There are three rules governing the semantics of the interruption operator. The �rst says that

a completed task cannot be interrupted:

stop4 P

stop

The second rule describes the normal (uninterrupted) behavior of the system. An interruptible task

behaves as usual if it is not interrupted!

P
e
 P 0

P 4 Q
e
 P 0 4 Q

The third rule describes how the interruption actually works. Once the interrupting task begins,

it must complete, at which point the interrupted task resumes where it left o�, and it is again

interruptible by Q .

Q
e
 Q 0

P 4 Q
e
 Q 0 >> (P 4 Q)

The way this rule is de�ned, preemptive tasks may, themselves, be preempted. Consider A 4

(B 4 C). Designers can prioritize preemptive tasks by daisy-chaining them in this way. Of

course, preemptive tasks which contend with each other may be described using alternation (i.e.,

A4 (B � C)).

4.7 Optional and Looping behavior

In de�ning tasks, one often identi�es subtasks which are optional. If we were building a user

interface for a co�ee vending machine, for example, the subtasks associated with adding cream

and sugar would be optional. In MDL, if P is a task, then Popt (read \opt-P") is a new task

whose single sub-task P is optional. Consider, for example, the task MakeCo�ee in Figure 13.

60

task MakeCo�ee

is

ChooseBrand >> Enrich >> Brew

where

task Enrich

is

AddCreamopt jjj AddSugaropt

endtask

endtask

Figure 13: MDL model of a co�ee vending machine.

The Enrich sub-task decomposes into the interleaving of two optional subtasks AddCream and

AddSugar . According to this model, after the user has completed choosing a brand of co�ee, he

could then immediately choose to brew the cup, he could choose to add sugar and then brew, add

sugar then add cream and then brew, or add cream and then brew.

Another familiar example is the SendMail task of an e-mail browser application. Most mailers

allow, but do not require, senders to list carbon-copy recipients{users other than the primary

recipient who will also receive a copy of the message. Other examples include the speci�cation of

voluntary information in forms-based interfaces. Optionality expresses the opportunity for a user

to perform a task, but it does not require the performance.

Two rules govern the semantics of opt. For a given behavior expression Popt , there must be an

opportunity for P to be performed and an opportunity for P to be skipped. These two opportunities

are captured in the following inference rules. The �rst allows stop to be inferred from Popt without

any action on part of the user.

Popt

stop

That is, if P is optional, then it can be replaced by stop without interaction from the user. In the

other case, however, the user may choose to exercise his/her option and perform task P . This is

captured in the following rule:

P
e
 P 0

Popt e
 P 0

61

Note that after witnessing an event, the optional status of process P is lost. This e�ectively says

that an optional task senses the intent of the user by the presence (or absence) of the �rst interactive

event within P .

The optional operator speci�es that a task may execute zero or one time. Often, however,

designers want to express that a task executes zero or more times. In the ATC model, for example,

a controller may want to modify the position of a plane many times before instructing the plane to

land. We express zero-or-more behavior in MDL using the looping operator �. Given a task P , the

expression P� (read \loop-P") speci�es that P may be executed zero or more times.

The looping operator implies recursion. Process notations in general handle recursion via process

instantiation. In many cases, recursive process instantiation is well-behaved and may be simulated

by a looping construct. In addition, task analysts often express in plans that subtasks should be

repeatable. For these reasons we included an explicit looping operator in MDL.

The rules de�ning the behavior of the looping operator resemble that of the opt operator. The

�rst rule allows the loop to exit:

P�

stop

In the other case, the user must be able to participate in the looping task.

P
e
 P 0

P�
e
 P 0 >> P�

Note how this rule unwinds one iteration of the looping task and follows it with a recursive instan-

tiation of the loop.

4.8 Event Hiding

It is often the case that events will need to be concealed to prevent synchronization in undesired

contexts. Consider again the de�nition of bindingManageFlight . This binding expresses the parallel

synchronization of two events: commitToLand and newPosition. These events are used to connect

presentation activity to task inputs. It is also intended that these events not be available for

62

Table 3: The syntax of communications in MDL.

input communication e?x
output communication

(literal data) e!a
(data from storage) e!x
(data from external linkage) e!#

containing environments to synchronize with as indicated by the hide statement. The designer

understood that run-time systems would manage multiple instances of this binding (under the set

constructor) and he didn't wish for these instances to try and synchronize on each other's events.

The e�ects of the hide statement are described by the following rules:

P
e
 P 0

[e 62 e1 : : :en]

hidefe1 : : :enginP
e
 hidefe1 : : : enginP

0

That is, there is no e�ect on events which are not in the hidden set. However, if an event e is in

the set of concealed events, it appears as the unobservable event i to the outside world:

P
e
 P 0

[e 2 e1 : : :en]

hidefe1 : : :enginP
i
 hidefe1 : : : enginP

0

4.9 Data Parameters and Communications

We add data to the MDL notation using a declarative mechanism similar to that found in Lo-

tos. Lotos augments behavior expressions with data speci�cations and a convenient notation

for combining data and process behavior. In full MDL speci�cations, events are never used di-

rectly for synchronization. Rather they are augmented with direction and often data ows to yield

communications. We saw examples of communications in Chapter 2. Figure 3 lists the syntax of

communications. Given an event e, an input communication referencing some storable data loca-

tion x is phrased e?x . Likewise, an output referencing some value y is phrased e!y . The de�nition

of parallel synchronization is now augmented to make synchronization require both inputs and out-

puts. Let P == e?x � P 0 and Q == e!3 � Q 0. Then P k Q = P 0 k Q 0 with the additional constraint

63

that x = 3 after the synchronization of event e.

Our de�nition of communication semantics is more restricted than that provided in Lotos.

Lotos de�nes a more elaborate de�nition of value o�ering. During a Lotos synchronization, for

example, values may be passed in both directions, as in:

(e?x !3 � P 0) k (e!10?y) � Q 0

which would, after synchronization of e, yield P 0 k Q 0 with x = 10 ^ y = 3. We chose not to adopt

such powerful rules in MDL.

4.10 Dynamic Task Management

Designers may wish to associate the necessity of performing a task with some asynchronous physical

phenomenon. The interruption operator (4) is one example, but there are others. Consider the

model of air tra�c controller tasks described above. The number of planes in the airspace of a

given airport varies widely during the course of a day. As planes enter the airspace, they request

landing clearance. For each plane that requests clearance, the controller has a task to perform. The

inherent dynamics of this task make it di�cult to model using the primitives we have supplied thus

far. To ease the job of designers, we added a special operator to MDL for declaring just such a

situation. The SeteP constructor speci�es the interleaved execution of an undetermined number of

instantiations of process P . Upon every synchronization of event e, a new P process is instantiated

with the value passed in to the communication of e.

There will be an instance of the ManagePlaneInFlight task for each plane in the airspace. Pilots

entering the airspace of an airport communicate ight information and status to the air tra�c

controller. The controller must then record this information and assign the ight a position in the

airspace. These latter activities coincide with the instantiation of aManagePlaneInFlight task. We

now see the larger picture of an air-tra�c controller's task. He or she must manage many planes

in ight, often introducing new ones by providing the proper information. This aspect of their job

is easily expressed in MDL as shown in Figure 14.

We now incorporate the Set constructor into MDL by de�ning it formally in terms of operators

we already have.

SeteP == e � (P jjj SeteP)

64

event accept : hstring; inti

task ManagePlanes

is

RecordFlightInfo k Set
accept

ManagePlaneInFlight

where

task RecordFlightInfo
is

(newFlight?x � position?y � accept !hx ; yii)�
endtask

endtask

Figure 14: MDL description of task for manging planes in an airspace.

Since we de�ne this operation in terms of other MDL operators, SeteP de�nes another process which

may be composed using any of the other MDL operators.

65

Chapter 5

The Mastermind Toolkit (MMTK)

This chapter describes the Mastermind Toolkit (MMTK), a run-time infrastructure and collec-

tion of reusable C++ components which can be instantiated and aggregated to implement MDL

behavioral speci�cations. MMTK components are designed to easily compose into a run-time im-

plementation of user tasks and task/presentation bindings. Model-based code generators implement

an MDL behavior expression E by aggregating MMTK components (representing the various oper-

ators within E) into a class and connecting these components according to the syntactic structure of

E . Inherent in this approach is a distribution of control policy over many independent components.

These components implement orderings by issuing control imperatives to sub-ordinate components

and announcing activity and status to parent components in the tree hierarchy. We designed these

components around a model of machine execution in which each component is independent and

may message other components without waiting for them to return. That is, from the code gener-

ator's standpoint, MMTK components are concurrent and need only be aggregated and connected

in order to implement an MDL behavior expression. The bulk of the complexity in MMTK centers

around designing components and infra-structure to support this model.

There are three di�erent kinds of components in the MMTK architecture: orderings, events,

and the run-time control scheduler. The scheduler is the arbiter of control in this architecture.

There are many ordering and event components, all of whom are designed to be dispatched by

the scheduler. In the abstract, ordering components correspond to entities in an MDL behavior

expression. The >> and [> operators, for example, correspond to speci�c classes of ordering

component in MMTK, as do input and output communications ? and ! . Ordering components

implement MDL orderings. They cooperate using a model of computation which we formalize

in Section 5.1.2. Event components implement MDL events. In MMTK, event components are

separate entities from input and output communication components, which synchronize through

66

the events. Event components are independent of the control component tree hierarchy, but they

must inter-operate with the components of this hierarchy. Finally, the scheduler is an autonomous

entity which rations control out to the ordering and event components so that they may carry out

their functionality.

Additionally, MMTK components support data and event augmentation and user-interface

toolkit inter-operation. Since such support extends the control behavior of MMTK, we designed

MMTK components to be extensible by parameterizing the classes so that speci�c data, event, and

UI toolkit behavior augmentation can be speci�ed by instantiation. The design is novel because it

separates these aspects of functionality into well-encapsulated parts which may vary independently

but which compose uniformly and seamlessly with the control aspects of components. This chapter

describes the components which implement each of these dimensions and how they compose.

5.1 The Control Model

To understand the design of MMTK, we must understand the nature of control which the toolkit

must support. MDL code generators expect to aggregate an MMTK component for each MDL

ordering operator. This aggregation should be all that is required to implement the control func-

tionality of the MDL expression The run-time execution model assumed by this strategy is one of

concurrent components which communicate with other components by sending messages. Messag-

ing in this model is not the same as invoking a method and waiting for that method to return.

Rather, a component messages another component and then goes on about its business. This is

necessary because some of the components implement concurrency. This section motivates this

control model with an example and then states the model formally.

5.1.1 A Run-time Scenario

We now look at precisely what happens at run-time. Recall, the code generated for the air-tra�c

control interface (Figure 15). The task ManagePlaneInFlight is realized by four components:

inputNewPositionThenLand, loopInputNewPosition, inputNewPosition, and inputCommitToLand. At

run-time these components are independent entities that communicate by messaging each other.

An example of this messaging is shown in Figure 16. Arrows denote the issuing of a signal from one

67

class Binding_ManageFlight : public MdlParOrdering, // The binding operator.

// The events.

public MMBlockingEvent_NewPosition,

public MMBlockingEvent_CommitToLand f
public:

Binding_ManageFlight();

virtual ~Binding_ManageFlight();

// Parameter access methods.

string& getFlight();

void setFlight(const string&);

int getPos();

void setPos(const int&);

protected:

//

// Implementation of the task ManagePlaneInFlight.

//

MdlSeqOrdering inputNewPositionThenLand;

MdlLoopOrdering loopInputNewPosition;

InputConcealedEvent<string,

Binding_ManageFlight,

MMBlockingEvent_NewPosition,

Binding_ManageFlight> inputNewPosition;

InputConcealedEvent<string,

Binding_ManageFlight,

MMBlockingEvent_CommitToLand,

Binding_ManageFlight> inputCommitToLand;

//

// Implementation of the presentation Airplane.

//

MdlLoopOrdering loopoutputNewPositionOrLand;

MdlAltOrdering outputNewPositionOrLand;

PresOutputConcealedString<MMBlockingEvent_NewPosition,

Binding_ManageFlight> outputNewPosition;

PresOutputConcealedString<MMBlockingEvent_CommitToLand,

Binding_ManageFlight> outputCommitToLand;

protected:

virtual void MMenable();

private:

// The parameters.

string flight;

int pos;

g;

Figure 15: C++ header �le implementation of ManageFlight binding.

68

component to another, and the numbers indicate the order in which these signals are issued. At

some point inputNewPositionThenLand will be instructed by its parent Binding ManageFlight to ac-

cept activity (message 0 in the diagram). At this point, inputNewPositionThenLandmust implement

this instruction in a way consistent with the >> ordering. Since the intent of >> is to sequence

two processes, inputNewPositionThenLand instructs its left component (loopInputNewPosition) to

accept activity (message 1 in the diagram). At this point, it sends no messages to the right child.

loopInputNewPosition implements the � ordering, which means that it must support two behaviors:

1. the iteration executes (as sensed by user activity), or

2. it must be skippable (the loop terminates).

To implement the possibility of the iteration executing, the loopInputNewPosition component must

instruct its child, inputNewPosition, to accept activity (message 2 in the diagram). This child

implements a leaf, so it enables input in some presentation widget and then responds with an ac-

knowledgement (message 3 in the diagram). To implement the possibility of being skipped (loop

termination), the loopInputNewPosition component must instruct its parent,

inputNewPositionThenLand, that it may be skipped (message 4 in the diagram). Consistent with the

>> ordering,

inputNewPositionThenLandmust respond to this instruction by instructing its right child, inputcommitToLand

to accept input (message 5 in the diagram). Presumably, this component will enable input in some

presentation widget and then respond with an acknowledgement to its parent (message 6 in the

diagram).

This run-time scenario illustrates two facets of control component behavior. First, components

communicate point-to-point in the tree topology as opposed to broadcasting signals. Second, com-

ponents expect to issue signals back and forth using a protocol.

5.1.2 A Formal Model of Control

As the example demonstrates, the control model assumes independent, concurrent, communicating

components. Components maintain internal state which manages coordinating messages, and it

issues the coordinating messages down well-de�ned control paths (like parent, left child, right child,

69

inputNewPositionThenLand

loopInputNewPosition inputCommitToLand

inputNewPosition

32

1

4

5

6

0

Figure 16: Example run-time communication of MMTK components.

etc). We shall henceforth refer to these messages as signals and these control paths as channels. Sig-

nals communicate a change of status from one component to another, and components often react

to signals by issuing signals to other components. Channels, likewise, may be connected to establish

point-to-point communication paths between di�erent components. This model of concurrent com-

ponent signaling through channels is not directly supported in a traditional programming language

like C++. We overcame this di�culty by formalizing the control model and then implementing the

formalism.

If we ignore event synchronization for the moment, the control issues that come up with MMTK

components can be conveniently modeled using Mealy machines. A Mealy machine[52, p. 43] is a

�nite automaton extended with the ability to produce output. Mealy machines are often used to

formalize reactive systems because they are simple, and they support input and output communi-

cation. We adapt Mealy machines to our purposes by organizing the input and output alphabets

to model point-to-point communication in a tree topology. Whereas formal Mealy machines have

input and output symbols from alphabet sets, our adaptation encodes point-to-point channel com-

munication into these symbols. To model point-to-point tree communication via Mealy machines

channel/signal communications are encoded as input/output symbols in the alphabet of a Mealy

machine. Since there are a �xed number of signals, and since each machine has a �xed number

70

of channels, we can use the following formal trick. For every signal s which can be input over a

channel c, c?s is in the input alphabet of the Mealy machine. Likewise, for every signal s which

can be output over a channel c, the symbol c!s is in the output alphabet of the Mealy machine.

Channel communications are encoded as input/output symbols. This enables the �nite control of

a Mealy machine to be implemented in C++ using the case logic of a switch statement.

To add event synchronization to the control model, we model events as additional components

with data structures that can store pointers to Mealy machines which are pending and then, when

input communications can be matched to outputs, the event will explicitly activate all components

in the pending queue. The inter-connectivity of control components (Mealy machines) and events

is illustrated for the binding ManageFlight in Figure 17. In this �gure, the circles represent Mealy

machines, the roundtangles represent event components, the solid lines represent tree connectors,

and the dashed lines represent event registry communications.

5.2 Control Components

Control components are those run-time entities which implement MDL operators. In MMTK, these

components must behave as modeled by concurrent Mealy machines which communicate in a point-

to-point tree topology. There is a di�erent C++ class for particular orderings like >>, [>, and e?x ,

but all of these have a common structure. This section discusses this generic structure and defers

the de�nition of speci�c Mealy machine �nite controls to Chapter 6. To support this deferment, we

de�ned a generic control component class for each arity of MDL ordering operator. These classes

implement the state transition strategy for their respective arity by delegating ordering-speci�c

detail to sub-classes. This allows us to then implement speci�c ordering machine implementations

by subclassing and providing specialized �nite control implementations.

Di�erent MMTK components have di�erent tree communication needs based on the arity of

the MDL operator they implement. Figure 18 depicts the UML[] model of these communication

needs. At the top is a class Node from which all ordering classes (MdlSeqOrdering, MdlAltOrdering,

etc) are derived. Subclasses of Node specialize it into tree nodes with subordinate components

(NodeWithChildren) and nodes which can be subordinate components of other components

(NodeWithParent). As the diagram illustrates, nodes with children contain an attribute called child,

71

||

|||>>

* f?y e!a f!b

e?x

e

f

Figure 17: Example MMTK control event component connectivity.

72

NodeWithChild NodeWithParent

Node

RootNode InternalNode LeafNode

DynamicNode BinaryNodeUnaryNode

child

secondChild

Figure 18: High level design of MMTK control components.

and the type of child is NodeWithParent. Moving down the inheritance hierarchy, we see classes

RootNode, LeafNode, UnaryNode, and BinaryNode. These form the immediate base classes from which

the classes of the speci�c ordering components (like MdlSeqOrdering) will inherit. Implementations

of MDL communications and orderings are grouped by their tree communication needs. The class

LeafNode, for example, is the base class for atomic control components (those which implementMDL

input and output communications), UnaryNode is the base class for components which implement

unary MDL operators (like opt and �), and BinaryNode is the base class for components which

implement binary MDL operators (like >>, [>, k, etc).

By modeling the di�erent tree communication needs of each MDL ordering, we are able to

implement the behavior of generic components (like BinaryNode), allowing speci�c strategies (like

MdlSeqOrdering) to specialize the method with ordering speci�c behavior. There is, for example,

a single abstract method for implementing the transition function of all binary components. Sub-

classes instantiate this method for a particular ordering by specializing abstract methods. Figure

19 lists the abstract method for state transitioning in binary components. The underlined meth-

ods are abstract and are over-ridden by subclasses of BinaryNode. The class MdlSeqOrdering, for

73

void transitionState(Signal pin signal, cin signal, c2in signal)
f

int nextState = getNextState(pin signal, cin signal, c2in signal);

Signal pout signal = getNextParentOutput(nextState);
if (pout signal 6= nil) issueParentSignal(pout signal);

Signal cout signal = getNextChildOutput(nextState);
if (cout signal 6= nil) issueChildSignal(cout signal);

Signal c2out signal = getNextSecondChildOutput(nextState);
if (c2out signal 6= nil) issueSecondChildSignal(c2out signal);

state = nextState;
g

Figure 19: The transition algorithm for binary MMTK components.

example, overrides the underlined methods with functionality speci�c to the behavior of the Mealy

machine implementing >>; whereas the class MdlExclOrdering overrides the same methods with

functionality speci�c to the behavior of the Mealy machine implementing$. These methods can

be generated automatically from a Mealy machine description. The upshot of this approach is that

we can design the Mealy machines in a form which supports automated correctness reasoning and

then automatically generate classes like MdlSeqOrdering from the formal description. Chapter 6

explains this process in detail.

The calls to transitionState are made indirectly by the scheduler. The scheduler dispatches a

signal to a particular channel on a particular machine. If, for example, a component instructs its

child component to accept activity, then that child will be dispatched an enable signal over its

parent channel. If c is a pointer to the child component, and s is the signal to dispatch, then the

dispatch is accomplished by:

c->acceptSignalFromParent(s)

This method then invokes the transitionStatemethod with the signal s passed as the parent input

and the empty signal nil signal for the child and second child signals. This may result in new

signals being issued (added to the scheduler's queue).

74

Input Event Output

int Do();

Figure 20: High level design of MMTK event components.

5.3 Event Components

MMTK implements the MDL ordering k for describing concurrency with synchronization. Syn-

chronization is one of the most powerful features of process notations, and consequently, one of the

most di�cult to implement. To understand the complexity, consider how we might implement a

component for k. Like other components, it instructs sub-ordinates to accept input and to discon-

tinue accepting input, and it announces activity and status information to its parent component.

However, communications which must synchronize may not be immediate sub-ordinates of the com-

ponent that implements the k. In fact, in the air tra�c control example, the k component is many

levels above the communications which must synchronize to implement its semantics (as shown in

Figure 17). For this reason, we decided to separate the handling of event synchronization from the

handling of control components.

In doing this, we created a component called an Event which is distinct from input and output

communication components yet intimately coupled with them. Event components sense the enabling

of associated communication components and, when both inputs and outputs have been sensed,

the event component actually activates the input and output communication components, passing

data as necessary. Whereas thus far, components have been purely reactive, events can actually

initiate activity. That is, control components aggregated into tree hierarchies are purely reactive;

whereas event components (which are linked to certain leaf components in the tree but which are

not a part of the tree itself) initiate activity which percolates through the tree.

5.3.1 Events and Communication

To understand the precise behavior of events and communications, it is instructive to see how

they are related. Figure 20 uses the UML notation to describe three classes: Event , Input , and

75

Output . Event classes contain collections of Input and Output objects. The Input and Output

classes represent leaf components in the run-time tree hierarchy, and they correspond to MDL

communications. This diagram suggests that input and output communications are related at run

time by the event with which they synchronize. Synchronization is triggered when the scheduler

calls the Do method of the event.

Figure 21 depicts a time series view of the communication requests and eventual synchronization

of an event. Let the object Event in the diagram correspond to some MDL event e, and let Input

correspond to an MDL communication e?x and Output correspond to an MDL communication

e!y . Input and output components know the event with which they must synchronize. When an

input component is instructed to accept activity, it requests synchronization from the event (Time

T1). The request is made by calling the register method on the event with the object making

the request passed as a parameter. If, as shown in the time slice T2, the Do method of the event

is invoked by the scheduler, it will return with false because at this point, the event has only

witnessed synchronization requests from input communication components. Time slice T3 shows

an output component requesting synchronization by registering with the event. At this point, the

event has witnessed both input and output communications registering for synchronization. At

some later point, the scheduler dispatches the event by calling its Do method. What happens as a

result of this is shown in time slice T4. The call to Do makes the event look to see if there are both

inputs and outputs registered (action 1). Since the event can synchronize, it calls the Activate()

method of the output component (action 2). This method eventually returns a value which the

event component stores in a local variable k. When activated, however, the output communication

announces activity to its parent in the tree. This is done by pushing a signal onto the scheduling

queue and invoking the scheduler (action 3). The scheduler processes the request and modi�es

the state of the system. When the scheduler returns, the call to the output's Activate() method

returns, and the event then calls Activate(k) on the input (action 4). This likewise invokes the

scheduler (action 5), and upon return, the event component returns true (action 6).

The behavior of the event and communication components is tightly coupled with that of the

scheduler. At any given time, there may be many events which wish to activate synchronizing

communication components. The scheduler services them by calling their Do() methods in strict

sequence. Incidently, when the Do() method of an event returns false the scheduler puts it on a

76

Behavior

T1

T3

T4

T2

Input OutputEvent

Scheduler

register(this);

Input OutputEvent

Scheduler

1) Do(); 2) return false;

Input OutputEvent

Scheduler

register(this);

Input OutputEvent

Scheduler

2) k = Activate();4) Activate(k);

6) return true;1) Do();

5) Schedule(); 3) Schedule();

Time

Figure 21: Time series diagram of event synchronization.

77

special queue called the blocking queue. Such events remain in the blocking queue until a commu-

nication registers a synchronization request.

To summarize, synchronizing events are MMTK components distinct from communications but

intimately coupled with them. Moreover, activity within the control components is initiated by

the synchronization of an event. As a result of these activations, the control components will

communicate with each other, the state of the system will change to reect the activation of the

communications, and other events may be queued up for synchronization.

5.3.2 Events with Feedback

Events as described so far synchronize by activating input and output communications as soon

as both enable activity. Let P = e?x � P 0 and Q = e!y � Q 0 for some event e. By the way

we have de�ned events so far, if P k Q , then the component associated with e?x will register an

input request with the component associated with event e, and the component associated with e!y

will register an output request with the same event component. The next time the scheduler is

invoked, event e will be synchronized because it has pending input and output communications.

However, this strategy does not work for implementing output communications that are attached

to presentation functionality.

An output communication of the form e!# is understood to be connected to a presentation

component that actually senses activity from the user. For such components, the enabling of

activity is not the same as the committing of such activity. Rather, the enabling of the activity

might be interpreted as the ungreying of a presentation component like a button in radio-button

panel; whereas the committing of such activity only occurs when the user clicks his mouse over

said button. To accommodate this distinction, events need to distinguish between the potential for

output synchronization and the recognition of synchronization as a result of the user interacting

with a presentation. For this we designed a class called FeedbackEventwhich is shown in Figure 22.

The class FeedbackEvent subclasses Event which means it inherits the aggregate attributes

Input and Output of input and output communication components respectively. In addition,

78

Input Event Output

int Do();

PresOutput
pending

inputs outputs

FeedbackEvent

Figure 22: High level design of MMTK feedback-event components.

FeedbackEvent has an association called pending which aggregates a special kind of Output compo-

nent. This special output component is called PresOutput, and it is understood that these compo-

nents will be connected to user interface toolkit widgets.

For events with feedback, the synchronization algorithm is slightly more complex than for other

events. Figure 23 demonstrates the extra steps involved. Since FeedbackEvent subclasses Event

it behaves in exactly the same fashion with respect to input events. So we can interpose this

scenario at time slice number 3 of Figure 21. That is, assume that the input has already regis-

tered a request to synchronize with the feedback-event. When a component of class PresOutput

is instructed to accept activity (�rst time-slice of Figure 23), it issues a registerFeedback(this)

message to the feedback-event. Unlike the register() message which is a request to synchronize,

registerFeedback() announces the potential for a request to synchronize. Feedback-events queue

up such requests. When the Do() method of a feedback-event is called (second time slice), the

event checks to see if there are inputs requesting synchronization and outputs with the potential

to synchronize. If this is the case, the feedback-event invokes the Synchronize() method on the

corresponding pres output events (2). The pres output event responds to this by enabling the

presentation command to which it is attached (3). Since no synchronization occurred, the event

79

returns false, which results in it being placed in the blocked queue of the scheduler. But the presen-

tation is enabled and awaiting user input. If this input arrives (third time slice), the presentation

command bundles any input data k and invokes the pres output component with SetByCommand(k).

The pres output event now registers to synchronize with the event using register(this). At this

point, things continue with the fourth time slice of Figure 21.

To summarize, FeedbackEvent components and PresOutput components work in tandem to con-

nect UI toolkit commands into the run-time system of task implementations.

5.3.3 An Example

Returning to the example in Figure 16 of Section 5.1, consider what happens when the component

inputNewPosition is instructed to accept input. Before acknowledging his parent, this component

registers an input request with the event

MMBlockingEvent NewPosition. This event queues up the input request and adds itself to a pending

event queue in the scheduler (described below). At around the same time, the outputNewPosition

component is instructed to accept activity and registers a feedback request to the event. When

the scheduler services pending events, it calls the Do method of this event which instructs the

outputNewPosition component to enable its corresponding presentation. This presentation is a drag

interactor, and when enabled, it allows the user to drag the plane widget around the display and

drop it into a new position. When such a drag occurs, outputNewPosition registers with the event,

and the next time the Do method of the event is called, synchronization occurs.

5.4 The Runtime Scheduler

The concurrency assumed by components is actually simulated by a small control scheduler. At

run-time, components signal other components by submitting a signal request onto a scheduling

queue and returning. At various points, the scheduler pops requests o� this queue and dispatches

them to the target components. The scheduler actually maintains three queues:

signals holds inter-component signal requests.

pendingEvents holds events which are ready to synchronize as indicated by the existence of an

input and corresponding output communication component, which are both ready to accept

80

Input FeedbackEvent PresOutput

Scheduler Command

Input FeedbackEvent PresOutput

Scheduler Command

Input FeedbackEvent PresOutput

Scheduler Command

registerFeedback(this);

1) Do();
4) return false;

2) Synchronize();

2) register(this);

1) SetByCommand(k);

3) Enable();

T1

T2

T3

Time Behavior

Figure 23: Time series diagram of feedback-event synchronization.

81

activity.

blockedEvents holds events which are only partially ready to synchronize as indicated by the

existence of either an input or an output ready to accept activity, but not both.

When the scheduler is invoked, it services all the requests in the signals queue. When this queue is

empty, the scheduler checks the pendingEvents queue, and, for each pending event, it invokes the

Do method of the event and, based on the result of this method, puts the event back in the queue.

5.5 Data and Event Management

We have alluded to the data forwarding capability of MMTK components in the execution scenarios

of event synchronization. Recall that MDL associates data types with events, and communications

synchronizing via these events are required to have compatible types. MDL does not have a rigorous

data type language (like Lotos's use of ACT ONE) because we expect task models and presentation

models to interoperate with an application model which de�nes, among other things, data types.

We assume that any data types in an MDL expression are legal C++ primitive or class types.

This assumption is of great practical signi�cance because it allows the parameterization of MMTK

components by data type. We have already seen the use of this parameterization in the code

generated for the ATC interface. Recall that the input and output communications were instances of

instantiated C++ template classes. In general, input and output communications are parameterized

by data type and event type. This section discusses this design in more detail.

5.5.1 Data Extension

There are two obstacles to overcome when adding data forwarding to an implementation of a

control engine. First is the notion of where data actually lives. In an MDL behavior expression,

communications can reference any datum within its block scope. This means that, at run-time, the

data location needed by a communication may actually reside in a di�erent component. Second is

the complexity of parameterizing a tightly coupled association like that which governs the inter-

operation of communications and events. It is not enough to parameterize just the event class or just

the communication class. Both classes must be parameterized, and, unfortunately, C++ templates

82

template < class DATA,
class CONTAINER,
void (CONTAINER::* SET METHOD)(const DATA&) >

class Input : public Input impl f
public:

Input(const char* s) : index(s) fg
: : :
void Activate(class DATA& d)

f

CONTAINER* location = walkTree(this, index);
location! �SET METHOD(d);
Input impl::activate(); // Invokes the Mealy machine.

g

private:
const char* index;

g;

Figure 24: C++ template parameterization of input component.

are not nearly as expressive as we would like them to be to govern this multi-class parameterization.

We formulated a solution which solves the data forwarding problem and correctly handles the multi-

parameterization of C++ classes.

5.5.2 Data Forwarding

To do data forwarding, we take advantage of the tree structure of our systems. Though a datum

may not always reside in the same place, it always resides within some component in the tree

hierarchy. In the ATC interface, for example, the flight and pos data live in the tree component of

class Binding ManageFlight. The insight into data forwarding is that the communications which use

these data can �nd them by walking up or down the tree structure. Moreover, since the structure

is a tree, we can encode the exact path to the data as a sequence of the tree-walking operations:

parent , leftChild , and rightChild . In fact, we can encode these path expressions as strings of the

symbols p, l , and r . These strings, which we shall henceforth call indices, can be passed to the

constructor of the communication components so that they will know how to �nd data. Recall

the constructor for class Binding ManageFlight passed strings like this to the constructors of its

aggregate communication components.

83

With this in place, communications may be parameterized. Figure 24 shows how the param-

eterization of the input component works. The mechanism for parameterizing classes in C++

is the template. The template in Figure 24 has three parameters: DATA, CONTAINER, and

SET METHOD. The parameter DATA represents the type of data this communication compo-

nent receives. In the ATC example, the data type is either string (if the datum of interest was

flight) or int (if the datum of interest was pos). The parameter CONTAINER represents the

class of the component in which the real data reside. In the ATC example, the CONTAINER is

the class Binding ManageFlight. The parameter SET METHOD is a pointer to a CONTAINER

member function which takes a DATA parameter. Instantiations of class Input should supply for

this parameter the name of the set method for the desired datum.

Returning to the ATC example, suppose we wanted to declare a communication component

which inputs the flight datum. The following instantiation of the Input template would accomplish

this:

Input < string,

Binding ManageFlight,

&Binding ManageFlight::setFlight >

Now suppose we want to declare an input component for the pos datum. The following instantiation

would accomplish this:

Input < int,

Binding ManageFlight,

&Binding ManageFlight::setPos >

Now assuming the constructors of these instances are passed proper data location indices, this code,

when activated by a synchronizing event, sets the given datum with the value passed to Activate().

The design of the input template is novel because of its generality. We can put as many data

in a container class as we desire and declare input and output communication components which

query and set these data as appropriate. Unfortunately, though the de�nition of Input provided

here is legal C++, we could not �nd a compiler that could handle passing pointers to member

functions as template parameters. The compromise we used in building our demos throws out this

parameter, and assumes the existence of methods called Set() and Get() in class CONTAINER.

84

This is, of course, a poor compromise because it e�ectively limits the number of data a container

class may contain (in fact the limit is 1).

5.5.3 Event Locators Through Parameterization

With a facility for data forwarding, it is realistic to parameterize communications by a data type.

Recall, however, that in MDL, there is a strong typing relationship between events and communica-

tions which synchronize over those events. The code for class Input in Figure 24 only deals with the

data forwarding aspect of communications. The other aspect deals with registering synchronization

requests with an Event component. Now here is the problem. For practical reasons, we do not wish

for the code which builds component trees to have to build and link the communication components

to event components. So instead, we adopted a mechanism for attaching events to communications

using template parameterization.

In some sense events are like global variables. They are names which communications use to

express a common locus of synchronization. The key observation here is that if we forget about

hidden events for the moment, there will be exactly one instance of an event for each di�erent

event name. There is an object-oriented design pattern called Singleton [41] which applies when

there must be exactly one instance of a class which must be accessible to clients from a well-known

access point. Clients of event components are input and output communication components, and

the well-known access point is the name of the event. More precisely, the access point is the class

name of the event.

Our implementation of events assumes that there will be exactly one instance of unconcealed

events and an arbitrary number of instances for concealed events. Communications which need to

access a non-concealed event do so by invoking the static method Instance() of the event class.

That is, if e is an MDL event, there will be an MMTK class called MMEvent_e. So, for example,

when a communication component wishes to register a synchronization request with an event e, he

invokes the following code:

MMEvent e* event = MMEvent e::Instance();

event->register(this);

Since all access is done through the class name, we can abstract this class name into a template

parameter as shown in Figure 25. So now, when we instantiate the Input or Output communication

85

template < class DATA,
class CONTAINER,
void (CONTAINER::* SET METHOD)(const DATA&),
class EVENT >

class Input : public Input impl f
public:
: : :

void MMEnable() f
EVENT* event = EVENT::Instance();
event!register(this);

g

: : :
g;

Figure 25: C++ template parameterization of event locator logic.

class with a data parameter, we can also supply the classname of an event with which it should

synchronize. This makes the connection between events and communications very declarative and

simpli�es code generation.

For concealed events there may be multiple independent instances of the event. This is much

like local data, and that is how we handle it. Recall from Figure 8 that communications re-

ferred to concealed events. Recall also that the class Binding ManageFlight subclassed event classes:

MMBlockingEvent NewPosition and MMBlockingEvent CommitToLand. This is an example of aggrega-

tion inheritance. It is used to give local copies of these events a place to reside within the tree.

This is nice because, augmented with an event locator index, communications can walk up the

tree to the component which holds the concealed events and then cast that component into the

appropriate event class. An example of this is shown in the declaration of parameterized class

InputConcealedEvent in Figure 26. This requires that the constructor take, in addition to a data

index, an event index (called eventIndex) so that the instance of the concealed event may be located

by walking up the tree. When this class is instantiated, the parameter CONCEALMENT will be

the class which aggregates a local copy of the event. In the ATC example, this will be the class

Binding ManageFlight.

86

template < class DATA,
class CONTAINER,
void (CONTAINER::* SET METHOD)(const DATA&),
class EVENT,
class CONCEALMENT >

class InputConcealedEvent : public Input impl f
public:
: : :

void MMEnable() f
CONCEALMENT* eLoc = (CONCEALMENT*) walkTree(this,eventIndex);
EVENT* event = (EVENT*) eLoc;
event!register(this);

g

: : :
g;

Figure 26: C++ template parameterization of concealed event locator logic.

5.5.4 Summary

To summarize, we augmented the control aspect of MMTK with data and event location manage-

ment through use of class parameterization. The net e�ect is the ability to declare input and output

communication components which specify:

1. the type of data they manipulate,

2. the location of that data,

3. the name of the event with which they synchronize, and

4. if the event is hidden, the location of that event.

All of this is done using template instantiation parameters and data/event locator indices which

are passed to the constructors of these components.

5.6 UI Toolkit Interoperation

Output communications de�ned in pres : : : endpres processes may contain wild-card data indi-

cated by the symbol #. These symbols represent a linkage obligation that resolved by a presentation

87

component. Presentation components are generated from a presentation model, and are, therefore,

not expressible in MDL. The link obligation is non-trivial.

1. PresOutput components must issue enable and disable presentation widgets according to

whether or not the components can legally synchronize.

2. The speci�c presentations need to be able message PresOutput components to indicate user

activity and data ow.

As we alluded to earlier, MMTK components resolve these linkage obligations using a UI toolkit

device called a command object. Command objects are run-time presentation objects which

encapsulate the action performed as a result of graphical user-interface interaction. They represent

the enabledness of a presentation interactor and, therefore, are convenient vehicles for explicitly

enabling and disabling interaction. The also have a special method called DO() which is invoked

whenever an interaction completes. We use command objects in Amulet[72] as a means for con-

necting MMTK components to bound presentations. This section describes the details of this

connection.

5.6.1 The Amulet Input Model

The Amulet toolkit provides a solution to this problem in the way it handles interaction. Whereas, in

toolkits like Xt, interaction functionality is tied directly to graphical objects, in Amulet, interaction

functionality is encapsulated in one of a small set of behavioral entities called interactors. Interactors

encapsulate protocols of gesture like Selection, Text Input, MoveGrow, etc. What is remarkable

about Amulet is that these interactors compose very easily with graphical entities. This is a subtle

point, but it basically means that any graphical entity can be made interactive by adding to its parts-

list an interactor object. To support such a general technique of composition, the Amulet designers

needed a convenient way to express the actions which are performed as a result of interaction.

Amulet interactors aggregate a special kind of object called a command object. When an

interaction completes, the interactor invokes the DO method of its command object. Recall the

direct manipulation that we used in the ATC interface. This was accomplished by attaching an

Am Move Grow Interactor object to the airplane widgets. This interactor manages the moving of

the graphic while a user is dragging it to a new location. When the user drops the graphic (by

88

Am De�ne Method(Am Object Method,
void,
callback with string,
(Am Object self))

f

Am Value leaf = self.Get(MM TASK LEAF);
: : :
PresOutput<string>* c = (PresOutput<string>*)((Am Ptr) leaf);
Am String astr = (Am String) self.Get(Am VALUE);
: : :
string str((const char*) ((Am String) astr));
c!SetByCommand(str);

g

Figure 27: Method that activates an MMTK PresOutput component. This method is invoked by
an Amulet interactor when in response to user input.

releasing the mouse), the interactor invokes the DO method of its command object. The bene�t

within Amulet of command objects comes from the fact that new types of behavior to draggable

objects without having to change a monolithic call-back function. We found them to be equally

useful for connecting MMTK components to presentation components.

5.6.2 Command Objects Satisfy Linkage Constraints

Amulet command objects contain a number of data slots within which we store all of the necessary

MMTK/Amulet linkage information. We built a prototype object called MM Callback Commandwhich

is an instance of the more generic Amulet Am Command object. These objects have three data slots:

Am ACTIVE which if set to true enables interaction,

Am VALUE which holds the value of the interaction (the name of the button that was selected,

mouse position, etc), and

MM TASK LEAF which contains a pointer to the PreOutput component containing this com-

mand object for use in calling back upon interaction.

To understand how the data in these slots, work, consider the DO method for commands which

can communicate strings in Figure 27. This method gets called when an interactor observes the

end of an interaction. The �rst thing this method does is to retrieve the PresOutput which is to

89

be noti�ed of interaction (stored in the MM Task Leaf slot. Then the actual string which needs to

be passed is retrieved (stored in the Am VALUE slot). Finally, the PresOutput is messaged with the

string.

5.6.3 Connecting MMTK and Amulet Components

The method of connecting MMTK and Amulet components then, is to connect an MM Callback Command

object to a given PresOutput component and then to install this object into the Am COMMAND slot of a

particular interactor. The connection of object ot MMTK component can be done in the construc-

tor of the MMTK component. Making the object a part of an interactor, however, must be done

explicitly when the graphical widget is created.

Command objects are useful as a means of multiple aggregation inheritance. Buttons, and in

fact any interactive object in the Amulet toolkit, use Command objects not only to implement

interactions, but also to represent so-called interface state like the status of being greyed-out.

When a button is created in Amulet, it actually instantiates a prototype Command object and

constrains its visual attributes (like color) over attributes of the Command object (like Active).

This indirection of state and behavior through command objects allows us to treat commands as a

linkage mechanism between MMTK components and presentation components.

5.7 Discussion

Run-time systems embody more implementation detail than do model-based speci�cations. This

embodiment of detail results from design decisions which codify assumptions and give structure

to abstract entities. In designing MMTK, we made two fundamental design decisions concerning

run-time control policy, and user interface toolkit architecture.

5.7.1 Run-time Control Policy

The run-time control policy of a system governs the delegation of control among independent

components of the system. On sequential machines, concurrency must be simulated. In a classic

paper[50], Hoare identi�ed three distinct classes of concurrent processes:

90

1. Competing processes, which require the exclusive use of some global resource during certain

phases of their execution,

2. Cooperating processes, which independently make contributions to some desired result, and

3. Communicatingprocesses, which exchanges informationat intermediate stages in their progress.

Process notations like CSP and Lotos support the speci�cation of processes having all three

characteristics. It is not clear, however, that a given domain requires all three characteristics.

We chose not to implement support for the competing process aspect of concurrency because it

does not seem to be needed in interactive system architecture and because its presence can lead

to poorly designed interfaces[32]. Without this form of process interaction, concurrent run-time

control policies can be simulated quite e�ciently on a sequential machine.

In de�ning the Esterel[13] notation, Berry and Gonthier proposed a model of concurrency

which is appropriate for task-based concrete architectures. They observed that notations which

utilize concurrency forces systems to be either concurrent or deterministic, and that the reason

for this was that concurrency was based upon an asynchronous implementation model. In an

asynchronous model, designers can express non-determinism by process competition for limited re-

sources. Asynchronous notations, therefore, often contain two di�erent forms of the choice operator:

external (which is the form we supply in MDL) and internal (which is a choice made by the system

and not the user). Though user interfaces should not be overly deterministic, the system should

also not non-deterministically make choices with regard to user task performance[32]. Berry and

Gonthier propose overcoming this dilemma by applying a synchronous model of concurrency.

The essence of synchronous concurrency is the so-called synchrony hypothesis[13], which states

that interactions take no time with respect to their environments. The synchrony hypothesis reects

the way current GUI toolkits are implemented in the following sense: when an interaction event

is dispatched, it is not preempted by other events. In the X-window system, for example, mouse

and keyboard events are queued-up and call-back functions are dispatched in sequence so that

one function completes before the next event is dispatched. Even though more modern toolkits

like Amulet[72] and subArctic[33], support multi-threading, their behavior is consistent with the

synchrony hypothesis because methods dispatched by events are not interrupted by other events.

Programmers familiar with toolkits understand this and deal with it by keeping callstacks shallow

91

in event handling code.

In addition to being appropriate for the UI domain, the synchrony hypothesis greatly simpli�es

the implementation of process notations by precluding the need to resolve race conditions resulting

from multiple overlapping device interactions. In fact, synchronous languages are often compilable

into deterministic �nite automata. The Squeak[24] language of Cardelli and Pike assumes the

synchrony hypothesis and is able to create single-threaded implementations from a concurrent

notation. The Esterel language also shares this property.

Design Decision 1. The MMTK architecture adopts a synchronous model of concurrency.

5.7.2 Presentation Communication

Another inuence on MMTK design is the nature of user interface toolkit architecture. There are

two important concerns: input and output. On the input side, progress in an interactive system

is made in accordance with user actions. These actions are sensed by interaction with graphical

presentation objects. Without exception, user interface toolkits combine a policy of input with

support of graphical presentation objects. On the output side, the state of a run-time task must be

made apparent to the user. Usually this takes the form of special presentation markings to identify

actions which are legal or illegal at various points in the performance of a task. Our decisions in

this regard leverage abstractions provided by the Garnet[34] and Amulet[72] toolkits.

The Amulet toolkit[72] provides an interactor model which purports to be a true solution

to the independence of input and output. In Amulet, a special type of object called an interactor

serves as the controller. Interactors are freely composable with graphical objects (views) and, using

an abstraction called command objects, with models. Interactors abstract complete gesture

interactions into a single software entity. These are quite useful in bottom-up design because they

relieve programmers from a large implementation task and are quite reusable over a wide range of

applications. Command objects encapsulate everything about an action, including the status of the

action being enabled, the mechanism for performing an action (the DO method), and support for

UNDOing the action.

Design Decision 2. Presentation interaction entities will be those provided by the Amulet[72] user

interface toolkit.

92

Chapter 6

Control Correctness of MMTK

MDL behavior expressions describe control in a reactive system. MDL programs compile into a

communicating hierarchy of components in which each component implements a single operator or

communication. In Chapter 5, we pointed out that the MMTK components have many states and

that, consequently, they are di�cult to design and test. We overcame this problem by formally

modeling the control components, analyzing their behavior in composition, and then generating the

MMTK component implementation directly from the models. The formal model we chose to use

is called a Mealy machine. This chapter describes our use of Mealy machines to implement control

components and validate their correctness.

6.1 Mealy Machines

Inherent in our implementation of MDL behavior expressions is a policy for distributing control over

the many independent components. Creating a component for an MDL operator means expressing

declarative ordering invariants as a protocol of operational inter-component commands. Examples

of these commands include sending a message to a subordinate component to accept activity, sending

a message a subordinate component to no longer accept activity, and sending a message to a parent

component to announce activity. To take an example, consider a component A implementing the

>> operator, whose left subcomponent B implements an input communication and a whose right

subcomponent C implements the j operator. When A is instructed (by its parent component) to

accept user activity, it must interpret this command in a way consistent with its ordering. Since

the intent of >> is to order two processes, A instructs B to accept activity but does not instruct

C to do anything yet. Now if user activity causes the input communication associated with B

to �re, then B must announce activity to A. At this point, A will propagate this announcement

93

to its parent. When B announces completion, A will instruct C to accept activity. Since C

implements an ordering, it will forward this command to subordinates in a way that is consistent

with its ordering semantics. Speci�cally, it will instruct both of its children to accept activity

and then, when one announces activity, C will instruct the other to forbid activity. Components

maintain internal state which manages these coordinating messages. The internal state changes

in response to a signal which communicates a change of status from one component to another.

Finally, components often react to signals by issuing their own signals to other components. A

formal machine model which can express this kind of behavior is a Mealy machine[52].

Mealy machines are �nite automata with output. Mealy machines react to an input symbol by

changing state and issuing an output symbol all in one step. MMTK components can be modeled

using Mealy machines because the components maintain a �nite state, and they communicate

with other components using a �xed alphabet of signals. Mealy machines are more convenient for

reasoning about control issues than are C++ objects. This section describes the Mealy machines

which implement the various MDL orderings. In doing this, we introduce two notations. The

MTREE notation names the Mealy machine that implements each MDL operator and is used for

expressing the connectivity of these machines in a run-time con�guration. The MM notation is

used for expressing the �nite control of a given class of Mealy machine.

6.1.1 The MTREE Notation

MTREE is a notation for expressing instances of Mealy machines and their inter-connectivity.

MTREE names a Mealy machine that implements the functionality of an MDL control operator

(as shown in Table 4). Note that there is no Mealy machine implementing the stop process or the

hide operator, input and output communications are both implemented by the same Mealy machine

(leaf), and k and jjj are both implemented by the same Mealy machine (par). Instances of these

Mealy machines are connected in MTREE using the binary operator C B and the unary operator

B. The in these operators will contain one of the named Mealy machines. So, for example,

C seq B is a binary connector that implements the seq machine functionality and loop B is a unary

connector that implements the loop machine functionality. A simple syntactic transformation maps

an arbitrary MDL expression into an MTREE expression.

For example, the MDL expression: (e?x � stop) >> ((f ?y � stop) j (g?z � stop)) corresponds

94

Table 4: Mealy machine implementations of MDL operators.

MDL Operator Mealy Machine Mdl Operator Mealy Machine
� alt [> dis

$ excl 4 int

e?x , e!x leaf � loop

opt
opt k, jjj par

>> seq

to the following MTREE expression:

ceiling B (leaf C seq B (leaf C alt B leaf))

The reader should observe two things about this mapping. First, the stop processes map to nothing,

and parentheses are retained under the mapping. Second the MTREE representation applies the

unary operator ceiling B to the image of the MDL expression. Recall that Mealy machines must

communicate signaling information to subordinates and parents in the tree hierarchy. This means

that all the Mealy machines that implement MDL control operators will expect to be connected

to a parent in the tree hierarchy. The special ceiling is used to top an Mealy machine tree so that

there are no unresolved communications.

In order to reason formally about Mealy machine composition, the MTREE language must be

formally de�ned. Let �̂ de�ne the set of Mealy machines from Table 4. Let � denote the set

�̂ [fceilingg, Let �̂0 � �̂ be the set of null-ary machines (machines with no children), �̂1 � �̂ is

the set of unary machines (except for ceiling), and �̂2 � �̂ is the set of binary machines. The set

of all trees of Mealy machines is then the language generated from this set L(�̂). L(�̂) is de�ned

inductively as follows:

1. 8m 2 �̂0 � m 2 L(�̂).

2. 8m 2 �̂1 � 8� 2 L(�̂) � m B � 2 L(�̂), and

3. 8m 2 �̂2 � 8�1; �2 2 L(�̂) � �1 C m B �2 2 L(�̂).

Now we de�ne L(�) as the set of all strings in L(�̂) which are \topped" by a ceiling component.

More formally:

L(�) == fceiling B � � � 2 L(�̂)g

95

We call any string in L(�) a con�guration of Mealy machines and often use the symbol �

to represent a particular con�guration. Within a con�guration �, a given class of Mealy machine

like, say leaf, may occur in many places. We call these instances occurrences and use middle-of-the-

alphabet letters like m and n to represent them in formal arguments. The following con�guration,

for example, contains three occurrences of the leaf machine:

leaf C seq B (leaf C alt B leaf)

Occurrences may also be used to select adjacent occurrences through channels. Ifm is an occurrence,

then m:p is the occurrence of m's parent (if it exists), m:l is the occurrence of m's left subordinate

(if it exists), and m:r is the occurrence ofm's right subordinate (if it exists). Consider, for example,

the con�gurationm C n B o. Occurrence m has a parent channel connected to the left child channel

of occurrence n. We can express this with the following equalities: m:p = n and n:l = m. We say

that two occurrences m and n are incident if either m C n or m B n is a subcon�guration of �.

The syntactic similarity of MDL and MTREE allows us to reason about the mapping fromMDL

expressions into MMTK components. Recall the MDL de�nition of the task ManagePlaneInFlight .

The task had the following behavior.

(newposition?pos � stop)� >> (commitToLand? � stop)

Using MTREE, we can model the MMTK implementation of this expression:

(leaf C loop) C seq B leaf

For purposes of reasoning about behavior, this is much more tractable than the corresponding C++.

6.1.2 Detailed Design of Mealy Machines

With MTREE in place, we now must describe the inner workings of the machines. Mealy machines

communicate by issuing signals over parent and child channels. In the current implementation,

there are twelve such signals[92]. These signals communicate the control commands of one machine

to another. When a machine m is issued one of these signals, it changes state, and it may, in turn,

issue a signal to another machine.

The global state of an interactive system can be thought of as a sequence of equilibrium states.

96

When in these states, the system awaits a perturbing signal from the user or the application func-

tionality. When in any equilibrium state, say s, a user event may come along which causes a urry

of activity among the components. During this urry the system will not be in an equilibrium

state, but rather, will be in a series of transient states. Eventually the system settles into another

equilibrium state (usually di�erent from s) and awaits the next perturbing signal. The synchrony

hypothesis, which we adopted in Section 5.7.1, states that no external events occur during these

transient urries of internal signals. The distinction between equilibrium and transient states per-

colates down to the level of Mealy machines. In fact, the states of each Mealy machine may be

strictly partitioned into two sets: Equilibrium and Transient .

Of the Equilibrium states, there are six possibilities:

notready the machine has either completed or has not been enabled,

active the machine (or one of its subordinates) has observed user activity.

committed the machine has not witnessed activity but is able to witness activity.

completable the machine has witnessed activity, and may complete on its own, or it may be

completed implicitly by the activity of other machines.

interrupted the machine has been interrupted.

skippable the machine has not witnessed activity but may be completed implicitly by the activity

of other machines.

We use these general categories for initially designing the detailed �nite control of our Mealy

machines. Actually describing this detailed control requires another notation.

6.1.3 MM: A Notation for Mealy Machine Finite Control

The MM notation graphically describes the transition relationship of a Mealy Machine using a two-

dimensional ASCII representation of state machine graphs. The de�nition of a particular machine

often consists of many such descriptions joined together by unifying the names of states. An example

of the notation appears in Figure 28. The reader may immediately observe three things about this

notation:

97

Table 5: Mealy machine (MM) syntax.
State == Equilibrium j Transient
Equilibrium == Identi�er
Transient == '@'+ f Identi�er g
Identi�er == ['a'-'z''A'-'Z']['a'-'z''A'-'Z''0'-'9'' ']�

Transaction == Action f Reaction g
Action == f ~ g Channel '?' Signal
Reaction == '[' Channel '!' Signal ']'
Channel == 'p' /* parent */

j 'l' /* left subordinate */
j 'r' /* right subordinate */

Signal == ['a'�'z']+

1. machine transitions are represented as s -- c1?e1[c2!e2] --> t, indicating that a transition

takes place from state s to state t upon receipt of signal e1 on channel c1, and results in the

issuing of signal e2 down channel c2,

2. the transitions can be laid out in two dimensions, thus simplifying input and understanding

of the state topology, and

3. states are given either mnemonic names like notready or they are unnamed and represented

with the @ placeholder. Unnamed states are taken to be transient states; whereas named

states are equilibrium states.

The diagram in Figure 28 demonstrates how the seq machine behaves in reaction to an activate

signal from its left child in the tree (l?activate). The signal coerces seq into a transient state with

the side e�ect of issuing an activate signal to its parent.

Figure 5 describes the syntax of MM. Transitions are described as directed edges from one state

to another with an intervening transaction. Transactions describe the action that stimulates the

transition and any resulting reaction. States and transactions are connected using transition edges

which appear as ASCII lines in the MM �les. A line may be vertical, horizontal, slanted left or

right, or bent with the junction symbol +. Transitions are always directed with a unique source

and target state and a unique transaction. To specify the direction of a transition, one end must

be a�xed with an arrow point (either >, <, ^, or %) depending on whether the edge is owing to

the right, to the left, up, or down respectively. Slanted edges cannot be given a direction, and so

they must be bent into a non-slanted edge which can then be a�xed with an arrow point. In the

98

example of Figure 28, @ --- l?ack[p!ack] --> lcommit, denotes a transition whose source is the

transient state @, whose target is the state lcommit, and whose transaction is l?ack[p!ack].

6.1.4 Generating MMTK Components from MM

The ultimate output of a Mealy machine �nite control speci�cation is a reusable component in

the Mastermind toolkit (Section 5). After having designed and tested the interoperation of the

Mealy machines, we invoke a tool called the Mealy Machine Compiler (mmc) to create the C++

implementations. Mmc creates two �les{a C++ header (.h) �le and a C++ implementation (.cc)

�le{for each class of Mealy machine.

Consider, for example, the MM de�nition of the seq machine (which constitutes a number of

.mm �les). The command:

$ mmc -c -Mseq seq*.mm

creates two �les: MdlSeqOrdering.h and MdlSeqOrdering.cc. The �le MdlSeqOrdering.h de�nes the

class MdlSeqOrdering and declares it to be a subclass of class BinaryNode. MdlSeqOrdering inher-

its a method called getNextState from BinaryNode. This method implements the Mealy machine

transition relationship. It is de�ned in the �le MdlSeqOrdering.cc.

Since there are ten MDL orderings, there will be ten header and ten implementation �les that

make up the �nite control constituent of the Mastermind toolkit.

6.1.5 Carrying On

Having identi�ed the set �̂ of machines and having created a notation for expressing the behavior of

the individual machines, we then embarked on the design of each machine. Because these machines

have so many states, it was di�cult to arrive at correct designs. The most di�cult problem was

making sure that the machines would cooperate with other machines. We sensed this di�culty early

and investe in a formal and mechanical correctness validation before committing to a detailed design.

In the next section, we discuss the theoretical underpinnings of this validation infrastructure.

99

6.2 Mealy Machine Inter-Operation

From the discussion in the previous section, it should be clear that Mealy machines do not implement

orderings in isolation. Rather, they issue control directives to parent and subordinate machines

in the tree hierarchy. Any two machines connected in the tree hierarchy must understand and

implement a protocol of communication.

The protocol nature of communication is unavoidable because the signals which MMTK com-

ponents use to instruct subordinates a�ect their internal (unobservable) states. A component a, for

example, never expects to �eld a resume signal unless it has received a prior interrupt signal. If

another component, say b, expects a to �eld a resume signal before b issues an interrupt signal to

a, then b and a could have trouble communicating. In designing the Mealy machines, we discovered

that these protocols were generally simple to discuss informally but were very di�cult to precisely

articulate. The problem is that the protocols are a function of the states of connected Mealy

machines, and since our Mealy machines have hundreds of states, the sheer size of the protocols

becomes an obstacle to comprehension.

In order to establish correctness of protocols, we took a di�erent approach. Rather than try to

formally specify all inter-machine protocols, we instead formulated two properties{receptiveness

and freedom from divergence{which all protocols must respect. These properties are necessary

in order for a distributed collection of Mealy machines to e�ectively communicate control, and they

are easier to specify than the myriad of specialized protocols to which they apply. In addition,

speci�c con�gurations of Mealy machines may be subjected to a tool called a model checker which

will exhaustively validate these properties over the con�guration. We then prove a theorem that

identi�es a �nite set of test cases which, if all tests succeed, guarantees that these properties hold

in arbitrary con�gurations of Mealy machines. We now describe and formalize the correctness

properties. The testing theorem is the subject of Chapter 7.

6.2.1 Property 1: Receptiveness

The �rst property of component interactions is that one component never receives a signal which

it is not prepared to handle. This property is often called receptivenessmeaning that a machine

is always able to receive a signal. A receptiveness failure is always the result of a design aw. If a

100

lcommit -- p?disable[l!disable] --> @ -- l?ack[p!ack] --> notready

|

|

l?activate[p!activate]

|

|

%

@ -- p?ack[l!ack]--> lactive

|

|

l?complete[r!enable] --> @

|

|

r?ack[l!ack]

|

|

%

rcommit

Figure 28: MM description of seq machine transitions.

machine receives a signal it is not prepared to handle, then it cannot react according to the wishes

of the sender of the signal. Consider the snippet of machine logic in the partial de�nition of the seq

component of Figure 28. When in the state lcommit this machine is prepared to witness activity

in the left child, and it is prepared to be disabled by its parent. The left child announces activity

by issuing an activate signal to its parent (the seq machine). If somehow, the designer forgot to

describe that, from within state lcommit, the machine could receive an activate signal from the left

child, then the machine would not be receptive to this event. To see how the e�ects of this can be

felt by the user, consider that the machine is in the lactive state, but the designer forgot to add

the transition out of lactive in reaction to a complete signal by the left child. If this happened,

then the right child would never be enabled, and the system would appear to deadlock.

We would like to encode a property which says \machines are always receptive". We do this by

introducing into each Mealy machine a special state called error. Now for each non-error state v ,

consider the signals e1; e2; : : :ek which can initiate a transition out of v . To the complement of this

set E = E � fe1; e2; : : : ; ekg, add a transition (v ; e ;error) for all e 2 E . If we extend machines in

this way, we can state the receptiveness property by saying that a machine never enters the error

state.

6.2.2 Property 2: Freedom from Divergence

The next property is called freedom from divergence, and it states that when a component enters

a transient state, it necessarily eventually enters an equilibrium state. There are two (equally

101

ready ---- ~c?activate[p!activate]

|

|

%

@f1g --- p?ack[p!complete]

|

|

%

@f2g --- p?ack --> notready

Figure 29: MM description of leaf machine transitions.

undesirable) scenarios which may cause this property not to hold. In the �rst scenario, a component

gets stuck in a transient state awaiting a signal that never arrives. This might happen because

machines must acknowledge the receipt of control signals. Consider the snippet of functionality

from the leaf machine if Figure 29. In the ready state, upon recognition of user input, this machine

issues an activate signal to its parent and goes into the transient state @f1g. The machine expects

an acknowlege signal (ack) from its parent in order to issue the complete signal. If the parent

machine fails to issue the ack, then this machine is stuck. In the second scenario, a con�guration of

machines enters a signaling cycle which e�ectively prevents the system from reaching an equilibrium

state. Both of these scenarios are undesirable. The freedom from divergence property asserts that

they never occur.

To state this property, we take advantage of the disjoint partitioning of machine states into two

sets: Equilibrium and Transient . The property is true if, whenever a machine enters a state in the

Transient set, it necessarily eventually enters a state in the Equilibrium set. This predicate takes

care of both the scenario in which machines get stuck waiting for an event and that in which a

con�guration of machines enters an in�nite signaling cycle.

6.2.3 Formalizing The Properties

Protocols are expressions of temporal behavior. We formalize the correctness properties as invari-

ants over protocols. Since we want to state properties like \after receiving signal interrupt from

machine x , machine y is prepared for signal resume" we need a language which can express con-

straints over time. The standard way to do this is to use a temporal logic. We want to supply

these properties to automated state space analysis tools, and so chose Computation Tree Logic

(CTL)[26, 27], as a language for expressing the properties.

CTL expressions have three parts: a path quanti�er, a temporal quanti�er, and a predicate.

102

A path is a sequence of machine states. Di�erent execution orderings yield di�erent paths. Path

quanti�ers identify whether an invariant should apply to all future paths (8) or at least one future

path (9). For each quanti�ed path, a temporal quanti�er asserts that a condition will hold (�)

in every state along a path, at some point along a path (�), in the next state () along a path,

or will hold in every state along a path until ([U]) some other condition becomes true. These

conditions are logical propositions about the state of machines. Path and temporal quanti�ers are

combined syntactically in CTL. So, for example, the combined quanti�er 8� means the following

predicate holds globally on all possible paths, 8 means the subsequent condition holds in the

next state of all paths, and 8[xUy] means that condition x holds in all future paths until some other

condition y becomes true. CTL expressions conveniently and succinctly express the Mealy machine

composition properties.

6.2.3.1 Receptiveness

If we assume that machines have been extended with the special error state and all of the accom-

panying transitions, then the receptiveness property can be stated in CTL as follows. Let m be the

machine in question, then:

8�:(m:state = error)

speci�es that for all execution paths machine m is never in the error state. Since we know by

construction that m can only enter the error state when it receives a signal it cannot handle, we

can infer that this CTL property checks receptiveness.

6.2.3.2 Freedom From Divergence

To specify freedom from divergence, we take advantage of the disjointness of transient and equilib-

rium states. For any Mealy machine m, let:

Active(m) ==
W

s2Trans(m)(m:state = s)

where Trans(m) is the set of transient states of m. Active(m) is a predicate which is true whenever

m is in a transient state and false whenevenr m is in an equilibrium state. Assuming such a

predicate makes the CTL constraint for this property simple to express:

8�(Active(m)) 8�(:Active(m)))

103

This says that, for all execution paths, if a machine m is in a transient state (Active(m)), then for

all subsequent execution paths, m will eventually get into a non-transient (equilibrium) state. This

captures both forms of divergence. If a machinem is stuck in state s waiting for a signal that never

arrives, then there will be no subsequent paths in which m is in an equilibrium state because m

will never transition out of s. If a machine m is involved in an endless cycle of transient signaling,

it may go through many di�erent transient states s1; s2; : : : ; sn , but from any of these states, there

will be no subsequent path in which m enters an equilibrium state.

6.3 Testing Machine Inter-Operation

Having formalized the Mealy machine representation of the MDL orderings and correctness proper-

ties of their composition, we now look to the problem of checking that the machines preserve these

properties when composed. Since, as machine designers, we have the ability to de�ne states and

signals, machines can issue signals which are interpreted di�erently by di�erent classes of receiving

machines. This means we cannot test the machine associated with, say, the alt ordering in isolation

because it may issue signals that have one behavior when received by leaf machines and another

when received by seq machines. On the other hand, machines connected in this tree hierarchy

do not broadcast signals to all machines, but rather they receive and propagate events in a strict

hierarchical fashion.

This indicates that we can test much of the inter-operation of machines by testing an exhaustively

constructed set of small con�gurations. That is, we ought to �nd most of the bugs in machine design

by testing small con�gurations of machines. To test the seq machine, for example, we run tests with

every possible Mealy machine as children. The next obstacle to overcome is to build the sca�olding

required to test these machine con�gurations. We take advantage of automated technology to build

this sca�olding and run these tests.

6.3.1 Model Checking

Rather than build a large suite of tests for our machines, we took advantage of state space analysis

tools which can verify properties of state machines. Speci�cally, we used a tool called the Symbolic

Model Veri�er (SMV)[66] to test our Mealy machines. Model checkers validate state machines for

104

conformance to properties speci�ed in temporal logic.

The idea behind model checking is simple. A problem is modeled in terms of a state machine,

and that model is exhaustively searched to verify that it upholds certain properties. Model checkers

are useful for testing because they exhaustively verify properties and, for some classes of property,

the model checker can demonstrate failure with a counter-example. As a result of employing an ex-

haustive path analysis, when the model checker discovers a constraint violation, it can demonstrate

a signal trace that makes the machines violate the constraint! This property is crucial to giving

design feedback on how a proposed Mealy machine fails to inter-operate with other machines.

We found the model checker to be more reliable and easier to build and maintain than a large

suite of test cases. The tool was so reliable that we incorporated it into our development process

much like a compiler is used to develop programs. The development is iterative. Given a set of

machines to test, we encode them in the input language of SMV and assert that the correctness

properties hold. We then run SMV over this input. If SMV detects a failure, it lists counter-

examples. We then use these counter-examples to trace the design aws, �x them, and iterate.

The design process converged on the set of Mealy machines which we use to generate MMTK

components.

6.3.2 Mealy Machine Closures

One problem with testing small con�gurations of machines is that many of the Mealy machines

expect to be connected to parent machines and child machines. The obvious solution is to \top"

machines expecting a parent with the ceiling machine and \ground" all machines expecting a child

with leaf machines, but this inates the state space which we must test, and, unfortunately, the

model checker becomes prohibitively expensive when we apply it to con�gurations of more than

three machines. To overcome this practical di�culty, we de�ned a closure operation over Mealy

machines. This operation tops and grounds machines which occur at communication fringes.

To understand the need for closures, consider what is involved in model checking con�gurations

of Mealy machines. Since machines are reactive, they must be tested in con�gurations. Otherwise,

they will always get stuck waiting for signals that cannot arrive because we forgot to incorporate

the machines which generate these signals! Unfortunately, this problem does not go away when

we just incorporate incident machines in a testing con�guration becuase these incident machines

105

(unless they are leaf or ceiling) will get stuck waiting on signals from an unincorporated machine.

It is not clear how to test con�gurations containing fringes like this.

What is needed is a closure operator that we can apply to machines whose channels are not

connected to other machines to force them to exercise any and all functionality that could have

been provided by these unincorporated fringes. The name closure is motivated by its meaning in

topology. In a very liberal sense, con�gurations with unconnected fringe machines are like open

sets in RN because they do not have discernable boundary points. Of course, for con�gurations

of state machines, boundary points are signals which a con�guration lacks because of unresolved

channel connections. In topology, the closure of a set A is de�ned as a set which contains all of

its boundary points. Interpreting boundary points as fringe signals, this suggests de�ning a closure

for con�gurations and testing closures. Clearly, since closures contain their boundary points, they

may be tested in isolation.

De�nition 6.3.1. Let � 2 L(�) be a con�guration. The closure of � is another con�guration,

denoted �, in which all actions and reactions which involve communication over fringe channels

have been replaced by �.

It may seem counter-intuitive that closure, which is supposed to incorporate boundary signals,

removes information. To understand this, note that we encode transitions guarded by � as non-

deterministic Mealy machine transitions. SMV includes non-deterministic transitions in the state

graph of a model. Since the transition is non-deterministic, there will always be paths in which it

is chosen. However, if a transition is guarded with an input, the transition will only be taken if the

input guard is satis�ed (that is, when some other Mealy machine issues a signal). But note that

what is being removed are guards. If a transition s
i [o]
�! t is closed, then there will be an execution

scenario in which this transition is taken.

6.3.3 Generating SMV Input from MM Descriptions

The SMV input �les are automatically synthesized from MM �nite control speci�cations. The tool

is again the mmc compiler. Consider, for example, the MM de�nition of the seq machine (which

constitutes a number of .mm �les). The command:

$ mmc -Mseq seq*.mm

106

creates a �le called: seq.smv. This �le contains an SMV readable description of the aggregate �nite

control expressed in all of the .mm �les associated with the seq ordering. The compiler can also

compute arbitrary machine closures through command line switches.

This is convenient because it allows us to create large regression testing engines which synthesize

testing con�gurations using mmc, invoke the smv tool on these con�gurations, and then report

failures if any are found. This degree of automation supported the design and validation of the

Mealy machines and also makes MDL language extension a less daunting task.

6.3.4 Testing Adequacy

The testing suite we built for our Mealy machines only tests speci�c con�gurations of machines.

While this is highly useful for debugging, it begs the question of testing adequacy:

Question 6.3.4.1. Does there exist a �nite set of testing con�gurations which, if validated, guar-

antees that machines compose correctly in any arbitrary con�guration?

Since machines delegate control commands, the answer to this question is not immediately

clear. In the next chapter, we prove a testing adequacy theorem (Chapter 7) which identi�es a set

of con�gurations which su�ciently tests machine composition to guarantee correctness in arbitrary

con�gurations. This is a key result, and we use it to construct the con�gurations we applied when

designing the Mealy machines.

6.3.5 Summary

To summarize, we developed �nite control descriptions for the ten Mealy machines needed to imple-

ment MDL behavior expressions. These descriptions were written using the MM notation. We then

validated these speci�cations for adherence to the receptiveness and freedom from divergence prop-

erties using the SMV model checker. The input descriptions to the model checker were generated

automatically from the MM descriptions. This validation technology was applied to a collection

of machine con�gurations. We proved that this collection su�ciently tests Mealy machine behav-

ior in composition. Finally, the MMTK components were generated automatically from the MM

descriptions. This lends a high degree of con�dence to the correctness of implementation of the

MDL orderings and enables an non-intrusive and highly precise implementation of task modeling

107

languages.

108

Chapter 7

The Composition Adequacy Theorem

Necessity : : : cannot be derived from experience. { Immanuel Kant, Critique of Pure Reason

We now present the Composition Adequacy Theorem, which states that the model checking

we performed in Chapter5 adequately tests the MMTK components for composition in arbitrary

con�gurations. This theorem plays a critical role in simplifying code generation from abstract task

models. Since every structuring operation in MDL maps to a component in MMTK, and since by

the theorem, all connections behave correctly regardless of the components being connected, model

based code generation from task models can be realized by a simple syntactic transformation.

In general, proofs of software composition live in danger of being swamped with unwieldy imple-

mentation detail. Software component source code is di�cult to manipulate in formal deductions.

This obstacle is typically overcome by reasoning about a model of the component source. In Chapter

6, we described the Mealy machine model of MMTK components and pointed out that machines

have hundreds of states. Since these machines interact, the state space of a given task grows as

the product of the state spaces of the individual components. With this much state inherent in

the problem, proofs of composition are still unwieldy. We made the proof tractable by delegat-

ing much of the proof tedium to the model checker[66]. The proof of the Composition Adequacy

Theorem describes how to construct adequate testing con�gurations for submission to the model

checker. The proof, when augmented with successful model checking, demonstrates that MMTK

components compose correctly in arbitrary tree con�gurations.

The insight behind the proof is that a well-behaved projection of run-time component behavior

is faithful to the correctness properties in the sense that any failing behaviors will be observable as

failures in the projection. We formalize this idea to get the Su�ciency Theorem. Our application

of the technology is a construction of testing con�gurations which are then fed to the model checker.

109

The correctness of these con�gurations is proved by the Coverage Theorem. These theorems are

used to prove the Composition Adequacy Theorem.

7.1 Formal Statement of the Theorem

The Composition Adequacy Theorem states that any syntactically well connected component hi-

erarchy behaves well at run-time in the sense that components never receive a signal they are not

prepared to receive, they never get stuck waiting for control signals which cannot arrive, and they

never enter an in�nite cycle of signaling which never reaches equilibrium.

To formalize and prove this theorem requires some precise notation. Recall that these properties

are de�ned in CTL with reference to a particular occurrence m. We now adopt the notation:

�r(m) == 8�:(m:state = error)

�d(m) == 8�(Active(m)) 8�(:Active(m)))

�(m) == �r(m) ^ �d (m)

where Active(m) is the disjunction
W
s2Trans(m)(m:state = s). �(m) is just a short-hand for ex-

pressing the composition properties ofm. �(m) is a formula of temporal logic. Its truth or falsehood

is judged relative to one or more models. Models in this sense are mathematical structures which

behave according to the temporal formulae. We want to ask if the behavior of a given con�guration

� is a model of a temporal formula. Traces are natural models of temporal formula. A trace is a

sequence of state snapshots which identify the state of machines in the hierarchy and any signals

issued and/or received. For a given con�guration �, let tr(�) to be the set of traces which could

be observed of �. Occasionally we will need to refer to a speci�c trace sequence within tr(�). We

usually use the symbol & (read \varsigma") for this purpose. Counter-examples generated by the

model checker are traces in tr(�), and so we often will use & to refer to a counter-example.

Theorem 7.1.1 (Composition Adequacy Theorem). Let � be any con�guration in L(�). For

all machine occurrences m in �, tr(�) j= �(m).

This says that any machine occurrence m in any con�guration � composes correctly in the

sense that m is always receptive and always divergence free. The proof will consider all possible

110

con�gurations of Mealy machines (L(�), an in�nite set) and demonstrate that 8� 2 L(�), each

occurrence m within � respects the properties.

7.2 Proof Technique: Symbolic Model Checking

Model checking can be thought of as a limited form of theorem proving. Whereas theorem provers

deduce consequent truths from antecedents using rules of logic, model checkers \check" to see if a

given model violates the claims made by a theorem. That is, given a model M and a theorem T ,

a model checker constructs an e�cient representation of all executions of M and then checks each

execution for violations of T . If no violations are found, then M is claimed to be a model of the T

(sometimes written M j= T).

We structure the proof of the adequacy theorem so that it utilizes a �nite set of lemmas of the

form: tr(�) j= �(m) for some � 2 L(�) and some machine occurrence m within �. Lemmas of this

form can be validated using the SMV model checking tool as we demonstrated in Chapter 6. With

these lemmas, the proof of the adequacy theorem establishes a �nite set of obligations which Mealy

machine �nite control design must satisfy. We think of these obligations as regression tests which

can be applied whenever a modi�cation is made to the �nite control of any Mealy machine in our

collection. This view suggests the following strategy:

1. design the �nite control of the Mealy machines for each MMTK component,

2. use the model checker to try and prove the lemmas about their composition and �nd coun-

terexamples,

3. use the counterexamples to �x the problem in the Mealy machine �nite control logic, and

4. repeat the process until no further violations of are detected.

We used this strategy to get the design of our Mealy machines correct.

In order for the strategy to work, there must be only a �nite number of these lemmas, and they

must be clearly articulated. The problem with checking con�gurations for satis�ability of �(m) is

that there are too many con�gurations to check! The key to making this strategy work is to identify

some �nite basis of con�guration behavior and apply the model checker to elements in this basis.

111

Property φ

Machine M

Software System S

counterexample
True or

Model

Checker

Abstraction α

Figure 30: Use of abstraction to incorporate model checking into the proof of a theorem.

7.2.1 A More Realistic Use of Model Checking

In order to identify a �nite set of model checking lemmas, we appealed to an insight suggested by

Wing and Vaziri-Farahani[103] in their 1995 case study. They suggested model checking a �nite

state abstraction of an in�nite state space (see Figure 30). This requires developing a mapping �

from the (possibly in�nite) state space of the real system to a �nite state machine model, and then

feeding this model and a property � to check into a model checker. The abstraction function � must

preserve enough of the structure of the real state space so that the property � does not become

vacuously true. Moreover, any counterexamples of � in the real system must be preserved in the

abstract space. Otherwise, the debugging bene�t of model checking will not be fully realized.

Wing and Vaziri-Farahani suggest exploiting the nature of the property � in order to formulate

abstractions. One method is to exploit domain speci�c knowledge. Our domain (Mealy machines

under a synchrony hypothesis) exhibits highly regular run-time behavior. Machines do not run

concurrently, but rather pass control back and forth between adjacent machines in a tree hierarchy.

This behavior is formalized in Observation 7.3.1 below. Using this property, we chose a carefully

crafted projection of behavior as the abstraction.

The software system S of Figure 30 is a representation of possible Mealy machine execution

traces. We observed that certain projections of these traces induce a �nite number of equivalence

112

classes and, moreover, that representatives of these classes preserve the properties we are interested

in proving. That is, if & 2 tr(�) is a counterexample of �(m) that the projection of & is also a

counterexample of �(m). The su�ciency theorems prove this point.

7.3 Formalizing the Abstraction

Mealy machines in this domain exhibit a highly regular run-time behavior. By the synchrony

hypothesis, machines do not run concurrently. Furthermore, the direct communication inuence of

a machine is limited to machines which are adjacent to it in the tree hierarchy. This regularity makes

the model amenable to an abstraction of the run-time behavior. This abstraction, which is formally

de�ned as a projection, preserves counter-examples of the correctness properties as we demonstrate

in Section 7.4. Furthermore, this abstraction can be realistically computed by a symbolic model

checker as we demonstrate in Section 7.5. We now formalize the domain speci�c machine properties

and the projection abstraction.

7.3.1 Domain Knowledge

Mealy machines connected in a tree topology under a synchrony hypothesis exhibit very regular

execution traces. A large class of traces, which would be legal in absence of either the synchrony

hypothesis or the tree connectivity, cannot occur in their presence. This aspect of run-time behavior

is useful for proving theorems about abstractions.

The synchrony hypothesis introduces the disjoint partitioning of machine states into either the

Equilibrium or Transient class (Section 6.1.2). Consider, for example, the con�guration: ceiling B

(leaf1 C alt B leaf2). When the system is in an equilibrium state, either leaf occurrence (leaf1 or

leaf2) might recognize an external user event (like a key press or mouse-click) and begin a transient

urry of control signals. Suppose this happens and the occurrence leaf1 recognizes the external

activity. Then, by the synchrony hypothesis, this occurrence (and, in fact, the other machines

in the con�guration) will reach an equilibrium state before leaf2 could recognize an external user

event. While in this transient urry, control (in the form of signals) must propagate by a single

thread because Mealy machines can output only one signal at a time.

Recall that for any con�guration �, we can de�ne the set tr(�) of execution traces which could

113

be observed of �. Since our computational model does not admit true parallelism, execution traces

are sequences of machine state transitions. Let m be an occurrence of a �-machine in a particular

con�guration �. We can mark Mealy machine transition tuples by the occurrence mi to get a quint:

(s
c1?e1[c2!e2]
�! t)mi

which de�nes a transition in machine occurrence mi 2 Occurrences(�). This transition takes state

s to state t in response to event e1 on channel c1 and reacts by issuing event e2 down channel c2.

A �-execution trace is a sequence of these quints, and the set tr(�) contains all such traces. In the

arguments that follow, we will refer to set of all such quints as Quint and a particular quint as an

occurrence-m transition.

Behavior traces of Mealy machines can be represented as a unique sequence of quint sub-

sequences as follows. Recall that states in a Mealy machine fall categorically into one of two

disjoint classes: Equilibrium or Transient .

De�nition 7.3.1 (Transient Sub-sequence). Let s 2 tr(�) be a valid behavior trace of �. Let

t :N"Quint be a sub-sequence of s. t is a transient sub-sequence of s if:

1. source(head(t)) 2 Equilibrium ^ target(head(t)) 2 Transient,

2. if dom t contains an upper bound b, then:

source(t(b)) 2 Transient ^ target(t(b)) 2 Equilibrium

3. If, for any other quint q 2 ran t, source(q) 2 Equilibrium, then q is the head of a proper

transient sub-sequence of t.

Transient sub-sequences begin in an equilibriumstate, and if they end, they end in an equilibrium

state. Furthermore, all intermediate states in the sequence are transient unless there is a contained

transient sub-sequence.

Transient sub-sequences are a convenient representation of behavior traces because for every

pair of consecutive quints qj ; qj+1 in a transient sub-sequence, the machine occurrences of qj and

qj+1 are incident in �. That is, transient sub-sequences of execution traces exhibit a locality in

direct correspondence to the tree topology. The following observation captures these properties.

114

Observation 7.3.1 (Transient Adjacency). Let s be any execution trace in tr(�), and let t be

a transient sub-sequence of s. Then for all consecutive quints qi ; qi+1 in t, either:

1. occurrence(qi) B occurrence(qi+1)

2. occurrence(qi+1) C occurrence(qi)

3. occurrence(qi+1) B occurrence(qi)

4. occurrence(qi) C occurrence(qi+1)

Now let S : N" (N" Quint) be a sequence of quint sequences. Then domS is the set

of indices into S , and ran S is the set of indexed quint sequences. If each sequence in ran S is

a transient sub-sequence, then we call S a transient partition of s. The de�nition uses the

distributed concatenation operator _= which maps a sequence of sequences to a single sequence by

concatenation.

De�nition 7.3.2 (Transient Partition). Let s 2 tr(�) be any trace of �, and let S :N"(N"

Quint) be a sequence of quint sequences. The sequence S is a transient partition of trace s if:

1. _= S = s, and

2. each Si 2 ran S is a transient sub-sequence of s.

The de�nition implies that each Si is a maximal containing transient sub-sequence. If this is not

the case, then either Si�1 or Si+1 would not be a transient sub-sequence. The following Corollary

formalizes this observation:

Corollary 7.3.1. Let s 2 tr(�) be any trace of �. There is a unique transient partition S such

that _= S = s.

7.3.2 Projections

The correctness properties in which we are interested express temporal behaviors over the state-

space of individual machines. Counter-examples of these properties are particular traces (denoted

&) in this state space. That is, for any con�guration � 2 L(�), any counter-examples & are legal

execution sequences of � (& 2 tr(�)). This means that counter-examples will demonstrate the same

115

transient sub-sequence locality that any other trace in tr(�) would demonstrate. With this locality,

it is likely that only some portion of a given counter-example will be relevant to a aw in the design

of a component. This suggests that an appropriate abstraction is sequence projection.

We �rst de�ne the function �J over quints.

De�nition 7.3.3. Let � 2 L(�) and let J be a set of occurrences in �. Then for any quint q of

the form: (s
c1?e1[c2!e2]
�! t)m , de�ne:

�J (q) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

q if m 2 J and m:c1 2 J and m:c2 2 J

(s
c1?e1
�! t)m if m 2 J ^ m:c1 2 J ^ m:c2 62 J

(s
�[c2 !e2]
�! t)m if m 2 J ^ m:c1 62 J ^ m:c2 2 J ^ t 6= error

(s
�
�! t)m if m 2 J ^ m:c1 62 J ^ m:c2 62 J ^ t 6= error

? otherwise

The function �J strips a quint of any functionality that is not associated with an occurrence in

J . Given a quint q , if both the source of the input channel and the target of the output channel

are in the occurrence set J , then q is unaltered. If, at the other extreme, no occurrence aspect of

q (either the occurrence which witnesses q , or it's input channel occurrence, or its output channel

occurrence) is in J , then q is �ltered out by being mapped to ?. The cases in between these

extremes require some justi�cation. Suppose the q is de�ned as above, and m is in the set J , but,

either the source of q 's input channel or the target of its output channel (or both) are not in J .

Then, under �J , these communications are �ltered out and replaced by a �-transition. We do this

because a projection should not reference any occurrences not in J .

The operation (�J) over execution traces is the distributed application of the operation �J over

quints. When applied to an execution trace & 2 tr(�), �J �lters & by the set of non-? images of

quints under �J . The formal de�nition is a bit thick. It uses the �lter operator � which �lters a

sequence by a set. This basically projects & into a new sequence which does not contain any ?

elements. More formally:

De�nition 7.3.4. Let � 2 L(�) and let J be a set of occurrences in �. Then forall & 2 tr(�)

�J (&) == & � f(q 2 ran &) ^ (�J (q) 6= ?) � �J (q)g

116

So, for example, if � = (m1 C m2 B m3) C m4 B m5, and & 2 tr(�), then �fm2;m4g(&) will be &

with the quints associated with occurrences m1, m3, and m5 removed, and with all communication

with said occurrences replaced by �-actions and reactions.

Clearly, if a quint exists in an execution trace, and the occurrence machine associated with the

quint is in the projection set, then the quint will not disappear under projection. Some information,

however, like input or output signals, could disappear. If this information is critical to a counterex-

ample, then the projection fails to be an abstraction as de�ned by Wing et. al. because it loses

detail that is required in the proof of the theorem. As an example, consider a trace in which an

occurrence m goes into the error state (introduced in Section 6.2.1). If the occurrence initiating

the signal which carries m into the error state is not in the projection set, then the source of the

error will not be present in the projection. Without this, the counterexample will be incomplete.

We now prove that, if a trace is a counterexample of a correctness property, one of a small set of

its projections will also be a counterexample of that property.

7.4 The Su�ciency Theorems

This section introduces two theorems which relate counterexamples of correctness properties to

projections. Before delving into these theorems, we establish some additional notation for talking

about Mealy machine make-up. If m is an occurrence of a Mealy machine in some con�guration &,

then:

1. States(m) denotes the set of states in m;

2. Trans(m) denotes the transitions of m. Transitions take the form s
i [o]
�! t for s; t 2 States(m)

and input action i and output reaction o;

3. Inputs(m) denotes the set of input signals which can cause transitions in m; and

4. Outputs(m) denotes the set of output signals which m can issue to other machines.

7.4.1 Receptiveness

Let � 2 L(�) be a con�guration in which p B (o C m B n) holds of occurrences m; n; o; p. Let

�r(m) = 8�:(m:state = error). Let & 2 tr(�).

117

Theorem 7.4.1. If & is a counterexample of �(m) (that is, & j= :�(m)), then:

�fm;ng j= :�r(m) _�fm;og j= :�r(m) _�fm;pg j= :�r(m)

Proof. The property :(m:state = error) is asserted to hold globally over all paths (traces). Sup-

pose there exists a & like the one above. There is a sequence index j such that

&(j) = (s
c1?e1[c2 !e2]
�! error)m

for some non-error state s. Since an input action c1?e1 made this occur, the cause of the error is

the quint &(j � 1). Let x = occurrence(&(j)) be the machine occurrence associated with this prior

quint. Since it caused the error transition, x must be one of the occurrences n; o; p (by Observation

7.3.1), Neither &(j) nor &(j � 1) is lost under projection because both are transitions of occurrences

within J . It should now be clear that �fm;xg j= :(8�:(m:state = error))

7.4.2 Freedom From Divergence

The next theorem identi�es projections which preserve counterexamples of the freedom from di-

vergence property for a given class of incidence. Let � 2 L(�) be a con�guration for which

(p B (o C m B n)) j �. The theorem is applicable to all traces & 2 tr(�) which are counter-examples

to the inevitability of equilibrium. In the lemmas that follow, we assume that the occurrence of in-

terest is m. Let �d(m) = 8�(m:ACTIVE) 8�:(m:ACTIVE)). The theorem is concerned with traces

& 2 tr(�) for which & is a counter example of the property � (& j= :�). The theorem demonstrates

that if any such & exists, then one of �fm;ng(&), �fm;pg(&), or �fm;og(&) is also a counterexample

of �.

There are two ways in which a given trace might be such a counter-example. Either a machine

gets stuck in an in�nite cycle of transient state transitioning, or it it gets to a point where it expects

a signal from an incident occurrence and this expected signal never arrives.

Observation 7.4.1. If & j= :�m, then either:

1. there exists some k 2 N for which &(k) is the last occurrence-m quint in &, or

2. no such k exists.

118

In the former case, there is a discernible point at which occurrence-m transitions cease to occur;

whereas in the latter case, there is no such point. When the former occurs, we say the machine m

is stuck waiting for a signal that never comes, whereas in the latter case, we say the machine m is

thrashing in transient states.

The following lemma deals with the thrashing case.

Lemma 7.4.1 (Thrashing). Let & j= :� as described, and assume there is no last occurrence-m

quint in &. Then �fmg(&) j= :�.

Proof. We want to show that all occurrence-m quints in & are in �fmg(&). By the de�nition of

�fmg, the only way a quint will not be preserved is if it maps to ? under �fmg. Let q be any

occurrence-m quint in &. Then, by the de�nition of a quint, q = (s
c1?e1[c2!e2]
�! t)m for some states

s; t 2 States(m), some channels c1; c2 2 fl ; r ; pg, some e1 2 Inputs(m) and some e2 2 Outputs(m).

Since m 2 fmg, clearly, one of the �rst 4 cases applies. The disjunction of the channel occurrences

in the 4 cases is true, so as long as t is not the error state, �fmg(q) 6= ?.

Suppose t = error. The error state is in the set Equilibrium(t). Recall by construction that

there is no transition out of the error state. So, if there was such a q , q would be the last occurrence-

m quint in &. But if this is the case, then & j= � which contradicts the assumption that & j= :�. So

t cannot be the error state; consequently �fmg(q) 6= ?; consequently �fmg(&) j= :�.

Theorem 7.4.2. Let � 2 L(�) be a con�guration in which (p B (o C m B n)) j �. Let �m =

(8�(m:ACTIVE) 8�:(m:ACTIVE))). If & 2 tr(�) is a counterexample of �m (that is, & j= :�m),

then:

�fm;pg(&) j= :�m _�fm;ng(&) j= :�m _�fm;og(&) j= :�m

Proof. Consider such a trace &. By Observation 7.4.1, there are two cases to consider. Either there

is some positive integer k 2 N such that &(k) is the last occurrence-m transition in &, or there is no

such k .

Case I There does not exist a k which is the last occurrence-m transition in &. By the Thrashing

Lemma 7.4.1, �fmg j= :�m , which implies in this case that all of �fm;ng(&), �fm;og(&), and

�fm;pg(&) model :�m .

119

Case II There is such a k , so consider the quint q = &(k). By the de�nition of a quint, q =

(s
c1?e1[c2!e2]
�! t)m for some states s; t 2 States(m), some channels c1; c2 2 fl ; r ; pg, some

e1 2 Inputs(m) and some e2 2 Outputs(m). Since q is the last occurrence-m quint in &, it

must be the case that q is stuck in state t . By Transient Adjacency (Observation 7.3.1) q

can only transition out of t by a signal issued from occurrence n, o, or p. Suppose it could

transition out of t by a signal from n. Then clearly any quints involvingm or n are preserved

in the projection �fm;ng(&). Furthermore, �fm;ng will be a counter example to � because it

will demonstrate the communication which causes machine m to get stuck. The same holds

for �fm;og(&) and �fm;pg(&).

7.5 The Coverage Theorem

Recall the de�nition of Mealy machine closures from Section 6.3.2. The coverage theorem demon-

strates that su�cient projections (as de�ned by the Su�ciency Theorem) occur in the execution

representation which the model checker creates for con�guration closures. This is the last step

in the proof because it directly relates �nite representations (projected execution traces) to �nite

models (closed con�gurations).

Theorem 7.5.1 (Coverage Theorem). Let � 2 L(�) contain occurrences m and n such that

m B n. Then for all & 2 tr(�), there exists an S 2 tr(m B n) such that �fm;ng(&) pre�x S.

This theorem basically tells us how to construct closure con�gurations which, when supplied to

the model checker, will su�ciently test the given machines for the composition properties.

In order to prove the theorem, we had to formalize the e�ect of con�guration closures on the

�nite control of occurrences within the closed con�gurations. That is, if occurrences m and n occur

in a con�guration � = m B n, we need to understand the e�ect of � on m and n.

Clearly, m B n 6= m B n because, in m B n, the right channel of m is connected to the parent

channel of n; whereas m B n is an illegal channel connection because the m closes all channels of m

and n closes all channels of n. This issue comes up in the proof of the coverage theorem, and so we

need a notation which relates the closing of a con�guration to the speci�c channel closings of a given

120

occurrence in the con�guration. If m is a machine occurrence, let mc denote the non-deterministic

Mealy machine arrived at by closing all channels except c in m. Given this, then the following table

de�nes m B n for all all m and n:

m B n =

8><
>:
m 2 �̂1 ml B np

m 2 �̂2 mr B np

Our de�nition of closure does not forget transitions, only the communication information (guards

and reactions) associated with transitions. The following lemma follows from the de�nition of

machine closure.

Lemma 7.5.1. Consider an incidence m B n in a con�guration �. Let q be the transition (s
i [o]
�! t).

If q 2 Trans(m), then �m;n(q) 2 Trans(mr).

This says that any transition in an occurrence m corresponds to a transition in mr under the

projection.

The proof of the coverage theorem now follows:

Proof. We prove this by induction on the length of �fm;ng(&).

Base length(�fm;ng(&)) = 1. Let q be the transition in & which maps to (�fm;ng(&))(1). Assume

without loss of generality that q 2 Trans(m). Clearly q must be the �rst occurrence-m

transition in &, for if not, then length(�fm;ng(&)) > 1. Since q is the �rst such quint in &,

source(q) must be the initial state of m. Clearly q is an occurrence m transition, and so by

Lemma 7.5.1, �fm;ng(q) 2 Trans(mr). Moreover, since source(q) is the initial state of m,

source(�fm;ng(q)) is the initial state of mr . Therefore h�fm;ng(q)i is a pre�x of a trace in

m B n . This establishes the induction base.

Hypothesis for all & 2 tr(�) with length(�fm;ng(&)) < K , then there exists an S 2 tr(m B n)

such that �fm;ng(&) pre�x S .

Step Let q be the quint in & which maps to position K under �fm;ng. Let p denote the quint

immediately preceding q in &. By Lemma 7.3.1, we can assume the reaction of p causes the

transition q . Assume without loss of generality that q is an occurrence-m transition. Let

c?e be the action which initiates q . Again, we assume this action is initiated in & by the

121

reaction of p. Let s = source(q). Let t = target(q). Let P be the pre�x of length K � 1

supposed to exist by the induction hypothesis. If we could prove that there is at least one

trace S in tr(m B n) in which P � S and the m occurrence is in state s at S (K � 1). then,

Lemma 7.5.1 guarantees that the occurrence mr contains a transition �fm;ng(q). With this,

let S = P_h�fm;ng(q)i. S 2 tr(m B n), and clearly, �fm;ng(&) pre�x S . This will complete

the induction step.

So now to prove the existence of a trace S 2 tr(m B n) in which P pre�x S and the m

occurrence is in state s at S (K � 1). The length of P is less than K , so by the inductive

hypothesis, there is a trace in tr(m B n) of which P is a pre�x. To demonstrate that the

m occurrence of m B n is in state s after P , there are two cases to consider: Either there is

no occurrence-m transition in P , or, since P is of �nite length, there is a last occurrence-m

transition in P , say at position j .

Case I If there is no occurrence-m transition in P , then there could not have been an occurrence-

m transition in & (until q of course), in which case source(q) = init(m). But if m B n

contains a trace of length K �1 with no occurrence-m transitions, then the m-occurrence

will be in the initial state, which we just argued was the source of q .

Case II Suppose on the contrary that, in trace S , the m occurrence of m B n is in a state

s0 6= s after K � 1 steps. Then there must be some last occurrence-m transition q 0 in S

in which s0 = target(q 0). But note that the position of this transition would have to be

less than K , so by the inductive hypothesis, this transition exists at the same position

in �fm;ng(&). Herein lies the contradiction. This could not be because that would imply

this occurrence-m transition occurs after P(j) which contradicts our choice of j .

The utility of the coverage theorem lies in its assertion that closures of incidences observe

any behaviors the incidences would observe in a con�guration. The property was part of the

motivation for calling these things closures, as they can be thought of as incidence con�gurations

in all con�gurations.

122

Chapter 8

Validation

We observed that approaches which base generation on task models do a good job at generating

stereo-typical form-based user interfaces but fail to generate more graphical. direct manipulation

interfaces. TheMastermind vision postulates a remedy to this situation through the incorporation

of �rst class task and presentation models. It is the thesis of this work that for this postulated

remedy to be successful, three things must hold simultaneously:

1. Task and presentation modeling languages must be expressive enough to precisely model the

relevant aspects of the interface,

2. The binding of task and presentation models must be explicitly articulated (preferably via a

formal notation), and

3. The code generated from each model must compose easily with the code generated by the

other models.

We set out to validate this thesis by de�ning a task modeling language (MDL), formalizing presen-

tation binding within this language, and building a toolkit of reusable components which can be

aggregated to implement task models and which compose easily with presentation entities.

In this chapter, we critically analyze the degree to which these results validate the claims laid

out in the thesis. The validation proceeds in two steps. First, we question whether or not our

solution demonstrates a remedy in the sense postulated by the Mastermind vision. We check

this by showing that in fact, these techniques can be used to generate interfaces which support

direct manipulation and are more graphical than forms based interfaces (Section 8.1). Then we

test the claim that the code generated from MDL models is highly composable. In support of the

claim we provide a formal model of composition, a proof that the generated code cooperates, and

123

an argument about the simplicity of code generation (Section 8.2). This chapter concludes with a

reection of this research, lessons learned, conclusions, and avenues of future research.

8.1 The Quality of Generated Interfaces

Mastermind aims to increase the richness of applications generated from task models by de�ning

an environment in which multiple models contribute to the design and implementation of an inter-

active system. This vision manifests itself in the use of both task and presentation models. The

most visible validation of our approach comes from the end-to-end application of a task model to

generate example interfaces. We chose our examples to demonstrate:

1. the practical adequacy of MDL in modeling both common and domain-speci�c tasks.

2. the ability of our framework to generate better interfaces than existing model-based ap-

proaches.

3. the e�ciency of systems generated using the framework.

We tested the quality of user interfaces generated by our approach on two examples (one small and

one large). The examples demonstrate three functional quality attributes:

1. the adequacy of MDL for common, highly reusable, tasks (Section 8.1.1),

2. the ability to implement complex, domain speci�c tasks, and (Section 8.1.2),

3. the ability to generate direct manipulation interfaces (Section 8.1.2).

We measured the performance of generated code using two metrics. The �rst metric, which we call

the �t method, measures the wall-clock time between when a initiates an interaction (by clicking

on a button or dragging and dropping an icon) and when the system has completely reacted to that

interaction. �t is measured as a fraction of a second, and the benchmark we hope not to exceed

is a tenth of a second. We found, in fact, that under all test cases, the system never consumed a

tenth of a second per interaction. �t is a satisfactory bottom-line metric because it relates easily

to usability, but it does not help us model conceptually how much work the system is doing per

interaction. To get a handle on this, we adopted a more intrinsic metric that captures the number

124

of MMTK component interactions which constitute a user interaction. We call this metric #S to

represent the \number of signals" passed around to implement an event synchronization. We chose

to base this metric on event synchronizations rather than complete interactions because often a

single interaction employs many event synchronizations. The examples and the associated timing

metrics are collected in a testbed which can be recreated with the Mastermind environment, thus

adding credence to our claims.

8.1.1 Test I: The Save/Print Task Model

This application is intended to validate the use of MDL/MMTK for stereo-typical tasks that occur in

modern interfaces. Saving to a �le and printing are common tasks in drawing tools, web browsers,

and word processing applications. Though a simple application, this example provided our �rst

challenge to linking MMTK components with standard toolkit widgets (as opposed to widgets we

designed using a presentation model).

The task model for this example is shown in Figure 31. The PrintSave task has two parameters:

portOrLand , which represents the type of page layout (portrait or landscape) and saveFileName,

which holds the name of a �le in which to save the document. This task decomposes the mutual

disabling, which means that the user may alternate back and forth between the Print and Save

tasks arbitrarily until he �nishes one of these tasks. The presentation for this task model contains

two radio-button panels and a text entry box.

When we ran this example, the dialogue was implemented correctly in the sense that buttons

were enabled and disabled as prescribed by the MDL model. We observed no time delays between

interactions, but to check ourselves, we instrumented the source code to measure two resource

consumption properties of the implementation. The maximum time taken during an interaction

was 0:04 seconds, well below our benchmark of 0:1 seconds. This interaction involved 20 signals

among the MMTK components.

8.1.2 Test II: The Air Tra�c Control Task Model

The objective of this experiment is to validate the end-to-end performance of MDL and MMTK on

a deeply domain sensitive task model. We have been using this example for illustrative purposes

throughout the document. The presentation appears in Figure 32.

125

task PrintSave

parameters

portOrLand : string; saveFileName : string
is

Print $ Save

where

task Print

is

choosePrint? � orientation?portOrLand � stop
endtask

task Save

is

chooseSave? � �leName?saveFileName � stop

endtask

endtask

Figure 31: MDL task model for print/save dialogue.

8.1.2.1 Qualitative Analysis

This example demonstrates the ability of MDL/MMTK to support direct manipulation interfaces.

As ight numbers are keyed in to the text entry box at the top corner of the display, buttons labeled

with the ight numbers appear in the airspace at carefully spaced intervals. This is shown in Figure

32. There are three planes in the airspace at this time: US 1155, NOR 316, and DEL 111. As the

presentation demonstrates, the latter two ights are in a closer approach pattern than US 1155. As

more planes come into the airspace, the controller will key in their ight number in the text-entry

box at the top left corner of the display.

When the controller decides to change the position of a plane, he does so by dragging the plane

to a new location on the canvas. As soon as he presses and holds the mouse button, a feedback

object shaped like an airplane appears and follows the mouse to the new location. When the

mouse is released, the plane icon moves to the newly selected location. The presentation is actually

quite sophisticated. It performs gridding so that airplane presentations are always uniformly placed

within the lanes, and it provides feedback objects. Binding with our task model clearly does not

impede these features. Figure 33 shows another shot of the display. At this time, the controller has

changed the positions of the planes and has added a new plane (DEL 265) into the airspace. Figure

34 shows the display after the controller has instructed DEL 111 to land, has moved the remaining

126

Figure 32: The ATC user interface.

127

Figure 33: The ATC user interface after adding a new plane.

planes into a closer pattern and has recorded a new ight (TWA 211) into the airspace.

The display in this example can hold up to forty plane widgets. It seemed a good test to load

up the airspace with widgets and see if we could force the system to commit a noticeable delay. In

spite of increasing the load, when we moved planes or double clicked to land the planes, we did not

observe a delay.

8.1.2.2 Quantitative Analysis

On the quantitative side, we measured three attributes of the system in execution: executable image

size, MMTK signal behavior under three di�erent loads, and the average time of interaction. We

conclude that each is reasonable.

The size of the executable �le is 958Kbytes. This is not uncommonly large. As a point of

128

Figure 34: The ATC user interface after landing a plane.

129

reference, we looked in the Amulet distribution and found a sample program of similar graphical

make-up (the Amulet checkers program). This program has a size of 680Kbytes. To understand

the di�erence in size, consider that our executable linked, in addition to the Amulet library, the

LEDA library, and the MMTK library.

This example utilizes the dynamic features of MDL/MMTK. This added dimension of complex-

ity could introduce performance degradation. We measured the behavior of the example under two

di�erent loads and two di�erent patterns of interaction. The load di�erence is eight vs. twenty four

planes in the airspace. The two patterns of usage are:

1. Load up the airspace to the given number of planes and then perform all position changes

and landings, and

2. Interleave position changes and landings with the incorporation of new planes into the airspace

up to the maximum.

As in the print/save example, we measure run-time performance using the system clock to measure

time di�erentials around interactions (�t), and the number of MMTK communications per inter-

action (#S). Unlike the print/save example, however, there are enough interactions to plot the

behavior over time and reason about performance degradation.

The experiments demonstrated two behavior regularities relative to performance degradation.

First, the MMTK component trees exhibit a great deal of control passing locality as measured by

the signals-per-interaction metric. As tree size grows, the number of signals needed to implement a

given interaction remains �xed. This is signi�cant because it demonstrates a locality of behavior in

the MMTK component tree. Recall that when new planes are added, an MMTK component tree

grows. This data shows that, even though the tree gets deeper, the instantiated sub-processes have

local behavior. That is, when interaction is occurring only a small number sub-trees are involved.

Second, even complex event synchronizations like those which result from a controller creating

dynamic ManageFlight subtasks do not consume unreasonable resources to implement. We de�ne

reasonable here as \the entire interaction takes less than a tenth of a second." As the �t graphs

below demonstrate, no interaction in any of our tests consumed more than nine one-hundredths of

a second.

130

Figure 35: �t interaction graph with a load of 8 planes.

Eight Planes Figure 35 shows the �t time series of the ATC interface with a maximum of eight

planes at any one time and an usage scenario in which all eight ights are entered before any

are landed (hereafter called the up-front usage scenario). Points along the x -axis are interactions

(entering a ight number, dragging a plane to a new position, and double clicking on a plane to

instruct it to land). Points along the y-axis are times as measured by the C library getrusage(1)

function. The scale of the y-axis is in hundredths of a second. The most complex signaling occurs

when ight numbers are entered. When this happens, three separate events synchronize. Note that

in spite of this, the time required for any given interaction remains under a tenth of a second.

Figure 36 shows the signal behavior of the interface (#S) as a function of the event synchroniza-

tions. Points along the x axis are distinct event synchronizations. Points along the y-axis are the

number of signals issued between MMTK components in reaction to these synchronizations. The

high spikes occur when the user enters ight information. There are thirty-six MMTK component

communications every time this happens. The reason for the high number is that, when a new ight

number is entered, a new ManageFlight task is instantiated and enabled for the �rst time. Process

instantiations tend to require more signal propagation than the use of these processes. What is

interesting is that no matter how many planes are in the airspace, adding a new one always takes

only 36 communications.

131

Figure 36: #S graph with a load of 8 planes.

Twenty Four Planes Figure 38 shows the #S behavior of the interface with a maximum of

twenty four planes (triple the load of the previous example) at any one time and an up-front

usage scenario. Points along the x -axis are interactions. Points along the y-axis are the number

of signals that get issued between MMTK components in reaction to the interactions. The graph

demonstrates that a larger load does not a�ect the locality of signaling behavior. This is consistent

with the clock-time measurements as well.

We tried one more load test with a di�erent scenario of usage. In this scenario, we manipulate

and land planes before, during, and after the load limit (still twenty four planes) has been reached.

Figure 39 shows the performance of the system under this scenario according to the �t metric.

The high spikes again correspond to the creation of new ights. The times are still under a tenth

of a second.

Figure 40 shows the results of the varied usage scenario according to the #S metric. Note that

interleaving ight manipulations within ight creation does not a�ect the control signaling. Flight

creations still consume thirty-six MMTK component signals and move/land interactions.

132

Figure 37: Interaction signal urrying with 24 planes, up-front usage.

Figure 38: #S graph with a load of 24 planes.

Figure 39: �t graph with a load of 24 planes (varied usage).

133

Figure 40: #S graph with a load of 24 planes (varied usage).

8.2 Multi-model Compositionality

The biggest challenge to e�ective model-based code generation is to make the code generated by

separate models composable. MMTK was designed to support seamless integration with code

generated by other models. To validate this claim, we have identi�ed two ways in which the

composition might be impeded:

1. the tree component algorithm is incorrect, or

2. the presentation linkage strategy over the target toolkit (Amulet) is incomplete.

8.2.1 Correctness of Control Component Interoperation

To argue the correctness of our control model, we submitted four pieces of evidence:

1. Formal semantics of the machine de�nitions (Chapter 6).

2. Two correctness properties of component inter-operation (Chapter 6).

3. Proof of a theorem relating the satisfaction of these correctness properties to a suite of con-

�guration tests performed by a model checker (Chapter 7.

134

We now discuss how each of these items is validated.

We identi�ed two correctness properties{receptiveness and freedom from divergence{whose sat-

isfaction cannot be judged by looking at the de�nition of a single component. We tested the

components under composition using the SMV model checker. When the model checker discovered

failure cases, we modi�ed the machine designs and reiterated. The set of Mealy machines de�ned

in this dissertation have all passed the model checking.

Using the model checker, we were able to validate the two properties for all MMTK ordering

components in con�gurations of depth two. We then validated the claim for con�gurations of

arbitrary size by proving the Composition Adequacy Theorem.

The next item is the collection of speci�c Mealy machine de�nitions. In the examples we have

applied, we have not yet discovered a design aw. The detailed designs appear in[92].

One �nal point to consider. We utilized a great deal of automation in translating MM de�nitions

to SMV input con�gurations. The details of this translation are provided in the tool documentation

[92]. We did not formally prove that the correctness of the MM compiler.

8.2.2 Completeness of Presentation Linkage

Inherent in our de�nition of binding was an assumption about the complexity of linking MMTK

components to presentation components. Speci�cally, we assumed that all presentation/task com-

munication could be implemented by event synchronization and that the initiation of a communi-

cation could be implemented using Amulet Command[71] objects. Clearly things worked out for

the examples we tried, but it is reasonable to ask if there exist situations whose complexity exceeds

the facilities we have laid down. That is, is our presentation linkage strategy complete with respect

to the target toolkit. We believe, in fact, that our approach is complete with respect to the way

the Amulet toolkit handles interactor actions[71].

In general there are three obstacles to MMTK/presentation linkage:

1. Techniques for connecting UI functionality vary widely depending upon the presentation

toolkit and programming language. Connecting with presentation entities often requires set-

ting values in toolkit objects and being invoked by asynchronous call-backs.

2. The connection device should not be bound to a speci�c MMTK component class. A radio

135

button panel, for example, under some circumstances might be attached to a single MMTK

input component, and in others, each individual button in the panel might be attached to a

di�erent MMTK input component.

3. Presentation entities may already be parts of other aggregation hierarchies. This can compli-

cate their linkage with MMTK components.

We have not provided a toolkit-independent linkage strategy (which rules out any strong claims

about the �rst point). However, if we limit our focus to those presentation behaviors expressible in

the Amulet toolkit, we can make some precise statements about points two and three.

We believe that our choice of linkage via Amulet command objects takes care of point two.

That is, by design Amulet command objects are generic over presentations and interactors. This

makes them trivially \pluggable" in di�erent contexts. In fact, in [71], Myers and Kosbie argue that

by virtue of command objects and the interactor model, input in Amulet is completely separable

from output in the sense of the model-view-controller (MVC) paradigm. The \late-binding" of our

linkage strategy is directly related to the degree to which Myers' claims are true.

Point three is a bit more subtle. Aggregation hierarchies are used extensively in modern object-

oriented UI toolkits for purposes of managing layout and visibility. This packaging can complicate

the style of linkage we assume by muddying the question of who owns, creates, and destroys a part.

Consider, for example, the radio button panel widgets in which the panel widget code actually

creates the individual button widgets. To link each button in the panel to an MMTK component,

a complex run-time walk of the panel aggregation tree would be required. This walk would �nd

the buttons and associated with various PresOutput communication components and then extract

the MM Callback Command objects from these components and make them parts of the interactors

associated with the buttons. This is clearly di�cult to express declaratively. Moreover, it implies

run-time linkage. This is an unavoidable consequence of combining models with di�erent hierarchi-

cal decompositions. On the bright side, this is the kind of operation a model-based code generator

can perform.

136

8.3 Summary and Future Work

The model-based approach is a new paradigm for interactive system development. Like any new

paradigm, it presents new challenges. Current model-based approaches have been criticized because

the code they generate is not highly graphical, does not support direct manipulation, and does not

allow the designer to express all of the salient detail of an interface. We have argued these de�ciencies

are not inherent in the model-based approach, but rather, are a consequence of applying traditional

software composition techniques to a new paradigm of software composition. The proper mechanism

for model-based generation is a constraint-oriented composition. MDL and MMTK demonstrate

that the constraint-oriented view of interactive-system composition is both theoretically sound and

practically feasible.

Though the work in this thesis is still new, the results demonstrate the potential for model-

based development environments to become competitive tools in the software development circle.

In addition, this research has made technical contributions on two levels. First, we identi�ed

the model-composition problem as one which could be solved using simulated concurrency and

synchronization. By itself, this solution is not that novel, as researchers have been thinking about

concurrency and synchronization in this domain for years. The di�erence is that we took this idea

beyond the realm of speci�cation and into the realm of implementation. Second, we identi�ed

the primary complexity of designing a temporal constraint system as one of correctness. This

understanding led to a formulation of the problem in which we dealt with design correctness from

the beginning rather than trying to prove it at the end. We did this by formulating correctness

of composition properties and then adapting a tool to check these properties automatically. This

freed us from having to worry about composition correctness and allowed us to concentrate on the

interesting side of implementing MDL operators in Mealy machines.

8.3.1 Lessons Learned

We learned many lessons during the course of this research. It began with an investigation into

the generation of code from task and presentation models. Early in the project, we applied formal

methods to try and uncover the semantics of task models, presentation models, and model compo-

sition. Unfortunately, in the beginning, we applied the methods poorly. We took the approach of

137

picking formalismX and trying to model all of the desired task and presentation functionality in X .

Chronologically, formalismX was StateCharts[44], then Petri-nets[86], and �nally Mealy machines.

The problem was we failed to identify acceptance criteria before plunging into the modeling phase.

We spent weeks investigating Petri-nets and even began building a Petri-net simulator before real-

izing they did not compose well with our intended model of presentations. Had we identi�ed clear

and simple presentation composition as an acceptance criteria, we would have been able to allocate

intellectual resources more wisely.

The other lesson has to do with using theoretical knowledge to simplify tedious e�ort. When we

began designing these Mealy machines, we knew the model checker could check temporal properties

of state machines, but we did not have a clear view of the composition properties. These had to be

discovered by trial and error. It was clear, however, that we needed a bound on the size of testing

con�gurations. Before proving the adequacy theorem, we thought this bound was much larger than

we have shown. This meant that each con�guration contained more machines and, therefore, more

state, which meant that model checking a single con�guration took hours rather than minutes. Had

we invested more energy into the theorem early on, we could have saved a great deal of e�ort and

compute resources.

8.3.2 Future Work

We see future work proceeding in three areas: MDL extension, integration into the Mastermind

design environment, and generalization of the Composition Adequacy Theorem.

MDL needs an operator similar to the guarded expression operator of Lotos. In Lotos,

designers can specify: [cond]! P which will enable P if the condition cond evaluates to true and

disable P otherwise. Currently, we lack an MMTK operator that can handle this, but it should be

a straight-forward extension to the framework. With this operator in place, we can de�ne Stack

and Queue dynamic process constructors similar to the Set constructor we have now.

Currently MDL and MMTK comprise stand-alone tools and run-time libraries. We want to see

them integrated into the full Mastermind design environment so that presentation binding can

be done graphically. The reason this has not been done already is a lack of resources. It should be

a straight-forward integration.

138

In Chapter 7, we proved the Composition Adequacy Theorem, which demonstrates useful com-

position properties of Mealy machines under the synchrony hypothesis. The proof is not restricted

to either Mastermind or the user-interface generation problem. Nevertheless, we would like to

generalize the Composition Adequacy Theorem over other properties. The receptiveness and

freedom from divergence properties take advantage of a class of CTL constraint. We would like

to axiomatize the theorem so that it clearly states which other CTL composition constraints can

be checked in arbitrary con�gurations.

139

Bibliography

[1] Gregory D. Abowd. Formal Aspects of Human-Computer Interaction. PhD thesis, University
of Oxford, 6 1991.

[2] Gregory D. Abowd and Alan J. Dix. Integrating status and event phenomena in formal
speci�cations of interactive systems. In Proceedings of the ACM SIGSOFT'94 Symposium on

the Foundations of Software Engineering, New Orleans, Louisiana, 12 1994.

[3] Gregory D. Abowd, Hung-Ming Wang, and Andrew F. Monk. A formal techniqe for auto-
mated dialogue development. In Gary M. Olson and Sue Schuon, editors, Proceedings of the
Symposium on Designing Interactive Systems: Processes, Practices, Methods & Techniques,
pages 219{226. ACM Press, August 1995.

[4] Heather Alexander. Structuring dialogues using csp. In Formal Methods in Human-Computer

Interaction[45], pages 273{295. Cambridge University Press, 1990.

[5] Robert Allen and David Garlan. A formal basis for architectural connection. ACM Transac-

tions on Software Engineering and Methodology, 6(3):213{248, 7 1997.

[6] J. R. Anderson. The Architecture of Cognition. Harvard University Press, 1983.

[7] Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley, 1996.

[8] Joanne Atlee and John Gannon. State-based model checking of event driven systems require-
ments. IEEE Transactions on Software Engineering, 19(3), January 1993.

[9] L. Bass, R. Little, R. Pellegrino, S. Reed, R. Seacord, S. Sheppard, and M. R. Szczur. The
arch model : Seeheim revisited, 4 1991. User Interface Developer's Workshop Report.

[10] L. Bass and C. Unger, editors. Engineering for Human Computer Interaction. Chapman &
Hall, 1996.

[11] Len Bass and Jo�elle Coutaz. Developing Software for the User Interface. SEI Series in Software
Engineering. Addison-Wesley, Reading, Massachusetts, 1991.

[12] D. Benyon and P. Palanque, editors. Critical Issues in User Interface Systems Engineering.
Springer-Verlag, Berlin, 1995.

[13] G�erard Berry and Georges Gonthier. The esterel synchronous programming language;
design, semantics, implementation. Science of Computer Programming, 19:87{152, 1992.

[14] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Provot, and J. Vanderdonckt. A model-
based approach to presentation: A continuum from task analysis to prototype. In EuroGraph-
ics Workshop on Design, Speci�cation, and Veri�cation of Interactive Systems (DSV-IS'94),
1994.

[15] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Provot, J. Vanderdonckt, and G. Zucchinetti.
Key activities for a development methodology of interactive applications. In Critical Issues

in User Interface Systems Engineering [12]. Springer-Verlag, Berlin, 1995.

140

[16] Barry Boehm. A spiral model of software development and enhancement. IEEE Computer,
21(5):61{72, 1988.

[17] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO speci�cation language lotos.
Computer Network ISDN Systems, 14(1), 1987.

[18] Thomas Browne, David Davila, Spencer Rugaber, and Kurt Stirewalt. Using declarative
descriptions to model user interfaces with mastermind. In Fabio Paterno and Philippe
Palanque, editors, Formal Methods in Human Computer Interaction. Springer-Verlag, 1997.

[19] H. J. Bullinger and B. Schackel, editors. Human Computer Interaction - INTERACT'87.
North Holland, Amsterdam, 1987.

[20] T. Bultan, J. Fischer, and R. Gerber. Compositional veri�cation by model-checking for
counter-examples. In International Symposium on Software Testing and Analysis, pages 224{
238, 1996.

[21] J.R. Burch, E.M. Clarke, K.L.McMillan, D.L. Dill, and L.J. Hwang. Symbolicmodel checking:
1020 states and beyond. In Proceedings of the 5th International Symposium on Logic in

Computer Science, June 1990.

[22] S. K. Card, T. P. Moran, and A. Newell. The keystroke-level model for user performance.
Communications of the ACM, 23:394{410, 1980.

[23] S. K. Card, T. P. Moran, and A. Newell. The Psychology of Human Computer Interaction.
Lawrence Erlbaum, 1983.

[24] L. Cardelli and R. Pike. Squeak: a language for communicating with mice. Computer Graph-

ics, 19(3), 1985.

[25] P. Castells, P. Szekely, and E. Salcher. Declarative models of presentation. In IUI'97: Inter-

national Conference on Intelligent User Interfaces, pages 137{144, 1997.

[26] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons from branching time
temporal logic. In Workshop on Logics of Programs, pages 52{71, 1981.

[27] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite{state con-
current systems using temporal logic. ACM Transactions on Programming Languages and

Systems, 8(2):244{263, 1986.

[28] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In Fourth

Annual Symposium on Logic in Computer Science, pages 353{362, 1989.

[29] J. Coutaz. PAC, an object-oriented model for dialog design. In Human Computer Interaction

- INTERACT'87 [19], pages 431{436. North Holland, Amsterdam, 1987.

[30] D. Diaper, editor. Task Analysis for Human Computer Interaction. Ellis Horwood, 1989.

[31] D. Diaper. Analysing focused interview data with task analysis for knowledge description
(takd). In IFIP INTERACT'90: Human-Computer Interaction, 1990.

[32] Alan Dix. Non-determinism as a paradigm for understanding the user interface. In Formal

Methods in Human-Computer Interaction[45], pages 97{127. Cambridge University Press,
1990.

141

[33] W. Keith Edwards, Scott Hudson, Roy Rodenstein, Thomas Rodriguez, and Ian Smith. Sys-
tematic output modi�cation in a 2d user interface toolkit. In UIST'97: ACM Symposium on

User Interface Software Technology, 1997.

[34] Brad A. Myers et. al. Garnet: Comprehensive support for graphical, highly-interactive user
interfaces. IEEE Computer, 23(11):71{85, 11 1990.

[35] A. Fantechi, S. Gnesi, and G. Mazzarini. How expressive are lotos behaviour expressions?
In Formal Description Techniques, III. Proceedings of IFIP TC/WG 6.1 Third International

Conference on Formal Description Techniques for Distributed Systems and Communication

Protocols (FORTE'91), pages 17{32, 1991.

[36] J. Fischer and R. Gerber. Compositional model-checking of ada tasking programs. In IEEE

Ninth Annual Conference on Computer Assurance (COMPASS'94), 1994.

[37] J. Foley, W. Kim, S. Kovacevic, and K. Murray. Uide - an intelligent user interface design
environment. In [96], pages 339{384. Addison-Wesley, Reading, Massachusetts, 1991.

[38] J. D. Foley. The structure of interactive command languages. In R. A. Guedj et. al., editor,
Methodology of Interaction, pages 227{234. North Holland Publishing Company, Amsterdam,
The Netherlands, 1980.

[39] James D. Foley, Victor L. Wallace, and Peggy Chan. The human factors of computer graphics
interaction techniques. IEEE Computer Graphics and Applications, 4, 11 1984.

[40] Formal Systems (Europe) Ltd., Oxford, England. Failures Divergence Re�nement: User

Manual and Tutorial. 1.2�, 1992.

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison{Wesley Publishing Company, Reading,
Massachusetts, 1995.

[42] S. Gnesi and S. Larosa. A sound and complete axiom system for the logic actl. In Fifth Italian
Conference on Theoretical Computer Science, 1996.

[43] James Gosling and Frank Yellin. The Java Application Programming Interface, Volume 2:

Window Toolkit and Applets. Addison-Wesley, 1996.

[44] David Harel. Statecharts: a visual formalism for complex systems. Science of Computer

Programming, 8, 1987.

[45] M. Harrison and H. Thimbleby, editors. Formal Methods in Human-Computer Interaction.
Cambridge University Press, 1990.

[46] H. R. Hartson, A. C. Siochi, and D. Hix. The uan: a user-oriented representation for direct
manipulation interface designs. ACM Transactions on Information Systems, 8(3):181{203, 7
1990.

[47] H. Rex Hartson and D. Hix, editors. Advances in Human-Computer Interaction, volume 2.
Ablex, Norwood, 1988.

[48] H. Rex Hartson and Deborah Hix. Human computer interface development : Concepts and
systems for its management. ACM Computing Surveys, 21(1):5{92, 3 1989.

142

[49] H. Rex Hartson and Kevin A. Mayo. A framework for precise, reusable, task abstractions. In
Eurographics Workshop: Design, Speci�cation and Veri�cation of Interactive Systems, pages
147{164, 1994.

[50] C. A. R. Hoare. Parallel programming: An axiomatic approach. Computer Languages,
1(2):151{160, 6 1975.

[51] C. A. R. Hoare. Communicating Sequential Processes. Prentice/Hall International, Englewood
Cli�s, New Jersey, 1985.

[52] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley Publishing Company, 1979.

[53] Daniel Jackson. Abstract model checking of in�nite speci�cations. In Formal Methods Europe,
Barcelona, 10 1994.

[54] Daniel Jackson and Craig A. Damon. Elements of style: Analyzing a software design fea-
ture with a counterexample detector. In International Symposium on Software Testing and

Analysis (ISSTA'96), 1996.

[55] Christian Janssen, Anette Weisbecker, and J�urgen Ziegler. Generating user interfaces from
data models and dialogue net speci�cations. In Bridges Between Worlds: Human Factors in

Computing Systems: INTERCHI'93, 1993.

[56] P. Johnson. Human Computer Interaction: Psychology, Task Analysis, and Software Engi-

neering. McGraw-Hill, 1989.

[57] P. Johnson. Human-Computer Interaction, Psychology, Task analysis, and Software Engi-

neering. McGraw-Hill, London, 1991.

[58] P. Johnson, S. Wilson, P. Markopoulos, and J. Pycock. Adept - advanced design environment
for prototyping with task models. In Bridges Between Worlds: Human Factors in Computing

Systems: INTERCHI'93, 1993.

[59] S. C. Johnson. Yacc{yet another compiler compiler. Technical Report C.S. Technical Report
32, Bell Telephone Laboratories, Murray Hill, Ne Jersey, 1975.

[60] D. Kieras and G. Polson. An approach to the formal analysis of user complexity. International
Journal of Man Machine Studies, 22, 1985.

[61] David E. Kieras, Scott D. Wood, Kasem Abotel, and Anthony Hornof. Glean: A computer-
based tool for rapid goms model usability evaluation of user interface designs. In ACM

Symposium on User Interface Software and Technology, 1995.

[62] G. E. Krasner and S. T. Pope. A cookbook for using the model view controller user interface
paradigm in smalltalk. Journal of Object Oriented Programming, 1(3), 8 1988.

[63] P. Markopoulos. On the expression of interaction properties within an interactor model. In
Design Speci�cation and Veri�cation of Interactive Systems (DSV-IS'95), 1995.

[64] P. Markopoulos, J. Rowson, and P. Johnson. On the composition of interactor speci�cations.
In Formal Aspects of the Human Computer Interface, BCS-FACS Workshop, 1996.

143

[65] P. Markopoulos, S. Wilson, and P. Johnson. Representation and use of task knowledge in
a user interface design environment. IEE Proceedings{Computers and Digital Techniques,
141(2), 1994.

[66] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
PhD thesis, Carnegie Mellon University, 1992. CMU-CS-92-131.

[67] M. Mezzanotte and F. Paterno'. Veri�cation of properties of human-computer dialogues with
an in�nite number of states. In Formal Aspects of the Human Computer Interface BCS-FACS

Workshop, pages 29{39, 1996.

[68] Robin Milner. Communication and Concurrency. Prentice Hall International Series in Com-
puter Science. Prentice Hall, New York, 1989.

[69] Thomas P. Moran. The command language grammar: a representation for the user of an
interactive computer system. International Journal of Man{Machine Studies, 15:3{50, 1981.

[70] Brad A. Myers. A new model for handling input. ACM Transactions on Information Systems,
8(3):289{320, 1990.

[71] Brad A. Myers and David S. Kosbie. Reusable hierarchical command objects. In CHI'96:

Human Factors in Computing Systems, 1996.

[72] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew Faulring,
Bruce D. Kyle, Andrew Mickish, Alex Klimovitski, and Patrick Doane. The amulet environ-
ment: New models for e�ective user interface software development. IEEE Transactions on

Software Engineering, 23(6):347{365, 6 1997.

[73] Brad A. Myers and Mary Beth Rosson. Survey on user interface programming. In SIGCHI'92:
Human Factors in Computing Systems, 5 1992.

[74] R. Neches, J. Foley, P. Szekely, P. Sukaviriya, P. Luo, S. Kovacevic, and S. Hudson. Knowl-
edgeable development environments using shared design models. In Intelligent Interfaces

Workshop, pages 63{70, January 1993.

[75] R. \De Nicola", A. Fantechi, S. Gnesi, and G. Ristori. An action-based framework for verifying
logical and behavioural properties of concurrent systems. Computer Networks and ISDN

Systems, 25(7):761{78, 2 1993.

[76] Dan R. Olsen. Propositional production systems for dialogue description. In Empowering

People{CHI'90 Conference Proceedings, pages 57{63, 1990.

[77] P. Palanque, R. Bastide, and V. Seng�es. Validating interactive system design through the
veri�cation of formal task and system models. In Working Conference on Engineering for

Human Computer Interaction, 1995.

[78] P. Palanque, F. Paterno', R. Bastide, and M. Mezzanotte. Towards an integrated proposal
for interactive systems design based on tlim and ico. In Third Eurographics Workshop on

Design, Speci�cation, Veri�cation of Interactive Systems (DSV-IS'96), 1996.

[79] Fabio Paterno'. Detection of properties of user interfaces. In 5th International Conference on

Software Engineering and Knowledge Engineering (SEKE'93), 1993.

144

[80] Fabio Paterno'. A theory of user-interaction objects. Journal of Visual Languages and Com-

puting, 5:227{249, 1994.

[81] Fabio Paterno', Maria Sabrina Sciacchitano, and Jonas L�owgren. A user interface evaluation
mapping physical user actions to task-driven formal speci�cations. In Second Eurographics

Workshop on Design, Speci�cation, Veri�cation of Interactive Systems (DSV-IS'95), 1995.

[82] G. Pfa� and P. ten Hagen, editors. User Interface Management Systems: proceedings of the

Workshop on User Interface Management Systems, held in Seeheim FRG. Springer{Verlag,
Berlin, 1985.

[83] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

[84] A. Puerta. The mecano project: Comprehensive and integrated support for model-based user
interface development. In [99], pages 19{36. Namur University Press, 1996.

[85] A. R. Puerta, H. Eriksson, J. H. Gennari, and M. A. Mussen. Beyond data models for auto-
mated user interface generation. In People and Computers IX HCI'94 Conference Proceedings,
pages 353{366. Cambridge University Press, Cambridge, 1994.

[86] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of Monographs on Theoretical Com-

puter Science. Springer Verlag, 1982.

[87] Egbert Schlungbaum. Model-based user interface tools: Current state of declarative mod-
els. Technical Report GIT-GVU-96-30, Graphics, Visualization and Usability Center (GVU),
Georgia Institute of Technology, 1996.

[88] Egbert Schlungbaum and Thomas Elwert. Dialogue graphs: A formal and visual speci�cation
technique for dialogue modelling. In Formal Aspects of the Human Computer Interface, BCS-

FACS Workshop, 1996.

[89] F. B. Schneider. On Concurrent Programming. Springer, 1997.

[90] J. L. Sibert, W. D. Hurley, and T. W. Bleser. Design and implementation of an object-oriented
user interface management system. In Advances in Human-Computer Interaction: Volume II

[47]. Ablex, Norwood, 1988.

[91] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in
Computer Science. Prentice Hall, New York, 1992.

[92] Kurt Stirewalt. The design and implementation of the mastermind toolkit (mmtk). Tech-
nical Report GIT-GVU-97-23, Graphics, Visualization and Usability Center (GVU), Georgia
Institute of Technology, 1997.

[93] Bernard Su�rin and Jifeng He. Speci�cation, analysis and re�nement of interactive processes.
In [45]. Cambridge University Press, 1990.

[94] Piyawadee \Noi" Sukaviriya and James D. Foley. Coupling a UI framework with automatic
Generation of context-sensitive animated help. In ACM Symposium on User Interface Soft-

ware and Technology, 1990.

145

[95] Piyawadee \Noi" Sukaviriya, James D. Foley, and Todd Gri�th. A second generation user
interface design environment: The model and runtime architecture. In Bridges Between

Worlds: Human Factors in Computing Systems: INTERCHI'93, 1993.

[96] J. Sullivan and S. Tyler, editors. Architectures for Intelligent User Interfaces. Addison-Wesley,
Reading, MA, 1991.

[97] P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher. Declarative
interface models for user interface construction tools : The mastermind approach. In L. Bass
and C. Unger, editors, Engineering for Human-Computer Interaction [10]. Chapman & Hall,
1996.

[98] Pedro Szekely, Ping Luo, and Robert Neches. Beyond interface builders: Model-based in-
terface tools. In Bridges Between Worlds: Human Factors in Computing Systems: INTER-

CHI'93, pages 383{390. Addison Wesley, April 1993.

[99] J. M. Vanderdonckt, editor. Computer Aided Design of User Interfaces. Namur University
Press, Namur, 1996.

[100] J. M. Vanderdonckt and F. Bodart. Encapsulating knowledge for intelligent automatic inter-
action objects selection. In Bridges Between Worlds: Human Factors in Computing Systems:

INTERCHI'93, 1993.

[101] Visual Edge Software Ltd., Cupertino, CA. Extending and Customizing UIMX, 1993.

[102] S. Wilson, P. Johnson, C. Kelly, J. Cunningham, and P. Markopoulos. Beyond hacking: A
model based approach to user interface design. In J. L. Alty, D. Diaper, and S. Guest, editors,
People and Computers VIII, Proceedings of the HCI '93 Conference, pages 217{231, 9 1993.

[103] Jeannette M. Wing and Mandana Vaziri-Farahani. Model checking software systems: A case
study. In Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
October 1995.

[104] P. Zave and M. Jackson. Conjunction as composition. ACM Transactions on Software Engi-

neering and Methodology, 2(4):371{411, 1993.

[105] Pamela Zave. The operational versus the conventional approach to software development.
Communications of the ACM, 27(2), 2 1984.

[106] Pamela Zave. A compositional approach to multiparadigm programming. IEEE Computer,
9 1989.

146

Vita

Richard Erick Kurt Stirewalt was born September 3, 1968 in Atlanta, Georgia. He attended

elementary school at Rock Chapel Elementary and secondary school at Lithonia High School. As

a senior in high school, he took joint-enrollment courses at the Georgia Institute of Technology

and remained at Georgia Tech after high-school graduation to study computer science. In 1989,

he received the Bachelor of Science degree with honors in Information and Computer Science. He

decided to stay at Georgia Tech to pursue a Ph.D. in computer science. Stirewalt's area of interest

in 1989 was high-performance computing. He did work in program analysis and compilers and

published a number of papers in the area. This interest led to a collaboration with researchers at

the MITRE Corporation, and this collaboration opened the door to his current interests: formal

methods for software analysis, design, and generation.

147

