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SUMMARY

The objective of this proposed research is to take a holistic approach to the post-

CMOS in/near-memory processing system design for machine learning and optimizations.

We first address the current issues of Spin-Transfer Torque Magnetic Random Access

Memory(STT-MRAM) and multi-bit ferroelectric FET in the device level. At the circuit

level, the research shows how these issues shape the peripheral circuit of STT-MRAM and

ferroelectric FET memory arrays. Lastly, at the system level, the research leads to the effi-

cient memory architecture and system design that maximizes the benefits of STT-MRAM

and ferroelectric FET while mitigating the current limitations of these devices. In the pro-

posed research, we apply the in/near memory processing system design with STT-MRAM

and ferroelectric FETs to various applications such as reinforcement learning with a drone,

image classification with Deep Neural Network and least square minimization for image

reconstruction. For the remaining part of this research, we will focus on near-memory pro-

cessing system with STT-MRAM for reinforcement learning of a drone and evaluate the

system to quantify how much benefits are expected in terms of latency, power and energy.

From this project, we would like to show that near-memory processing system with non-

volatile devices is a key enabler for real-time learning systems with stringent power and

energy constraints.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, Post-CMOS memory technologies are extensively explored as the impor-

tance of deep neural network based machine learning and distributed optimization accel-

erators increases. Among other post-CMOS memory technologies, spin torque transfer

magnetic Random Access Memory (STT-MRAM) and ferroelectric Field Effect Transis-

tor(FerroFET) are viable candidates for deep learning and distributed optimization accel-

erators. Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) is an

emerging memory technology which exhibits non-volatility, high density, high endurance

and nano-second read and write times with no refresh operations. These attributes of STT-

MRAM make it suitable as a DRAM replacement in near-memory architecture of deep

learning based accelerator. Since STT-MRAM shows short read latency and no refresh

power, application such as deep learning based Unmanned Aerial Vehicles (UAVs) with

small power-constraints is a perfect application for STT-MRAM.

Ferroelectric FET (FerroFET) have recently received great interest for its application

in non-volatile memory. It is CMOS compatible and retains ferroelectricity for thin films

with thickness around 10 nm. By tuning the portion of switched ferroelectric domain, a

ferroFET can exhibit multiple intermediate resistance states. Due to this feature, a single

FerroFET device can be used as a analog multiplier by measuring current across Ferro-

FET after applying voltage between the source and drain of the device. By embedding

FerroFET, a processing element, in the memory subarray itself in so called processing-in-

memory architecture, the system can solve memory bottleneck, a problem due to a large

amount of data traffic between logic and memory blocks, of deep learning and optimization
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accelerators.

In the dissertation, we propose in/near-memory processing system design with post-

CMOS devices such as STT-MRAM and FerroFET for machine learning and optimization

accelerators. First, we introduce the properties and characteristics of STT-MRAM and

FerroFET and show why using these technologies can improve systems for deep learning

and optimization. Then we identify the challenges of STT-MRAM and FerroFET in device

& circuit level and provide potential solutions to the challenges. Lastly, we demonstrate

the implementation of;

1. Near-memory system with STT-MRAM for Reinforcement Learning algorithm for

a drone

2. In-memory system with FerroFET for distributed convex optimization via least

squares method

to compare the system performance in latency, power and energy with state-of-the-art con-

ventional system. In the conclusion, we show whether post-CMOS based in/near-memory

system exhibits better performance compared to conventional system even with the limita-

tions in post-CMOS devices.

In the next section, we present prior works on post-CMOS devices(mainly STT-MRAM

and FerroFET) and challenges of STT-MRAM & FerroFET based system with in/near

memory architectures.

1.2 Prior works

1.2.1 Post CMOS memory: Spin Transfer Torque Magnetic RAM (STT-MRAM)

It is well understood that next-generation memory-intensive ultra low power learning-based

systems require a memory technology which shows;

1. high-density

2. low-standby power (hence eNVM)

3. acceptable R/W speeds
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4. compatibility with a logic process both in terms of process thermal budget and

voltage domains

This is required to ensure that the design, along with an eNVM, can take advantage of the

numerous scaled high performance, low power digital logic blocks that are essential for any

area and power constrained design like the one we have described in this paper. Compared

to other NVMs such as Phase-change memory or resistive RAM, STT-MRAM exhibits bet-

ter read/write latency [1][2] and is more mature than Ferroelectric FET based RAMs. Re-

cent publications from leading foundries [3][4][5] have demonstrated MBs of STT-MRAM

arrays with necessary peripheral circuits. Compared to STT-MRAMs, RRAMs show larger

device-to-device and cycle-to-cycle variations making it hard to commercialize [6].

Table 1.1: Comparison between STT-MRAM [7][5] and competing technologies (EFlash
[8][9][10], RRAM[11][12], PCRAM[13][14]

 SRAM Eflash STT-MRAM RRAM PCRAM 

Cell size 80~100F2 ~6F2 >6F2 >4F2 >4F2 

Non-volatility No Yes Yes Yes Yes 

Program voltage < 1V <~10V < 1.5V < 3V < 1V 

Write speed ~1ns 660 μs ~30ns ~ 1 μs ~80ns 

Read speed ~1ns 45 μs ~10ns ~1 μs ~10ns 

Endurance 1016 104 ~ 106 1015 1010 1012 

Retention N/A 10 yrs 10 yrs 10 yrs 10 yrs 

 
Although our study investigates STT-MRAM based stacks, all eNVM suffer from high

write latency and energy; and hence the algorithm-hardware co-design that we propose is

applicable to similar other platforms. The STT-MRAM model parameters are summarized

in Table 1.1.

The STT-MRAM bitcell consists of one access transistor and one Magnetic Tunnel

Junction (MTJ) where a single bit of information is stored[15]. Typical MTJ stacks com-

prise of an insulator (MgO) which is sandwiched between a ”fixed” ferromagnetic layer

(typically CoFeB based) whose magnetic moment is pinned to one direction and a ”free”

ferromagnetic layer whose moment changes direction based on applied external current or

magnetic field. Since MTJ exhibits TMR (Tunneling magnetoresistance)[16], the resis-
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tance of the stack changes depending on the orientation of the ”free” layer, which in turn

stored the data of the bit-cell. When the direction of the magnetic moment inside the free

layer of an MTJ is anti-parallel to the fixed layer, the MTJ has high resistance and its state

is defined as bit ”1” [15]. Likewise, when the direction of the magnetic moment in an MTJ

is parallel to the magnetic moment of the fixed layer, the MTJ exhibits low resistance and

it is defined as bit ”0”.

Free Layer

Fixed Layer

Insulating Layer

current current

Figure 1.1: The direction of magnetic moment in free layer changes from (a)anti-parallel to parallel
(b) parallel to anti-parallel to the direction of magnetic moment of fixed layer. The arrow in the
free/fixed layer indicates the direction of magnetic moment.

Fig. 1.1 describes how the direction of magnetic moment in the free layer changes

based on the current across the MTJ. Fig. 1.1 shows how the direction of magnetic moment

in the free layer changes from (a) anti-parallel to parallel and (b) parallel to anti-parallel

direction compared to the direction of magnetic moment in fixed layer. Since the fixed

layer acts as a spin polarizer, the spin polarized electrons that pass the fixed layer exerts

the torque on the magnetic moment in the free layer and causes a flip in the direction of

the magnetic moment in fixed layer as shown in Fig. 1.1(a). When the current flows from

the fixed layer to the free layer as shown in Fig. 1.1(b), the electrons with opposite spin

are reflected back from the fixed layer and exerts a torque that changes the direction of the

magnetic moment of the free layer to an anti-parallel direction with respect to the magnetic

moment in the fixed layer. The alignment of the magnetic moment in the fixed and free

layers determine the resistance across the MTJ. When the magnetic moments in the two

4



layers are anti-parallel to each other, the resistance across MTJ is high.

(a) (b)

Figure 1.2: The STT-MRAM cell schematic of (a) write (b) read operation

Table 1.2: STT-MRAM array parameters as compiled from [5][4][17]

Technology 22nm FFL FinFET 

TMR 180% 

RA 9 Ωμm2 

Density 8Mb 

Cell architecture 1T 1MTJ 

unit cell size 9F2 

Power supply(core) 1.0V 

MTJ size 60~80nm 

MTJ type Perpendicular MTJ 

 
A low resistance is achieved when both the magnetic moments are parallel to each

other. The high/low resistance is mapped to 1/0. The bias conditions applied for the write

and read operations are shown in Fig. 1.2. As shown in Fig. 1.2(a), the write operation is

bi-directional. In case of writing a 1, the bit-line and the source line are set to VDD and

GND and the write current flows from the fixed layer to the free layer of the MTJ. The

biasing condition for writing a 0 is the opposite and is shown in Fig. 1.2(a). In case of read

operations, the word-line is asserted to VREAD and the bitline and the source line are set

to VDD and GND. This causes a weak current to flow across the MTJ and the resistance
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state is sensed using either a constant current scheme or a BL discharge scheme [18]. Table

1.2 shows STT-MRAM array parameters from the silicon implementation of STT-MRAM.

1.2.2 Post CMOS memory: Ferroelectric FET

We explore FerroFETs as the technology of choice for implementing resistive cross-bar

architectures that can accelerate linear algebraic operations. In particular, HfO2 based Fer-

roelectric FETs (FerroFETs) have recently received great interest for its application in non-

volatile memory (NVM) [19]. It is CMOS compatible and retains ferroelectricity for thin

films with thickness around 10nm. By tuning the portion of switched ferroelectric domain,

a FerroFET can exhibit multiple intermediate states, which has been used in neuromorphic

computing [20, 21].

The operation of FerroFET as an multi-valued eNVM storage is different from a tradi-

tional binary memory [19] in that a series of weak pulses are applied to set the device in

a desired state [20, 21]. Various pulse schemes are proposed to tune the state, including

identical pulse schemes[22], pulse-width modulation schemes[23], and pulse-amplitude

modulation schemes [21][24]. For illustration, Fig. 1.3 illustrates the operation with pulse-

amplitude modulation scheme, which is used in this paper. Fig. 1.3(e) shows the applied

pulse waveform. After each pulse, the percentage of switched ferroelectric domains is

modified. The device states are shown in Fig. 1.3 (a)-(d). The device IDS-VGS correspond-

ing to different states are shown in Fig. 1.3 (f), which shows the intermediate states. The

different states could be sensed by applying a read pulse, VR, the corresponding drain-to-

source conductance, GDS, can be sensed. Fig. 1.3 (g) shows the ideal GDS as a function

of applied pulse numbers. GDS increases/decreases linearly with pulse number during po-

tentiation/depression, respectively. A symmetrical potentiation/depression is necessary for

high accuracy computation. The FerroFET model includes atomistic simulation of domain

dynamics with a drift-diffusion based FET model. The simulation results closely match

the experimental data and is shown in Fig. 1.4 where the different conductance levels are
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Figure 1.3: (a) – (d) show different FerroFET states, corresponding to different portions of ferro-
electric domain switching. The yellow arrows indicate the polarization direction. The blue/red cir-
cles represent electron/hole, respectively. (e) shows the applied pulse amplitude modulation scheme.
The states after each pulse are also illustrated. The initial state is assumed to be all polarizations
are pointing toward the gate. (f) shows the IDS-VGS characteristics after each pulse. (g) shows the
measured drain to source conductance as a function of applied pulse number. Here ideal case is
presented, which shows linear and symmetrical potentiation and depression.

shown as a function of the number of programming pulses.

1.2.3 Challenges with STT-MRAM and FerroFET based system

Magnetic Coupling Across Bit-Cells in STT-MRAM

As STT-MRAM arrays become dense and the cell dimensions become smaller, the mag-

netic field coupling from ferromagnetic layers of one MTJs affect write and read operation

of its neighboring bits. As shown in [25], scaling MTJ in a densely packed array causes

program errors due to large stray field coupling. When MTJ scales down and they are
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Figure 1.4: (a) simulated FerroFET channel conductance (b)Measured FerroFET channel conduc-
tance (GDS) as a function of pulse number.

densely packed in an array, magnetic coupling of MTJs could become a significant prob-

lem since the distance of the ferromagnets, free and fixed layer of MTJs, reduces to cause

even stronger magnetic coupling. Therefore, there is an urgent need to identify how mag-

netic coupling affects properties of STT-MRAM and analyze whether magnetic coupling

will pose as a scaling challenge in further scaling of STT-MRAM dimensions.

There is limited prior work on the analysis of magnetic coupling on STT-MRAM arrays.

Observation of Hstray in victim MTJ with four neighboring MTJs in technology scaling was

presented by one of the authors in [26]. However, detailed models of magnetic coupling, the

role of technology scaling on stray field and their effect on the electrical characteristics has

not been discussed. On the other hand, there is ample research that analyzes how static and

dynamic properties of MTJ are affected by technology scaling. [27][28] presents a scaling

roadmap of MTJ that contains trends for thermal stability, switching current density (Jc0),

critical switching current (Ic), Resistance-Area product (RA), etc. The effect of technology

scaling on the dynamic properties of MTJs is also well explored; [29],[30] present how

write current(Ic) and critical current density(Jc0) change with technology nodes. While

scaling MTJ dimension, the authors calibrate Hk to maintain a target thermal stability of

the MTJ. [31] presents changes in write current density (Jc0) across different MTJ types.
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Further, [32][33] proposes a scaling trend of anisotropy energy (Kut) for single and dual

interface MTJs. The authors also present models of thermal stability as a functions of

MTJ dimensions. [34] examined how Pfail of a chip, which relates to thermal stability,

changes with technology node. We also explore the case where the fixed layer is an anti-

ferromagnet and the magnetic fields are closed. In this case, the free layer nanomagnets

create the magnetic field which affects the performance and stability of the victim cell.

Retention test Challenges of STT-MRAM Arrays

STT-MRAM arrays are expected to suffer from read and write failures which are induced by

electrical defects and process variations. The role of variations in read and write have been

extensively studied, including prior work by the authors[35]. However, the role of resistive

and capacitive defects and coupling faults is relatively unexplored (except for preliminary

work in [36]). Apart from read and write faults, STT-MRAMs can also suffer from retention

failures. The non-volatility (or retention characteristics) of the bit can be measured by the

thermal stability factor. [37][38] describe retention failure as a bit-flip in a cell caused by

thermal noise. The thermal activation model of STTMRAM in [37] suggests that a bit flip

has a poisson distribution with time constant of τ .e∆ where τ ≈ 1ns. Due to this fact,

conventional test methods for retention have very large number of test times and there is a

strong need for implementing a retention test scheme of STT-MRAM arrays that has low

testing latency.

Challenges in FerroFET based In-memory processing architecture

Modern computing systems based on the Von-Neumann architecture rely on a clear dis-

tinction between logic and memory, and processes information by executing a sequence

of precise atomic instructions with periodic uploads to the memory. Such systems are the

foundation of the digital revolution which began with the demonstration of the self-aligned

planar-gate silicon MOSFET in the sixties and was accelerated by rapid advances in transis-
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tor technology. However, in the last one decade, the volume of data collected by distributed

sensors and networks has grown exponentially. Ingesting, processing and extracting ac-

tionable intelligence out of this abundant data requires large amount of data traffic between

logic and memory blocks leading to the problem of memory bottleneck. This requires

novel ways of architecting the compute platform. For example, by embedding processing

elements in the memory sub-array itself in so called Processing-In-Memory (PIM) archi-

tectures [39, 40, 41, 42, 43], the traditional Von-Neumann bottleneck can be addressed and

significant acceleration and improved power-efficiency can be achieved.

HfO2 based Ferroelectric FETs (FerroFETs) have recently received great interest for

its non von-neumann application in nonvolatile memory (NVM) [19]. Among all of post

CMOS memories, the developments in FerroFET technology is a rather recent occurrence;

thanks to the breakthrough discovery of the underlying physical phenomenon: ferroelec-

tricity in CMOS compatible Hf based binary oxides in 2011 [44][45] [46] a flurry of re-

search activities on FerroFETs has ensued worldwide [47] [48][49]. FerroFET are also

the most energy efficient among all eNVM technologies. This is due to the fact that, in

contrast to the other non-volatile memories which are all current driven, the FerroFETs

relies on electric field-effect for memory state switching. While non-Von-Neumann ar-

chitectures based on other emerging eNVM technologies are being explored in depth [50]

[51][52][53][54], the FerroFET technology provides unique features for adoption in such

emerging architectures and applications.

However, Using FerroFET as a computation device in subarray for in-memory comput-

ing architecture has major challenge. Since the increase in conductance level with respect

to the amplitude of write pulse to the gate of FerroFET is non-linear, the output of ana-

log multiplication(current across FerroFET, the product of conductance and voltage across

FerroFET) contains error. Also, when analog multiplication output is transferred to digital

domain by using Analog to Digital Converter(ADC), quantization errors from ADC will

exacerbate the error. Therefore, in order to implement FerroFET based in-memory com-
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puting architecture, we must quantify the effect of these limitations of FerroFET on system

performance and present the device requirements that enables in-memory computing archi-

tecture.

Challenges of STT-MRAM based system for reinforcement learning on a drone

Over the past decade, there has been considerable success in using Unmanned Aerial Ve-

hicles (UAVs) or drones in varied applications such as reconnaissance, surveying, rescuing

and mapping. Irrespective of the application, navigating autonomously, particularly with

camera based inputs, is one of the key desirable features for small drones, both indoors

and outdoors. In recent years, reinforcement learning (RL) has been extensively explored

for different type of robotic tasks, including drone navigation and collision avoidance. RL,

in spite of its biomimetic approach, is computationally challenging [55][56]. The agent

(drone) needs to collect visual data and train a neural network based model in real-time

[56][57]. For a given velocity of the drone, the corresponding distance traveled between

two frames (dframe), and the minimum distance between obstacles (a measure of clutter in

the environment), we can calculate the minimum number of frames/second (fps) required

for collision avoidance. Since the drone needs to train on acquired data at least at the same

rate as the fps, the amount of computation that needs to be performed is prohibitively large

for embedded systems that can be mounted on small drones. Further, the emergence of

STT-MRAM [58][59][60] technologies that exhibit high-density and low-standby-power

aims to disrupt the design of embedded systems. In spite of their advantages, STT-MRAM

technologies shows high write latency and energy. This makes them unsuitable for storing

model weights in real-time RL systems such as drones, both in terms of meeting an fps (or,

velocity) requirement and energy target.
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1.3 Key contributions of the research

In the research, we classify the challenges listed above into device, circuit, memory array

and system level.

At the device level, we analyze the magnetic coupling across bit-cells of STT-MRAM

and show whether this challenge prohibits the STT-MRAM memory scaling. First, we

present a model of magnetic field induced coupling between adjacent bits in an STT-

MRAM array. A comprehensive analysis, across four technology nodes and different MTJ

technologies, has been presented and we have analyzed the role of the magnetic coupling

on electrical performance, both static and dynamic. We conclude that for MTJ technologies

with dense memory bits and lower stored energy, the coupling field can cause significant

change in the average retention time. Data patterns that activate the worst and best case

scenarios have also been explored. Dynamic analysis reveals that critical current densities

are weakly disturbed by the coupling field. It should be noted that the research explores

ultra-dense memory bit cells with cell sizes which are 15F 2 and 6F 2. The state-of-the art

bit-cells are significantly larger (3X larger) and effects such as magnetic coupling will be

reduced. However, key observations such as the data pattern dependence of retention, will

remain unchanged and as the technology matures and denser bit-cells are enabled, magnetic

field induced coupling will play a key role in both design and test.

At the circuit level, we present a comprehensive test methodology that solves the re-

tention test challenges of STT-MRAM arrays. We identify electrical defects and magnetic

coupling induced data pattern dependence on tests for read, write and retention and pro-

pose an MBIST architecture (EMACS) capable of collecting statistical data in an STT-

MRAM subarray to estimate the thermal stability and retention. The proposed MBIST

shows 93.75% improvement in test-time compared to a brute-force approach [37] with less

that 5% estimation error.

At the memory array level, we analyze the challenges of FerroFET based in-memory
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computing architecture and present a systolic processing-in-memory(PIM) architecture based

on analog FerroFet pseudo-crosspoint arrays with in-situ computation to enable distributed

convex optimization(non-uniform sampling) via least square minimization. The system

demonstrated 21×, 3× improvement in energy efficiency and compute time compared to

an SRAM based Processing- In-Memory (PIM) architecture.

At the system level, we present a hardware-algorithm frame-work for STT-MRAM

based embedded systems for application to small drones. we present a hardware-algorithm

frame-work for STT-MRAM based embedded systems for application to small drones. We

show that TL followed by RL on the last few layers of a deep CNN provides comparable

performance compared to an E2E RL system, while reducing latency and energy by 79.4%

and 83.45% respectively.

1.4 Dissertation overview

In the next chapters, we first address the current issues of Spin-Transfer Torque Magnetic

Random Access Memory(STT-MRAM) and multi-bit ferroelectric FET in the device level.

At the circuit level, the research shows how these issues shape the peripheral circuit of

STT-MRAM and ferroelectric FET memory arrays. Lastly, at the system level, the research

leads to the efficient memory architecture and system design that maximizes the benefits

of STT-MRAM and ferroelectric FET while mitigating the current limitations of these de-

vices. Lastly, we applies the in/near memory processing system design with STT-MRAM

and ferroelectric FETs to various applications such as reinforcement learning with a drone,

image classification with Deep Neural Network and least square minimization for image

reconstruction. we focus on near-memory processing system with STT-MRAM for rein-

forcement learning of a drone and evaluate the system to quantify how much benefits are

expected in terms of latency, power and energy. we would like to show that near-memory

processing system with non-volatile devices is a key enabler for a real-time learning sys-

tems with stringent power and energy constraints.
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CHAPTER 2

MAGNETIC COUPLING ACROSS BIT-CELLS OF STT-MRAM

In this chapter, we analyze how magnetic coupling affects both static and dynamic proper-

ties of MTJs with in-plane anisotropy,[61] Bulk perpendicular anisotropy[62] and interface

induced perpendicular anisotropy [63] across different technology nodes. In modeling sec-

tion, we present a compact model of MTJs and show the effect of magnetic field coupling

as a function of MTJ dimensions and spacings. Then the data pattern dependence of mag-

netic coupling is analyzed in a 3 × 3 array and the worst case data pattern for each of the

MTJ stacks is discussed. In the analysis section, we present how static properties ( ∆, τ )

are affected by different scenarios of magnetic field induced coupling.

2.1 Modeling of STT-MRAM and external magnetic field

2.1.1 MTJ physical dimension modeling

From [62][64], dimensions of in-plane, bulk and interface-induced perpendicular MTJ are

retrieved. For more details on the three types on MTJs and their relative merits/demerits

and role in the technology development, interested readers are pointed to [65][26][66][67].

in-plane MTJ (IMTJ) is modeled as an elliptical pillar and perpendicular MTJs (PMTJ) are

modeled as cylinders.

Fig. 2.1 illustrates the physical dimensions of in-plane and perpendicular MTJ cells.

In Fig.2.1 tf, tsp and tfix represent thickness of free layer, insulating layer and fixed layer

respectively. Length of in-plane MTJ is determined by the product of aspect ratio (AR)

and the width of the in-plane MTJ. Since aspect ratio is one of the factors that determines

Hk and thermal stability, its value changes with target thermal stability. In order to observe

how magnetic coupling of MTJ cell array change with respect to technology node, we scale
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Figure 2.1: (a) In-plane MTJ (b) Perpendicular MTJ
Physical dimensions of MTJ cell types. The perpendicular MTJ can be Bulk or Interface perpen-
dicular MTJ

physical dimensions of MTJs. Table2.1 shows physical dimensions at different technology

node. Saturation magnetization remains constant in all the technology nodes. Similar to

aspect ratio in IMTJ, free layer thickness (tf) of Interface PMTJ is also an important design

variable that determines thermal stability. Therefore, AR and tf are scaled appropriately to

maintain a constant thermal stability in all the technology nodes. From [62][29], device

parameters of Table 2.1 were chosen.

Table 2.1: Physical dimensions of MTJ in STT-MRAM bit-cells across technology generations

Cell type
Dimension Technology node(nm)

Parameter(nm) 22nm 16nm 10nm 7nm

IMTJ

width 50 35 24.5 17.2
length AR*width

tf 3
tfix 5
tsp 1.2

Bulk PMTJ

diameter 40 28 19.6 13.7
tf 3
tfix 5
tsp 1.2

Interface PMTJ

diameter 40 28 19.6 13.7
tf variable dependent on delta
tfix 3
tsp 0.9
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2.1.2 Modeling the H field

The magnetic field of a single MTJ is first modeled to observe the net magnetic field cou-

pling between adjacent cells. In an STT-MRAM array we consider a cell in the center of a

3× 3 lattice as the victim cell and the eight neighbors as aggressors. Under the assumption

of uniform magnetization of the the MTJ material, the magnetic dipoles inside MTJs cancel

out and finally the magnetic dipoles on the edges of the MTJ are unpaired.

Figure 2.2: Schematic representation of current loops in the nanomagnet

Magnetic dipoles can be in turn modeled as current loops following[68]. Fig. 2.2shows

how magnetic dipoles inside an MTJ cancels each other’s internal current loops [68] .

Hence we model an MTJ as a solenoid which has bound current paths wrapped around

itself to produce the saturation magnetization (Ms) of an MTJ as described in [62].

Since magnetic moment is derived from the volume and Ms of an MTJ (M s = Magnetic moment
V olume of MTJ

)

and it is the product of the bound current, the cross sectional area of the MTJ and the num-

ber of coils, the amount of current needed to produce the magnetic field can be calculated.

The current is expressed as Mst
no.ofcoils

, t is the thickness of an MTJ layer.

Fig. 2.3 shows the IMTJ and PMTJ with the corresponding solenoid model for evalu-

ating the resultant magnetic field. The current loop around an MTJ is wrapped around in

a direction that generates the net Ms. Finally, we can calculate the magnetic field at any

specific point in space by applying the Biot-Savart law [68], as:
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(a) Solenoid modeling of free and fixed layer of
IMTJ

(b) Solenoid modeling of free and fixed layer of
PMTJ

Figure 2.3: Solenoid representation of current loops in IMTJ and PMTJ to model magnetic field
around MTJs

𝒅𝒍

𝒓

𝑰
(xk,yk,zk) (xk+1,yk+1,zk+1)

(x,y,z)

Figure 2.4: Finite element representation of biot savart law

~H(x, y, z) =
I

4π

∫
C

d~l × ~r
|~r|3

(2.1)

where, d~l is defined by {d~x, d~y, d~z}, which is equal to {~xk+1− ~xk, ~yk+1− ~yk, ~zk+1− ~zk}

from Fig.2.4.

Algorithm. 2 shows the pseudo-code for a discrete finite element representation of Biot-

savart law, which is used to calculate magnetic field at coordinate (x,y,z). For each segment

in the model, Algorithm. 2 computes dHx,dHy and dHz, x,y,z components of d~l × ~r, and

stores it in an array. After computing d~l×~r for all segments, we can find the magnetic field

in x,y,z direction at point (x,y,z) by summing up dHx, dHy and dHz and multiplying by the
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coefficient I
4π

Result: Calculate Hstray from MTJs at coordinate (x,y,z)
N = number of points in MTJ model;
xp[N] = array of x-coordinates of MTJ model;
yp[N] = array of y-coordinates of MTJ model;
zp[N] = array of z-coordinates of MTJ model;
for k = 1; k <N-1; k++ do

r mag = sqrt((x-xp[k])2 + (y-yp[k])2+(z-zp[k])2);
dx[k] = xp[k+1]-xp[k];
dy[k] = yp[k+1]-yp[k];
dz[k] = zp[k+1]-zp[k];
dHx[k] = (dy[k]*(z-zp[k])-dz[k]*(y-yp[k]))/(r mag)3;
dHy[k] = (dz[k]*(x-xp[k])-dx[k]*(z-zp[k]))/(r mag)3;
dHz[k] = (dx[k]*(y-yp[k])-dy[k]*(x-xp[k]))/(r mag)3;

end
Hx = (I/(4*pi))*sum(dHx);
Hy = (I/(4*pi))*sum(dHy);
Hz = (I/(4*pi))*sum(dHz);

Algorithm 1: Biot Savart law for finding magnetic field H at (x,y,z) coordinate

By using Biot-Savart law and finite element method as above, we find magnetic field at

a set of coordinates in 3D space and Fig. 2.5 shows the complete magnetic field modeling

for free layer of IMTJ and PMTJ in space. In Fig. 2.5, The magnetic field direction between

Fig. 2.5(a) and Fig. 2.5(b), Fig. 2.5(c) and Fig. 2.5(d) are opposite to each other because

direction of bound current into the coil is opposite.

We expect that the magnetic coupling between aggressor cells and a victim cell would

be affected by the distance between the cells 2.1. In order to observe the difference in ~H

with respect to distance between cells, we consider two types of MTJ cells: (1) a nominal

cell of size 5F × 3F and (2) a compact cell size as 3F × 2F . Here F is the half-pitch of

the poly-silicon layer for a given technology node.

Fig. 2.6 shows the nominal and compact cells in array configurations. The MTJ at the

center of an array in Fig. 2.6 is the victim MTJ and distance labeled in Fig. 2.6 is the center

to center distance between the victim cell and its aggressor neighboring cells. For each cell,

we model the net magnetic field generated by both the free layer and the fixed layers. Then
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(a) Magnetic field around IMTJ
diverging to +y direction

(b) Magnetic field around IMTJ
diverging to -y direction

(c) Magnetic field around
PMTJ diverging to +z direction

(d) Magnetic field around
PMTJ diverging to -z direction

Figure 2.5: Magnetic field around IMTJ and PMTJ when current is applied to current loops.(a)
current flowing from +y to -y direction (b) current flowing from -y to +y direction (c) current flowing
from -z to +z direction (d) current flowing from +z to -z direction

we calculate the net magnetic field from each MTJ and compute the total magnetic field at

the victim node. Although the fixed layer has its magnetic moment pointing in a specific

direction, the direction of the magnetic moment in the free layer is data dependent. Hence,

the net field generated by the neighboring cells on the victim, depends on the over-all data

pattern of the 3 × 3 array. In the next section, we explore the effect of data pattern on the
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5F

3F

(a)

3F

2F

(b)

5F

3F

(c)

3F

2F

(d)

spacing(nm) cell size
Technology node(nm)

22nm 16nm 10nm 7nm

x-spacing
normal 135 96 60 42

compact 90 64 40 28

y-spacing
normal 225 160 100 70

compact 135 96 60 42

Figure 2.6: (a) IMTJ default cell array (b) IMTJ compact cell array (c) PMTJ normal default array
(d) PMTJ compact cell array

coupling field on the victim node and determine the worst and best data patterns that can

reduce magnetic coupling. It should be noted that our discussion in this paper is limited

to the nanomagnet. The access transistor in the bit-cell plays an important role in the cell

dynamics[69][70], especially the write properties. The retention properties of the cell are

not disturbed by the access transistor, at least to the first order. However, the aim of this

paper is to explore the performance and retention behavior of bit-cells with and without

magnetic coupling from the neighboring cells. Hence, we have not considered the role of

the access transistor in our discussions.
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2.2 Role of Magnetic coupling in dense arrays

.

[8] 

[7] 

[6] 

[5] 

[3] 

[1] 

[4] 

[2] 

[0] 

\ \

\

\\

\

\

\ [8] 

[7] 

[6] 

[5] 

[3] 

[1] 

[4] 

[2] 

[0] 

Figure 2.7: Arrangement of MTJs in a 3× 3 array[71]

(a) IMTJ (b) PMTJFigure 2.8: Magnetic field visualization of IMTJ and PMTJ 3 × 3 arrays for the worst data pat-
tern[71]

Similar to electrical coupling between DRAM cells[72], The data pattern on neigh-

boring STT-MRAM cells can cause magnetic coupling with a cell since data inside a nano-

magnet determines magnetic field direction. we need to analyze the magnetic field coupling

and its magnitude in STT-MRAM bitcells. In this section we present modeling of magnetic

coupling effects on a 3 × 3 array and analyze the best case and worst case data patterns

which yields minimum and maximum magnetic coupling on a cell at the center of the ar-

ray. In order to capture the complete magnetic coupling effect from adjacent cells, doing
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analysis with more number of adjacent cells can increase the accuracy of the model. How-

ever, since magnetic field decreases quadratically with distance, the cells that are farther

away would assert a very weak field on the victim. Hence, we invoke the near neighbor

interactions only, which is staple in the modeling and simulation of most interacting mag-

netic structures. We increase the accuracy of our model by including the diagonal elements

as opposed to only the four nearest neighbors. Therefore, we use a 9 cell lattice, to explore

how magnetic coupling affects the victim cell’s characteristics.

Initial results and observations on the data pattern dependence of magnetic coupling

have been briefly discussed by the authors in [71] The magnetic coupling is measured by

adding magnetic field vectors from neighboring nanomagnets on the victim cell. Fig. 2.7

shows the arrangements of the 3× 3 array of magnets and the figure denotes that victim bit

is located at position [8]. Fig. 2.8 shows the magnetic field from IMTJ and PMTJ arrays

which saturation magnetization is set to 1.257e6 A/m.

256 512

(a) IMTJ

256 512

(b) PMTJ
Figure 2.9: Residual H field vs. data pattern in IMTJ and PMTJ[71]

2.2.1 Impact of Magnetic Coupling on Write and Retention

To visualize the best and worst case data patterns, we represent the information stored in

the 3×3 array as a 9-bit number where each bit represents the data stored (0 for anti-parallel

and 1 for parallel) in the ith bit as shown in Fig. 2.7. Because of this encoding, data patterns
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(b) PMTJ block data pattern
Figure 2.10: Magnetic coupling induced worst-case data pattern for thermal stability[71]

0 to 255 represent the victim storing a 0 and 256 to 511 represents the victim storing a 1.

Fig. 2.9 show residual magnetic field strength from all the aggressors for all possible data

arrangements. Residual field in the direction of the free layer’s magnetization enhances

stability and improves retention (thereby degrading writability) while residual fields in the

opposite direction would tend to destabilize the magnet. We note that data pattern [111 000

000] and [011 000 000] are the best and worst case data patterns for thermal stability (or

retention) for IMTJ. For both varieties of PMTJ, best and worst data patterns are [100 000

000] and [000 000 000]. The residual field is taken at the center of free layer of a victim

cell.

Due to the uni-axial anisotropy in two MTJ types, best and worst case data pattern are

different between in-plane and perpendicular MTJs, i.e. due to their physical structure and

anisotropy. While the magnetization of IMTJ is aligned to the y-axis and magnetization in

PMTJs is aligned to the z-axis. Therefore, the best and worst case data pattern for IMTJ

and PMTJ are different as the vector field on the victim magnet and its effect on the victim

need to be evaluated.

The worst case patterns for the 3X3 block is shown in Fig. 2.10.
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(a) Best case [000 111 111] (b) Worst case [100 111 111]

(c) Best case [011 111 111] (d) Worst case [111 111 111]

Figure 2.11: MTJ best/worst data pattern[71]

2.3 Effect of Magnetic Coupling on Static Characteristics of the Victim Cell

In static analysis, we analyze the effect of magnetic coupling on thermal stability and re-

tention of a victim cell i.e., the cell at the center of the 3x3 STT-MRAM array. Analysis is

conducted on in-plane (IMTJ), Bulk and interface-induced perpendicular MTJs (CPMTJ,

IPMTJ). By varying the technology nodes (22/16/10/7nm), we observe how change in

physical dimension of an MTJ and the distance between MTJs in 3 × 3 array impact

the magnetic coupling and its effect on ∆ and retention. Also, effect of cell size (nom-

inalcompact) and bestworst data patterns on magnetic coupling in each MTJ types is stud-

ied. In order to gauge how magnetic coupling causes variation with respect to ∆, we set

nominal ∆ of MTJs to be 20,40 and 60. These three types of MTJs represent trade-offs

between non-volatility and lower write power [73]. In short, we analyze;

1) Which type of MTJ is affected the most from magnetic coupling in terms of of ther-

mal stability and retention.

2) The effect of magnetic couping on thermal stability and retention with respect to
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changes in;

a) target thermal stability (∆ = 20, 40, 60)

b) technology scaling (22 /16 /10 /7 nm)

c) nominal and compact cell sizes (15 F2 vs. 6 F2)

d) best/worst data pattern

Based on Ms (1.257e6 A/m) and physical dimension of MTJs discussed in Table. 2.1,

we modify other parameters of MTJs to set nominal ∆ of MTJ to be 20,40 and 60. Since

∆ is defined as [74]

∆ =
KuV

kBT
=
HkMsV

2kBT
(2.2)

we vary Hk to achieve nominal ∆. However, since Hk is a property which is related to AR,

Ku and tf in IMTJ, CPTMJ and IPTMJ according to Eqn.s 2.3, 2.4 and 2.5

IMTJ Hk = 2(
4πMst(AR− 1)

wAR
) (2.3)

[64]

Bulk PMTJ Hk =
2Ku

Ms

− 4πMs (2.4)

[74]

Interfacial PMTJ Hk =
4πMs

2tc
Mstf

− 4πNDZMs (2.5)

[29]

tc from equation(5) is critical thickness of CoFeB layer. NDZ is z-axis dependent de-

magnetizing factor. Since AR and tf both affect Hk and volume of MTJ, they are determined

through iterations between Hk and ∆ Eqn.s 2.3, 2.5 and 2.2. AR, Ku and tf parameters for

different nominal ∆ in technology nodes are defined in Table. 2.2
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Table 2.2: Design parameters for maintaining a target ∆

Cell type
Variable ∆ Technology node(nm)

properties @85C 22 16 10 7

IMTJ Aspect Ratio
20 1.147 1.21 1.3 1.425
40 1.293 1.421 1.6 1.853
60 1.44 1.628 1.895 2.28

Bulk PMTJ Ku (106J/m3)
20 0.909 0.936 0.992 1.106
40 0.935 0.989 1.101 1.329
60 0.961 1.043 1.21 1.553

Interface PMTJ tf (nm)
20 1.485 1.471 1.441 1.379
40 1.471 1.442 1.382 1.258
60 1.457 1.413 1.323 1.137

2.3.1 Effect of Magnetic Coupling on Thermal stability

The effect of magnetic field on the stored magnetic energy in an MTJ can be modeled

as [64]

∆(H) = ∆(H = 0)(1±
Hstray

Hk

)2 (2.6)

This shows that an external magnetic field (normalized by Hk) at the free layer of victim

cell can cause variation in ∆ of MTJ. We model the magnetic field from neighboring cells

and the vector field, (Hstray) is calculated and it is applied to the victim cell as shown in

Eqn. (2.6).

in-plane MTJ

Fig.2.12 represents the variation of ∆ in an IMTJ due to Hstray with respect to technology

node, cell size and data pattern for target ∆ = 20/40/60. Dotted line in the figure represents

target ∆. The data patterns in MTJ array that yield the H parallel and anti-parallel to

magnetization of victim cell are labeled as best and worst in the figure. The labels nominal

and compact indicate the nominal and compact cell sizes as defined in earlier sections.

The common trend in ∆ variation in Fig. 2.12 is that the variation is decreasing as we

decrease technology node. This phenomenon is expected because as we decrease technol-
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Figure 2.12: Variation of ∆ in IMTJ with respect to technology nodes, data patterns and cell array
configuration (a) Variation with nominal ∆ = 20 (b) Variation with nominal ∆ = 40 (c) Variation
with nominal ∆ = 60 (d) Maximum variation of ∆ across combinations of data pattern and cell
array configuration in technology node.

ogy node, the volume of MTJ is decreasing and it causes ∆ to decrease ( 2.2). In order to

maintain target ∆ across all technology nodes, we can either adjust Ms or Hk. In this analy-

sis, we fixed Ms to be constant for all technology nodes, as it is a material property. We tune

geometric parameters of the bit cell to achieve a target Hk. Hence, with technology scaling,

the magnetic coupling does increase, but surprisingly we note that a stronger cell anisotropy

(owing to increased Hk), results in an effective decrease of Hstray/Hk. Fig. 2.13 shows the

variation of
Hstray
Hk

across technology nodes.
Hstray
Hk

is positive when Hstray is aligned with

Ms and negative when it is anti-parallel to Ms. As we can see,
Hstray
Hk

is decreasing as tech-

nology scales. The second trend that we observe from Fig. 2.12(d) is that the maximum

variation(%) across data pattern and cell size decreases as target ∆ changes from 20 to 60.
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This is due to increasing in Hk as target ∆ increases. With same Ms, the only variable to

tune ∆ of a MTJ to target ∆ is Hk. Therefore, Hk increases as target ∆ increases. As we

-25

-10

5

20

22 nm 16 nm 10 nm 7 nm

H
st

ra
y/

H
k[

%
]

Tech Node

Best Default

Best Compact

Worst Default

Worst Compact

-15

-5

5

15

22 nm 16 nm 10 nm 7 nm

H
st

ra
y/

H
k[

%
]

Tech Node

Best Default

Best Compact

Worst Default

Worst Compact

(a) Variation in Hstray/Hk (b) Variation in Hstray/Hk

nominal ∆ = 20 nominal ∆ = 40

-10

-4

2

8

22 nm 16 nm 10 nm 7 nm

H
st

ra
y/

H
k[

%
]

Tech Node

Best Default

Best Compact

Worst Default

Worst Compact

0

15

30

45

22 nm 16 nm 10 nm 7 nm

M
ax

 v
ar

. i
n

 H
st

ra
y/

H
k[

%
]

Tech Node

Δ 40

Δ 60

Δ 20

(c) Variation in Hstray/Hk (d) Maximum Variation in
Hstray
Hk

nominal ∆ = 60

Figure 2.13: Variation of Hstray/Hk in IMTJ with respect to technology nodes, data patterns and
cell array configuration (a) Variation with nominal ∆ = 20 (b) Variation with nominal ∆ = 40 (c)
Variation with nominal ∆ = 60 (d) Maximum variation of Hstray/Hk across combinations of data
pattern and cell array configuration in technology node.

discussed in section III, best data pattern, which causes maximum Hstray in direction of Ms,

boosts ∆ and the worst data pattern that causes maximum Hstray in the opposite direction

of Ms degrades ∆. When it couples with cell size, it yields maximum variation of 85%
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between a compact cell with best data pattern and a compact cell with worst data pattern

when target ∆ = 20 in 22nm based on 2.12(d). On the other hand, at target ∆ = 60 in 7nm,

the maximum variation between compact cell with best and worst data pattern is 8.6%. By

comparing results from nominal and compact cell sizes with same data pattern, we observe

a 3% variation at the 22nm node.

Bulk perpendicular MTJ

Fig.2.14 exhibits ∆ variation in CPMTJ. From the figure, CPMTJ also presents a decreas-

ing trend of ∆ variation as technology scales down and target ∆ increases. However, the

maximum variation in CPMTJ is less than maximum variation of IMTJ. From Fig. 2.9, we

observe that magnitude of Hstray from perpendicular MTJ is less than in-plane MTJ due to

the geometry of MTJ types and the direction of Ms for the same magnitude of Ms. This

result explains why
Hstray
Hk

across all technology node in PMTJ is less than that that of IMTJ

as shown in Fig. 2.15 . As a result, we conclude that the ∆ variation in PMTJ is less than

that of IMTJ.

However, for CPMTJ the ∆ variation in nominal and compact cell sizes is different from

the ∆ variation in IMTJ for different cell sizes. Between different cell sizes, maximum ∆

variation is 2% in 22nm at target ∆ = 20. From Biot-Savart law (Eqn. 2.4), magnetic

field at a point is stronger when distance between a point and the current loop is closer.

Therefore, in compact cells, each MTJs exerts more Hstray on the victim cell. Since Ms

direction in IMTJ is in y-direction in 3 by 3 array, the sum of Hstray from neighboring cell

at victim cell is larger when MTJs are compact. In the case of PMTJ, the sum of Hstray

from neighboring MTJs on the victim cell decreases because the direction of Ms of MTJs

is in the z-direction. When distance between neighboring and victim MTJs is too close, the

direction of Hstray from neighboring cell deviate significantly, which results in less Hstray in

the direction of Ms on victim cell.
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Figure 2.14: Variation of ∆ in CPMTJ with respect to technology nodes, data patterns and cell
array configuration (a) Variation with nominal ∆ = 20 (b) Variation with nominal ∆ = 40 (c)
Variation with nominal ∆ = 60 (d) Maximum variation of ∆ across combinations of data pattern
and cell array configuration in technology node.

Interface-induced perpendicular MTJ

Fig.2.17 shows how
Hstray
Hk

changes across technology nodes, target ∆ in different cell sizes

and data patterns. Fig. 2.16 shows how much variation it caused in ∆. The effect of

magnetic coupling on the ∆ of IPMTJ is similar to that of CPMTJ. The only difference

between IPMTJ and CPMTJ in terms of ∆ variation is the magnitude of variation. The

reason for this difference lies in the relationship between Eqn.( 2.2) and ( 2.5). For IMTJ

and CPMTJ, as technology node scales, Hk is increased to compensate the loss in ∆ caused

by decreasing volume of MTJ. In IPMTJ, decreasing volume automatically increases Hk

because decreasing tf increases Hk. Therefore, Hk in IPMTJ is smaller than Hk in IMTJ and
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Figure 2.15: Variation of Hstray/Hk in CPMTJ with respect to technology nodes, data patterns and
cell array configuration (a) Variation with nominal ∆ = 20 (b) Variation with nominal ∆ = 40 (c)
Variation with nominal ∆ = 60 (d) Maximum variation of Hstray/Hk across combinations of data
pattern and cell array configuration in technology node.

CPMTJ. It results in large variation in
Hstray
Hk

and ∆.

Comparison of the Effect of Magnetic Coupling on ∆ across MTJ types

Fig. 2.18 summarizes the maximum ∆ variation for IMTJ, CPMTJ and IPMTJ across target

∆ and technology nodes. As we discussed above, ∆ variation due to magnetic coupling is

in the order: IPMTJ, IMTJ and CPMTJ. The conclusion from thermal stability analysis is

that the ∆ variation will not become a big problem as technology node decreases, which is
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Figure 2.16: Variation of ∆ in IPMTJ with respect to technology nodes, data patterns and cell array
configuration (a) Variation with nominal ∆ = 20 (b) Variation with nominal ∆ = 40 (c) Variation
with nominal ∆ = 60 (d) Maximum variation of ∆ across combinations of data pattern and cell
array configuration in technology node.

counter intuitive. From intuition, we expect that magnetic coupling will become a severe

problem as technology node scales because STT-MRAM array will become denser. How-

ever, if we allow for scaling laws and adjust Hk as technology node decreases, the effect of

magnetic coupling on thermal stability diminishes, since the the stray field is is normalized

by Hk. For the same reason, magnetic coupling has minimal effect when ∆ = 60 since Hk

is higher than the Hk of MTJs with lower target ∆.
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Figure 2.17: Variation of Hstray/Hk in CPMTJ with respect to technology nodes, data patterns and
cell array configuration (a) Variation with nominal ∆ = 20 (b) Variation with nominal ∆ = 40 (c)
Variation with nominal ∆ = 60 (d) Maximum variation of Hstray/Hk across combinations of data
pattern and cell array configuration in technology node.

2.3.2 Effect of Magnetic Coupling on Retention Time

The average retention time (τ ) of MTJ is exponentially dependent on the ∆ [64]

τ = τ 0exp(
KuV

kBT
) = τ 0exp(∆) (2.7)
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pattern and cell array configuration in technology node and nominal ∆.

where τ 0 is 1ns. Since ∆ is affected by magnetic coupling ( 2.6), the retention times for

MTJ bits are affected as well. The loss of retention from the nominal retention time is

exponential of the ∆ variation and it exhibits the same trend as ∆ variation in three MTJs.

Fig.2.19 represents the maximum variation in retention across nominal ∆ and technol-

ogy nodes. Since the variation in retention is in exponential relationship with variation

in ∆, the variation tends to be very large in a cell with 22nm and ∆ = 20 and it exhibits

decreasing trend in retention variation as technology node decreases and nominal ∆ in-

creases.

2.4 Magnetic coupling effect on thermal stability with synthetic anti-ferromagnet

fixed layer

So far, we have explored the effects of magnetic coupling on static and dynamic character-

istics of STT-MRAM under the assumption that the fixed layer of MTJs are ferromagnets

and exert magnetic fields in their neighborhood. Therefore, large portion of external mag-
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Figure 2.19: Maximum variation of retention time in IMTJ, CPMTJ and IPMTJ across combinations
of data pattern and cell array configuration in technology node and nominal ∆.

netic field exerted on the victim cell is emanated from fixed layers of MTJs in adjacent

cells. However, when fixed layer of an MTJ is a synthetic anti-ferromagnet, i.e. the mag-

netic field lines from the fixed layer will close on itself, the results of the same analysis

is expected to be very different. In order to compare the results, we model the interaction

of STT-MRAM bit-cells without any magnetic field contribution from the fixed layer. We

observe that the variation in thermal stability across different technology nodes and cell

sizes reduce significantly but they are still not negligible in scaled nodes.

Fig.2.20 shows the maximum variation of thermal stability in IMTJ, CPMTJ and IPMTJ

across various data patterns. The variation has decreased to approximately 1
10

th of what

we observed in Fig.2.18. Since the variation in Jc0 and twr of a cell exhibit less variation

compared to thermal stability variation, we can deduce that the variation in Jc0 and twr

is greatly reduced when fixed layer of an MTJ does not exert any magnetic field on this

neighbors. However, given the exponential relationship between ∆ and the retention time,

care must be taken when data is stored in the STT-MRAM array over long periods of time.
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Figure 2.20: Maximum variation of ∆ in IMTJ, CPMTJ and IPMTJ across combinations of data
pattern and cell array configuration in technology node and nominal ∆.

2.5 Summary

In this research, we present a model of magnetic field induced coupling between adjacent

bits in an STT-MRAM array. A comprehensive analysis, across four technology nodes and

different MTJ technologies has been presented. We have analyzed the role of the magnetic

coupling on electrical performance, both static and dynamic. We conclude that for MTJ

technologies with dense memory bits and lower stored energy, the coupling field can cause

significant change in the average retention time. Data patterns that activate the worst and

best case scenarios have also been explored. It should be noted that the research explores

ultra-dense memory bit cells with cell sizes which are 15F 2 and 6F 2.[75] The state-of-

the art bit-cells are significantly larger (2× to 3× larger) and effects such as magnetic

coupling will be reduced. However, key observations such as the data pattern dependence

of retention, will remain unchanged and as the technology matures and denser bit-cells are

enabled, magnetic field induced coupling will play a key role in both design and test.
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CHAPTER 3

RETENTION TEST CHALLENGES OF STT-MRAM ARRAYS

As we mentioned in the introduction, STT-MRAMs can suffer from retention failures. The

non-volatility (or retention characteristics) of the bit can be measured by the thermal sta-

bility factor ∆. [37][38] describe retention failure as a bit-flip in a cell caused by thermal

noise. The thermal activation model of STT-MRAM in [37] suggests that a bit flip has a

poisson distribution with time constant of τ .e∆ where τ ≈ 1ns. Conventional test methods

for retention have very large number of test times. we explore worst case test patterns and

propose a Memory Built In Self-Test (MBIST) architecture that can detect the retention

failures along with read and write faults in a time-efficient manner. We propose EMACS as

an efficient MBIST architecture that can perform in-situ read, write and retention (stochas-

tic test) tests on STT-MRAM arrays. This work is based on a vertically-integrated, device

to array modeling infrastructure that we have developed to analyze the physics of MTJ

operation (amidst variations and thermal fluctuations) for various types of MTJ cells. The

rest of the chapter is divided as follows. In section I, we discuss the challenges and neces-

sary test patterns for retention testing. The MBIST architecture and circuits are discussed

in section II. Performance Analysis of EMACS is discussed in section III. Some practical

challenges and efficiency of EMACS is discussed in section IV. Finally conclusions are

drawn in section V.

3.1 Test and Characterization of cell Retention

In STT-MRAM, retention time is defined as the time it takes for a cell to flip, a stochastic

phenomenon, caused by thermal noise [64]. The average retention time is quantified as:

τ = τ 0exp(∆) and ∆ = KuV
kBT

= HkMsV
2kBT

[64]. In order to ensure system reliability, each

cell in an array must have enough thermal stability(∆ = 60 to guarantee 10 years of re-
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tention) against stochastic bit flip induced by thermal noise. With high ∆, a cell can have

long retention but high ∆ affects increase in write time and current. Due to this trade-off

between power consumption and retention, [76][77][78] propose the use of quasi-stable

cells with lower ∆ to be used in caches. Whatever the design target may be, determining ∆

in post-Silicon characterization and manufacturing tests is of utmost importance. However

(1) the statistical nature of thermally activated bit-flips, (2) low failure probabilities, (3)

large dependence on temperature and process parameters (MS , HK , t) and (4) exponential

dependence of retention times and retention failure probability on ∆ make it a challenging

test problem, as has been noted in the Intel publication [37].

3.1.1 Challenges in Retention and Thermal Stability Tests

Very little work exists in published literature on test schemes and challenges from testing

retention and thermal stability. While discussing the challenges in [37], Intel proposes a

possible test methodology based on the thermal activation model.

P sw = 1− exp
(
−t/exp

(
∆

(
1− IWWR

Ic0

)))
(3.1)

Psw is a switching probability of a cell and IWWR is a Weak Write (WWR) current. The

model is is used to obtain the values of Ic0 and ∆ by fitting bit-level experimental/test

data [37][38][79][80]. From the thermal activation model for the case:

tp

τ 0exp(∆(1− IWWR
Ic0

))
<< 1 (3.2)

using Taylor expansion and ignoring higher order terms [38][37]:

ln(P sw) = ln(
tp
t0

)−∆(1− IWWR

Ic0
) (3.3)
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where tp is the pulse width for switching current. This model links PSW and ∆ under

application of IWWR. Since the thermal activation model is a stochastic model, a large

number of successive tests is required to obtain statistically significant results. Also, the

model is accurate when low switching current is applied during the long pulse width [37].

Experimental data from [38][79] suggests that switching current ratio of IWWR
Ic0

≤ 0.8 and

switching pulse width of tp = 100ns are the upper bounds of the thermal activation model

for P sw ≤ 1e−3 [37] (Fig. 3.1). Psw of 1e−3 with±1 percent error margin and 99 percent

confidence requires 5e+5 number of tests [81][37]. Based on this model, [37] proposes

a test scheme where 100ns IWWR pulses are applied and each bit read to determine a

possible bit flip. After 5e+5 such tests with 10 different values of IWWR
Ic0

, generated by an

embedded MBIST, we can obtain statistically significant test data to determine ∆ through

post-processing. Based on [37] the test algorithm is shown below:

Result: Obtain Psw for every cells in an array
initialization;
Nrow = total number of rows;
Iwwr[N] = array that contains N number of IWWR value;
M = total number of experiments per each IWWR;
for i = 0; i <Nrow; i++ do

for j = 0; j <N; j++ do
Write test patterns into the line;
for k = 0; k <M; k++ do

Apply current IWWR[j] for tp;
Read the line value;
if value 6= test pattern then

error counter of cells with error++;
rewrite correct value to the row;

end
end

end
end

Algorithm 2: Retention test algorithm with weak WR current

Using an MBIST the total test time is approximately 16mins to test two thousand lines

of array when N is 5e5 with 10 IWWR, tp =100ns. Even though parallelism at a sub-array
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level can help to reduce retention test time, there is a clear limit in reducing the total reten-

tion test time. With increasing size of cell array, the retention test time with this MBIST is

not feasible. Therefore, there is a strong need for efficient retention test algorithm which

can reduce test time significantly. We address this issue in the next section.

Figure 3.1: Experimental data of PSW vs. Iwwr[7] showing the region of operation for test where
the exponential thermal model is valid.

3.1.2 Test patterns for retention test: Role of Magnetic Coupling

From the analysis of magnetic coupling, we identified the worst case data patterns for

retention testing under magnetic coupling. Fig. 2.10 indicates the worst data patterns of

IMTJ and PMTJ cells under which magnetic field coupling degrades the thermal stability

the most. In order to consider magnetic coupling effect in retention test, we need to set the

test pattern which has most impact on thermal stability. We first write the data pattern based

on Fig. 2.10; and then perform retention test for cells under magnetic coupling. Fig. 3.2

indicates the two block data patterns for testing worst case stability in I-MTJ arrays. For

P-MTJ the worst case pattern is all-ones.
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(a) IMTJ block data pattern A (b) IMTJ array data pattern B

Figure 3.2: IMTJ worst case data patterns for retention shown in a 5× 5 grid. For PMTJ the worst
case pattern is all-ones.

Figure 3.3: System architecture of EMACS MBIST applied to a 64× 128 array. EMACS is capable
of read, write and statistical retention tests.

3.2 Proposed MBIST for Retention Testing

We extend EMACS to perform in-situ, statistical, retention testing of large STT-MRAM

arrays. From the retention BIST algorithm [37], we apply a weak current and read the

value of cells row by row to obtain Psw. The principle drawbacks of the above scheme that

we identify are:
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(1) The retention test time increases linearly when the row size of an array increases.

(2) The retention tests have to be carried out in an operating region where PSW is very low.

For example, for a cell with ∆ = 60, applying IWWR
Ic0

from 0.76 to 0.82 for tp = 100ns sets

Psw to be 5.573e-5 to 0.002 based on Eqn 3.3. It indicates that for most of the iterations, a

bit flip will not happen; which means most of the read operations after applying current are

not necessary.

These two problems are main bottlenecks for improving speed of retention test. The reten-

tion test methodology and MBIST architecture that we propose focuses on how to overcome

these two bottlenecks. If an error can be detected in an entire cell array with a fixed num-

ber of memory operations, we can decouple array size from the factors affecting retention

time. Also, since the probability of occurrence of bit flip is low, rather than reading rows

each time after applying current in search of a bit-flip, reading rows only after an error is

detected will reduce retention test time. The proposed architecture reduces retention time

significantly by:

1. Detecting errors column-wise

2. Avoiding search (reading rows) when error is not

detected

By testing multiple rows in a column at the same time and searching for errors after error

detection, retention time testing reduces significantly. The retention test is divided into two

processes, (1) Error Detection (ED) and (2) Error Search (ES).

3.2.1 EMACS System Architecture for Statistical Retention Tests

Fig. 3.3 presents the top level system diagram of the proposed MBIST circuitry. Normal

memory operation and test operation are distinguished by the test en signal. For retention

test, Error Detection (ED) and Error Search (ES) logic are parts of the control logic. Based

on the outputs of the MBIST circuit, Error Detection logic asserts err det signal and while

err det is asserted, Error Search is conducted. Error Search controls which rows to assert

42



from a localization factor (to be described in the next subsection) and it outputs error lo-

cation to the output of control logic as soon as it identifies error locations. Search done

signal is asserted if Error Search is over and it resets err det signal. IWWR bus is used to

control voltage of bitline and word-line, which leads to different magnitudes of IWWR cur-

rent. Column of different resistors are used as a references for finding errors in blocks of

rows and temperature sensor are located inside a sub array to monitor temperature inside a

sub array. Each characterization test, which produces an experimental determination of ∆,

is qualified by a temperature data. The proposed scheme allows massive parallelism in test

and enables a fine trade-off between localization of weak cells and test time.

3.2.2 Error Detection (ED)

The ED architecture is based on the MTJ property that any change in data (bit-flip) results

in a change in resistance of the cell, which in-turn changes the current flowing through the

cell. [82] uses this property to detect read disturb errors, by monitoring current difference

(before and after the bit-flip) due to change in resistance.

In the proposed scheme (Fig. 3.4): (1) data patterns based on Fig. 3.2 are first written

into the array, (2) retention test started by turning on multiple word-lines simultaneously,

(3) IWWR current injected through each cell which is storing a 1, (4) multiple read operations

are conducted while passing IWWR to check for a possible bit-flip, (5) next data pattern

applied for full-coverage. For IMTJ, two block data patterns are identified in Fig. 3.2.

To enable multiple simultaneous tests, odd numbered columns (C1,C3,..) are tested first

Fig. 3.4a with block data pattern A, followed by testing of even numbered columns (C0,

C2,...) using pattern B. Then the pattern is shifted vertically by one row and the process

repeats. For PMTJ, the worst case pattern under magnetic coupling is all-ones, and hence

all the columns can be tested simultaneously. Turning multiple word-lines in a column

connects the MTJ resistance in parallel as shown in Fig. 3.4. The resistance of a MTJ is

set to Rap since cells store bit 1 in the figure. When IWWR causes a bit flip in a cell, the
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resistance of a MTJ will change from Rap to Rp as shown. The current flowing through

source line of a column (ISL) changes due to the resistance change. By detecting difference

in ISL, we can detect the existence of errors in a column.

(a) (b)

Figure 3.4: Multiple word-lines simultaneously turned ON to detect bit-flips according to worst case
patterns identified in Fig.10 for IMTJ. (a) Simultaneous testing with block data pattern A applied
to C1,C3,.., (b) Simultaneous testing with block data pattern B applied to C0,C2,... For PMTJ the
worst case pattern is all-ones so all word-lines are turned on simultaneously.

However, due to low (150%[83]) TMR(= Rap−Rp
Rp

) of the MTJ, the number of rows

that can be simultaneously turned on and a bit-flip detected, is limited. With low TMR,

the difference of total resistance of a column between a case with no errors and a case

with a single error decreases and it affects difference in ISL. Fig. 3.5 presents a trade-off

between number of activated rows and the current difference of no error case and one error

case with respect to different TMR values. It exhibits decreasing ISL difference in percent

as number of activated rows increases with different TMR. Due to process variation and

temperature fluctuation, appropriate number of activated row must be set to gain enough

margin in current difference. In this work, we limit the number of activated rows to 16, to

distinguish between the “no error” and a “single error” in a column.

In the proposed test scheme, unlike the testing scheme from [37], we check errors while
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Figure 3.5: ∆ISL vs. number of rows activated as a function of TMR
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Figure 3.6: Error Detection circuit for a column with 16 rows

supplying IWWR through 16 rows of cells. Since test scheme must apply IWWR ≤ 0.8Ic0 for

tp and it is same as a strong read/weak write operation, we can detect errors within 16 rows

in a column by monitoring ISL. The read operation overhead after weak write is removed

for the case when no error is detected during tp. From this scheme, we can reduce tread by

(1−P sw)N per IWWR iteration, N is the number of test per IWWR Fig. 3.6 shows the scheme

for detecting a change in ISL caused by a bit flip of a cell. The change in ISL is amplified by

current mirror and it is transferred to voltage difference and further amplified by multi stage

common drain amplifier. Switched capacitors C1 and C2 sample the voltage at the common

drain amplifier alternatively based on CLK and CLK B signals. When bit-flip happens,

45



the voltage difference between C1 and C2 is developed and maintained for a half clock

cycle. Since the node voltages at C1 and C2 fluctuate when they are directly connected to

the inputs of sense amplifier due to their small size, we implemented voltage keepers in

between to avoid voltage fluctuation. By calibrating value of R1 and R2, in+ port is set to

be always 10mV higher than in- to prevent metastability issue in sense amplifier. When

sense amplifier enable is on, the sense amplifier fully differentiates the in+ and in- to VDD

and GND. Fig. 3.7 presents waveform of switched capacitor control signals(CLK, CLK B)

and sense amplifier enable. Once WLs are asserted to supply IWWR for tp, CLK and CLK B

toggle to sample the voltage to C1 and C2. After capacitor C1 and C2 develop common

mode voltage within tdev, sense amplifier enable signal is asserted in the middle of every

half clock cycle. Discharging of C1 or C2 must be finished before sense amplifier enable

is asserted to apply maximum voltage difference in port in+ and in- of sense amplifier.

Figure 3.7: Timing Diagram illustrating the operation of the MBIST retention test

Fig. 3.8 shows the voltage across switched capacitors(C1, C2) and sense amplifier out-

put when bit-flip happens. Around 60ns in Fig. 16a, current through SL is seen to increase

due to the change in resistance (RAP → RP) from a bit flip. Voltage difference across

switched capacitor is maintained for half clock cycle in Fig. 16b and the sense amplifier

resolves the voltage difference to VDD and GND when sense amp. enable is on. Fig. 3.9a
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(a) Current through SL

(b) Voltage at the two switched cap.

(c) Sense Amp. Output

Figure 3.8: Transient analysis for error detection

summarizes the test-procedure and Fig. 3.9b shows the corresponding algorithm. Test flows

A, B, C, D in yellow bounding boxes are presented in individual diagrams in Fig. 3.12,3.13.

The main differences between proposed test scheme and [37] are error detection and search

algorithms. In [37], the authors propose to apply IWWR for tp and read a row for every rows

in an array. Instead, the proposed test scheme applies IWWR to a block of rows and search
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for errors only when existence of error is identified by detecting a change in current through

source line of a column. Fig. 3.10 illustrates a particular simulation run showing infrequent

bit flips happening over time which are recorded in the current scheme. This allows estima-

tion of Psw and finally extrapolated to obtain ∆ via Eqn. 3.1. The Psw for a cluster of cells

within an 8KB subarray is shown in Fig. 3.11. After ED, a search algorithm to localize the

bit-flip is used and is discussed next.

Start

Select the next Ic point 

Is there any error?
Yes

No

Yes

Is this
 the last Iwwr point? 

No

Is this the last 
16 row ?

No

Move to next 16 rows
Yes

End
Yes
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 last experiment for 
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Figure 3.9: (a) Flow chart (b) algorithm for bit-flip detection in a column

(a) Bit Errors as a measure of bit-flips over time (b) Psw vs.. IWWR/Ic0

Figure 3.10: Estimating Psw and ∆ through EMACS
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Figure 3.11: Psw on a cluster of cells in an 8KB array showing a scatter which can be extrapolated
to obtain ∆

3.2.3 Error Search and Localization

After detecting the existence of errors using the scheme above, searching the location of

errors within the activated rows is necessary in order to obtain Psw and thermal stability

of cells. In this paper, we present three different error search schemes (exhaustive search,

temporal locality search and search localization).

Exhaustive Search

The algorithm used after detecting the first error is exhaustive search. In exhaustive search,

every row in a block of activated rows are read to locate errors. Once it obtains location

of an error, the test scheme stores the location in a error table and re-writes original test

pattern to a row with an error. When the last row in a block is read, it goes back to error

detection flow algorithm. Error location stored in a table is used in a search which exploits

temporal locality. Fig. 3.12 demonstrates each steps in exhaustive search.

Temporal locality search

Temporal locality search can reduce error search time when process variation on thermal

stability of cells is large. The efficiency of search improves when performing manufactur-
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Figure 3.12: Flow chart for exhaustive error search

ing test, the test that identifies cells which do not meet target retention. Fig. 3.13 presents

each steps in temporal locality search. Once error table is filled from exhaustive search,

temporal locality search first reads rows in the table to locate errors. If the row specified in

the table contains an error, it updates number of errors associated with the row in a table.

When no error is found in the rows from the table, it switches to exhaustive search to find

errors in other rows and add a row to a table when error is found in the row. After it finds

an error, it reads the block of rows to ensure it corrected all errors.

Error Localization Search

Both exhaustive search and temporal locality search identify all locations of errors in the

array. In terms of search time, however, both search scheme can be time consuming if

the block size of activated rows for error detection is large. Instead of identifying which

row contains errors for each column, we can set a block size in terms of row(Nloc) and

search whether the block contains errors. For example, searching errors within 4 rows

each time is 4 times faster than exhaustive row search. By reducing accuracy of error
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Figure 3.13: Flow chart for temporal locality search

position, we reduces search time linearly as Nloc increases. Fig. 3.14 presents how search

time varies based on the size of Nloc. The search time is compared with 5 different levels

of localization. Table IV indicates how localization level maps to Nloc. Since search is

conducted when error is detected, search time is a multiplication of error probability(Psw),

read time and Nact
N loc

. Nact is the number of rows activated for error detection. Search time

in the Fig. 3.14 is calculated with the assumption that Psw = 3e-3, number of Iwwr = 10 and

number of experiments per Iwwr = 5e5. As we mentioned earlier, the search time decreases

linearly when Nloc increases in the figure.

tsearch = P sw × tread ×
N act

N loc
(3.4)
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Figure 3.14: Search time increment w.r.t. localization level

Table IV: Localization level in terms of no. of rows

Localization level Block size(row)
5 Nact

4 0.5 Nact

3 0.25 Nact

2 0.125 Nact

1 1

3.2.4 Overhead of internally storing data

Retention test requires at least 8Ncell (total number of cells in an array) bits of memory

to store number of bit flips per cell under assumptions that the maximum Psw = 3e-3 and

number of experiments per Iwwr is 5e5 to calculate thermal stability of each cells. Instead

of storing error counts in the memory, test scheme can output row & column information

when error is detected to calculate thermal stability outside the chip. However, it adds

complexity to test mode control logic and outputting error location is also time consuming.

It should also be noted that block level identification of cell stability allows us to apply
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redundancy easily. Once a particular column is identified as having weak (low ∆) cells,

we can swap it with a redundant column. So in manufacturing tests, localization at the

granularity of a column is sufficient.

3.3 Performance analysis

3.3.1 Test time Comparison

The retention test time of proposed test scheme can be calculated using the equation;

tret = [(tp + tsearch)×
N row

N act
]×M ×N Iwwr (3.5)

Nrow is the total number of rows in an array, M is the number of experiments required

for each Iwwr and NIwwr is the total number of Iwwr needed to extrapolate Psw vs. Iwwr to

obtain cell retention. tsearch is defined in equation 3.4. Fig. 3.15 presents the performance

analysis in terms of time between [37] and EMACS. For testing retention for an array with

2000 rows, test scheme from [37] takes 16 mins to complete and proposed test scheme

takes 1 min with Nact. If we increase Nact to be 32 and 64, the test time reduces to 1
32

, 1
64

of the test time from [37].

Figure 3.15: (a) Retention time vs. localization level, (b) Area overhead w.r.t. array size
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3.3.2 Area overhead

Fig. 3.15(b) presents the area overhead of the proposed retention MBIST. For this analysis,

we did not use any column mux techniques to reduce number of test circuit by half. Each

column contains one set of test circuit including sense amp. described in Fig. 3.6 in the

analysis. We assumed that each cell size in the array is 30F2 to calculate the area overhead

of test circuit with respect to total array area. From Fig. 3.15(b), we deduce that area

overhead of test scheme decreases linearly with respect to number of rows in the array.

With 512 rows, area overhead is 3.44% of the total cell array size and it reduces by half

when number of rows doubles.

3.4 Array Level Testing and Challenges

The proposed test-scheme, albeit a practical and faster test methodology, is still a statistical

test enabled by an MBIST and suffers from measurement errors arising due to temperature

changes and process variations. Since retention times are heavily dependent on tempera-

ture, we propose (1) to use embedded thermal sensors within the subarray to qualify each

sub-array measurement with the corresponding temperature, or (2) insert idle states in be-

tween applying Iwwr and error detection process to maintain stable temperature. Another

potential problem in the test-scheme is the process induced mismatches between cells.

When a block of cells are written and read simultaneously, the IWWR is not equally divided

between the cells. This creates loss of accurate measurement of ∆ and needs to be ac-

counted for as a design guard-band. We carried out simulations of the EMACS test scheme

by running tests under temperature and process variations and trying to estimate ∆ on an

8KB subarray amidst all the non-idealities. Fig. 3.16(a) presents the estimated thermal sta-

bility of 8kb cell subarray and Fig. 3.16b shows the accuracy of the test methodology for

the collection of 8KB cells. It can be seen that the proposed scheme has bounded error

of < ±5% and 93.75% decrease in test-time with respect to [37] and demonstrates the
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effectiveness of the proposed test methodology.

(a) Colormap of estimated ∆ on 8kb array from
EMACS (b) Error in estimation of ∆
Figure 3.16: Estimated ∆ and Error of estimation from 8kb array using EMACS. The colormap
represents cells in a 64× 128 array.

3.5 Summary

This chapter presents a comprehensive test methodology for STT-MRAM arrays. An

MBIST architecture (EMACS) capable of collecting statistical data in an STT-MRAM sub-

array to estimate the thermal stability and retention is proposed. The proposed MBIST

shows 93.75% improvement in test-time compared to a brute-force approach [37] with less

that 5% estimation error.
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CHAPTER 4

FERROFET BASED IN-MEMORY PROCESSING ARCHITECTURE

Modern computing systems based on the Von-Neumann architecture rely on a clear dis-

tinction between logic and memory, and processes information by executing a sequence

of precise atomic instructions with periodic uploads to the memory. Such systems are

the foundation of the digital revolution which began with the demonstration of the self-

aligned planar-gate silicon MOSFET in the sixties and was accelerated by rapid advances

in transistor technology. However, in the last one decade, the volume of data collected by

distributed sensors and networks has grown exponentially. Ingesting, processing and ex-

tracting actionable intelligence out of this abundant data requires large amount of data traf-

fic between logic and memory blocks leading to the problem of memory bottleneck. This

requires novel ways of architecting the compute platform. For example, by embedding pro-

cessing elements in the memory sub-array itself in so called Processing-In-Memory (PIM)

architectures [39, 40, 41, 42], the traditional Von-Neumann bottleneck can be addressed

and significant acceleration and improved power-efficiency can be achieved. In order to

solve the memory bottleneck problem, current research focuses on architectures and mem-

ory arrays that can accelerate memory-based processing for machine learning applications.

Designs explore the use of SRAM arrays [84], crossbar arrays with ReRAMs [85, 86, 87],

memristors [88, 89] and spintronic MRAMs [90].

Apart from inference, one ubiquitous algorithm in signal processing and autonomous

systems is optimization – in particular, convex optimization. Least squares minimization is

such a template problem and is the focus of this research. We demonstrate that distributed

convex optimization via least squares method can be efficiently implemented in a iterative

dynamical system using a systolic PIM architecture, with breakthrough energy-efficiency

and performance. In particular, the iterative and parallel nature of memory-read makes the
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systolic PIM a good candidate for the proposed algorithm. This is further made possible by

a parallel development in device technologies– namely, the advent of multiple embedded

non-volatile memories (eNVM). Among all competing eNVM technologies, FerroFETs

have emerged as promising candidates due to their compact size, multi-level storage, nano-

second read-write and high energy-efficiency. We demonstrate that a systolic PIM architec-

ture, using FerroFET pseudo-cross-point array can solve least squares minimization with

21× improvement in energy-efficiency compared to an SRAM PIM architecture.

4.1 CONVEX LEAST SQUARE MINIMIZATION
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Figure 4.1: (a) 2D continuous function f(u,v) with non-uniform samples. (b) Spatial location of the
non-uniform samples.

Before discussing the systolic PIM architecture, we present a brief overview of dis-

tributed least squares minimization as a template problem, with wide-spread applications

in discrete signal processing. In particular, it is a common tool for signal reconstruction

where the process of sampling is non-uniform[91, 92] such as in Computerized tomogra-

phy (CT), magnetic resonance imaging (MRI) [93], radar signal processing, LIDAR sys-

tems etc. Consider (1) u and v are the horizontal and the vertical arguments of a continuous

signal. (2) x and y are the discrete coordinate indexes. (3) ωx and ωy are horizontal and

vertical spatial frequencies. Let f(u, v) be a band-limited signal in R2. The signal is

non-uniformly sampled and are stored in vector b, which are referred to as f(x, y). The
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objective is to use the non-uniform samples to obtain complete reconstruction of f(u, v) in

Nx ·Ny dimensional subspace. Fig. 4.1 shows an example of f(u, v) and the results of non-

uniform sampling. In this algorithm, we assume that f(u, v) lies in an Nx ·Ny dimensional

subspace. To reconstruct the signal accurately we have used 2D lapped orthogonal trans-

form (LOT) cosine-IV harmonics as the basis functions. A smoothing function g(u, v) is

applied to all the basis functions to avoid distortions. Equation (4.1) shows a general LOT

cosine-IV basis function. Here, f(u, v) is split into Kx by Ky frames and [kx, ky] represent

a specific frame, ωx and ωy indicate the harmonic in horizontal and vertical directions.

ψkx,ωx,ky ,ωy(u, v) =
√

2 · g(u− kx, v − ky)·

cos((ωx +
1

2
)π(u− kx))cos((ωy +

1

2
)π(v − ky)) (4.1)

Since f(u, v) lies in a Nx ·Ny dimensional subspace, it can be expressed as:

f(u, v) =

Nx∑
ωx=1

Ny∑
ωy=1

Kx∑
kx=1

Ky∑
ky=1

α(kx, ωx, ky, ωy)ψkx,ωx,ky ,ωy(u, v) (4.2)

The key point to note here would be that LOT cosine-IV has compact support and the

different frames are loosely coupled to each other. In fact, for samples in each frame, the

nontrivial dependence would extend only to the adjacent frames apart from itself. Accord-

ing to (4.2), we can write an equation for each sample and collect them into matrix-vector

product form and the coefficients can be found by solving the inverse-linear problem of

Az = b (4.3)

Here b is the sample vector, z is the coefficient vector obtained by stacking the coefficients

α(kx, ωx, ky, ωy), and A is referred to as the Grammian (Gram) matrix of the basis.

When the size of A matrix is large (as in most applications) a direct solution is not

possible. Therefore, alternatively we follow an iterative approach, the Jacobi method. A

general update of z in jth component at the kth iteration is given as (4.4), where B = ATA
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and c = ATb.

zkj = B−1
jj (cj −

∑
i 6=j

Bjiz
k−1
i ) (4.4)

Some observations are worth emphasizing: (1) To update zkj , only values from previous

iterations are need. (2) Columns of A are coupled only with neighboring frames, which

leads to simpler computation of Bji. Such a system maps naturally to a systolic PIM ar-

chitecture with (1) near neighbor connections and (2) embedded linear algebraic operators

on the periphery of the sub-array – as will be described in the following sections.

4.2 FerroFet PIM Architecture and End-to-end Tool Chain Development

FerroFETs (verilogA, experimental data)

FerroFET Memory array

(spice, verilog, verilogA)

Core: FeFET memory array, peripherals and 

communication unit (synthesized, verilog)

Processor: 64 cores, near neighbor connections 

(synthesized, verilog, C/C++)

System level: Processor below as an accelerator 

(GEM5, C/C++)

D
es

ig
n

h
ie

ra
rc

h
y

Figure 4.2: Flow-chart of design hierarchy from device to system.

In this research, we explore the FerroFET memory based processing in memory (PIM)

architecture in a hierarchical manner.A short description of each layer of the design ab-

straction is provided here. Fig. 4.2 provides the flowchart of the entire design cycle from

devices to the PIM architecture. The salient features are as follows:

1) There are 64 cores, 8 rows, with each row containing 8 cores. With respect to section II
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this implies Nx = Ny = 8.

2) Each core is capable of performing Jacobi-iterations with subspace dimensions, Kx and

Ky (horizontal and vertical dimensions) equal to 8. The subspace dimensions determine

the core-complexity and the accuracy of signal reconstruction. From our analysis we iden-

tified 8x8 subspace dimensions is sufficient for signal-processing applications in hand.

3) Analog to Digital converters (ADCs) are critical in terms of determining the latency and

power consumption. In order to explore the design space properly we have used analog-to-

digital converters (ADCs) with different resolutions and design constraints.

4) For the current design the B-coefficients (B−1
jj Bji) and z-coefficients (zkj ) are represented

in 12 bit fixed point representations where the MSB 6 bits represent the integer part and

last 6 bits represent the fractional part.

5) To model the system we have used Spice for simulating bit-cells, Verilog and VerilogA

models for array-level circuit architecture simulations and gem5 for architectural simula-

tions.

4.2.1 FerroFET cell structure
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Figure 4.3: FerroFET cell schematic (a) Conceptual (b) Transistor level implementation

Fig.4.3 shows the schematic diagram for a differential FerroFET memory cell. The
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cell, apart from storage, provides the facility to compute 12-bit by 3-bit in-memory mul-

tiplications. Unlike previous work[94][95][96], the proposed bit-cell allows both positive

and negative values for stored values as well as the inputs. During a read operation the WL

is fully-turned on, appropriate VGS values are provided through GL1 and GL2. The entire

row is read simultaneously through the current that is accumulated on SL. The accumulated

current corresponding to ∆G and ∆V is given by:

I1 = −∆V.(G−∆G), I2 = ∆V.(G+ ∆G) (4.5)

I = ∆V.(−G+ ∆G+G+ ∆G) = ∆V.(2∆G) (4.6)

The weights of B-coefficients are encoded as multiples of 2∆G and the inputs or z-

coefficients are coded as multiples of ∆V . Here, both the ∆G (B-coefficients) and ∆V (z-

coefficients) can be positive or negative; or in other words no additional peripheral structure

is required that is determined by the sign of the number being multiplied. The FerroFET

based product evaluation has been done by implementing the full design through spice

simulation.

This cell structure allows in-situ analog computation of multiply and accumulate (with

both positive and negative operands) in the memory array itself.

4.2.2 Core Architecture

Fig. 4.4 shows the block-diagram for the entire core and provides the detail structure of the

FerroFET memory array. Cores can be divided into three major blocks: (1) the FerroFET

memory array that computes vector dot product (sum of products), (2) peripheral blocks,

and (3) the communication block. The memory array and the peripheral blocks together

form the compute unit. Each core has a maximum of 8 compute units corresponding to

each neighbor. The details of the architecture and the sub-blocks are shown as a part of the
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Figure 4.4: Schematic of a typical core.

supplementary material. Here we discuss the salient features only.

FerroFET memory array structure

The hierarchy of the FerroFET memory array has been shown in detail in the Fig. 4.4.

In each iteration, the memory array performs matrix-vector product of B and z using a

pseudo-crossbar architecture.

Peripheral blocks

The current summing FerroFET subarrays have per-column analog-to-digital converters

(ADCs) to digitize the summation of the inner-products. The peripheral blocks include,

shift plus add (S+A) arrays, adders to collect the output of each compute unit, followed

by a subtraction block. Once these blocks finish their operation the z-coefficients are com-

puted and sent to the communication blocks. Each core receives inputs from the neigh-

boring cores. Digital to analog converters (DAC) produce voltage signals corresponding to

digital value of z-coefficients and these voltages are asserted on bit-lines (BL1, BL2) of the

memory array.

Communication unit

Communication between cores is done through an asynchronous mechanism. In this de-

sign, a 4-phase handshake protocol has been used because of reduced logical complexity

62



Table 4.1: Specifications of baseline Von Neumann architecture in 28nm CMOS process

Parameter Value

Simulation Mode Syscall Emulation
CPU Type DerivO3CPU
CPU Width 3
L1 Inst. Cache Size 64kB
L1 Data Cache Size 64kB
L2 Cache Size 2MB
Main Memory 32GB DDR4

and competitive power and area efficiency when compared with respect to a 2-phase proto-

col. The details of the protocol has been discussed in the Summplementary material.

4.2.3 System Architecture

The proposed architecture comprises of 8 rows with 8 cores in each. The entire design is

syntehsized in the 28nm CMOS process. To simulate and obtain latency and power esti-

mations for the baseline Von-Neumann architecture, we used the gem5 simulator[97] and

McPAT[98]. Table 4.1 shows the system specifications for the gem5 simulator. For each

iteration of the baseline Von-Neumann architecture, we collect a set of workload statistics.

The system configuration and the data for a single iteration are then run through McPAT to

obtain power estimations.

Simultaneously, we construct an SRAM PIM to compare its performance with the pro-

posed FerroFET based PIM architecture. In this design we use single read and write ports

and peripheral adders and multipliers to design a compute unit. The structure of cores in

the SRAM PIM are identical to that of the FerroFET PIM. The SRAM PIM prototype also

consists of 64 cores.
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4.3 Design Space Exploration

Fig. 4.5(a) illustrates how the average normalized error changes with respect to the number

of iterations for a varying number of bits per FerroFET cell. The average normalized error

is defined as the L2 norm of the difference of Z between the proposed architecture and a

corresponding floating point architecture. In our design, we use 2/3/4/7 bits/cell to store

12 bits(excluding sign bit) of fixed point (6 bits for integer and 6 bits for the decimal).

For example, the range corresponding to 2 bits with sign bit, i.e., [-4,3] is represented by

3bits/cell (due to the cell architecture). In our design the default ADC resolution is 16 bits;

and we also study the effect of 16 bit data-converters on the design. We use the linear part

of the FerroFET’s conductance, as discussed above.

We observe that the average normalized error increases as the number of bits/cell in-

creases as shown in Fig. 4.5(a). This is attributed to the fact that the use of a larger number

of bits/cell requires higher ADC and DAC bit resolution to maintain precision. average nor-

malized error from 7 bits/cell FerroFET array is much larger than 2,3,4bit/cell FerroFET

array mainly due to the loss of precision during data-conversion. A higher resolution from

the data-converters beyond 16b requires noise-shaping and advanced architectures that are

not amenable for low-power designs.

In order to quantify the effect of the finite resolution of the ADC/DAC on the fidelity

of the final results, we plot the average normalized error of Z in Fig. 4.5(b). Three cases

corresponding to the ADC/DAC resolution of 12 bits, 14 bits and 16 bits are studied. Here

the number of bits per FerroFET cell is considered to be 3. we observe that an ADC/DAC

of 14 bit resolution results convergence, whereas the quantization offered resulting for a 12

bit ADC/DAC is unacceptable. This leads to the design point where 14 bit ADC/DACs are

used in the peripherals.

So far, we have studied the effect of the peripheral circuits and storage architecture on

the convergence of the optimization algorithm. FerroFETs, in spite of their multi-state
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Figure 4.5: (a) Average normalized error in signal reconstruction via distributed least-squares
method as a function of the number of bits/cell of FerroFET. The ADC bit resolution is fixed to 16
(b) Average normalized error of Z in non-uniform sampling algorithm with respect to different ADC
bit resolution

storage capability, suffer from inherent non-linearities where the conductance does not

change linearly with the number of pulses. We analyze the effect of this non-linearity

in conductance on the average normalized error of Z in Fig. 4.6. The non-linearity in

conductance of FerroFET is modeled as a normalized sigmoid function.

G(x) =
βeαx

1 + eαx
+Gmin, β = Gmax −Gmin (4.7)

whereGmax andGmin are the maximum and minimum conductance values, α is an em-

pirically derived parameter. This is in contrast to the convex/concave functions that have

been used in [99][94][43] to model non-linearity. We note that in the case of FerroFETs

the sigmoidal function is (1) a better fit and (2) physically meaningful. The sigmoidal

conductance response manifests from the approximately Gaussian distribution of coercive

fields among individual domains within the ferroelectric. Therefore, an amplitude modu-

lated pulse scheme, which in essence, integrates across the domain distribution is expected

to produce sigmoidal characteristics.

Fig. 4.6(a) shows the nonlinear conductance of FerroFET as a function of the number of
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write pulses and (b) shows how non-linearity in conductance affects the average normalized

error. In this design the number of bits per FerroFET cell is assumed to be 3. It is shown that

if α is greater than 0.1, the average normalized error increases as the number of iterations

progresses. This illustrates that the use of FerroFETs in optimizations for PIM architec-

tures require linear changes in conductance during potentiation and depression. In [99],

the authors have shown that when resistive processing units (RPUs) are used in cross-point

architectures for solving inference in deep neural network architectures, the resistive units

need high degrees of linearity. We arrive at a similar conclusion when such resistive el-

ements are used in solving optimization problems. This motivates further research in the

device community to address the issue of non-linearity when PIM architectures are used

for solving linear-algebraic problems.

We study the effect of the effect of the design space on critical system parameters such

as compute time, energy, power and area. The number of bits that can be stored in a

FerroFET decides the FerroFET array size. Our baseline design uses a cell with 4 bits/cell.

We also consider the case of 5 bits/cell where we need 64x256 memory cells (8 subarrays

of 64x32 dimension) to store all the B-coefficients. As we decrease the number of bits/cell,

the total number of memory cells required increases. For example, a design with 3 bits/cell

requires a total memory size of 64x384 cells (12 subarrays of 64x32 cells per subarray),

and so on.

Similarly, the DAC resolution also affects the compute unit area and other critical met-

rics. In this architecture, the multi-stage DAC resolution can be configured to 2, 3, 6 and

12 bits. The main role of the DAC is to provide analog values of the z-coefficients which

are represented in a 12-bit fixed point format. As we reduce the DAC resolution, there are

two options that can be pursued in the design: (1) duplicate the subarrays to compute in

parallel and maintain the compute time at the expense of area overhead (2) perform the

computations sequentially. The sequential computation can be explained by the follow-

ing simple example. For a 6 bit DAC we first evaluate the sum with 6 LSB bits of all
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the z-coefficients and in the next cycle we evaluate the sum with the 6 MSB bits for all

z-coefficients and eventually add them with appropriate scales using shift+add blocks. We

define the first approach as parallel-computation which results in higher throughput but

lower area-efficiency and the second approach as sequential-computation which consumes

lower area at the cost of lower throughput. Another important fact to note is that decreas-

ing the number of bits/cell or the DAC resolution reduces the dynamic range of the read

current out of SL lines resulting in simpler peripheral design. In our case studies, we have

optimized the read peripheral circuits and ADCs based on the DAC configuration [100].
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Figure 4.6: (a) Nonlinear conductance of 4bit/cell FerroFET (b) Average normalized error of as a
function of the nonlinear conductance of FerroFETs. (4 bits/cell FerroFET and 16 bit ADCs are
considered)

Fig. 4.7 and Fig. 4.8 illustrate the compute time and energy as the DAC resolution and

number of bits/cell are varied for the parallel-computation and sequential-computation ap-

proach, respectively. It can be clearly seen from the two figures that in case of a sequential

approach the computation time is 2-3X higher when compared to the parallel-computation

approach. For parallel-computation (Fig. 4.7a-d), we observe a trend that the compute time

goes up as the DAC resolution increases. This is because the ADC starts to dominate the

system latency. As we increase the DAC resolution, to maintain the same quantization

error for the read current a higher resolution ADC is required and ADC latency increases
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super-linearly as the resolution increases. In Fig. 4.7a and Fig. 4.7b, a monotonic decrease

in energy is noted as the DAC resolution increases. This is because for both cases, the

parallel memory-array and associated peripheral hardware overhead is the dominant factor,

which decreases as the DAC resolution increases and eventually causes a reduction in the

overall energy consumed. However, for Fig. 4.7c and Fig. 4.7d that have higher bits/cell (4

and 5 bits respectively) the ADC overhead starts to be significant. As mentioned before, as

the DAC resolution for these two cases increase, we have to switch to a higher resolution

ADC that adds to the energy consumed and off-sets the improvement due to reduction of

the parallel subarrays and adders.

Fig. 4.8 exhibits an increasing trend of compute time as the DAC resolution and bits/cell

decrease. With less bits/cell and DAC resolution, it results in multiple iterations of com-

pute cycle since the number of sub-arrays are fixed. Due to the energy trade off between

peripheral units and the ADC (discussed above), the trend for energy dissipation is similar
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Figure 4.8: Compute time and energy behaviour of the compute unit versus DAC resolution for
the sequential-computation approach and storage per FerroFET memory cell is (a) 2bit/cell (b)
3bits/cell (c) 4bits/cell and (d) 5bits/cell.

to Fig. 4.7. Also it can be noted that sequential approach consumes higher energy than the

parallel approach due to the multiple iterations that are required. The comparison with an

SRAM PIM structure has been shown using a dotted line in each of the histograms. The

proposed design outperforms SRAM PIM structure in terms of compute time and energy

for majority of design cases, as has been shown.

Fig. 4.9 shows the total power of the computation unit when the number of bits/cell and

DAC resolution are varied for the parallel and sequential cases. From both Fig. 4.9(a) and

Fig. 4.9(b) we observe that power consumption reduces as we increase either the number

of bits/cell or the DAC resolution. From this we conclude that the total power consumed

is determined by both the memory sub-arrays and peripheral logic. As the number of

bits/cell or the DAC resolution increase, we observe a reduction in number of Shift+add ar-

ray stages and memory subarrays, and this reduction causes an overall reduction in power.

Further when Fig. 4.9(a) and Fig. 4.9(b) are compared to each other the parallel computa-
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tion approach consumes higher power because of additional memory array and associated

peripheral hardware requirements.

Fig. 4.10 shows the total area of the computation unit when the number of bits/cell and

the DAC resolution are varied for the parallel and sequential cases. For the parallel compu-

tation approach (Fig. 4.10(a)), the area is larger than the sequential approach (Fig. 4.10(b))

since the computations are executed in parallel with a higher number of memory subarrays

and peripheral blocks. As the DAC resolution and the number of bits/cell increase the total

area increases because the memory subarray, shift+add and multi-stage adders required are

lesser in number, and they dominate any increase caused by the ADC area. For all the fig-

ures the dotted lines show the performance of a corresponding SRAM+ALU Von-Neumann
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architecture (baseline).

Table 4.2 presents the architectural results of compute time and energy for the base-

line, SRAM PIM and FerroFET PIM architectures of 64 cores. FerroFET PIM shows 3x

improvement in compute time and 21x improvements in energy efficiency compared to

SRAM PIM.

Table 4.2: Compute time and energy comparison in different architectures

Architecture Baseline SRAM PIM FerroFET PIM Performance
Compute Time[s] 83µ 1.83µ 0.57µ 3x wrt SRAM PIM

Energy[J] 1.36m 460µ 21µ 21x wrt SRAM PIM

4.4 APPLICATIONS

As examples of prototypical problems that can be solved using the proposed algorithm and

architecture, we present two applications. (1) Signal reconstruction from 1D EEG Signals

and (2) Recovery of CT Images used in medical imaging.

Typical examples have been shown in Fig. 4.11(a) and (b). Both the Peak signal-

to-noise ratio (PSNR) & Structural similarity (SSIM) are shown in Fig. 4.12. We note

that increasing the sub-space dimension increases the fidelity of the reconstruction process.

This justifies the use of a subspace dimension of 8× 8 for the current applications in hand.

It also shows the power of iterative algorithms in systolic PIM architectures for solving

distributed convex optimization.

4.5 Summary

This chapter presents a systolic PIM architecture based on analog FerroFet pseudo-crosspoint

arrays with in-situ computation to enable distributed convex optimization via least square

minimization. Key contributions of the research are:

• A FerroFET based cell based which allows both positive and negative operands for

matrix operations
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(a)

(b)

Figure 4.11: Reconstruction steps. (a) 1D Example: Recovery of EEG Signal Profile. (b) 2D
Example: Brain Computed Topography Recovery.
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Figure 4.12: Peak signal-to-noise ratio (PSNR) & Structural similarity (SSIM). (a) 1D Example:
Recovery of a non-uniformly sampled 1D signal from an EEG probe. (b) 2D Example: Recovery of
a sampled image from the CT scan of a brain.

• A FerroFET based Processing-In-Memory architecture for solving a least squares

minimization

• Develpment of a complete end-to-end tool chain and demonstration of 21× in energy

efficiency and 3× in compute time compared to an SRAM based Processing- In-
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Memory (PIM) architecture

We demonstrate that cross-bar resistive architectures are not only capable of accelerat-

ing machine-learning algorithms, but also distributed optmizations in a systolic array.
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CHAPTER 5

STT-MRAM BASED SYSTEM FOR REINFORCEMENT LEARNING ON A

DRONE

In this chapter, we propose a transfer learning (TL) followed by reinforcement learning

(RL) algorithm mapped onto a hierarchical embedded memory system to meet the stringent

power budgets of autonomous drones. The power reduction is achieved by 1. TL on meta-

environments followed by online RL only on the last few layers of a deep convolutional

neural network (CNN) instead of end-to-end (E2E) RL and 2. Mapping of the algorithm

onto a memory hierarchy where the pre-trained weights of all the conv layers and the first

few fully connected (FC) layers are stored in dense, low standby leakage Spin Transfer

Torque (STT) RAM eNVM arrays and the weights of the last few FC layers are stored

in the on-die SRAM. This memory hierarchy enables real-time RL as the drone explores

unknown territories and the system only reads the weights from eNVM (that are slow and

power hungry to write otherwise) for inference and uses the on-die SRAM for low latency

training through both write and read of the weights of the last few layers. The proposed

system is extensively simulated on a virtual environment and dissipates 83.5% lower energy

per image frame as well as 79.4% lower latency as compared to E2E RL without any loss

of accuracy. The speed of the drone is improved by a factor of 3X due to higher frame rates

as well.

5.1 Introduction

Over the past decade, applications such as reconnaissance, surveying, rescuing and map-

ping with Unmanned Aerial Vehicles (UAVs) or drones have achieved substantial success.

For all these applications of UAVs, navigating autonomously in varied environments with

camera based inputs is considered a key enabling feature. Recently, reinforcement learning
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(RL) on robotic tasks such as real-time drone navigation and collision avoidance has been

extensively explored[101] [102]. However, online, real-time RL continues to be compu-

tationally challenging despite its recent success and its bio-mimetic approach. In typical

RL systems, a deep convolutional neural network (CNN) is used to achieve a functional

mapping images (system states) to the best possible action. In the case of RL for real-time

collision avoidance, a major latency bottleneck arises from the need to train a CNN with

the current image frame, which must be completed before the next image frame is captured

[102][103].
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Figure 5.1: (a) Definition of minimum distance required for obstacle avoidance (dmin). dframe =
distance that drone moves between frames. (b) Frame per second vs. speed of a drone for sam-
ple indoor and outdoor environments (c) dmin setting for different environment and minimum FPS
needed for obstacle avoidance for different environments

This is illustrated in Fig. 5.1 where we show the relationship between the speed of a

drone and the required frame per second (fps) of the image acquisition system. As shown

in Fig. 5.1(a), For a given velocity of the drone, we can calculate the minimum fps require-

75



ment of the camera for collision avoidance based on the corresponding distance traveled

between two frames (dframe), and the minimum distance between the drone and its obsta-

cles (a measure of clutter in the environment). From Fig. 5.1(b), we observe that the fps

requirement increases as the speed of a drone increases. Since the minimum distance be-

tween a drone and its obstacles is lower in typical indoor environments compared to outdoor

environments (i.e., the indoor environment is more cluttered than outdoor environments),

drones in the indoor environment require higher fps compared to outdoor environments.

As the fps increases, the time available to perform real-time RL decreases necessitating

high-performance of the computing system. For small power-constrained drones, it re-

quires significant hardware resources to execute the training process in RL within the la-

tency and power targets. Further, embedded non-volatile memory (eNVM) [104][105][3]

has emerged as a potential candidate for DRAM replacement for its high density and low

standby power. This is particularly useful to store model weights of CNNs that can achieve

RL in embedded systems, such as small drones. However, all eNVM technologies, includ-

ing Spin Transfer Torque Magnetic RAM (STT-MRAM) exhibit high write latency and

energy and does not meet the write energy and latency targets for real-time RL.

To address this fundamental challenge, we propose an algorithm-hardware co-design

where we show:

1. Context-aware transfer-learning (TL) augmented with RL. Before deployment, an agent

(drone) is trained in complex meta-training-environments (indoor and outdoor) in a virtual

simulation platform. During training, the agent captures an image of an environment (called

state) and a CNN provides the optimal action based on the current state to maximize some

notion of long-term reward. Training the policy network is accomplished via RL. Once

the system reaches the target performance, the trained weights of CNN in complex meta-

environments are ready to be transferred to a drone (Transfer Learning) at the time of

deployment.
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2. At the time of deployment, the correct meta-model (indoor or outdoor model) obtained

from TL is downloaded to the drone. In our studies, we consider a prototypical embedded

platform consisting of a large, stacked-eNVM array and a smaller ( 30 MB) on-die SRAM.

As a part of this study, we consider spin-transfer-torque (STT-RAM) as the NVM of choice.

A part of the model (last few layers of the neural network) are stored in the on-die SRAM

and rest of the model is stored in STT-MRAM stack.

3. After deployment, the drone performs real-time RL; the drone first reads the weights

stored in NVM to perform inference to determine the best action (forward propagation of

the CNN) based on the current state (acquired image). Once the drone receives the next

state after the execution of inferred action, RL evaluates the error and train the weights in

CNN. But instead of learning all the weights in every layer of the CNN, the system only

trains the last few layers of CNN whose weights are stored in the on-die SRAM. This results

in only read accesses from the e-NVM array during flight (inference/ forward propagation

of data) and all the necessary write operations are executed on the on-die SRAM. In the

process of inference (forward propagation of data), the system only reads the weights of

the model from the eNVM to the SRAM. The weights of the last few layers stay in the

SRAM and the updated weights of the last few layers are written to SRAM at the end of

training. We also show a typical case where a small portion of the weights stored in the

STT-MRAM array is updated in real-time. Since the convolution layers of the network

stores the coarser features of the environment (obtained from TL), the proposed algorithm

works successfully as the drone needs to learn only the environment specific finer features

(online RL) in real-time. We show that the using TL followed by environment-specific

RL over the last few layers achieves comparable accuracy as E2E RL. While E2E RL on

an environment is not feasible with NVM based embedded platforms (in terms of latency

and energy requirements), our proposed solution archives real-time operation with 79.4%

(83.45%) decrease in latency (energy) in PE array compared to a baseline E2E RL system.

Due to the stringent power constraints of a drone, the system employs STT-MRAM instead
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of DRAM because using STT-MRAM can save the amount of energy used for refresh

operation from DRAM since refresh operation is not required in STT-MRAM. With 83MB

of weights stored in STT-MRAM, dissipated energy over 1000 iterations of STT-MRAM

presents 58% decrease compared to the energy dissipated from DRAM in the case of on-

line training of last 4 layers.

5.2 Reinforcement Learning for Drone Navigation

5.2.1 Basics of Reinforcement Learning

Before going into the details of the platform architecture, let us briefly review RL in the

context of autonomous flight in small form-factor drones. Reinforcement learning (RL),

inspired by behavioral psychology, learns by interacting with the environment in discrete

time steps [101][106][107][108]. As opposed to supervised learning, RL doesn’t have

direct access to the data labels. The labels for RL can be thought of as dynamic and are

generated and updated online until convergence is achieved. The agent is placed in the

training environment and is allowed to take actions to explore the environment. With every

action taken, the agent is presented with a reward based on a user defined goal. The reward

quantifies the underlying goal; if the agent took an action that was in accordance with

the goal, the reward would be higher and vice versa. The objective of RL is to learn a

control policy that predicts actions maximizing these long-term rewards. For the case of

autonomous flight, the RL problem will be formulated as follows. The goal is to avoid

crashing into the obstacles, hence the notion of distance between the drone and the nearest

obstacle can be used as a reward. A set of feasible actions is defined for the action space

(in our case moving forward, moving left and moving right). The agent is only allowed

to select among these set of actions. Resized RGB images from the drone’s camera are

used as states. Once the goal, state and action space are defined, the agent is placed in the

training environment. At time step t, the drone observes the current state st, takes an action

at from the action space and moves to a new position and observes a new state st+1. These

78



current and new state pair along with the actions taken are used to generate a reward rt (st,at,

st+1). For each step, these four quantities together define an RL data-tuple (st,at,st+1,rt). The

objective of RL is to predict set of subsequent actions, leading to the maximization of the

long-term discounted return

Rt =
T∑
i=t

γi-tri

where, γ is the discount factor). This is done by converting the data-tuples into sets of

training pairs. The effectiveness of taking an action at from a given state st is quantified by

its corresponding Q-value Q(st,at). The greater the Q-value, the more favorable the action

is. These Q values are updated online using the Bellman Equation

Q(st, at) = r + γmaxaQ(st+1, a) (5.1)

The training pairs (st,Q(st,at)) are then used as the input-output pairs for training the net-

work. At any given state, the network predicts the action with the maximum Q value

a′ = maxaQ(st, a). RL for obstacle avoidance and path-planning has been successfully

applied in prototypical robotic vehicles [109][110] and in Parrot AR drones [111] and in-

terested readers are pointed to [110] for a detailed overview.

5.2.2 RL in Camera Based Navigation in Drones

We focus on the implementation of a camera based drone system that performs end-to-end

navigation via collision avoidance (long term goal) as shown in Fig.5.2. The navigation

problem is mapped to the RL problem as follows. The state at time instant t, st ∈ S is the

image frame of the environment from the camera. At any given state, the drone takes any

action at ∈ A where A is the action space. In this proposed system, the action space is

limited to have five values A =0,1,2,3,4. 0 in action space A indicates that the drone moves

forward, 1 and 3 mean that the drone turns left with turn angles 25 degree and 55 degree

respectively. Similarly, 2 and 4 means turning right with turn angles 25 degree and 55
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Figure 5.2: Reinforcement Learning(RL) network architecture for camera based navigation in
drones

degree. These five actions are sufficient for the drone to navigate in its surrounding. When

the image frame is captured from the stereo camera, a disparity map is used to generate an

approximate depth map of the image frame [102]. From the generated depth map, a reward

is generated in a manner described in [103]. In the process of reward generation, the depth

map is segmented into smaller window at the center and the average depth of this center

window correlates to the value of reward. Therefore, the reward becomes smaller when the

drone is closer to obstacles because the average depth in the center window is less. The Q

values for the states are estimated using a deep convolutional network (CNN). The image

frame obtained from the camera is the state at time t, st ∈ Rnxnwheren = 224 and becomes

an input to the CNN.

In order to have the network architecture optimized for autonomous navigation, we

modified the AlexNet model [112] and used it as the CNN. It consists of 5 convolutional

layers and 5 fully connected layers. The detailed network architecture and parameters are

shown in Fig.5.3. During the online RL when the drone is flying, the CNN learns the

weights of the model and keeps on improving the functional mapping from the state to the

action.
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Layers # neurons # weights % total weights
% cumulative 

weights
FC1 9216 37752832 67.18 93.33
FC2 4096 8390656 14.93 26.14
FC3 2048 4196352 7.468 11.21

FC4 2048 2098176 3.734 3.743

FC5 1024 5125 0.009 0.009
output 5

sum 18437 52443141

Filter = 11x11x96, followed by 
ReLU, norm, Maxpool

Filter = 5x5x256, followed by 
ReLU, norm, Maxpool

Filter = 3x3x384, followed by ReLU

Filter = 3x3x256, followed by 
ReLU, Maxpool
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Figure 5.3: Reinforcement Learning(RL) network architecture for camera based navigation in
drones. (a) Modified AlexNET [112] for the proposed system (b) 3 configurations where 4,11 and
26% weights are learnt in real-time. This is in contrast to E2E RL, where the entire network is
learnt in real-time.

5.2.3 Challenges of End-to-End(E2E) RL in Embedded Systems

In a true biologically-inspired system, an autonomous drone should learn to navigate via

E2E RL, where the reinforcement learning algorithm trains the weights in every layers of

the CNN [103]. From starting with randomly initialized weights of the model, the drone
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should learn the model that efficiently maps state to action from iterative interactions with

the environment. Although feasible [103], this faces two fundamental challenges:

1. During exploration, the drone will take random actions and they are often incorrect ac-

tions, especially at the beginning of the flight. This can lead to collisions with obstacles.

The sequence of incorrect action that lead to collisions can cause damage to the drone or

the environment.

2. Further, E2E RL is computationally extremely challenging. Since E2E RL requires

training of all weight parameters in every layers of CNN, it is almost impossible to achieve

autonomy via RL in small form factor drones, without additional off-board infrastructure

[103]. Improvements in both design [112][2] as well as technology [7][11][5][14][113][12]

continue to make CNNs a reality on resource constrained edge-devices. In particular,

eNVM is a promising replacement for DRAM to achieve high energy-efficiency. Among

competing eNVM technologies, such as RRAM [11][12], PCRAM [14], FerroFETs [113],

STT-MRAM [5][4] is considered more mature and exhibits high density, endurance and

nano-second read speeds. However, the write latency and energy of STT-MRAM is expen-

sive and is a major bottleneck in real-time RL and continuous weight updates.

5.3 Proposed Approach Using Transfer Learning(TL) with Real-Time RL

In transfer learning, pre-existent knowledge of the source tasks from one or more domain

is used to learn target task in another domain. Transfer learning approach to solve vari-

ous problems in deep learning has been there for over a decade. It has been used in the

past for the purpose of mitigating convergence issue, faster convergence, improving tar-

get performance, reducing the time of convergence and addressing the issue insufficient

data [114][115][116], where the weights of the deep network learnt for one problem is

used as initial weights for some another similar problem. The network is then fine-tuned,

end-to-end on the new data set converging faster. It is a well understood fact that [117],

for a complex enough task, deep network’s performance increases by increasing the num-
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ber of hidden layers (given the amount of training data scales too). So, for an acceptable

performance, the network should be deep enough, which comes with additional computa-

tional cost. This increased computational cost requires heavy computational resources (like

GPUs) and cannot be executed on a resource constrained system/edge node (say a drone).

To the best of our knowledge all the TL papers in the past discuss TL as tool/approach to

address the above-mentioned issues without worrying much about the computational cost

required to train a deep neural network. In this paper we show we can use Transfer learn-

ing, to segment a deep network into trainable and non-trainable part reducing the training

computations, for underlying task without compromising too much on its performance. We

use transfer learning with real-time RL as an algorithmic solution that maps to a hierarchi-

cal memory system consisting of stacked STT-MRAM and on-die SRAM. This alleviates

the challenges of E2E RL and enables a practical hardware solution to realize autonomous

flight with environment specific RL. In our proposed system the agent learns on an embed-

ded platform in the following steps:

1. The CNN is first trained in complex meta-environments in simulation. Once the

training is finished, the pre-trained CNN model is downloaded to the system memory as a

meta model. We explore two types of meta-environments: outdoor and indoor. Other types

of environments can be added depending on the types of real environments that drone is

expected to be deployed in. 2. The downloaded meta model is located in STT-RAM and

the weights of the last few layers of the CNN are transferred to an on-die SRAM. During

real-time learning, the system reads the weights of each layer of STT-MRAM to SRAM for

inference and once inference is finished, we train the weights of the last few fully connected

(FC) layers of the model and write the updated weights back to the SRAM. By performing

inference with the weights from TL and training the last few fully connected layers of the

network via RL, we can reduce the latency and energy of the system significantly. This ex-

tends the drone’s battery life and enables the system to support a higher speed as illustrated
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in Fig. 5.1. Fig. 5.3(a) presents three different architectures for training. Based on the

on-die SRAM capacity, we can store 26% (FC2+FC3+FC4+FC5), 11% (FC3+FC4+FC5)

and 4% (FC4+FC5) of the total weights of the network in the SRAM. The procedure of

on-line training is described in Fig. 5.3(b). In order to complete one training iteration with

batch size of N images, the system performs N number of computation, which is defined

as taking one image at a time and complete forward and backward propagation. In the fol-

lowing sections, we compare the system performance of TL followed by RL, which train

the last 2/3/4 layers of the network, and E2E learning (baseline), the algorithm that trains

all parameters in the network.

5.4 Proposed System Architecture

The system architecture includes a logic die that contains of a systolic array of processing

elements [112] and a global buffer (on-die SRAM) and a STT-MRAM stack on top of

the logic die (Fig. 5.4). The architecture of the sub-array organization and local/global

IO of STT-MRAM stack is same as the DRAM-based High Bandwidth Memory (HBM)

architecture from JEDEC [118]. The DRAM subarrays of DRAM-based HBM have been

replaced with STT-MRAM. By using STT-MRAM in the DRAM-based HBM architecture,

we provide a realistic and emerging platform for an embedded system with high-bandwidth

IO, based on HBM JEDEC specification [118]. A system with camera, image processing

DSP module and DRAM buffer memory is integrated on a substrate (which can be a silicon

interposer or a package substrate) as shown in Fig. 5.4(a). The connections between each

module and the logic die are assumed to be DDR6 links.

5.4.1 Off-chip to On-chip Data Movement

The camera with a DSP module and buffer-DRAM are located off-chip on a shared sub-

strate. Once an image is captured by the camera, the DSP module resizes the image to 224

by 224 as described above and stores the output to a DRAM memory buffer. The image is
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Figure 5.4: (a) 3D view of the hardware platform (b) System architecture and parameters as ex-
tracted post-synthesis in 15nm Nangate PDK.

serially read from DRAM buffer to the logic die as input to the CNN and stored in the on-

chip global buffer. During the inference process, the image from global buffer is distributed

to the register files in the PE array.

5.4.2 On-chip System Architecture with Stacked STT-MRAM

The logic die that contains of the spatial PE array and a global buffer located on a common

substrate [118] and 3D-STT-MRAM [105][3] is stacked on top of the logic die in the same

way as DRAM-based HBM is currently stacked. STT-MRAM stack is used as a weight

storage and it contains all weights from each layers of the network. The systolic array

of PE has 1024 PEs in total ( 32 rows, 32 columns) and the bit width of the connections
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between PEs is 128 bit. One a PE is connected with 5 nearby PEs (top, bottom, left, right

and upper right) [112][2]. The bit width of the connections between the global buffer and

the 32 PEs at the first row of the PE array is 4096 and the global buffer can broadcast the

same data to each PEs in the first row. STT-MRAM stack has 1024 I/O connections (each

I/O has 2Gbit/s of bandwidth) with the global buffer [118]. Each PE has a register file,

8 MACs for convolution and vector-matrix multiplication and 8 comparators for rectified

linear and maxpool operations. Fig. 5.4(b) shows a complete list of system parameters.

The whole system is designed, synthesized and in the 15nm nangate technology [119]. All

results discussed here are post-synthesis.

5.4.3 Mapping the CNN Model to the Memory System

CNN from
 RL network

Weights for CONV layers

Weights for FC layers List of weights in AlexNET

A. Slow & more
energy for R/W
B. Non-volatile

Figure 5.5: Mapping the weights of the proposed CNN (modified AlexNET) to stacked-STT-MRAM
and on-die SRAM in the system

Fig. 5.5 presents how the model weight of the CNN is mapped to the memory system

comprising of the stacked-STT-MRAM and on-die SRAM. The size of on-chip SRAM-

based global buffer must be large enough to store the weights of the last 2/3/4 fully con-
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nected layers of the network since the system performs real-time update of these weight

parameters inside the global buffer. Since each parameter is 16 bit fixed point, the size

of the SRAM should be 29.38MB if we store all weights from the last 4 fully connected

layers. In the proposed design, we store the weights from the last three layers to the global

buffer and the sum of all weights of the last three layer is 12.6MB. The rest of the weights

from all convolutional (CONV) layers and the first and the second fully connected layers

(FC1, FC2) add up to 100MB and they reside in the STT-MRAM array. In addition to this,

the weight and bias gradients of the last 3 layers of the network are stored in the global

buffer for the weight update in RL. Once we have the sum of gradients of weights and bias

after processing a batch size of N, we need to update the weights as shown in a manner

shown in Fig. 5.3(b) and this requires an additional 12.6MB of global buffer. In summary,

the global buffer uses 25.2 MB of space to store weights of the last three layers for forward

propagation and the sum of the weights and bias gradients from the last three layers used

during backpropagation. Lastly, scratchpad for loading/storing intermediate results, input

and weight parameters to the PE array takes 4.2MB of space in the global buffer. In sum-

mary, we need on-chip SRAM size to be 29.4MB, which is at-par with the on-die SRAM

capacity of practical embedded systems.

5.5 Forward Propagation Through the CNN

5.5.1 Forward Propagation in Convolution (CONV) layers

A row stationary dataflow architecture is used in the systolic array for convolution during

forward propagation [120]. The basic steps are:

1. Input image to the convolution layer is loaded from the global buffer to the local register

file (RF) in each PE. Once the input image is stored in the RF of each PE, the row of the

image is transferred to the nearby PEs by using diagonal connection to maximize data reuse

within the PE array.

2. Each row of filter weights is broadcasted from the global buffer to the RF in each PE in
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the same row of the PE array.

3. MAC units inside each PE computes row-wise convolution of image row and filter row

and the result of the convolution (pSUM) is stored in the RF.

4. pSUM from each PEs in the same column are accumulated vertically to the PE in the

first row and the accumulated values from the first row of the PE array are written back to

the global buffer

In order to effectively utilize the hardware resource for computing convolution, we have

three ways of partitioning PE arrays into segments based on the height of the filter in

CONV layers.

Based on the partitioning, the data mapping of the filter weights and the input are de-

termined. The major factors that determine the partitioning the PE array are the size of

RF inside the PE, the dimension of PE array and the filter size of the CONV layers. Fig.

5.6 shows all types of partitioning of PE arrays and the corresponding data mapping tech-

niques. Fig. 5.6a shows how Type I partition is applied to the first convolution (CONV1)

layer, whose filter dimension is (11,11,3,96) and stride is 4. In CONV1, each row of filter

and image data with all input channels can fit into the RF of each PE in the same row. The

PE array is partitioned into two segments whose dimensions are 32 x 11. Since the height

of the filter is the same as the height of the segment, each row of the filter is mapped to

each row of the PEs in the segment. The same image data is loaded to two segments of

the PEs and filters with 24 different output channels are mapped to each segment. Depend-

ing on the RF size, the number of output channels of the filters can vary. The number of

columns inside the segments is equal to the number of rows of images that the system can

convolve per cycle. For example, TYPE I configuration produces the convolution results

of 135 rows of input image in a single cycle. (135 = 32*stride + filter height) because the

number of columns in the segment is 32. Fig. 5.6b presents the TYPE II mapping scheme

of data for the second convolution layer (CONV2). In this case, the RF in a PE cannot fit

the row of the image and the filter with all input channels because the data size is too large.
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Figure 5.6: Strategies for mapping weights and data for processing the convolutional layers

Therefore, TYPE II divides input channels of filter and images into two parts and loads

them into segments of the PE array. Since the filter height of CONV2 is 5, the dimension

of each segment is 27 x 5 and the PE array is partitioned into 6 segments. Instead of using
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all 32 columns of PE, 27 columns are utilized because each column generates one row of

convolution output. The same image data is mapped to all 6 segments and each segment

is mapped with the corresponding filters and each segment generates distinct outputs at the

end of computation. Fig. 5.6c presents the TYPE III mapping scheme of data for CONV3.

The main difference between TYPE II and TYPE III mapping is the existence of set, which

is defined as a cluster of PE segments. Since the filter width and height decreases from

CONV2 to CONV3, we can map 2 sets of 10 segments (each segment dimension is 3 x 10

PE) to PE array for CONV3. In the TYPE III mapping scheme, the segment size of the PE

is 3 x 13 because the filter dimension is (3,3) and the stride is 1. Because the dimension of

the segments is lower, we partition the PE array into 2 sets of 10 segments (total 30x26 PE

array). Due to the high number of input channels of input and filter to CONV3, we split the

input channel of filter and inputs into two parts. Unlike TYPE II, the two parts of inputs

and filters are mapped to each set of the PE array, which enables us to map the input and

the filter with all the input channels. After completing pSUM in step 4, the convolution

results in the first row of set 2 must be transferred to the first row of set 1. For example, the

output from PE at 14th column (PE in the 1st column in set 2) must be transferred to the

PE in the 1st column in set 1. Then the two results from set 1 and set 2 are added together

to complete the convolution. Since the filter height and width (3,3) in CONV4 and 5 are

the same as the filter height and width in CONV3, the TYPE III mapping scheme is used

for CONV4 and 5 as well.

5.5.2 Forward Propagation in Fully Connected(FC) Layers

Vector-matrix multiplication is the core computation in the forward propagation of Fully

Connected layers. Fig. 5.7 describes how the input vector and the weight matrix are

mapped to each PE in the array to perform vector-matrix multiplication. Once the values of

the weight matrix are loaded to the PE array, the input vector is loaded to the first column

of the PE array. Then the values in the input vector are propagated row-wise in the PE
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(a) (b)

Figure 5.7: (a) Row-wise vector propagation in PE array for calculating pSUM (b) Vertical pSUM
accumulation for vector-matrix multiplication in forward propagation of FC layers

array and we perform multiplication in each PE. The outcomes of computation (pSUMs) in

each PE in the same column are propagated and accumulated vertically. The accumulated

results in the first row of PE array are transferred to the global buffer.

5.6 Backpropagation and Gradient Descent

For TL followed by online RL, we train last 2/3/4 FC layers of the network. Backprop-

agation consists of two major computational steps: finding gradients of weights and their

biases. Since we use our system to serially process one image at a time for training, the

system must store the sum of weight and bias gradient of each image in the global buffer.

5.6.1 Backpropagation architecture of Fully-Connected Layer

The gradient of the weight is the result of multiplication of every vector element in a layer

of neurons and every vector element in the gradient of the loss function computed with

respect to the neurons in previous layer. Since there is no pSUM accumulation involved

in calculating weight gradients, the results of multiplication of each PE are directly trans-

ferred to global buffer. The gradient of the bias in an FC layer is calculated by multiplying

the vector of the gradient of Loss with respect to neurons in previous layer and the trans-
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(a) (b)

Figure 5.8: (a) Column-wise vector propagation in PE array for calculating pSUM (b) Row-wise
pSUM accumulation for vector-transposed matrix multiplication in backpropagation of FC layers

posed weight matrix. The structure of the systolic array enables vector-transposed matrix

multiplication without transposing the matrix itself, in a manner describe in [120] Fig. 5.8

describes the structure of vector-transposed matrix multiplication in the PE array. The vec-

tor elements are propagated downwards in each column of the array and the pSUM from

each PE are accumulated row-wise. The computation is complete when PEs in the last

column transfer their results to the global buffer.

5.6.2 Backpropagation architecture of CONV

The backpropagation of CONV layers only happen when evaluating the E2E RL in the

system, which is our baseline design. For comparison to the baseline, we benchmark the

backpropagation architecture for the entire network. For CONV layers, we use GEMM

[121], where the system first reads the data from the STT-MRAM array to the logic die, and

expands the inputs to each CONV layers in a 2D matrix. Once the expansion is complete,

the backpropagation of CONV becomes same as the backpropagation of FC layers. After

the weights of the CONV layers are updated, we write the weights back to the STT-MRAM

array. We account for the additional on-chip SRAM requirement for storing the results of

the intermediate compute steps.
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5.7 Simulation Setup

5.7.1 Hardware Architecture Simulation

We used NanGate 15nm FreePDK cell library to evaluate the hardware system performance

[119]. We perform synthesis and place-and-route of the entire system and the results cited

here (along with Fig. 5.4) are obtained post-synthesis.

5.7.2 Simulation Setup

The algorithm is tested on a simulated environment with the dynamics of realistic drones.

Simulations were carried out on two types of simulated environments, Indoor and Outdoor.

For each of the two categories, complex meta-environments and separate test environments

were designed to train and test the performance of the proposed methodology respectively.

We used the Unreal Engine 4 (UE4), used for video game development to design the sim-

ulation environments and emulate the necessary physics. For each of the two environ-

ment categories, a complex meta-environment and two test environments were designed

for training and testing purposes. Hence a total of 6 (3 indoor, 3 outdoor) 3D were used in

the simulation.

(a) (b)

Figure 5.9: Screenshots of the complex meta environments developed using UE 4.

The layouts and screenshots of these environments can be seen in Fig.5.9 and Fig.5.10

This engine interfaces with Tensorflow to train a drone via TL and RL. TensorFlow is

used as the deep learning framework. AirSim [122] was used to interface the custom gen-
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(a) (b)

(c) (d)

Figure 5.10: Screenshots of the test environments (a)Indoor Apartment (b)Indoor House (c)Outdoor
Forest (d)Outdoor Town developed using UE 4.

erated 3D environments with python. The simulation and training was carried out on a

workstation equipped with core i7 processor and NVIDIA GTX1080 GPU. The web-link

for the suite of the environments, videos and corresponding data sets can be found here:

https://tinyurl.com/y9wgpq4b and the implementation details are beyond the scope of this

paper.

5.7.3 Training on Meta Environments

The drone is trained in the meta-environment for 60K iterations, initialized with ImageNet

[123][124] weights. For the training, depth maps generated from stereo cameras are used,

as shown in Fig.5.11. The drone is equipped with two cameras (left and right). The scene is

captured using these two cameras and the disparity map is generated based on the distance

between the corresponding pixels are in the left and right images. The disparity map is

passed through a low pass filter to generate a depth map. A typical example is shown in

Fig. 5.11. The training is carried out in two phases. In the first phase the DNN is trained
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Left camera image

Right camera image

Drone Depth Map of the image

Figure 5.11: Stereo Vision based Depth Map Generation

Figure 5.12: Feature extraction for SVM Classifier – On the left, the actual camera frame is shown.
The depth map (in the center) is divided into windows and the top 6 windows are used towards
feature extraction (right image).

on the complex meta indoor and outdoor environments separately. This DNN is initialized

with ImageNet weights (and with random truncated normal weights for the additional lay-

ers i.e. FC3, FC4, FC5). In order to help converge the loss, various techniques discussed in

[103], such as double deep Q-learning network (DDQN) and clipped temporal difference

(TD) error are used. Apart from training the modified AlexNet network for the set of initial

95



weights, the meta-environment is also used to train a small binary SVM classifier in a su-

pervised manner to differentiate between the indoor and outdoor category of environment.

Since outdoor environments typically have objects placed at a larger distance as compared

to the indoor environments, the use of the depth map (instead of the raw camera frames)

for training the classifier comes as a natural choice. For each of the indoor and outdoor

meta-environment, 1000 depth maps are collected. These 2D depth maps are converted

into a feature vector of size 6 x 1 which is used as input to the binary SVM classifier to

categorize what category of the environment these depth maps belong to. For each of the

2D depth map the feature vector is generated by slicing the depth map into 9 equal parts.

The feature vector is the concatenation of the average of the largest 30% pixel values in the

top 6 windows as shown in Fig. 5.12. The complete block diagram is shown in Fig 5.12.

The classifier is trained on these feature vectors with training accuracy of 98.5% and it is

tested on 200 data points from unseen indoor and outdoor environments with an accuracy

of 97.02%.

5.7.4 Training on Test Environments

1.0

1.0

1.0

0.81

0.51

0.76
6 Nodes 10 Nodes 2 Nodes

Depth Map Feature 
Vector

Support Vector 
Machine(SVM)

Input Hidden Output

Figure 5.13: SVM Classifier Block Diagram

Once this training is completed for both the indoor and outdoor meta-environments

separately, the transfer learning phase begins. In this phase, for each of the outdoor and
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Table 5.1: List of hyper parameters for training

Learning Rate N target Batch size Iteration 

1e-6 500 32 60k 

 
indoor category, a DNN is trained for the two test environments separately. The drone is

placed in the test environment and uses the trained SVM classifier (Fig. 5.13) to categorize

the environment it is in. The drone collects the depth map by rotating N times with an

angle of 360/N degrees. Above mentioned features are extracted from these depth maps

and fed to the classifier. Based on the majority label predicted by the binary classifier, the

DNN is initialized with the respective trained meta-environment (Indoor or outdoor). Table

5.1 lists the hyper parameters used for training. N target is the number of training iteration

after which the weights from the target network is copied into primary network in DDQN.

Algorithm 1 Reward generation using the depth map 

     

function 𝑓𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡
′) 

        d(st) ← 𝑑𝑒𝑝𝑡ℎ 𝑚𝑎𝑝 𝑜𝑓 𝑠𝑡  
        d 𝑠𝑡

′  ← 𝑑𝑒𝑝𝑡ℎ 𝑚𝑎𝑝 𝑜𝑓 𝑠𝑡
′  

        𝑑𝑙 𝑠𝑡 , 𝑑𝑐 𝑠𝑡 , 𝑑𝑟 𝑠𝑡 = 𝐷𝑒𝑝𝑡ℎ𝑉𝑎𝑙𝑢𝑒𝑠 𝑑 𝑠𝑡   

        𝑑𝑙 𝑠𝑡
′ , 𝑑𝑐 𝑠𝑡

′ , 𝑑𝑟 𝑠𝑡
′ = 𝐷𝑒𝑝𝑡ℎ𝑉𝑎𝑙𝑢𝑒𝑠 𝑑 𝑠𝑡

′   

        𝐢𝐟 𝑎𝑡 = 𝑎𝐹  𝐭𝐡𝐞𝐧 𝑟𝑡 = 𝑑𝑐 𝑠𝑡
′   

        𝐞𝐥𝐬𝐞 𝐢𝐟 𝑎𝑡 = 𝑎𝐿  𝐭𝐡𝐞𝐧 𝑟𝑡 = 𝑑𝑐 𝑠𝑡
′ + α  dl 𝑠𝑡 − 𝑑𝑟 𝑠𝑡   

        𝐞𝐥𝐬𝐞  𝑟𝑡 = 𝑑𝑐 𝑠𝑡
′ + α dr 𝑠𝑡 − 𝑑𝑙 𝑠𝑡   

        𝐢𝐟 𝑑𝑐 𝑠𝑡
′  < dthresh  𝐭𝐡𝐞𝐧 rt = rcrash  

𝐫𝐞𝐭𝐮𝐫𝐧 rt  

Algorithm 3: Reward generation using the depth map. The superscript l,r,c with d
denotes left, right, center value of depth map. the subscript F,L,R with a denotes the
forward, left and right action. r and s are reward and state.[103]

Algorithm 3 describes how the depth map is used to generate a reward function for RL

with the long-term goal of exploring an area without any collisions. The trained weights
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are then used as initial weights for RL in the respective test environments For RL, we use

4 topologies, E2E (end-to-end RL) and L2, L3, and L4, where Li represents TL followed by

RL where the last i-layers are trained online.

episodes   episodes   

episodes   episodes   

(a) (b)

(c) (d)

Figure 5.14: Cumulative rewards and return results in indoor (a)apartment (b)house and outdoor
(c)forest (d)town test environments. The legend Li indicates TL with last i-layers. All the algorithms
show convergence and improving return loss indicating successful learning.

Fig. 5.14 reports the results for these test environments in terms of cumulative rewards

and return while the safe flight is plotted in Fig 5.15. Cumulative reward is the moving

average of last N rewards received by the agent and is given by Ri = 1
N

∑i
j=i−N rj where

i ≥ N and N is a smoothing constant and was taken to be 15000. The return is the

moving average of the sum of rewards across episodes. With each iteration, the agent

takes an action and a reward is presented. These rewards are accumulated until the drone

crashes and is given by 1
Nk

∑i
j=i−Nk

rjwhere Nk is the number of actions taken between

the kth and (k-1)thcrash. The return graph from Fig. 5.14 shows how the learned network

performs, on average. Since the goal is not to get to a destination position, but rather

to keep on moving around the arena, the return (cumulative reward before crashing) can

theoretically become as large as possible. Hence as the system keeps on learning, the

return graph will keep on increasing unless the topology itself isn’t capable of learning
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Figure 5.15: Normalized safe flight distance (SFD) with respect to different environments.

anymore due to limited number of trainable weights. This increase in the return may vary

across topologies due to the random nature of the epsilon-greedy exploration [125]. The

important takeaway from Fig.5.14 however, is that the return graph for the topologies with

less number of trainable weights (L2, L3) doesn’t get saturated at lower value of returns.

This signifies superior learning capability of these topologies when initialized with meta-

network weights, allowing the proposed technique to have comparable performance as E2E

RL. Fig.5.15 plots the normalized Safe Flight Distance (SFD) across the topologies. The

safe flight [103] is the average distance (in meters) traveled by the drone before it crashes

and gives a more quantitative measure of how good the drone is in avoiding obstacles.

From Fig. 5.14 we note that the system converges (saturating reward) for all the three

scenarios showing the efficacy of the proposed algorithm. The normalized SFD shows

acceptable degradation in performance (3% to 8.1%). In outdoor town environments the
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meta-environment and test environments show large disparities (the type of houses, trees,

cars etc. that the drone encounters) and shows the largest degradation. This can be further

improved by performing TL on richer meta-environments.

5.8 Hardware Power-Performance Results

Layer
Processing 

Latency(ms)
Num. of 

Active PE
Power(mW) Energy(mJ)

CONV1+ReLU+Maxpool 0.245 704 4134 1.012

CONV2+ReLU+Maxpool 1.087 960 5571 6.056

CONV3+ReLU 0.804 960 5674 4.564

CONV4+ReLU 1.28 960 5692 7.289

CONV5+ReLU+Maxpool 1.116 960 5672 6.33

FC1+ReLU 5.365 1024 6799 36.48

FC2+ReLU 1.189 1024 6800 8.091

FC3+ReLU 0.562 1024 6408 3.603

FC4+ReLU 0.28 1024 6410 1.8

FC5+ReLU 0.0005 160 1910 0.0009

total 11.9285 880 5507 75.2259

(a) Forward propagation system results

Layer
Processing 

Latency(ms)

Num. of 

Active PE
Power(mW) Energy(mJ)

NVM 

Write

FC5+ReLU 0.0027 160 2094 0.006

FC4+ReLU 0.594 1024 6548 3.89

FC3+ReLU 1.182 1024 6162 7.284

FC2+ReLU 3.839 1024 5390 20.69

FC1+ReLU 29.19 1024 5390 157.3

CONV5+ReLU+Maxpool 4.661 208 1888 8.804

CONV4+ReLU 5.579 260 2112 11.78

CONV3+ReLU 4.71 260 2112 9.947

CONV2+ReLU+Maxpool 5.518 432 2850 15.73

CONV1+ReLU+Maxpool 38.95 1024 5390 209.9

total 94.2257 644 3993.6 445.331

Yes

No

(b) Backward propagation system results

Figure 5.16: Latency, power and energy of each layers in forward and backward propagation

The hardware system is evaluated and the post-synthesis results are summarized in Fig.
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Figure 5.17: (a) Maximum fps supported by different algorithms as a function of batch size. (b)
Estimated processing latency and energy dissipation

5.16 and Fig.5.17. The latency, energy and number of active PEs for the forward and

backward propagation of data for each of the layers is shown in Fig. 5.16. The major

bottleneck of the network layer in terms of processing latency in forward propagation is

the first fully connected layer (FC1). Due to the size of its weights ( 75MB), most of the

latency is attributed to data movement; fetching the weights from STT-MRAM to global

buffer and distributing it from global buffer to the RF in the PE array. In backpropagation

of the last three layers, the system does not access the STT-MRAM because the weights

for the last three layers are stored in the global buffer. For backpropagation of the other

layers, the weights from STT-MRAM are accessed to find the gradients of input to these

layers and to store the gradients of the weights. In Fig. 5.17, we plot the maximum fps

that can be supported in the proposed system vis-a-vis a baseline E2E RL system. We

note that for a batch-size of 4, we can support 15fps for L4, compared to just 3fps for E2E

RL. This directly translates to more than 3X increase in the velocity of the drone (Fig.

5.1). We also achieve a 79.4% (83.45%) decrease in latency (energy) compared to the

baseline. While E2E RL is not feasible in terms of energy and latency for small drones, the

proposed solution opens up exciting opportunities for successful autonomous flight under

strict power budgets.
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Table 5.2: STT-MRAM[104][105][3] and HBM[126] energy parameters used in the system

Memory  Operation Energy(pJ/b) 

DRAM based HBMs  Read/Write 7 

STT-MRAM Read 0.7 

Write 4.5 

HBM IO Transmit/receive 5 
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Figure 5.18: : Energy dissipation from DRAM-based HBM and STT-MRAM memory stack (off-chip)
in case of Forward propagation, last 4 layer training (L4) and E2E learning

In order to assess the need for eNVM in energy-efficient embedded systems, we com-

pare the proposed STT-MRAM based system over a traditional DRAM-based HBM sys-

tem. We use the parameters from Table. 5.2 to estimate the dissipated energy from each

memory stack in three cases: (1) forward propagation, with no backpropagation, (2) for-

ward propagation followed by learning the parameters of the last 4 layers (L4), and (3)

End-to-End RL that involves forward propagation and full layer backpropagation across all

the layers. Since the weights of the last three layers of the network reside in the global
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buffer, the energy dissipation from the memory stack for L2 and L3 are same as that of

forward propagation. The DRAM arrays in the DRAM-based HBM is refreshed every

64ms we consider the power cost of refreshing the entire 100MB following the JEDEC

specifications.

Fig. 5.18 shows the energy dissipation of DRAM-based HBM and STT-MRAM based

designs (off-chip) for 1000 iterations of forward propagation (no backpropagation), and

training (gradient descent and backpropagation) for L4 and E2E. The energy dissipation

for the DRAM-based HBM from the figure is the sum of refresh, read/write and IO energy

dissipation. Since STT-MRAM does not have refresh operation, the energy dissipation of

STT-MRAM is the sum of read/write operation and IO energy dissipation. From the figure

we observe that the energy dissipation from DRAM-based HBM is 2X greater than the

energy dissipation from NVM in case of forward propagation. The difference in energy

dissipation between DRAM-based HBM and STT-MRAM increases from L4 to E2E since

the number of refresh operations in the DRAM-based HBM is higher. This is attributed to

the fact that it takes significantly longer to complete E2E compared to L4.

5.9 Summary

In this research, we present a hardware-algorithm frame-work for STT-MRAM based em-

bedded systems for application to small drones. We show that TL followed by RL on the

last few layers of a deep CNN provides comparable performance compared to an E2E RL

system, while reducing latency and energy by 79.4% and 83.45% respectively.
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CHAPTER 6

CONCLUSION

In this dissertation, the research on post-CMOS memory based systems for machine learn-

ing and distributed optimization algorithm is presented. Among many post-CMOS mem-

ory devices, we focused on STT-MRAM and FerroFET because of their characteristics for

in/near memory computing architecture. In the first chapter, prior works on STT-MRAM

and FerroFET are presented and identified the major challenges of STT-MRAM and Fer-

roFET based system at the device, circuit and system levels.

In chapter 2, a device level challenge of STT-MRAM, magnetic coupling of bit-cells

of STT-MRAM, is presented. Since STT-MRAM is a nano-magnet, the external magnetic

field from neighboring STT-MRAM cells can cause bit filp at the victim cell as the distance

between other cells decreases as a result of memory scaling. The research provides the

modeling of external magnetic field of neighboring STT-MRAM cells and the best and

worst case data patterns for magnetic coupling are discovered based on the modeling. A

comprehensive analysis of the effect of magnetic coupling on thermal stability of STT-

MRAM, a property that affects the data retention of STT-MRAM is conducted. From

the analysis, the research concluded that as the STT-MRAM memory becomes denser, the

coupling field can cause significant change in the average retention time when STT-MRAM

memory has lower thermal stability.

In chapter 3, a circuit level challenge of STT-MRAM, long retention testing time for

STT-MRAM memory, is presented. In the conventional retention test scheme, the time

for retention test takes too much time as the thermal stability of STT-MRAM increases

because the bit flip in STT-MRAM happens stochastically. Therefore, in order to use STT-

MRAM for commercial products, there is a strong need to shorten the retention test time.

we propose an MBIST architecture (EMACS) capable of collecting statistical data in an
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STT-MRAM subarray to estimate the thermal stability and retention. From our new re-

tention test scheme, 93.75% improvement in test-time is shown compared to a brute-force

approach [37] with less that 5% estimation error.

In chapter 4, a system level challenge of FerroFET, designing FerroFET based in-

memory computing architecture with the limitations from FerroFET, is presented. First,

the research identified the limitation of FerroFET as a computing element. Then it chooses

distributed convex optimization via least square minimization as a template problem to

show how much system performance and power gain can be achieved when a systolic PIM

architecture based on analog FerroFET pseudo-crosspoint arrays with in-situ computation

is used. The research also presents the accuracy loss of results from FerroFET based PIM

architecture due to the device limitations. Finally, it summarizes the trade-off between

system performance and accuracy loss of results in FerroFET based PIM architecture.

In chapter 5, a system & application level challenge of STT-MRAM based system, de-

signing STT-MRAM based near-memory computing architecture for real-time reinforce-

ment learning algorithm of drone applications, is presented. Since the target application

is real-time reinforcement learning for a drone, it requires fast read and write latency and

low energy dissipation from a memory. The research first shows that STT-MRAM has high

write latency but it has lower energy dissipation and read latency. However, with the help

of transfer learning, STT-MRAM can be used as a weight storage of neural network for re-

inforcement learning. With large on-chip SRAM buffer, the system can perform real-time

training of last few layers of the neural network and the fixed weights of the rest of neural

network are retrieved by reading STT-MRAM. The research demonstrates that the system

can still exhibits almost equal performance in obstacle avoidance task of a drone.
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