Georgia AAp Transportation Tech Laboratory

Algorithms for Economically and Environmentally Efficient Terminal Area Transition Metering

John-Paul Clarke, Liling Ren, Clayton Tino (Georgia Tech)
Marcus Lowther (was Georgia Tech now Metron Aviation)

Achieving the Desired Spacing

Optimization Overview

Objective Function: Minimizing Fuel Over Given Distance

$$
\begin{aligned}
& \dot{f_{i}} \geq a_{i, 1} M_{x}+b_{i, 1} \\
& \dot{f}_{i} \geq a_{i, 2} M_{x}+b_{i, 2} \\
& \vdots \\
& \dot{f}_{i} \geq a_{i, m} M_{x}+b_{i, m}
\end{aligned}
$$

Objective Function: Minimize Fuel Burn Over Given Distance

- Inclusion of dt in objective function is a simple addition, but necessitates additional constraints [1]
- Must now approximate bilinear term with a grid
- Further constraints at right limit selection of grid points to four adjacent planes
[1] D.A. Babayev. Piece-Wise Linear Approximation of Functions of Two Variables. Journal of Heuristics, 2: 313-320. 1997. Kluwer Academic Publishers.

Constraints: Sequence and Spacing

- Necessary for aircraft to rearrange scheduled arrival times
- Allows algorithm to examine all possible arrival sequences
- Separation constraints for a pair of aircraft
- Example for three aircraft, variable sequence constraints will create additional constraints

$$
\begin{gathered}
T_{2}-T_{1}+\alpha_{1,2} \leq P z_{1} \\
2 \alpha_{2,1}-\left(T_{2}-T_{1}+\alpha_{2,1}\right) \leq P\left(1-z_{1}\right)
\end{gathered}
$$

$$
T_{3}-T_{1}+\alpha_{1,3} \leq P z_{2}
$$

$$
2 \alpha_{3,1}-\left(T_{3}-T_{1}+\alpha_{3,1}\right) \leq P\left(1-z_{2}\right)
$$

$$
T_{3}-T_{2}+\alpha_{2,3} \leq P z_{3}
$$

$$
2 \alpha_{3,2}-\left(T_{3}-T_{2}+\alpha_{3,2}\right) \leq P\left(1-z_{3}\right)
$$

Conditions to satisfy separation, based on aircraft type

Constraints: Speed Changes

$\delta_{i} \geq \frac{\left|\Delta t_{i}\right|}{\mathrm{M}_{i}}$
$\delta_{i} \leq \mathrm{M}\left|\Delta t_{i}\right|$

$$
\delta_{1}, \delta_{2}, \ldots \delta_{n} \text { binary }
$$

$$
\sum_{j=1}^{J} \delta_{i} \leq j
$$

$$
\Delta t_{i}=T_{i} \frac{\Delta M_{i}}{M_{i}}
$$

$$
M_{d_{i}}=M_{i}+\Delta M_{i}
$$

$$
t_{f_{i}}=t_{i}-\Delta t_{i}
$$

Bounds
$-\infty \leq \Delta t_{i} \leq \infty$
$-0.02 \leq d M_{i} \leq 0.02$

* Maximum one speed change per aircraft
* Limit number of aircraft able to make a change
* Mach-Time Derivation
* Calculation of decision Mach and final ETA
* Bounds on decision variables

Constraints: Fairness

$$
\begin{gathered}
P_{f_{i}}=\frac{\left.\dot{f}_{i^{\prime}}\right|_{M_{j}} \cdot 100}{\dot{f}_{\min }} \\
P_{f_{i}}-P_{f_{t+1}} \leq \mid \text { tolerance } \mid .
\end{gathered}
$$

*Equate percentage increase in fuel burn for every group of aircraft belonging to an individual airline

Sample Scenario

Flight Number	Aircraft Type	Initial Mach	Flight Departure Time	Initial ETA	Required Sep. (s)	Initial Sep. (s)
940	752	0.78	3:35 AM	9:05 AM	131.1	240
788	763	0.785	3:39 AM	9:09 AM	107.2	720
780	763	0.785	3:51 AM	9:21 AM	115	240
1002	752	0.78	3:55 AM	9:25 AM	135	60)
752	752	0.78	3:56 AM	9:26 AM	131.1	1080
1478	763	0.785	4:14 AM	9:44 AM	115	180
716	752	0.78	4:17 AM	9:47 AM	135	0
1076	752	0.775	4:17 AM	9:47 AM	107.2	300
1282	764	0.79	4:22 AM	9:52 AM	107.2	60)
480	763	0.785	4:23 AM	9:53 AM	115	180
1642	752	0.78	4:26 AM	9:56 AM	135	2400
714	752	0.78	6:06 AM	10:36 AM	131.1	780
806	763	0.78	6:19 AM	10:49 AM	115	540
898	752	0.775	6:28 AM	10:58 AM	135	1020
816	752	0.78	6:45 AM	11:15 AM	135	1500
636	752	0.78	7:10 AM	11:40 AM		

Flights in RED would be unable to fly the CDA as initially spaced. Aside from the obvious spacing conflicts, there are clusters of aircraft that would be affected by isolated Mach change decisions

Results Without Fairness: Initial and Final ETA Separation

Results Without Fairness:
 Fuel Burn Change

Results With Fairness:
 Initial and Final ETA Separation

Results With Fairness:
 Fuel Burn Change

