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SUMMARY 

 
 

Transdermal drug delivery systems (TDS) are pharmaceutical devices that are designed 

to deliver specific drugs to the human body by diffusion through skin. The TDS 

effectiveness suffers from crystallization in the patch when they are kept in storage for 

more than two years. It has been reported that there are two types of crystals in the patch: 

needle and aggregate, and growth of drug crystals in TDS generally occurs only in the 

middle third of the polymer layer. In our study, fluorescence microscopy, EDS (SEM) 

and Raman microspectroscopy were used to further characterize the crystals. The results 

show that the needle crystals most probably contain estradiol and acrylic resin conjugate. 

The FTIR spectrum of the model sample proved the occurrence of a reaction between 

estradiol and acrylic resin.  Crystal growth in an unstressed matrix of a dissolved 

crystallizable drug component was simulated using a kinetic Monte Carlo model. 

Simulation using Potts model with proper boundary condition gives the crystals in the 

middle of matrix in the higher temperature. Bond fluctuation model is also being 

implemented to study representative dense TDS polymer matrix. This model can account 

for the size effect of polymer chain on the crystal growth. The drug release profile from 

TDS was also studied by simulating the diffusion of drug molecules using Monte Carlo 

techniques for different initial TDS microstructure. The release rate and profile of TDS 

depend on the dissolution process of the crystal. At low storage temperature, the grains 

are evenly distributed throughout the thickness of the TDS patch, thus the release rate and 

profile is similar to the randomly initiated system. Further work on stress induced 

crystallization is currently under development. Although the study was specifically done 
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for drug in a polymer medium, the techniques developed in this investigation is in general 

applicable to any constrained crystallization in a polymer medium. 
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Chapter 1 

Introduction 

Transdermal drug delivery systems (TDS) are pharmaceutical devices that can deliver a 

drug to the blood stream through permeation. A typical TDS consists of a polymer patch 

with dissolved drug, which diffuses into the skin when it is in contact with the skin. TDS 

can maintain the drug concentration within a certain therapeutic range for the drug to act 

properly. Drugs become toxic above a certain level and are ineffective under the lower 

level. As shown in Figure 1.1, for conventional drug delivery the drug concentration in 

blood varies significantly with time, but the concentration remains reasonably constant 

with a TDS approach. There are several advantages for TDS over conventional drug 

delivery. The transdermal system avoids the chemically hostile gastrointestinal (GI) 

environment and first-pass effect1, ,2 3 compared to oral administration of drugs. 

Meanwhile, it allows effective use of drug supply in a narrow therapeutic window and 

provides controlled plasma transport for very potent drugs.  By avoiding the undesirable 

sensation of a needle as much as by decreasing the frequency of drug application with 

TDS, the transdermal system can increase patient compliance. Another important 

advantage for this system is that drug input can promptly be interrupted if any toxicity 

occurs. However, drugs that require high concentrations in the blood cannot be 

administered due to the permeation limitation of skin, which functions as a barrier to 

protect the human body. Unlike traditional oral delivery in which a full dosage of drug is 

supplied resulting in a high concentration of drug in the blood which gradually decreases, 

TDS can supply a relatively constant dosage of drug. There are many factors to be 
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considered for the successful design of a drug delivery system. Aspects such as drug 

stability, physical stability of formulation, skin irritation and sensitization properties are 

all critical parameters to be considered when designing a TDS. Chemical and physical 

characteristics of the polymeric materials in which the drug is dissolved will also be 

critical in determining the performance of the overall system. 
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Figure 1.1. Hypothetical blood level pattern from (1) a conventional multiple dosing 

schedule, and (2) a idealized pattern from a transdermal controlled-release system. 

(Reference  4) 

 

The drug properties can influence release characteristics for its delivery system. From 

conventional drug delivery systems, the rate limiting step in drug availability is usually 

absorption of drug across a biological membrane. In the TDS, one aims for release of 

drug at a specific dosage below the rate-limiting step level. Thus, drug availability is 
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controlled by the kinetics of drug release rather than absorption.  Consequently, the 

associated rate constants for drug release from a specific dosage are smaller than the 

absorption rate constant. Therefore, the interplay between physiochemical properties of a 

drug and characteristics of its delivery system determines the temporal release pattern 

that is observed. 

The chemical and physical properties of the components of TDS influence the rate of 

drug release to the skin and the adhesive properties of the device to the skin. The main 

components of the transdermal delivery system are: polymer adhesive, a drug, 

permeation enhancer and plasticizers or tackifing agents. In order to improve the 

adhesion between skin and TDS and to facilitate easy application and removal of the 

transdermal patch, pressure-sensitive adhesives are commonly used which are based on 

natural or synthetic rubbers, polyacrylates or silicones.  

 
The choice of drugs to be delivered transdermally is the most difficult one, and careful 

consideration should be given to each application before large expenditures are 

committed to clinical testing. Table 1.1 shows the important criteria that should be 

considered in the drug selection process. Based on these criteria, currently there are many 

drugs available in transdremal devices. Among these are scopolamine to treat motion 

sickness5, nitroglycerin for angina6, estradiol for postmenopausal syndrome and perhaps 

eventually to prevent osteoporosis7, and clonidine as an antihypertensive8. New drug 

applications have been filed for transdermal administration of nicotine for smoking 

cessation9, , 10 11, fentanyl for analgesia and in anesthesia for relief of moderate to severe 

surgical pain for an extended duration12, , 13 14, and testosteone for male hormonal 

insufficiencies. The regimen for these transdermal systems varies from 1 day to 1 week, 
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although skin tolerability is a concern for the long-duration patches. Among these are 

hormones, cardiovascular drugs, analgesics, antihistamines and drug for central nervous 

system. The drug generally is dissolved in the matrix and diffuses from the matrix 

through the skin and into the capillary plexus. These drugs may be applied directly in 

their natural form or as derivatives.  

 

Table 1.1 Important Criteria in the Drug Selection process 
 
 
1. Adequate skin permeability: 
    Drug with low molecular weight 
    Drugs with low melting point 
    Drugs with moderate oil and water solubility 
    Potency of  drugs 
2. Adequate skin acceptability: 
    Nonirritating drugs 
    Nonsensitizing drugs 
    Nonmetabolizing drugs 
3.Adequate clinical need 
   Need to prolong administration 
   Need to increase patient compliance 
   Need to reduce side effects on nontarget tissue 
 
 
Transdermal drug absorption can be enhanced by various chemical and physical methods. 

Chemical enhancers exert their influence on lipids in the stratum corneum as well as on 

lower dermal layers, and possible capillary beds. Surfactants may alter the structure of 

fluidized lipids as reflected by the discontinuous increase in skin permeation with 

surfactant concentration from the FTIR spectra with and without these surfactants15, 16. 

Absorption of polar compounds may be enhanced by surfactants with a head group of 

great hydrophilicity, or nonpolar and polar compounds when surfactants are mixed with 

other solvents, such as diols or ethanol17, 18. Ethanol can increase permeation of nonpolar 
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species by increasing their solubility in the stratum corneum without altering their 

diffusion constants19, , 20 21. Ethanol is the only solvent used in a commercial transdermal 

system where the relationship between the flux of the drug, estradiol, and that of the 

solvent has been characterized22, 23. Sometimes a plasticizer is used to improve adhesive 

properties of this system.  

 
Devices have been successfully developed to provide better rate control over the release 

and transdermal permeation of the drug. These devices can be divided into three broad 

types as showed in Figure 1.2. The first system just consists of a drug-containing 

adhesive protected by a backing layer and a release liner which is taken out before usage. 

In this system, the adhesive serves as a matrix of the drug and a binding layer to the skin, 

but not as a rate controller of the drug delivery. This is the simplest TDS system. The 

second system consists of the three layers: a backing layer, rate-controlling matrix 

containing drug and an adhesive layer. The most significant factor in this device is the 

use of polymer matrix for controlling release rate. The controlled drug concentration 

(usually supersaturation) in the polymer matrix can give a more consistent drug release 

rate during its application.  The third type reservoir system is one where the drug is 

contained in the polymeric reservoir and the release rate of drug is controlled by a 

membrane. The adhesive in the last two devices only provide the bonding of transdermal 

devices to the skin.  The design and selection of a specific TDS system depend on many 

factors. The efficiency and simplicity of devices during their application are among the 

most important factors for consideration. In our investigation, we focused on the behavior 

of the adhesive layer with the dissolved drug. 
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Figure 1.2. Tansdermal delivery devices 
 
 
 
 
 
 

 6



 
1.1 Crystallization of drug in TDS  

 
For effective delivery, the drug is required to be in the amorphous state either dispersed 

or dissolved in the TDS. The high internal energy and specific volume of the amorphous 

state can provide enhanced dissolution and bioavailability24, which are desirable to 

deliver the active agent through the adhesive/skin interface. However, crystallization of 

the drug or other components has been reported in many TDS25,  26 system after a certain 

period of time in storage. The presence of crystals will adversely affect the diffusion of 

drug and thus the performance of transdermal system mainly by reducing the driving 

force for diffusion due to the reduced concentration of drug in the solvated state. Also, 

when the dissolution rate of the drug in the crystals is smaller than the diffusion rate, the 

diffusion is reduced due to the diminished concentration of the diffusing drug molecules. 

 
Supersaturation of the drug in this system is often required to target the drug delivery rate 

within the required "therapeutic window" in order to achieve the maximum effect with 

minimum harmful side effect. However, the supersaturation in the medium often results 

in crystallization of the drug. As outlined above, it has been reported that bioavailability 

of the drug decreases due to the formation of crystals dispersed in polyacrylate adhesives, 

which usually occurs when the TDS is stored over six months at room temperature at 

moderate relative humidity27.  A comprehensive study of TDS 1% estradiol carried out 

using optical microscopy28 showed that the growth of drug crystals in the polymer TDS 

matrix occurs only in the middle third of the polymer matrix (Figure 1.3), away from the 

interface. Using Raman microscopic studies, two types of crystals were identified in the 

matrix, one due to the drug and the other possibly a polymeric component in the matrix28.   
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1.2 Objectives 

 
Previous study showed that there are two types of crystals in this estradiol transdermal 

system: one is the needle-like crystals and the other is an aggregate in the matrix. 

Although much work has been done to characterize these two crystal forms, a definite 

conclusion can not be yet reached on the identity of the needle like crystals. Only by 

studying the chemical microstructure of the specific crystal form can one reach a definite 

conclusion, however, the small size of these crystals prevents one from removing them 

from the patch for such a study. The aggregate crystal has been confirmed by Raman 

microscopy as the purely estradiol drug, however the needle crystals are yet to be 

identified29.  

 
Since the presence of drug crystals could weaken the performance of the TDS, it is 

important to understand the kinetics of crystallization in the TDS so that crystallization of 

drug in the polymer can be reduced or prevented if possible. The behavior of a drug in a 

TDS is determined by the drug properties which can influence the characteristic of the 

delivery system. Understanding the release profile of the drug from a TDS could play a 

significant role in designing effective TDS systems with reduced influence of crystals in 

the system, but also could provide the mechanism of the drug release needed to optimize 

the release kinetics. 

 
After a certain period of shelf time, the bioavailability of the active agent and its 

permeability are controlled by the microstructure of drug dispersed in the center of 

matrix.  As mentioned earlier, supersaturation of the drug in the matrix results in drug 

crystallization. Hence, a thorough investigation of the crystallization mechanisms and the 
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resulting crystal form in the polymer matrix are very useful to design an effective 

transdermal delivery system. Thus, one of the objectives of this study is to identify the 

needle shaped crystal in the estradiol transdermal drug delivery system. Previous studies 

using Raman microscopy couldn’t conclusively identify this type of crystal form. In this 

investigation a combination of FTIR and fluorescent microscopy are used to study the 

chemical microstructure of the needle like crystal form. The energy disperse spectroscopy 

(EDS) is also applied by focusing on the crystal in the polymer patch to collect relevant 

information to help identify the needle crystal.  

 
The other important objective of the study is to characterize the crystallization kinetics of 

the TDS. A first approximation of nucleation and crystal growth in TDS is obtained with 

a modified Potts model of Ostwald ripening. This model was first used to describe the 

grain growth in liquid phase sintered materials under the stress free condition. The drug 

release history from TDS is also studied to understand the effect of TDS morphology on 

the diffusion and transport of a drug during its release. For a better approximation, the 

bond fluctuation model, which has been used to describe the polymer behavior in dense 

polymer systems, is implemented to study the drug crystallization phenomenon in a 

polymer media.  
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Chapter 2 

Crystal Identification 

 
2.1 Fluorescence Microscope 

 
2.1.1 Method 

 
In fluorescence microscopy, the specimen is illuminated by a light of short wavelength 

and part of this light is absorbed by the specimen, and re-emitted as fluorescence. This re-

emitted light has a longer wavelength than the incident beam. In order to observe this 

relatively weak fluorescence, the excitation light is filtered by a barrier filter 

appropriately placed before it reaches  the eyes.  

 
Fluorescent probes used in fluorescence microscopy are isothiocyanate dextran (FITC-

dextran) probes of molecular weights 20, 40, and 70.5 kDa which were purchased from 

Sigma-Aldrich, the wavelength of absorption maxima (abs) and emission maxima (emis) 

for the FITC-dextran probes were 492 and 518 nm, respectively. The excitation 

wavelength was 488 nm, and total emissions were collected for wavelengths from 515 to 

670 nm. The concentration of the FITC-dextran probe was 0.4 mg/mL, belonging to the 

linear region of the fluorescence intensity versus FITC-dextran probe concentration plot.  

 
Experiments using fluorescence microscopy were carried out using a Leica TCS NT laser 

scanning confocal microscope with a 10 × 0.3NA dry PL Fluotar Objective and an argon 

ion laser (488 and 514 nm).  For the purposes of imaging, the 488 nm line of the Ar-ion 

laser was used in conjunction with a 40× NA 1.25 oil immersion objective.  
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The laser scanning confocal microscope (LSCM) scans a xy image of the sample at a 

specified location on the z-axis. The xy image is referred to as the confocal plane, which 

means that only light emitted from this plane is detected by the photomultiplier tube 

(PMT) detector. 

 
2.1.2   Sample preparation 

 
Three types of estradiol samples were used in this study, namely, crystal grown from 

methanol solution, amorphous estradiol, and estradiol hemihydrate crystals. A controlled 

crystallization was carried out to obtain an estradiol crystal from methanol solution (EM) 

in order to obtain samples of sufficient size for fluorescence study. A supersaturated 

solution of estradiol in methanol solution was prepared in a 10ml vial (solubility of 

estradiol in methanol is 25.48 mg/ml30). Estradiol powder attached to the tip of a fiber is 

then suspended to the solution as nucleation seeds. The crystallization is allowed to 

proceed for three days. The grown crystals were then dried by heating to 85°C in an oven 

for 10 minutes to ensure complete removal of trace methanol on the surface of the 

crystals. Amorphous estradiol (AE) is prepared as follows: Estradiol was heated on an 

aluminum pan on a hot plate. Care was taken to allow for liberation of lattice water at 

175-180°C. The pan was then cooled to room temperature and immediately used (to 

minimize crystallization) for spectral analysis. Estradiol hemihydrate (EH), the most 

common crystalline form of estradiol was obtained by Sigma Co. and used as received. 

Transdermal patches were obtained from Novartis Pharmaceuticals. They contain a 

nominal amount of 1 %(w/w) estradiol in the acrylic adhesive. These patches were stored 

in sealed pouches at ambient conditions for approximately 12 months.  
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2.1.3 Results and discussion 

 
 

HO

OHCH3

 
 
Figure 2.1    Structure of β-estradiol. 

 
A molecule can be excited by absorption of a photon of sufficient energy to produce a 

transition from the ground state to the excited state. This molecule in an excited singlet 

state may return to the ground state by emission of the surplus energy as fluorescence.  

The fluorescence of a molecule is governed by the structure and the environment in 

which this molecule is situated. Estradiol has a benzene ring and planar structure (shown 

in Figure 2.1) and therefore is reported as being a fluorescent material. As described from 

an earlier work28, there are two kinds of crystals in the trandermal patch of estradiol, and 

one is identified by Raman microscopy as pure estradiol aggregates. The Raman 

spectrum of the needle crystal did not correspond to that of estradiol. Confocal 

fluorescence microscopy could be used in identifying the chemical structure of these 

crystals if they are fluorescent. The images in Figure 2.2 show clearly that there are two 

different crystals; the needle like crystals are fluorescent material and aggregates are not. 

The spectrum of this fluorescent material shows that the excitation wavelength is at 500 

nm. The absorption spectrum of fluorescence of estradiol water solution shows that the 

estradiol only absorbs light at a wavelength of 300 nm. Figure 2.3 gives the fluorescence 
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excitation spectrum of the amorphous form, estradiol hemihydrate and the EM, which all 

have an excitation wavelength of 300 nm. However each peak profile is different 

probably due to the different morphologies of estradiol. The different environments 

surrounding the estradiol also have effect on the excitation peak for estradiol. Figure 2.4 

shows the excitation peak of estradiol in different solvents. Compared to the fluorescence 

image of a placebo patch without drug, it is found that there is no fluorescence material in 

the placebo using the same excitation wavelength light. It suggested that this fluorescent 

material is not due to the presence of trace material in the polymer patch (like initiator or 

monomers). There were some reports that binding to the polymer can alter the 

fluorescence properties of small molecules31, 32. The fluorescent material may form dimer 

or trimer with a shift in the emission spectrum toward longer wavelengths. The results 

agree with the conclusion that needle-like crystal may be some kind of combination of 

polymer and estradiol. Further experiment had to be done to confirm this result and to 

explain the reason for the large emission shift. 
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Non-fluorescent crystal 

 
Fluorescent-crystal 
 

 
Placebo of only polymers 

Figure 2.2. Image of x-y plane from Microscope fluorescence 
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Figure 2.3. Fluorescence excitation spectra in different solid states. 
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Figure 2.4. Fluorescence excitation spectra in different solvents (water, methanol, 

tetrahydrofulan). 
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2.1.4   Conclusions 

 
The fluorescence spectrum of estradiol has an excitation maximum at 300 nm (excitation) 

and shows small differences in the shoulder region corresponding to different 

morphologies of the estradiol. Fluorescence microscopy studies found two different types 

of crystals in TDS: the needle like crystal is fluorescent and the aggregate one is not. The 

fluorescent one most probably is a combination of estradiol and the polymer matrix. 

More evidence was obtained from EDS. 

 
2.2 EDS 

 
2.2.1 Method 

 
Chemical analysis (microanalysis) in the scanning electron microscope (SEM) is 

performed by measuring the energy or wavelength and intensity distribution of the X-ray 

signal generated by an electron beam focused on the specimen. With the attachment of 

the energy dispersive spectrometer (EDS), the precise elemental composition of materials 

can be obtained with high spatial resolution. 

 
Scanning Electron Microscopy with Energy Disperse Spectroscopy was carried out on a 

LEO 1530 instrument operating at an accelerating voltage of 7.5 kV. The extraction 

voltage was 3.8 kV and the operating current was 10 µA. All micrographs were obtained 

at a magnification 300 x at three locations on the patch cross-section. All samples 

obtained from Novartis Company were cut along the height and cross section and coated 

with gold in 2 minutes. Three samples were analyzed. 
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2.2.2   Results and Discussion 

 
A combination of SEM and EDS is a technology which can give not only a focused 

image but chemical element information of the materials. However, this information is 

not directly related to the chemical structure, therefore one has to combine other 

information to obtain meaningful results for the chemical structure. In the present case, 

the chemical structures of the drug and matrix materials are known and their ratio of C 

and O elements is different, hence the elemental information at least could tell us if drug 

or matrix materials are present at the focused area. One difficulty with conventional EDS 

is that it cannot give information for carbon. Fortunately the LEO 1530 can detect the 

presence of the C element.  

 
Figure 2.5 shows the image of the needle crystal on the surface of a cross section of the 

patch. Table 2 gives the C and O ratio of the spot shown in the figure. The ratio of C to O 

is 81.02:18.98 which is close to the C:O ratio of the polymer matrix 78.46:21.54. This is 

further evidence that the needle crystal is not the pure estradiol drug, which has a C/O 

ratio of 87.1:12.9. Figure 2.6 gives the image of an aggregate crystal. The corresponding 

EDS give the C to O ratio of 87.58:12.42 at three sampling spots. The EDS results show 

that the needle crystal is probably some combination of the polymer matrix and estradiol 

drug. Further studies are needed for conclusive identification of the needle like crystals. 
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Figure 2.5. SEM image and EDS spectrum for needle crystal 
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10 µm

 
 
 
Figure 2.6. SEM image and EDS spectrum for aggregate and matrix 
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Table 2.1. Processing option: All elements analyzed (Normalized) 
 

Spectrum C O Total  
Matrix 78.53    21.47    100.00  
Matrix 77.61 22.39 100.00  
Matrix 79.33 20.67 100.00  
Needle 81.02    18.98    100.00  
Needle 80.58 19.42 100.00  
Needle 81.44 18.56 100.00  
Aggregate 88.44 11.56 100.00  
Aggregate 87.44 12.56 100.00  
Aggregate 86.87 13.13 100.00  

 
All elements in atomic percentage 
 
 
2.3. Raman and IR Study 
 
2.3.1 Materials and Methods 

The transdermal patch was obtained from Novartis Pharmaceuticals Corporation and used 

as received. Acrylic Solution Duro-Tak 87-2853 was obtained from National Starch 

which was used as the matrix, β-estradiol from Aldrich was used as provided. 

Model reaction preparation: 

A solution was prepared by adding 0.6% wt of estradiol to the acrylic solution, then 0.5 

grams of solution was put on the micro slide and placed in a 85°C oven for 2 hours to 

remove the solvent, DSC indicate that there is no residual solvent. The dried film was 

peeled off the slide and IR microspectroscopy was carried out on the film.  
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2.3.2 Raman microspectroscopy 

Raman microscopy was used to characterize the chemical structure of the various crystal 

forms in the patch. This technique allows the incident light to be focused on a relatively 

small area (e.g. a circle of radium 2 µm) to obtain a Raman spectrum. The microscope 

can be focused to different depths in the sample. Raman spectroscopy was carried out on 

a Kaiser Holoprobe Raman Microspectrometer with a solid diode laser operating at 758 

nm, with backscattering optics. All the spectra were obtained with 5 accumulations, each 

of 30 seconds duration. The plane of focus was that in which the crystals were present. 

The depth where crystals are found was approximately 200-250 µm from the upper 

surface of the backing.  

2.3.3 Infrared spectroscopy 

The infrared spectroscopy was carried out on a FTIR spectrometer. The accumulation 

used was 16 scans. The sample films were mounted between sodium chloride disks, and 

placed in the path of the IR beam. 

 
 
2.3.4 Results and discussion 

Two crystal forms were found in the polymer patches. Raman microscopy can give 

chemical information about the focused crystal and therefore, in our case can help one to 

identify the crystals. Figures 2.7 and 2.8 show the Raman spectra of needle crystals and 

aggregates.  From both spectra, the double peak near 1610 cm-1 confirms the presence of 

the aromatic ring of estradiol.  Steroids with aromatic rings show their strongest band 

below 1450 cm-1 in both aggregate and needle crystals. The bending of CH2 group and 

the degenerate bending of CH3 show bands of medium intensity in the Raman spectra. 
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These are often described as internal standards for evidence of the presence of steroid 

skeleton33. It is interesting to note that the presence of a peak in the carbonyl region from 

needle crystal occurs at spectrum around 1760 cm-1 while corresponding peak occurs at 

around 1725 cm-1 for the aggregate crystals. The 1725 cm-1 peak corresponds to the 

absorption of saturated aliphatic ester but the 1760 cm-1 peak is characteristic of a phenyl 

ester absorption. The peak for the carbonyl group connected to the aromatic ring is 

shifted to the higher wave number due to the electron withdrawing effect of the aromatic 

ring. The presence of this peak indicates that there could be a chemical reaction between 

estradiol and acrylic resin during the manufacture and storage to form the corresponding 

aromatic ester.   
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Figure2.7. Raman spectrum of needle crystal in the patch. 
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Figure 2.8. Raman Spectrum of aggregate in the patch. 

 

 

Figure2.9. IR spectrum of model sample. 
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To confirm the existence of the ester exchange reaction a model sample was prepared by 

dissolving estradiol in acrylic solution and a film was cast by drying the solution on a 

micro slide in an oven at 85°C. The IR spectrum is shown in the Figure 2.9. From this 

figure, it is clear that the peak around 1730cm-1 is split into a doublet which contains 

contributions from a carbonyl connected to an aromatic ring with a longer wavelength 

and a carbonyl connected to a saturated aliphatic with a shorter wavelength. The reaction 

would be as follows: 

 

CH3
OH

OH
CH2 CH

C O

OR

CH2 CH

C O
O

CH3OH

 

2.3.5 Conclusions 

The two crystal forms found earlier was studied by Raman microscopy, SEM, EDS and 

IR. The Raman spectrum of the aggregate shows the peak characteristic of the aromatic 

ring and the alkyl carbonyl group and therefore is identified as pure estradiol crystal. The 

EDS of SEM gives the elemental ratio of C and O similar to the theoretical ratio of C:O 

in estradiol. The peak in the Raman spectrum of the needle crystal shows that the 
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carbonyl peak is shifted to higher wave number at 1760 cm-1 which is characteristic of a 

phenyl ester. This probably resulted from the transesterification reaction during the 

manufacturing process. The IR spectrum of the model reaction sample prepared at 85°C 

give a carbonyl group absorption as a doublet which is corresponding to aliphatic and 

aromatic component. This demonstrates evidence for the occurrence of the 

transesterification reaction. The formation of this estradiol and acrylic resin conjugate 

will further decrease the availability of drug because it is very difficult for the drug to 

leave polymer chain when it is chemically attached in the ambient environment during 

the application of transdermal patch, thus prevention of the transesterification reaction 

during the manufacturing process is a very important issue to address. 
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Chapter 3 

 Crystallization Kinetics 

A number of simulation techniques, such as Monte Carlo methods, and their 

modifications, can be used to simulate crystallization kinetics. A brief overview of these 

techniques are given in section 3.1. Crystal growth in an unstressed matrix (small 

molecule or polymer medium) of a dissolved crystallizable drug component was 

simulated using a kinetic Monte Carlo model and described in section 3.2 and 3.3. The 

drug release profiles are given in section 3.4.   

 

3.1 Monte Carlo Simulation 
 
Monte Carlo (MC) methods are stochastic techniques--meaning they are based on the use 

of random numbers and probability statistics. Since it was developed by von Neuman, 

Ulam and Metropolis more than 50 years ago, Monte Carlo method has became one of 

the most useful tools to simulate the behavior of condensed systems and polymers.   

Instead of evaluating forces to determine incremental atomic motions, Monte Carlo 

simulation could simply impose relatively large motions on the system and determine 

whether or not the altered structure is energetically feasible. The system jumps abruptly 

between different conformations, rather than progressively evolving in time as in the case 

of molecular mechanics as illustrated in Figure 3.1. It can skip barriers without waiting to 

overcome them; however the relative energy associated with conformations before and 

after a jump is taken into account. Because MC simulation samples conformation space 

without a true ‘time’ variable or a realistic dynamics trajectory, it cannot directly provide 
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time-dependent quantities. However, it may be better than molecular mechanics or 

molecular dynamics in estimating average thermodynamic properties for which the 

sampling of many system configuration is important. 

 

 

Figure 3.1. Monte Carlo simulation vs Molecule Dynamics. (a) While Monte Carlo 

technique makes larger changes in configuration thus more effective in sampling the all 

energy spectrum than minimizing to a local minimum as in molecular mechanics; (b) 

Molecular mechanics sets to minimizing the energy by progressively altering the 

configuration in a continuous manner. 

  

From the classical statistical mechanics, the average property of system can be described 

as following: 
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Here Z is the parameter for which the average value is calculated for a chosen domain 

(could be crystal size or mean square radius gyration for polymer), particle number N, 

volume V, temperature T for the system are constant in this particular system. However, 

average could be defined by fixing other thermodynamic variables. Here, r is a point in 

configuration space, kB is Boltzmann’s constant, and H(r) is the Hamiltonian of the 

system. 

It is well known that the procedure to obtain an analytical solution of the equation (3.1) is 

a nontrivial problem. By solving this equation with numerical integration, Monte Carlo 

simulation can give an approximation solution by sampling a finite number of points as 

the system evolves.  
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Important sampling techniques will be targeted at the relevant region of the phase space 

by altering configuration at random from a distribution. Therefore equation (3.1) reduces 

to a simple arithmetic average, 

∑
+=

−−=
M

M

rZAAZ
1

1
0

0

)()(
τ

                                                                   (3.3) 

Up to this point, the problem is just simplified but not solved. To solve this problem, a 

Markov chain of states is constructed to explore each state with the appropriate 

probability. In this process r1→r2→…rν-1→rν→…, each state rν follows from the 

previous one with an appropriate transition probability P(rν-1→rν) and this probability has 
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to satisfy the condition of “microscopic reversibility” with the equilibrium probability 

Weq(r):  

Weq(r)P(rν-1→rν) = Weq(r) P(rν→rν-1)                                                                     (3.4) 

Another condition for a successful construction of this phase space trajectory in the 

canonical ensemble is that in the absence of H the process can explore any phase state rν 

in a finite number of steps to ensure ergodicity.  

The first such scheme is designed by Metropolis et al. The probability of exchange 

between two states is simply decided by equation: 

P(rν→rν-1) = exp(-∆H/kBT)                                                                                       (3.5) 

       If  ∆H = H(rν-1) - H(rν) > 0,  

P(rν→rν-1) = 1 else.                

If the move lowers energy in energy state (∆H ≤0) then the probability of new state is 

greater than old state thus this move will be accepted. If the move increases the energy 

((∆H ≥0), then the move is accepted with a probability according to the equation (3.5).  A 

random number between 0 to 1 is chosen to decide if the move for this transition is 

accepted or not, if P greater than this random number, the exchange is accepted and 

continue  exploring phase state. Otherwise, the move is discarded and the new trial move 

is made.  

The length or duration of MC simulation is conveniently measured in ‘cycles’, N 

indicating trial moves weather selected sequentially or randomly. The computer time 

involved in MC cycle is directly related (although obviously not equivalent) to that in 

MD time step.  A dynamic interpretation of this MC simulation data is based on 

associating a ‘time’ with the cycle number ν of successive configuration, so that W(rν) 
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can be interpreted as W(r, t). Under this interpretation, the unit of “time” is still quit 

arbitrary, and it is not obvious (and generally also not true) that this “time” of Monte 

Carlo sampling is simply proportional to the physical time.  However, if this transition 

process is also related to the “time”, then the Markov chain of phase space points 

r1→r2→…rν-1→rν→… can be described: 

∑∑
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              (3.6) 

The physical meaning of this equation is obvious since the probability of configuration R 

from phase space is the summation of the process which leads to the state R and away 

from it to configuration R’. This gain and loss is counteracted by each other and will be 

balanced to reach dW(R,t)/dt = 0 in thermal equilibrium. Therefore, in Markov process, 

Weq(R) can be reached in the limit t → ∞, irrespective of the initial conditions. Thus, 

Monte Carlo averaging can be rewritten as a “time average” along a stochastic trajectory 

in phase space:  

                                                                         (3.7) ∫−=
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where t is the total “time” of the Monte Carlo run and t0 the beginning of the simulation.  

Equation here is the same as the equation used by molecular dynamics (MD), where one 

carries out a time-averaging procedure along deterministic trajectory other than a 

stochastic one in MC. The trajectory in MD is determined by the initial conformation 

evolved through the Newton’s equation of motion, while the Monte Carlo trajectory 

depends on the path for the “move” X → X’ on the microscoptical lead to. It is also noted 

that this move does not conserve the energy therefore it will result in fluctuation around 
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the constant energy hypersurface sampling phase space. However, this fluctuation is 

small if the number of degrees of freedom is very large. 

 

3.1.1 Periodic Boundary condition: 

The size of any simulated bulk system is generally limited by the power of available 

computers, and more specifically, by the computational speed in executing the program. 

Therefore computer simulations are usually done on a small number of molecules 

between N = 100 and 10000. The time needed to calculate the force or potential energy is 

proportional to N2. Although some special technique may reduce this time dependence to 

(N), for very large system, the force/potential energy double loop over all distinct pairs of 

atoms almost cannot be avoided. Thus for large systems, the computation would be very 

expensive. For systems like microcrystals, the cohesive forces between the molecules 

may be sufficient to hold them together during the simulation, otherwise the molecules 

have to be confined in a potential representing a container, preventing them from moving 

away. In such an arrangement, an appreciable fraction of atoms would lie close to the 

periphery of the system, and significant surface effects would be evident.  The standard 

approach is therefore to introduce so-called periodic boundary conditions, in which the 

system is considered to be surrounded on all sides by replicas of itself, forming infinite 

macrolattice. A two dimensional periodic system is showed in the Figure 3.2. In the 

course of the simulation, as a molecule moves in the center box, its image molecules 

move in exactly same way in other boxes. When a molecule in the center leaves the box, 

there will be another molecule move in the center box in the opposite face. There is no 

wall or restriction at the interface of different boxes, molecules can enter or leave freely. 
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Therefore, the density of box will be a constant. By introducing this periodic boundary 

condition, there is no need to store the coordinates of all images. When a molecule 

crosses the boundary, the coordinates of corresponding image molecules can be tracked.  

 

Figure 3.2. The demonstration of periodic boundary condition. 

 

In any periodic system containing polymers, it is clear that atoms from the same molecule 

may be lying in different cells. Therefore, the convention introduced to polymer 

modeling by Theodorou and Suter34 is employed. All polymer chains whose promary 

backbone atoms lie in the central box, referred to as parent molecules and all others as 

image molecules. 
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3.1.2 Monte Carlo for Polymer dynamics 

 

For a polymer chain, the Hamiltonian of the system includes four parts. To be more 

specific, we consider the popular polyethylene (PE) as an example. For an N bond PE 

chain,  H is the summation of bond length potentials Hl, bond angle potential Hθ, 

tortional potential Hφ, and nonbonded interaction potential HLJ mostly described as 

Lennard-Jones potential.  
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If the harmonic potential is chosen for bond length and bond angels, 
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where fl, l0, fθ, θ0 are constants. The torsion potential can be chosen for the Flory three 

minima model: 
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where fφ, a1, a2, a3, a4, a5 as constants. 
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Figure 3.3. (a) Schematic Model of a piece of polyethylene chain. (b) Qualitative sketch 

of the three energetically preferred state “gauche minus” g-, “trans”(t) and “gauche plus” 

g+. The minimum of the trans configuration is deeper by a specific amount U. From 

Kremer and Binder35.  
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The nonbonded interaction is described by Lennard-Jones: 

})/()/{(4 612
ijijLJ rrH σσε −=                (3.12) 

where rij is the distance between monomers i, j, and ε, σ  are constants.   

As shown in Figure 3.3, the hydrogen atoms (H) are not treated explicitly in the “united 

atom” approximation, but rather one introduces effective spherical segments (shaded) 

representing a whole CH2 unit. The segments are connected by harmonic bonds (shown 

as straight lines), with bond lengths li. Segments are labeled consecutively by an index i; i 

= 0 to I = Np - 1. Three successive segments i-1, i, i+1 define  bond angel θi and four 

successive segments i-2, i-1, i, i+1 a torsional angel φi, namely the angel between the 

plane spanned by the bonds formed from the segments [i-2, i-1, i] and the plane built 

from i-1, i, i+1. It is noted that the φi’s are all zero in the all-trans configuration drawn 

here. 

 

3.1.3 Coarse-Grained Models for polymers 

 

The computer simulation of polymers presents a formidable challenge due to the 

considerable range of length and time scales relevant in the physical system36: flexible 

polymer chains in solution or as melt exhibit nontrivial geometric structure from the scale 

of the chemical length(∼1 Å) to the coil size (~100 Å) and even larger length scales occur 

for collective phenomena (for example, the correlation length of concentration 

fluctuations in polymer blends is of the order of 1000 Å37 ), Atomistic simulation with 
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accurate chemical nature of polymer is extremely expensive, if at all feasible. To make 

things more complicated, there is a wide distribution of relaxation time for polymers: 

time for bond length and bond angle vibration is around 10-15-10-13s, while a typical time 

for a reorientation jump of monomer groups in the torsion potential may be W-1 ≈ 10-11s. 

The time to change the configuration of a chain containing N monomers is much larger: 

τN ≈ W-1N2, if the Rouse model holds38,39 (for chain length N less than entanglement 

chain length Ne). For longer chains (N > Ne), an even bigger increase of τN  with chain 

length occurs in polymer melts39,40  τN ≈ W-1 (N/Ne) N2 , which can bring this relaxation 

time to the order of 10-4s, nine orders of magnitude larger than τvib. Even larger relaxation 

time up to a time scale of 103s occurs near the glass transition. 

For many questions of interests in computer simulations, reliable results must be based on 

the equilibrated system. In MD which can include all the dynamic processes, the time for 

system equilibration is huge. Therefore MD simulation relying on better initial 

configuration closer to the equilibrium is far beyond reach. In addition, the results depend 

on the proper choice of force fields related to the chemical structure. Even for PE, there 

are significant differences between the force fields used by different authors41, 42. 
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Figure 3.4. Use of the bond fluctuation model for one a lattice (lower part) as a coarse-

grained model of a chemically realistic polymer chain (upper part, using PE as an 

example). In the example shown 3 covalent bonds form one “effective bond” between 

“effective monomers”: chemical bond 1, 2, 3 correspond to the effective bond I, chemical 

bonds 4, 5, 6 to the effective bond II, etc. An effective monomer blocks is an elementary 

cube containing eight lattice site (or square containing four lattice sites in d=2 dimension, 

respectively) from further occupation. From Baschnagel et al43. 
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Based on the discussion above, there is an alternative approach to omit the fastest 

movement on small scale and focus on the long wavelength properties along the 

backbone of the chain. This approach is called “coarse grained model” which can reduce 

the computation tasks tremendously without sacrificing the accuracy of description of 

long wavelength properties. In this model, several chemical bonds are “integrated’ into 

one “effective bond” as show in Figure 3.4. Therefore, a chain of Np degree of 

polymerization is mapped to a chain of N effective bonds under the coarse grained 

concept, where N = Np/n, usually n represents around 3-6 chemical bond. Computer 

simulation of self-avoiding walk (SAWs),35, 44 “bead-spring chain”39, 45 and recent bond 

fluctuation model 46, 47all belong to this class. Obviously, the SAW is extremely 

simplified, without very complicated chain architecture; this simulation can only give the 

universal properties of  flexible polymer chains as general.   
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Figure 3.5. Example of self-avoiding walks (SAW’s) 

 

On the other hand bond fluctuation model, though still is a in lattice model (polymer 

chains of specific length are built up randomly on a lattice and can only move on the 

lattice), can describe many local properties related to some chemical structure in dense 

polymer systems in a qualitatively reasonable way by introducing effective potentials for 

the lengths of the effective bonds and angles between them. These effective potentials are 

generated from more realistic models which depend on the input from quantum-chemical 

calculations. 
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Figure 3.6. Generalized Verdier-Stockmayer algorithm on the simple cubic lattice 

showing three types of motion: end-bond motion, kink-jump motion, and crankshaft 

motion. 

 

For the standard SAW, there are varieties of algorithms to deal with the Monte Carlo 

move. Each model includes the excluded volume interaction feature automatically by 

allowing each lattice site to be occupied by at most one bead. In the original Verdier-

Stockmayer algorithm48,49, only single bead (“effective monomer”) was moved. As 

illustrated in Figure 3.6, only “end-bond” and “kink-jump” but no “crankshaft” was 

allowed. If both lattice sites and lattice bonds may be multiply occupied by the beads and 

links of the chain, the results of these simulations were in agreement with the Rouse 

model for the long time properties.50,38 In fact, for the freely jointed polymer chain in the 
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continuum, some authors proved exactly this equivalence between the kink-jump model 

and the Rouse model. However, if the excluded effect of the chain is included, the 

simulation is radically different: Verdier49 suggests that τN is proportion to N3, which is 

much larger than it should be 1+2ν ≈2.2 for the SAW in 3 dimentional problems (d=3). 

This inaccurate prediction has resulted from the fact that the excluded volume of S-

shaped configurations (built up by two successive “crankshaft” in a plane) could only be 

relaxed by kink-jumps if one of the kinks has diffused toward the chain ends. Hoping to 

get quicker relaxation, Hilhorst and Deutch then introduced crankshaft motions but 

restricted them on to a plane. Due to the lack of interchanges of nearest-neighbor bond 

vectors along the chain, it still leads to τN proportional to N3 with a reptaion-like 

motion51,52,53. Therefore, it is crucial to include the out of plane crankshaft rotation to 

create new bond vectors. Thus in three dimensional off-lattice simulations which 

generated new vector for out of plane crankshaft configuration, the results are consist 

with the theory 1+2ν ≈ 2.2. Note that in the two-dimensional simulation, one cannot 

apply this out of plane crankshaft algorithm at all. 

Another problem related to this algorithm is the lack of ergodicity 54,55,56. One can always 

identify configurations of “knot” which cannot relax by the motions allowed in this 

algorithm. Thus by the kink-jump method and its variants one does not sample all the 

phase space, but only an “ergodic subclass” of the configuration space from which these 

“forbidden configurations” are omitted, since these “knots” cannot relax. However, for 

the chain and lattice for which the “kink-jump”-method can be applied, the system error 

due to this “knot” configuration seem to be smaller than the statistical error, considering 
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that the total number of configurations exponentially grown with N, therefore in practice 

consequences seem irrelevant.  

The kink-jump method is most useful when one is interested in time-dependent properties 

of the chains, since this algorithm rather closely corresponds to the Rouse model, as has 

been demonstrated by a number of studies48, 57, 58, 59, 60, 61, 62. But most valuable outcome is 

that  this algorithm can be applied for the simulation of many chain systems. 

 

Figure 3.7. “Slithering snake”-(“reptation”-) algorithm 

 

Kron63,64, 65 and Wall and Mandel66,67 first introduced the “Slithering Snake” algorithm to 

generate the SAW configuration (Figure 3.7). In this algorithm, one end of the chain is 

randomly selected and removed to the unoccupied space next to the other end with 

random orientation. Since it is still under SAW, this trial move has to satisfy the excluded 
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volume condition.  Obviously, this is a very simple algorithm and does not describe the 

realistic chain movement, but it can lead to the equilibrium rather quickly, resulting in a 

smaller relaxation time compared to the Rouse model.  

It is also clear that this algorithm is not completely ergodic: if all the nearest-neighbor 

sites of both ends are occupied, no movement is possible to relax this configuration.  

Again presence of this lock-in configuration makes this algorithm the “ergodic subclass”. 

There is a general feeling that for the study of athermal SAW’s, system errors can be 

neglected comparing to the statistical errors68,69. Probably this non-ergodic problem 

would become serious if the simulation is dealing with dense configuration such as 

studies of the collapse transition of a single chain. However, major applications of this 

algorithm is in the simulation of multiple chain system, thus it is a very effective tool.  

For multi-chain systems, one is often interested in dynamical properties on long 

wavelengths such as phase separation of polymer mixtures70, in which the N-dependence 

of characteristic times associated with the process is calculated correctly. In addition, this 

algorithm is much faster than the kink-jump routine. 
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mirror

Figure 3.8. “Pivot”-(“wiggle”-) algorithm. 

 

The “wiggle” (“pivot”) algorithm (Figure 3.8) was first introduced in 196771 and found 

little attention72, but gained more popularity73, 74, 75 when it was reinvented by Donald, 

Jan and Hunter75. One of the reasons for its popularity is associated with the work of 

Madras and Sokal, whose analytical studies for ordinary random walks proved that for 

the SAW it is ergodic. In this algorithm a given configuration of a SAW is divided into 

two parts randomly and then the mirror image (across the line passing through the bond 

between the two parts) of the first part is connected with the second part. This new chain 

will be accepted if the excluded-volume condition is not violated; otherwise  the new 

chain will be discarded and restarted from the old one with a different random division of 

the chain. 
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Although this algorithm is extremely efficient (with N such elementary motions one 

generates an essentially new configuration), one has to be careful in “equilibrating” the 

system since the large relaxation time needed for this algorithm if started with some 

arbitrary initial configuration. This problem can be fixed if one uses an equilibrium 

configuration generated by one of the other methods. One has to note that without further 

modification this algorithm is useful for studying long isolated chains, but not for 

generalization to simulate dense polymer chain systems. 

For very long chains, these methods are seen to fail in equilibrating melts76, hence the 

“broken chain” algorithm is introduced77,78 (Figure 3.9).  This algorithm includes two 

kinds of motions. In the “bond flip”-type, a pair of parallel bonds is rotated if the bonds 

belong to neighboring chains. If the two bonds belong to the same chain, this move is not 

allowed since it would result in “cyclization” (ring formation). This motion does not 

involve the chain ends of either chain. The second move is the so-called “end attack”. A 

bond is rotated from a site of a chain that is the nearest neighbor to a chain end of another 

chain, so that the previous chain end is now an inner bead of one of the chains, and the 

site from which the bond move away becomes a chain end. 

Obviously, these reactions by which chains are “broken” and reconnected again in a 

different fashion do not conserve chain lengths. As a matter of fact, the resulting 

distribution of chain length turns out to be broad.   
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(B) 

(C) 

 

Figure 3.9. “Broken” chain algorithm 

 

In principle, the extension of both the “kink-jump” method and its variants and of the 

“slithering snake”-algorithm to dense polymer lattice system are fairly straightforward.  

However, both methods need sufficiently large mount of empty sites or vacancies. For 

the “slithering snake”-algorithm, it is even necessary to have vacancies adjacent to the 

end of chain. 

A nontrivial step in such studies is the generation of a realistic initial configuration. It is 

not possible to fill lattice so densely with chains and then apply one of the numerical 

methods such as “simple sampling” or “biased sampling” methods. So the common 

practice is to fill the lattice with chains which are completely stretched out linearly with 
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the  required volume fraction of vacancies. Then this configuration`is relaxed carefully 

until the system is well equilibrated before starting the calculations for any desired 

properties.  

 
 
3.2 Free Growth by Potts model 
 
  
As described in the previous section, crystallization of a drug in the TDS system results 

mainly from the supersaturation of the drug, in order to maintain the required drug 

delivery rate so that the desired drug level is kept in blood. However, the bioavailability 

of the drug decreases due to the formation of crystals dispersed in polyacrylate adhesive 

of TDS after they were stored over six months at room temperature with moderate 

relative humidity4.  Optical microscopy studies of 1% estradiol TDS showed that the 

growth of drug crystals in the polymer matrix of TDS occurs generally in the middle third 

of the polymer matrix (Figure 1.3), away from the interface.    
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Figure 3.10. Demonstration of Ostwald Ripening process. 

 

Since the presence of drug crystals will weaken therapeutic performance of the TDS, it is 

important to understand the kinetics of crystallization in the TDS so that appropriate steps 

could be taken to reduce crystallization of drug in the polymer. As the amount of drug in 

the matrix is unaffected during the storage, crystallization in TDS is occurring with a 

fixed quantity of available crystallizable component dissolved in the matrix. The crystal 

growth mechanism treated here is similar to that investigated by Tikare and Cawley79,80, 

who studied the grain growth in liquid phase sintered materials described by Ostwald 

ripening (Figure 3.10), which incorporated the thermodynamic condition of a two-

component two-phase system and their corresponding interfacial energy to simulate 

evolution of solution, precipitation and diffusion. A first approximation of nucleation and 

crystal growth in TDS could be studied by modifying this model to the conditions of 

TDS.  However, an assumption implicit in this method is that the matrix does not offer 
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any resistance to grain growth as a result of the internal stresses developed due to this 

growth. We use the kinetic Monte Carlo model to simulate the nucleation and growth of 

the solid phase in a stress free matrix by the diffusion of the crystallizable components 

through the matrix. The model has the ability to incorporate the concentration gradient of 

the solute in the matrix and to simulate grain growth at low concentrations.  We assume 

full wetting of the drug crystals by the matrix.  The details of the chemical structure of 

the drug and the matrix are not considered as this is not an atomistic model; rather the 

drug and matrix are approximated by sites of equal size.  The Monte Carlo model uses 

the classical Metropolis algorithm to simulate time dependent evolution of crystals in the 

TDS. The patch is treated as an infinite strip by using periodic boundary conditions in the 

length direction. However, across the thickness of the strip periodic conditions are not 

used so that edge effect in the thin TDS strip can be incorporated. The details of the 

modeling procedure are described in the following section.   

 
3.2.1   Numerical Simulation procedure 

 
As in reference 79, the microstructure was represented digitally on a square lattice with 

different q states representing either the matrix or solute and solute clusters of different 

orientation.  The drug is represented by the q-states 1 to Q = 100 and the matrix by just 

one q-state. Periodic boundary conditions are applied on the plane of the TDS, but not 

normal to the plane of the TDS patch. Grain growth of A-component (i.e., drug) was 

driven by the reduction of interfacial energy. The Hamiltonian H for this two-phase 

system was determined by the summation of the interfacial energy between each site i 

and each of its first and second nearest neighbors j as: 
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where E(qi,qj) is the interaction energy for neighbor sites i and j. If these sites contain 

different components, i.e., an idealized drug site and a matrix site, there is a possibility of 

exchanging these components between the sites i and j. If these sites contain identical 

components, either drug or matrix, the possibility of exchange has no significance. The 

exchange probability is given by W(A->B), which was calculated using the Boltzmann 

statistics as81: 

W(A->B) = exp(-∆H/kbT);        

                           If ∆H > 0 ;                                                       (3.14) 

                     W(A->B) = 1 else                              (3.15) 

where kb is the Boltzmann constant and T is absolute temperature and has units of bond 

energy divided by the Boltzmann constant. In this work, a temperature parameter kbT is 

used for the conventional Monte Carlo simulation with units of energy rather than just 

temperature. The Metropolis algorithm is used to determine whether or not an exchange 

occurs in proportion to the probability calculated by (3.14) and (3.15).  The number of 

iterations is given in Monte Carlo steps, MCS. At 1 MCS, the number of attempted 

transitions is equal to the total number of sites in the simulation. It has been shown 82 that 

MCS is linearly related to the time by the factor ι. Two artifacts of simulation, 

coalescence and direct-exchange, was prevented explicitly in this grain growth process. 

The thickness (i.e., the X-direction) is divided into three layers. The initial concentration 

of the drug could be set differently in each layer. The interfacial energies between 

identical Q-states are assumed to be zero indicating that no interface exists between 
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identical sites. The interfacial energies between different components are assumed to 

have non-zero values. The energy values could be calculated from molecular modeling or 

by experiments for the particular systems of interest. However, in our preliminary work 

we used the values from another work79 as we are only interested in the general pattern of 

crystal growth rather than the exact crystallization kinetics of a particular drug/matrix 

system. All grain growth simulation was run in the fully wetting condition with 

interaction energies, E(drug-matrix) = 1.0, E(drug-drug of different orientations, q) = 2.5, 

E(drug-drug of same orientation, q) = 0, and E(matrix-matrix) = 0. The total number of 

orientation states of the drug Q is taken to be 100. The composition was varied by 

changing the concentration of drug XD from 0.05 to 0.1 (given in volume fraction), and 

the temperature parameter ranges from kbT = 0.3, 0.6, and 0.9. The digitized simulation 

matrix has 100×100 sites. Although this small size was suitable for gaining insight into 

the crystallization process in TDS with reasonable computing requirements, larger sites 

(eg. 300x300 or 500x500) must be used for more accurate simulation results. Since no 

periodic boundary conditions exist along the thickness, particles near the outer 

boundaries have “reflective” boundary conditions, i.e; a particle on a boundary is only 

allowed to move towards the center layer of the patch. 

 
3.2.2 Results and discussion 

 
The mechanisms necessary to simulate precipitation from a supersaturated solution and 

growth of the precipitates are dissolution, diffusion and precipitation.  The model 

simulates these in the following manner.  Detachment of individual drug sites from a 

grain is dissolution. The successive movement of a single drug sites in the matrix by 
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exchanges is diffusion. Finally, precipitation is simulated when a drug site attaches to a 

drug grain. In clusters growth three stages have to be distinguished83: fluctuations in size 

of subcritical clusters (for radius R < critical radius RC), diffusion limited growth in the 

near critical region (R = Rc) and a deterministic growth when the cluster is larger than the 

critical size (R > Rc).  All three stages can be simulated by this model as will be shown in 

this section. 

 
Simulations were carried out for three different simulation temperatures (kbT = 0.9, 0.6, 

and 0.3) with (1) an uniform composition of 10% drug (as volume fraction,  XD=0.1) for 

the whole region and (2) with a concentration distribution of 5 % for the outer third of the 

thickness and 10 % for the inner third.  While the drug concentration in a typical TDS is 

1%, we used higher in order to reduce the time requirement for the simulations.  This is 

not expected to change the simulation results as the physics and geometry of the problem 

were not fundamentally altered at the slightly higher concentrations.  Figure 3.11 shows 

the evolution of the size and distribution of the grains at simulation temperature kbT= 0.9 

and uniform drug concentration of 0.1. The dark continuous region is the matrix and the 

gray areas are grains of different orientation. Initially, the drug was distributed randomly 

primarily as single sites and a few small clusters.  In this simulation a grain is defined as 

two or more contiguous drug sites of the same state q.  As the simulation progressed 

small grains are formed, some grains become larger due to precipitation from a 

supersaturated solution and by growing at the expense of others. As the simulation 

progressed further, one large grain formed in the middle third. Figures 3.12 and 3.13 

show the evolution of clusters from uniformly distributed drug at simulation temperatures 

of kbT = 0.6 and kbT = 0.3, respectively.   At temperature kbT = 0.6 many smaller grains 
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are formed distributed throughout the strip. As simulation progressed one or two large 

grains are formed close to the middle of the strip, although not exclusively in the middle 

third of the thickness. At temperature kbT = 0.3 grains grew slowly and are distributed 

throughout the thickness of the TDS patch. Many small grains are found both in the 

middle third and the outer layers of the strip (Figure 3.13). 

 
The arithmetic mean of the grain radii is plotted against simulation time in Figure 3.14a 

and the corresponding drug concentrations is plotted in Figure 3.14b for simulations 

shown in Figures 3.11 to 3.13.  In both Figure 3.14a and 3.14b, three distinct regions can 

be observed for each temperature. At the beginning, subcritical fluctuation of grains 

occurs with negligible change in the drug concentration in the solution. At the end of this 

stage a few nuclei of critical size form.  In the second stage, these nuclei grow rapidly 

accompanied by a drastic reduction in the solution concentration of the drug. In the last 

stage, Ostwald ripening of the grains occurs.  However, at the lowest simulation 

temperature kbT= 0.3, there is not sufficient diffusion to give significant growth.  At the 

highest temperature kbT= 0.9, there are too few grains in the simulation to get smooth 

grain growth curves, but an examination of the microstructures shows grain growth by 

Ostwald ripening until only a single grain is left as seen in Figure 3.11d. The second 

moment average of the grain radius follows similar pattern as the average grain size, 

indicating that the increase in the average grain size occurs mainly from the growth the 

largest grains. 
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Figure 3.11.     (a and b) 
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                                                                                (d) 
Figure 3.11. Microstructure at different stage of the grain growth simulation for KbT=0.9 
Concentration of A component 0.1: (a) MCS=2086 (b) MCS=9072 (c) MCS=20000 (d) 
MCS=16000000. The dark continuous feature is the liquid matrix and the different gray 
features are grains with different orientation. 
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                                                Figure 3.12    (a and b) 
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                                                            (c) 
 

     
                                                        (d) 
 
  Figure 3.12. Microstructure at various stages of the grain growth simulation at the 
kbT=0.6 and the concentration of A component 0.1 for Monte Carlo Steps (a) 2086, (b) 
656348, (c) 3.2×107 and (d) 4.1×107 respectively.  
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                                                                                                 (b) 
 
 
Figure 3.13. Microstructure at various stages of the grain growth simulation at the 
kbT=0.3 and the concentration of A component 0.1 for Monte Carlo Steps (a) 1045, (b) 
32000000 respectively. 
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◊   kbT=0.9 
 
�    kbT=0.6 
 
°    kbT=0.3 

 

◊   kbT=0.9 
 
�    kbT=0.6 
 
°    kbT=0.3 

 
 
Figure 3.14. (a) Grain growth curves for the simulation run with drug concentration of 

10% at temperature kbT = 0.9, 0.6 and 0.3 (b) The variation of solute concentration in the 

matrix due to clustering. 
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♦ kbT=0.9 
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●  kbT=0.3 

Figure  3.15 . Second moment of grain size vs  MC steps for three different values of kbT. 

 

 

The second moment averages of the grain radius for the three temperature parameters is 

shown in Figure 3.15. Also, the average radius of the five largest grains (or all the largest 

grains if they are smaller than five) is shown in Figure 3.16. For kbT = 0.9, the second 

moment average grain size follows a similar pattern as the average grain size, i.e., sudden 

increase from log(MCS) = 3.7 to 4.38, then remain relatively constant, followed by a 

small sudden jump at log(MCS) = 6.1 then by a gradual steady increase. This indicates 

that the increase in average grain size results mainly from the growth of the largest grains 

in the system. Figure 3.16 indicates that the average size of the largest five (or fewer if 

five large grains are not available) grains increases even after log(MCS) = 4.5, and no 

sudden increase is noted at log (MCS) = 6.1. This indicates that the sudden decay and 

growth of grains did not affect the average radius of the largest grains. It can be seen 

from Figure 3.11 c and d that the growth of one large grain at the expense of other grains, 
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indicative of Ostwald ripening process, occurs only at the very last stage, i.e., when 

log(MCS) is more than 4.96, which is further supported by the data shown in Fig. 3.16. 

  

 For grain growth at a temperature kbT = 0.6, the average grain size does not show any 

particular stage with a significantly rapid grain growth. The average radius of the grains 

does not show any sudden transitions, it grows gradually after log(MCS) = 3.6, although 

close to log(MCS) = 4.4 the average grain size increases more rapidly. From Figure 

3.13b, the depletion of solution concentration of A reduces slightly, then decreases 

rapidly from log(MCS) = 2.3 to 3.87 to reach a plateau close to zero concentration. 

However, the fastest growth of average grain size occurs only after the solution 

concentration of A reached a minimum. Thus, at intermediate temperature ranges the last 

stage of the grain growth, i.e., coarsening, occurs only due to Ostwald Ripening by the 

growth of larger grains accompanied by decay of smaller grains. This conclusion is 

further supported by the data from Figures 3.15 and 3.16. It can be seen that the second 

moment average of the grain size and the average of largest five (or fewer) grains 

increases steadily after the solution concentration of A has reached a minimum.  
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Figure 3.16. Largest grains grow with the MC steps for three different values of kbT. 
(Grain_size is average size of largest five or less grains) 
 

Grain growth at temperature kbT = 0.3 shows a different pattern. The solution 

concentration of A component was reduced to close to zero (at log(MCT) = 3.5) much 

earlier than that for higher temperatures. However, no significant increase in the average 

grain size occurs during the entire simulation, indicating that the reduction of solution 

concentration produces a large number of smaller nuclei. There is a small but steady 

increase in the second moment average of grain size as well as the average of the five (or 

fewer) largest grains, indicating that the largest crystals are growing slowly but in a 

steady pace without affecting the average grain size in the system. Thus, one could infer  

that there is only a partial decay of grains during this stage. Large grains are not 

completely decayed in this process. 
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Figures 3.17, 3.18, and 3.20 show the positions of grains along the TDS thickness and 

size of the grains as the simulations progress for kbT = 0.9, 0.6, and 0.3, respectively. At 

all three simulation temperatures, initially small grains are found randomly distributed 

across the TDS thickness.  At simulation temperatures, kbT = 0.9 and 0.6, Figures 3.17 

and 3.18 show few large grains grow at the expense of smaller ones until there are only 

two grains remaining for kbT = 0.6 and only one grain remaining for kbT = 0.9 at MCS = 

3.2x107.  In both cases, the grains are in the center portion of the TDS strip. At kbT = 0.3, 

many small grains remain randomly distributed for the entire simulation.  This is because 

diffusion coefficient of the drug in the matrix is too low to give any significant Ostwald 

ripening.  

 
 In TDS, it is possible that gradients in the drug concentration can occur across the 

thickness of the patch.  In order to understand the effect of such concentration gradients, 

simulations were carried out by dividing the matrix into three regions with different 

solution concentration. To prevent the system from averaging out this concentration 

gradient at the very early stages of simulation, the motion of crystallizable monomers 

between different layers was prevented before nucleation.  Figure 3.19 shows that the 

crystal aggregate to the middle more quickly for a system with monomer concentration of 

10 % at the middle third of matrix, and 5 % in the remaining regions (i.e., 5/10/5) than a 

10 % homogeneous system at the same temperature in Figure 3.18. The simulation results   
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Figure 3.17. Grain size distribution along x direction at different simulation stage for 
XA=0.1, kbT=0.9 
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Figure 3.18. Grain size distribution along x direction at different simulation stage for 
XA=0.1, kbT=0.6 
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Figure 3.19. Grain size distribution along x direction at different simulation stage for 
three layers case (XA is 0.05, 0.1 and 0.5 respectively),  kbT=0.6.  
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Figure 3.20. Grain size distribution along x direction at different simulation stage for 
XA=0.1, kbT=0.3 
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show that it took MCS= 3278452 to get all the crystals in the center layer, much less time 

compared to MCS= 2.0*107 of the 10% homogeneous system at the same temperature. 

This is because the time to nucleation is shorter at higher solution concentrations.  Once 

nuclei form in the middle, they grow faster due to precipitation from the region 

surrounding them. Subsequently, these larger grains continue to ripen faster as they have 

many small grains surrounding them, unlike the grains on the edge. Because of the 

boundary restriction, this fluctuation in concentration will always favor the center layer 

of matrix, consequently, increases the probability of crystals appearing in the middle 

layer of the system.  

 
3.2.3   Conclusions 

 
A qualitative evolution of grain growth in a TDS is investigated using a kinetic Monte 

Carlo technique. We have demonstrated that this model can simulate precipitation and 

growth of the drug crystals from a supersaturated solution in a TDS patch. Furthermore, 

once the solution approaches its equilibrium solution concentration, Ostwald ripening of 

the drug grains can also be simulated.  As expected, simulation temperature significantly 

influenced the development of microstructures. At higher temperature fewer larger 

crystals are developed in the middle layer of the TDS, while for intermediate 

temperatures more number of relatively larger grains is observed close to the middle 

layer. At low simulation temperature, the grains are evenly distributed throughout the 

thickness of the TDS patch. From this idealized simulation, it is seen that a large number 

of small crystals are formed when the TDS is kept at low temperature.  Presence of such 

small crystals will have conflicting effect on the functioning of TDS.  
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The selection of a storage temperature is very important in determining the effectiveness 

of TDS. When stored at higher temperature, although larger crystals are formed near the 

middle layer, the solution concentration of the drug is also higher in the matrix. On the 

other hand, at lower temperatures, small crystals are distributed throughout thickness, but 

the solution concentration is much lower. Thus the effectiveness of TDS depends on the 

dissolution process of the crystal. Further studies are necessary to address the dissolution 

and diffusion of drug during its usage. 

 
3.3 Bond Fluctuation approach 
 
 
Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a 

dissolved crystallizable component was simulated using a kinetic Monte Carlo method of 

the Potts model84. This model was shown to correctly simulate solution, diffusion and 

precipitation for the low crystallizable regime of interest to the transdermal drug delivery 

system (TDS) community.  The simulation results provide a first approximation for the 

crystallization occurring in (TDS), as it does not account for the specific structure of 

polymer molecules. In addition, the polymer chains constrain the crystal growth to some 

extent. Therefore, computer simulations of crystal growth in polymer matrix will give us 

insight closer to the real system if one can explicitly specify the architecture of chains in 

the calculations. In the Potts model, an assumption is made that the size of polymer 

chains are compatible to that of drug molecules. Thus the size effects cannot be captured 

by the classical Potts model85, clearly an over simplification of the problem. In order to 

account for size effects and to develop a refined approach, the polymer chains must be 

 70



treated as longer chains in comparison with the polymer molecules. There are several 

different ways of dealing with the segregation of drug in a polymer medium. One can use 

Rouse model to describe the motion of a polymer chain by applying the Brownian 

dynamics to the monomers of a polymer chain. However, all the dynamic Monte Carlo 

algorithms with fixed bond length in lattice have some problems associated with them86. 

First, they are not being able to simulate in two dimensions (as described later), second 

they do not allow simulation of branched polymer chains. The third difficulty is that these 

lattice models with fixed bond lengths are all non-ergodic system87,88,89, which is not a 

serious drawback for  an isolated chain but could be a major problem in dense systems. 

Recently, the bond fluctuation model is developed to overcome all of above problems, 

while incorporating the size effects of polymer chains86. In addition, this coarse-grained 

model can overcome the time scale demands in the MD simulation and give the long 

wavelength properties as well as intermediate wavelength properties and even go down to 

the scale of an effective bond 90, 91, 92, therefore it is suitable for diffusion and 

precipitation of drug molecules in the polymer matrix. It should be noted, however, that 

the stress build-up in the matrix due to grain growth is still not accounted in this bond 

fluctuation model.  

 
3.3.1 Description of bond fluctuation method   
 

The usual dynamic Monte Carlo simulation is very slow for polymer system, because a 

self-avoiding walk (SAW) or a nonreversal random walk (NRRW) can only make moves 

at the end of chains. In addition, the center part of the chain gets less chance to move for 

longer chains in the simulation system. The bond fluctuation model uses variable bond 
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lengths between monomers, thus can keep the simplicity of lattice model to carry out 

dynamic simulations for dense system. In coarse-grained model, one “effective bond” 

always means collection of several bonds90. Originally, a square lattice (four lattices sites) 86 

representing one monomer with a lattice constant of one unit (length of one side of this 

square lattice) is implemented. The bond length, which represents an “effective bond”, 

can vary and is smaller than 181/2. This representation can prevent different bonds from 

crossing over, weather they are from the same chain or from the different chains, as a 

condition of self-avoiding random walk (SAW). In this study, in addition to polymer 

molecules the drug molecules as crystallizable component are also incorporated. In order 

to allow neighboring drugs to crystallize, one monomer of the polymer chain is 

represented as one lattice site. Lattice points unoccupied by drug or polymer units 

represent for vacancies in the system, are responsible for the free volume.  

 
In this system, the maximum bond length in the polymer backbone is less than 81/2 units, 

hence the possible lengths are 1, 21/2, 2, 51/2 units (showed in Figure 3.21). While 

constructing the initial structure, special care must be taken to avoid chain cross-over. 

Typical moves for monomer units are showed in Figure 3.21, and these movements can 

obviously avoid the deadlock configurations which are caused by the traditional 

algorithm93 and cannot be resolved in two dimensions with fixed bond length by 

themselves. Therefore the modified bond fluctuation model in our study is ergodic. 
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1 

 

Figure 3.21.  Dead lock conformations of fixed bond length model can be solved by bond 

fluctuation model and possible bond lengths for bond fluctuation model. 
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The three component system consists of polymer and drug molecules and void space. 

During the simulation, sites can accept any exchanges between these three components as 

long as such a move can be made from the neighboring sites. The movement of a 

component is achieved through exchanging the neighboring sites of different 

components, including crytallizable components with different orientations. 

 

A step-by-step simulation procedure is described as follows: 

1. The two-dimensional, square lattice must be populated using the components with the 

desired composition. The initial conformation was achieved by assembling the polymer 

chain first; void second and then the drug molecules. Without applying any energy 

restriction to the polymer assembly and drug molecules, the random moves of monomer 

and drug molecules must satisfy the bond length constraint and should prevent any chain 

session. 

 
2. Using the initial conformation generated by the first step, a lattice site was chosen at 

random with its four nearest-neighbors. Exchange is possible between components on 

this randomly chosen site and a neighboring site. If one of the neighboring sites is a void 

and one is occupied by drug molecule, step 3 is followed.  If one is occupied by monomer 

of polymer chain, one by drug molecule, step 4 is followed. If one has a polymer chain 

member, and the other one void, then step 5 is followed. 

 
3. A new orientation for grain was selected at random from Q (100) possible orientations. 

After new position of crystalizable component satisfy the SAW, then the energy 

difference between new and old configuration was calculated using the Hamiltonian, and 
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the classical Metropolis algorithm was used to determine if this possible step should be 

accepted or rejected.  

 
4. A new orientation for crystallizable component was selected at random from Q (100) 

possible orientations. After checking weather new position of crystallizable component 

satisfy the SAW, and if the new chain position does not cross other polymer bonds, then 

the classical Metropolis algorithm was used to determine whether to accept or reject this 

move.  

 

5. A move can be made to this position while not breaking the chain or crossing over 

another chain and satisfying the MC Metropolis condition after calculate the energy 

difference. 

 
6. The number of iterations is increased by 1/N (if 1 was treated as Monte Carlo step) 

where N is the total number of sites and the program is returned to the step 2.  

 

In order to decide the energy change of a polymer chain, the spring-bead model is used 

with corresponding stretching “ potential”, h(l) = -1/2K(l-l0)2 , where l0 = 1.68 and K = 5 

in the present case. The interaction energy between chain members is fixed at 0.02. One 

can use L-J potential, but in the lattice model the distance between two objects is fixed 

and only the energy difference is of importance, therefore fixed interaction energy is 

provided for a reasonably good approximation. 
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3.3.2   Results and Discussion  

 
In the free crystal growth process of small molecules, the only driving force is the 

reduction of surface energy for the crystal/polymer interface. However, when polymer 

chain and free volume included in the system, the crystal growth is also influenced by the 

interaction between polymer chain segments.  After nucleation, for drug crystals larger 

than the critical size, further growth is determined by the diffusion fluxes of the drug 

molecules from relatively distant regions in the system. The diffusion of particles in a 

polymer matrix is more difficult than matrix consist of small molecules, therefore the 

crystal growth occurs slowly. 

 
 The initial conformation of system is generated by using 400 straight polymer chains 

with 20 monomer units (N = 20) of bond length 1 and 1000 drug molecules in the 

100×100 lattice sites. After the 5×107 Monte Carlo Steps (MCS) of simulation in 

athermal condition, the relaxed polymer chain conformation is taken as the initial 

conformation and is given in Figure 3.13.  The density of system is 80%.  The empty 

space could represent the either drug molecules or voids.  

 
The properties of the polymer resulting from the behavior of polymer chain, such as 

diffusion properties and glass transition temperature play an important role in the 

crystallization process. Before investigating the crystallization process, the segmental 

diffusion in athermal condition is studied to observe the Rouse-type dynamics and 

reptation in a polymer melt. The segment diffusion can be described as g1(t) of 

monomers: 
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For time shorter than τ0, the monomer diffuses freely and τn ~ N2 is the largest relaxation 

time the chain has (the Rouse relaxation time). However for large chains the reptation 

behavior96, 97 can be observed. For the chains larger than a critical entanglement length 

Ne, g1(t) should be described by following power-law: 
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In the new time range τe ≤ t < τd, the chain should exhibit a Rouse diffusion along it is a 

coarse-grained random walk structure. The chain is confined in a so-called tube built by 

the surrounding chains. Walking out of this tube by performing wormlike displacement  

is “reptation” of polymer chain. 

 

 

 

Figure 3.22. Initial conformation for polymer chains (400 polymer chains of 20 monomer 

units, 1000  voids and 1000 drug molecules in 100×100 lattices) 
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(a) segment diffusion g1(t) in the intermediate time regime. 

 

0

0.5

1

1.5

2

2.5

3

3.5

3 5 7

tim e , log(MCS)

g 1
(t)

N=20

N=80

t1 

t1/2 

Figure 3.23. (b)Segment diffusion g1(t) for chain length N = 20 and 80 and polymer 

density 0.8. 
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Figure 3.23 gives the g1(t) of chain length 20 and 80 and polymer density 0.8 in an 

athermal condition. Since the free move in the initial period (~t) behavior is hard to 

observe, the data in this time range is omitted. For chain length of 80, diffusion occurs 

with a time exponent less than 1/2 for intermediate times. In Figure 3.23 (a), it is shown 

clearly that for chain length 20 the slowdown is around log (MCS) 4 and 4.5 for chain 

length 80. After a very long time, greater than 105 MCS for N = 20 and 106 MCS for N = 

80, the polymer chain can move freely. These diffusion results confirm that the initial 

system is liquid like and show some ‘reptation‘ behavior for the longer chain. Overall, the 

time to generate initial conformation is far longer than that of free moves, therefore the 

initial conformation is random. 

 
The glass transition is an important property for polymers, both as a theoretical and 

experimental point of view.  Below Tg the polymer chain does not have enough mobility 

thus the diffusion of the polymer chain or drug molecules is very difficult if not 

impossible. This behavior can be modeled in the framework of the bond fluctuation 

model when the polymer melt is cooled down sufficiently by proper technique. A high 

polymer density is required because the topological constraint in this dense system leads 

to the slow movement as the temperature drops below glass transition temperature in the 

polymer. Then some parameter change results from this slow movement can be detected. 

In order to extract the Tg from the simulation, one has to find some distinguishing 

property that changes directly with the temperature.  Fortunately, the free volume and 

chain end to end distance can provide this change for this system from the cooling or 

heating process. 
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In the Monte Carlo simulation, since only monomers in the nearest neighbor influence the 

movement of a monomer unit, free volume is only considered as a local quantity. In this 

study, only monomer jumps satisfying self void movement, new bond length restriction 

and the jump allowed by the Metropolis procedure are accounted as completed jumps to 

calculate the free volume. Under these conditions, the free volume Vf is defined as98:  
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Where the free volume is normalized to 0 ≤ Vf ≤1 by the factor (1/2d). Here d is 

dimension. Simulations are carried out for systems with polymer density 0.8 and chain 

length N = 20 and 80 respectively. The cooling temperature is 2.5×10-7 (1°/MCS-1). The 

chain length is 80 and 20 respectively. The Vf vs MCS is plotted in the Figure 3.24, from 

which the Tg is determined to be kbT = 1/2.1 for both N = 80 and N = 20. 
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Figure 3.24. Glass transition from free volume for polymer chain length 20 and 80. 

Polymer density is 0.8 and cooling rate is 2.5×10-7 (1°/MCS-1). 

 

The Monte Carlo simulation, in contrast to molecular dynamics procedure, is governed 

by a stochastic hopping process. For this polymer and small molecule system as a lattice 

model, single monomer of a polymer chain or drug molecule could carry out a stochastic 

jump. The measure of efficiency of this Monte Carlo simulation is the rate of acceptance 

of these trial jumps. For the system of 80% polymer and 10% drug molecules, the rate of 

acceptance can be calculated from the Figure 3.25. For kbT = 0.9, rate of acceptance is 

around 0.031(jumps/MCS), 0.011(jumps/MCS)) for kbT = 0.6 and 0.0054(jumps/MCS) 

for kbT = 0.3.  The data shows good acceptance for all the simulation process and it drops 

as temperature decreases. 
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Figure 3.25. Rate of acceptance for N = 20 polymer density 0.8, drug concentration 0.1. 

 

The snapshots of crystal growth process in the different temperature are given in the 

Figure 3.26.The lines represent bonds in polymer chain, the empty circles are voids and 

the empty spaces are crystals. The same Ostwald ripening process is observed in these 

pictures comparing the simulation of the small molecule system84. For the lower 

temperature (kbT = 0.6), small crystals evenly distributed in the matrix, and the crystal 

size slowly grows. But for the higher temperature (kbT = 0.9), one bigger crystal is 
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formed in the matrix. 

 

 

  

Figure 3.26   (a) and (b) 
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Figure 3.26. Microstructure evolution of crystal growth in kbT=0.6. (a) MCS=269217 (b) 

MCS=2661984 (c)  MCS=10541884  (d)  MCS=90979056. N = 20, polymer density 0.8, 

drug concentration 0.1. Lines represent polymer chains, empty circle is void, empty space 

are drug crystals.  
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Figure 3.27  (a) and (b) 
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Figure 3.27. Microstructure evolution of crystal growth in kbT=0.9 (a) MCS=1113242 (b) 

MCS=1579662 (c) MCS=4471005 (d) MCS=80437176. N = 20, polymer density 0.8, 

drug concentration 10%. Lines represent polymer chains, empty circle is void, empty 

space are drug crystals.  
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Figure 3.28.  Crystal growths in different temperature. N = 20, polymer density 0.8, drug 

concentration 0.1.  

 

Figure 3.28 shows that the crystal growth process is similar in pattern with the simulation 

results using the Potts model 84. However, the nucleation time is much longer compared 

with the same process at the same temperature due to the slow movement of drug 

molecule in viscous media.  For higher temperature simulation, crystal growth rate is not 

affected by the size effect of polymer chains. A slowdown of the crystal growth is 

observed for lower temperature KbT = 0.6 compared to results from the Potts model. The 

higher the temperature, the longer the nucleation time and faster crystal growth are 
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observed compared to the Polt model. For kbT = 0.9, when there is only one big crystal in 

the matrix, the fluctuations are observed for the volume of average crystal size due to the 

formation of small nuclei. These small nuclei can make the average size drop. However 

the average size goes back when these small nuclei dissolve. For the kbT = 0.3, the 

temperature is lower than the Tg, the polymer chain is frozen and diffusion of drug 

molecules is very slow thus characterization  of crystallization is difficult. In this system 

with a low concentration of drug, a higher diffusion is necessary before several molecules 

can cluster together. Figure 3.29 shows the concentration changes of drug molecules 

during the crystallization process.  For temperature kbT = 0.9 case, concentration can stay 

up to 106 MCS with little change, and drug crystal grow rapidly after the nucleation 

accompanied by a dramatic drop in the concentration of dissolved drug in the matrix. For 

temperature kbT = 0.6 case, small crystals can form at very early stage and concentration 

drop gradually. For kbT = 0.3, due to the difficulty of diffusion, only small crystals can 

form and it takes a long time to reach the saturation concentration. 
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Figure 3.29. Concentration vs log (MCS) for kbT = 0.9, 0.6 and 0.3. N = 20, polymer 
density 0.8, drug concentration 0.1.  
 

Figure 3.30 shows enlarged microstructure of this process in two temperatures kbT = 0.9, 

and 0.6. The ordered and stretched regions of polymer chains along the interface of the 

crystal are observed with the growth of the crystal. It is also noted that a larger fraction of 

voids are located at the interface region between polymer chains and crystals, this is the 

result of favorable entropy of polymer chains lying along the crystal surface.  
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 Figure 3.30. Enlarged microstructure of this process in two temperature kbT = 0.9, and 

0.6 for chain length N=20. Polymer density 0.8, drug concentration 0.1. Lines represent 

polymer chains, empty circle is void, empty space is drug crystal. 
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3.3.3 Conclusions 

 
The bond fluctuation model was successfully implemented in the three components 

system. It was found that the algorithm is very efficient. The glass transition temperature 

for this system is around kbT = 1/2 for N = 80 and for N = 20. The crystal growth process 

is slower because the diffusion of drug in the polymer media is more difficult in the 

polymer matrix where the actual size effect of polymer is considered, compared to using 

the Potts model, especially when the temperature is less than the glass transition in bond 

fluctuation model. There is no Tg for the system in the Potts model. The stretched and 

ordered regions of polymer chain along the crystals are found. 

 
3.4 Depletion of Drug in TDS 

 
 
The mass transportation in TDS is completely driven by the diffusion99, 100. Diffusion in 

TDS takes place as the drug molecules in the matrix move to the skin, which is treated as 

a perfect sink. Therefore our former model to describe the crystal growth using Potts 

model for Ostwald ripening mechanism can be modified to simulate both solution 

diffusion and precipitation.  

 
In this work, the model developed in reference [84] has been modified to allow the 

diffusion of drug molecules and isotropic grain growth of a fully wetted crystalizable 

component at the same time. The dispersed or dissolved drug is allowed to be absorbed to 

the sink due to the concentration gradient realized as random movement of molecules. 

The details of the chemical structure of the drug and the matrix are not considered in this 

modeling since this is not an atomistic model, rather the drug and matrix are 
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approximated by sites of equal size.  The Monte Carlo model uses the classical 

Metropolis algorithm to simulate time dependent diffusion of the TDS. The patch is 

treated as an infinite strip by using periodic boundary conditions on the plane of TDS. 

However, across the thickness of the strip periodic conditions are not used. One edge 

restricts solute from moving out from region, the other one allows complete absorption 

(Figure 3.31). The details of the modeling procedure are described in the following 

section. 

 
3.4.1 Simulation Method 

 
A statistical model is used to represent grain migration and its growth. As in reference 

[84], a square lattice with by different states (q) is used to represent either the matrix or 

solvent of different orientation.  The drug is represented by the q-states 1 to Q = 100 and 

the matrix by just one q-state.  

 

 

 

 

 

 

Figure 3.31. Layout of simulation system for drug diffusion. 

 

Dissolution and diffusion of A-component (i.e., drug) was driven by concentration 

gradient caused by the perfect sink. The Hamiltonian H for this two-phase system was 
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determined by equation (3.13) described in 3.2. The monomers occupying the sites can 

randomly walk if these sites contain different components, i.e., an idealized drug site and 

a matrix site. If these sites contain identical components, either drug or matrix, the 

possibility of exchange has no significance. The exchange probability is given by 

Boltzmann statistics also described in section 3.2.1 

 
All grain diffusion simulation was run in the fully wetted condition with interaction 

energies, E(drug-matrix) = 1.0, E(drug-drug of different orientations, q) = 2.5, E(drug-

drug of same orientation, q) = 0, and E(matrix-matrix) = 0. The total number of 

orientation states of the drug Q is taken to be 100. The composition was varied by 

changing the concentration of drug XD from 0.05 to 0.1 (given in volume fraction), and 

the temperature parameter ranges of kbT  = 0.6, and 0.9. The results of former study are 

used as input to study the drug release pattern in the presence of different kinds of 

crystals in the matrix. The digitized simulation matrix has 100×100 sites. Although this 

small size was suitable for gaining insight into the crystallization process in TDS with 

reasonable computing requirements, larger sites (eg. 300x300 or 500x500) must be used 

for more accurate simulation results. Since no periodic boundary conditions exist along 

the thickness, particles near one end have “reflective” boundary conditions, i.e, a particle 

on a boundary is only allowed to move towards the center layer of the patch where it 

reaches this boundary, and on the other boundary the drug is absorbed.  

 
3.4.2 Results and discussion 

 
Diffusion is naturally a probabilistic process described by the random walk of molecules. 

Figure 3.32 shows the diffusion process of initially randomly distributed system of 

 94



uniform drug concentration of 0.1 at simulation temperature kbT = 0.9. The dark 

continuous region is the matrix and the gray areas are grains of different orientation. On 

the molecular level the system is in a highly dynamic state, thus leads to the drug 

molecules to flow or diffuse in the system nonselectively and randomly. The 

“absorption” property of bottom edge in the matrix results in the net mass”movement” 

caused by the concentration gradient of drug molecules. This concentration gradient 

ultimately expands through the whole matrix. This concentration gradient towards the 

“perfect sink” provides the driving force for the drug to move out of the matrix. 

Simulations are carried out with (1) patch where the drug is uniformly distributed (case 1) 

and (2) patch after storage which contain crystallized drugs. The second set of 

simulations can provide insight both on dissolution drug crystals as well as diffusion of 

drug molecules. Figures 3.33-3.35 show this drug release process in TDS with crystals 

produced at storage in the kbT = 0.9 (case 3), kbT = 0.6 (case 2) and  kbT = 0.3 (case 4) 

respectively described in section 3.2.3. In these cases, with the crystals presence in the 

system, the dissolution of the drug molecules is described by the detachment of 

individual drug particles from grains followed an increase in drug concentration in the 

matrix which increases the driving force for diffusion into the perfect sink. However, it 

should be noted that the dissolution mechanism is also governed by the existing 

concentration of drug in the matrix, which is also controlled by the diffusion process. 
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                               (a)                                                                                                 (b) 
 
 

 
                            ( c)                                                                                                          (d) 
 
Figure 3.32. Snapshot at different Monte Carlo Time Steps (MCS) of the drug release for 
KbT = 0.9 with random initial conformation (case 1). Concentration of A component  0.1: 
(a) MCS = 0 (b) MCS = 1045 (c) MCS = 6042 (d) MCS = 16464. The dark continuous 
feature is the liquid matrix and the different gray features are grains with different 
orientation. 
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(a) (b) 
 
 
 

 
 

(c)                                                                                       (d) 
 
Figure 3.33. Snapshot at different Monte Carlo Time Steps (MCS) of the drug release for 
KbT=0.9 with several crystals in matrix (case 2). Concentration of A component  0.1: (a) 
MCS = 3216 (b) MCS = 20000 (c) MCS = 62403 (d) MCS = 130445. The dark 
continuous feature is the liquid matrix and the different gray features are grains with 
different orientation. 
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(a) (b) 
 
 
 

(c)                                                                                            (d) 
 
 
Figure 3.34. Snapshot at different Monte Carlo Time Steps (MCS) of the drug release for 
KbT=0.9 with one big crystal in matrix (case 3). Concentration of A component  0.1: (a) 
MCS = 1320 (b) MCS = 51780 (c) MCS = 224846 (d) MCS = 322120. The dark 
continuous feature is the liquid matrix and the different gray features are grains with 
different orientation. 
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(c)                                                                             (d) 

 
 
 
Figure 3.35.  Snapshot at different Monte Carlo Time Steps (MCS) of the drug release for 
KbT = 0.9 with many small crystals in matrix (case 4). Concentration of A component  
0.1: (a) MCS = 824 (b) MCS = 4914 (c) MCS = 16464 (d) MCS = 24258. The dark 
continuous feature is the liquid matrix and the different gray features are grains with 
different orientation. 
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The release profile of the dissolved or uniformly dispersed drug system can generally be 

described by the Fick’s law and the predicted cumulative mass release Mt is proportional 

to the square root of time101. The Figure 3.36 shows the release profile of random initial 

conformation which represent the device with dissolved or dispersed drug. As shown in 

Figure 3.36b that mass release rate drops with time. At the first stage, the drug molecules 

near the release interface only need to travel small mount of distance to reach the perfect 

sink. The release of these molecules created the concentration gradient, which favor the 

drug molecule transportation to this release boundary. As drug molecules from the other 

side have to travel a longer distance, the release rate decreases with time. For the first 

60% of drug release the mass release is linearly proportion to the square root of time. For 

the lower temperature (kbT = 0.6), the two linear stages are observed (Figure 3.37). This 

observation results from two competing process, as the diffusion of drug process from the 

TDS and the crystallization of drug within the TDS. Initially, the drug is uniformly 

distributed within the matrix. The supersaturation of drug in the matrix causes drug 

molecules to diffuse out, at the same time minimization of interfacial energy results in the 

growth of the drug crystals. The initial linear region represents the time period 

determined by diffusion and during the second linear region diffusion is reduced by the 

crystallization process. From Figure 3.37a, one can observe the crystal size growth. The 

presence of the crystal will cause the extra barrier to dissolve it first and then diffuse to 

the release interface, therefore decrease the release rate further102, 103. 
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Figure 3.36.  Drug mass release vs (a) time and (b) square root of time at KbT = 0.9 for 
case 1: no crystals in the system initially and the drug concentration is 10%. 
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Figure 3.37.  Drug mass release vs (a) time (b) square root of time at kbT = 0.6 for case 1: 
no crystals in the system initially and the drug concentration is 10%. 
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Figure 3.38.  Drug mass release vs (a) time (b) square root of time at kbT = 0.9 for case 4: 
small crystals evenly distributed in the system initially and the drug concentration is 10% 
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Figure 3.39.  Drug mass release vs(a)time (b) square root of time at kbT = 0.9 for case 3: 
one big crystal in the system initially and the drug concentration is 10%. 
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Figure 3.40.  Drug release profile at kbT = 0.9 for case 2: several crystals in the system 
initially and the drug concentration is 10%  
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The release profiles of drug from a matrix which already contains crystallized drug as 

opposed to dispersed drug was also investigated with this model. Figure 3.38 shows the 

results of the release profile for the small crystals generated in temperature kbT = 0.3 with 

3.2×107 MCS steps. It is observed that the release rate decreases slightly but the mass 

release profile has a similar behavior and cumulative mass release vs square root time 

give a similar linear pattern after early stage. In the same figure, it is also observed that 

dissolution of crystals is faster than mass release because the crystal size is very small, 

which means that small crystal has little effect on drug release. This behavior describes 

the system with dispersed drug in the matrix.  For the system with one big crystal in the 

middle produced by simulation in a previous work, the release profile changes 

significantly (Figure 3.39). The release rate drops quickly after 10000 MCS. The profile 

shows that fast release is observed only at the very early stage which results from the 

high saturation concentration in the system at this high temperature. There are still some 

dissolved molecules in the system except the big crystal, which can diffuse easier than 

the molecules in the crystal.  Drug molecules in the crystal have to dissolve into the 

matrix first and then migrate to the boundary driven by the concentration gradient. This 

drug release process is predominantly controlled by the dissolution of crystals. For the 

case where several crystals are in the middle layer (crystallized in the kbT=0.6), release 

rate shows a sharper drop earlier in the diffusion process (Figure 3.40) since the 

saturation concentration is lower at the temperature the kbT=0.6 and hence fewer free 

drug molecules are available even at the very beginning of this process.  Figure 3.40 of 

mass release vs square root time shows delay of drug release. For this case the mass 

release and crystal dissolution process of different cases are compared in Figure 3.41. It is 
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clear that the presence of crystals delays the mass release process. The bigger the crystal, 

the slower the dissolution and drug release rate. 

 
 

0

200

400

600

800

1000

1200

0 100000 200000 300000 400000

time(MCS)

m
as

s 
re

le
as

e
case1
case2
case3
case4

 

(a) Mass release in different case. All simulation at temperature kbT = 0.9. 
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(b) Dissolution of crystal in different case. All simulation at temperature kbT = 0.9. 

Figure 3.41. Comparing the mass release and crystal dissolution process in different case. 
Case 1: no crystal in the system initially, Case 2: Several crystals in the system initially. 
Case 3: One big crystal in the system initially, Case 4: Small crystals evenly distributed 
in the system, the drug concentration is 10% for all the cases. 
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3.4.3 Conclusions 

 
The present study shows that release profile of the drug dissolved or uniformly dispersed 

in the matrix can be described by the Fick’s Law. For example, the release of dispersed 

dexamethasone from an EVAc matrix follows cumulative mass released proportional to 

the square root of time104. However, for the system having crystals in the middle layer of 

matrix, the release profile does not have same behavior because the crystal dissolution is 

a slower process comparing to the molecule transportation rate.  

 
 It is clear that the selection of a storage temperature is very important in determining the 

effectiveness of TDS. When stored at higher temperature, although larger crystals are 

formed near the middle layer, the solution concentration of the drug is also higher in the 

matrix. On the other hand, at lower temperature, small crystals are distributed throughout 

the thickness, but the solution concentration is much lower. Thus the release rate and 

profile of TDS depend on the dissolution process of the crystal. At low storage 

temperature, the grains are evenly distributed throughout the thickness of the TDS patch, 

thus the release rate and profile is similar to the randomly initiated system. 
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Chapter 4 

Conclusions and Recommendations 
 

4.1   Conclusions 

 
1.  The two crystal forms are studied by Raman microscopy, SEM, EDS and IR. The 

Raman spectrum of needle crystal show the peak of aromatic ring and phenyl carbonyl 

group therefore is identify as a combination of  estradiol and acrylic polymer. The IR 

spectrum of the model reaction sample prepared at 85°C give a carbonyl group 

absorption as a doublet which is corresponding to aliphatic and aromatic component. This 

demonstrates evidence for the occurrence of the transesterification reaction.  

 

2. Monte Carlo simulation shows that the crystal growth without stress only gives big 

crystals in the middle layer by Ostwald Ripening at relatively high temperatures. 

 

3. Bond fluctuation model shows that due to the polymer chain characteristics the crystal 

growth is slowed down. 

 
4. Depletion study shows that presence of crystal will decrease the transport rate of drug 

in the matrix. 

  
4.2   Recommendation 

 
1. Diffusion of drug in the polymer media 

 
In order to develop a more efficient controlled delivery system, modeling the release 

profile plays a significant role because it establishes the mechanisms of the drug release 
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and provides general guidelines to optimize the release kinetics.  Including the 

mechanistic aspects of the transport processes and structural characteristics of polymer in 

the drug delivery system, computational modeling can provide a more accurate 

description of drug release profile. Better analysis of diffusion vs dissolution process also 

need to be provided. 

  
2. Crystal growth under the shear stress and normal stress. 

 
The crystal morphology could be different if its growth occurs under the applied stress.  

There is a possibility of the existence of residual stresses when the TDS is prepared and 

there are shear stresses in the system when TDS is applied to the patient. The shear stress 

can be introduced by postulating an asymmetry jump rate for the component movement 

in the direction of flow and in the opposite direction105. This work has been done for the 

pure polymer system under the framework of the bond fluctuation model.   The 

deformation behavior of the glassy polymer system was also studied by T. Holz etc.106. 

Under the same lattice bond fluctuation model, the whole deformation process was 

divided into separate steps, each initiated by the discreet shift of the minimum of the 

spring potential on the left and right side of the sample into diametrically opposite 

direction along the deformation.  

 
3. The process described in section 3.3 can be used for polymer without any drugs, to 

characterize polymer crystallization, particularly for stress induced crystallization. Such 

analysis is very useful to characterize crystallization during fiber spinning and drawing. 

   
4.  Further characterization of needle crystal 
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The difficulty of complete characterization of needle crystal is partly due to the lack of 

knowledge on the formulation of the product. If the needle crystal is the co-crystal of 

different materials, polymer and small molecule, it is possible that small molecules 

induce the crystallization of polymer, although matrix polymer acrylic resin is difficult to 

crystallize by itself as a single component.   According to simulation, if there is no 

stronger associate force between these two or more species, polymer chain will be along 

the interface of crystals of small molecules. To address this problem, the resolution of 

microscopy technology has to be far less than the size of the crystal.  IR microscopy may 

be a good route to do this job but the attenuated total reflectance (ATR) is required since 

our crystal is embedded in the viscous matrix.   
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