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SUMMARY

Robust parameter design is an innovative and cost-effective quality engineering

technique that is widely used in industries for developing new products and processes

or for improving the existing ones. Application of robust parameter design to a process

improves its average level of performance as well as its consistency and makes the

process less sensitive to the effect of uncontrollable or noise variables. The technique

needs modification and a tailor-made framework depending on the type of problem.

This research focuses on developing comprehensive frameworks for developing robust

parameter design methodology for dynamic systems with automatic control and for

synthesis of nanostructures. The two areas, which are technologically quite different,

pose plenty of unique statistical and engineering challenges in experimental planning,

modeling, and optimization.

Apart from robust parameter design, a commonly used methodology for mitigating

the effect of noise on the output of dynamic processes is on-line control. There

are two variants of on-line control, namely feedforward and feedback control. In

many processes, the optimal feedback control law depends on the parameter design

solution and vice-versa. The need for an integrated approach that combines the two

methods is therefore evident. A parameter design methodology in the presence of

feedback control is developed for processes of long duration under the assumption that

experimental noise factors are uncorrelated over time. Systems that follow a pure-gain

dynamic model are considered and the best proportional-integral and minimum mean

squared error control strategies are developed by using robust parameter design. The

proposed method is illustrated using a simulated example and a case study in a urea
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packing plant. This idea is also extended to cases with on-line noise factors, relaxing

the assumption that the experimental noise factors are correlated. The possibility of

integrating feedforward control with a minimum mean squared error feedback control

scheme is explored.

Nanostructures, by virtue of their novel physical, chemical and biological prop-

erties, are building blocks in nanoscience and nanotechnology. To meet the needs

of large scale, controlled and designed synthesis of nanostructures, it is critical to

systematically find experimental conditions under which the desired nanostructures

are synthesized reproducibly, at large quantity and with controlled morphology. This

research focuses on an extensive application of statistical design, modeling and opti-

mization for achieving the above goal. The problems encountered in the synthesis of

nanostructures pose challenges that cannot be solved by existing experimental design

techniques. Therefore, the primary objective of this research is to develop and ap-

ply novel experimental design and modeling techniques in order to find optimal and

robust processing conditions for growing pure and high-quality nanostructures under

time and cost constraints.

The first part of the research in this area focuses on modeling and optimization

of existing experimental data. Cadmium Selenide (CdSe) has been found to exhibit

one-dimensional morphologies of nanowires, nanobelts and nanosaws, often with the

three morphologies being intimately intermingled within the as-deposited material.

A slight change in growth condition can result in a totally different morphology.

In order to identify the optimal process conditions that maximize the yield of each

type of nanostructure and, at the same time, make the synthesis process robust (i.e.,

less sensitive) to variations of process variables around set values, a large number

of trials were conducted with varying process conditions. Here, the response is a

vector whose elements correspond to the numbers of appearance of different types

of nanostructures. The fitted statistical models would enable nano-manufacturers to
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identify the probability of transition from one nanostructure to another when changes,

even of the slightest order, are made in one or more process variables. Inferential

methods associated with the modeling procedure help in judging the relative impact of

the process variables and their interactions on the growth of different nanostructures.

Owing to the presence of internal noise, i.e., variation around the set value, each

predictor variable is a random variable. Using Monte-Carlo simulations, the mean

and variance of transformed probabilities are expressed as functions of the set points

of the predictor variables. The mean is then maximized to find the optimum set

values of the process variables, with the constraint that the variance is under control.

The second part of the research deals with development of an experimental design

methodology, tailor-made to address the unique phenomena associated with nanos-

tructure synthesis. A sequential space filling design called Sequential Minimum En-

ergy Design (SMED) for exploring best process conditions for synthesis of nanowires.

The SMED is a novel approach to generate designs that are model independent, can

quickly “carve out” regions with no observable nanostructure morphology, allow for

the exploration of complex response surfaces, and can be used for sequential experi-

mentation. A unique feature of this technique lies in the fact that it originates from

a combination of statistical theory and fundamental laws of physics. The basic idea

has been developed into a practically implementable algorithm for deterministic func-

tions, and guidelines for choosing the parameters of the design have been proposed.

Performance of the algorithm has been studied using experimental data on nanowire

synthesis as well as the modified Branin function. A modification of the algorithm

based on Bayesian estimation has been proposed for random functions.

xiii



CHAPTER I

INTRODUCTION

1.1 Introduction to Robust Parameter Design

Robust Parameter Design (also known as parameter design) is a quality improvement

technique proposed by Genichi Taguchi (1986,1987). Parameter design is a cost-

effective approach for reducing variation in products and processes. As summarized

in Nair (1992), Taguchi classifies the inputs to the system into two groups - control

factors x and noise factors z. The former can be easily controlled and manipulated,

whereas the latter are difficult, expensive or impossible to control. Let y denote the

response, which is actually some quality characteristic that measures the output of

the system. Variation in z during the manufacturing process causes variation in y (see

Figure 1). There could be many combinations or settings of x at which the system

can produce the desired level of y (also called the target) on an average. Out of these,

there will be some settings at which the system is insensitive to the effect of the noise

variables z. The basic idea of parameter design is to select the control factor settings

in such a way that the performance of the system is robust, or insensitive to the noise

variation z. This is done by exploiting interactions between control factors and noise

factors. Various aspects associated with the planning and implementation of robust

parameter design can be found in Taguchi (1987), Phadke (1989), Nair (1992) and

Wu and Hamada (2000).

1.2 Key statistical issues in robust parameter design

The major statistical issues in the context of robust parameter design can be broadly

classified as follows

1



N1, N2, .., Nq

Noise factors :

LSL

USL

Y

Control factors :

BLACK BOXX1, X2, .., Xp

Figure 1: The black-box model for robust parameter design

1. Performance measure and its optimization: In the context of robust pa-

rameter design, a performance measure is a function (or summarized version)

of the experimental data which needs to be optimized with respect to the con-

trol factors to obtain the most robust setting. Taguchi classified parameter

design problems into different categories and defined a performance measure

called “signal-to-noise” (SN) ratio, for each category. For example, for simple-

target systems (see Hamada and Wu 2000, Ch. 10), where there is a fixed

target T for nominal-the-best (NTB) characteristic y, Taguchi used the SN

ratio 10 log10 E(y2)/var(y) as the appropriate performance measure. He then

suggested a two-step optimization procedure where the first step is to maximize

the SN ratio.

Leon, Kacker and Shoemaker (1987) showed that under specific model assump-

tions, maximization of Taguchi’s SN ratios leads to minimization of the expected

quadratic loss. The SN ratios take advantage of the existence of special con-

trol variables called adjustment factors. When these parameters exist, use of SN

ratio allows the parameter design optimization procedure to be conveniently de-

composed into two smaller optimization steps, the first of which is maximization

2



of the SN ratio. They proposed a type of performance measure that takes ad-

vantage of adjustment parameters and is more general than Taguchi’s SN ratios

and called these measures “Performance Measures independent of adjustment”

(PERMIA).

Different classes of engineering systems pose unique challenges . Thus, deriv-

ing appropriate performance measure is a research problem for each class of

problem. This will be elaborated in the next sub-section.

2. Modeling strategies and data analysis: As discussed in Nair (1992), broadly

there are three possible modeling strategies for parameter design experiments.

One is to compute and model directly the performance measure. This is called

the performance measure modeling (see Hamada and Wu 2000, Chap. 10, 11).

A second method is to separately model the mean and log-standard deviation

and combine them to optimize the performance measure. This is referred to

as the location-dispersion modeling approach. The third method, known as the

response modeling approach, is to model the raw data (response), including the

significant control-noise interactions in the fitted model (Welch et al. 1990;

Shoemaker, Tsui and Wu 1991). From this response model, the performance

measure can be directly computed and optimized.

Several alternative data analysis methods for robust design experiments have

been suggested in literature. Quite a few statisticians have suggested data

transforms as better alternatives to Taguchi’s SN ratios (Box 1988, Nair and

Pregibon 1988). Nelder and Lee (1991) recommended the use of Generalized

Linear Models (GLM) for mean-variance modeling.

3. Experimental strategy and planning techniques: Taguchi’s experimental

strategy, in general, was to pick the optimum factor combination from a one-shot

3



experiment and then conduct a small follow-up experiment (called a confirma-

tory experiment). Wu, Mao and Ma (1990) investigated the deficiencies and

some remedial measures for Taguchi’s strategy for confirmatory experiments.

Vining and Myers (1990) recommended a sequential experimental strategy and

combined the robust design approach with the response surface methodology

proposed by Box and Wilson (1951).

In parameter design experiments, a control array (called inner array by Taguchi)

refers to a design matrix for the control factors and a noise array (called outer

array by Taguchi) refers to a design matrix for the noise factors. Each level

combination in the control array is crossed with all the level combinations of

the noise array. The resultant array, called a cross array then consists of all

the level combinations between those in the control array and those in the noise

array.

There are two experimental formats for parameter design experiments: cross

arrays and single arrays. In the latter approach, which often requires a much

smaller run size, a single array for both the control and noise factors is used.

However, a drawback of the method is, location-dispersion modeling or perfor-

mance measure modeling cannot be employed with a single array experimental

design. Wu and Zhu (2000) provided guidelines for optimal selection of single

arrays in parameter design experiments.

Usually fractional factorials and orthogonal arrays are chosen for the control

array and for the noise array. However, when the number of levels of control

and/or noise factors is large, the run size of orthogonal array for noise factors

may be prohibitively large. An alternative is to use space-filling designs like

Latin hypercube designs (Koehler and Owen 1996) and uniform designs (Fang

and Wang 1994) may be used. Such designs are also useful to model complex

response surfaces.

4



1.3 Robust parameter design for different engineering sys-
tems

The problems and statistical issues associated with parameter design get more com-

plicated as the complexity of the underlying engineering system increases. For ex-

ample, there are systems in which the response takes on different values as a result

of changes in a specified factor, called a signal factor. The signal-response relation-

ship is of primary importance to the performance of a system. Such systems are

called signal-response systems (see Wu and Hamada, Ch. 11), or a system with

dynamic characteristics in Taguchi’s terminology. Measurement systems, multiple

target systems and control systems all belong to the class of signal-response systems.

The parameter design strategy for such systems was originally proposed by Taguchi

(1987) and have been studied by a few researchers. Leon, Shoemaker and Kacker

(1987) developed PERMIA for different classes of signal-response systems. Miller

and Wu (1996) developed a general framework for experimental planning techniques

and modeling of data for signal-response systems. A comprehensive framework for

modeling and optimization in parameter design for multiple-target systems were de-

veloped by Joseph and Wu (2002). Joseph and Wu (2002) rigorously investigated the

operating window technique For systems whose outputs are evaluated on the basis

of failure or defect rate. They also developed an information maximization method

named Failure Amplification Method (Joseph and Wu 2004) for such systems. It is

thus evident the problem of parameter design poses unique and new challenges for

different types of engineering systems and applications.

1.4 Robust parameter design for dynamic systems with au-
tomatic control

Online adjustment, also called adaptive control, has been a popular strategy adopted

by process engineers to reduce the variation in output due to noise factors. There are
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many systems (e.g., continuous chemical processes) that cannot be made insensitive

to the effect of noise by using robust parameter design, owing to strong autocorrelated

noises. The use of control is inevitable for such processes. There are two types of

adjustment strategies - feedforward and feedback control. In the former, a noise is

measured online and a compensation provided through a suitable adjustment variable.

The latter involves measurement of output at regular intervals and compensation

for the effect of the uncontrollable disturbance through a controllable adjustment

variable.

It may be noted that the success of robust parameter design depends on the ex-

istence of control × noise interactions. whereas the control solution does not require

any such assumption and therefore has a wider applicability (Joseph 2003). How-

ever, since parameter design is a one-time strategy is usually much more economic

than online control which is a continuous activity. Thus, it is not prudent to imple-

ment control systems straightaway without exploring the opportunities for robustness.

In systems which require control, the opportunities of reducing variation through a

parameter design strategy are often overlooked. As pointed out by Joseph (2003), a

cost-effective strategy would be to use robust parameter design to make the process as

robust as possible, and then use a control system to further improve its performance.

However, a two-step approach for quality improvement by first using robust design

and then a control system may not always work well. In fact, such an approach often

yields a sub-optimal solution under certain model assumptions (See Dasgupta and Wu

2006). It is therefore necessary to develop a comprehensive framework that involves

experimental planning, development of a suitable performance measure, modeling

and optimization strategies for conducting parameter design experiments for systems

with control. Joseph (2003) developed such a framework for systems with feedforward

control. However, in his approach, the dynamics of the process was not considered.

Part of the current research focusses on developing a complete framework for systems

6



with feedback control and the results achieved are presented in Chapter II.

1.5 Robust Parameter Design for Synthesis of Nanostruc-
tures

Nanotechnology is the construction and use of functional structures designed from

atomic or molecular scale with at least one characteristic dimension measured in

nanometers (one nanometer = 10−9 meter, which is about 1/50,000 of the width

of human hair). The size of these nanostructures allows them to exhibit novel and

significantly improved physical, chemical, and biological properties, phenomena, and

processes. Nanotechnology can provide unprecedented understanding about materials

and devices and is likely to impact many fields. By using structure at nanoscale as a

tunable physical variable, scientists can greatly expand the range of performance of

existing chemicals and materials. Alignment of linear molecules in an ordered array

on a substrate surface (self-assembled monolayers) can function as a new generation of

chemical and biological sensors. Switching devices and functional units at nanoscale

can improve computer storage and operation capacity by a factor of a million. Entirely

new biological sensors facilitate early diagnostics and disease prevention of cancers.

Nanostructured ceramics and metals have greatly improved mechanical properties,

both in ductility and strength.

To meet the needs of large scale, controlled and designed synthesis of nanowires,

it is critical to systematically find experimental conditions under which the desired

nanostructures are synthesized reproducibly, at large quantity and with controlled

morphology. Of these, reproducibility is the biggest issue. Owing to a large number

of uncontrollable factors affecting the synthesis process, drastic change of results are

observed even under no apparent changes in process conditions. Therefore, there are

tremendous opportunities for improvement by using robust parameter design.

However, there are challenges that would require innovative statistical methods

for design and analysis of parameter design experiments in this area. They are as
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follows:

1. Intermingled nanostructures.

2. Nominal and categorical responses.

3. Strong internal noises, i.e., variation of control variables around their set values.

4. Complete disappearance of morphology with slight changes in process condi-

tions.

5. Complex response surfaces making exploration of optimal settings very difficult.

Therefore, the primary objective is to develop and apply novel experimental design

and modeling techniques in order to find optimal and robust processing conditions

for growing pure and high-quality nanostructures under time and cost constraints.

In Chapter III, a new modeling and optimization strategy is proposed. In Chapter

IV, an experimental design methodology called Sequential Minimum Energy Designs

(SMED), tailor-made to address the unique phenomena associated with nanostructure

synthesis is developed.
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CHAPTER II

ROBUST PARAMETER DESIGN WITH FEEDBACK

CONTROL

2.1 Introduction

There are many processes of long duration (e.g., continuous chemical processes) that

cannot be made insensitive to the effect of noise by using robust parameter design

(or, briefly, parameter design). The use of control is inevitable in these situations.

Feedback control involves measurement of the output at regular intervals and com-

pensation for the effect of the uncontrollable disturbance through a controllable pro-

cess parameter. To understand the combined role of parameter design and feedback

control in reducing process variation, consider a simple model

Yt = −2 + 2x−Nt + 0.5xNt + 2Ct−1 + zt, (1)

where x is a control factor that is not changed during production, N is a noise

factor and C is a control factor that is adjusted to compensate for the unobservable

disturbance z. Changing C by one unit at time t − 1 produces a 2 units change in

Y at time point t. We assume that N and z are random variables with mean 0 and

variance 1. Suppose the target value of Y is 10. Clearly, if we can set x = 4 and

C = 2, then the target is achieved on average, and we have V ar(Y ) = 2. Instead, if

we set x to 2 and C to 4, then the effect of N on Y is removed, and the target is still

achieved with a much lower variance of 1.

Now suppose that instead of being a white noise process, zt is a non-stationary

disturbance which makes the output Y unstable. In such a case, one can set C to

an initial value C0 = 4, and keep on adjusting Ct with a view to compensate for the

disturbance z, make the process stable and consequently minimize the variation of Y
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around the target. In actual practice, this can be achieved by obtaining a forecast of

zt at time point t − 1 from the past observations and adjusting C based on such a

forecast.

Thus, there are two objectives to be fulfilled - one is to find a robust setting for

x, and the other is to find the optimum control law. One way of achieving this may

be to fix C at a certain level and conduct a parameter design experiment to find the

optimum setting of x, and then fix x at its optimal level and determine the optimal

control law. This is referred to as a two-stage approach. Such an approach, though

not found in the robust design or the control theory literature, is not very difficult

to implement. However, such a two-stage approach for quality improvement may not

always work well. For example, if we have a model of the form

Yt = −2 + 2x−Nt + 0.5xNt + (2− 0.75x)Ct−1 + zt, (2)

where zt is an autoregressive process of order 1 such that zt = at+φzt−1 and var(at) =

σ2(x) = (1−0.5x)2, then obviously the choice of x would have an impact on the effect

of N on Y (i.e., robustness of the process) as well as on the control law. Thus the

control law would depend on the parameter design solution and vice-versa and a

two-stage approach may yield a sub-optimal solution.

Joseph (2003) developed a general parameter design methodology for systems with

feedforward control. In this chapter, we propose an integrated approach to conduct

a parameter design experiment for systems with feedback control. In Section 2.2, we

describe an industrial scenario as a motivating example. In Section 2.3 we give an

overview of some common process inertia models and feedback control schemes. In

Section 2.4, a framework for parameter design with feedback control is proposed for

a specific class of process inertia models (pure gain) and the discrete proportional-

integral (PI) control scheme. In this Section, we also define the two-stage approach

and compare it with the proposed single-stage approach. In Section 2.5 the proposed

methodology is demonstrated through a simulation experiment. In Section 2.6 we
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discuss the extension of our proposed framework to minimum mean squared error

(MMSE) feedback control scheme. Section 2.7 illustrates the proposed approach with

an example from a packing plant. Section 2.8 contains concluding remarks and future

research directions.

2.2 Motivating Example

As a motivating example we consider the packing experiment described by Dasgupta,

Sarkar and Tamankar (2002). The paper describes an automated packing process in

which the input material flows into the machine from a hopper. The target weight

can be pre-set. There are several control factors X, which are set at the beginning of

production and usually not altered.

Let Y denote the response (weight of packed bag) and T denote the target weight.

When a bag is packed, the material flows into the bag in two stages, viz. main (coarse)

feed stage (when the material flows into the bag thick and fast) and dribble (fine)

feed stage (when the material just trickles down into the bag). In-flight material

compensation C determines how early the main feed will be cut off. The main-feed

cut-off value is T − (C+Dribble feed quantity). For example, if C is set to zero, and

the target weight is 50 lb, and dribble feed quantity = 12 lb, then the main feed will

be cut-off at (50-12)=38 lb. But after the main feed is cut off, there will still be some

material flow, which will result in Y being greater than 50 lb. If C is now increased to

1 lb, then the main feed will be cut off at (50-12-1) = 37 lb, and Y will consequently

be reduced. C is therefore used as an on-line adjustment parameter to compensate

for the effect of noise. The noise is strong and is a manifestation of a multitude of

small effects, none of which can be measured individually. However, an off-line noise

factor that can be controlled to some extent for experimental purposes is the material

composition (course/fine/lumpy).

Among the set of control factors X, some are likely to interact with noise and/or
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with C. Further, the variance of the unobservable noise is also expected to depend

on some of the control factors. This is thus a case of robust parameter design with

feedback control. The actual experiment and analysis of experimental data will be

discussed in Section 2.7.

2.3 Feedback control schemes, models for process inertia
and role of DOE

2.3.1 Feedback control schemes and process inertia

Suppose the response Y has a target T . Corresponding to time t, let Yt denote the

value of Y , et = Yt − T denote the deviation of the response from the target and Ct

denote the value of the adjustment factor. Further, assume that Y and C are linked

by the following transfer function

Yt = β(Yt−1, Yt−1, . . . , Ct, Ct−1, . . .) + zt, (3)

where zt is the unobservable disturbance. In any feedback control scheme, a correction

is given to Ct on the basis of the observed output error et through a control equation

Ct = f(et, et−1, . . .).

There is a vast literature on feedback control schemes (e.g., Astrom (1970); Davis

and Vinter (1985); Box, Jenkins and Reinsel (1994); Seborg, Edgar and Mellichamp

(1989); Del Castillo (2002)). Among various control schemes, the discrete proportional-

integral (PI) control schemes have received particular attention because of their simple

structure and ease of implementation. In a discrete PI control scheme, the control

equation is of the form

−Ct = k0 + kpet + kI

t∑
i=1

ei, (4)

where kp and kI are positive constants that determine the amount of proportional

and integral control. In the example cited in Section 2.2, the controller is a special

case of the discrete PI controller with kp = 0 (integral control).
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Another commonly used feedback control scheme is the minimum mean squared

error (MMSE) scheme. Under certain model assumptions and choice of parameters,

the discrete PI control scheme and MMSE schemes can be shown to be equivalent

(Box and Luceno 1997). However, in general, the PI schemes are seen to be quite

efficient over a broad range of the parameter space. Furthermore, as shown by Tsung,

Wu and Nair (1998), the PI schemes are more robust to model misspecification than

MMSE schemes.

The transfer function in (3) can also be of various types. A simple first-order

dynamic model that characterizes many processes of practical interest is given by the

following equation

Yt = α + δYt−1 + g(1− δ)Ct−1 + zt, (5)

where 0 < δ < 1

A further simplicification of (5) can be achieved by assuming that essentially all

the change induced by C will occur in a single time interval. This corresponds to

setting δ = 0 in (5), i.e.,

Yt = α + gCt−1 + zt. (6)

This is called the pure-gain model. Box & Kramer (1992) considered primarily the

pure gain model in their discussion on feedback control.

In Section 2.4, while developing a framework for robust parameter design with

feedback control, we shall restrict attention to the pure-gain dynamics and the integral

control scheme.

2.3.2 Choice of control scheme parameters and role of DOE

It is clear that under the discrete PI control scheme, the control can be poor or

unstable if the constant kI is incorrectly chosen. One way of selection of kI is to

study the nature of the underlying time series model for zt and use this information
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for optimum selection of k. For example, if zt is an ARIMA(0,1,1) process with

parameter λ then under model (5), kp = 0 and kI = λ/g result in minimum output

variation (Box, Jenkins and Reinsel (1994), Chapter 13).

Suppose a controller has been hooked up to a system and is approximately of right

design but is mistuned. One may tune it by formally identifying and fitting models

for the process disturbance and dynamics. However, such an approach may be too

tedious for routine use. Different experimental approaches for tuning of controller

parameters have found place in control theory and chemical engineering literature.

These methods were originally based on the trial and error approach (Ziegler and

Nichols (1942)), but later, methods based on a single experiment were proposed (e.g.,

Cohen and Coon (1953), Yuwana and Soberg (1982)). However, it was felt that a

sequential approach would be more appropriate for exploring the optimal values of the

controller parameters (Carpenter and Sweeny (1965)). As Box and Kramer (1992)

point out, to avoid upsetting the system, experimental runs may be made in the

evolutionary operation mode, and the response surface methodology may be used to

explore and optimize the important factors. Nakano and Jutan (1994) first used the

response surface methodology with integral of the squared error (ISE) as the objective

function to tune PI controllers. This idea was extended to track dynamic optima by

Edwards and Jutan (1997) and Jiang and Jutan (2000).

However, in case a controller has to be set up from scratch, or we have a controller

whose basic design is inappropriate, one has to design and conduct a more elaborate

experiment to identify the appropriate models for process disturbance and dynamics.

We shall consider both these situations in our proposed framework described in the

following Section.
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2.4 A framework for robust design with first-order pure-
gain dynamic models and discrete PI control scheme

2.4.1 Framework and statistical model

Figure 2 depicts a model for feedback control in the presence of control and noise

factors. Let X = (X1, X2, . . . , Xp)
′ denote the set of control factors that can only be

changed at the process set-up. Let U = (U1, U2, . . . , Uq)
′ denote the set of uncontrol-

lable noise factors. Components of U interact with the components of X. We can

write U = {N,Z}, where N denotes the set of noise factors that can be deliberately

varied during the experiment and Z denotes the set of remaining noise factors that

cannot be identified or controlled during experimentation. To develop the framework,

we assume that all the components of N are white noise. We also assume that none

of the noise factors are measurable online during production.

N1, N2, ..,Nq

Ct

Control Equation

Ct = f(et,et-1,…)

Process
Yt = B (X,N,Ct-1 ,Ct-2 , …) + zt

Process dynamics Process disturbance
First order / higher order

Stationary/

non-stationary

X1

X2

Xp et = Yt - T

Control schemes:

Discrete Proportional-Integral (PI)

Minimum mean squared error (MMSE)

Figure 2: Feedback Control With Control and Noise Factors

In addition, we have a control factor C that is adjusted on-line during production.

This control factor, also called adjustment factor in robust design literature (Wu and

Hamada 2000, Chapter 10), is such that it affects the mean of the response but not
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its variance. In other words, it does not interact with any of the noise factors.

The response Y and control factor C are linked by a transfer function of the form

Yt = β(X,N,Z, Ct−1, Ct−2, . . .),

which can be rewritten as

Yt = β(X,N, Ct−1, Ct−2, . . .) + zt,

where {zt} is the disturbance due to unobservable and uncontrollable noise factors Z

and may be stationary or non-stationary. Since Z interacts with X but not with C

(by definition of adjustment factor), the variance of zt may be assumed to depend on

X, but not on C.

At time t, a correction is given to Ct on the basis of the observed output error

et through a control equation Ct = f(et, et−1, . . .). As discussed in Section 2.3.1, we

shall consider the following forms for the functions β and f(et, et−1, . . .).

β(X,N, Ct−1, Ct−2, . . .) = α0(X,N) + g(X)Ct−1,

f(et, et−1, . . .) = −k0 − kI

t∑
i=1

ei.

We thus postulate the following first-order pure-gain dynamic model

Yt = α0(X,N) + g(X)Ct−1 + zt. (7)

If T denotes the target, and et = Yt − T denotes the deviation from the target,

then,

et = α(X,N) + g(X)Ct−1 + zt, (8)

where α(X,N) = α0(X,N)− T .

Note that this is essentially the same as (6), the added aspect being the dependence

of the dynamics on X and N. It is thus imperative that, if an integral control scheme

is employed for such a process, kI necessarily has to be a function of X and X has to

be such that the output is least sensitive to the effect of N.
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2.4.2 Performance measure and its optimization

Let us assume that zt =
∑∞

j=0 ψjat−j, where {at} is a white noise process with zero

mean and variance σ2(X). Recalling that in an integral control scheme Ct−1 is set to

−k0 − kI

∑t−1
i=1 ei, we have from (8),

et = α(X,N)− g(X)
(
k0 + kI

t−1∑
i=1

ei

)
+ zt

=

(
α(X,N)− g(X)k0

)
− g(X)kI

t−1∑
i=1

ei +
∞∑

j=0

ψjat−j. (9)

Clearly, the objective is to select X and the control law in such a way that the variance

of et is minimized. For the type of processes considered here, the duration of the

control session will be long. Thus, it is reasonable to consider PM(X, kI) = V ar(et)

as the appropriate performance measure, provided the output et is asymptotically

stable with mean zero.

We have

V ar(et) = V araEN(et|a) + EaV arN(et|a)

= V ar(ut) + π(X), (10)

where

ut = EN(et|a)

=

(
α(X)− g(X)k0

)
− g(X)kI

t−1∑
i=1

ui +
∞∑

j=0

ψjat−j

and α(X) = EN(α(X,N)), π(X) = V arN(α(X,N)).

It is seen that if model (8) and the distribution of N is known, then we can

compute the performance measure PM(X, kI) by substituting V ar(ut) in (10). For a

given process disturbance model (i.e., given the weights ψj) V ar(ut) can be obtained

through routine but tedious derivations (Tsung, Wu and Nair, 1996). V ar(ut) will

be a function of X and kI , and will be of the form V (X, kI)σ
2(X). Clearly, V (X, kI)
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depends on X through the function g(X). For example, if zt is an ARIMA(0,1,1)

process with parameter λ, one can obtain the following expression for V (X, kI) by

slightly extending the result of Box and Kramer (1992),

V (X, kI) =
1 + θ2 − 2φ(X, kI)θ

1− φ2(X, kI)
, if− 1 < φ(X, kI) < 1,

= ∞ otherwise, (11)

where φ(X, kI) = 1− g(X)kI and θ = 1− λ.

We thus have

PM(X, kI) = V (X, kI)σ
2(X) + π(X). (12)

Stability of the output et can be ensured by choosing kI within appropriate sta-

bility region κ(X), which depends on the nature of the disturbance zt.

From (8), we can write for t = 1,

e1 = α(X,N) + g(X)C0 + z1.

Noting that the starting value of C0 is k0, we have

E(e1) = α(X) + g(X)k0.

Thus, to ensure that the output is asymptotically stable around zero, we must have

k0 = −α(X)/g(X) and kI ∈ κ(X).

Next, the following two-step optimization is performed :

1. Minimize PM(X, kI) subject to X ∈ [XL,XU] and kI ∈ κ(X), where [XL,XU]

denotes the experimental range for the control variables. Let X∗ and k∗I denote

optimum X and kI respectively.

2. Obtain the optimal k0 as k∗0 = −α(X∗)/g(X∗).
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To illustrate the computation of the performance measure, let us consider the

following example :

et = −2x−N + 0.5xN + (2− 0.75x)Ct−1 + zt.

We assume that zt = φzt−1 + at is an AR(1) process with φ = 0.7, E(at) = 0,

V ar(at) = (2− 0.8x)2 and N is a random variable with mean 0 and variance 1.

Extending the results of Tsung, Wu and Nair (1996) to the current model, it can

easily be seen that the stability region here is κ(X) = {kI : |1− g(X)| ≤ 1}. Also, an

appropriate expression for V (X, kI) under this model is given by

V (X, kI) =
2

(1 + η(X))(1− φη(X))(1 + φ)
, where (13)

η(X) = 1− g(X)kI .

Substituting appropriate expressions in (13) and (12), we get

PM(X, kI) =
1.1765(2− 0.8x)2

(
1 + {1− kI(2− 0.75x)}

)(
1− 0.7{1− kI(2− 0.75x)}

) + (1− 0.5x)2.

If the experimental region is 0 ≤ x ≤ 5, the problem is to

minimize PM(X, kI) subject to

0 ≤ x ≤ 5,

kI ∈ {kI : |1− kI(2− 0.75x)| < 1}.

Using a simple non-linear constrained optimization function from MATLAB, we

find that the minimum is obtained at x∗ = 2.2990, k∗I = 2.8497 and the corresponding

value of the performance measure is PM(x∗, k∗I ) = 0.0374. Assuming E(N) = 0

and var(N) = 1, and substituting x∗ = 2.299, we obtain the optimal k0 as k∗0 =

−α(X∗)/g(X∗) = 16.6745.

The performance of the system without control may be evaluated by substituting

kI = 0 in the expression for performance measure, which gives PM(X, 0) = (2−0.8x)2

(1−φ2)
+

(1−0.5x)2. Here PM(X∗, 0) = 0.0730 > PM(X∗, k∗I ), demonstrating that the control

will be effective.
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2.4.3 Comparison with a two-stage approach

The interesting aspect of the proposed approach is that, the optimal settings of the

control variables X and the controller parameters k0 and kI are obtained by con-

ducting a single experiment. Let us now compare this single-stage approach with a

two-stage approach where at the first stage robust level of X is decided by conduct-

ing a traditional parameter design experiment and next the optimal control law is

obtained.

From (8), we have,

e1 = α(X,N) + g(X)C0 + z1

= α(X,N) + g(X)C0 + a1, [assuming ψ0 = 1.]

Setting C0 = C∗
0 , one can perform a traditional parameter design experiment to find

out the optimum setting of X by minimizing V ar(e1) = π(X) + σ2(X). Here, unlike

traditional robust parameter design, the second-step of optimization (adjusting the

mean to target by proper choice of X) will not be done, since C is considered to be

the only adjustment factor here. Let X̃ denote the optimum X obtained this way.

The second stage of the optimization consists of obtaining the optimal kI for the

chosen setting X = X̃. This is equivalent to obtaining

k̃I = arg min
kI∈κ(eX),X=eX

V ar(et) = arg min
kI∈κ(eX)

V (X̃, kI).

If X∗ and k∗I denote the optimum X and kI obtained using the proposed single

stage approach, then

PM(X∗, k∗I ) = min
X∈(XL,XU ),kI∈κ(X)

V (X, kI)σ
2(X) + π(X)

≤ PM(X̃, k̃I).

Thus, in general, the asymptotic variance of the output obtained using the pro-

posed single-stage approach will be less than or equal to that for the two-stage ap-

proach. To demonstrate this numerically, consider the example in Section 2.4.2. Here,
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the two-stage approach would consist of the following :

• Stage I :

x̃ = arg min
0<x<5

(
σ2(x) + π(x)

)

= arg min
0<x<5

(
(1− 0.5x)2 + (2− 0.8x)2

)
= 2.3596.

• Stage II

k̃I = arg min
kI∈κ(ex)

V (x̃, kI) = 3.4117.

The proposed single-stage approach would yield the following result :

(x∗, k∗I ) = arg min
x∈(0,5),kI∈κ(x)

V (x, kI)σ
2(x) + π(x) = (2.2990, 2.8497).

We have, 0.0397 = PM(x̃, k̃I) > PM(x∗, k∗I ) = 0.0374, which indicates that the

two-stage approach yields a sub-optimal solution.

However, it may be noted that if minkI∈κ(X) V (X, kI) = 1 for all X, then the two

procedures would lead to identical results. Physically this means that through the

control mechanism, it is possible to reduce the variation of the output to the variance

of the underlying white noise. This will hold good for the ARIMA(0,1,1) model,

where by choosing kI = λ
g(X)

, V (X, kI) can be reduced to 1.

Another drawback of the two-stage approach is the improper selection of k0, since

it will be impossible to distinguish α(X,N) from g(X) in the first-stage model ob-

tained by keeping C fixed. This will give rise to instability in the process during the

initial phase of production.

2.4.4 Design of experiments and analysis of data

In order to express PM as a suitable function of X and kI , one may conduct a

suitable open-loop experiment with X,N and C as experimental factors to estimate

model (8), fit an appropriate time series model for zt and then obtain an expression
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for PM by considering an appropriate distribution of N. This approach is known

as response modeling (Wu and Hamada 2000, Chaps 10 and 11). An alternative

procedure is to directly model PM as a function of X and kI by treating kI as an

experimental factor and conducting the experiment with the control loop. This is

called performance measure modeling. In the following two subsections, we discuss

the design and analysis of experiments under these two approaches.

2.4.4.1 Response modeling approach

Recall that in Section 2.4.2, we had assumed the dependence of σ2
a (the variance of

at) on X. Thus, the response modeling may be thought of as a two-step approach:

1. Fitting a transfer function of the form et = α + gCt−1 + zt for various combina-

tions of X and N.

2. Modelling α as a function of (X,N); g and σ2
a as functions of X.

To achieve this objective, we may use a cross array design between X and N and nest

all the levels of C within each X,N combination. Thus, for each combination of X

and N, a time series in Yt and hence et will be obtained by changing the levels of C.

As in the simulated experiment described on p. 442 of Box et al. (1994), each level

of C may be held constant for a fixed time, and τ observations may be generated.

Instead of employing a cross array design, we may use a single array as well, ensuring

that all the interactions between X and N are estimable. Details of cross array and

optimal single array designs may be found in Chapter 10 of Wu and Hamada (2000).

As indicated above, the analysis consists of the following two broad stages:

1. For each combination of X and N,

(a) Identification of the form of the disturbance zt =
∑∞

j=0 ψjat−j using au-

tocorrelation function (ACF) plots and partial autocorrelation function

(PACF) plots;
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(b) Estimating the parameters (α, g, ψj’s, σ2
a) using a constrained iterative

nonlinear least squares algorithm (Box et al. 1994, Chapter 7).

2. Treating α, g and σ2
a as three different responses, we identify significant control

factors and control×noise interactions and fit α̂ = α(X,N), ĝ = g(X), σ̂2
a =

σ2
a(X).

Note that if we assume that σ2
a does not depend on X, i.e., all the parameters

associated with the disturbance zt are free of X, then the experiment can be consid-

erably simplified. In such a case we may estimate the time series parameters from

a single experimental run for fixed X = X∗ and N = N∗. Next, we may conduct a

cross array design D(X)
⊗

D(N)
⊗

D(C) and estimate model (8) directly from the

experimental data.

Although the response modeling approach provides an in-depth understanding of

the underlying phenomena, it is clear that there is a possibility that the experiment

will be very large and will involve intensive computation. Further, it is obvious, that

this experiment has to be run with an open loop. For systems in which controllers

have already been installed, industrial personnel would usually be reluctant to run

open-loop experiments. Thus, when the objective is to achieve robustness of a system

that already has a feedback controller, the performance measure modeling approach

discussed in the following section will be appropriate.

2.4.4.2 Performance measure modeling

Since this approach can be thought of as modeling the performance measure as a

function of X and kI , it would be reasonable to use a cross array design between X and

kI . The various noise combinations may be nested within each (X, kI) combination.

Thus, for each combination of X and kI , a time series in Yt and hence et will be

obtained by changing the levels of N. In order to reduce the run size, X and kI can

be accommodated in a single array. In this case, one must ensure that all or most of
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the interactions between kI and X are estimable.

Note that, in this set-up, the adjustment factor C need not be included in the

experiment as it will be automatically changed during the course of this closed loop

experiment. However, k0 corresponds to the initial value of C (at time 0) and may

be treated as ’another’ control factor.

Selection of levels for kI is a very important aspect, regarding which the experi-

menter has to be careful. At least three levels should be chosen for kI since for any

given setting, the variation in the output is approximately a quadratic function of kI

and the quadratic effect of kI should be important. However, keeping in mind the

fact that grossly improper choice of kI may make the output unstable and upset the

entire process, some amount of caution would usually be exercised in the selection

of its levels. Thus, it may not be possible to hit the optimum with a single experi-

ment and additional runs may be added later in the evolutionary operation mode as

suggested by Box and Kramer (1992).

Let Yijkt be the tth measured value of the characteristic at the ith level of X,

jth level of kI , and kth level of N (i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . , K,

t = 1, 2, . . . , τ). Let eijkt = Yijkt − T . Then we compute the estimated value of the

performance measure corresponding to the ith level of X and jth level of kI as

P̂Mij =
1

Kτ − 1

Kτ∑
t=1

(
eijkt − eij..

)2

,

where

eij.. = 1
Kτ

∑K
k=1

∑τ
t=1 eijkt.

Next, fit the linear regression model

ln P̂M = f(X, kI), (14)

and we determine optimum values of X and kI by optimizing the fitted function

f(X, kI).
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The above analysis is based on the assumption that all the factor-level combi-

nations would produce a stationary output around T thereby ensuring the finite-

ness of V (et). As seen in Section 2.4.2, this may not be the case if kI is cho-

sen at a level beyond the range within which it is capable of producing a station-

ary output. If it is found that for some level combinations (i, j, k), eij.. is largely

different from zero, it would be pragmatic to use the sample mean squared error

m2
ij = 1

Kτ−1

∑Kτ
t=1

(
Yijkt − T

)2

instead of P̂Mij.

2.5 A simulation study

Let us revisit the example discussed in Section 2.4.2 for a simulation study:

et = −2X1 −N + 0.5X1N + (2− 0.75X1)Ct−1 + zt.

We assume that zt = φzt−1 + at is an AR(1) process with φ = 0.7, E(at) = 0,

V ar(at) = (2−0.8X1)
2 and N is a random variable with mean 0 and variance 1. Also

assume that besides X1, there is another control factor X2, which the experimenter

will consider for experimentation.

The experimenter’s objective is to choose robust settings of X1, X2 and the optimal

integral control law Ct = −k0−kI

∑t
i=1 ei so that the deviation of e is minimal around

zero.

2.5.1 Response modeling

Three levels for each of the two control factors X1 and X2, two levels for the noise

factor N and three levels for the adjustment factor C. The levels of the factors are

shown in Table 1. The control array is a 32 design, and each of the 9 combinations of

the control factors are crossed with the two levels of the noise factor N . For each of the

18 control-noise combinations, each level of C is held constant till 10 observations are

generated. From these 30 observations in each control-noise cell, a transfer function

of the form et = α+ gCt−1 + zt is fit using weighted least squares, and an appropriate
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Table 1: Factors and Levels for Response Modeling Simulation Experiment

Level
Factor 1 2 3

X1. First control factor 2.2 2.3 2.4
X2. Second control factor 3 5 7
N. Noise factor -2 2 −
C. Adjustment factor 10 15 20

Table 2: Summarized Data from Response Modeling Simulation Experiment

Control factor N = -2 N = 2
X1 X2 α g σ2 α g σ2

2.2 3 -4.625 0.3511 0.0616 -4.182 0.3654 0.0618
2.2 5 -4.578 0.3571 0.0550 -4.178 0.3330 0.0535
2.2 7 -4.595 0.3504 0.0613 -4.238 0.3397 0.0603
2.3 3 -4.909 0.2753 0.0308 -4.309 0.2752 0.0254
2.3 5 -4.909 0.2718 0.0203 -4.330 0.2832 0.0242
2.3 7 -4.887 0.2848 0.0274 -4.287 0.2820 0.0248
2.4 3 -5.200 0.1977 0.0064 -4.366 0.1920 0.0061
2.4 5 -5.207 0.1989 0.0055 -4.391 0.1976 0.0054
2.4 7 -5.220 0.2013 0.0070 -4.405 0.1991 0.0065

time series model is fit to the residuals. The summarized experimental data are shown

in Table 2.

It is found that the residuals constitute an AR(1) process with estimated param-

eter φ̂ = 0.61. As described in Section 2.4.4, treating α, g and σ2 as three different

responses, using the methodology described in Wu and Hamada (2000), it is found

that the significant factors affecting α are X1 and N , and g and σ2 are affected by

X1 only.

The following models are obtained:

α(X,N) = −1.99X1 − 1.061N + 0.527X1N,

g(X) = 2.02− 0.76X1,

σ2(X) = 4.36− 3.51x + 0.71X2
1 .

28



Consequently, the complete fitted model is

et = −1.99X1 − 1.061N + 0.527X1N + (2.02− 0.76X1)Ct−1 + zt,

where zt = φzt−1 + at is an AR(1) process with φ = 0.61, and V ar(at) = 4.36 −
3.51x + 0.71X2

1 .

Substituting all the estimated parameters of the model in (13) and (12), we get

PM(X, kI) = f1(X1)f2(X1), where,

f1(X1) =
1.2422(

1 + {1− kI(2.02− 0.76X1)}
)(

1− 0.61{1− kI(2.02− 0.76X1)}
) ,

f2(X1) = (4.36− 3.51X1 + 0.71X2
1 ) + (1.061− 0.527X1)

2.

Minimizing the above function subject to the constraints 2.2 ≤ X1 ≤ 2.4 and

0 ≤ kI ≤ 2
2.02−0.76X1

, we get X∗
1 = 2.3569 and k∗I = 2.9739. These are fairly good

estimates of the true optimal values (X∗
1 , k

∗
I ) = (2.2990, 2.8497). The optimal value

of k0 is obtained as k∗0 = 20.5.

2.5.2 Performance measure modeling

For this experiment, we choose three levels for each of the factors X1, X2, k0, kI and

two levels for the noise factor N . The levels of the control factors X1, X2, noise

factor N and the control equation parameters k0 and kI are shown in Table 3. A 34

design is used, in which, for each combination of X1, X2, k0, kI , 100 observations are

generated with N at level −1 and 100 observations with N at level +1. The mean

squared error of these 200 observations are computed. The experimental data, i.e.,

the mean squared errors corresponding to the 81 runs are shown in Table 4. Finding

out the significant linear and quadratic effects following the methodology described in

Chapter 5 of Wu and Hamada (2000) and fitting a second-order regression equation

relating log(MSE) to the significant variables, the following performance measure
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model is obtained :

log(P̂M) = 97.81− 104.3X1 + 27.98X2
1 + 2.047k0 + 0.00576k2

0

+ 5.489kI + 0.7828k2
I − 0.9895X1k0 − 4.447X1kI .

The problem is thus

minimize log(P̂M)

subject to

2.2 ≤ X1 ≤ 2.4, 12 ≤ k0 ≤ 24, 1.5 ≤ kI ≤ 4.5.

The minimum is obtained at X1 = 2.32, k0 = 12, kI = 3.2; which is reasonably close to

the true optimum, considering the fact that in this approach we are trying to approx-

imate a complex response surface by a simple second-order polynomial function. A

sequential approach may be adopted to explore the response surface and the settings

may be fine tuned.

With this simple model involving one control variable, the response modeling and

performance measure modeling approach give almost identical results (except for k0,

which is, of course, not as important as X and kI). However, as the underlying model

becomes increasingly complex with addition of more control variables, the simple

second-order polynomial function obtained from the response modeling method may

not be good enough to model the performance measure properly. In such cases, it

may be better to conduct a response modeling experiment at the first stage to get a

fairly good idea about the significant variables, their interactions with noise and then

use a closed-loop performance measure modeling experiment to fine-tune the settings.

2.6 Robust design with the MMSE control scheme and the
pure-gain model

Once again, let us consider model (8) with the same assumptions for the process

disturbance zt as mentioned at the beginning of Section 2.4.2. Under the MMSE
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Table 3: Factors and Levels for Performance Measure Modeling Simulation Experi-
ment

Level
Factor 1 2 3

X1. First control factor 2.2 2.3 2.4
X2. Second control factor 3 5 7
k0. Control equation constant 12 16 24
kI . Control equation constant 1.5 3.0 4.5

Table 4: Summarized Data from Performance Measure Modeling Simulation Exper-
iment

Factor levels MSE from 200 observations Factor levels MSE from 200 observations
X1 X2 k0 kI MSE X1 X2 k0 kI MSE
2.2 3 12 1.5 0.0705 2.3 5 18 3.0 0.0270
2.2 3 12 3.0 0.0704 2.3 5 18 4.5 0.0300
2.2 3 12 4.5 0.1165 2.3 5 24 1.5 0.0516
2.2 3 18 1.5 0.0741 2.3 5 24 3.0 0.0495
2.2 3 18 3.0 0.0759 2.3 5 24 4.5 0.0443
2.2 3 18 4.5 0.1173 2.3 7 12 1.5 0.0528
2.2 3 24 1.5 0.1829 2.3 7 12 3.0 0.0429
2.2 3 24 3.0 0.1590 2.3 7 12 4.5 0.0520
2.2 3 24 4.5 0.2227 2.3 7 18 1.5 0.0367
2.2 5 12 1.5 0.0720 2.3 7 18 3.0 0.0269
2.2 5 12 3.0 0.0720 2.3 7 18 4.5 0.0307
2.2 5 12 4.5 0.0963 2.3 7 24 1.5 0.0667
2.2 5 18 1.5 0.0962 2.3 7 24 3.0 0.0496
2.2 5 18 3.0 0.0806 2.3 7 24 4.5 0.0521
2.2 5 18 4.5 0.2000 2.4 3 12 1.5 0.0958
2.2 5 24 1.5 0.1469 2.4 3 12 3.0 0.0567
2.2 5 24 3.0 0.1269 2.4 3 12 4.5 0.0536
2.2 5 24 4.5 0.2304 2.4 3 18 1.5 0.0399
2.2 7 12 1.5 0.0669 2.4 3 18 3.0 0.0289
2.2 7 12 3.0 0.0653 2.4 3 18 4.5 0.0238
2.2 7 12 4.5 0.1142 2.4 3 24 1.5 0.0150
2.2 7 18 1.5 0.0804 2.4 3 24 3.0 0.0114
2.2 7 18 3.0 0.0946 2.4 3 24 4.5 0.0124
2.2 7 18 4.5 0.1168 2.4 5 12 1.5 0.0904
2.2 7 24 1.5 0.1616 2.4 5 12 3.0 0.0622
2.2 7 24 3.0 0.1435 2.4 5 12 4.5 0.0510
2.2 7 24 4.5 0.2268 2.4 5 18 1.5 0.0421
2.3 3 12 1.5 0.0492 2.4 5 18 3.0 0.0244
2.3 3 12 3.0 0.0390 2.4 5 18 4.5 0.0206
2.3 3 12 4.5 0.0485 2.4 5 24 1.5 0.0164
2.3 3 18 1.5 0.0357 2.4 5 24 3.0 0.0127
2.3 3 18 3.0 0.0315 2.4 5 24 4.5 0.0112
2.3 3 18 4.5 0.0386 2.4 7 12 1.5 0.0851
2.3 3 24 1.5 0.0611 2.4 7 12 3.0 0.0557
2.3 3 24 3.0 0.0441 2.4 7 12 4.5 0.0508
2.3 3 24 4.5 0.0528 2.4 7 18 1.5 0.0408
2.3 5 12 1.5 0.0639 2.4 7 18 3.0 0.0272
2.3 5 12 3.0 0.0403 2.4 7 18 4.5 0.0258
2.3 5 12 4.5 0.0525 2.4 7 24 1.5 0.0146
2.3 5 18 1.5 0.0312 2.4 7 24 3.0 0.0123
− − − − − 2.4 7 24 4.5 0.0120
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control scheme, Ct−1 is to be set in such a way so that the one-step ahead forecast of

Yt is equal to the target T (or equivalently, the forecast of et is zero). An elaborate

discussion can be found in Box and Luceno (1997).

Thus, under the MMSE scheme for the pure gain model, Ct−1 should be such that

êt−1(1) = α(X,N) + g(X)Ct−1 + ẑt−1(1) = 0. (15)

Since α(X,N) will not be known in reality, the MMSE control equation can be

obtained from the above by taking the expectation over N, i.e.,

Ct−1 =
1

g(X)

(
− α(X)− ẑt−1(1)

)
. (16)

Substituting (14) into (8), we get

et =

(
α(X,N)− α(X)

)
+ (zt − ẑt−1(1)). (17)

Thus, we have

V ar(et) = V araEN(et|a) + EaV arN(et|a)

= V ar

(
zt − ẑt−1(1)

)
+ π(X)

= σ2(X) + π(X), (18)

where π(X) is defined as before.

The last step of (18) follows from the properties of the MMSE forecast (Box et al.

1994, Chapter 5). The fact that under the ARIMA(0,1,1) disturbance, the discrete

PI scheme with kI = λ
g(X)

is the same as the MMSE scheme can be easily seen by

substituting kI = λ
g(X)

in (11) and observing that V ar(et) reduces to the form given

by (18).

It is evident that with the MMSE control scheme, only the response modeling

approach would work, since it is not possible to establish the control equation and

observe the output error under control without estimating model (8). Since MMSE
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control schemes reduce the variance of the output error to the variance of the un-

derlying white noise, by the argument in Section 2.4.2, one may use the two-stage

approach in this case. However, as discussed before, a two-stage approach will lead

to improper choice of the component α(X) in the control equation.

2.7 A case study

In Section 2.2 a study on optimization of a control scheme of the packing process of

a urea manufacturing plant (Dasgupta et al., 2002) was mentioned as a motivating

example. The underlying control scheme was a discrete PI scheme, slightly different

from the classical one (see Appendix of Dasgupta et al. 2002). Among the 16 factors

listed in the original case study, D (auto compensation proportional constant) and

K (in-flight material compensation - start) correspond to kI and k0 respectively. The

recoded factors and levels of the experiment are given in Table 5. The packing system

is shown in Figure 3.

Main Hopper

Distance piece

Sub hopper

Y-piece

Machine feed
Main gate & dribble gate

Weighpan

Figure 3: The Packing Process

The original experiment was conducted and analyzed somewhat superficially just
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Table 5: Factors and Levels, Packing Plant Experiment

Level
Control Factor 1 2 3

X1. Sample frequency 10 20 −
X2. Sample number 3 5 −
X3. Sample frequency timer 240 300 −
X4. Main feed blanking timer (sec) 0.5 0.9 −
X5. Dribble feed blanking timer (sec) 0.5 0.9 −
X6. Discharge timer (sec) 0.3 0.6 0.9
X7. Dribble feed time correction constant (sec) 0.1 0.8 −
X8. Gate allowance timer (sec) 0.4 2.0 −
X9. Feed delay timer (sec) 0.3 0.7 −
X10. Dribble feed quantity (start) (Kg) 8 12 −
X11. Discharge cut-off value (Kg) 20 30 −
X12. Overweight tolerance (Kg) 0.15 0.20 −
X13. Underweight tolerance (Kg) 0.10 0.15 −
X14. Dribble feed time (sec) 1.2 1.4 1.6

Level
PI control scheme parameters 1 2 3

kI . Auto compensation proportional constant 0.2 0.3 0.4
k0. In-flight material compensation (start) 2.0 3.0 −

Level
Noise factors 1 2 3

N. Composition of material N1 N2 N3

like “another” robust design exercise, not recognizing the specific roles of factors kI

and k0. It may also be noted that the original experiment does not explicitly consider

any noise factor. However, since we have three replicates, we can consider them to

correspond to three levels of the noise factor material composition N .

An L32 orthogonal array (OA) with an idle column was used to design the ex-

periment. The idle column method is a technique to generate three level columns by

collapsing two columns in a two-level orthogonal array (Taguchi 1987; Grove & Davis

1991; Huwang, Wu & Yen 2002). Besides the 16 main effects (19 degrees of freedom),

provisions were kept for estimation of five interaction effects, viz. X1×X2, X6×X11,

X6 ×X9, X7 ×X10 and X2 × kI .

Sixty bags were filled for each of the 32×3 = 96 level combinations. The target

weight was set at T = 50.5 kg.

As mentioned in Section 2.2, in-flight material composition is the adjustment

factor C in this case. X = {X1, . . . , X14} denotes the set of control factors. Note that

we can use equation (7) to model Yt, the weight of a packed bag at time t, where zt in

(7) is the disturbance due to other uncontrollable noise factors such as temperature
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Table 6: Data from the Packing Experiment

Var over 3
Control Factor PI noise levels

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 kI k0 ln(s2)
+ − + + + 0 − + − + + − + 0 1 − -5.6821
− − − + − 0 − − − − + + − 1 0 + -4.2966
+ + − − + 0 + + − + − + − 0 1 + -4.0499
− + + − − 0 + − − − − − + 1 0 − -4.6484
+ + + − + 0 + − + − + − − 1 1 − -7.1007
− + − − − 0 + + + + + + + 0 0 + -6.7234
+ − − + + 0 − − + − − + + 1 1 + -4.4138
− − + + − 0 − + + + − − − 0 0 − -7.0905
− + + + − 2 − − − − + + + 0 1 − -7.4974
+ + − + + 2 − + − + + − − 1 0 + -4.4772
− − − − − 2 + − − − − − − 0 1 + -4.4792
+ − + − + 2 + + − + − + + 1 0 − -6.3351
− − + − − 2 + + + + + + − 1 1 − -7.5304
+ − − − + 2 + − + − + − + 0 0 + -3.8414
− + − + − 2 − + + + − − + 1 1 + -4.5632
+ + + + + 2 − − + − − + − 0 0 − -7.7693
+ − − − − 1 − + − − + − − 0 1 − -8.2079
− − + − + 1 − − − + + + + 2 2 + -4.3529
+ + + + − 1 + + − − − + + 0 1 + -4.6972
− + − + + 1 + − − + − − − 2 2 − -8.6886
+ + − + − 1 + − + + + − − 2 1 − -7.9619
− + + + + 1 + + + − + + + 0 2 + -5.4851
+ − + − − 1 − − + + − + + 2 1 + -3.7536
− − − − + 1 − + + − − − − 0 2 − 7.5840
− + − − + 2 − − − + + + + 0 1 − -7.3038
+ + + − − 2 − + − − + − − 2 2 + -3.5010
− − + + + 2 + − − + − − − 0 1 + -4.2572
+ − − + − 2 + + − − − + + 2 2 − -7.6150
− − − + + 2 + + + − + + − 2 1 − -8.0317
+ − + + − 2 + − + + + − + 0 2 + -3.7810
− + + − + 2 − + + − − − + 2 1 + -6.9418
+ + − − − 2 − − + + − + − 0 2 − -8.0519

of the flowing material, moisture content in the hopper, etc. and has a certain time

series structure.

The response modelling approach cannot be employed because it would require an

open-loop experiment as discussed in Section 2.4.4.1. Here, since the experiment was

conducted with a closed loop with k0 (starting value of the adjustment factor C) and

kI as two of the experimental factors, the performance measure modelling approach

needs to be used. Recall also that in this approach it is not necessary to fit a time

series model to zt; rather, one has to express the performance measure (variance or

mean squared error of data collected over time) as a function of the control factors,

k0 and kI .

Note that in performance measure modelling, for each experimental combination

35



we would generate a time series over the different levels of noise. Such was, however,

not the case in the original experiment. For purpose of illustration, we assume that the

180 observations corresponding to each of the 32 experimental runs constitute a single

time series. The sample standard deviation of the 180 observations corresponding to

each run is shown in Table 6.

X14q

k0

X9X6q

X6q

Figure 4: Half-normal Plot

Using half-normal plots for the 27 treatment effects (Figure 4), we find that four

effects viz. X9X6q, k0, X14q and X6q stand apart from the rest. Using Lenth’s method

(Wu and Hamada 2000, Chapter 4) as a formal test of significance it is seen that all of

these 4 effects are significant at 1% level. Note that for any three-level factor X, we

denote the linear and quadratic effects by Xl and Xq respectively (Wu and Hamada

2000, Chapter 5).

We notice that neither the main effect of kI nor the X2 × kI interaction (which

is estimable) is significant. Another factor that is suspected to interact with kI is
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X9X6qX3kIl

X3kIq
k0

X14q

X6q

.

Figure 5: Modified Half-normal Plot (with X3 × kI interaction)

X3, and we explore the possibility of incorporating the X3 × kI interaction into our

analysis by replacing some insignificant effects in the preliminary model. Using the

table of interactions for the L32 OA, we find that the X3 × kI interaction can be

estimated from columns 8 and 9 of the OA. Out of these two columns, 8 corresponds

to factor X11 which is seen to be insignificant and 9 is a free column to which no other

main effect or significant interaction is assigned. Thus we re-perform the analysis by

including the X3 × kI interaction (with two degrees of freedom) instead of X11.

The half-normal plot (Figure 5) now identifies 6 effects standing above the rest.

Apart from the four that were already seen to be significant, the interaction effects

X3kIl
and X3kIq turn out to be significant at 1% level.

From the plots of significant main effects (Figure 5) and the X6 ×X9 interaction

(Figure 6), we choose the optimal settings of k0, X9, X6 and X14 as k0 = −1,X9 =

1,X6 = 1 and X14 = 2. Note that all of these factors (or interactions involving them)
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were found significant in the original analysis and the same levels (although different

notations were used) were selected as the optimum ones.

MAIN EFFECTS OF X9, k0, X14 AND X6

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-1 1 . -1 1 . 0 1 2 . 0 1 2

X9 k0 X14

X6

Figure 6: Main Effects Plots

The interaction plot of X3×kI (Figure 6) suggests that at neither of the two levels

of X3, the optimum kI could be reached. Corresponding to X3 = 1, k∗I (X3) ≤ 0 while

corresponding to X3 = −1, k∗I (X3) ≥ 2. We also note that the curve corresponding to

X3 = 1 is slightly convex as expected, whereas that corresponding to X3 = −1 exhibits

a slight concavity, which can be attributed to sampling error or effect of higher order

interactions. Since this difference in convexity results in significance of the quadratic

component of the interaction, we may only consider the linear component of the

interaction while modeling ln( ˆPM). From the interaction plot, we choose X3 = −1

and kI = 2 as the optimal settings.
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Figure 7: Interaction Plots

The following model is thus obtained:

P̂M = −5.7438 + 1.2408xk0 − 0.832x6 + 0.3344x2
6 + 1.0725x14 − 0.5863x2

14

+0.2362x3xkI
− 0.1240x9x

2
6. (19)

Substituting the optimal settings of the control factors in the above model, we get

the optimal value of the performance measure as P̂M∗ = −8.2788, which corresponds

to a standard deviation of 0.0159. The original experiment was able to reduce the

output standard deviation drastically to 0.031 from the existing value of 0.121. We

find from this re-analysis that with the newly recommended settings, it might have

been possible to reduce the variation to almost 50% of what had been achieved.

This analysis also points out the importance of adopting a sequential approach

for the performance modeling experiment. It is clear that with wider choices of levels

of kI , it might have been possible to reduce the output variance even further.
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2.8 Robust Parameter Design with on-line noise factors

One important assumption in the framework proposed so far in this chapter is that

the noise factors (that appear in the experiment) are uncorrelated over time. There

are many examples of noise factors, e.g., material composition in the case study, which

are uncorrelated or weakly correlated over time and may be well approximated by a

white noise disturbance. However, there are also many noise factors associated with

dynamic systems which do not satisfy this assumption. In this section we discuss the

case where we have some correlated noise factors (some of them may be measurable

on-line), develop performance measures for systems containing such factors, and give

an outline of the related optimization procedure.

Extending the framework described in Section 2.4.1, let N = {R,Q}, where

R denotes the set of off-line noise factor and Q the set of on-line noise factors.

For simplicity, we consider a single on-line noise factor Q. The following forms are

considered for the functions β and f(et, et−1, . . .) described in Section 2.3.1:

β(X,N, Ct−1, Ct−2, . . .) = α0(X,R) + g(X)Ct−1 + β(X)Qt

f(et, et−1, . . .) = −k0 − kI

t∑
i=1

ei.

We thus postulate the following first-order pure-gain dynamic model

Yt = α0(X,R) + g(X)Ct−1 + β(X)Qt + zt. (20)

If T denotes the target, and et = Yt − T denotes the deviation from the target,

then

et = α(X,R) + g(X)Ct−1 + β(X)Qt + zt, (21)

where α(X,R) = α0(X,R)− T .

Note that this is essentially the same as (8), the added aspect being the dependence

of the dynamics on Q. If an integral control scheme is employed to a process described

by (21), kI necessarily has to be a function of X and X has to be such that the output

is least sensitive to the effects of R and Q.
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2.8.1 Performance measure for integral control

Let us assume that zt and Qt are independent linear processes defined as

zt =
∞∑

j=0

ψjat−j,

Qt =
∞∑

j=0

φjwt−j,

where {at} and {wt} are white noise processes with zero mean and variances σ2
a(X)

and σ2
w(X) respectively. Recalling that in an integral control scheme Ct−1 is set to be

−k0 − kI

∑t−1
i=1 ei, we have from (21),

et = α(X,R)− g(X)
(
k0 + kI

t−1∑
i=1

ei

)
+ β(X)Qt + zt

=

(
α(X,R)− g(X)k0

)
− g(X)kI

t−1∑
i=1

ei + β(X)
∞∑

j=0

φjwt−j +
∞∑

j=0

ψjat−j.

(22)

As in Section 2.4.2, we consider V ar(et) as the appropriate performance measure,

assuming that the controller output is asymptotically stable around zero. V ar(et)

can be obtained as follows:

V ar(et) = V araEw

[(
ER(et|a, w)

)
|a

]

+ EaV arw

[(
ER(et|a, w)

)
|a

]

+ EaEw

[(
V arR(et|a, w)

)
|a

]

= V araEw(ut|a) + EaV arw(ut|a) + π(X)

= V ara(vt) + V arw(ut|a) + π(X). (23)
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where

ut = ER(et|a, w)

=

(
α(X)− g(X)k0

)
− g(X)kI

t−1∑
i=1

ui + β(X)
∞∑

j=0

φjwt−j +
∞∑

j=0

ψjat−j, (24)

vt = Ew(ut|a)

=

(
α(X)− g(X)k0

)
− g(X)kI

t−1∑
i=1

vi +
∞∑

j=0

ψjat−j, (25)

and

α(X) = ER(α(X,R)),

π(X) = V arR(α(X,R)).

The first two terms in (23) are functions of X and kI . Define Va(X, kI) = V ara(vt)

and Vw(X, kI) = Vw(ut|a). Then, the performance measure is given by

PM(X, kI) = Va(X, kI) + Vw(X, kI) + π(X). (26)

Clearly, the forms of Va(X, kI) and Vw(X, kI) depend on the time series structures of

zt and Qt respectively. Also, Va(X, kI) and Vw(X, kI) depend on X through the func-

tions g(X) and β(X) respectively. Therefore if model (21), the time series structures

associated with zt and Qt, and the distribution of R are completely known, then we

can compute the performance measure from (26) by deriving and substituting the

expressions for the three terms. A couple of examples are given below:

EXAMPLE 1. If zt and Qt are ARIMA(0,1,1) processes with parameters λz and

λQ respectively, then

Va(X, kI) =





1+θ2
z−2φ(X,kI)θz

1−φ2(X,kI)
σ2

a(X) , |φ(X, kI)| ≤ 1

∞ , otherwise
,
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Vw(X, kI) =





1+θ2
Q−2φ(X,kI)θQ

1−φ2(X,kI)
β2(X)σ2

w(X) , |φ(X, kI)| ≤ 1

∞ , otherwise
,

where φ(X, kI) = 1− g(X)kI , θz = 1− λz and θQ = 1− λQ.

The expression for Va(X, kI) follows from the same argument as in Section 2.4.2.

To derive the expression for Vw(X, kI), note that for fixed a’s, we can write from (24)

ut = constant− g(X)kI

t−1∑
i=1

ui + β(X)
(
wt + λQ

t−1∑
i=1

wi

)

= constant− g(X)kI

t−1∑
i=1

ui + w′
t + λQ

t−1∑
i=1

w′
i,

where w′
ts are iid with zero mean and variance β2(X)σ2

w(X). Following the lines of

proof given by Box and Kramer (1992), the result follows.

EXAMPLE 2. If zt and Qt are AR(1) processes with parameters φz and φQ

respectively, then

Va(X, kI) =





2
(1+η(X,kI))(1−φzη(X,kI))(1+φz)

σ2
a(X) , |φ(X, kI)| ≤ 1

∞ , otherwise
.

Vw(X, kI) =





2
(1+η(X,kI))(1−φQη(X,kI))(1+φQ)

β2(X)σ2
w(X) , |φ(X, kI)| ≤ 1

∞ , otherwise
.

The expression for Vw(X, kI) is obtained by noting that for fixed a’s, from (24)

we have

ut = constant− g(X)kI

t−1∑
i=1

ui + β(X)
(
φQQt−1 + wt

)

= constant− g(X)kI

t−1∑
i=1

ui +
∞∑

j=0

φj
Qw′

t−j.
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where w′
ts are iid with zero mean and variance β2(X)σ2

w(X). The expression for

Vw(X, kI) is now easily obtained by using the results of Tsung et al. (1996) in the

same way as in Section 2.4.2.

2.8.2 MMSE control scheme

Recall that under the MMSE control scheme, Ct−1 is to be set in such a way so that

the one-step ahead forecast of Yt is equal to the target T (or equivalently, the forecast

of et is zero). Thus, under the MMSE scheme for the pure gain model given by (21)

with only feedback control, Ct−1 should be such that

êt−1(1) = α(X,R) + g(X)Ct−1 + β(X)Qt + ẑt−1(1) = 0.

Since α(X,R) will not be known in reality in the MMSE control equation, it can

be replaced by its expectation over R. Further, since at time t− 1, Qt−1 and not Qt

will be known, the control equation will be

Ct−1 =
1

g(X)

(
− α(X)− β(X)Qt−1 − ẑt−1(1)

)
. (27)

Substituting (27) into (21), we get

et =
(
α(X,R)− α(X)

)
+ β(X)

(
Qt −Qt−1

)
+ (zt − ẑt−1(1)). (28)

Thus, we have

V ar(et) = V arR

(
α(X,R)

)
+ β2(X)V arw

(
Qt −Qt−1

)
+ V ara

(
zt − ẑt−1(1)

)

= π(X) + β2(X)

(
φ2

0 +
∞∑

j=1

(φj − φj−1)
2

)
σ2

w(X) + σ2
a(X). (29)

Clearly, if model (21), the time series model associated with Qt, σ2
a(X) and the

distribution of R are known, then we can compute V ar(et) from (29). Subsequently,

the optimal X can be found by minimizing V ar(et).

If we want to introduce a feedforward control loop along with the feedback control

mechanism (see Figure 8), then Qt−1 in equations (27) and (28) will be replaced by
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the one-step ahead MMSE forecast Q̂t−1(1) and consequently,

V ar(et) = V arR

(
α(X,R)

)
+ β2(X)V arw

(
Qt − Q̂t−1(1)

)
+ V ara

(
zt − ẑt−1(1)

)

= π(X) + β2(X)σ2
w(X) + σ2

a(X). (30)

Feedforward loop

Ct

Process
Yt = B(X,R,Qt-1,Ct-1 , Qt-1,Ct-2 , …) + zt

et = Yt - T

Process dynamics Process disturbance

X1

X2

Xp

R1,R2, ..,Rq

First order / higher order
Stationary/

non-stationaryQt

Ct = f(et,Qt,et-1,Qt-1…)

Feedback loop

Figure 8: Parameter design with feedback and feedforward control

The last step of (30) follows from the properties of the MMSE forecast (Box et al.

1994, Chapter 5). It is clear from equations (29) and (30) that adding a feedforward

loop to the system will be beneficial if

GQ(φ) = φ2
0 +

∞∑
j=1

(φj − φj−1)
2 > 1.

For example, if Qt is white noise with mean 0 and variance 1, then GQ(φ) = 1, which

means, introducing feedforward control will not be beneficial. The reduction in vari-

ance that can be achieved by introduction of feedforward control is GQ(φ)β2(X)σ2
w(X).

Two examples are discussed below.

Example 1: If Qt is a stationary AR(1) process with parameter φ such that

|φ| < 1, then

GQ(φ) = 1 +
∞∑

j=1

(φj − φj−1)2 = 2/(1 + φ).
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Thus, if Qt = 0.5Qt−1 + wt, adding an MMSE feedforward controller to the feedback

system will reduce the asymptotic variance of the output by 1.33β2(X)σ2
w(X).

If Qt is a nonstationary AR(1) process with parameter φ such that |φ| > 1,

GQ(φ) = ∞, which means without feedforward control, the variance of the output

will explode. Therefore if an MMSE feedback controller is used for such a system, it

is mandatory to also have a feedforward controller.

Example 2: If Qt is an ARIMA(0,1,1) process with parameter λ, then GQ(φ) =

1 + (1 − λ)2, and the feedforward loop will be beneficial if λ 6= 1. Note that λ = 1

makes Qt a random walk process.

2.9 Concluding remarks

In this chapter we have developed a framework for robust parameter design of systems

with feedback control. The suggested approach can be used to obtain the optimal

control law and robust parameter design solution at a single stage. Appropriate per-

formance measures have been developed and the design and analysis of experiments

for estimation and optimization of these performance measures have been discussed.

The advantages of using the proposed approach as compared to a two-stage approach

have been discussed. The benefits of using the proposed method have been demon-

strated using a simulation study and an example from a packing plant.

Although we have considered the pure-gain dynamic model and primarily the dis-

crete integral control scheme, it should be possible to extend the proposed method-

ology to a much more generic class of models and other control schemes.

Our proposed framework mostly deals with noise factors (that appear in the ex-

periment) that are uncorrelated over time. Even if this assumption is not true, the

framework developed in Sections 2.4-2.6 can still handle correlated noise factors by

absorbing the effect of such noise factors in the disturbance term zt by virtue of the

important assumption that var(zt) depends on the control factors. For example, in
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the context of the packing experiment, temperature of the flowing material is an

example of such a correlated noise factor, which can hardly be controlled and thus

cannot be treated as a experimental factor in the study. However, its effect can easily

be absorbed into the disturbance term zt. However, if such noise factors can be mea-

sured on-line, then one can think of augmenting a feedforward loop to the system.

Such situations call for an integration of robust parameter design with feedback and

feedforward control and has been briefly discussed in the context of MMSE control

in Section 2.8.

The performance measure modeling approach is a simple alternative to closed-

loop estimation. However, as already discussed before, if the number of significant

process variables is large, then a sequential approach may be necessary to obtain the

optimal solution. Estimation of the true model from a closed-loop parameter design

experiment is another worthy topic for future research.
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CHAPTER III

ROBUST SYNTHESIS OF NANOSTRUCTURES

3.1 Introduction

Nanotechnology is the construction and use of functional structures designed from

atomic or molecular scale with at least one characteristic dimension measured in

nanometers (one nanometer = 10−9 meter, which is about 1/50,000 of the width

of human hair). The size of these nanostructures allows them to exhibit novel and

significantly improved physical, chemical, and biological properties, phenomena, and

processes. Nanotechnology can provide unprecedented understanding about materials

and devices and is likely to impact many fields. By using structure at nanoscale as a

tunable physical variable, scientists can greatly expand the range of performance of

existing chemicals and materials. Alignment of linear molecules in an ordered array

on a substrate surface (self-assembled monolayers) can function as a new generation of

chemical and biological sensors. Switching devices and functional units at nanoscale

can improve computer storage and operation capacity by a factor of a million. Entirely

new biological sensors facilitate early diagnostics and disease prevention of cancers.

Nanostructured ceramics and metals have greatly improved mechanical properties,

both in ductility and strength.

Current research by nanoscientists typically focuses on novelty, discovering new

growth phenomena and new morphologies. However, within the next five years there

will likely be a shift in the nanotechnology community towards controlled and large-

scale synthesis with high yield and reproducibility. This transition from laboratory-

level synthesis to large scale, controlled and designed synthesis of nanostructures

necessarily demands systematic investigation of the manufacturing conditions under
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which the desired nanostructures are synthesized reproducibly, in large quantity and

with controlled or isolated morphology. Application of statistical techniques can play

a key role in achieving these objectives. This chapter reports a systematic study on

the growth of 1D CdSe nanostructures through statistical modeling and optimization

of the experimental parameters required for synthesizing desired nanostructures. This

work is based on the experimental data presented in this paper and research published

in Ma and Wang (2005). Some general statistical issues and research opportunities

related to the synthesis of nanostructures are discussed in the concluding section.

Research in synthesizing semiconducting nanostructures is a forefront area in nan-

otechnology due to their applications in nanoelectronics, photonics, data storage, and

sensing (Tolbert and Alivisatos 1994; Ma, Moore, Ding, Li and Wang 2004; Tran,

Goldman, Anderson, Mauro and Mattoussi 2002). In particular, one-dimensional

(1D) nanostructures present the ability to experimentally address the fundamental

issues of reduced dimensionality and quantum confinement in one dimension (Lieber

1998; Alivisatos, Levinos, Steigerwald and Brus 1988). Cadmium selenide (CdSe)

has been investigated over the past decade for applications in optoelectronics (Hodes,

Albu-Yaron, Decker and Motisuke 1987), luminescent materials (Bawendi, Kortan,

Steigerwald and Brus 1989), lasing materials (Ma, Ding, Moore, Wang and Wang

2004) and biomedical imaging. It is the most extensively studied quantum-dot ma-

terial and is therefore regarded as the model system for investigating a wide range

of nanoscale processes. CdSe is found to exhibit one-dimensional morphologies of

nanowires, nanobelts and nanosaws (Ma and Wang 2005), often with the three mor-

phologies being intimately intermingled within the as-deposited material. Images of

these three nanostructures obtained using scanning electron microscope are shown in

Figure 9.

In this experiment, the response is a vector whose elements correspond to the
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numbers of appearance of different types of nanostructures and hence is a multino-

mial random variable. Thus a multinomial generalized linear model (GLM) is the

appropriate tool for analyzing the experimental data and expressing the multinomial

logits as functions of the predictor variables (McCullagh and Nelder 1989; Faraway

2006). A new iterative algorithm for fitting multinomial GLM that has certain ad-

vantages over the existing methods is proposed and implemented. The probability

of obtaining each nanostructure is expressed as a function of the predictor variables.

Owing to the presence of inner noise, i.e., variation around the set value, each pre-

dictor variable is a random variable. Using Monte-Carlo simulations, the expectation

and variance of transformed probabilities are expressed as functions of the set points

of the predictor variables. The expectation is then maximized to find the optimum

set values of the process variables, ensuring at the same time that the variance is

under control. The idea is thus similar to the two-step robust parameter design for

larger-the-better responses (Wu and Hamada 2000, chap. 10).

Figure 9: Nanosaws, Nanobelts and Nanowires

The chapter is organized as follows. In Section 3.2, we give a brief account of

the synthesis process. In Section 3.3, the experimental design and collection of data

are described. Section 3.4 is devoted to fitting of appropriate statistical models to

the experimental data. This section consists of two subsections. In Section 3.4.1 a

preliminary analysis using a binomial GLM is shown. Estimates of the parameters
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obtained here are used as initial estimates in the iterative algorithm for multinomial

GLM, which is developed and described in Section 3.4.2. In Section 3.5, we study the

optimization of the process variables to maximize the expected yield of each nanos-

tructure. Some general statistical issues and challenges in nanostructure synthesis

and opportunities for future research are discussed in Section 3.6.

3.2 The synthesis process

The CdSe nanostructures were synthesized through a thermal evaporation process in

a single zone horizontal tube furnace (Thermolyne 79300). A 30-inch polycrystalline

Al2O3 tube (99.9% purity) with an inner diameter of 1.5 inches was placed inside

the furnace. Commercial grade CdSe (Alfa Aesar, 99.995% purity, metal basis) was

placed at the center of the tube as use for a source material. Single-crystal silicon

substrates with a 2-nanometer thermally evaporated non-continuous layer of gold

were placed downstream of the source in order to collect the deposition of the CdSe

nanostructures. Water-cooled aluminum endcaps were used to seal the system as a

mechanical roughing pump purged the system of oxygen. After the chamber had

maintained a pressure of 2 × 10−2 torr for an hour, the system temperature was

raised to a designated set point at a rate of 200 C/min and a nitrogen carrier gas was

sent through the system at a rate of 50 sccm. Although the primary function of the

carrier gas was to transport the sublimated vapor to cooler regions of the furnace,

the secondary function of the gas was to build up the initial pressure of the system

as well as controlling the partial pressure of the vaporized source material. This

ensured that the pressure of the system was constant throughout the entire synthesis

process. The system was held at the set temperature and pressure for a period of

60 minutes and cooled to room temperature afterwards. The as-deposited products

were characterized and analyzed by scanning electron microscopy (SEM) (LEO 1530

FEG), transmission electron microscopy (TEM) (Hitachi HF-2000 FEG at 200 kV).
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180 individual nanostructures were counted from the deposition on each substrate.

A schematic diagram of the synthesis process is shown in Figure 10.

Cooling

Water

Cooling

Water

Source Material

Pump

Substrate

Carrying

Gas

Figure 10: The Synthesis Process

3.3 Design of experiment and data collection

The two key process variables affecting morphology of CdSe nanostructures are tem-

perature and pressure. A 5×9 full factorial experiment was conducted with five levels

of source temperature (630, 700, 750, 800, 8500 C) and nine levels of pressure (4, 100,

200, 300, 400, 500, 600, 700, 800 mbar). For a specific combination of source temper-

ature and pressure, 4-6 substrates were placed downstream of the source to collect

the deposition of nanostructures. The distance of the mid-point of the substrate from

the source was measured and treated as a covariate.

Three experimental runs were conducted with each of the 45 combinations of

temperature and pressure. However, these three runs cannot be considered to be

replicates, since the number and location of substrates were not the same in the three

runs. Consider, for example, the three runs performed with a temperature of 6300

C and pressure of 4 mb. In the first run, six substrates were placed at distances of
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1.9, 4.2, 4.9, 6.4, 8.1, 10.2 cm from the source. In the second run, four substrates

were placed at distances of 1.7, 4.6, 7.1, 8.9 cm from the source. Seven substrates

were placed at distances of 2.0, 4.3, 4.9, 6.4, 8.5, 10.6, 13.0 cm from the source in

the third run. Therefore 17 (=6+4+7) individual substrates were obtained with the

temperature and pressure combination of (6300 C, 4 mb). Each of these 17 substrates

constitute a row in Table 1. The total number of substrates obtained from the 135

(=45 × 3) runs was 415. Note that this is not a multiple of 45 owing to an unequal

number of substrates corresponding to each run.

Considering each of the 415 substrates as an experimental unit, the design ma-

trix can thus be considered to be a 415 × 3 matrix, where the three columns cor-

respond to source temperature (TEMP ), pressure(PRES) and distance from the

source (DIST ). Each row corresponds to a substrate, on which a deposition is formed

with a specific combination of TEMP,PRES and DIST (see Table 1).

Recall that from the deposition on each substrate, 180 individual nanostructures

were counted using SEM images. The response was thus a vector Y = (Y1, Y2, Y3, Y4),

where Y1, Y2, Y3, and Y4 denote respectively the number of nanosaws, nanowires,

nanobelts and no morphology, with
∑4

j=1 Yj = 180. For demonstration purposes,

the first 29 rows of the complete data are shown in Table 7. These rows correspond

to the temperature-pressure combinations (630,4) and (630,100). The complete data

can be downloaded from www.isye.gatech.edu/∼roshan.

It was observed that, at a source temperature of 8500 C, almost no morphology

was observed. Therefore, results obtained from the 67 experimental units involving

this level of temperature were excluded and the data for the remaining 348 units were

considered for analysis.

Henceforth, we shall use the suffixes 1,2,3 and 4 to represent quantities associated

with nanosaws, nanowires, nanobelts and no growth respectivly.
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Table 7: Partial data (29 rows out of 415) obtained from the nano-experiment

Temperature Pressure Distance Nanosaws Nanowires Nanobelts No growth
630 4 12.4 0 0 0 180
630 4 14.7 74 106 0 0
630 4 15.4 59 121 0 0
630 4 16.9 92 38 50 0
630 4 18.6 0 99 81 0
630 4 20.7 0 180 0 0
630 4 12.2 50 94 36 0
630 4 15.1 90 90 0 0
630 4 17.6 41 81 58 0
630 4 19.4 0 121 59 0
630 4 12.5 49 86 45 0
630 4 14.8 108 72 0 0
630 4 15.4 180 0 0 0
630 4 16.9 140 40 0 0
630 4 19.0 77 47 56 0
630 4 21.1 0 88 92 0
630 4 23.5 0 0 0 180
630 100 12.1 0 0 0 180
630 100 15.8 92 74 0 14
630 100 18.4 0 180 0 0
630 100 20.1 0 0 0 180
630 100 12.3 0 92 88 0
630 100 15.0 14 144 22 0
630 100 17.1 31 113 36 0
630 100 19.5 0 0 0 180
630 100 12.1 85 59 36 0
630 100 15.4 65 74 41 0
630 100 18.0 0 180 0 0
630 100 19.9 0 0 0 180

3.4 Model fitting

3.4.1 Individual modeling of the probability of obtaining each nanostruc-
ture using binomial GLM

Here, the response is considered binary, depending on whether we get a specific nanos-

tructure or not. Let p1, p2 and p3 denote respectively the probabilities of getting a

nanosaw/nanocomb, nanowire and nanobelt. Then, for j = 1, 2, 3, the marginal dis-

tribution of Yj is binomial with n = 180 and probability of success pj. The log-odds

ratio of obtaining the jth type of morphology is given by

ζj = log
pj

1− pj

.

Our objective is to fit a model that expresses the above log-odds ratios in terms

TEMP , PRES and DIST .

From the main effects plot of TEMP , PRES and DIST against observed propor-

tions of nanosaws, nanowires and nanobelts (Figure 11), we observe that a quadratic
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model should be able to express the effect of each variable on pj adequately. The in-

teraction plots (not shown here) give a preliminary impression that all the three two-

factor interactions are likely to be important. We therefore decide to fit a quadratic

response model to the data.

Figure 11: From left - growth vs temperature, growth vs pressure, growth vs distance

Each of three process variables are scaled to [-1,1] by appropriate transformations.

Let T, P and D denote the scaled variables obtained by transforming TEMP , PRES

and DIST respectively.

Using a binomial GLM with a logit link (McCullagh and Nelder, 1989), we obtain

the following models that express the log-odds ratios of getting a nanosaw/nanocomb,

nanowire and nanobelt as functions of T, P,D :

ζ̂1 = − 0.99− 0.29 T − 1.52 P − 2.11 D − 0.95 T 2 − 1.30 P 2 − 5.64 D2

− 0.18 TP − 1.03 PD + 4.29 TD, (1)

ζ̂2 = − 0.56 + 0.82 T − 2.53 P − 1.59 D − 0.58 T 2 − 2.04 P 2 − 2.62 D2

+ 1.17 TP − 1.44 PD + 0.87 DT, (2)
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ζ̂3 = − 1.68 + 0.19 T − 1.88 P − 0.58 D − 1.69 T 2 − 0.34 P 2 − 3.20 D2

+ 0.87 TP − 0.94 PD − 2.58 TD. (3)

All the terms are seen to be highly significant. The residual plots for all the three

models do not exhibit any unusual pattern.

3.4.2 Simultaneous modeling of the probability vector using multinomial
GLM

Denoting the probability of not obtaining any nanostructure by p4, we must have

∑4
j=1 pj = 1. Although the results obtained by using the binomial GLM are easily

interpretable and useful, the method suffers from the inherent drawback that, for

specific values of T, P and D, the fitted values of the probabilities may be such that

∑3
j=1 pj > 1. This is due to the fact that the correlation structure of Y is completely

ignored in this approach.

A more appropriate modeling strategy is to utilize the fact that the response

vector Y follows a multinomial distribution with n = 180 and probability vector p =

(p1, p2, p3, p4). In this case, one can express the multinomial logits ηj = log(
pj

p4
), j =

1, 2, 3 as functions of T, P and D. Note that ηj can be easily interpreted as the log-

odds ratio of obtaining the jth morphology as compared to no nanostructure, with

η4 = 0.

Methods for fitting multinomial logistic models by maximizing the multinomial

likelihood have been discussed by several authors (McCullagh and Nelder 1989, Aitkin,

Anderson, Francis and Hinde 1989, Agresti 2002, Faraway 2006, Long and Freese

2006). These methods have been implemented in several software packages like R/S-

plus (multinom function), STATA (.mlogit function), LIMDEP (Mlogit$ function),

SAS (CATMOD function) and SPSS (Nomreg function). All of these functions use

some algorithm for maximization of the multinomial likelihood (e.g., the multinom
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function in R/S-plus uses the neural network based optimizer provided by Venebles

and Ripley (2002)). They produce more or less similar outputs, the default output

generally consisting of the model coefficients, their standard errors and z-values, and

model deviance.

Another popular algorithm to indirectly maximize the multinomial likelihood is to

create a pseudo factor with a level for each data point, and use a Poisson GLM with

log link. This method, although appropriate for small data sets, becomes cumbersome

when the number of data points is large. In the presence of a large number of levels

of the pseudo factor, a large part of the output generated by standard statistical

softwares like R becomes redundant, because only the terms involving interaction

between the categories and the predictor variables are of interest. Faraway (2006)

points out some practical inconveniences of using this method. Its application to the

current problem clearly becomes very cumbersome owing to the large number (348)

of data points.

We propose a new iterative method of fitting multinomial logit models. The

method is based on an iterative application of binomial GLMs. Besides the intu-

itive extension of binomial GLMs to a multinomial GLM, the method has certain

advantages over the existing methods which are described towards the end of the

section.

Let Yi = (Yi1, . . . , Yi4) denote the response vector corresponding to the ith data

point, i = 1 to N . Let ni =
∑4

j=1 Yij. Here, N = 348 and ni = n = 180 for all i. We

have,

P (Yi1 = yi1, . . . , Yi4 = yi4) =
ni!

yi1! . . . yi4!
pyi1

i1 . . . pyi4

i4 .
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Thus the likelihood function is given by

L(Y1, . . . ,YN) =
N∏

i=1

ni!

yi1! . . . yi4!
pyi1

i1 . . . pyi4

i4

=
N∏

i=1

ni!

yi1! . . . yi4!

3∏
j=1

(
pij

pi4

)yij

p
P4

j=1 yij

i4 .

Defining ηij = log
pij

pi4
, we have

pij =
ηij

1 +
∑3

j=1 exp (ηij)
j = 1, 2, 3, (4)

and

pi4 =
1

1 +
∑3

j=1 exp (ηij)
. (5)

Therefore the log-likelihood can be written as

log(L) =
N∑

i=1

(
log ni!−

4∑
j=1

log yij! +
3∑

j=1

yij log
pij

pi4

+ ni log pi4

)

=
N∑

i=1

(
log ni!−

4∑
j=1

log yij! +
3∑

j=1

yijηij − ni log
(
1 +

3∑
j=1

exp (ηij)
))

. (6)

Let xi = (1, Ti, Pi, Di, T
2
i , P 2

i , D2
i , TiPi, PiDi, TiDi)

′, i = 1, . . . , N . The objective is

to express the η’s as functions of x. Substituting ηij = x′iβj in (6) and successively

differentiating with respect to each βj, we get the maximum likelihood (ML) equations

as

N∑
i=1

xi

(
yij − ni

exp(ηij)

1 +
∑3

j=1 exp (ηij)

)
= 0, j = 1, 2, 3, (7)

N∑
i=1

xi

(
y14 − ni

1

1 +
∑3

j=1 exp (ηij)

)
= 0, (8)

where 0 denotes a vector of zeros having length 10. Writing exp(γil) =

(
1 +

∑
l 6=j exp(ηij)

)−1

, we obtain from (7)

N∑
i=1

xi

(
yij − ni

exp(ηij + γij)

1 + exp(ηij + γij)

)
= 0, j = 1, 2, 3. (9)

60



Note that each equation in (9) is the maximum likelihood (ML) equation of a

binomial GLM with logit link. Thus, if some initial estimates of β2,β3 are available,

and consequently γi1 can be computed, then β1 can be estimated by fitting a binomial

GLM of Y1 on x. Similarly, β2 and β3 can be estimated. The following algorithm is

thus proposed.

Binomial GLM-based iterative algorithm for fitting a multinomial GLM :

Let β
(k)
j be the estimate of βj, j = 1, 2, 3, at the end of the kth iteration.

Step 1. Using β
(k)
2 and β

(k)
3 , compute η

(k)
i2 = x′iβ

(k)
2 and η

(k)
i3 = x′iβ

(k)
3 for i = 1, . . . , n.

Step 2. Compute γ
(k)
i1 = log 1

1+exp(η
(k)
i2 )+exp(η

(k)
i3 )

, i = 1, . . . , n.

Step 3. Treating Y1 as the response and using the same design matrix, fit a binomial

GLM with logit link. The vector of coefficients thus obtained is β
(k+1)
1 .

Step 4. Repeat steps 1-3 by successively updating γi2 and γi3 and estimating β
(k+1)
2 and

β
(k+1)
3

Repeat steps 1-4 until convergence. The convergence of the algorithm is established

by Theorem 1 stated later. Note that we use the ‘offset’ command in statistical

software R to separate the coefficients associated with η1 from those with γ1.

To obtain the initial estimates η̂
(0)
i2 and η̂

(0)
i3 , we use the results obtained from the

binomial GLM as described in Section 4.1. Let

log
p̂ij

1− p̂ij

= x′iδ̂j, (10)

where δ̂j is obtained by using binomial GLM. Recalling the definition of ηij, the initial

estimates are obtained as

η̂
(0)
ij = log

p̂ij

1−∑3
l=1 p̂il

, j = 2, 3, (11)
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where p̂il, l = 1, 2, 3 are estimated from (10). It is possible, however, that for some i,

∑3
l=1 p̂il = πi ≥ 1. For those data points, we provide a small correction as follows:

p̂c
il =





bpil

πi
(1− 1

2ni
) , l = 1, 2, 3

1
2ni

, l = 4
.

where p̂c
il denotes the corrected estimated probability. To justify the correction, we

note that it is a common practice to give a correction of 1
2ni

(Cox 1970, chap. 3) in

estimation of probabilities from binary data. The correction given to category 4 is

adjusted among the other three categories in the same proportion as the estimated

probabilities. This ensures that p̂il > 0 for all i and
∑4

l=1 p̂il = 1

In this example, there were 18 data points (out of 348) corresponding to which

we had
∑3

l=1 p̂il ≥ 1. Following the procedure described above to obtain the initial

estimates, the following models were obtained after convergence:

η̂1 = 0.42− 0.12 T − 3.08 P − 3.68 D − 1.84 T 2 − 1.52 P 2 − 9.09 D2

+ 0.60 TP − 2.31 PD + 5.75 TD, (12)

η̂2 = 0.54 + 0.88 T − 3.85 P − 3.13 D − 1.21 T 2 − 2.28 P 2 − 5.26 D2

+ 1.83 TP − 2.62 PD + 2.07 TD, (13)

η̂3 = − 0.10 + 0.39 T − 3.67 P − 2.51 D − 2.51 T 2 − 1.12 P 2 − 7.07 D2

+ 1.72 TP − 2.38 PD + 4.47 TD. (14)

Inference for the proposed method:

To test the significance of the terms in the model, one can use the asymptotic

normality of the maximum likelihood estimates. Let Hβ denote the 30 × 30 matrix

consisting of the negative expectations of second-order partial derivatives of the log-

likelihood function in (6), the derivatives being taken with respect to the components
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of β1,β2 and β3. Denoting the final estimator of β as β∗, the estimated asymptotic

variance-covariance matrix of the estimated model coefficients is given by Σβ∗ =

Hβ∗
−1. For a specific coefficient βl, the null hypothesis H0 : βl = 0 can be tested

using the test statistic z = β̂l/s(β̂l), where s2(β̂l) is the lth diagonal element of Σβ∗ .

The following theorem (proof in Appendix A) is useful in this context:

Theorem 3.1. Let LM(β,y) and LB(β,y) denote the multinomial and binomial

likelihood respectively. Let β(k) denote the estimator of β after the kth iteration and

β∗ = arg maxβ logLM(β,y). Also, let

Σβ(k) = −E
(

∂2 log LB(β,y)

∂β2

)∣∣∣∣∣
β=β(k)

and Σβ∗ = −E
(

∂2 log LM(β,y)

∂β2

)∣∣∣∣∣
β=β∗

.

Then,

(a) β(k) −→ β∗.

(b) Σβ(k) −→ Σβ∗

Thus, as the parameter estimates converge to the maximum likelihood estimates,

their standard errors also converge to the standard error of the MLE. This property

of the proposed algorithm ensures that one does not have to spend any extra com-

putational effort in judging the significance of the model terms. The binomial GLM

function in R used in every iteration automatically tests the significance of the model

terms, and the p-values associated with the estimated coefficients after convergence

can be used for inference. Thus, the inferential procedures and diagnostic tools of the

binomial GLM can easily be used in the multinomial GLM model. This is clearly an

advantage of the proposed algorithm over existing methods. Further, the three mod-

els for nanosaws, nanobelts and nanowires can be compared using these diagnostic
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tools. Such facilities are not available in the current implementation of other software

packages.

In the fitted models given by (12)-(14), all the 30 coefficients are seen to be highly

significant with p values of the order 10−6 or less. To check the model adequacy,

we use the generalized R2 statistic derived by Naglekerke (1991) defined as R2 =
(
1−exp ((D −Dnull)/n)

)
/
(
1−exp (−Dnull/n)

)
, where D and Dnull denote the residual

deviance and the null deviance respectively. The R2 associated with the models for

nanosaws, nanowires and nanobelts are obtained as 61%, 50% and 76% respectively.

This shows that the prediction error associated with the model for nanowires is the

largest. This finding is consistent with the observation made by Ma and Wang (2005)

that growth of nanowires is less restrictive compared to nanosaws and nanowires, and

can be carried out over wide ranges of temperature and pressure.

However, the small p values may also arise from the fact that some improper

variance is used in testing. This overdispersion may be attributed either to some

correlation among the outcomes from a given run in the experiment or some unex-

plained heterogeneity within a group owing to the effect of some unobserved variable.

A multitude of external noise factors in the system make the second reason a more

plausible one. We re-perform the testing by introducing three dispersion parameters

σ2
1, σ

2
2, σ

2
3, which are estimated from the initial binomial fits using σ̂2

j = χ2
j/(N − 10),

where χ2
j denotes Pearson’s χ2 statistic for the jth nanostructure, j = 1, 2, 3 and

N − 10 = 338 is the residual degrees of freedom. The estimated standard errors of

the coefficients and the corresponding p values are shown in Table 8.

From Table 8 we find that the linear effect of temperature is not significant for

nanosaws and nanobelts. However, since the quadratic term T 2 and the interactions

involving T are significant, we prefer to retain T in the models.

Note that although techniques for analyzing overdispersed binomial data are well

64



Table 8: Computed values of the test statistic for each estimated coefficient

Nanosaws ( bη1) Nanowires ( bη2) Nanobelts( bη3)

Term β̂ S.E. p-val. β̂ S.E. p-val. β̂ S.E. p-val.
Intercept 0.42 0.24 0.0807 0.54 0.25 0.0343 -0.10 0.24 0.6763
T -0.12 0.30 0.6855 0.88 0.28 0.0020 0.39 0.38 0.3125
P -3.08 0.41 0.0000 -3.85 0.50 0.0000 -3.67 0.51 0.0000
D -3.69 0.67 0.0000 -3.13 0.57 0.0000 -2.51 0.66 0.0001
T 2 -1.84 0.34 0.0000 -1.21 0.27 0.0000 -2.51 0.34 0.0000
P 2 -1.52 0.44 0.0006 -2.28 0.52 0.0000 -1.12 0.54 0.0381
D2 -9.09 0.99 0.0000 -5.26 0.66 0.0000 -7.08 0.77 0.0000
TP 0.60 0.42 0.1515 1.83 0.41 0.0000 1.72 0.53 0.0011
PD -2.31 0.83 0.0053 -2.62 0.70 0.0000 -2.38 0.84 0.0043
TD 5.75 0.80 0.0000 2.07 0.45 0.0000 4.47 0.69 0.0000

known (e.g., Faraway 2006, Ch. 2), methods for handling overdispersion in multino-

mial logit models are not readily available. The proposed algorithm provides us with

a very simple heuristic way to do this and thereby has an additional advantage over

the existing methods.

3.5 Optimization of the synthesis process

In the previous subsections, the three process variables have been treated as non-

stochastic. However, in reality, none of these variables can be controlled precisely

and each of them exhibits certain fluctuations around the set (nominal) value. Such

fluctuation is a form of noise, called internal noise (Wu and Hamada 2000, chap.

10) associated with the synthesis process and needs to be considered in performing

optimization.

It is therefore reasonable to consider TEMP , PRES and DIST as random vari-

ables. Let µTEMP , µPRES, µDIST denote the set values of TEMP , PRES and

DIST respectively. Then we assume

TEMP ∼ N(µTEMP , σ2
TEMP ), PRES ∼ N(µPRES, σ2

PRES), DIST ∼
N(µDIST , σ2

DIST ).

where σ2
TEMP , σ2

PRES, σ2
DIST are the respective variances of TEMP , PRES and

DIST around their set values and are estimated from process data (Section 5.1). The

task now is to determine the optimal nominal values µTEMP , µPRES and µDIST so
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that the expected yield of each nanostructure is maximized subject to the condition

that the variance in yield is acceptable.

3.5.1 Measurement of internal noise in the synthesis process

Some surrogate process data collected from the furnace were used for estimation of

the above variance components. Temperature and pressure were set at specific levels

(those used in the experiment), and their actual values were measured repeatedly over

a certain period of time. The range of temperature and pressure corresponding to

each set value was noted. The variation in distance, which is due to repeatability and

reproducibility errors associated with the measurement system, was assessed sepa-

rately. The summarized data in Table 3 show the observed ranges of TEMP , PRES

and DIST against different nominal values. Under the assumption of normality, the

range can be assumed to be approximately equal to six times the standard deviation.

Table 9: Fluctuation of process parameters around set values

Temperature Pressure Distance
Nominal value Observed range Nominal value Observed range Nominal value Observed range

(µT ) (≈ ±3σT ) (µP ) (≈ ±3σP ) (µD) (≈ ±3σD)
630 ±7 4 ±10 11 ±0.02
700 ±7 100 ±10 13 ±0.02
750 ±6 200 ±20 15 ±0.02
800 ±6 300 ±20 17 ±0.02
850 ±6 400 ±20 19 ±0.02

500 ±40 21 ±0.02
600 ±40

We observe from Table 3 that, for the process variable DIST , the range of values

around the nominal µDIST is a constant (2 × 0.02 = 0.04 mm) and independent of

µDIST . Equating this range to 6σDIST , we obtain an estimate of σDIST as 0.04/6 =

0.067 mm.

Similarly, for TEMP , the range can be taken to be almost a constant. Equating

the mean range of 12.8 (=2 × (2 × 7 + 3 × 6)/5) degrees to 6σTEMP , an estimate of

σTEMP is obtained as 12.8/6 = 2.13 degree C.

The case of PRES is, however, different. The range, and hence σPRES is seen to be
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an increasing function of µPRES. Corresponding to each value of µPRES, an estimate

of σPRES is obtained by dividing the range by 6. Using these values of σPRES, the

following regression line is fitted through the origin to express the relationship between

σPRES and µPRES

σPRES = 0.025µPRES. (15)

Recall that all the models are fitted with the transformed variables T, P,D. The

means µT , µP , µD and the variances σ2
T , σ2

p, σ
2
D can easily be expressed in terms of the

respective means and variances of the original variables.

3.5.2 Obtaining the mean and variance functions of p1, p2, p3

From (4), we have the estimated probability functions as p̂j = exp(η̂j)/
(
1+

∑3
j=1 exp(η̂j)

)
,

where η̂j are given by (12)-(14).

Expressing E(pj) and V ar(pj) in terms of µT , µP , µD is not a straightforward

task. To do this, we use Monte Carlo simulations. For each of the 180 combinations

of µTEMP , µPRES, µDIST (µTEMP = 630, 700, 750, 800; µPRES = 4, 100, 200, . . . , 800;

µDIST = 12, 14, 16, 18, 20) the following are done:

1. µT , µP and µD are obtained by appropriate transformation.

2. 5000 observations on T, P and D are generated from the respective normal

distributions and ηj is obtained using equation (12), (13) or (14).

3. From the ηj values thus obtained, pj’s are computed using (4) and transformed

to ζj = log
pj

1−pj
.

4. The mean and variance of those 5000 ζj values (denoted by ζj and s2(ζj) re-

spectively) are computed.

5. Using linear regression, ζ̄j and log s2(ζj) are expressed in terms of µT , µP and

µD.
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3.5.3 Maximizing the average yield

Since the response here is of larger-the-better type, maximizing the mean is more

important than minimizing the variance in the two-step optimization procedure (Wu

and Hamada 2000, chap. 10) associated with robust parameter design.

The problem can thus be formulated as :

maximize ζj subject to

−1 ≤ µT ≤ 1, −1 ≤ µP ≤ 1, −1 ≤ µD ≤ 1 for j = 1, 2, 3.

Physically, this would mean maximizing the average log-odds ratio of getting a specific

morphology.

The following models are obtained from the simulated data:

ζ1 = − 0.75 + 0.20µT − 1.02µP − 1.39µD − 1.50µ2
T − 3.54µ2

P − 11.02µ2
D

+ 1.58µT µP − 2.22µP µD + 8.41µT µD, (16)

ζ2 = − 0.40 + 0.80µT − 2.96µP − 1.43µD − 0.98µ2
T − 2.45µ2

P − 6.05µ2
D

+ 1.87µT µP − 3.41µP µD + 2.13µT µD, (17)

ζ3 = − 1.25 + 0.26µT − 2.6µP − 0.42µD − 2.36µ2
T − 1.24µ2

P − 8.03µ2
D

+ 1.74µT µP − 3.32µP µD + 4.57µT µD. (18)

Maximizing these three functions using the optim command in R, we get the

optimal conditions for maximizing the expected yield of nanosaws, nanowires and

nanobelts in terms of µT , µP and µD. These optimal values are transformed to the

original units (i.e., in terms of µTEMP , µPRES, and µDIST ) and are summarized in

Table 4.

Contour plots of average and variance of the yield probabilities of nanosaws,

nanowires and nanobelts against temperature and pressure (at optimal distances)
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Table 10: Optimal process conditions for maximizing expected yield of nanostruc-
tures

Nanostructure Temperature Pressure Distance
Nanosaws 630 307 15.1
Nanowires 695 113 19.0
Nanobelts 683 4 17.0

SAWS WIRES BELTS

Figure 12: Contour Plots
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are shown in Figure 13. The white regions on the top (average) panels and the black

regions on the bottom (variance) panels are robust regions that promote high yield

with minimal variation.

On the basis of these contour plots and the optimization output summarized in

Table 4, the following conclusions can be drawn:

1. For nanosaws, the process is seen to be fairly robust at a pressure below 400

mb, irrespective of source temperature.

2. For nanobelts, temperature affects robustness strongly, and for a pressure of

less than 400 mb, the process is very robust only when the temperature is in

close proximity of 7000 C.

3. A temperature of around 630 degrees and pressure of 310 mb simultaneously

maximizes the average and minimize the variance of probability of obtaining

nanosaws.

4. A temperature of around 700 degrees and pressure of around 120 degrees results

in highest average yield for nanowires. Low variance is also observed in this

region.

5. Highest yield of nanobelts is achieved at a temperature of 680 degrees and

pressure of 4 mb for nanobelts. This is also a low-variance region.

6. There is a large temperature-pressure region (white region in the top-middle

panel of Figure 4) that promotes high and consistent yield of nanowires.

7. Highest yields of nanobelts and nanowires are achieved at higher distance (i.e.,

lower local temperature) as compared to nanosaws.

Except for the robustness-related conclusions, most of the above findings are sum-

marized and discussed by Ma and Wang (2005). They also provide plausible and

in-depth physical interpretations of some of the above phenomena.
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3.6 Some general statistical issues in nanomaterial synthe-
sis and scope for future research

In this chapter, we report an early application of statistical techniques in nanomaterial

research. In terms of reporting results of experiments to synthesize nanostructures,

this methodology can be considered a significant advancement over the rudimentary

data analysis methods using simple graphs, charts and summary statistics (e.g., Song,

Wang, Riedo and Wang 2005; Ma and Wang 2005) that have been reported in the

nanomaterial literature so far. Here we discuss features of the data arising from a

specific experiment and use a multinomial model to express the probabilities of three

different morphologies as functions of the process variables. A new iterative algorithm

which is more appropriate than conventional methods for the present problem, is

proposed for fitting the multinomial model. Inner noise is incorporated into the

fitted models and robust settings of process variables that maximize the expected

yield of each type of nanostructure are determined.

Apart from the advantages discussed earlier in this paper and mentioned by Ma

and Wang (2005), this study demonstrates how statistical techniques can help in iden-

tifying important higher-order effects (like quadratic effects or complex interactions

among the process variables) and utilize such knowledge in fine-tuning the optimal

synthesis conditions. This work is also an important step towards large-scale con-

trolled synthesis of CdSe nanostructures, since in addition to determining conditions

for high yield, it also identifies robust settings of the process variables that are likely

to guarantee consistent output.

Although statistical design of experiments (planning, analysis and optimization)

have been applied very successfully to various other branches of scientific and en-

gineering research to determine high-yield and reproducible process conditions, its

application in nanotechnology has been limited till date. Some unique aspects asso-

ciated with the synthesis of nanostructures that make the application of the above
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techniques in this area challenging are: (i) complete disappearance of nanostructure

morphology with slight changes in process conditions; (ii) complex response surface

with multiple optima, making exploration of optimal experimental settings very diffi-

cult (although in the current case study, a quadratic response surface was found more

or less adequate, such is not the case in general); (iii) different types of nanostructures

(saws, wires, belts) intermingled; (iv) categorical response variables in most cases; (v)

functional inputs (control factors that are functions of time); (vi) a multitude of inter-

nal and external noise factors heavily affecting reproducibility of experimental results;

and (vii) expensive and time consuming experimentation. In view of the above phe-

nomena, the following are likely to be some of the major statistical challenges in the

area of nanostructure synthesis :

1. Developing a sequential space-filling design for maximization of yield : Frac-

tional factorial designs and orthogonal arrays are the most commonly used (Wu

and Hamada 2000) designs, but are not suitable for nanomaterial synthesis,

because the number of runs becomes prohibitively large as the number of levels

increases. Moreover, they do not facilitate sequential experimentation, which is

necessary to keep the run size to a minimum. Response surface methodology

(Myers and Montgomery 2002) may not be useful because the underlying re-

sponse surface encountered in nano-research can be very complex with multiple

local optima, and the binary nature of data adds to the complexity. Space-

filling designs like Latin hypercube designs, uniform designs, and scrambled

nets are highly suitable for exploring complex response surfaces with minimum

number of runs. They are now widely used in computer experimentation (Sant-

ner, Williams and Notz 2003). However, they are used in the literature for

only one-time experimentation. We need designs that are model independent,

quickly “carve out” regions with no observable nanostructure morphology, allow

for the exploration of complex response surfaces, and can be used for sequential
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experimentation.

2. Developing experimental strategies where one or more of the control variables

is a function of time : In experiments for nanostructure synthesis, there are

factors whose profiles or curves with respect to time are often crucial with

respect to the output. For example, although the peak temperature is a critical

factor, how this temperature is attained over time is very important. There is

an ideal curve that is expected to result in the best performance. Planning and

analysis of experiments with such factors (which are called functional factors)

are not much discussed in the literature and may be an important topic for

future research.

3. Scale up : One of the important future tasks of the nanomaterial community

is to develop industrial-scale manufacture of the nanoparticles and devices that

are rapidly being developed. This transition from laboratory-level synthesis to

large scale, controlled and designed synthesis of nanostructures poses plenty

of challenges. The key issues to be addressed are rate of production, process

capability, robustness, yield, efficiency and cost. The following specific tasks

may be necessary: (1) Deriving specifications for key quality characteristics of

nanostructures based on intended usage. Quality loss functions (Joseph 2004)

may be used for this purpose. (2) Expanding the laboratory set-up to simulate

additional conditions that are likely to be present in an industrial process. (3)

Conducting experiments and identifying robust settings of the process variables

that will ensure manufacturing of nanostructures of specified quality with high

yield. (4) Statistical analysis of experimental data to compute the capability of

the production process with respect to each quality characteristic.
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CHAPTER IV

SEQUENTIAL MINIMUM ENERGY DESIGNS FOR

SYNTHESIS OF NANOSTRUCTURES

4.1 Introduction

Nanowires of inorganic materials are emerging as remarkably powerful building blocks

in nanoscience and nanotechnology with the potential to impact numerous areas rang-

ing from electronics, photonics and optoelectronics to life sciences and healthcare (Hu,

Odon and Lieber 1999, Lieber 2003, Li et al. 2006, Wang 2004, Samuelson 2003, Yang

2005, Patolsky and Lieber 2005, Patolsky, Zhang and Lieber 2006a, 2006b). Critical

to the advances now being made with nanowires has been a reasonable understand-

ing of the growth mechanism. Nanowires grown on two types of source materials -

Cadmium Selenide (CdSe) and Zinc Oxide (ZnO) have been considered extremely

important from the point of view of potential applications. Growth of high quality,

aligned and uniform ZnO nanowires is essential for the newly discovered nanogener-

ators (Wang and Song 2006). The practical applications of such nanogenerators are

huge (Wang et al. 2007). Wireless devices may allow in-situ, real-time biomedical

monitoring and detection, but such devices still requires a power source. Ideally,

such devices should be self-powered rather use a battery. The body provides numer-

ous potential power sources - mechanical energy, vibrational energy, chemical energy

(glucose), and hydraulic energy, but the challenge is their efficient conversion into

electric energy. If accomplished on the nanoscale, such power sources could have

greatly reduced the size of the integrated nanosystems for optoelectronics (Duan et

al. 2003), biosensors (Zheng et al. 2005), resonators (Bai et al. 2003) and more
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(Wang and Song 2006). CdSe is the most extensively studied quantum-dot mate-

rial and is therefore regarded as the model system for investigating a wide range of

nanoscale processes. Among the three types of CdSe nanostructures, nanowires are

likely to be the most useful structure for practical device applications.

Experiments to determine the best process conditions that maximize the yield of

nanowires are expensive and time consuming. An effort was made to systematically

investigate the best process conditions for CdSe nanowires (see Dasgupta et al. 2007)

using a 5 × 9 full-factorial experimental design involving two key process variables

temperature and pressure. The optimum conditions were obtained after maximizing

the fitted quadratic multinomial logit models with respect to the process variables.

It was observed that, although the models for the other two types of nanostructures

(nanosaws and nanobelts) fit the data reasonably well, the fit for nanowires was not

as satisfactory (with a generalized R2 of about 50%). Further, it was felt that the

experimental effort spent in this project was prohibitive, and much more efficient

experimental methods were necessary.

Table 11: Average percentage yield of nanowires

Temperature Pressure
0.00 0.12 0.25 0.37 0.50 0.62 0.75 0.87 1.00

0.00 41.27 42.41 0.00 21.11 11.06 20.49 0.00 0.00 0.00
0.32 29.09 35.19 55.56 20.00 21.82 44.77 0.00 0.00 0.00
0.55 21.96 47.71 34.00 16.94 27.47 22.22 20.00 0.00 0.00
0.77 14.29 11.11 36.06 35.32 49.40 33.33 0.00 0.00 0.00
1.00 8.33 14.29 0.00 28.93 0.00 0.00 3.85 0.00 0.00

A phenomenon that makes the exploration of optima very difficult is the complete

disappearance of morphology in several regions of the operable design space as well

as the presence of multiple optima. This is illustrated in Figure 1, which shows

a contour plot of average percentage yield (averaged over all substrates) of CdSe

nanowires against temperature and pressure (both variables scaled to [0,1]). The

figure is generated from the data shown in Table 11 obtained from the experimental
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data reported in Dasgupta et al. (2006). Several points emerge from this figure :

1. There is a large no-yield (deep green) region in the entire design space.

2. There is a small region of no-yield (deep green) completely embedded within a

region of moderate and high yields.

3. The regions of highest yield (white) are scattered at different places.
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Figure 13: Contour plot for average yield of nanowires

These aspects of the problem make the application of design of experiments to

find the maximum yield very challenging. Traditional experimental designs cannot

be used in such situations due to the following reasons.

Fractional factorial designs and orthogonal arrays are the most commonly used

(Wu and Hamada 2000) designs, but are not adequate for our purpose, because the

number of runs becomes prohibitively large as the number of levels increases. More-

over, they do not facilitate sequential experimentation, which is necessary to keep

the run size to a minimum. Response surface methodology (Myers and Montgomery

2002) may not be useful for our purpose because the underlying response surface
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encountered in nano-research is very complex with multiple local optima. Moreover,

the data being mostly categorical, and binary on some occasions, maximum likelihood

estimates may not exist during the initial stages of experimentation (Silvapulle 1981),

thereby prohibiting a model-driven approach. Space-filling designs like Latin hyper-

cube designs (McKay, Beckman and Conover 1979) or uniform designs (Fang 2002),

and scrambled nets (Owen 1995) can be used for exploring complex response sur-

faces with minimum number of runs. Now widely used in computer experimentation

(Santner, Williams and Notz 2003, Fang et al. 2006), they are model independent

and do not have problems associated with categorical or binary data. However, they

are used in the literature for only one-time experimentation. Can they be used for

sequential experimentation?

Therefore, the objective is to obtain designs that are model independent, can

quickly “carve out” regions with no observable nanostructure morphology, allow for

the exploration of complex response surfaces, and can be used for sequential experi-

mentation. Thus, a major objective in this research is to develop a novel and efficient

sequential space-filling design.

Because our aim is to apply these experimental designs for material research, we

would like to propose a new procedure that will appeal to the nanoscientists who

are mostly trained in physics, chemistry, or engineering. The new method should be

easily understood by the nanoscientists and be well-grounded in statistical theory.

In Section 2, we review some available sequential procedures for global optimiza-

tion of complex functions and discuss why they are not appropriate for our purpose.

In Section 3, we introduce the new minimum energy design principle and investi-

gate its performance for deterministic functions. A modified algorithm for random

functions is proposed and illustrated in Section 4. Some concluding remarks and

directions for future research are stated in Section 5.
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4.2 Sequential design procedures for global optimization of
complex multimodal functions

In global optimization, the use of stochastic processes is called Bayesian global opti-

mization (Betro 1991). Motivated by problems arising from computer experiments,

several researchers have tried to use this idea to develop sequential experimental

strategies for computer experiments and global optimization of complex functions.

Cox and John (1997) introduced a method called the Sequential Design for Opti-

mization (SDO). Their approach uses a random function model, and lower confidence

bounds on predicted values are used for sequential selection of evaluation points.

Jones et al. (1998) proposed a sequential procedure based on the expected improve-

ment criterion. The criterion balances the need to exploit the approximating surface

(by sampling where the prediction is optimal) with the need to improve the approxi-

mation (by sampling where the prediction error may be high). Wang (2003) developed

an adaptive response surface method that sequentially reduces the design space by

defining a threshold value. At each step, a new Latin hypercube design is generated in

the reduced design space and second order model is fitted. None of these approaches,

however, guarantee an efficient optimization of the nanowire synthesis process owing

to the following reasons:

1. As mentioned in the introductory section, there is a large no-yield (or failure)

region in the design space. The boundaries of this failure region is unknown.

Since the entire design space has to be explored, many zero yield data points

have to be expected. Note that 17 out of the 45 design points in Table 11 result

in zero yield. It is evident that all the approaches stated above would require

a moderate number of experimental runs at the first stage of the procedure

to fit a reasonable meta-model. For example, the SDO approach by Cox and

John (1997) uses a 16-run design for two dimensional functions to build a meta-

model at the initial stage. Figure 14 shows a 20-run Latin hypercube design
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superimposed on the contour plot for the CdSe nanowire yield. It is seen that

9 out of the 20 points fall in the no-yield region, which is a huge waste from

the point of view of the experimental effort involved (each run involves several

steps spread over a number of days). Also, the estimates obtained from such

data may not be very stable.
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Figure 14: 20-run LHD for synthesis of nanowires

An adaptive sequential optimization procedure (ASOP) to generate a space-

filling design that minimizes the number of no-yield points was developed by

Henkenjohann et al. (2005). However, their method is based on two assump-

tions, convex boundaries and a connected non-failure region, which hold good

for the motivating engineering problem of sheet metal spinning. None of the

above two assumptions can be assumed to hold good for nanowire synthesis.

2. All the methods stated above work well with continuous responses. However,

as already mentioned, in our case, the data is mostly categorical. The response

yield is a binomial random variable, where the number of trials may range from

very high (180 in the current example) to 1 (thereby generating binary data).
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Estimation problems associated with such data may severely affect the search

for optimum.

3. Unlike the global optimization problems and algorithms in computer experi-

ments, here we are less concerned about the convergence of the algorithm to

the true optimum. This is because, it is very difficult to describe the growth

mechanism with a precise model, and in reality there will always be several

noise variables involved. Therefore our principle objective is to explore quickly

as much of the yield region as possible, and “carve out” regions of no morphol-

ogy.

Almost all the sequential procedures mentioned earlier in this section use the

idea of “sampling points from prospective regions that are more likely to improve

performance”. There are some sequential methods that work the opposite way. They

explore the global optimum of black box functions by sequentially eliminating poor

combinations of factor levels. Two such methods are SEL (Wu, Mao and Ma 1990) and

SELC (Mandal, Wu and Johnson 2006). The latter method uses a genetic algorithm

to improve upon the former. However, these methods are not appropriate for our

purpose owing to the large number of runs that they usually require.

4.3 Sequential Minimum Energy Designs (SMED)

Each experimental run with a specific combination of process variables corresponds

to a point in the design space and is called a design point. Visualize a box containing

some charged particles. If they have the same sign for the charge, then they will repel

each other and occupy positions inside the box so as to minimize the total potential

energy. Here, the box is the experimental region and the each position taken by the

charged particles is a design point. Consequently, the experimental design consists

of all the positions occupied by the particles. Because this design is obtained by
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minimizing the potential energy, we call it minimum energy design. The box can be

in a high dimensional space. Let there be m factors. For simplicity, we scale the

experimental range of each factor into [0, 1], so that the box under consideration is

[0, 1]m.

The minimum energy designs are clearly a type of space-filling designs. They can

be used for sequential experimentation as follows. Suppose we have n charged particles

inside the box, which occupy certain positions according to the minimum potential

energy criterion. Fix the charged particles at these locations and now introduce a

new particle into the box. This new particle will now attain a position to minimize

the total potential energy, giving us the (n + 1)th design point. This follows from

Thomson’s theorem in electrodynamics (Zhou 1999, p. 59). We can intelligently

choose the charge of each particle depending on the response observed at that design

point. This will allow us to find the next design point by efficiently utilizing the

already observed data.

Without loss of generality, assume that the particle charge is positive. Let q(xi) be

the charge of the particle at the ith design point xi. Then the potential energy between

the ith and jth particle is proportional to q(xi)q(xj)/d(xi,xj), where d(xi,xj) denotes

the Euclidean distance between the two points. Without loss of generality, we can

take the proportionality constant to be 1. Thus, the total potential energy for n

charged particles is given by

En =
n−1∑
i=1

n∑
j=i+1

q(xi)q(xj)

d(xi,xj)
. (19)

The minimum energy design can be obtained by minimizing En with respect to

x1,x2, . . . ,xn.

How to choose the charge for each particle? Since the objective of the experiment

is to maximize the yield of nanostructures, we should assign a large charge to a

particle where the yield is low and vice versa. By doing this, the new particle to be
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introduced into the box will repel more from the low yield region and will occupy a

position in a region which is more likely to be of higher yield. This strategy will allow

us to quickly find points with maximum yield. Thus, the amount of positive charge at

each point should be a decreasing function of the yield at that specific point. There

are many choices for a decreasing function; we choose a simple function

q(xi) = (1− αp(xi))
γ, (20)

where 100p(xi) is the true percentage of growth at xi and α and γ are positive tuning

constants. To make the charge positive for all x, we must have

α ≤ [maxxp(x)]−1. (21)

When n design points x1,x2, . . . ,xn have already been selected, the next design

point is obtained as:

xn+1 = arg min
x

(
En +

n∑
i=1

q(x)q(xi)

d(x,xi)

)

= arg min
x

n∑
i=1

q(x)q(xi)

d(x,xi)
. (22)

Note that in order to perform the above minimization, we need to assign some

charge q(x) to each point x where we have not observed any yield. This can be

done by predicting the yield at each of these points based on the observed data

and plugging in these estimates in (20). In order to predict these yields, we need

an interpolating function p̂(x) which satisfies p̂(xi) = p(xi) for i = 1, . . . , n. There

are several possible choices of such an interpolating function, e.g., kriging (Santner

et al. 2003). However, as already mentioned earlier, at the initial stages owing to

complexities associated with parameter estimation and computation, kriging may not

be a very good choice. Keeping in mind that we want to use a simple function that

would not involve parameter estimation problems, we propose to use inverse distance
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weighting to perform this prediction. This means, after every single observation, the

estimated yield at a point x would be given by

p̂(x) =

∑n
i=1

(
d(x,xi)

)−k
p(xi)∑n

i=1

(
d(x,xi)

)−k
, (23)

where k is a constant. We take k = 2, which is a common practice. This estimate

will be plugged into (20) to update the charge of each point after an iteration, and

subsequently the next design point will be chosen from (22). This gives us the desired

sequential space-filling design, for which following results can easily be established (see

Appendix B):

Proposition 4.1. Assume that the entire design space [0, 1]m is divided into a finite

number of grid points {X1,X2, . . . ,XN}. Let p(Xg) = max
{
p(X1), . . . , p(XN)

}
, and

xn = min
x∈{X1,...,XN}

n−1∑
i=1

q(x)q(Xi)

d(x,Xi)
.

Let xg = arg maxx p(x). For α = 1/p(xg), xn = Xg for some n ≤ N .

Proposition 4.2. Consider the definition of xn given by (22). Let xg = arg maxx p(x).

For α = 1/p(xg), if xn = xg for some n = n0, then xn = xg for all n > n0.

Physically, Proposition 4.1 implies that there exists a value of the tuning parame-

ter α for which if a grid search is done with the minimum energy algorithm, then the

global optimum on the grid will be reached in a finite number of iterations. Propo-

sition 4.2 implies that for the same value of α, the design will continue to stick to

the global optimum once it picks that point in some iteration. However, because xg

is not known to the experimenter, practically it is not possible to use the optimal

choice of α. We will develop some adaptive estimation techniques for its practical

implementation. Note that here we assume the function p(x) is known, which is not

true for physical experiments. Thus it needs to be estimated from data. The data is

random and hence the estimator of p(x) has some uncertainty, which complicates the

sequential design problem. These will be addressed in Section 4.
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Note that when γ = 0, the algorithm does not take into consideration the observed

yield data; rather chooses points sequentially to minimize
∑

i

∑
j[d(xi,xj)]

−1. The

resulting design is equivalent, in some sense, to the maximin distance design proposed

by Johnson, Moore and Ylvisaker (1990). See also Morris and Mitchell (1995).

A similar idea based on an algorithm introduced in the statistical software JMP

(version 6) by Bradley Jones called minimum potential design (MPD) was used by

Kessels, Jones, Goos and Vandebroek (2006) for generating space filling designs. Such

designs are obtained by minimizing the sum total of the elastic potential energy and

the electrostatic potential energy of a system. The former is proportional to the

squared distance and the latter is proportional to the inverse of the distance. The

sequential minimum energy design (SMED) proposed here is completely different

from MPD owing to two reasons. First, the MPD algorithm assumes equal charge for

each point in the design space, which is not true for SMED. Therefore, the selection

of points in MPD is independent of the underlying response function, essentially

making it similar to other space-filling designs like LHD or uniform designs. Second,

the objective function for MPD is the sum of two different types of energy with the

implicit assumption that the associated constants are equal. (Note that the spring

constant associated with the elastic energy and the Coulomb’s constant associated

with the electrostatic energy need not be the same.) On the other hand, SMED is

based on the electrostatic energy alone, and does not require any such assumption.

4.3.1 Sequential minimum energy designs with deterministic functions
and known α

The performance of the algorithm is demonstrated by using it to generate a 20-run

design with the objective of maximizing yield of CdSe nanowires. As described in

Dasgupta et al. (2006) and shown in Table 11 we have 45 available design points

corresponding to 9 levels of pressure and 5 levels of temperature, both variables

scaled down to [0,1]. The design point (0.32, 0.25) is globally optimal and results
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in a maximum yield of 55.56%. The 20-run design chosen by the algorithm fixing

α = 1/0.55 = 1.8, γ = 3, and starting our search from (0,0) is shown in the bottom

right panel of Figure 15. The numbers in the figure denote the sequence in which the

20 points were chosen. We find that the algorithm detects the optimal setting at the

10th iteration, and henceforth sticks to that point in the subsequent iterations. Note

that although the 7th selected point results in no yield, point 8 immediately makes

a far-away move; this is not possible with improvement-based algorithms and bears

testimony to this algorithm’s self-correcting property. Thus, with proper choice of α

and γ, it is possible to reach the optimum setting with less than one-fourth of the

total number of runs originally conducted in this experiment.

Figure 15 shows four 20-run designs generated with four different values of γ

(γ = 0, 1, 2, 3). In each case, the search starts from (0,0), i.e., the bottom-left corner

of the two-dimensional design space. The design picks the global optimum at the

17th iteration when γ = 1, at the 11th iteration when γ = 2 and at the 9th iteration

when γ = 3. When γ = 0, as mentioned earlier, the resulting design is, in some sense

equivalent to the maximin-distance design, and is independent of the observed data.

Figure 16 shows four designs generated with four other starting points - one at

the center (0.55, 0.50), one at the top right corner (1,1), and two other at two locally

optimal points (0.32,0.62) and (0.77,0.50). The performance, in general, is not very

sensitive to the choice of the initial point. However, as seen from the bottom right

panel, if the initial point is chosen very close to a local optimum, the algorithm takes

a longer time to converge to the global optimum.

So far we have assumed that the parameters α and γ are known, which will not

be the case in practice. Further, we need to define a universe of design points from

which the minimum energy algorithm will sequentially pick up points. We develop a

practically implementable algorithm by addressing the above issues in the following

sections.
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Figure 15: Performance of the design with initial point (0,0) and different γ
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Figure 16: Performance of the design with different initial points and γ = 3
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4.3.2 Estimation of parameters

The choice of the parameters α and γ are important from the point of view of per-

formance of the minimum energy algorithm. So far we have chosen α as the inverse

of the maximum yield. Since the maximum yield will not be known in practice, an

estimation procedure has to be developed.

Ideally, we would like to have a design which picks different points before reaching

the optimum and sticks to the optimum when it reaches there. When p(xg) is known,

the convergence criterion of the algorithm is defined as follows: if q(x) = 0 for some

x = x∗ then the next point to be picked will be x∗. Equation (20) would then ensure

that x∗ = xg and Theorem 1 will ensure that all the subsequent points chosen by the

design will be xg.

When we estimate α, our convergence criterion has to be 0 ≤ q(x) < δ, where

δ > 0 is a pre-defined small number. Let us introduce the following notation:

• αn : Estimator of α after the nth iteration.

• p(n) = max1≤i≤n p(xi).

• pg = p(xg).

• ng : The iteration at which the point xg is picked for the first time.

To make sure that the design does not (i) converge to some point before reaching

xg, and (ii) does not wander away from xg once it reaches there, the following two

conditions must be satisfied:

q(xn) ≥ δ when n < ng. (24)

0 ≤ q(xn) < δ when n = ng. (25)

91



The above two conditions, along with (20) imply the following:

αn ≤ 1− δ1/γ

p(n)

when n < ng. (26)

1− δ1/γ

pg

< αn ≤ 1

pg

when n = ng. (27)

The problem is that ng is unknown. If we choose αn = (1 − δ1/γ)/p(n), condition

(26) will be satisfied for all n, but condition (27) will never be satisfied. This means,

the algorithm will never converge, but, at the same time, not get stuck to a local

optima.

Keeping in mind that αn has to be less than 1/p(n) (otherwise the design will

converge to immediately), and should converge to 1/pg as n −→∞, another possible

choice of αn is

αn =
1

p(n) + an

(
1− p(n)

)

where {an} is a sequence such that an −→ 0. This choice ensures convergence at the

nth iteration if

an <
p(n)

1− p(n)

.
δ1/γ

1− δ1/γ
.

This may result in an early convergence to a point with yield much lower than

the optimum. For example, let γ = 3 and δ = 0.001. If we choose an = 1/n and by

the 10th iteration, an yield of 50% is achieved, then the algorithm will converge to

that point at the 10th iteration.

To strike a balance between very early convergence to a point other than xg and

no convergence at all, we introduce another parameter nc, which denotes the number

of runs till which the experimenter wants to pick distinct points from the design space

and does not want convergence, i.e., nc < min{n : q(xn) < δ}. Practically, nc can be

taken as 75% to 90% of the maximum affordable number of runs. Now, if we choose

αn as

αn =
1− bnδ1/γ

p(n) + an

(
1− p(n)

) , (28)
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where {an} and {bn} are two sequences such that an −→ 0 and bn = nc/n, then it is

easily seen that the following two conditions are satisfied:

αn −→ 1/pg, (29)

q(xn) > δ when n < nc. (30)

We also propose an = 1/nφ, where φ is a positive constant. Therefore, our esti-

mator of α after the nth iteration becomes

αn =
1− (nc/n)δ1/γ

p(n) + (1/nφ)
(
1− p(n)

) . (31)

To make sure that the numerator of αn defined by (31) is non-negative, we must

have ncδ
1/γ ≤ 1. This condition gives us an upper bound for γ as

γ ≤ log δ

log n−1
c

.

We shall choose γ slightly less than this upper bound. A reasonable choice could be

γ = log δ/ log n−1
c − 1/nc.

4.3.3 Choice of a universe of design points and the initial point

When no nanostructures are obtained (i.e., p(x) = 0), the minimum energy design

will continue to sample points from the corners of the box (similar to a situation when

γ = 0, see Figure 1, top left panel). But when the number of factors m is high, the

number of experiments that can be afforded is usually much less than the number of

corner points 2m. Since we intend to perform a grid search, it is important to choose

a universe (large set) of design points in the design space which will form the grid

from which points will be chosen sequentially.

To address this issue, we propose sampling from a large space-filling design. Sup-

pose we plan to perform an experiment with n runs. Then select an efficient fixed

design in N runs, where N À n. We can use an orthogonal array (Wu and Hamada
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2000), Latin hypercube design (McKay et al. 1979), maximin design (Johnson et al.

1990), or an orthogonal maximin Latin hypercube design (Joseph and Hung 2006)

for this purpose. Now, the n runs will be chosen from the N runs using the minimum

energy design algorithm.

Without any prior information, the initial point in the sequential design may be

chosen at random.

4.3.4 Algorithm for deterministic response

The SMED algorithm for deterministic response thus consists of the following steps:

1. Decide upon the number of trials (n) to be conducted.

2. Choose δ, φ and nc.

3. γ ←− (log δ)/(log n−1
c )− 1/nc.

4. Ω ←− {z1, z2, . . . , zN} (Select a universe of N(À n) design points using a

space-filling design).

5. x1 ←− zINITIAL where INITIAL = max(1, integer(nU)) where U ∼ uniform[0, 1].

6. Observe p(x1).

7. pmax ←− p(x1).

8. α1 ←− 1− ncδ
1/γ.

9. For j = 1, . . . N, q(zj) ←−
(
1− α1p(x1)

)γ
.

10. J ←− 1.

11. D ←− x1.

12. WHILE J < n
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• IF q(z) < δ (convergence criterion) for z∗ ∈ Ω,

– xJ+1 ←− z∗.

• ELSE

– EJ+1 ←−
∑

x∈D
q(x)q(z)
d(x,z)

for each z ∈ Ω. (Evaluate the total energy;

assign a large value M to EJ+1 whenever x = z).

– xJ+1 ←− arg minz∈Ω EJ+1 (Choose the (J + 1)th design point that

minimizes the total energy).

– D ←− D⋃{xJ+1}.

– pmax ←− max(pmax, p(xJ+1)).

– αJ+1 ←− 1−(nc/J)δ1/γ

pmax+1/(J+1)φ(1−pmax)
(update α).

– For all x ∈ D, q(x) ←− (
1 − αJ+1p(x)

)γ
(update charge of selected

design points).

– For all z ∈ Ω
⋂Dc (points not yet selected),

∗ p̂(z) =
P

x∈D p(x)/d(x,z)P
x∈D 1/d(x,z)

(estimate yield by inverse distance weight-

ing).

∗ q(z) ←− (
1− αJ+1p̂(z)

)γ
(update charge).

• J ←− J + 1.

13. The final design D = {x1,x2, . . . ,xn}.

4.3.5 Performance of the algorithm

We use the following measures to evaluate the performance of the algorithm:

(i) Average yield (AY ) is defined as the arithmetic average of the yields observed

at the n selected design points and is given by AY =
∑n

i=1 p(xi)/n.

(ii) Maximum yield (Ymax) denotes the maximum yield observed within n runs, i.e.

Ymax = max1≤i≤n p(xi)
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(iii) No yield (NY ) denotes the number of no-yield points picked up by the design,

i.e., NY =
∑n

i=1 I
{
p(xi) = 0

}
, where I is the indicator function.

(iv) Convergence to the global optimum, defined as CNGO = I{xn = xn−1 = xg}.

(v) Convergence to a local optimum, defined as CNLO = I{xn = xn−1 6= xg}.

We want AY, Ymax and CNGO to be large and NY and CNLO to be small.

Among the five performance measures, (ii) and (iii) will be considered most important

from the point of view of the objective of experimentation. As already mentioned

earlier, convergence is not the primary concern here; rather the experimenter would

like to generate reasonable amount of non-zero yield data and locate high-yield zones

as quickly as possible. AY is not as important as Ymax or NY , because even if the

algorithm converges fast to a local optima very early, AY will be very high; which is

not the true reflection of the performance of the algorithm.

Performance evaluation 1: The nanowire synthesis experiment

We examine the performance of the algorithm by choosing 20-run sequential mini-

mum energy designs from a universe of N = 45 design points in the CdSe experiment

(Table 11). Recall that the point (0.32,0.25) with an yield of 0.5556 is considered as

the global optimum A 33 full factorial experiment is performed with the three tuning

parameters nc, δ and φ at three levels each. Each run is replicated 100 times to gen-

erate 100 different designs with different (random) choice of the starting point. Table

12 summarizes the experimental results.

The following observations can be made from Table 12:

(i) The overall performance of the algorithm is quite satisfactory. Irrespective of

the choice of the three parameters nc, δ, φ, the algorithm picks the global

optimum almost everytime.
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Table 12: Performance of the algorithm for deterministic version of the nanowire
yield function

nc δ γ φ AY Ymax NY
P

CNGO
P

CNLO
mean s.d.

P I{Ymax = xg} min(Ymax) mean s.d.
12 0.0010 2.7 1 0.23 0.02 100 0.56 4.9 0.41 0 0
12 0.0010 2.7 2 0.34 0.01 93 0.49 3.2 0.48 93 7
12 0.0010 2.7 3 0.34 0.02 82 0.42 3.3 0.53 82 18
12 0.0005 3.0 1 0.22 0.01 100 0.56 4.9 0.29 0 0
12 0.0005 3.0 2 0.34 0.01 84 0.48 3.0 0.51 84 16
12 0.0005 3.0 3 0.34 0.01 83 0.42 3.1 0.57 83 17
12 0.0001 3.6 1 0.23 0.01 100 0.56 4.9 0.24 0 0
12 0.0001 3.6 2 0.30 0.01 100 0.56 4.0 0.47 100 0
12 0.0001 3.6 3 0.29 0.01 98 0.49 4.1 0.49 98 2
15 0.0010 2.5 1 0.23 0.01 100 0.56 4.9 0.29 0 0
15 0.0010 2.5 2 0.30 0.01 100 0.56 4.0 0.47 100 0
15 0.0010 2.5 3 0.29 0.01 98 0.49 4.1 0.49 98 2
15 0.0005 2.7 1 0.23 0.01 100 0.56 4.9 0.29 0 0
15 0.0005 2.7 2 0.29 0.01 100 0.56 4.0 0.37 100 0
15 0.0005 2.7 3 0.29 0.01 98 0.48 4.0 0.49 98 2
15 0.0001 3.3 1 0.23 0.01 100 0.56 4.8 0.38 0 0
15 0.0001 3.3 2 0.30 0.01 93 0.49 3.5 0.54 93 7
15 0.0001 3.3 3 0.30 0.01 93 0.49 3.5 0.50 93 7
17 0.0010 2.4 1 0.22 0.01 100 0.56 5.2 0.69 0 0
17 0.0010 2.4 2 0.27 0.01 100 0.56 4.5 0.67 100 0
17 0.0010 2.4 3 0.26 0.01 100 0.56 4.6 0.51 100 0
17 0.0005 2.6 1 0.23 0.01 100 0.56 5.0 0.39 0 0
17 0.0005 2.6 2 0.26 0.01 93 0.49 4.2 0.60 93 7
17 0.0005 2.6 3 0.26 0.01 100 0.56 4.6 0.51 100 0
17 0.0001 3.2 1 0.23 0.01 100 0.56 4.9 0.43 0 0
17 0.0001 3.2 2 0.26 0.01 93 0.49 4.2 0.60 93 7
17 0.0001 3.2 3 0.26 0.01 96 0.49 4.3 0.54 96 4

(ii) The algorithm does not converge within 20 iterations if φ = 1, but picks the

optimum 100% of the times. The convergence improves as φ increases, but, as

expected, when φ = 3, we have a few instances of convergence to some local

optimum.

(iii) Even when the algorithm did not converge to the global optimum, it mostly

converged to a local optimum with the second highest yield.

(iv) The average number of no-yield points is 5 when φ = 1 and 4 when φ = 2 or 3.

Performance evaluation 2: A standard global optimization test function

We now study the performance of the algorithm using a standard test function

used in global optimization literature. A popular test function used to evaluate the

performance of any global optimization algorithm is the Branin function (Branin,

1972). It has three global minima. However, test functions for our algorithm must
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Figure 17: Simulated yield functions using the Branin function

satisfy two properties - first, it has to be multimodal, and second, there has to be

a large non-convex and disconnected no-yield region. We therefore transform the

Branin function to obtain another function that satisfies the above two criteria.

Let B(x, y) denote the negative of the Branin function such that

B(x, y) = −
(

(y−5x2/4π2+5x/π−6)2+10(1−1/8π) cos x+10

)
,−5 ≤ x ≤ 10, 0 ≤ y ≤ 15.

The above function attains maximum (-0.3979) at three distinct points (−π, 12.25),

(π, 2.25) and (9.4248,2.25). The minimum is around 305. We transform B to a func-

tion f with a domain [0, 1]× [0, 1] and range [0,1] by applying the following transfor-

mation:

f(u, v) = max

(
0,

f(15u− 5, 15v) + 305

−0.3979 + 305

)
, 0 ≤ u, v ≤ 1.

However, about 66% of the values of the function f lie above 0.80 (see the left

panel of Figure 17). To create a function that is more similar to the yield function of

nanostructures, we define p(u, v) = max(f(u,v)−0.8
0.2

, 0) ≤ u, v ≤ 1. The contour plot of

p is shown in the right panel of Figure 17. The function p attains its maximum value

1 at three points (0.1239,0.8167), (0.5428,0.15) and (0.9617,0.15).

98



The algorithm given in Section 3.4 is used to generate a 25-run SMED for the

modified Branin yield function p defined above. The 25 design points are sampled

from a 150-run LHD. Among the 150 points chosen by the LHD, we consider the

point (0.1208,0.8322) for which p(u, v) = 0.9996 as the global optimum. Four different

parameter combinations of nc and φ are used, keeping δ fixed at 0.001 and the results

are summarized and compared with the performance of three standard space-filling

designs in Table 13. Clearly, the results are very encouraging. It is seen that the

global optimum was picked on each of the four occasions. Most interestingly, prior to

convergence, all the three distinct regions of the highest yield were probed, as seen

from Figure 18. The number of no-yield points was also negligible.

Table 13: Performance of SMED and other space filling designs with the modified
Branin function

Design Performance characteristics
AY Ymax NY CNGO

Uniform 40.8% 94.33% 8/25 N.A.
Minimum potential 39.9% 93.94% 8/25 N.A.

Maximin LHD 38.9% 88.13% 9/25 N.A.
SMED(2.3,1,0.001,20) 74.9% 99.96% 2/25 YES
SMED(2.2,1,0.001,22) 67.3% 99.96% 3/25 YES
SMED(2.3,2,0.001,20) 72.5% 99.96% 2/25 YES
SMED(2.2,2,0.001,22) 68.9% 99.96% 3/25 YES

N.A. : Not Applicable.

4.4 Random functions

So far the SMED algorithm assumes that the yield function p(x) is known. However,

in practice it has to be estimated from the data. Suppose, r nanostructure samples

are collected from each experimental run (in the CdSe nanostructures experiment r

was 180.) Then the observed yield at the ith point yi is a binomial random variable

with parameters r and p(xi). Thus, we actually observe p̂(xi) = yi/r. In the CdSe

experiment, r = 180. Figure 19 shows two contour plots of observed yield for r = 5

99



0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

x

y

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

1819

20

21

22

23

24

25

x
y

Uniform design Minimum potential design

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

x

y

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0 1

2 3

4
5

6

7

8

9

10

11

12

13
14

15

16

17

18
19

20

21

22232425

x

y

Maximim LHD SMED(2.3,1,0.001,20)

Figure 18: Comparison with standard designs
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and r = 180 respectively, assuming that the true yields at the 45 points are those

given in Table 11. These plots are generated with the estimated yields p̂(x) at the

45 points shown in Table 11, where p̂(xi) = yi/r, i = 1, . . . , 45 and yi is a randomly

generated observation from a binomial
(
r, p(xi)

)
.
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Figure 19: Contour plots with random yields

The random nature of the yield function complicates the matter. Despite having

reached the global optimum, we may not observe maximum yield at that point because

of the random error. This may result in assigning a high positive charge to that point

and thus the algorithm will never pick that point again in near future, which is

undesirable.

To understand how the algorithm described in Section 3.4 works for a random

yield function, we simulate 20-run designs with parameters φ = 2, δ = 0.001, nc = 15

and γ = 2.5 (the best combination seen from Table 12) using the CdSe yield function

for various values of r ranging from 5 to 180. As explained earlier, the underlying

function, defined at 45 points, is given by p̂(xi) = yi/r, i = 1, . . . , 45, where yi is a

randomly generated observation from a binomial
(
r, p(xi)

)
. The values of p(xi) are
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Table 14: Performance of the algorithm for random functions

r AY Ymax NY
P

CNGO
P

CNLO
(Sample size) mean s.d.

P I{Ymax = xg} min(Ymax) mean s.d.
5 0.23 0.030 56 0.42 4.39 1.15 17 83
25 0.27 0.025 75 0.42 4.27 0.81 51 49
50 0.28 0.018 85 0.45 4.08 0.66 64 36
75 0.29 0.017 86 0.48 4.02 0.67 68 32
100 0.29 0.015 91 0.48 4.13 0.73 71 29
125 0.29 0.016 92 0.48 4.02 0.71 82 18
150 0.29 0.016 96 0.48 4.07 0.66 87 13
180 0.29 0.016 96 0.49 4.01 0.66 87 13
∞ 0.30 0.015 100 0.56 4.06 0.47 100 0

obtained from Table 11.

The results, based on 100 simulations for each value of r, are sumarized in Table

14. As expected, for high values of r, the performance is not very different from

the deterministic case. As r decreases, the performance worsens; for extremely small

values of r (e.g., r = 5), the performance of the algorithm is not quite satisfactory

although not drastically poor; it is seen to pick the global optimum 56% of the times,

and the maximum yield identified is not less than 0.42.

4.4.1 An improved algorithm using Bayesian estimation

Although the existing algorithm is seen to work fairly well for random functions,

for small values of r, the percentage of times the global optimum is picked needs

to be improved (for r = 5, this was seen to be 56%). To improve the performance

of the algorithm, we propose recursive Bayesian estimation of yield at each selected

design point. Let yn denote the yield observed at the nth selected point xn and

let p̂F (xn) = yn/r denote the frequentist estimate of p(xn). Let us assume that

yn|p(xn) ∼ binomial(r, p(xn)) and p(xn) has a prior distribution Beta(α(xn), β(xn)).

Then, the Baye’s estimate of p(xn), which is its posterior expectation, is given by

p̂B(xn) =
y(xn) + α(xn)

r + α(xn) + β(xn)

=
rp̂F (xn) + n0p0(xn)

r + n0

, (32)
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where p0(xn) = α(xn)/(α(xn) + β(xn)) is the prior mean of p(xn) and n0 = α(xn) +

β(xn). We assume that the hyperparameter n0 is the same for all points in the design

space.

Now, p0(xn) can be estimated from the Bayesian estimates of yields obtained at

the already sampled points {x1,x2, . . . ,xn−1} by using inverse distance weighting.

This estimator is given by

p̂D(xn) = p̂D(xn|x1, . . . ,xn−1)

=

∑n−1
j=1 p̂B(xj)

(
d(xn,xj)

)−2

∑n−1
j=1

(
d(xn,xj)

)−2 . (33)

Thus from (32), we can write

p̂B(xn)=̂
rp̂F (xn) + n0p̂D(xn)

r + n0

. (34)

Note that the Bayesian estimate of p(xn) defined by (34) is a convex combination

of p̂F (xn), the frequentist estimate, and p̂D(xn), the estimate of the prior mean based

on the previous observations. The weights associated with the former is r/(n0 + r)

and that with the latter is 1−r/(n0+r) = n0/(n0+r). Assuming that all the previous

observations are on xn, a reasonable choice for n0 is (n − 1). Finally, we obtain the

Bayesian estimate of p(xn) as

p̂B(xn) =
r

r + n− 1
p̂F (xn) +

n− 1

r + n− 1
p̂D(xn). (35)

When n = 1, the Bayesian estimate equals the frequentist estimate. As n −→∞,

the weight associated with the frequentist estimate tends to zero. In particular, if

n = r + 1, both components in the RHS of (35) receive equal weights of 0.5.

The Bayesian estimation procedure described above is recursive. That is, after

selecting the nth design point, updating the set of design points to D = {x1, . . . ,xn},
and obtaining the Bayesian estimate of p(xn) using (35), the estimates of p0(x) for

all x ∈ Ω will be updated as follows:

p̂
(n)
D (xk) =

∑
j: xj∈D,j 6=k p̂

(n)
B (xj)

(
d(xk,xj)

)−2

∑
j: xj∈D,j 6=k

(
d(xk,xj)

)−2 for all xk ∈ Ω. (36)
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Here the upper suffix denotes the iteration number. Note that the above estimator

has a slightly different from the usual inverse-distance weighting estimator, and is not

an interpolator.

After selection of the (n + 1)th point, we shall have D = {x1, . . . ,xn+1}. The

Bayesian estimator of p(xk) for all xk ∈ D will be given by

p̂
(n+1)
B (xk) =

r

r + n
p̂F (xk) +

n

r + n
p̂

(n)
D (xn). (37)

In the new algorithm for random functions, step 12 of the algorithm described in

Section 3.4 is changed as follows:

Step 12. WHILE J < n

• IF q(z) < δ (convergence criterion) for z∗ ∈ Ω

– xJ+1 ←− z∗,

• ELSE

– EJ+1 ←−
∑

x∈D
q(x)q(z)
d(x,z)

for each z ∈ Ω. (Evaluate the total energy;

assign a large value M to EJ+1 whenever x = z).

– xJ+1 ←− arg minz∈Ω EJ+1 (Choose the (J + 1)th design point that

minimizes the total energy).

– D ←− D⋃{xJ+1}.

– For all x ∈ D, p̂
(J+1)
B (x) ←− Jp̂

(J)
D (x)+y(x)

J+r
.

– pmax ←− max1≤i≤(J+1)

(
p

(J+1)
B (xi)

)
.

– αJ+1 ←− 1−(nc/J)δ1/γ

pmax+1/(J+1)φ(1−pmax)
(update α).

– For all z ∈ Ω
⋂Dc, p̂

(J+1)
D (z) ←−

P
x∈D p

(J+1)
B (x)/d2(x,z)P

x∈D 1/d2(x,z)
(estimate p0 for

points not yet selected).

– For all z ∈ Ω
⋂Dc, q(J+1)(z) ←− (

1−αJ+1p
(J+1)
D (x)

)γ
update charge

of points not yet selected).
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– For all x ∈ D, q(J+1)(x) ←− (
1− αJ+1p

(J+1)
B (x)

)γ
(update charge of

selected design points).

– For all xk ∈ D, p̂
(J+1)
D (xk) =

P
j: xj∈D,j 6=k p̂

(J+1)
B (xj)

(
d(xk,xj)

)−2

P
j: xj∈D,j 6=k

(
d(xk,xj)

)−2 for all xk ∈
Ω (Update estimate of p0 for selected points).

• J ←− J + 1.

4.4.2 Performance evaluation of the new algorithm

The modified algorithm was run for various values of r with the same combination

of parameters (γ = 2.5, φ = 2, δ = 0.001, nc = 15) with the same test function

used to generate Table 14. As before, one hundred 20-run designs were generated for

value of r. Table 15 summarizes the results.

Table 15: Performance of the new algorithm for random functions

r Algorithm AY Ymax NY
P

CNGO
P

CNLO
(Sample size) mean s.d.

P I{Ymax = xg} min(Ymax) mean s.d.
5 Original 0.23 0.030 56 0.42 4.39 1.15 17 83
5 Modified 0.19 0.024 75 0.42 5.20 1.18 0 0
25 Original 0.27 0.025 75 0.42 4.27 0.81 51 49
25 Modified 0.22 0.020 88 0.42 4.91 0.84 0 0
100 Original 0.29 0.015 91 0.48 4.13 0.73 71 29
100 Modified 0.23 0.015 95 0.48 4.52 0.72 0 0
180 Original 0.29 0.016 96 0.49 4.01 0.66 87 13
180 Modified 0.24 0.016 98 0.49 4.48 0.67 0 0
∞ - 0.30 0.015 100 0.56 4.06 0.47 100 0

The observations can be summarized as follows:

1. The modified algorithm never converged within 20-iterations to a local or global

optimum. As a consequence of non-convergence, the average yield was also much

less for the new algorithm. This is expected, though, because, with the intro-

duction of new influential (high or low yield) points, the yield (and consequently

the charge) of points selected earlier may change quite drastically. Let q(n)(xn)

denote the charge of the nth selected design point after the nth iteration, and

suppose q(n)(xn) = min1≤i≤n q(n)(xn). After the (n+1)th iteration, it is possible

that q(n+1)(xn) > q(n+1)(xi) for some i < n, based on either a high-yield point

observed near xi or a very low-yield point observed near xn.
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2. The average number of no-yield points for the modified algorithm is slightly

more than that for the original algorithm. This is also expected, since in

the modified algorithm, after sampling the first point with non-zero yield, the

Bayesian estimate of p at all sampled points will be strictly positive. If p(xi) = 0,

we must have p̂F (xi) = 0 but p̂B(xi) > 0 after a few iterations. Whereas the

modified algorithm protects points at which the true yield is positive but the

observed yield is zero, it does so at the cost of assigning positive yields to points

at which the true (and observed) yield is zero. However, the modified algorithm

does not increase the number of no-yield points substantially.

3. In spite of the above two points, the modified algorithm has a clear advantage

over the original algorithm in terms of the number of times the global optimum

is identified, especially for low values of r. For example, for r = 5, the number

of times the global optimum is picked increases to 75% from 56% by using the

new algorithm, which is considered a significant improvement.

4.5 Summary and conclusions

In this chapter, we have proposed a novel sequential space filling design called SMED

for exploring best process conditions for synthesis of nanowires. The SMED is a novel

approach to generate designs that are model independent, can quickly “carve out”

regions with no observable nanostructure morphology, allow for the exploration of

complex response surfaces, and can be used for sequential experimentation. Owing to

its origination from laws of electrostatics, it should be appealing and comprehensible

to a broad spectrum of scientific researchers. The basic idea has been developed

into a practically implementable algorithm for deterministic functions, and guidelines

for choosing the parameters of the design have been proposed. Performance of the

algorithm has been studied using experimental data on nanowire synthesis as well as

the modified Branin function. A modification of the algorithm based on Bayesian
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estimation has been proposed for random functions.

The broad areas of future research should be the following:

1. The current algorithm is based on grid search, and therefore may not be appli-

cable to functions with three or more input variables. We need to incorporate

a suitable continuous optimization algorithm that will minimize the complex

objective function given by (22) at each iteration of the algorithm and test its

performance for functions of higher dimensions.

2. Although the proposed modification to handle random functions yields fairly

satisfactory results, we would like to enhance its performance further by improv-

ing the recursive estimation method. There are many possibilities, ranging from

using a k-nearest neighbor inverse-distance weighting to a more sophisticated

kriging model.

3. One of the important future objectives of research related to synthesis of nanowires

is to optimize continuous quality characteristics like diameter, length and den-

sity. Extension of the minimum energy algorithm to situations where the re-

sponse is continuous will be extremely helpful in designing such experiments

economically. The minimum energy algorithm can help in search for optimum

of bounded functions. For continuous response, we need a generalization that

will also explore the optima for unbounded functions.
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APPENDIX A

PROOF OF THEOREM 3.1

Proof. Part (a) :

For simplicity, consider a single predictor variable and assume that ηij = βjxi, where βj

is a scalar (i = 1, 2, . . . , N, j = 1, 2, 3). Let Q(β1, β2, β3) =
∑N

i=1

(∑3
j=1 yijηij − ni log

(
1 +

∑3
j=1 exp (ηij)

))
. Recall that β

(k)
j denotes the estimate of βj obtained after the kth itera-

tion. Then, it suffices to show that

(i) Q(β1, β2, β3) is a concave function of βj , j = 1, 2, 3, and

(ii) Q(β(k+1)
1 , β

(k)
2 , β

(k)
3 ) ≥ Q(β(k)

1 , β
(k)
2 , β

(k)
3 ).

It is easy to see that for l = 1, 2, 3,

∂2Q

∂β2
l

= −
N∑

i=1

nix
2
i e

βlxi(1 +
∑

j 6=l e
βjxi)

(1 +
∑3

j=1 eβjxi)2
≤ 0,

which proves the concavity of Q.

To prove (ii), we note that for given β
(k)
2 , β

(k)
3 the solution for β1 to the equation

N∑

i=1

(
yi1 − ni

eβ1xi

1 + eβ1xi +
∑3

j=2 eβ
(k)
j xi

)
xi = 0

maximizes Q(β1, β
(k)
2 , β

(k)
3 ).

From the first equation of (9) and steps 1-3 of the algorithm, we have

N∑

i=1

(
yi1 − ni

eβ
(k+1)
1 xi

1 + eβ
(k+1)
1 xi +

∑3
j=2 eβ

(k)
j xi

)
xi = 0,

which means β
(k+1)
1 = arg maxQ(β1, β

(k)
2 , β

(k)
3 ). Therefore (ii) holds.
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Part (b) :

Again, for simplicity, consider a single predictor variable and assume that ηij = βjxi

where βj is a scalar (i = 1, 2, . . . , N, j = 1, 2, 3). Let β
(k)
j denote the estimate of βj obtained

after steps 1-3 of the kth iteration and β∗j denote the final estimate of βj obtained by the

proposed algorithm.

The estimated asymptotic variance of β
(k)
1 , denoted by s2(β(k)

1 ), is given by the negative

expectation of ∂2 log Lb1

∂β2
1

|
β

(k)
1 ,β

(k−1)
2 ,β

(k−1)
3

, where log Lb1 denotes the binomial log-likelihood

function of yi1(i = 1, . . . N) that corresponds to the first of the three equations in (9) and

is given by

log Lb1 =
N∑

i=1

log
(

n

yi1

)
+

N∑

i=1

yi1(ηi1 + γi1)− ni

N∑

i=1

log
(

1 + exp(ηi1 + γi1)
)

.

Now, s2(β∗1), the estimated asymptotic variance of β∗1 , is given by the negative expec-

tation of ∂2 log L
∂β2

1
|βj=β∗j ,j=1,2,3, where log L is the multinomial likelihood given by (6).

It can easily be seen that

∂2 log Lb1

∂β2
1

= −
N∑

i=1

nix
2
i

1 + exp(ηi2) + exp(ηi3)(
1 + exp(ηi1) + exp(ηi2) + exp(ηi3)

)2 =
∂2 log L

∂β2
1

.

By convergence of β
(k)
j to β∗j for j = 1, 2, 3, it follows that s2(β(k)

1 ) −→ s2(β∗1).

Similarly, each component in the covariance matrix Σβ(k) can be proven to converge to

each component of Σβ∗ .

112



APPENDIX B

PROOF OF PROPOSITIONS 4.1 AND 4.2

Proof. Proposition 4.1 follows from the fact that, by construction, the sequence xn has to

consist of distinct points, and therefore has be finite.

To prove Proposition 4.2, note that if xn0 = xg and α = 1/p(xg), then by (20), q(xn0) = 0.

Define

En(x) =
n∑

i=1

q(xi)q(x)
d(x,xi)

.

Then, En(xn0) = 0, which implies

xn0 = arg min
x∈[0,1]m

En(x).

By (22), xn0+1 = xn0 = xg. Following a similar argument, xn = xg for all n > n0.
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