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SUMMARY

In the present article, we will discuss the randomly driven motion of a walker

within the interval ]0; 1[. We imagine that at a fixed starting time t0 ∈ R, our walker

is located at the starting position ξ ∈]0; 1[. Moreover, the point 0 shall serve as an

attractor at time t0, meaning that the walker, enticed by an attracting force, starts

moving towards this point. As the walker approaches 0, its speed shall decrease at a

rate preventing it from ever reaching the attractor. One simple way of modeling such a

rapidly decreasing velocity works as follows: We introduce a function d which delivers

the Euclidean distance between the walker and the attractor as a function of time. For

instance, in the context of our initial conditions, dt0 is given by the starting position ξ.

At future times t > t0, we postulate that dt = dt0 · exp(t0 − t). The exponential term

starring in this formula indicates the exponentially slow rate at which the distance

to the attractor decreases. If we were contented with the mechanism established up

to this point, our object of scrutiny would be a movement whose future evolvement

is entirely determined by its starting conditions. However, we increase the degree

of complexity by allowing for alternating attraction points. Both endpoints 0 and

1 of the open interval ]0; 1[ are declared potential attractors, with the attractor role

relentlessly switching between them. So, while 0 was attractor at time t0, the point

1 starts attracting the walker at some time t1 > t0, ending the attraction regime of

0. Yet, at time t2 > t1, 0 and 1 might reverse their roles once more, leaving 0 as the

new attracting point until the next change occurs. With respect to the properties of

our walk, it is crucial to define the law governing the switch of attractors over time,

and we shall require these changes to take place randomly, with the times between

two subsequent switches subject to an exponential distribution. The intensity of this
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exponential distribution shall be a positive constant independent of time. After each

change of attracting point, the distance function d is defined analogously to the initial

case, where the initial time is replaced with the time of the previous switch.

Some of the postulates stated in this article can be relaxed without significantly

changing the problem at hands. We could, for example, permit a starting point

outside the interval, with the certainty that the walker will eventually enter ]0; 1[

and stay there for good. The exponential function could also yield to some function

with similar decay features, but this would deprive us from exploiting the functional

identity exp(s+ t) = exp(s) ·exp(t). One should also note that, instead of considering

a movement that started at a fixed point of time t0 and is therefore lacking any

prior history, we may assume that the movement has always existed and has neither

beginning nor ending.
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CHAPTER I

ONE FORCE-ONE SOLUTION PRINCIPLE

In the first two sections of this chapter, we prove a couple of easy auxiliary statements

in the spirit of forward and pullback attraction results, examples of which can be found

in [8]. The distance function we introduce right at the beginning can be interpreted

as the distance between two walkers governed by the aforementioned mechanism at

time t, provided that at time s < t, one of them was in ξ and the other in η.

1.1 Forward attraction

For s < t ∈ R and ξ, η ∈]0; 1[, we define

ds(ξ, η)(t) := |ξ − η| · exp(s− t).

Theorem 1 For each t0 ∈ R, ξ, η ∈]0; 1[ and for every ε > 0, there exists a T > t0

such that dt0(ξ, η)(t) < ε for t ≥ T .

Proof.The desired result follows immediately from the fact that

lim
t→∞

dt0(ξ, η)(t) = |ξ − η| · lim
t→∞

exp(t0 − t) = 0.

1.2 Pullback attraction

Theorem 2 For each t0 ∈ R, ξ, η ∈]0; 1[ and ε > 0, we can find a t̃ < t0 such that

dt(ξ, η)(t0) < ε whenever t ≤ t̃.
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Proof.Since dt(ξ, η)(t0) = |ξ − η| · exp(t− t0), we have limt→−∞ dt(ξ, η)(t0) = 0.

In fact, we can prove an even stronger result to which we will recur in the sequel:

Theorem 3 Given t0 ∈ R and ε > 0, there is a t̃ < t so that for any ξ, η ∈]0; 1[ and

for any t ≤ t̃, we have dt(ξ, η)(t0) < ε.

Proof.This is obvious, since dt(ξ, η)(t0) = |ξ − η| · exp(t− t0) and

limt→−∞|ξ − η| · exp(t− t0) = 0.

1.3 Main existence and uniqueness result

Let Σ denote the set of all real-valued two-sided sequences (ak)k∈Z that increase

monotonely and satisfy limk→−∞ ak = −∞ and limk→∞ ak = ∞. If a is such a

sequence in Σ, we can assign it a history of switchings between 0 and 1 as follows:

At time t ∈ R, let 0 be the attracting point if t ∈ [ak; ak+1[ for an even number k,

and let 1 be the attracting point if t ∈ [ak; ak+1[ for an odd k.

Owing to the properties of a, this provides a well-defined switching environment.

At present, we assume a to be a deterministic sequence, but in due course, we will

conceive a as a stochastic process in discrete time and we will require that its incre-

ments (ak+1 − ak) be exponentially distributed with a uniform intensity parameter

λ.

Let a ∈ Σ determine a fixed switching environment. In order to formulate our

existence and uniqueness result, we need to define a flow function F depending on

this environment which acts on elements of R×]0; 1[×R. The dependence on the

environment will be suppressed in our notation, so we write F (s, x; t) to denote that

F is applied to a point (s, x) (where s ∈ R represents a point of time and x ∈]0; 1[

is commonly interpreted as the location of our path at time s) and to a future time
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t ≥ s. The flow function F shall give the place of our walker at time t, that is the

mechanism of the walk we consider will be encoded in the definition of F .

For s ≤ t ∈ R and for ξ ∈]0; 1[ we define F (s, ξ; t) by the following scheme:

Let ks := sup{j ∈ Z : aj ≤ s}.

If t ∈ [s; aks+1[, set

F (s, ξ; t) :=


ξ · exp(s− t) if ks is even

1− (1− ξ) · exp(s− t) if ks is odd.

Assume we have defined F (s, ξ; t) for t ∈ [s; aks+n[, where n is some positive integer.

Now, we define F (s, ξ; t) for t ∈ [aks+n; aks+n+1[ inductively by setting

F (s, ξ; t) :=


F (s, ξ; aks+n) · exp(aks+n − t) if (ks + n) is even

1− (1− F (s, ξ, aks+n)) · exp(aks+n − t) if (ks + n) is odd.

To complete the definition of F , we have to define (F (s, ξ; aks+n))n≥1 inductively. We

set

F (s, ξ; aks+1) :=


ξ · exp(s− aks+1) if ks is even

1− (1− ξ) · exp(s− aks+1) if ks is odd

and

F (s, ξ; aks+n+1) :=


F (s, ξ; aks+n) · exp(aks+n − aks+n+1) if (ks + n) is even

1− (1− F (s, ξ; aks+n)) · exp(aks+n − aks+n+1) if (ks + n) is odd.

Why does this definition of F constitute a sensible description of the mechanism we

study? First assume that t ∈ [s; aks+1[. If ks is even, 0 acts as an attracting point

during the time interval [aks ; aks+1[ which encompasses both s and t. Assume that

the path is in some location χ ∈]0; 1[ at time aks . Then, by virtue of the underlying

mechanism, it is in χ · exp(aks − s) at time s. But when considering F (s, ξ; t), we

make the implicit assumption that ξ is the location of the path at time s, yielding

ξ = χ · exp(aks − s) ⇔ χ = ξ · exp(s− aks).
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Hence, the process is in ξ · exp(s− aks) at time s and in

ξ · exp(s− aks) · exp(aks − t) = ξ · exp(s− t) = F (s, ξ; t)

at time t. If ks is odd, 1 is the attracting point and the process is located in

1− (1− χ) · exp(aks − s) at time s, provided that it was in χ at time aks . Thus,

ξ = 1− (1− χ) · exp(aks − s) ⇔ χ = 1− (1− ξ) · exp(s− aks).

Then, at time t, the process has attained

1− (1− χ) · exp(aks − t) = 1− (1− ξ) · exp(s− t) = F (s, ξ; t).

A similar argument shows that the definition of F (s, ξ; t) for t ∈ [aks+n; aks+n+1[ is

also consistent with the heuristics of our motion.

Now, we possess the tools to state our main existence and uniqueness theorem.

Theorem 4 One force - one solution principle

Given a fixed switching environment E, there exists a unique path X = (Xt)t∈R such

that for every s < t ∈ R, we have Xt = F (s,Xs; t).

Another instance of the one force-one solution principle, related to a partial differential

equation with random boundary conditions, is presented in [1].

Before we embark on the proof of this theorem, we mention two lemmas whose

rather technical proofs are given in the appendix. The tediousness of these proofs

stems from the necessity to treat many different cases. Despite this fact, we can

easily see why they should be true by appealing to the underlying driving mechanism:

Lemma 1 roughly states that if two walkers are at the same location at present, they

will continue to stick together in the future. Lemma 2 is an immediate consequence

of the heuristic definitions we provided for F and d.

Lemma 1 If r < s < t and ξ ∈]0; 1[, we have

F (r, ξ; t) = F (s, F (r, ξ; s); t).
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Lemma 2 For s < t and ξ, η ∈]0; 1[, we have

|F (s, ξ; t)− F (s, η; t)| = ds(ξ; η)(t).

Having stated these lemmas, we can prove our main theorem.

Proof.The proof consists of three parts. First, we define a path X, then we show

that X matches the description in the theorem and finally we establish uniqueness.

Let a be the sequence determining our switching environment, ξ ∈]0; 1[ and t0 ∈ R.

Consider the sequence (F (a−k, ξ; t0))k≥1. This is a Cauchy sequence:

Let ε > 0. According to theorem 3, there is a t̃ < t0 so that dt(ξ, η)(t0) < ε

whenever t ≤ t̃ and for arbitrarily selected ξ, η ∈]0; 1[. Then, we can find a K ∈ N

with a−k < t̃ for all k ≥ K. Due to lemmas 1 and 2, we have for l > k ≥ K that

|F (a−k, ξ; t0)− F (a−l, ξ; t0)|

=|F (a−k, ξ; t0)− F (a−k, F (a−l, ξ; a−k); t0)|

=da−k(ξ, F (a−l, ξ; a−k))(t0) < ε

as a−k < t̃.

This proves that (F (a−k, ξ; t0))k≥1 is indeed a Cauchy sequence of real numbers,

hence convergent. Set Xt0 to be the limit of this sequence as k approaches infinity.

Now, we should verify that for s < t ∈ R, we have Xt = F (s,Xs; t). If we knew

that F was continuous in its second argument, we would have

F (s,Xs; t) = F (s, lim
k→∞

F (a−k, ξ; s); t)

= lim
k→∞

F (s, F (a−k, ξ; s); t)

= lim
k→∞

F (a−k, ξ; t) = Xt.

Note that we evoked lemma 1 in deriving the penultimate equality. So, it remains to

show that F is continuous in its second component. But this follows from lemma 2:

|F (s, ξ; t)− F (s, η; t)| = ds(ξ, η)(t) = |ξ − η| · exp(s− t).
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For the sake of establishing uniqueness of X, let (Yt)t∈R be a path different from X

that also satisfies Yt = F (s, Ys; t) for s < t ∈ R. Without loss of generality, we may

assume that Yt > Xt for some t ∈ R, so that ε := Yt−Xt > 0. By theorem 3, we find

a t̃ < t such that ds(ξ, η)(t) < ε
2

for every ξ, η ∈]0; 1[ and s ≤ t̃. So, in particular,

|Xt − Yt| = |F (s,Xs; t)− F (s, Ys; t)| = ds(Xs, Ys)(t) <
ε

2
,

which contradicts our assumption on Xt and Yt.

This establishes the theorem in its entirety.

1.4 Forward and pullback attraction for the unique solution

For our uniquely determined pathX satisfyingXt = F (s,Xs; t), we can derive forward

and pullback attraction results that resemble closely the ones given in the first section

of our discussion. Throughout this paragraph, X shall always denote this unique

solution.

1.4.1 Forward attraction

Theorem 5 Let t0 ∈ R, ξ ∈]0; 1[ and define

Yt := F (t0, ξ; t) ∀t ≥ t0.

Given ε > 0, there is a T > t0 such that

|Xt − Yt| < ε ∀t ≥ T.

Proof.For t0 ∈ R, ξ,Xt0 ∈]0; 1[ and ε > 0, theorem 1 guarantees existence of a time

T > t0 such that

dt0(ξ,Xt0)(t) < ε ∀t ≥ T.

Further, lemma 2 implies

ε > dt0(ξ,Xt0)(t) = |F (t0, ξ; t)− F (t0, Xt0 ; t)| = |Yt −Xt|.
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1.4.2 Pullback attraction

Theorem 6 If ξ ∈]0; 1[, ε > 0 and t0 ∈ R, there is a t̃ < t0 such that for any t ≤ t̃,

we have |Yt0 −Xt0 | < ε, where Yt0 := F (t, ξ; t0).

Proof.For t0 ∈ R and ε > 0, there exists a t̃ < t0 such that for any η ∈]0; 1[ and for

any t ≤ t̃, we have

dt(ξ, η)(t0) < ε,

as can be easily deduced from theorem 3. Then, if t ≤ t̃, replace η with Xt to obtain

ε > dt(ξ,Xt)(t0) = |F (t, ξ; t0)− F (t,Xt; t0)| = |Yt0 −Xt0|.

7



CHAPTER II

DERIVATION OF KOLMOGOROV FORWARD

EQUATIONS

So far, we have been working with a deterministic flow function F that was essentially

determined by a two-sided sequence (ak)k∈Z. From now on, we will assume that our

motion starts at time 0 in a randomly selected starting point ξ ∈]0; 1[ and is governed

by a sequence of exponentially distributed switching times. The starting point is

chosen at random in order to ensure that the random variable encoding the position

of the walker at a certain time t has a density function. A convenient side-effect of

this setting is that we may think of the random walk as an ”‘eternal”’ motion without

actual initiation. Under these circumstances, time t = 0 can be interpreted as the

point of time at which we started our observation of the random walk.

On a probability space (Ω,F , P ), let (Tk)k≥1 be a sequence of independent, ex-

ponentially distributed random variables with intensity λ > 0, and let ξ be a random

variable, independent of (Tk)k≥1, which maps to (]0; 1[; B(]0; 1[)) and has a continu-

ously differentiable probability density function p with continuous extension to [0; 1].

Given an ω ∈ Ω, we set aj(ω) :=
∑j

k=1 Tk(ω) for every j ∈ N. With this setting,

(aj(ω))j≥1 is a monotone increasing sequence that diverges to +∞ for P -almost every

ω in Ω. We denote the subset of Ω on which (aj)j≥1 diverges by Ω0. We may now

define a stochastic process (Xt)t≥0 in continuous time via

X0 ≡ ξ

Xt ≡ F (0, ξ; t) for t > 0

where F (0, ξ; t) depends on both the random starting point ξ and the sequence of

random variables (aj)j≥1 and is therefore itself a random variable. In defining Xt(ω),
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we require that ω be contained in Ω0, as otherwise, F (0, ξ; t) might not be defined at

ω. The process (Xt)t≥0 gives rise to a random walk whose essence can be captured in

the following description:

At time t = 0, the walker begins his motion in ξ ∈]0; 1[ and is attracted by 0.

As the walker approaches 0 linearly, his velocity decreases exponentially, preventing

him from ever reaching the current attracting point. After a random, exponentially

distributed, span of time, the attractor switches from 0 to 1, prompting the walker to

change direction and to move towards 1 instead of 0. Due to the exponential decrease

in velocity, the walker’s quest to reach 1 is again doomed and he will invariably change

course once the exponentially-λ distributed attracting time has elapsed. It is then

reasonable to conjecture that the intensity λ of the switchings exerts a tremendous

influence on our random walk. In the extremal cases of a very high and a very low

intensity, we expect a localization of the walk in certain areas of ]0; 1[. This question

will receive rigorous treatment in section 7.

Apart from the resulting motion of the random walker, we also intend to keep

track of the switching environment. To this end, we introduce another stochastic

process (At)t≥0 by

A0 ≡ 0

At ≡
1

2
· (1− (−1)kt),

where kt is defined as the supremum over the set of positive integers j for which

aj ≤ t. Once more, we emphasize that randomness comes into play because of the

sequence of random variables (aj)j≥1. At any given time t ≥ 0, the process At yields

the current attracting point.

Our goal in this section is to derive a system of partial differential equations, the so-

called Kolmogorov forward equations, that will eventually allow us to provide explicit

formulas for the invariant densities of our system. Especially in mathematical physics,
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these equations are also referred to as Fokker-Planck equations. For an introduction

to Kolmogorov’s forward and backward equations, the reader may confer the 11th

chapter of [7] on diffusions.

In a first step, we fix a time t > 0 at which we want to study our process. At

time t, either 0 or 1 acts as attractor, and we introduce two probability measures

P0(.) := P (.|At = 0) and P1(.) := P (.|At = 1) by conditioning P on these potential

realizations of At. We claim that we can assign probability density functions p0(., t)

and p1(., t) to the random variable Xt, such that

P0(Xt ∈ B) =

∫
B

p0(x, t)dx

and

P1(Xt ∈ B) =

∫
B

p1(x, t)dx

for any B ∈ B(]0; 1[). This result will be a consequence of the following lemma:

Lemma 3 For i ∈ {0; 1}, the Pi-distribution of Xt is absolutely continuous with

respect to the Lebesgue measure on ]0; 1[.

Proof.We prove the lemma for i = 0. Given a set E ⊆]0; 1[ of Lebesgue measure

zero, we have to show that P0(Xt ∈ E) = 0. For any n ∈ N0, we set

Cn := {ω ∈ Ω : kt(ω) = n}.

From its definition, we deduce that the stochastic process (kj)j≥0 is a Poisson process.

Accordingly, the random variable kt is Poisson-distributed with intensity parameter

λ · t. Thus, we have

P (Cn) = exp(−λ · t) · (λ · t)n

n!

for any n ∈ N0. Since all of the events Cn have positive probability, we may compute

the probabilities of certain events conditioned on Cn. And as the sets Cn are pairwise

10



disjoint, countable additivity of P implies

P (Xt ∈ E) = P (Xt ∈ E;
∞⋃
n=0

Cn) =
∞∑
n=0

P (Xt ∈ E;Cn)

=
∞∑
n=0

P (Xt ∈ E|Cn) · P (Cn).

We show that P (Xt ∈ E|Cn) = 0 for any n ∈ N0, whence it follows that

P (Xt ∈ E) = 0.

If we condition on the event Cn, we assume that there have been exactly n switches

during the time interval ]0; t]. The position of the walker at time t, denoted by Xt,

then depends on the random starting point ξ, a random variable with values in

]0; 1[ and density function p, and on the exponentially distributed stopping times

T1, ..., Tn. Note also that the random variables ξ, T1, ..., Tn are independent. If we

define a simplex ∆ in Rn by

∆ := {(t1, ..., tn) ∈ Rn : t1, ..., tn ≥ 0;
n∑
i=1

ti ≤ t},

the random vector (ξ, T1, ..., Tn) maps from Ω to ]0; 1[×∆ with P (.|Cn)-probability 1.

We examine whether the distribution of (ξ, T1, ..., Tn) under the probability measure

P (.|Cn) has a probability density function. Let A and B be elements of the Borel-

σ-algebras B(]0; 1[) and B(∆), respectively. Then, the product set I := A × B is

contained in ]0; 1[×∆ and we have

P ((ξ, T1, ..., Tn) ∈ I|Cn) =
P (ξ ∈ A; (T1, ..., Tn) ∈ B;Cn)

P (Cn)

=
P (ξ ∈ A; (T1, ..., Tn) ∈ B;

∑n
i=1 Ti ≤ t <

∑n+1
i=1 Ti)

P (Cn)
.

Since B ⊆ ∆, the event (T1, ..., Tn) ∈ B automatically implies that
∑n

i=1 Ti ≤ t.

Hence, the numerator of the above ratio becomes

P (ξ ∈ A; (T1, ..., Tn) ∈ B; t <
n+1∑
i=1

Ti)

=P (ξ ∈ A) · P ((T1, ..., Tn) ∈ B;Tn+1 > t−
n∑
i=1

Ti).
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As T1, ..., Tn+1 are independent exponentially distributed random variables, the ran-

dom vector (T1, ..., Tn+1) has the joint density function

ψ(x1, ..., xn+1) = λn+1 · exp(−λ ·
n+1∑
i=1

xi) for x1, ..., xn+1 ≥ 0.

Thus,

P ((T1, ..., Tn) ∈ B;Tn+1 > t−
n∑
i=1

Ti)

=P ((T1, ..., Tn+1) ∈ {(x1, ..., xn+1) ∈ [0;∞[n+1: (x1, ..., xn) ∈ B, xn+1 > t−
n∑
i=1

xi})

=

∫
[0;∞[n+1

1{(x1,...,xn)∈B,xn+1>t−
∑n
i=1 xi} · ψ(x1, ..., xn+1)d(x1, ..., xn+1).

By Tonelli’s theorem (cf. for instance [6] or [4]), this integral can be decomposed into∫ ∞

0

...

∫ ∞

0

λn ·
∫ ∞

0

1{(x1,...,xn)∈B,xn+1>t−
∑n
i=1 xi} ·λ·exp(−λ·

n+1∑
i=1

xi)dxn+1dxn...dx1. (1)

The substitution xn+1 → y :=
∑n+1

i=1 xi then yields∫ ∞

0

1{(x1,...,xn)∈B,xn+1>t−
∑n
i=1 xi} · λ · exp(−λ ·

n+1∑
i=1

xi)dxn+1

=

∫ ∞

−
∑n
i=1 xi

1{(x1,...,xn)∈B,y>t} · λ · exp(−λ · y)dy

=1{(x1,...,xn)∈B} ·
∫ ∞

t

λ · exp(−λy)dy

=1{(x1,...,xn)∈B} · exp(−λt).

Accordingly, the multiple integral in (1) can be rewritten as

exp(−λt) · λn ·
∫ ∞

0

...

∫ ∞

0

1{(x1,...,xn)∈B}dxn...dx1

= exp(−λt) · λn ·
∫

[0;∞[n
1{(x1,...,xn)∈B}d(x1, ..., xn)

= exp(−λt) · λn · |B|.

The number of switches in [0; t] being Poisson-distributed with intensity parameter

λ · t, we also have

P (Cn) = exp(−λt) · (λt)n

n!
,

12



implying that

P ((ξ, T1, ..., Tn) ∈ I|Cn) = P (ξ ∈ A) · |B| · n!

tn

=

∫
A

p(x)dx ·
∫
B

n!

tn
dy

=

∫
I

p(x) · n!

tn
d(x, y).

Note that tn

n!
gives the volume of an n-dimensional simplex whose edges have length

t, that is the volume of our set ∆. The mapping x 7→ n!
tn

is therefore the density

function of the uniform distribution on ∆.

For arbitrary, not necessarily rectangular sets S in the product-σ-algebra B(]0; 1[)⊗

B(∆), we consider the family of sets

S := {S ∈ B(]0; 1[)⊗B(∆) : P ((ξ, T1, ..., Tn) ∈ S|Cn) =

∫
S

p(x) · n!

tn
d(x, y)}

and show that it is a σ-algebra. Since ]0; 1[×∆ is a rectangular set, it is contained in

S . And if R, S ∈ S with R ⊆ S, we have

P ((ξ, T1, ..., Tn) ∈ S \R|Cn) = P ({(ξ, T1, ..., Tn) ∈ S} \ {(ξ, T1, ..., Tn) ∈ R}|Cn)

= P ((ξ, T1, ..., Tn) ∈ S|Cn)− P ((ξ, T1, ..., Tn) ∈ R|Cn)

=

∫
S

p(x) · n!

tn
d(x, y)−

∫
R

p(x) · n!

tn
d(x, y)

=

∫
S\R

p(x) · n!

tn
d(x, y)

so that S \ R ∈ S . Finally, if (Sk)k≥1 is a countable family of disjoint sets from S ,

13



we obtain

P ((ξ, T1, ..., Tn) ∈
∞⋃
k=1

Sk|Cn) = P (
∞⋃
k=1

{(ξ, T1, ..., Tn) ∈ Sk}|Cn)

=
∞∑
k=1

P ((ξ, T1, ..., Tn) ∈ Sk|Cn)

=
∞∑
k=1

∫
Sk

p(x) · n!

tn
d(x, y)

= lim
k→∞

∫
]0;1[×∆

1⋃k
l=1 Sl

(x, y) · p(x) · n!

tn
d(x, y)

=

∫
⋃∞
k=1 Sk

p(x) · n!

tn
d(x, y)

by monotone convergence. Hence, we have verified that S is a Dynkin system.

As the family of rectangular sets A × B, a π-system, is contained in S , Dynkin’s

π-λ-theorem, to be found, among other sources, in [2], implies that the σ-algebra

generated by the rectangular sets, namely B(]0; 1[) ⊗B(∆), is a subset of S . The

converse set inclusion being trivial, we see that

P ((ξ, T1, ..., Tn) ∈ S|Cn) =

∫
S

p(x) · n!

tn
d(x, y) ∀S ∈ B(]0; 1[)⊗B(∆)

. This establishes that p · n!
tn

is the probability density function of the random vector

(ξ, T1, ..., Tn) with respect to the measure P (.|Cn).

In a subsequent step, we define a function

f : ]0; 1[×∆→]0; 1[, (x, t1, ..., tn) 7→ F (0, x; t)

where aj :=
∑j

k=1 tk for 1 ≤ j ≤ n. Our objective is to prove that f is continuously

differentiable in each of its (n+ 1) components, for

Xt(ω) = f(ξ(ω), T1(ω), ..., Tn(ω)),

provided that ω ∈ Cn. As far as the x-component is concerned, we evoke lemma (2)

14



to get

1

h
· (f(x+ h, t1, ..., tn)− f(x, t1, ..., tn)) =

1

h
· (F (0, x+ h; t)− F (0, x; t))

=
1

h
· d0(x;x+ h)(t) =

1

h
· h · e−t = e−t.

Accordingly, f is differentiable in its first component with the constant derivative

x 7→ e−t. In order to prove differentiability for the remaining components t1, ..., tn, we

first assume that n is an even integer. With |h| sufficiently small, we show inductively

that for any even k ∈ {1, ..., n}, we have

1

h
· (f(x, t1, ..., tl + h, ..., tn)− f(x, t1, ..., tl, ..., tn))

=
eh − 1

h
· (
n−k−1∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (F (0, x; ak + h) · exp(ak + h− t)− F (0, x; ak) · exp(ak − t)),

provided that l ≤ k. If k is an odd integer in {1, ..., n}, we claim that

1

h
· (f(x, t1, ..., tl + h, ..., tn)− f(x, t1, ..., tl, ..., tn))

=
eh − 1

h
· (
n−k∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (F (0, x; ak + h) · exp(ak + h− t)− F (0, x; ak) · exp(ak − t))

whenever l ≤ k. First, let us consider the case k = n. For l ≤ n, we have

1

h
· (f(x, t1, ..., tl + h, ..., tn)− f(x, t1, ..., tl, ..., tn))

=
1

h
· (F (0, x; an + h) · exp(an + h− t)− F (0, x; an) · exp(an − t)).

Now, in the first induction step, let us assume that k is an even number in {1, ..., n}

for which the statement holds. Then, if l ≤ (k − 1), the integer l is in particular less
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than k, and, according to our induction assumption, we have

1

h
· (f(x, t1, ..., tl + h, ..., tn)− f(x, t1, ..., tl, ..., tn))

=
eh − 1

h
· (
n−k−1∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (F (0, x; ak + h) · exp(ak + h− t)− F (0, x; ak) · exp(ak − t))

=
eh − 1

h
· (
n−k−1∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· ((1− (1− F (0, x; ak−1 + h)) · exp(ak−1 − ak)) · exp(ak + h− t)

− (1− (1− F (0, x; ak−1)) · exp(ak−1 − ak)) · exp(ak − t))

=
eh − 1

h
· (
n−k−1∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (exp(ak + h− t)− exp(ak − t)

+ (1− F (0, x; ak−1)) · exp(ak−1 − t)− (1− F (0, x; ak−1 + h)) · exp(ak−1 + h− t))

=
eh − 1

h
· (
n−k∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (exp(ak−1 − t)− exp(ak−1 + h− t)

+ F (0, x; ak−1 + h) · exp(ak−1 + h− t)− F (0, x; ak−1) · exp(ak−1 − t))

=
eh − 1

h
· (
n−k+1∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (F (0, x; ak−1 + h) · exp(ak−1 + h− t)− F (0, x; ak−1) · exp(ak−1 − t)).

And if the statement holds true for an odd number k ∈ {1, ..., n} and l is less than
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or equal to the even number (k − 1), we have

1

h
· (f(x, t1, ..., tl + h, ..., tn)− f(x, t1, ..., tl, ..., tn))

=
eh − 1

h
· (
n−k∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (F (0, x; ak + h) · exp(ak + h− t)− F (0, x; ak) · exp(ak − t))

=
eh − 1

h
· (
n−k∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (F (0, x; ak−1 + h) · exp(ak−1 + h− t)− F (0, x; ak−1) · exp(ak−1 − t)).

For an even integer k, the previous result implies the following identity:

1

h
· (f(x, t1, ..., tk + h, ..., tn)− f(x, t1, ..., tk, ..., tn))

=
eh − 1

h
· (
n−k−1∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (F (0, x; ak + h) · exp(ak + h− t)− F (0, x; ak) · exp(ak − t))

=
eh − 1

h
· (
n−k−1∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· ((1− (1− F (0, x; ak−1)) · exp(ak−1 − ak − h)) · exp(ak + h− t)

− (1− (1− F (0, x; ak−1)) · exp(ak−1 − ak)) · exp(ak − t))

=
eh − 1

h
· (
n−k−1∑
j=0

(−1)j · exp(an−j − t))

+
1

h
· (exp(ak + h− t)− exp(ak − t))

=
eh − 1

h
· (
n−k∑
j=0

(−1)j · exp(an−j − t)),

so that

∂tkf(x, t1, ..., tk, ..., tn) =
n−k∑
j=0

(−1)j · exp(an−j − t).

A calculation in the spirit of the preceeding ones shows that this equality is also valid

for odd integers. This establishes f as a continuously differentiable scalar field.
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Next, we define a mapping

f̃ : ]0; 1[×∆→ f̃(]0; 1[×∆), (x, t1, ..., tn) 7→ (f(x, t1, ..., tn), t1, ..., tn).

This mapping is bijective, for if

f̃(x, t1, ..., tn) = f̃(y, s1, ..., sn)

for some x, y ∈]0; 1[ and (t1, ..., tn), (s1, ..., sn) ∈ ∆, we have

(f(x, t1, ..., tn), t1, ..., tn) = (f(y, s1, ..., sn), s1, ..., sn)

and equality holds componentwise. Thus, tk = sk for 1 ≤ k ≤ n and

f(x, t1, ..., tn) = f(y, t1, ..., tn). By lemma (2),

0 = |f(x, t1, ..., tn)−f(y, t1, ..., tn)| = |F (0, x; t)−F (0, y; t)| = d0(x; y)(t) = |x−y|·e−t,

so that x = y. Its Jacobi matrix reads

Jf̃ (x, t1, ..., tn) =



e−t
∑n−1

j=0 (−1)j · exp(
∑n−j

l=1 tl − t) . . . . . . exp(
∑n

l=1 tl − t)

0 1 0 0 . . .

0 0 1 0 . . .

...
...

. . . . . . . . .


,

and its lower left triangle consists entirely of zeros. Therefore, the Jacobi determinant

equals

det Jf̃ (x, t1, ..., tn) = e−t 6= 0

for any point (x, t1, ..., tn) in ]0; 1[×∆.

According to the transformation formula for densities, the distribution of the

random vector f̃(ξ, T1, ..., Tn), taken with respect to P (.|Cn), then has a probability

density function ϕ. If E is now the arbitrary set of Lebesgue measure 0 introduced
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at the very start of this proof, we obtain

P (Xt ∈ E|Cn) = P (f(ξ, T1, ..., Tn) ∈ E|Cn)

= P ((f(ξ, T1, ..., Tn), T1, ..., Tn) ∈ E × [0;∞[n|Cn)

= P (f̃(ξ, T1, ..., Tn) ∈ E × [0;∞[n|Cn)

=

∫
E

∫ ∞

0

...

∫ ∞

0

ϕ(x, t1, ..., tn)dtn...dt1dx

= 0.

This completes our proof.

Given a Borel-set B ⊆]0; 1[, we then have

P (Xt ∈ B;At = i) = Pi(Xt ∈ B) · P (At = i) =

∫
B

pi(x, t) · P (At = i)dx

for i = 0, 1. When we set ρi(x, t) := pi(x, t) ·P (At = i), the previous equality becomes

P (Xt ∈ B;At = i) =

∫
B

ρi(x, t)dx.

The functions ρi are density functions which do not integrate to 1, due to the factor

P (At = i). However, once we set ρ(x, t) := ρ0(x, t)+ρ1(x, t), we obtain the probability

density function ρ(., t) of the random variable Xt, for

P (Xt ∈ B) = P (Xt ∈ B;At = 0) + P (Xt ∈ B;At = 1)

=

∫
B

(ρ0(x, t) + ρ1(x, t))dx =

∫
B

ρ(x, t)dx.

Let Nr,s := ks − kr denote the number of switches within the time-interval ]r; s].

With this convention, we have

P (Xt ∈ B;At = i) =P (Xt ∈ B;At = i;Nt,t+h = 0) + P (Xt ∈ B;At = i;Nt,t+h = 1)

+ P (Xt ∈ B;At = i;Nt,t+h > 1)
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for a small h > 0. The stochastic process (ks)s≥0 being a Poisson process, the incre-

ment Nt,t+h = kt+h − kt is independent of the random variables Xt and At as these

depend on ξ and the history of the Poisson process (ks)s≥0 up to time t. Therefore,

we can represent the right-hand side of the prior equation as

P (Xt ∈ B;At = i) · P (Nt,t+h = 0) + P (Xt ∈ B;At = i) · P (Nt,t+h = 1)

+ P (Xt ∈ B;At = i) · P (Nt,t+h > 1),

and we now have a closer look at the distribution of Nt,t+h. The random variable

Nt,t+h = kt+h − kt is Poisson-distributed with intensity parameter λ · h. This obser-

vation yields the formulas

P (Nt,t+h = 0) = exp(−λ · h)

P (Nt,t+h = 1) = exp(−λ · h) · λh

P (Nt,t+h > 1) = 1− exp(−λ · h) · (1 + λh).

As

1

h
· (exp(−λ · h) + λh− 1) = λ− λ · exp(−λ · h)− 1

−λ · h

and

lim
h↘0

exp(−λ · h)− 1

−λ · h
= 1,

we gather that

P (Nt,t+h = 0) = 1− λh+ o(h)

as h decreases to 0. In addition,

lim
h↘0

1

h
· (exp(−λh) · λh− λh) = λ · lim

h↘0
(exp(−λh)− 1) = 0,

whence we infer that

P (Nt,t+h = 1) = λh+ o(h).

Accordingly,

P (Nt,t+h > 1) = o(h)
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as h tends to 0.

Now, we fix two numbers a < b in the interval ]0; 1[ and consider the density func-

tion ρ0. The total ρ0-mass contained in ]a; b[ at time t is then given by
∫ b

a
ρ0(x, t)dx,

and by calculating its time-derivative ∂t
∫ b

a
ρ0(x, t)dx, we get the change of total ρ0-

mass at time t. Clearly,

∂t

∫ b

a

ρ0(x, t)dx = lim
h↘0

1

h
· (

∫ b

a

ρ0(x, t+ h)dx−
∫ b

a

ρ0(x, t)dx)

and we call (
∫ b

a
ρ0(x, t+ h)dx −

∫ b

a
ρ0(x, t)dx) the net density flux during ]t; t + h[

taken with respect to ]a; b[.

This net density flux equals

P (Xt+h ∈]a; b[;At+h = 0)− P (Xt ∈]a; b[;At = 0)

=(P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 0)− P (Xt ∈]a; b[;At = 0)) · P (Nt,t+h = 0)

+ (P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 1)− P (Xt ∈]a; b[;At = 0)) · P (Nt,t+h = 1)

+ (P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h > 1)− P (Xt ∈]a; b[;At = 0)) · P (Nt,t+h > 1).

Let us first consider the case Nt,t+h = 0, that is we do not witness a switch during the

time interval ]t; t + h]. Under this assumption, the statements At = 0 and At+h = 0

are equivalent, yielding

P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 0) = P (Xt+h ∈]a; b[;At = 0|Nt,t+h = 0).

If we also condition on the event At = 0, we get

P (Xt+h ∈]a; b[;At = 0|Nt,t+h = 0)

=P (Xt+h ∈]a; b[|At = 0;Nt,t+h = 0) · P (At = 0|Nt,t+h = 0).

And

Xt+h(ω) = Xt(ω) · exp(−h),

provided that At(ω) = 0 and Nt,t+h(ω) = 0. Hence,

P (Xt+h ∈]a; b[|At = 0;Nt,t+h = 0) = P (Xt ∈]eha; ehb[|At = 0;Nt,t+h = 0)
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As a result, we have

P (Xt+h ∈]a; b[;At = 0|Nt,t+h = 0)

=P (Xt ∈]eh · a; eh · b[|At = 0;Nt,t+h = 0) · P (At = 0|Nt,t+h = 0)

=P (Xt ∈]eh · a; eh · b[;At = 0|Nt,t+h = 0).

As before, the event Nt,t+h = 0 does not depend on the situation at time t. Conse-

quently,

P (Xt ∈]eh · a; eh · b[;At = 0|Nt,t+h = 0) = P (Xt ∈]eh · a; eh · b[;At = 0),

and we eventually obtain

P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 0)− P (Xt ∈]a; b[;At = 0)

=P (Xt ∈]eh · a; eh · b[;At = 0)− P (Xt ∈]a; b[;At = 0)

=

∫ eh·b

eh·a
ρ0(x, t)dx−

∫ b

a

ρ0(x, t)dx

=

∫ eh·b

b

ρ0(x, t)dx−
∫ eh·a

a

ρ0(x, t)dx.

In the previous line, the term
∫ eh·b
b

ρ0(x, t)dx can be interpreted as the total mass

influx into the interval ]a; b[ that occurred between times t and (t+h), assuming that

no switch took place in ]t; t+h[. By subtracting the total mass outflux
∫ eh·a
a

ρ0(x, t)dx,

we obtain the net flux, always bearing in mind that we have conditioned on the

event Nt,t+h = 0. We assume that ρ0(., t) is sufficiently regular, more precisely that

it is continuously differentiable in [a; eh0 · b] for a sufficiently small h0 > 0. The

derivative ∂xρ0 is then a continuous function in [a; eh0 · b] and assumes its maximum

µ := maxη∈[a;eh0 ·b] ∂xρ0(η, t). For h ≤ h0, Taylor’s theorem implies the existence of

ηh ∈]b; eh · b[, such that

1

h
·
∫ eh·b

b

(ρ0(x, t)− ρ0(b, t))dx =
1

h
·
∫ eh·b

b

∂xρ0(ηh, t) · (x− b)dx

=
1

h
· ∂xρ0(ηh, t) · [

1

2
x2 − bx]x=eh·b

x=b ≤ 1

h
· µ · b

2

2
· (eh − 1)2.
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Since limh↘0
eh−1
h

= 1 and limh↘0(eh − 1) = 0, the term

1

h
·
∫ eh·b

b

(ρ0(x, t)− ρ0(b, t))dx

converges to 0 as h approaches 0. This gives us∫ eh·b

b

ρ0(x, t)dx =

∫ eh·b

b

ρ0(b, t)dx+ o(h) = b · (eh − 1) · ρ0(b, t) + o(h).

As (eh − 1) and h are asymptotically equivalent as h ↘ 0, our final estimate on the

influx term reads∫ eh·b

b

ρ0(x, t)dx = b · h · (1 + o(1)) · ρ0(b, t) + o(h). (2)

For the integral describing the mass outflux, the (justified) replacement of b by a

reveals that ∫ eh·a

a

ρ0(x, t)dx = a · h · (1 + o(1)) · ρ0(a, t) + o(h). (3)

Before we calculate the net flux and rescale it appropriately, we cast the above identi-

ties into new forms involving a drift function v0. The purpose of this aside is to pave

the way for generalizations of the current problem. These will arguably bring about

more complicated terms, but might still be accessible with the aid of the presently

developed tools.

If ω satisfies the condition Nt,t+h(ω) = 0, we obtain

Xt+h(ω) = Xt(ω) · e−h =: Φ0(Xt(ω), h).

Taking the partial derivative of Φ0 with respect to time then yields the formula

∂hΦ0(Xt(ω), h) = −Xt(ω) · e−h = −Φ0(Xt(ω), h),

which can be rewritten as

∂hΦ0(Xt(ω), h) = v0(Φ0(Xt(ω), h))

by introducing the drift function v0(y) := −y.
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And with this drift function, equations (2) and (3) become∫ eh·b

b

ρ0(x, t)dx = |v0(b)| · h · (1 + o(1)) · ρ0(b, t) + o(h),∫ eh·a

a

ρ0(x, t)dx = |v0(a)| · h · (1 + o(1)) · ρ0(a, t) + o(h).

Thus, the net flux in case of no switch is accounted for by the term

(P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 0)− P (Xt ∈]a; b[;At = 0)) · P (Nt,t+h = 0)

=(|v0(b)| · ρ0(b, t)− |v0(a)| · ρ0(a, t) + o(h)) · h · (1 + o(1)) · (1− λh+ o(h))

=(|v0(b)| · ρ0(b, t)− |v0(a)| · ρ0(a, t)) · h+ o(h).

For the net flux in case of multiple switches, we immediately obtain

|(P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h > 1)− P (Xt ∈]a; b[;At = 0)) · P (Nt,t+h > 1)|

≤2 · o(h) = o(h).

It remains to discuss the case of exactly one switch in ]t; t+ h].

If there has been exactly one switch of attractor within ]t; t+h], 0 is the attracting

point at time (t+ h) if and only if 1 acts as an attractor at time t. For that reason,

P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 1) = P (Xt+h ∈]a; b[;At = 1|Nt,t+h = 1)

=P (Xt+h ∈]a; b[|At = 1;Nt,t+h = 1) · P (At = 1|Nt,t+h = 1).

If ω ∈ Ω is chosen in such a way that At(ω) = 1 and Nt,t+h(ω) = 1, there exists a

uniquely determined time s(ω) ∈]t; t + h] at which the point of attraction switches

from 1 to 0. For such an ω, we have

Xt+h(ω) = Xs(ω)(ω) · exp(s(ω)− (t+ h))

= (1− (1−Xt(ω)) · exp(t− s(ω))) · exp(s(ω)− (t+ h))

= exp(s(ω)− (t+ h))− (1−Xt(ω)) · exp(−h),
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whence it follows that for those ω satisfying At(ω) = 1 and Nt,t+h(ω) = 1, the

inequality chain a < Xt+h(ω) < b is equivalent to

eh · a+ 1− exp(s(ω)− t) < Xt(ω) < eh · b+ 1− exp(s(ω)− t).

Accordingly,

P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 1)

=P (Xt ∈]eha+ 1− exp(s− t); ehb+ 1− exp(s− t)[|At = 1;Nt,t+h = 1) · P (At = 1|Nt,t+h = 1)

=P (Xt ∈]eh · a+ 1− exp(s− t); eh · b+ 1− exp(s− t)[;At = 1|Nt,t+h = 1).

Then, as 0 < s(ω)− t ≤ h, we get the inequalities

eh · (a− 1) + 1 ≤ eh · a+ 1− exp(s(ω)− t) < eh · a

as well as

eh · (b− 1) + 1 ≤ eh · b+ 1− exp(s(ω)− t) < eh · b.

From these inequalities, we deduce

P (Xt ∈]eh · (a− 1) + 1; eh · b[;At = 1|Nt,t+h = 1) (4)

≥P (Xt ∈]eha+ 1− exp(s− t); ehb+ 1− exp(s− t)[;At = 1|Nt,t+h = 1) (5)

≥P (Xt ∈]eh · a; eh · (b− 1) + 1[;At = 1|Nt,t+h = 1). (6)

The conditional probabilities (4) and (6) can be restated as

P (Xt ∈]eh · (a− 1) + 1; eh · b[;At = 1)

and

P (Xt ∈]eh · a; eh · (b− 1) + 1[;At = 1),

as both events are independent of the events on which we condition. Therefore,

probability (4) equals ∫ eh·b

eh·(a−1)+1

ρ1(x, t)dx,
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while expression (6) has the integral representation∫ eh·(b−1)+1

eh·a
ρ1(x, t)dx.

Combining these results, we obtain∫ eh·(b−1)+1

eh·a
ρ1(x, t)dx−

∫ b

a

ρ0(x, t)dx (7)

≤P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 1)− P (Xt ∈]a; b[;At = 0) (8)

≤
∫ eh·b

eh·(a−1)+1

ρ1(x, t)dx−
∫ b

a

ρ0(x, t)dx. (9)

Moreover, we have∫ eh·(b−1)+1

eh·a
ρ1(x, t)dx−

∫ b

a

ρ0(x, t)dx

=

∫ eh·(b−1)+1

eh·a
ρ1(x, t)dx−

∫ b

a

ρ1(x, t)dx+

∫ b

a

ρ1(x, t)dx−
∫ b

a

ρ0(x, t)dx

=

∫ eh·(b−1)+1

b

ρ1(x, t)dx−
∫ eh·a

a

ρ1(x, t)dx+

∫ b

a

(ρ1(x, t)− ρ0(x, t))dx

and, analogously,∫ eh·b

eh·(a−1)+1

ρ1(x, t)dx−
∫ b

a

ρ0(x, t)dx

=

∫ eh·b

b

ρ1(x, t)dx−
∫ eh·(a−1)+1

a

ρ1(x, t)dx+

∫ b

a

(ρ1(x, t)− ρ0(x, t))dx,

so that (7) and (9) turn into

(

∫ eh·(b−1)+1

b

ρ1(x, t)dx−
∫ eh·a

a

ρ1(x, t)dx) +

∫ b

a

(ρ1(x, t)− ρ0(x, t))dx

and

(

∫ eh·b

b

ρ1(x, t)dx−
∫ eh·(a−1)+1

a

ρ1(x, t)dx) +

∫ b

a

(ρ1(x, t)− ρ0(x, t))dx.

Next, we exploit the fact that the density function ρ1(., t) is non-negative in order to

glean the estimates∫ eh·(b−1)+1

b

ρ1(x, t)dx−
∫ eh·a

a

ρ1(x, t)dx ≥ −
∫ eh·a

a

ρ1(x, t)dx
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and ∫ eh·b

b

ρ1(x, t)dx−
∫ eh·(a−1)+1

a

ρ1(x, t)dx ≤
∫ eh·b

b

ρ1(x, t)dx.

Assuming that ρ1 has the same regularity properties as ρ0, we may extend identities

(2) and (3) to ρ1, yielding∫ eh·b

b

ρ1(x, t)dx = b · ρ1(b, t) · h · (1 + o(1)) + o(h),

−
∫ eh·a

a

ρ1(x, t)dx = −a · ρ1(a, t) · h · (1 + o(1)) + o(h).

Finally, we have

(−a · ρ1(a, t) · h · (1 + o(1)) + o(h) +

∫ b

a

(ρ1(x, t)− ρ0(x, t))dx) · (λh+ o(h))

≤(P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 1)− P (Xt ∈]a; b[;At = 0)) · P (Nt,t+h = 1)

≤(b · ρ1(b, t) · h · (1 + o(1)) + o(h) +

∫ b

a

(ρ1(x, t)− ρ0(x, t))dx) · (λh+ o(h)).

This chain of inequalities eventually establishes that

(P (Xt+h ∈]a; b[;At+h = 0|Nt,t+h = 1)− P (Xt ∈]a; b[;At = 0)) · P (Nt,t+h = 1)

=λh ·
∫ b

a

(ρ1(x, t)− ρ0(x, t))dx+ o(h).

With these results, the net density flux during ]t; t+ h[ becomes∫ b

a

ρ0(x, t+ h)dx−
∫ b

a

ρ0(x, t)dx

=(|v0(b)| · ρ0(b, t)− |v0(a)| · ρ0(a, t)) · h+ λh ·
∫ b

a

(ρ1(x, t)− ρ0(x, t))dx+ o(h),

and

d

dt

∫ b

a

ρ0(x, t)dx

= lim
h↘0

1

h
· (o(h) + λh ·

∫ b

a

(ρ1(x, t)− ρ0(x, t))dx− (ρ0(b, t) · v0(b)− ρ0(a, t) · v0(a)) · h)

=λ ·
∫ b

a

(ρ1(x, t)− ρ0(x, t))dx− (ρ0(b, t) · v0(b)− ρ0(a, t) · v0(a)).
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Assuming that we may interchange the differentiation operator and the integral, this

yields the identity∫ b

a

∂tρ0(x, t)dx = −
∫ b

a

d

dx
(ρ0(x, t) · v0(x))dx+ λ ·

∫ b

a

(ρ1(x, t)− ρ0(x, t))dx.

As this holds true regardless of the a < b ∈]0; 1[, the integrands on both sides must

coincide in almost every point. Applying the product rule for differentiation, we get

∂tρ0(x, t) = −(v′0(x) · ρ0(x, t) + ∂xρ0(x, t) · v0(x)) + λ · (ρ1(x, t)− ρ0(x, t)).

If we insert v0(x) = −x and v′0(x) = −1, this turns into

∂tρ0(x, t) = −(1 + λ) · ρ0(x, t) + λ · ρ1(x, t)− x · ∂xρ0(x, t),

which is the Kolmogorov forward equation for the family of density functions (ρ0(., t))t≥0.

Due to the symmetry inherent in the subject, the Kolmogorov forward equation

for (ρ1(., t))t≥0 reads

∂tρ1(x, t) = −(v′1(x) · ρ1(x, t) + ∂xρ1(x, t) · v1(x)) + λ · ρ0(x, t)− λ · ρ1(x, t),

where v0 has been replaced with v1, the drift function corresponding to the attracting

point 1. If 1 has been the attractor throughout the entire interval [0; t] and the path

of our process X assigned to some ω ∈ Ω started at ξ(ω), we have

Xt(ω) = 1− (1− ξ(ω)) · exp(−t) =: Φ1(ξ(ω); t)

and Φ1 satisfies the differential equation

∂tΦ1(ξ(ω); t) = 1− Φ1(ξ(ω); t) =: v1(Φ1(ξ(ω); t)).

Hence, we set v1(y) := 1− y to derive

∂tρ1(x, t) = (1− λ) · ρ1(x, t) + (x− 1) · ∂xρ1(x, t) + λ · ρ0(x, t)

as our second Kolmogorov equation.
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CHAPTER III

DERIVATION OF INVARIANT DENSITIES

In the previous section, we have argued that for any time t > 0, probabilities

(P (Xt ∈ B;At = i))i=0,1 can be expressed via density functions ρi(., t) according to

P (Xt ∈ B;At = i) =

∫
B

ρi(x, t)dx,

and we have derived a system of partial differential equations describing in how far

the density families (ρ0(., t))t≥0 and (ρ1(., t))t≥0 relate to each other. In general, these

densities are apparently time-dependent objects and evolve in line with the process X.

In this chapter, we venture forward to identify densities that are to a certain degree

stable in time, that is we require that the time derivatives of our families vanish at

these densities. This naturally imposes the following agenda:

First, we set the left-hand sides of our Kolmogorov forward equations to be zero.

This will leave us with a system of linear ordinary differential equations that permits

an explicit solution. We will determine two particularly relevant solutions, subject

to appropriate side-conditions. Depending on the parameter λ, these solutions are

so-called invariant densities of our problem.

Setting ∂tρ0(x, t) = ∂tρ1(x, t) = 0, we transform the Kolmogorov forward equa-

tions into

0 = (1− λ) · ρ0(x, t) + x · ∂xρ0(x, t) + λρ1(x, t),

0 = (1− λ) · ρ1(x, t) + (x− 1) · ∂xρ1(x, t) + λρ0(x, t).

If ρ0(x, t) and ρ1(x, t) do not depend on time in the first place, their time derivatives

certainly vanish. Under this assumption, we would have to solve the following system

29



of linear ordinary differential equations:

0 = (1− λ) · ρ0(x) + x · ρ′0(x) + λ · ρ1(x),

0 = (1− λ) · ρ1(x) + (x− 1) · ρ′1(x) + λ · ρ0(x).

This system is equivalent to

ρ′0(x) =
1

x
· (λ− 1) · ρ0(x)− 1

x
· λ · ρ1(x),

ρ′1(x) =
1

x− 1
· (λ− 1) · ρ1(x)− 1

x− 1
· λ · ρ0(x).

Now, write ρ0(x) = α0(x) ·β0(x) and ρ1(x) = α1(x) ·β1(x) with functions α0, α1, β0, β1

yet to be determined. The product rule then provides the equations

α′0(x) · β0(x) + α0(x) · β′0(x) =
λ− 1

x
· α0(x)β0(x)− λ

x
· α1(x)β1(x) (10)

and

α′1(x) · β1(x) + α1(x) · β′1(x) = − λ

x− 1
· α0(x)β0(x) +

λ− 1

x− 1
· α1(x)β1(x). (11)

Next, let us suppose that α0 and β1 solve the ordinary differential equations

α′0(x) =
λ− 1

x
· α0(x),

β′1(x) =
λ− 1

x− 1
· β1(x),

respectively. For instance, we may pick α0(x) := xλ−1 and β1(x) := (1−x)λ−1. Then,

equations (10) and (11) become

xλ−1 · β′0(x) = −λ
x
· (1− x)λ−1 · α1(x),

(1− x)λ−1 · α′1(x) = − λ

x− 1
· xλ−1 · β0(x),

which is equivalent to

xλ · β′0(x) = −λ · (1− x)λ−1 · α1(x),

(1− x)λ · α′1(x) = λ · xλ−1 · β0(x).
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This system is obviously solved by α1(x) := xλ and β0(x) := (1 − x)λ. Combining

these results, we see that a solution of our original system of ordinary differential

equations is given by

ρ0(x) = C · xλ−1 · (1− x)λ,

ρ1(x) = C · (1− x)λ−1 · xλ.

The constant factor C is to be chosen in accord with the condition

1 =

∫ 1

0

(ρ0(x) + ρ1(x))dx

that stems from the fact that ρ := ρ0 + ρ1 is a probability density function. Hence,

C should satisfy

1 = C ·
∫ 1

0

xλ−1 · (1− x)λdx+C ·
∫ 1

0

(1− x)λ−1 · xλdx = C ·(β(λ;λ+1)+β(λ+1;λ)).

Here, β denotes Euler’s beta-function. As the beta-function is symmetric, C equals

1
2·β(λ;λ+1)

, implying

ρ0(x) =
1

2 · β(λ;λ+ 1)
· xλ−1 · (1− x)λ,

ρ1(x) =
1

2 · β(λ;λ+ 1)
· (1− x)λ−1 · xλ.

These are invariant densities of our process.

Clearly, both ρ0 and ρ1 depend on the intensity λ > 0 of the switchings. The

discussion in appendix C summarizes features of the density function ρ0 for different

λ and highlights the sometimes fundamental shifts at certain threshold values. An

immediate conclusion from these definitions is that

ρ1(1− x) = ρ0(x),

that is ρ1 can be obtained from ρ0 by reflecting its graph with respect to the line

running parallel to the y-axis and intersecting the x-axis at 1
2
. The substitution

x 7→ 1− x then also yields∫ 1

0

ρ0(x)dx =

∫ 1

0

ρ1(x)dx =
1

2
.
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CHAPTER IV

WEAK CONVERGENCE RESULTS FOR ρ0

We recall from the previous section that the invariant density ρ0 is defined as

ρ0(x) :=
1

2 · β(λ;λ+ 1)
· xλ−1 · (1− x)λ.

To simplify notation, we substitute ζ(λ) for the normalizing constant 1
2·β(λ;λ+1)

and

set g(λ)(x) := xλ−1 · (1 − x)λ. Up to this point, it has been tacitly understood that

ρ0 is not only a function of the variable x, but also depends on how we choose the

intensity λ > 0. Since the present and the subsequent sections will be devoted to

gaining convergence statements as λ approaches some limit, it seems advisable to

break with this convention and write ρ
(λ)
0 in lieu of ρ0, emphasizing the explicit λ on

which ρ0 depends.

Since ρ
(λ)
0 ≥ 0 and

∫ 1

0
ρ

(λ)
0 (x)dx = 1

2
for any λ > 0, the density 2 · ρ(λ)

0 constitutes

a probability density function. This legitimizes the following theorem:

Theorem 7 Define probability measures µ(λ) by

µ(λ)(A) :=

∫
A

2 · ρ(λ)
0 (x)dx for any A ∈ B([0; 1]).

Then, as λ decreases to 0, µ(λ) converges weakly to the Dirac-delta measure at 0.

This statement receives a graphic motivation from the study of the plots of ρ
(λ)
0

for λ smaller than 1.

Proof.Let F ∈ B([0; 1]) be a closed set, and (λn)n≥1 a sequence which decreases

to zero. For any positive integer n, we have

µ(λn)([0; 1]) =

∫ 1

0

2 · ρ(λn)
0 (x)dx = 1
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and

δ0([0; 1]) = 1,

as 0 is contained in [0; 1]. Therefore,

lim
n→∞

µ(λn)([0; 1]) = δ0([0; 1]).

Being a subset of [0; 1], F is bounded and has an infimum ι. And since F is closed,

ι ∈ F . If ι = 0, 0 is an element of F and δ0(F ) = 1. The sequence (µ(λn)(F ))n≥1 is

bounded because µ(λn) is a probability measure for any n ∈ N. Thus, it has a greatest

limit point lim supn→∞ µ
(λn)(F ). But since µ(λn)(F ) ≤ 1 for any n ∈ N, the following

inequality holds:

lim sup
n→∞

µ(λn)(F ) ≤ δ0(F ).

If ι > 0, set ε := ι
2
. Then 0 is not contained in F and δ0(F ) = 0. Additionally, F is

a subset of ] ι
2
; 1], from which we infer that

µ(λn)(F ) ≤ µ(λn)(]
ι

2
; 1]) =

∫ 1

ι
2

2 · ρ(λn)
0 (x)dx ≤

∫ 1
ι
2

2 · ρ(λn)
0 (x)dx∫ ι

2

0
2 · ρ(λn)

0 (x)dx
,

owing to monotonicity of µ(λn) and the fact that
∫ ι

2

0
2 · ρ(λn)

0 (x)dx ≤ 1. If we can show

that

lim
n→∞

∫ 1
ι
2

2 · ρ(λn)
0 (x)dx∫ ι

2

0
2 · ρ(λn)

0 (x)dx
= 0,

it follows that

lim
n→∞

µ(λn)(F ) = 0.

The Portemanteau theorem for weak convergence, as stated in [5], then yields the

theorem.

In order to prove the remaining part, define

Aε(λ) :=

∫ ε

0

2 · ρ(λ)
0 (x)dx,

Bε(λ) :=

∫ 1

ε

2 · ρ(λ)
0 (x)dx
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for sufficiently small ε > 0 and for λ > 0. We conjecture that limλ↘0
Bε(λ)
Aε(λ)

= 0 and

consider the ratio Bε(λ)
Aε(λ)

. For any positive integer n, we have

Bε(λn)

Aε(λn)
=

∫ 1

ε
2 · ρ(λn)

0 (x)dx∫ ε

0
2 · ρ(λn)

0 (x)dx
=

∫ 1

ε
xλn−1 · (1− x)λndx∫ ε

0
xλn−1 · (1− x)λndx

=

∫ 1

ε
g(λn)(x)dx∫ ε

0
g(λn)(x)dx

.

We refer the reader to the brief discussion of ρ0 in appendix C, where it is stated that

for small λ, the function ρ
(λ)
0 , and therefore also g(λ), is strictly monotone decreasing

in ]0; 1[. In particular,

g(λ)(x) ≤ g(λ)(ε) ∀x ∈ [ε; 1[

and

lim sup
n→∞

∫ 1

ε

g(λn)(x)dx ≤ lim
n→∞
{(1− ε)λn+1 · ελn−1} = (1− ε) · 1

ε
.

For n ∈ N, we have

g(λn+1)(x) = xλn+1−1 · (1− x)λn+1 =
1

x
· (x · (1− x))λn+1

=
1

x
· exp(λn+1 · ln(x · (1− x))).

As x · (1− x) < 1, the term λn+1 · ln(x · (1− x)) is negative, implying

λn+1 · ln(x · (1− x)) ≥ λn · ln(x · (1− x)).

And since the exponential function is monotone increasing, we deduce that

g(λn+1)(x) ≥ 1

x
· exp(λn · ln(x · (1− x))) =

1

x
· (x · (1− x))λn = g(λn)(x).

As a result, the sequence (g(λn))n≥1 is monotone increasing. For any x ∈]0; 1[, we

have

lim
n→∞

g(λn)(x) = lim
n→∞

1

x
· exp(λn · ln(x · (1− x))) =

1

x
· e0 =

1

x

by continuity of the exponential function. Since the sequence of non-negative func-

tions (g(λn))n≥1 converges monotonically and at every point in ]0; 1[ to the function

x 7→ 1
x
, Levi’s monotone convergence theorem applies:

lim
n→∞

∫ ε

0

g(λn)(x)dx =

∫ ε

0

dx

x
= +∞.
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Hence,

lim
λ↘0

∫ ε

0

g(λ)(x)dx =∞

and

lim
λ↘0

∫ 1

ε
g(λ)(x)dx∫ ε

0
g(λ)(x)dx

= 0

for any ε > 0. This proves the outstanding claim.

On account of the symmetric relation between ρ0 and ρ1, we can glean an analogous

statement for ρ1 from what we have just proved: If we set ν(λ)(B) :=
∫
B

2 · ρ(λ)
1 (x)dx,

then the sequence (ν(λn))n≥1 converges weakly to the delta measure at 1.

The next theorem is the complementary one to theorem (7), with the sequence

(λn)n≥1 diverging to +∞. Its result is in the spirit of a law of large numbers for our

random dynamicle system.

Theorem 8 Let (λn)n≥1 be a sequence of positive numbers that increases to +∞, and

define µ(λ) for λ > 0 as above. Then, the sequence of measures (µ(λn))n≥1 converges

weakly to the Dirac-delta measure at the point 1
2
.

Proof.Let ε > 0 be a sufficiently small, fixed number. We purport that

lim
n→∞

∫ 1
2
−ε

0
2 · ρ(λn)

0 (x)dx+
∫ 1

1
2

+ε
2 · ρ(λn)

0 (x)dx∫ 1
2

+ε
1
2
−ε 2 · ρ(λn)

0 (x)dx
= 0.

Given a positive integer n, we have∫ 1
2
−ε

0
2 · ρ(λn)

0 (x)dx+
∫ 1

1
2

+ε
2 · ρ(λn)

0 (x)dx∫ 1
2

+ε
1
2
−ε 2 · ρ(λn)

0 (x)dx
=

∫ 1
2
−ε

0
g(λn)(x)dx+

∫ 1
1
2

+ε
g(λn)(x)dx∫ 1

2
+ε

1
2
−ε g

(λn)(x)dx
.

As λn → ∞, we may assume without loss of generality that λn > 2. Under this

assumption, g(λn) is strictly monotone increasing in ]0; λn−1
2λn−1

[ and strictly monotone

decreasing in ] λn−1
2λn−1

; 1[ (confer also appendix C). Clearly,

lim
n→∞

λn − 1

2λn − 1
=

1

2
,
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so we can choose n so large that λn−1
2λn−1

∈]1
2
− ε; 1

2
+ ε[. Then,∫ 1

2
−ε

0

g(λn)(x)dx ≤ (1
2
− ε) · g(λn)(1

2
− ε) = (1

2
− ε)λn · (1

2
+ ε)λn

and ∫ 1

1
2

+ε

g(λn)(x)dx ≤ (1
2
− ε)λn+1 · (1

2
− ε)λn−1.

Combining these two estimates, we obtain∫ 1
2
−ε

0

g(λn)(x)dx+

∫ 1

1
2

+ε

g(λn)(x)dx ≤(1
2
− ε)λn · (1

2
+ ε)λn−1 · (1

2
+ ε+ 1

2
− ε)

=(1
2
− ε)λn · (1

2
+ ε)λn−1.

If n is chosen so large that λn−1
2λn−1

∈]1
2
− ε

2
; 1

2
+ ε

2
[, we also have∫ 1

2
+ε

1
2
−ε

g(λn)(x)dx ≥
∫ 1

2
+ ε

2

1
2
− ε

2

g(λn)(x)dx ≥ ε ·min{g(λn)(1
2
− ε

2
); g(λn)(1

2
+ ε

2
)}. (12)

Now, since

g(λn)(1
2

+ ε
2
) = (1

2
+ ε

2
)λn−1 · (1

2
− ε

2
)λn = g(λn)(1

2
− ε

2
) ·

1
2
− ε

2
1
2

+ ε
2

< g(λn)(1
2
− ε

2
),

the minimum in (12) equals g(λn)(1
2

+ ε
2
). Hence,∫ 1

2
+ε

1
2
−ε

g(λn)(x)dx ≥ ε · g(λn)(1
2

+ ε
2
),

providing the estimate∫ 1
2
−ε

0
g(λn)(x)dx+

∫ 1
1
2

+ε
g(λn)(x)dx∫ 1

2
+ε

1
2
−ε g

(λn)(x)dx

≤(1
2
− ε)λn · (1

2
+ ε)λn−1 · 1

ε
· 1

(1
2

+ ε
2
)λn−1 · (1

2
− ε

2
)λn

=
1

ε
· (

1
2
− ε

1
2
− ε

2

)λn · (
1
2

+ ε
1
2

+ ε
2

)λn−1

=
1

ε
·

1
2
− ε

1
2
− ε

2

· (
1
4
− ε2

1
4
− ε2

4

)λn−1.
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The term 1
ε
·

1
2
−ε

1
2
− ε

2

is merely a constant factor. As (1
4
− ε) is strictly less than (1

4
− ε2

4
),

the entire expression converges to 0 as n goes to infinity. This establishes our initially

stated assertion. The remaining arguments resemble closely to the ones invoked in

the proof of theorem (7).

Let F ∈ B([0; 1]) be a closed set. As before, we have δ1
2
([0; 1]) = 1 and

µ(λn)([0; 1]) = 1 for any n ∈ N, which implies

lim
n→∞

µ(λn)([0; 1]) = δ 1
2
([0; 1]).

If 1
2
∈ F , the δ1

2
-measure of F equals 1 and is therefore greater than or equal to

the limes superior of (µ(λn)(F ))n≥1. Otherwise, there exists an ε > 0 such that

F∩]1
2
− ε; 1

2
+ ε[= ∅; for if not, we could approximate 1

2
by a sequence in F , and since

F is closed, 1
2

would necessarily be contained in F . Clearly, δ1
2
(F ) = 0. Now, we have

µ(λn)(F ) ≤ µ(λn)([0; 1
2
− ε] ∪ [1

2
+ ε; 1]) (13)

=

∫ 1
2
−ε

0

2 · ρ(λn)
0 (x)dx+

∫ 1

1
2

+ε

2 · ρ(λn)
0 (x)dx (14)

=

∫ 1
2
−ε

0
2 · ρ(λn)

0 (x)dx+
∫ 1

1
2

+ε
2 · ρ(λn)

0 (x)dx∫ 1
2

+ε
1
2
−ε 2 · ρ(λn)

0 (x)dx
·
∫ 1

2
+ε

1
2
−ε

2 · ρ(λn)
0 (x)dx (15)

≤

∫ 1
2
−ε

0
2 · ρ(λn)

0 (x)dx+
∫ 1

1
2

+ε
2 · ρ(λn)

0 (x)dx∫ 1
2

+ε
1
2
−ε 2 · ρ(λn)

0 (x)dx
, (16)

which tends to 0 as λn goes to infinity. We conclude that

lim
n→∞

µ(λn)(F ) = 0 = δ 1
2
(F ).

The Portemanteau theorem finally implies that (µ(λn))n≥1 converges weakly to the

delta measure at 1
2
.
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CHAPTER V

CENTRAL LIMIT THEOREM

If Y is a random variable with probability density function 2 · ρ(λn)
0 , its distribution

concentrates in a small environment of 1
2
, provided that λ is sufficiently large. By

translating and rescaling Y , we can create a new random variable centered at 0

whose density function might, as λ grows to infinity, gradually assume the shape of

a Gaussian density. We will show that this is indeed the case, and thereby derive a

central limit theorem for our stochastic process X.

In the sequel, an appropriate function will always be a monotone increasing func-

tion f : R+ → R which satisfies limλ→∞ f(λ) = ∞. For λ > 0, we consider the

translated and rescaled random variable (Y − 1
2
) · f(λ) and set

ϕ : ]0; 1[→]− 1
2
· f(λ); 1

2
· f(λ)[, x 7→ (x− 1

2
) · f(λ),

so that the modified random variable permits the representation ϕ(Y ). The function

ϕ is bijective and differentiable, with differentiable inverse ϕ−1(y) = y
f(λ)

+ 1
2
, hence a

diffeomorphism. Its first derivative is given by ϕ′(x) = f(λ). By the transformation

theorem for probability density functions, ϕ(Y ) has the density function

q(λ)(y) =
1

f(λ)
· 2 · ρ(λ)

0 ( y
f(λ)

+ 1
2
).

We extend q(λ) to the entire real line by setting

q(λ)(y) :=


1

f(λ)
· 2 · ρ(λ)

0 ( y
f(λ)

+ 1
2
) if y ∈]− 1

2
· f(λ); 1

2
· f(λ)[

0 otherwise.

As before, let (λn)n≥1 be a sequence of positive real numbers that increases to +∞

and for which f(λ1) > 0. For any n ∈ N, let Yn be a random variable with probability

38



density function q(λn), and let Y∞ be a standard Gaussian random variable. These

are the prerequisites for the following theorem:

Theorem 9 In the above situation, there exists an appropriate f such that the se-

quence q(λn) converges pointwise to the density function of Y∞; that is for any y ∈ R,

we have

lim
n→∞

q(λn)(y) =
1√
2π
· exp(−y

2

2
).

Proof.For any positive integer n and any y ∈ R, we have

g(λn)( y
f(λn)

+ 1
2
) = ( y

f(λn)
+ 1

2
)λn−1 · (1

2
− y

f(λn)
)λn

= (1
4
− y2

f(λn)2
)λn−1 · (1

2
− y

f(λn)
)

= (1
4
)λn−1 · (1− 4y2

f(λn)2
)λn−1 · (1

2
− y

f(λn)
).

When setting f(x) := 2
√

2 ·
√
x− 1, this term becomes

(1
4
)λn−1 · (1− y2

2·(λn−1)
)λn−1 · (1

2
− y

f(λn)
).

Let us denote the factor (1− y2

2·(λn−1)
)λn−1 ·(1

2
− y

f(λn)
) by hn(y). We may then represent

the density function q(λn) as

q(λn)(y) =
1

f(λn)
· 2 · ζ(λn) · (1

4
)λn−1 · hn(y)

=: κ(λn) · hn(y).

Then,

lim
n→∞

hn(y) = exp(−y
2

2
) · 1

2

and

1 =

∫ ∞

−∞
q(λn)(y)dy = κ(λn) ·

∫ ∞

−∞
hn(y)dy,

whence it follows that

κ(λn) =
1∫∞

−∞ hn(y)dy
∀n ∈ N.
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The task ahead is now to study the convergence properties of (
∫∞
−∞ hn(y)dy)n≥1. We

give ourselves a fixed n ∈ N. If y ∈ R\]− 1
2
· f(λn); 1

2
· f(λn)[, we have hn(y) = 0; and

if y ∈]− 1
2
· f(λn); 1

2
· f(λn)[, we have

hn(y) = (1− y2

2·(λn−1)
)λn−1 · (1

2
− y

f(λn)
).

In the latter case, it holds also true that λn − 1 > y2

2
. Then, the sequence

((1− y2

2·(λk−1)
)λk−1)k≥n increases monotonically to exp(−1

2
y2). Therefore,

|(1− y2

2·(λn−1)
)λn−1| ≤ exp(−1

2
y2)

and, since

|1
2
− y

f(λn)
| ≤ 1

2
+
|y|

f(λn)
< 1,

we get the function exp(−1
2
y2) as an upper bound for (|hn(y)|)n≥1. As∫∞

−∞ exp(−1
2
y2)dy =

√
2π, the dominated convergence theorem yields

lim
n→∞

∫ ∞

−∞
hn(y)dy =

∫ ∞

−∞

1

2
· exp(−1

2
y2)dy =

1

2
·
√

2π.

Accordingly,

lim
n→∞

q(λn)(y) =
2√
2π
· 1

2
· exp(−1

2
y2) =

1√
2π
· exp(−1

2
y2),

which proves our stated convergence result.
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CHAPTER VI

LARGE DEVIATIONS PRINCIPLE

Having established results in the spirit of the law of large numbers and the central

limit theorem, we complete the canon of classical probabilistic results in this chapter

by proving a large deviations principle for our process. An introduction to large

deviation principles can be found both in [5] and [3].

definition 1 Let I : ]0; 1[→ [0;∞[ be a lower semi-continuous (lsc) function, that

is for any x0 ∈]0; 1[, we have lim infx→x0 I(x) ≥ I(x0). Then, I is said to be an

entropy function.

We consider, as we did before, the family of probability measures (µ(λ))λ>0. We

say that (µ(λ))λ>0 satisfies a large deviations principle with respect to the entropy

function I if for any sequence (λn)n≥1 of positive numbers that increases to ∞, there

is a positive rate sequence (rn)n≥1, also increasing to∞, such that for any non-empty

open set G ⊆]0; 1[, we have

lim inf
n→∞

1

rn
· ln(µ(λn)(G)) ≥ − inf

x∈G
I(x) (17)

and for any non-empty closed set F ⊆]0; 1[, we have

lim sup
n→∞

1

rn
· ln(µ(λn)(F )) ≤ − inf

x∈F
I(x). (18)

The underlying topology is the one induced by the natural topology on R, but taken

with respect to ]0; 1[. For instance, our closed sets will be the ones that are relatively

closed with respect to ]0; 1[ in R.

Let us establish inequality (18) for our system, assuming that I is minimized at

the point 1
2

and that I(1
2
) = 0. We distinguish between the cases that 1

2
is contained
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in F and that 1
2

is not contained in F . If 1
2
∈ F , there is hardly anything to do. As

I(1
2
) = infx∈[0;1] I(x) = 0, the right-hand side of inequality (18) becomes 0. And with

µ(λn) being probability measures, we have

(µ(λn)(F )) ≤ 1

for any n ∈ N. This yields the contended inequality, irrespective of how we choose

(rn)n≥1.

The case of 1
2
/∈ F requires considerably greater efforts. Since F is closed and

non-empty, there exists a point x0 ∈ F where the minimal distance between F and

{1
2
} is assumed, meaning that

|x− 1

2
| ≥ |x0 −

1

2
|

for any x ∈ F . Let ε > 0 denote this minimal distance, so |x0− 1
2
| = ε. We would like

to compare the set F with its closed superset F̃ :=]0; 1
2
− ε]∪ [1

2
+ ε; 1[. If we assume

that our entropy function I is symmetric with respect to the line running parallel to

the y-axis and passing through 1
2
, and if we further impose that I be strictly monotone

decreasing in ]0; 1
2
[ and strictly monotone increasing in ]1

2
; 1[, we obtain

− inf
x∈F

I(x) = −I(
1

2
− ε) = − inf

x∈F̃
I(x),

implying that the term on the right-hand side of (18) does not depend on which closed

subset of ]0; 1
2
− ε] ∪ [1

2
+ ε; 1[ we designate as our F . As probability measures are

monotone set functions, the term on the left-hand side of (18) is maximized over the

class of all closed subsets of F̃ when pickig F := F̃ . Hence, it suffices to prove the

inequality for the closed set F =]0; 1
2
− ε] ∪ [1

2
+ ε; 1[.

Given a positive integer n, we have

µ(λn)(F ) =

∫ 1
2
−ε

0

2 · ρ(λn)
0 (x)dx+

∫ 1

1
2

+ε

2 · ρ(λn)
0 (x)dx,
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which, according to inequality (16), is less than or equal to∫ 1
2
−ε

0
2 · ρ(λn)

0 (x)dx+
∫ 1

1
2

+ε
2 · ρ(λn)

0 (x)dx∫ 1
2

+ε
1
2
−ε 2 · ρ(λn)

0 (x)dx
=

∫ 1
2
−ε

0
g(λn)(x)dx+

∫ 1
1
2

+ε
g(λn)(x)dx∫ 1

2
+ε

1
2
−ε g

(λn)(x)dx
. (19)

In the sequel, we will evoke many results that have been established ’along the way’

in the proof of theorem 8. First, for sufficiently large n, we have the estimate∫ 1
2
−ε

0

g(λn)(x)dx+

∫ 1

1
2

+ε

g(λn)(x)dx ≤ (1
2
− ε)λn · (1

2
+ ε)λn−1.

Now, we fix a k ∈ N and choose nk so large that
λnk−1

2λnk−1
∈]1

2
− ε

k
; 1

2
+ ε

k
[. Then, we

have ∫ 1
2

+ε

1
2
−ε

g(λnk )(x)dx ≥
∫ 1

2
+ ε
k

1
2
− ε
k

g(λnk )(x)dx ≥ 2ε

k
· g(λnk )(1

2
+ ε

k
),

so that the term (19) can be estimated against the upper bound

k
2ε
·

1
2
−ε

1
2
− ε
k

· (
1
4
−ε2

1
4
− ε2

k2

)λnk−1.

Since the logarithm is a monotone increasing function, this chain of inequalities is

preserved when applying ln to each term, yielding

ln(µ(λnk )(F )) ≤ ln( k
2ε
·

1
2
−ε

1
2
− ε
k

) + (λnk − 1) · ln(
1
4
−ε2

1
4
− ε2

k2

)

and, dividing both sides by λnk , we get

1

λnk
· ln(µ(λnk )(F )) ≤ 1

λnk
· ln( k

2ε
·

1
2
−ε

1
2
− ε
k

) +
λnk − 1

λnk
· ln(

1
4
−ε2

1
4
− ε2

k2

).

This inequality also holds for any n ≥ nk. As

lim
n→∞

1
λn
· ln( k

2ε
·

1
2
−ε

1
2
− ε
k

) = 0

and as

lim
n→∞

λn−1
λn
· ln(

1
4
−ε2

1
4
− ε2

k2

) = ln(
1
4
−ε2

1
4
− ε2

k2

),

we finally obtain

lim sup
n→∞

1

λn
· ln(µ(λn)(F )) ≤ ln(

1
4
−ε2

1
4
− ε2

k2

).
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Since the positive integer k was arbitrarily selected, we may have k tend to infinity on

the right-hand side of the previous inequality. The final version of our large deviations

inequality for closed sets F then reads

lim sup
n→∞

1

λn
· ln(µ(λn)(F )) ≤ ln(1− 4ε2),

where our original sequence (λn)n≥1 plays the role of a rate sequence. In the light of

this estimate, let us define our entropy function as

I(x) := − ln(4 · x · (1− x))

for any x ∈]0; 1[. We briefly verify that a thus defined I satisfies all the conditions

we had initially imposed. First, we have

I(1
2
) = − ln(4 · (1

2
)2) = 0,

and since the expression x · (1 − x) is maximized at 1
2
, it easily follows that I is

indeed non-negative, with a global minimum at 1
2
. Clearly, our entropy function is

also symmetric with respect to 1
2
. The first derivative of I can be calculated as

I ′(x) =
8x− 4

4x− 4x2
,

whence we infer the asserted monotonicity statement. A plot of the function I can

be found in appendix D.

The monotonicity property allows us to conclude that I, considered over the in-

terval ]0; 1
2
− ε], attains its minimum at the right boundary point 1

2
− ε. Hence,

− inf{I(x) : x ∈]0; 1
2
− ε] ∪ [1

2
+ ε; 1[} = ln(4 · (1

2
− ε) · (1

2
+ ε)) = ln(1− 4ε2),

and we have established inequality (18) in due thoroughness.

With the newly acquired representations of I and (rn)n≥1, the alleged inequality

(17) can be restated as

lim inf
n→∞

1

λn
· ln(µ(λn)(G)) ≥ ln(1− 4d2)
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for any open subset G of ]0; 1[. Here, d marks the distance between the sets G and

{1
2
}. We will establish this inequality in several steps.

First, let us prove it for open intervals contained in ]1
2
; 1[, that is we scrutinize

intervals of the form ]1
2

+ d; c[ for positive numbers c, d with

1
2

+ d < c. The distance between the sets {1
2
} and ]1

2
+ d; c[ is then given by d and

the right-hand side of inequality (17) becomes ln(1 − 4d2). On the left-hand side,

we should consider the limes inferior of the sequence ( 1
λn
· ln(

∫ c
1
2

+d
2 · ρ(λn)

0 (x)dx))n≥1.

When fixing an n ≥ 1, we have∫ 1
2

+d

0
2 · ρ(λn)

0 (x)dx+
∫ 1

c
2 · ρ(λn)

0 (x)dx∫ c
1
2

+d
2 · ρ(λn)

0 (x)dx
=

∫ 1
2

+d

0
g(λn)(x)dx+

∫ 1

c
g(λn)(x)dx∫ c

1
2

+d
g(λn)(x)dx

.

The numerator of the above expression can be estimated as follows:∫ 1
2

+d

0

g(λn)(x)dx+

∫ 1

c

g(λn)(x)dx

=

∫ 1
2
−d

0

g(λn)(x)dx+

∫ 1
2

+d

1
2
−d

g(λn)(x)dx+

∫ 1

c

g(λn)(x)dx

≤(1
2
− d)λn · (1

2
+ d)λn + 2d · ( λn−1

2λn−1
)λn−1 · ( λn

2λn−1
)λn + (1− c)λn+1 · cλn−1,

where we have appealed to the fact that g(λn) attains its maximum at λn−1
2λn−1

, while

assuming that n was chosen so large that λn−1
2λn−1

∈]1
2
− d; 1

2
+ d[. If, in addition, we fix

a sufficiently large positive integer k, independent of n, the denominator admits the

estimate ∫ c

1
2

+d

g(λn)(x)dx ≥ d
k
· (1

2
+ d · k+1

k
)λn−1 · (1

2
− d · k+1

k
)λn .

Combining these two inequalities, we get∫ 1
2

+d

0
g(λn)(x)dx+

∫ 1

c
g(λn)(x)dx∫ c

1
2

+d
g(λn)(x)dx

≤k
d
· (1

2
− d · k+1

k
)−1 · (1

4
− d2 · (k+1)2

k2 )1−λn

· ((1
4
− d2)λn + 2d · λn

2λn−1
· ( λ2

n−λn
(2λn−1)2

)λn−1 + (1− c)λn+1 · cλn−1)

= : f(n, k).
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Bearing in mind that

(

∫ 1
2

+d

0

2 · ρ(λn)
0 (x)dx+

∫ 1

c

2 · ρ(λn)
0 (x)dx) +

∫ c

1
2

+d

2 · ρ(λn)
0 (x)dx = 1,

solving this inequality for
∫ c

1
2

+d
2 · ρ(λn)

0 (x)dx yields∫ c

1
2

+d

2 · ρ(λn)
0 (x)dx ≥ 1

1 + f(n, k)
,

which is tantamount to saying that

1

λn
· ln(

∫ c

1
2

+d

2 · ρ(λn)
0 (x)dx) ≥ − 1

λn
· ln(1 + f(n, k)).

This last term equals

− 1

λn
· ln(k

d
· (1

2
− d · k+1

k
)−1 · (1

4
− d2 · (k+1)2

k2 )1−λn · ((1
4
− d2)λn

+ 2d · λn
2λn−1

· ( λ2
n−λn

(2λn−1)2
)λn−1 + (1− c)λn+1 · cλn−1 + d

k
· (1

2
− d · k+1

k
) · (1

4
− d2 · (k+1)2

k2 )λn−1))

=− 1

λn
· (ln(k

d
)− ln(1

2
− d · k+1

k
)

+ (1− λn) · ln(1
4
− d2 · (k+1)2

k2 ) + ln(c
(n,k)
1 + c

(n,k)
2 + c

(n,k)
3 + c

(n,k)
4 )),

with

c
(n,k)
1 := (1

4
− d2)λn ,

c
(n,k)
2 := 2d · λn

2λn−1
· ( λ2

n−λn
(2λn−1)2

)λn−1,

c
(n,k)
3 := (1− c)2 · (c− c2)λn−1,

c
(n,k)
4 := d

k
· (1

2
− d · k+1

k
) · (1

4
− d2 · (k+1)2

k2 )λn−1.

Now, we have

lim
n→∞

(− 1

λn
) · (ln(k

d
)− ln(1

2
− d · k+1

k
)) = 0

and

lim
n→∞

λn − 1

λn
· ln(1

4
− d2 · (k+1)2

k2 ) = ln(1
4
− d2 · (k+1)2

k2 ).

To deal with the term (− 1
λn

) · ln(c
(n,k)
1 + c

(n,k)
2 + c

(n,k)
3 + c

(n,k)
4 ), we will rely on the

following lemma that is proved in appendix D and was inspired by lemma 23.9 in [5]:
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Lemma 4 Let N be a positive integer and let (λn)n≥1 be a sequence of the type we

have been working with throughout this section. For any n ∈ N, let c
(n)
1 , ..., c

(n)
N be

positive real numbers. Then, we have

lim sup
n→∞

1

λn
· ln(

N∑
i=1

c
(n)
i ) = max

i∈{1,...,N}
lim sup
n→∞

1

λn
· ln(c

(n)
i ).

With this, we have

lim inf
n→∞

(− 1

λn
) · ln(c

(n,k)
1 + c

(n,k)
2 + c

(n,k)
3 + c

(n,k)
4 )

=− lim sup
n→∞

1

λn
· ln(c

(n,k)
1 + c

(n,k)
2 + c

(n,k)
3 + c

(n,k)
4 )

=−max{lim sup
n→∞

1
λn
· ln(c

(n,k)
1 ); lim sup

n→∞

1
λn
· ln(c

(n,k)
2 ); lim sup

n→∞

1
λn
· ln(c

(n,k)
3 ); lim sup

n→∞

1
λn
· ln(c

(n,k)
4 )}

=−max{ln(1
4
− d2); ln(1

4
); ln(c− c2); ln(1

4
− d2 · (k+1)2

k2 )}

= ln(4).

Thus, we may infer that

lim inf
n→∞

1

λn
· ln(

∫ c

1
2

+d

2 · ρ(λn)
0 (x)dx) ≥ ln(1

4
− d2 · (k+1)2

k2 ) + ln(4) = ln(1− 4d2 · (k+1)2

k2 ).

The prospected inequality is obtained when letting k go to infinity.

In a subsequent step, let us consider open intervals contained in ]0; 1
2
[, that is

intervals of the form ]c; 1
2
− d[ for c, d > 0 and c < 1

2
− d. As before, the right-hand

side of (17) reads ln(1− 4d2). Dealing with the left-hand side, we claim that∫ 1
2
−d

c

2 · ρ(λn)
0 (x)dx ≥

∫ 1−c

1
2

+d

2 · ρ(λn)
0 (x)dx

or, equivalently, ∫ 1
2
−d

c
2 · ρ(λn)

0 (x)dx∫ 1−c
1
2

+d
2 · ρ(λn)

0 (x)dx
≥ 1.

For any n ∈ N, we have∫ 1
2
−d

c
2 · ρ(λn)

0 (x)dx∫ 1−c
1
2

+d
2 · ρ(λn)

0 (x)dx
=

∫ 1
2
−d

c
g(λn)(x)dx∫ 1−c

1
2

+d
g(λn)(x)dx

=

∫ 1
2
−d

c
(x · (1− x))λn−1 · (1− x)dx∫ 1−c

1
2

+d
(x · (1− x))λn−1 · (1− x)dx

.
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By substituting y for (1− x) in the denominator integral, this ratio becomes∫ 1
2
−d

c
(x · (1− x))λn−1 · (1− x)dx∫ 1
2
−d

c
(y · (1− y))λn−1 · ydy

.

As the integrand in the denominator is majorized by the integrand in the numerator,

the desired inequality holds. Therefore,

lim inf
n→∞

1
λn
· ln(µ(λn)(]c; 1

2
− d[)) ≥ lim inf

n→∞
1
λn
· ln(µ(λn)(]1

2
+ d; 1− c[))

≥ ln(1− 4d2).

Finally, let us extend our result to a general open, non-empty set

G ⊆]0; 1[. Then, every element of G is either contained in ]0; 1
2
[ or in ]1

2
; 1[ or is the

number 1
2
. If x0 ∈ G is a number smaller than 1

2
, the open set G encompasses an

ε-environment of x0, meaning that ]x0 − ε;x0 + ε[⊆ G∩]0; 1
2
[ for a suitable ε > 0. It

is obviously save to assume that x0 + ε < 1
2
. We have just shown that

lim inf
n→∞

1

λn
· ln(µ(λn)(]x0 − ε;x0 + ε[)) ≥ −I(x0 + ε),

so that

lim inf
n→∞

1

λn
· ln(µ(λn)(G)) ≥ lim inf

n→∞

1

λn
· ln(µ(λn)(]x0 − ε;x0 + ε[))

≥ −I(x0 + ε)

≥ −I(x0).

And if x0 >
1
2

is an element of G, we pick an ε > 0 such that x0 − ε > 1
2

and the

interval ]x0− ε;x0 + ε[ is contained in G. Employing the same argument as above, we

get

lim inf
n→∞

1

λn
· ln(µ(λn)(G)) ≥ lim inf

n→∞

1

λn
· ln(µ(λn)(]x0 − ε;x0 + ε[))

≥ −I(x0 − ε)

≥ −I(x0).
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Since I is clearly a continuous function, the case x0 = 1
2

is implicitly taken care of

and we obtain

lim inf
n→∞

1

λn
· ln(µ(λn)(G)) ≥ − inf

x∈G
I(x).

This proves that our process satisfies indeed a large deviations principle.
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APPENDIX A

PROOF OF LEMMA 1

We consider several distinct cases, depending on the switching environment and de-

pending on how far the times r, s and t are apart from each other. As before, let

ks := sup{j ∈ Z : aj ≤ s} and let kr := sup{j ∈ Z : aj ≤ r}.

First assume that t ∈ [s; aks+1[. If ks is an even integer, we have

F (s, F (r, ξ; s); t) = F (r, ξ; s) · exp(s− t).

If s ∈ [r; akr+1[, we have kr = ks, so kr is even. Therefore,

F (r, ξ; s) = ξ · exp(r − s),

which implies

F (s, F (r, ξ; s); t) = ξ · exp(r − t).

Since kr = ks, the time t is contained in the interval [r; akr+1[. This yields

F (r, ξ; t) = ξ · exp(r − t) = F (s, F (r, ξ; s); t).

Now, assume that s ∈ [akr+n; akr+n+1[ for some n ∈ N. Then,

F (r, ξ; s) = F (r, ξ; akr+n) · exp(akr+n − s)

if (kr + n) is even. In this case, we get

F (s, F (r, ξ; s); t) = F (r, ξ; akr+n) · exp(akr+n − t).

We have ks = kr + n, so t is an element of [akr+n; akr+n+1[ and (kr + n) is even. From

this consideration, we obtain

F (r, ξ; t) = F (r, ξ; akr+n) · exp(akr+n − t).
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In a next step, assume that ks is odd. Then,

F (s, F (r, ξ; s); t) = 1− (1− F (r, ξ; s)) · exp(s− t).

If s ∈ [r; akr+1[, we have again equality between kr and ks, which entails that kr is

odd. Hence,

F (r, ξ; s) = 1− (1− ξ) · exp(r − s),

whence it follows that

F (s, F (r, ξ; s); t) = 1− (1− ξ) · exp(r − t).

Further, t is contained in [r; akr+1[, so

F (r, ξ; t) = 1− (1− ξ) · exp(r − t).

And if s ∈ [akr+n; akr+n+1[ for some n ≥ 1, we have ks = kr + n, so (kr + n) is odd.

This yields

F (r, ξ; s) = 1− (1− F (r, ξ; akr+n)) · exp(akr+n − s).

Consequently,

F (s, F (r, ξ; s); t) = 1− (1− F (r, ξ; akr+n)) · exp(akr+n − t)

and t ∈ [akr+n; akr+n+1[, yielding

F (r, ξ; t) = 1− (1− F (r, ξ; akr+n)) · exp(akr+n − t).

In a subsequent step, assume that t ∈ [aks+1; aks+2[. In the case of an even (ks + 1),

the term F (s, F (r, ξ; s); t) equals

F (s, F (r, ξ; s); aks+1)·exp(aks+1−t) = (1−(1−F (r, ξ; s))·exp(s−aks+1))·exp(aks+1−t).

(20)

At this point, we differentiate between the cases s ∈ [r; akr+1[ and s ∈ [akr+m; akr+m+1[.

Under the assumption that s is contained in [r; akr+1[, we have kr = ks and kr is odd.

Thus,

F (r, ξ; s) = 1− (1− ξ) · exp(r − s).
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Inserted in the term on the right-hand side of (20), this identity gives us

F (s, F (r, ξ; s); t) = (1− (1− ξ) · exp(r − aks+1)) · exp(aks+1 − t).

Moreover, t ∈ [akr+1; akr+2[, so

F (r, ξ; t) = F (r, ξ; akr+1) · exp(akr+1 − t)

and

1− (1− ξ) · exp(r − aks+1) = F (r, ξ; aks+1) = F (r, ξ; akr+1).

Assuming that s ∈ [akr+m; akr+m+1[ for some positive integer m, we notice that

kr +m = ks and that (kr +m) is odd. Therefore,

F (r, ξ; s) = 1− (1− F (r, ξ; akr+m)) · exp(akr+m − s),

implying together with (20) that

F (s, F (r, ξ; s); t) = (1− (1− F (r, ξ; akr+m)) · exp(akr+m − s) · exp(s− aks+1)) · exp(aks+1 − t)

= (1− (1− F (r, ξ; akr+m+1)) · exp(akr+m − akr+m+1)) · exp(akr+m+1 − t).

But we also have

F (r, ξ; t) = F (r, ξ; akr+m+1) · exp(akr+m+1 − t)

= (1− (1− F (r, ξ; akr+m)) · exp(akr+m − akr+m+1)) · exp(akr+m+1 − t).

Next, if we suppose that (ks + 1) is odd, ks is even and F (s, F (r, ξ; s); t) equals

1−(1−F (s, F (r, ξ; s); aks+1))·exp(aks+1−t) = 1−(1−F (r, ξ; s)·exp(s−aks+1))·exp(aks+1−t).

(21)

If s ∈ [r; akr+1[, kr is even and equals ks. As a result

F (r, ξ; s) = ξ · exp(r − s)

and the right-hand side of equation (21) becomes

1− (1− ξ · exp(r − akr+1)) · exp(akr+1 − t).
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Taking into account that t ∈ [akr+1; akr+2[, we readily obtain

F (r, ξ; t) = 1− (1− F (r, ξ; akr+1)) · exp(akr+1 − t)

= 1− (1− ξ · exp(r − akr+1)) · exp(akr+1 − t).

And if s ∈ [akr+m; akr+m+1[ for some m ≥ 1, the integer kr + m = ks is even.

Accordingly,

F (r, ξ; s) = F (r, ξ; akr+m) · exp(akr+m − s),

and, citing (21) again, we receive

F (s, F (r, ξ; s); t) = 1− (1− F (r, ξ; akr+m) · exp(akr+m − akr+m+1)) · exp(akr+m+1 − t).

On the other hand,

F (r, ξ; t) = 1− (1− F (r, ξ; akr+m+1)) · exp(akr+m+1 − t)

= 1− (1− F (r, ξ; akr+m) · exp(akr+m − akr+m+1)) · exp(akr+m+1 − t).

We have thus proved that our claim holds for any r < s < t with t ∈ [aks+1; aks+2[. To

state it differently, we have verified the special case n = 1 within our broader objective

of showing the claim for t ∈ [aks+n; aks+n+1[ for arbitrary n ∈ N. If we succeed in

this undertaking, we will have automatically established the lemma, bearing in mind

that we have already dealt with the case t ∈ [s; aks+1[. In the induction step, we will

require that the statement be valid for any point t in [s; aks+n+1[ and we will assume

that t ∈ [aks+n+1; aks+n+2[. Let us first treat the case of an even (ks + n+ 1). Then,

F (s, F (r, ξ; s); t) = F (s, F (r, ξ; s); aks+n+1) · exp(aks+n+1 − t)

= (1− (1− F (s, F (r, ξ; s); aks+n)) · exp(aks+n − aks+n+1)) · exp(aks+n+1 − t).

Since aks+n lies in the interval [aks+n; aks+n+1[, this last term equals

(1− (1− F (r, ξ; aks+n)) · exp(aks+n − aks+n+1)) · exp(aks+n+1 − t)

=F (r, ξ; aks+n+1) · exp(aks+n+1 − t)

=F (r, ξ; t)
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by the induction hypothesis.

Now, assume that (ks+n+1) is odd. In this case, we get, by a calculation similar

to the one above, that

F (s, F (r, ξ; s); t) = 1− (1− F (s, F (r, ξ; s); aks+n+1)) · exp(aks+n+1 − t)

= 1− (1− F (s, F (r, ξ; s); aks+n) · exp(aks+n − aks+n+1)) · exp(aks+n+1 − t)

= 1− (1− F (r, ξ; aks+n) · exp(aks+n − aks+n+1)) · exp(aks+n+1 − t)

= 1− (1− F (r, ξ; aks+n+1)) · exp(aks+n+1 − t)

= F (r, ξ; t).

This completes our argument.
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APPENDIX B

PROOF OF LEMMA 2

First, assume that t ∈ [s; aks+1[ and that ks is even. Then,

|F (s, ξ; t)− F (s, η; t)|

=|ξ · exp(s− t)− η · exp(s− t)|

= exp(s− t)|ξ − η|,

and if ks is odd, we have

|F (s, ξ; t)− F (s, η; t)| = |1− (1− ξ) · exp(s− t)− 1 + (1− η) · exp(s− t)|

=|ξ · exp(s− t)− η · exp(s− t)| = |ξ − η| · exp(s− t).

We are now concerned with the case t ∈ [aks+n; aks+n+1[ for n ∈ N. If t is in

[aks+1; aks+2[, let us start with discussing the case of an even (ks + 1). We have

|F (s, ξ; t)− F (s, η; t)|

=|F (s, ξ; aks+1) · exp(aks+1 − t)− F (s, η; aks+1) · exp(aks+1 − t)|

= exp(aks+1 − t) · |1− (1− ξ) · exp(s− aks+1)− 1 + (1− η) · exp(s− aks+1)|

= exp(aks+1 − t) · exp(s− aks+1) · |ξ − η|

= exp(s− t) · |ξ − η|.
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If (ks + 1) is odd, we get

|F (s, ξ; t)− F (s, η; t)|

=|1− (1− F (s, ξ; aks+1)) · exp(aks+1 − t)− 1 + (1− F (s, η; aks+1)) · exp(aks+1 − t)|

= exp(aks+1 − t) · |F (s, ξ; aks+1)− F (s, η; aks+1)|

= exp(aks+1 − t) · |ξ · exp(s− aks+1)− η · exp(s− aks+1)|

=|ξ − η| · exp(s− t).

In the induction step, we assume that the lemma holds for all t contained in [s; aks+n+1[.

Given a t in [aks+n+1; aks+n+2[, we have for an even (ks + n+ 1) that

|F (s, ξ; t)− F (s, η; t)|

=|F (s, ξ; aks+n+1) · exp(aks+n+1 − t)− F (s, η; aks+n+1) · exp(aks+n+1 − t)|

= exp(aks+n+1 − t) · |F (s, ξ; aks+n+1)− F (s, η; aks+n+1)|

= exp(aks+n+1 − t) · exp(aks+n − aks+n+1) · |F (s, ξ; aks+n)− F (s, η; aks+n)|

= exp(aks+n − t) · exp(s− aks+n) · |ξ − η|

=|ξ − η| · exp(s− t).

In the remaining case of an odd (ks+n+1), the proof proceeds in a very similar vein.
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APPENDIX C

THE DENSITY FUNCTION ρ0

For any λ > 0, the λ-dependent invariant density function ρ0, introduced in the sixth

chapter, is defined in the domain ]0; 1[ and is strictly positive. Other properties, such

as its extremal and inflection points, do depend on the intensity parameter λ and are

compiled below.

If λ lies in ]0; 1
2
[∪]1

2
; 1[, ρ0 does not have any extremal points and is strictly mono-

tone decreasing in ]0; 1[. Moreover, its graph has an inflection point at
1−λ−

√
λ
2

1−2λ
, is

convex in ]0;
1−λ−

√
λ
2

1−2λ
[ and concave in ]

1−λ−
√
λ
2

1−2λ
; 1[. With regard to asymptotics, we

have

lim
x↘0

ρ0(x) = +∞, lim
x↗1

ρ0(x) = 0, lim
x↘0

ρ′0(x) = −∞, lim
x↗1

ρ′0(x) = −∞.

For λ = 1
2
, the density function ρ0 is strictly monotone decreasing and devoid of

extremal points. It has an inflection point at 3
4
, is convex in ]0; 3

4
[ and concave in

]3
4
; 1[. Its asymptotics are exactly the same as in the case of λ ∈]0; 1

2
[∪]1

2
; 1[.

If λ equals 1, ρ0(x) = 1 − x lacks any extremal points and is strictly monotone

decreasing. It is an affine-linear function and therefore does not have any inflection

points. Clearly, its asymptotics can be described by

lim
x↘0

ρ0(x) = 1, lim
x↗1

ρ0(x) = 0, lim
x↘0

ρ′0(x) = −1, lim
x↗1

ρ′0(x) = −1.

If λ ∈]1; 2[, the function ρ0 has a maximum at λ−1
2λ−1

and is strictly monotone

increasing in ]0; λ−1
2λ−1

[ and strictly montone decreasing in ] λ−1
2λ−1

[. Its graph has an

inflection point at
1−λ−

√
λ
2

1−2λ
, is concave in ]0;

1−λ−
√
λ
2

1−2λ
[ and convex in ]

1−λ−
√
λ
2

1−2λ
; 1[. In
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addition, we have

lim
x↘0

ρ0(x) = 0, lim
x↗1

ρ0(x) = 0, lim
x↘0

ρ′0(x) = +∞, lim
x↗1

ρ′0(x) = 0.

If λ = 2, ρ0 attains its maximum at 1
3
, is strictly monotone increasing in ]0; 1

3
[ and

strictly monotone decreasing in ]1
3
; 1[. It has an inflection point at 2

3
, is concave in

]0; 2
3
[ and convex in ]2

3
; 1[. As far as its asymptotics are concerned, we find that

lim
x↘0

ρ0(x) = 0, lim
x↗1

ρ0(x) = 0, lim
x↘0

ρ′0(x) = 6, lim
x↗1

ρ′0(x) = 0.

Finally, for λ > 2, ρ0 has a maximum at λ−1
2λ−1

, is strictly monotone increasing in

]0; λ−1
2λ−1

[ and strictly monotone decreasing in ] λ−1
2λ−1

; 1[. Besides, it has two inflection

points, one at
−

√
λ
2
−1+λ

2λ−1
, and the second one at

√
λ
2
−1+λ

2λ−1
. The graph is convex in

]0;
−

√
λ
2
−1+λ

2λ−1
[∪]

√
λ
2
−1+λ

2λ−1
; 1[ and concave in ]

−
√
λ
2
−1+λ

2λ−1
;

√
λ
2
−1+λ

2λ−1
[. Its asymptotics are

lim
x↘0

ρ0(x) = 0, lim
x↗1

ρ0(x) = 0, lim
x↘0

ρ′0(x) = 0, lim
x↗1

ρ′0(x) = 0.

The plots in appendix E illustrate the behavior of ρ0 for different λ.
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APPENDIX D

PROOF OF LEMMA 4

From the obvious inequality chain

max
i∈{1,...,N}

c
(n)
i ≤

N∑
i=1

c
(n)
i ≤ N · max

i∈{1,...,N}
c

(n)
i ,

it follows that

1

λn
· ln( max

i∈{1,...,N}
c

(n)
i ) ≤ 1

λn
· ln(

N∑
i=1

c
(n)
i ) ≤ 1

λn
· ln(N) +

1

λn
· ln( max

i∈{1,...,N}
c

(n)
i )

for any n ∈ N. Since the natural logarithm increases monotonically in its domain,

the logarithm of the maximum of a finite set equals the maximum taken over the

logarithms of the individual elements. Thus,

max
i∈{1,...,N}

1

λn
· ln(c

(n)
i ) ≤ 1

λn
· ln(

N∑
i=1

c
(n)
i ) ≤ 1

λn
· ln(N) + max

i∈{1,...,N}

1

λn
· ln(c

(n)
i ).

As maximum and limes superior are interchangeable, this provides

max
i∈{1,...,N}

lim sup
n→∞

1

λn
· ln(c

(n)
i ) = lim sup

n→∞
max

i∈{1,...,N}

1

λn
· ln(c

(n)
i )

≤ lim sup
n→∞

1

λn
· ln(

N∑
i=1

c
(n)
i )

≤ lim
n→∞

1

λn
· ln(N) + max

i∈{1,...,N}
lim sup
n→∞

1

λn
· ln(c

(n)
i )

= 0 + max
i∈{1,...,N}

lim sup
n→∞

1

λn
· ln(c

(n)
i ).

This completes the proof.
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APPENDIX E

TWO GRAPHS OF ρ
(λ)
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Figure 1: λ = 1
2
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Figure 2: λ = 500
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APPENDIX F

THE ENTROPY FUNCTION

The following plot showcases the graph of the entropy function I which was defined

in the chapter on large deviations principle.
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Figure 3: I(x) = − ln(4 · x · (1− x))
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