FUZZING WITH PERFORMANCE MONITORING AND TRACING
HARDWARE

A Thesis
Presented to
The Academic Faculty

Gabriela Lopez

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2022

Copyright © Gabriela Lopez 2022

FUZZING WITH PERFORMANCE MONITORING AND TRACING
HARDWARE

Approved by:

Prof. Brendan Saltaformaggio, Advisor
School of Electrical and Computer Engineering
Georgia Institute of Technology

Prof. Raheem Beyah
School of Electrical and Computer Engineering
Georgia Institute of Technology

Prof. Paul Pearce
School of Computer Science
Georgia Institute of Technology

Date approved: April 11, 2022

ACKNOWLEDGMENTS

I am grateful to have had the opportunity in my graduate program to delve deeper into
different fields in information security through my master’s thesis research, accompanying
courses, and internships. I want to thank my advisor Professor Brendan Saltaformaggio for
his ongoing support and guidance. Through Professor Saltaformaggio’s profound lectures
and guidance, an immense appreciation for reverse engineering and its related fields in
information security (like vulnerability discovery) has flourished within me. I will use this
newfound appreciation like a compass to guide me in the next steps of my career. I will
never forget the research environment you have created, instilling values of collaboration,
integrity, and dedication to quality. I will strive to carry with me these values where ever
go.

I want to also thank my family, friends, and colleagues for their love and support. Thank
you for always believing in me and encouraging me to never give up. While there were
many times when I could not see the light at the end of the tunnel, thanks to my support
system, I always managed to find the strength to continue forward. I would also like to
thank the GEM Fellowship and the Georgia Institute of Technology for their generous

support.

1l

TABLE OF CONTENTS

Acknowledgments i ittt e e e e e iii
Listof Tables @ i i i i i it et it ettt i et viii
Listof Figures i i i i it it ittt ittt et oo eeseeeos ix
SUMMATY . & v vt v it e e e e vt o ot o oo ot o oo o oo o oo oeesoeos X
Chapter 1: Introduction i 0 i i i i i ittt ittt o e oo nas 1
Chapter 2: Background i ittt ittt ittt 5
2.1 Fuzzing 5
2.1.1 Introductionto Fuzzing 5

2.1.2 Alternative to Fuzzing 6

2.2 American Fuzzy Lop: A State-Of-The-Art Fuzzer 7
2.2.1 Core Internals of AFL and How It Relates to Other Fuzzers 7

2.2.2 Different Variants of AFL and How It Relates to Different Types of
Fuzzing 8

2.3 Existing Coverage Tracing Technologies in Coverage-Guided Fuzzing . . . 9
2.3.1 Compiler-Inserted Instrumentation 9

2.3.2 Static Binary Rewritingo 9

v

233

Dynamic Binary Instrumentation

2.4 Performance Monitoring and Tracing Hardware
2.4.1 Intel Performance Monitoring
2.4.2 Hardware Tracing: Last BranchRecord
2.4.3 Hardware Tracing: Brace Trace Store
2.4.4 Hardware Tracing: Processor Trace
2.4.5 Inherit Limitation of LBR and BTS: Fall-through Branches
Chapter 3: Related Works i i i i it ittt ittt e
3.0.1 State of Hardware-Assisted Tracing in Fuzzing: Intel PT Based
Fuzzers
3.0.2 State of Hardware-Assisted Tracing in Fuzzing: Lack of Evalua-
tions of LBR/BTS inFuzzing
Chapter4: Design i i i i i it it ittt ittt ittt e e
4.1 OVEerVIEW . . . o o o e e e e e

4.2 Design of Our LBR/BTS Coverage Tracing Mechanisms

4.3

4.2.1

422

Challenges to Configuring LBR/BTS

Our Approach to Configuring LBR/BTS

Design of Our Fuzzing Implementations

4.3.1

4.3.2

433

434

Challenges to Developing a Fair Performance Evaluation of Fuzzers
Baseline Fuzzer

Modifications to the Baseline Fuzzer for Source-Code Available
and Binary-Only Fuzzing

How Our LBR/BTS Coverage Tracing Mechanism Are Incorpo-
ratedinto AFL

4.3.5 Binary-Only Fuzzing Challenges 24

Chapter 5: Implementation 00ttt ittt ittt 26
5.1 Using Perf_Events to Configure LBR/BTS 26
5.1.1 Differences in Configuration between LBR and BTS 27

5.2 Structural Modifications to AFL Forkserver 28
5.2.1 [Initialization Tasks in Forkserver 29

5.2.2 Monitoring Tasks of the Forkserver 29

5.2.3 Processing Perf_Events Ring Buffer and Updating AFL Bitmap . . . 30

5.3 How We Insert Our LBR/BTS Monitoring Code 31
Chapter 6: Evaluation i, 33
6.1 Experimental Setup 33
6.1.1 Fuzzers 33

6.1.2 BenchmarkandSeeds. 34

6.1.3 Evaluation Metricso 36

6.1.4 Platform and Configuration 37

6.2 Results. 38
6.2.1 Source-Code Available Fuzzing 38

6.2.2 Binary-Only Fuzzing 41

6.3 DiscussSion e 43

6.3.1 Performance Overhead in Using LBR and BTS for Coverage-Guided
Fuzzing 43

6.3.2 Using BTS and LBR in Binary-Only Fuzzing 44

vi

Chapter 7: Threats to Validity and Limitations 48

7.0.1 Child Processes and Execve 48

7.0.2 TheEffectof Skid. 48

7.0.3 Over-Counting in Performance Counters 49

7.04 Missing BranchRecords 49

7.0.5 Targets That Dynamically Load Glibc 50
Chapter 8: Future Work i i it ittt it tntnenns 52
8.1 Extended PEBS and Adaptive PEBS 52

8.2 Architectural LBRs with XSAVE Support 53
Chapter 9: Conclusionttt iieeneenns 54
References i ittt ittt 56

Vil

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

LIST OF TABLES

Different Configuration Values in Perf EventOpen 27
Selected Target Applications 35
Fuzzing Efficiency and Performance for Source-Code Available Fuzzing . . 39
Branch Coverage Percentages for Source-Code Available Fuzzing 40

Fuzzing Reliability and Number of Unique Crashes for Source-Code Avail-

able Fuzzing 40
Fuzzing Efficiency and Performance for Binary-Only Fuzzing 41
Branch Coverage Percentages for Binary-Only Fuzzing 42

Fuzzing Reliability and Number of Unique Crashes for Binary-Only Fuzzing 42

viil

4.1

6.1

6.2

6.3

LIST OF FIGURES

Incorporating LBR Sampling/BTS into AFL 24
Performance of Fuzzers for Source-Code Available Fuzzing 39
Performance of Fuzzers for Binary-Only Fuzzing 41
Dynamic program behavior determines control flow 47

1X

SUMMARY

The field of fuzzing has brought about many new open-source tools, techniques, and
insights to improve the state of the art of automated vulnerability discovery systems. How-
ever, there are instances where the adoption of such new techniques and tools improves
the state of the art of these systems while at the expense of portability, accessibility, and
performance. Additionally, while many of the processor platforms used in the fuzzing com-
munity already come built with components that observe program execution in the form of
performance monitoring and tracing hardware, such hardware is not commonly used by
fuzzers. On a similar note, there is currently a lack of evaluations for the usage of such
hardware in the fuzzing literature. The most commonly used processor platforms in the
fuzzing community are Intel processors. Our work seeks to evaluate the performance im-
pact in using performance monitoring and tracing hardware (specifically Intel Last Record
Branch sampling and Intel Branch Trace Store) for coverage feedback in coverage-guided
fuzzers. In our evaluation, we seek to learn if the adoption of these specific performance
monitoring and tracing hardware in coverage-guided fuzzers can improve the performance

of binary-only fuzzing.

CHAPTER 1
INTRODUCTION

As real-world software grows in size and complexity, the demand for an automated ap-
proach to vetting their security rises. Manual analysis can not scale with the size of modern
software. Additionally, today’s real-world software has significantly more access to sensi-
tive data than ever before. Thus, software vendors and developers must utilize highly fast
automated approaches to find vulnerabilities in their software before malicious actors.

A popular technique used by academic and industry security researchers in their design
of automated vulnerability discovery systems is coverage-guided fuzzing [1, 2, 3, 4, 5,
6]. Like most fuzzing approaches, it tests applications by continuously generating and
evaluating several inputs per second while monitoring the output for crashes. Coverage-
guided fuzzing uses coverage information (e.g. branch coverage) as feedback to guide
its input generation process. This is an attractive characteristic of coverage-guided fuzzing
because quality inputs can be generated that discover and test new regions of code for bugs.
Coverage-guided fuzzers, however, need to use coverage tracing technologies in order to
obtain the coverage information it needs to guide its input generation.

There are four coverage tracing technologies available to coverage-guided fuzzers to
obtain coverage information. The first three coverage tracing technologies need to insert
instrumentation code at each edge (or basic block) to collect coverage information. The
first technology is compiler-inserted instrumentation, this type of instrumentation can ac-
curately insert instrumentation code and easily apply optimizations but can only be used
when there is access to the source code of the target application. Two alternative tech-
nologies commonly used by the coverage-guided fuzzers to obtain coverage information
of closed source binaries are static binary rewriting and dynamic binary instrumentation.

Statically rewriting a binary to insert instrumentation is still an ongoing area of research

because of the difficulty of accurately and appropriately inserting code statically and the
limited ability to apply optimizations to inserted code. These challenges and limitations can
impact the quality and accuracy of coverage information generated and the performance of
the rewritten binary. Dynamic binary instrumentation can easily and accurately insert code
but dynamically translating the binary can have a prohibitively high overhead

An alternative to using static binary rewriting and dynamic binary instrumentation
that has the potential to obtain accurate coverage information of closed source binaries
is hardware-assisted tracing. Hardware-assisted tracing leverages built-in hardware tracing
extensions that directly capture execution flow information (e.g executed branches) at run-
time. The most widely used machines in the fuzzing community (2, 3, 7, 8, 9, 10, 11, 12,
13, 14] whether it be server or desktop models are Intel processors. In modern Intel proces-
sors, the hardware tracing mechanisms available are Last Branch Record (LBR), Branch
Trace Store (BTS), and Intel Processor Trace (PT). Each hardware tracing mechanism has
its strengths and limitations that can be respectively improved upon or addressed by the
way they are implemented and how they are integrated into fuzzing systems.

The most widely used hardware tracing mechanism in the fuzzing literature is Intel
PT [6, 14, 15, 16, 17, 18, 19, 20, 21]. While Intel PT can capture execution information
with minimal performance overhead [22], current fuzzing implementations that use Intel
PT are still considerably slower than compiler-inserted instrumentation [21]. Using Intel
PT requires the use of a decoder to process and interpret PT traces which contain encoded
and compressed information of execution flow. Intel PT was originally designed to suit
offline processing of PT traces and requires using time expensive procedures such as static
analysis of the disassembled traced binary. The bottleneck which results from the decoding
PT traces for each executed test case goes against one of the main goals of fuzzing which
is evaluating as many test cases as possible.

On the other hand, there are currently limited evaluations of the performance impact

to fuzzing in using either Last Record Branch or Brace Trace Store for hardware-assisted

tracing. Prior fuzzing works express concern of significant performance overhead in using
these tracing mechanisms but typically do not cite any studies evaluating the performance
of these tracing mechanisms. To the best of our knowledge honggfuzz [6] is one of the
few existing fuzzers that has an implementation that uses the Intel BTS hardware tracing
mechanism to obtain coverage information. Additionally in the fuzzing literature, there
are very few evaluations that include the Intel BTS implementation of honggfuzz in their
evaluations. Prior fuzzing works that include honggfuzz in their evaluations mostly use
the compiler-assisted implementation of honggfuzz. In regards to LBR, while there are
even fewer fuzzing works that utilize Intel LBR, we notice there are numerous works in
another performance-critical domain that have used Intel LBR for Control-Flow Integrity
enforcement [23].

Motivated by the limited evaluations of the Intel Branch Trace Store and Last Record
Branch in the fuzzing literature, we develop our own evaluation of the two hardware tracing
mechanisms by integrating them into our fuzzing implementations based on the well eval-
uated fuzzer American Fuzzy Lop [4]. In this work, we will answer the following research

questions:

* RQ1: What is the performance overhead in using Intel LBR and BTS as sources of

coverage information in coverage-guided fuzzers?

* RQ2: Can using Intel BTS and LBR as coverage tracing mechanisms in fuzzing

improve binary-only fuzzing?

One challenge in our evaluations is managing bias due to differences in fuzzing imple-
mentation and instrumentation insertion techniques. To address this challenge and answer
RQ1 we develop two fuzzing implementations which use the same fuzzing infrastructure
and compiler-assisted instrumentation insertion technique as AFL-Clang-Fast but replace
the coverage tracking mechanism with LBR and BTS respectively. We compare the per-

formance of our fuzzing implementations with AFL-Clang-Fast [4]. Another challenge is

properly configuring and managing the LBR and BTS facilities to produce accurate cov-
erage information and making this coverage information easily accessible to fuzzers as
efficiently as possible. For all our fuzzing implementations we leverage the Linux kernel’s
perf_events subsystem [24] [25], also used by other works [6] [15], to appropriately moni-
tor our applications and easily obtain the LBR and BTS coverage information. To answer
RQ2, we minimally statically rewrite target binaries to include a hook to our LBR/BTS
monitoring code so it can run before the main function to enable the LBR/BTS coverage
tracing mechanism without access to source code. Additionally, to answer RQ2 we fuzz
our rewritten target binaries and we compare the performance of our fuzzing implementa-
tions with two currently available binary-only fuzzing implementations, AFL-QEMU [4]
and PTfuzz[15].

Our contributions can be summarized as follows:

* Develop a fair and meaningful evaluation of the performance impact of Intel LBR/BTS

tracing mechanisms in coverage-guided fuzzing.

* Propose and investigate an approach on how to properly incorporate the LBR/BTS

tracing mechanisms in coverage-guided fuzzers to improve binary-only fuzzing.

CHAPTER 2
BACKGROUND

2.1 Fuzzing

2.1.1 Introduction to Fuzzing

Fuzzing is a popular technique used in automated vulnerability finding systems [8]. Fuzzing
iteratively and randomly generates input to explore the input space of an application to
trigger unintended program behaviors (i.e crashes) [13]. The assumption is that if an ap-
plication’s input validation can not graciously handle unexpected inputs, such inputs could
expose vulnerabilities. Why is fuzzing a popular choice of technique in vulnerability find-
ing systems? Fuzzing, unlike other techniques such as symbolic execution [1], can gen-
erate concrete inputs quickly, therefore, helping in running more test cases per second,
which correlates with finding more bugs in a shorter amount of time (assuming there are
no hard checks involved in input validation). As evidenced by the popular state-of-the-art
fuzzer AFL [4] when compared with symbolic executor angr, AFL found 76% more bugs
in the same amount of testing time (24 hours) than angr [13] [1]. Another attractive feature
of fuzzing is the ability to generate interesting test cases (inputs) with very little domain
knowledge of the tested application [26]. Fuzzing can therefore be used to test a diverse
set of applications. Even with little domain knowledge, the genetic mutation-based input
generators of fuzzing can come up with inputs that reach and explore corner cases in pro-
gram execution paths which at times are hard for humans to generate [26]. Fuzzing has
had many successes as a technique in vulnerability finding systems and as a result, major
software vendors such as Google and Microsoft have been using it to detect bugs in their

software [11].

2.1.2 Alternative to Fuzzing

In addition to fuzzing, the second most common technique [9] considered in automated vul-
nerability finding systems is symbolic/concolic execution [9]. While fuzzing is generally
faster than symbolic/concolic execution at evaluating test cases, fuzzing can become highly
inefficient when there are tight branches conditions in an application [9]. Tight branch con-
ditions, such as verifying checksums and magic bytes, require specific inputs that can be
computationally difficult to determine [9] [14]. The random mutations in fuzzing may take
an exponential time to generate valid inputs for tight branch conditions [1]. Hence, tight
branch conditions are roadblocks for fuzzing. Symbolic/concolic executors, on the con-
trary, can effectively bypass these roadblocks using program interpretation and constraint
solving techniques [1]. Additionally, symbolic executors can generate test cases that di-
rectly exercise unique execution paths [12], hence efficiently discovering new execution
paths in the application. Compare this to fuzzing, where many test cases produced can be
redundant and therefore aren’t as efficient in exploring different execution paths or increas-
ing code coverage [27].

While symbolic/concolic execution is effective in bypassing tight branch conditions, as
a consequence, the majority of its time is spent on program interpretation and constraint
solving [12]. In particular, symbolic/concolic execution is especially susceptible to the
’path explosion” problem, therefore, limiting scalability [1]. Additionally, symbolic/con-
colic executors typically need access to source code, some description of the Operating
System environment, and the precise semantics of the desired platform instruction set [14].
Applications that target unwidely instruction sets (with complex extensions), not as popu-
lar Operating Systems, or use obscure libraries can therefore be difficult to configure with
symbolic/concolic executors [14]. Symbolic/concolic execution can be computationally
expensive techniques for automated vulnerability discovery [9][14].

Rather than being standalone solutions to vulnerability discovery systems, symbolic/-

concolic execution can be used to complement fuzzing. This approach is known as hybrid

6

fuzzing. Hybrid fuzzing with symbolic/concolic execution performs selective symbolic/-
concolic execution to overcome the roadblocks of fuzzing whenever present [9]. Hybrid
fuzzing today, however, still lacks the scalability to test large complex real-world applica-
tions [9] [14]. Currently is ongoing research in hybrid fuzzing which aims to improve the
scalability of hybrid fuzzing by providing new assistive techniques to complement fuzzing
as an alternative to the computationally expensive symbolic/concolic execution [14]. Pre-
vious, assistive techniques to complement fuzzing include taint tracking test cases [2] [3]

and patching away tight branch conditions [28].

2.2 American Fuzzy Lop: A State-Of-The-Art Fuzzer

One of the most commonly used, and evaluated fuzzers in the fuzzing community and our
baseline fuzzer of choice is American Fuzzy Lop (AFL) [4]. In this section, we discuss
the core internals of AFL and its different variants to show how state-of-the-art fuzzers are

typically designed.

2.2.1 Core Internals of AFL and How It Relates to Other Fuzzers

Like in the design of most fuzzers, AFL takes in a seed corpus to use as a starting point
for its input generating process. Throughout the fuzzing process, AFL maintains a queue
that holds potential candidates. During the candidate selection stage, AFL uses a particular
mutation strategy (i.e. genetic mutation) to select the next candidate to mutate. During
the mutation stage, AFL selectively uses a wide array of mutators to generate a new input
test case. At the evaluation stage, AFL tests the target application with the new input
test case and makes observations about its execution. Like most fuzzers, the observations
collected are based on the output of the program (most notably crashes) and some form of
inside knowledge about the control-flow execution of the program. AFL can observe the
branch (edge) coverage of each tested input and maintains a global map of edges seen in

previous executions of the target application [4]. These observations are then used by AFL

to guide the candidate selection process so to choose tested inputs with the most interesting
execution results. AFL in particular prioritizes mutating tested inputs that have shown to
reach new regions of code (increase code coverage) or execute a previously seen region of

code by a factor of times more [4].

2.2.2 Different Variants of AFL and How It Relates to Different Types of Fuzzing

The kind of insider knowledge about the target application and its execution flow fuzzers
like AFL are designed to have access to is the main distinguishing feature between the
three major types of fuzzing modes. The three major types of fuzzing modes are black-box
fuzzing, white-box fuzzing, and grey-box fuzzing. The AFL project [4] has different vari-
ants of AFL showcasing the three major types of fuzzing modes. The lesser-used mode of
AFL, the black-box fuzzing mode, refers to fuzzing that does not have access to source code
nor insights about runtime information and mostly monitors only program output. Black-
box fuzzers are generally designed to evaluate as many input test cases as possible rather
than generating quality test cases or testing efficiently. The more commonly used mode
of AFL, the white-box fuzzing mode referred to as AFL-Clang-Fast, has full access to the
target program’s source code and monitors control flow execution via compiler inserted
instrumentation to determine coverage. Unlike black-box fuzzers, white-box fuzzers prior-
itize generating quality inputs. However, white-box fuzzers often have to sacrifice speed in
testing inputs because methods typically used to assist in generating quality inputs, such as
program analysis, constraint solving, and fine-grained execution flow monitoring [27], of-
ten have a non-negligible performance overhead. Intuitively, white-box fuzzers can only be
used when source code is available. To fuzz applications when only the binary is available
and still prioritize generating quality inputs, finding a way to obtain insights into program
behavior and execution flow is required. AFL’s grey-box fuzzer, AFL-QEMU, uses dy-
namic binary instrumentation to obtain insights into runtime information and control flow

information without having to rely on access to source code.

2.3 Existing Coverage Tracing Technologies in Coverage-Guided Fuzzing

Another category of fuzzing, regardless of the degree of access to source code and execu-
tion flow monitoring, is coverage-guided fuzzing. Coverage-guided fuzzing is any type of
fuzzing that centers its input test case generation on maximizing code coverage. The mo-
tivation behind coverage-guided fuzzing is that covering more code might correlate with
finding more bugs [13]. Coverage-guided fuzzers use coverage tracing technologies during
program execution to obtain the coverage information needed to guide its input genera-
tion. The coverage tracing technologies currently available to coverage-guided fuzzers are
compiler-inserted instrumentation, static binary rewriting, dynamic binary instrumentation,

and hardware-assisted tracing.

2.3.1 Compiler-Inserted Instrumentation

In compiler-inserted instrumentation, at compile-time, the desired instrumentation code is
inserted by the compiler at every basic block or between basic blocks (edges) to produce
an accurate measurement of coverage information. Any additional overhead to the perfor-
mance of the application is attributed to the amount of instrumentation code and the content
of the instrumentation code inserted. Access to the compiler process allows some overhead
to be reduced by optimizations and in-lining. However, because source code is required by
compiler-inserted instrumentation, this becomes an invalid option for security researchers
who are fuzzing closed source applications (e.g. proprietary software) and only have access

to binaries.

2.3.2 Static Binary Rewriting

In static binary rewriting, the binary itself is modified to include the desired instrumenta-
tion code at each basic block or edge without any access to source code. Unlike compiler-

inserted instrumentation, static binary rewriting can be used to assist in tracing coverage of

closed source binaries. Static binary tools usually do not have access to as much informa-
tion about the program to be able to apply optimizations and inlining as well as compilers,
this leads to worse performance. Additionally, a classic challenge in static binary rewriting
is recovering control flow information from a binary. Statically recovering control flow
information is hard because it is difficult to accurately distinguish between scalars and
references in a disassembled binary, furthermore, in the general case, this problem is un-
decidable [29]. In an attempt to solve this problem, existing static binary rewriting tools
rely on heuristics [30] and assumptions [7, 31] about the binary to be able to appropriately
rewrite the binary[32]. However, such static binary rewriting tools struggle to scale support

to rewriting arbitrary binaries [7].

2.3.3 Dynamic Binary Instrumentation

Dynamic binary instrumentation is also able to insert instrumentation code into a binary
without access to source code, but dynamically during runtime. As a result of translating
the binary as it executes, dynamic binary instrumentation has access to runtime informa-
tion. Unlike static binary rewriting, dynamic binary instrumentation can use runtime infor-
mation to easily extract control flow information dynamically and insert instrumentation
with accuracy. However, the currently available dynamic binary instrumentation tools have
been shown to have a prohibitively high overhead reducing the efficacy of fuzzing [7, 33,
34].

An alternative to static binary rewriting and dynamic binary instrumentation for trac-
ing coverage in closed binaries and the focus of our work is hardware-assisted tracing.
Hardware-assisted tracing consists of hardware tracing facilities that can be used to mon-
itor control-flow execution as the program executes. Hardware-assisted tracing does not
require access to source code and can be configured to be as minimally intrusive to the pro-
gram executing. We use the next section to provide background information on hardware

tracing and related facilities and how they can be used to monitor control-flow execution to

10

trace coverage.

2.4 Performance Monitoring and Tracing Hardware

Performance monitoring and tracing hardware are built-in hardware observation facilities
located in and around the processor core. Performance monitoring hardware can measure
performance metrics of the processor, usage of other computing resources (i.e. memory),
and the occurrence of certain hardware events (i.e. machine checks). Output from perfor-
mance monitoring hardware can be used by software tools to identify performance bottle-
necks such as sections of code with high rates of cache-misses or mispredicted branches
[35] and guide tuning compiler [36] and system performance[37]. Tracing hardware can
capture a real-time trace of the program as it executes by recording control-flow execution
[22], contextual information about software execution, and memory accesses [38]. The
information obtained by tracing hardware can be used by debugging software to find and
investigate program failures encountered during program execution [38]. While there are
performance monitoring and tracing hardware in various platforms such as ARM [38] and
AMD [35], our work focuses on the performance monitoring and tracing hardware on Intel
processors [37] [39] because Intel processors are the most commonly used platform for

evaluations in the fuzzing literature.

2.4.1 Intel Performance Monitoring

On Intel processors the performance monitoring hardware consists of a series of model
specific registers (MSRs) [37]. A subset of these MSRs is referred to as performance
monitoring counters. These counters are configured by performance monitoring control
MSRs to measure a specific performance metric or count the occurrence of a supported
event [37]. In addition to measuring and counting, performance monitoring hardware also
supports various interrupt-based sampling facilities. To enable these facilities a perfor-

mance counter is pre-configured to trigger a performance monitoring interrupt (PMI) upon

11

counter overflows and its value is initially set to MAX-N, where N counts would trigger
an overflow [37]. Examples of common events the performance counter could count are
instructions retired and branch instructions retired [40]. After N counts occur, a registered
PMI service routine is triggered and can take a snapshot of a selection of hardware tracing-
related buffers, architectural state registers, and other processor state information [37]. As
the last step before returning, the PMI service routine should reset the performance counter

to MAX-N to enable future triggering of the PMI.

2.4.2 Hardware Tracing: Last Branch Record

One hardware tracing-related buffer that a PMI can sample is the Last Branch Record
(LBR). The Last Branch Record is a hardware ring buffer that captures a running trace of
the most recent taken branches by the processor [41]. The LBR consists of sets of MSRs,
where for each taken branch a set of MSRs store the branch source (address of the branch
instruction) and branch destination address (target of the branch instruction). The LBR can
also be configured to store transitions to interrupts, and/or exceptions. One thing to note
is that in modern processors each logical core in a hyper-threading enabled processor has
a dedicated set of LBR MSRs [41]. A single set of LBR MSRs is commonly referred to
as a branch record. The size of the LBR buffer is a fixed architecturally defined length, on
modern Intel processors the length is typically 32 and can therefore store up to 32 branch
records [41]. To read the LBR, one needs to be at privilege level O and use the RDMSR
instruction to read each LBR MSR from each record.

There are various considerations concerning the configuration and usage of the LBR.
Enabling the LBR tracing facility and reading the LBR MSRs has minimal impact on per-
formance [40]. However, the firing of the PMI interrupt service routine to sample the LBR
has a non-negligible impact on performance if the rate at which the PMI fires (sampling fre-
quency of the LBR) is high [40]. Developers need to also consider the small length and ring

buffer nature of the LBR when determining an appropriate sampling frequency. One thing

12

to consider when sampling the LBR is that interrupt-based sampling introduces skid [42].
Skid refers to the time delay between the generation of an event (i.e. counter overflow) and
the generation of a PMI [42]. In the case of LBR, the LBR facility can technically still
record relevant branch records during this delay period which means one needs to increase
their frequency of sampling the LBR according to the amount of skid to avoid losing in-
formation since the LBR is a ring buffer. Additionally, to reduce redundant branch records
and the need for a high sampling frequency, the LBR built-in branch filtering capabilities
can be used to filter out branches based on branch privilege level and branch instruction
type. Nevertheless, developers wanting to perform LBR sampling need to find a balance

between precision and performance.

2.4.3 Hardware Tracing: Brace Trace Store

Another hardware tracing-related buffer that a PMI can sample is the Branch Trace Store
(BTS) buffer. The BTS tracing facility is the successor of the LBR tracing facility. When
the BTS tracing facility is enabled each LBR branch record is sent out on the system bus
[43] and is stored in a memory-resident (cache-as-RAM) BTS buffer that is part of the
Debug Store (DS) save area[39]. BTS can give a full history of all taken branches executed
[44] without sampling as frequently as in LBR sampling because BTS buffer can hold
many more branch records [40]. The buffers residing in the DS save area can have a
PMI triggered when the buffer (BTS buffer) is almost full [39]. One important difference
between BTS and LBR is that in BTS tracing the BTS buffer being almost full is the source
of the PMI whereas in LBR sampling it is a counter overflow [45]. This also means LBR
sampling is susceptible to any counting inaccuracies in the performance counter such as
undercounting [46] and overcounting [47]. Additionally, because the BTS buffer does not
need to be sampled so often, BTS tracing is not as susceptible to sampling bias as LBR
sampling is which is caused by the synchronization of the executing program with a fixed

sample period [48]. While the frequent firing of PMIs is reduced in BTS, simply enabling

13

BTS alone can greatly slow down the performance of the processor [39] by an estimate
as great as 40x [49]. To reduce the performance impact of BTS, the BTS branch filtering
capabilities can be used to filter out branches by branch privilege level [40]. BTS tracing
is expected to provide more precise branch tracing than LBR sampling at the expense of

performance.

2.4.4 Hardware Tracing: Processor Trace

Another hardware-tracing related buffer that a PMI can sample is a trace buffer handled by
the tracing facility Intel Processor Trace (PT). Intel PT can capture an extensive trace of
software execution in the form of compressed packets [50]. The packets typically used for
determining control-flow execution are packets that contain the encoded instruction pointer
value of branch targets (TIP packets) and packets that use 1 bit to indicate Taken/not Taken
for conditional branches (TNT packets) [22]. Generally, TIP packets are generated for
indirect control flow instructions like indirect branches whose target address is resolved
runtime. Intel PT has a specially designed output mechanism called the Table of Physical
Addresses (ToPA) to store trace output with consideration to performance [22]. The ToPA
maintains a collection of variable-sized regions of physical memory whose stores to these
regions bypass caches and TLBs but are not serialized [22]. This is intended to minimize
the performance impact of storing trace output during program execution [22]. The ToPA
can be configured to trigger a PMI to sample the ToPA memory regions when they are
almost full. Similar to the BTS buffer, the ToOPA memory regions do not need to be sampled
as often if they are considerably large. Additionally, the trace output to be stored to the
ToPA memory regions can be minimized by using the Intel PT filtering capabilities such
as Address IP, privilege level (CPL), and thread context (C3) filtering [22]. While Intel PT
is said to capture traces with only minimal performance perturbation to the software being
traced [22], the most variable and potentially performance hindering aspect in using Intel

PT is the packet decoding process [16] [17]. Users of Intel PT use a custom or off-the-

14

shelf decoder which extracts the control flow information from decoded packets and uses
it to walk through the disassembly of the traced application to reconstruct the execution
flow [51]. Applications that generate a large output trace and are large (i.e. real-world
applications) could be time expensive to process and slow down the delivery of control

flow information to consuming software tools (i.e. coverage guided fuzzers).

2.4.5 Inherit Limitation of LBR and BTS: Fall-through Branches

As indicated on the Intel Software Developer’s Manual [41], LBR and BTS store branch
records for taken branches. In other words, only executed retired branch machine code
instructions will be stored. One inherent limitation of LBR and BTS is that fall-through
branches that exist at the source code level that are not explicitly translated into dedicated
machine code branch instructions will not be visible to LBR and BTS. Therefore LBR (and
by extension BTS) will only be able to monitor 50% of source code level branches [52]. It
is important to consider this lack of visibility of fall-through branches when evaluating the
branch coverage of fuzzers that use LBR and BTS to trace coverage. Other fuzzers such as
ALF-Clang-Fast can view fall-through branches because it has access to the Intermediate
Representation level where fall-through branches from the source code level are visible.
Fuzzers that use Intel PT would be able to view fall-through branches and monitor all
source code level branches if the decoder in use analyzes TNT packets in addition to TIP

packets.

15

CHAPTER 3
RELATED WORKS

As mentioned in chapter 1, the hardware-assisted tracing mechanism most commonly se-
lected by prior works in the fuzzing literature is Intel PT [6, 14, 15, 16, 17, 18, 19, 20, 21].
The most commonly cited reasons and motivations for selecting Intel PT are 1.) inefficien-
cies of dynamic binary instrumentation (particularly with QEMU), 2.) the limited capacity
of Last Branch Record [17], and 3.) prior work citing the Intel Software Developer’s Man-
ual’s description of Intel Brace Trace Store as a mechanism that can greatly reduce the
performance of the processor [15, 39]. None of the prior fuzzing works [6, 14, 15, 16, 17,
18, 19, 20, 21] cite specific studies that evaluate the performance of BTS and LBR with

Intel PT.

3.0.1 State of Hardware-Assisted Tracing in Fuzzing: Intel PT Based Fuzzers

As mentioned in subsection 2.4.4 while capturing the execution information with Intel
PT has minimal performance perturbation to software [22], the decoding of packets and
reconstructing execution flow can have a significant overhead [16, 17, 21]. Thus it is
important to consider that overhead results in using Intel PT can vary greatly depending
on the performance of the selected decoder, benchmarks, and seeds [16]. PTrix [16] has
an implementation that reports lower overheads than AFL-QEMU by performing online
(parallel) decoding and forgoing the reconstruction process by hashing encoded packets to
collect