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SUMMARY 

Pluripotent embryonic stem cells (ESCs) can differentiate into all somatic cell types, 

making them a useful platform for studying a variety of cellular phenomena. 

Furthermore, ESCs can be induced to form aggregates which recapitulate the dynamics of 

development and morphogenesis. However, many different factors such as gradients of 

soluble morphogens, direct cell-to-cell signaling, and cell-matrix interactions have all 

been implicated in directing ESC differentiation. Though the effects of individual factors 

have been investigated independently, assaying combinatorial effects has proven 

inherently difficult due to the spatial and temporal dynamics associated with such cues. 

Dynamic computational models of ESC differentiation can provide powerful insight into 

how different cues function in combination, both spatially and temporally. By combining 

particle based diffusion models, cellular agent based approaches, and physical models of 

morphogenesis, a multiscale rules based modeling framework was created to investigate 

complex regulatory cues which govern complex morphogenic behavior in 3D ESC 

aggregates. The objective of this study was to examine how spatial patterns of 

differentiation by ESCs arise as a function of the microenvironment. The central 

hypothesis was that heterogeneity associated with soluble morphogens and cell-cell 

signaling leads to complex spatial patterns in ESC aggregates.  

 To test this hypothesis, a computational modeling framework capable of modeling 

diffusive soluble gradients and cell-cell interactions in multicellular aggregates was 

developed. Agent based modeling (ABM) captured complex spatio-temporal patterns 

associated with ESC aggregate differentiation, while a mass spring description accurately 

captured dynamic cellular behaviors such as movement and division. This served to 



 xviii 

approximate the physical properties of both the cells and the aggregate, while providing a 

means to keep track of local cell-cell interactions in a network structure. Soluble 

interactions via paracrine/autocrine signaling mechanisms were tested within a robust 

lattice-based diffusion solver by modulating parameters associated with soluble and local 

cell-cell interactions.  

 One major issue with agent based modeling of cellular aggregates is quantifying 

the spatial pattern of differentiation in a manner that is amenable to experimental 

validation. To address this shortcoming, a novel spatial pattern recognition system was 

developed which utilized network theory to extract meaningful spatial metrics from 

networks in which cells are represented as nodes, and the connections between cells are 

edges. Images were converted to networks using a combination of image analysis 

algorithms and custom code to create digital networks. By describing the experimental 

images and computational results in a common space, quantitative comparisons between 

spatial images and computational models were performed. This technique uncovered a 

putative paracrine mechanism which could explain size-dependent differences in 

differentiation of ESC aggregates. 

 To further probe the molecular mechanism which could lead to pattern formation 

in early differentiation of ESC aggregates, a multiscale stochastic ordinary differential 

equation (ODE) system was constructed. This model included mechanisms for soluble 

LIF signaling and FGF4 signaling, which are produced by ESCs during the 

differentiation process. The stochastic ODE based model created in this study captured a 

wide range of spatial patterns, and showed that FGF4 signaling and inherent stochasticity 

associated with expression of the pluripotency associated transcription factor Nanog play 
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a key role in modulating spatial pattern associated with differentiation. This model 

provides key insight into why cellular aggregates cultured in different conditions may 

display different spatial differentiation signatures.  

 This study further demonstrated the modulatory of network based spatial pattern 

classification and tested a variety of input image types (2D images, 3D confocal stacks, 

and 2D histological sections) and a wide range of model systems (mesenchymal and 

neural differentiation in ESC aggregates and gastrulation in cichlid fish). In the context of 

cichlid fish, this technique was able to segregate fish into different stages of gastrulation 

based on spatio-temporal differences in protein and RNA expression. Network derived 

metrics significantly improved classification of mesenchymal phenotypes, and enabled 

comparisons across different experiments to describe patterns associated with 

mesenchymal phenotypes in histological samples. Furthermore, this approach predicted 

novel feedback mechanisms which can help explain the switch from motor neuron 

production to oligodendrocyte production (the glial switch) in neural differentiation.  

  This work represents the first attempt to understand emergent dynamic 

differentiation patterning that result from integration of multiple cues governing ESC 

aggregate morphogenesis in 3D via computational modeling strategies. Furthermore, this 

network approach represents a significant and novel advance in the field of pattern 

recognition and quantitative biology as the first pattern classification platform which 

utilizes single cell spatial information and modularly compares across multiple systems 

of interest.  
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CHAPTER 1  INTRODUCTION  

 Motivations for Research 1.1

Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into cells 

of the three germ lineages that form all of the tissues and organs of a mature organism. 

Differentiation of pluripotent ESCs can be induced in vitro via a variety of existing 

approaches to emulate aspects of the developmental program. One of the most widely 

used techniques relies upon the formation of multicellular aggregates composed of 

undifferentiated ESCs in suspension culture[1, 2], that spontaneously induce the 

differentiation of ESCs within the 3D aggregate[3, 4]. Due to the fact that ESC 

aggregates mimic the physical structure and cellular composition of the morphogenic 

embryonic microenvironment, they have been used to study aspects of development in 

vitro as well as the formation of primitive tissue complexes[3-5]. Despite the utility of the 

approach, robust methods to control ESC aggregate differentiation in vitro remain limited 

due to an incomplete understanding of the complex interactions within the 3D 

multicellular aggregates that mitigate cell fate decisions[6, 7].  

Considerable efforts have been made to ascertain the role of individual 

components of the cellular microenvironment in regulating cell fate decisions. The extent 

to which cell-cell communication via paracrine[8, 9], autocrine[8, 10-14], or direct 

contact signaling[12-14]  enhances or inhibits differentiation has been investigated in 

various contexts. Exogenous manipulation has been used to control differentiation by the 

addition or removal of various soluble factors in a temporally regulated manner in an 

effort to mimic the sequence of morphogenic cues. Although exogenous factors have 

proven necessary for the in vitro and in vivo maintenance or differentiation of ESC 
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populations, they are not the only factors regulating stem cell behaviors. The biochemical 

composition of the cellular microenvironment [8, 15] and extracellular matrix (ECM) 

[16-18] have also been implicated in the regulation of cellular niches. In addition, the 

mechanics and physical properties of the microenvironment can also impact cell 

phenotype [19]. Given that cell fate transitions occur in complex environments where 

biochemical and physical cues coexist, elucidating the role each of these combinatorial 

factors via experimental studies alone remains a significant challenge. Therefore, new 

approaches that allow systematic investigation of combinations of parallel factors that 

regulate stem cell differentiation are needed to more accurately predict cell response to 

complex micro-environmental cues.  

In many instances, computational modeling strategies have been successfully used 

to identify mechanisms governing integration of complex signals that direct cell fate 

decisions and correctly predict the resulting phenomena. Depending on the desired 

resolution of the system, ordinary differential equations (ODEs) can be used to model a 

variety of stem cells processes; including, but not limited to, cellular signaling events[20-

22], protein interaction networks[23], and genetic regulatory networks[24]. Alternatively, 

to model the structure of cellular aggregates[25, 26], cellular division and tissue 

formation[27-33], and pattern formation in biological systems[32, 34], agent based 

modeling has been applied to overlay rules based with physical modeling approaches[35]. 

Moreover, agent based models have been used to investigate dynamic processes of 

multicellular systems, such as morphogenesis[28, 36] and formation of physical 

tissues[37]. Due to their flexibility agent based models provide an attractive, lightweight 

platform capable of integrating spatial constraints, soluble cues, and cell-cell interactions 
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in addition to investigating rule sets which could lead to complex spatial patterns. This 

study uses computational rules based modeling to assess the macroscopic principles 

regulating stem cell pluripotency while studying the spatial patterns associated with 

differentiation in complex 3D microenvironments.  

Specific Aim 1. Create computational models of 3D ESC aggregate 

differentiation. The working hypothesis is that simple rules governing ESC 

differentiation would give rise to spatial pattern formation. An agent based computational 

model (ABM) coupled with a mass spring approach was used to capture ESC aggregate 

physical properties and growth dynamics. The model predicted that simple cell-cell 

interactions could produce a wide variety of spatial pattern dynamics. Qualitative 

validation of the model was performed by comparisons with spatial patterns of the 

pluripotency marker Oct4.  

Specific Aim 2. Develop quantitative descriptions for spatial pattern 

dynamics occurring in ESC aggregates. The working hypothesis was that if cells and 

their connections were represented as networks, then network theory could be applied to 

extract quantitative metrics describing spatial information. The rational was to improve 

computational modeling strategies by directly comparing the networks with experimental 

data. Spatial network analysis was able to derive quantitative descriptions of spatial 

patterns associated with loss of the pluripotency transcription factor Oct4; moreover, 

direct comparisons between model and experiment identified a possible paracrine 

mechanism capable of explaining size-dependent differentiation kinetics in ESC 

aggregates.  In addition, the modularity and robustness of spatial network analysis was 

demonstrated by applying it to multiple biological systems (mesenchymal and neural 
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differentiation in ESC aggregates, as well as gastrulation in cichlid fish), and input 

modalities (2D images, 3D confocal data and histological sections).     

Specific Aim 3. Investigate the role of heterogeneous regulation of the 

pluripotency associated transcription factor Nanog as a source for spatial pattern 

formation in ESC aggregates.  The working hypothesis was that Nanog regulation via 

inherent stochasticity and FGF4 regulation will lead to spatial pattern formation. A 

multiscale model incorporating the ESC transcriptional regulatory network and secretion 

of soluble factors like LIF and FGF4 described a wide range of biological pattern 

phenomena, and ultimately predicted differentiation patterns associated with Nanog and 

Oct4 which match those observed in ESC aggregates.  

 This work is innovative because it represents one of the first attempts to 

computationally dissect how different soluble and local cell-cell cues interact to influence 

spatial pattern evolution. The spatial network analysis described here is a significant 

advance in the field of biological spatial pattern recognition as it integrates single cell 

information into tissue level descriptions of pattern formation. Furthermore, this approach 

is poised to take advantage of advances in single cell tracking via 3D light sheer 

microscopy to ultimately describe biological pattern evolution at a cellular level.  
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CHAPTER 2  BACKGROUND 

 Embryonic Stem Cells 2.1

2.1.1 Embryonic Stem Cell Culture 

Embryonic stem cells (ESCs) have the unique ability to differentiate into all different 

somatic tissues found in the adult organism, making them important tools for 

regenerative medicine as well as drug design and discovery. ESCs were first derived in 

mice[38], followed by lines derived rabbits[39], primates[40] and finally humans[41]. 

The process by which these lines were derived varied initially, but was standardized to 

one procedure in which the inner cell mass was extracted from a developing embryo at 

the blastocyst stage[42]. Based on ESCs differentiation capacity the field sought to 

induce differentiation towards targeted cell types in vitro. Initial differentiation of ESCs 

centered around cardiac[43-45] and neuronal differentiation[46, 47]; investigation into 

the mechanisms governing these processes is still an active field of research today[48-

54]. Eventually techniques were discovered for differentiating ESCs into other tissues 

including oocytes[55], liver[56, 57], pancreatic[58-60] often driven by the need for a 

source of cells for experimental testing and drug screening[61]. One main problem with 

these cells, however, was that before implantation, the cells had to be differentiated to a 

high purity, otherwise the formation of teratomas or tumors from undifferentiated ESCs 

occurred upon implantation [62, 63]. To solve this problem, differentiated cell 

populations were purified by fluorescent activated cell sorting (FACS), magnetic 

activated cell sorting (MACS) or other methods to eliminate pluripotent ESCs in the 

sample [64-66].  
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In addition to determining the cues that initiate stem cell differentiation, 

researchers were also interested in what factors were necessary for maintaining ESC 

pluripotency. These investigations led to the discovery of several key genes involved in 

regulating stem cell pluripotency. Though the web of interactions has grown quite large, 

the core regulatory transcription factors have been identified as Oct4, Sox2 and Nanog 

[67-74]. Particularly Oct4 has been the focus of many investigations as loss of Oct4 is 

concomitant with the loss of stem cell pluripotency which puts ESCs into a primed 

differentiation position [75-77]. Nanog has been implicated as the first key differentiation 

event in this sequence, but is not directly correlated with the loss of pluripotency 

transition, and appears to undergo stochastic fluctuations the causes of which are largely 

unknown[78, 79]. Efforts have been made to find molecules or pathways which regulate 

these core transcription factors. In the case of mouse embryonic stem cells, factors like 

leukemia inhibitory factor (LIF), which regulates pluripotency via JAK/Stat3 

signaling[67], and FGF4 signaling which regulates Nanog via MAK/ERK have 

established roles in modulating pluripotency[23, 78]. However, others like while Wnt 

which activate downstream gene expression via β-Catenin/TCF can either induce 

differentiation [80] or maintain pluripotency [74] depending on their context. Though the 

mechanisms of action of these specific molecules have been elucidated, the question 

remains how well ESCs in a 2D culture environment capture ESCs in a developing 

embryo.  

 This question led to the investigation of the stem cell niche, which in the case of 

embryonic stem cells involves an investigation of the embryo. Some of the earliest 

observed phenomena in development include the development of gradients of 

morphogens such as Wnt and BMPs and their respective inhibitors; thus differentiation 
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protocols were derived for stem cells using additions of similar morphogens to the 

medium. However, there are other factors which can regulate cell fate such as cell matrix 

interactions, physical properties of the environment, and direct cell-cell interactions. 

These can be difficult to study fully in a 2D context, particularly if one is interested in 

how these processes occur during natural development. On method to examine how ESCs 

function in a 3D cellular environment, is to create aggregates of ESCs via various 

strategies. 

2.1.2 Differentiation of Embryonic Stem Cells as 3D Aggregates 

To understand how pluripotent stem cells behave and interact with their in vivo 

environment, it is desirable to construct a structure which more closely matches the 

native embryo. To accomplish this objective, aggregates of either human or mouse 

embryonic stem cells (classically termed embryoid bodies (EBs)) are formed. Various 

different methods exist to form ESC aggregates, among them hanging drop[81, 82], 

spontaneous aggregation induced in stirred fluid reactors[83], formation via 

microbeads[84], and preformation in microwells[85]. While each of these technologies 

has benefits, recent advancements with preformation of ESC aggregates in microwells 

using the AggreWell technology allows the formation of large numbers of aggregates of 

uniform size due to control over initial cell seeding density [85, 86]. In addition to the 

formation methodologies, methods for culturing aggregates differ as well. Static culture 

is commonly used as the cells do not experience hydrodynamic effects; however, in bulk 

culture configurations, ESC aggregates will often agglomerate introducing mass transfer 

limitations and making it difficult to track how differentiation is progressing within a 

single aggregate. Hanging drop methods avoid this problem, but are inherently lower 
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throughput. Alternatively ESC aggregates can be cultured in suspension which prevents 

them from aggregating, but introduces hydrodynamic forces[83, 86]. 

Differentiation of ESCs has been extensively studied in ESC aggregate systems 

and differentiation into all three germ layers: mesoderm, endoderm, and ectoderm has 

been demonstrated [4]. In some cases the derivation of trophectoderm (trophoblast) has 

been reported [87]. Several studies have been carried out which look at the spontaneous 

differentiation of ESC aggregates towards various different phenotypes including 

osteoblasts[88],  primitive endoderm[89-92], and hepatocytes [93, 94]. In the case of 

most of these finds, the aggregates are placed in a medium which is permissive towards 

the germ lineage of choice, and then the specialized cell types are isolated[88, 95, 96]. 

Additional schemas for more homogenous and robust differentiation have been derived 

for the cardiac[97-99]  and neural[100] lineages; however, even in these systems it is 

difficult to know when to add factors, or to what extent the spatial localization of these 

factors is important. The mode of delivery in spatial terms can dramatically affect the 

resulting morphological outcomes [101]. Often such protocols are optimized via brute 

force, which can be an expensive and time consuming proposition depending on the 

number of factors, highlighting the need for more robust approaches; particularly the 

precise spatial and temporal control of morphogens, and also a configuration for rapidly 

testing the various potential combinations of morphogenic factors. 

2.1.3 The Role of Nanog, Oct4, and Sox2 in Maintaining Stem Cell Pluripotency 

As mentioned previously the transcription factors Oct4, Sox2 (Sry-box Transcription 

Factor 2) and Nanog have all been implicated in a web of several transcription factors 

necessary for maintaining pluripotency[102, 103]. While the roles of Oct4 and Sox2 are 
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largely known in ESCs[104-106], Nanog has been the subject of a variety of studies 

investigating its intrinsic variability [68, 102]. In addition to its already complex 

regulation, Nanog is thought to be bi-allelically expressed in ESCs in LIF conditions[68], 

but not during culture in the 2i conditions (an alternative method for maintaining 

pluripotency in which GSK3 and MEK inhibitors are supplied in culture)[102]. 

Furthermore, there are several theories for how Nanog is regulated during pluripotency, 

with some indicating a positive feedback [107], and others indicating auto-repression 

[108]. This inherent difference in opinion is due to the intrinsic stochasticity associated 

with Nanog expression. In monolayer culture, it is suggested that this heterogeneity is 

due to local expression of FGF4 which inhibits Nanog expression via the MAP kinase 

pathway. In cultures where a MAP Kinase inhibitor is used (part of 2i) the heterogeneity 

is decreased substantially, and the resultant ESC colonies all express Nanog at a high 

level in a more deterministic manner [102, 109]. This suggests a similar role for FGF4 

signaling in ESCs as in the developing embryo where it helps to prime linage 

development and early differentiation events [110-113].  

 As mentioned previously Oct4 and Sox2 have been substantially studied in the 

context of pluripotency. Sox2 and Oct4 have similar architectures, the two transcription 

factors can form homo/heterodimers and positively feedback on their own transcription. 

Furthermore, β-Catenin is thought to associate with Oct4 and induce Oct4 expression 

possibly through Wnt-mediated signaling pathways, suggesting yet another local 

paracrine mechanism for Oct4 control[105].  However, the pluripotency network does not 

just consist of Sox2, Oct4 and Nanog. Network analysis and genome wide screens have 

revealed a whole core host of candidate genes including Rex and Klf4 which all work in 
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tandem to regulate this state[114]. Klf4 has been shown to transduce LIF mediated 

Jak/STAT3 signaling by directly influencing Oct4 levels [115, 116]. It is the combination 

of both local paracrine signaling pathways with the core pluripotency transcription 

network that creates such dynamic and switch-like responses during the transition of 

ESCs out of the pluripotent state.  

 

 Computational Modeling 2.2

2.2.1 Modeling Cellular Systems via Ordinary Differential Equations 

Computational models have been used in the past to elucidate various different levels of 

cellular interactions. The interesting processes to model depend on the scale; 

communication between multiple cells requires discrete spatial information about their 

locations while individual cells operate based on transcriptional networks and signal 

transduction pathways. Systems of ordinary differential equations (ODEs) are often used 

to model metabolic networks[117-119], cell signaling networks[120-122], and gene 

regulatory networks[123, 124] at the single cell or population level. In the particular 

context of stem cells ODEs have  modeled the pluripotency network[125], 

differentiation[126], and population dynamics[127, 128]. Deterministic ODEs lead to 

only one solution for a given set of parameters; however stem cell differentiation is 

driven by complex gene expression networks which hold inherent stochasticity [129]. 

Thus, stochastic ODEs have also been used to investigate transcriptional dynamics and 

networks of populations of ESCs [130-132]. A general weakness of ODE approaches is 

the large number of parameters necessary for the construction of such models and the 

inherent complexity of biological systems. Furthermore, ODE systems only capture how 
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the system will change with time, and are not capable of describing specific spatial 

behaviors. This makes them a great tool for capturing the internal single cell dynamic 

information, but insufficient at predicting how phenotypic changes modulate intercellular 

communication in complex three dimensional environments.  

To counteract these shortcomings one could link individual cells with external 

inputs dictated by the environment. Paracrine signaling can link cells over longer 

distances, but requires a model of diffusion. The classic approach to modeling diffusion 

utilizes partial differential equations (PDEs). Simple diffusion consumption equations 

have been used to model nutrients uptake in tumor spheroids, and mass transfer 

limitations in ESC aggregates [133]. Additionally, consumption and production terms 

combined into reaction-diffusion equations have been used to model autocrine/paracrine 

signaling[134, 135] and heterogeneity in intracellular signaling [136]. In the context of 

diffusion, various different algorithms exist for the solution to complex reaction diffusion 

systems including: finite element[137], lattice Boltzmann[138], and particle based 

methods [139, 140]. Finite element analysis is excellent for systems in which the size of 

the mesh remains small and regularly spaced. However, in the context of large cellular 

environments, this can be difficult when one must consider the diffusion of species 

primarily around cells. The lattice Boltzmann implementation can solve this problem 

utilizing an irregular finite-element scheme for lattice creation [138, 141]. However, it 

can be difficult again to get a fine enough mesh size as and an exact geometric 

representation of the cells is necessary to establish the appropriate boundary conditions. 

Additionally, when the cells are allowed to move this it can be difficult to keep track of 

the resulting displacement of molecules. Particle based methods can be used to counter 
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these issues; however, these algorithms are computationally intensive, which can make 

them difficult to link into higher scale models [139].  

2.2.2 The Cell as an Entity - Agent Based Modeling Approaches 

As cells can all be considered autonomous entities, another approach to modeling cellular 

systems is to use agent based modeling (ABM). ABM is a technique used to break a 

problem down into individual autonomous parts (or agents) which act based on a set of 

predefined rules and is considered to be an extension of the cellular automata method.  

This technique is used not just to model cellular systems[142], but has also been used in 

ecology[143] , economics[144], and psychology[145]. ABM has also been used in the 

context of cells to model macrophages[146], angiogenesis[147], epithelial 

interactions[148], and cancer development [149-151]. It is commonly used in 

combination with multiscale modeling techniques which seek to describe cellular 

behavior across multiple different scales [148, 149, 152]. In the context of stem cells 

ABMs have been applied in a scant number of cases, particularly focusing on the 

derivation of previously unknown gene interaction networks. As mentioned previously, 

the ability to examine how structural features of the stem cell niche influence the spatial 

patterns associated with loss of pluripotency is attractive for studying differentiation in 

3D aggregate systems. ABM provides a powerful tool which can be leveraged towards 

understanding the combinations of factors governing stem cell differentiation. 

2.2.3 A New Way to View Network Modeling 

In the context of ABM, a methodology for conveying information from one cell to 

another is needed. Network representations are used to represent the flow of information 

from one node to another. For cells, this technique is typically used to represent proteins 
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[153-155] and genes [156-158]. Oftentimes, these interactions are not known explicitly, 

and the goal of the modeling is to determine what the most likely set of interactions 

between species can explain a set of data [121, 159]. Bayesian network analysis can infer 

probabilistic connections between nodes in a network [160-162]. This approach has been 

used to infer the regulatory networks associated with differentiation of stem cells[126], 

and pluripotency [163]. However, there is another context in which network theory can 

be useful. When the structure of a network is known, it can be used to convey 

information between nodes. The nodes can be programmed to accept this information in a 

certain way, and this potentially could be used to represent integration of cellular 

communication at individual cells or nodes. Furthermore, previously networks based 

motif analysis was useful in examining biological interaction networks [125, 164-166]. A 

natural extension of this approach is to annotate different phenotypes within networks to 

extract meaningful spatial and temporal information about the network architecture.  This 

represents a novel and insightful application of network theory to biological pattern 

identification.  

2.2.4 Modeling Cellular Interactions in a Relevant 3D Context 

Modeling 3D structures and their resulting interactions in complex environments is 

applicable to multiple different scientific and industrial applications making it an active 

area of research in computer science. As a starting point, objects can be modeled 

according to physical laws such as Newton’s Laws, or Brownian motion. The difference 

between how objects are simulated is primarily a function of what information is desired 

from the simulation, and on what scale the simulations need to be performed. Simulations 

of large objects can be accomplished via Newtonian mechanics, while simulations of 
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molecular interactions can be carried out using molecular dynamics (MD)[167]. In the 

simplest case of rigid bodies a simple physics engine can suffice and many such engines 

have been created (Open Dynamics Engine, Open Tissue, Jitter)  though most are 

primarily used in game physics (PhysX, Havok, Orge). However, if the goal is to model 

individual atoms or molecules and their interactions then MD simulations are necessary. 

While MD is exceedingly accurate it is still computationally intensive, though recent 

parallelization utilizing GPU architecture has provided some improvement [167-169]. 

Conversely, the physics models are fast and can model lots of agents interacting in space, 

which makes them attractive for agent based models. However, cells are deformable 

objects, and using a purely physics based or MD method to model deformation can be 

prohibitively computationally expensive.  

Consequently, three main methods have emerged for calculating deformation in 

cellular structures: finite element analysis (FEA), mass spring systems, and cellular 

autonoma methods. Again, the methodology used here is primarily a function of the 

desired output of the model. FEA has been used to model physical properties of a single 

cell[170], tissue[171], or regions of the human body[172, 173]. In all cases the primary 

goal is to model the deformation and physical stress/strain relationships that these objects 

observe. Though FEA analysis provides exceedingly accurate results for a single mesh 

being tested, collisions between multiple meshes or objects dramatically increases the 

complexity of the model. In contrast cellular autonoma methods operate on predefined 

lattices and are suited to modeling large numbers of interacting deformable objects. The 

newest version of this model, called the cellular-Potts method (CPM), relies on the 

minimization of several discrete energy terms computed on a predefined square lattice. 
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This technique has been used to successfully model cellular sorting and adhesion, 

multicellular aggregates, and cancer cell migration [174-177]. One of the main 

drawbacks of the CPM approach is that the energy terms utilized to drive this procedure 

are not easy to measure, and can be seen as arbitrarily set to achieve a certain behavior. 

Mass spring technologies are an amalgamation of CPM and FEA, with defined masses 

connected by physical springs, but whose overall spring behavior can be governed by 

energy optimization parameters. However, due to oscillations and instabilities inherent in 

these systems, much effort has been put into their optimization algorithms to ensure 

numerical convergence[178] [179]. Classically mass spring systems have been used to 

model inanimate objects, but has been used to model soft tissue deformations[179]. 

Additionally, technologies for the parallelization of such systems to decrease 

computational time via GPU acceleration also exist [180-182].  

 Spatial Pattern Recognition 2.3

2.3.1 Classical Applications 

Pattern recognition is a broad field devoted to the study of the formation and 

classification of various patterns. In the computational field, patterns are input into 

various algorithms whose goal is to assign the patterns to various different classes. These 

algorithms are often accomplished using a machine learning approach, in which a set of 

defining features capable of distinguishing patterns from one another are slowly 

developed [183-186]. Pattern matching is used in many different applications; one of the 

most famous being facial recognition [187, 188]. Such machine learning approaches 

include, but are not limited to, support vector machines (SVM)[189], decision trees, 

neural networks, and Bayesian approaches[190]. While these represent the base 
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algorithms, many other hybrid methods such as stochastic gradient descent (SGD)[191],  

gradient tree boosting[192], and random forests[193] are commonly used for more 

complex pattern classification schemes. Most of these algorithms support classification 

into multiple different pattern classes, but each applies a slightly different approach for 

multiclass pattern classification. Often multiclass classification is accomplished using 

either a one vs. one or a one vs. all approach. In one vs. all a single classifier is fit per 

each pattern class. Thus, to fit a given pattern to a class it is assigned a score from each 

classifier. This approach is both computationally efficient, and easy to interpret, but does 

not scale well with large amounts of data or many different pattern classes. In contrast the 

one vs. one technique constructs a classifier for every pair of classes. Thus a lot more 

classifiers are constructed (number of classes)*(number of classes -1)/2 making this 

method generally slower than the one vs. all approach. However, it has advantages when 

working with large data sets as it uses a smaller subset of the data for training purposes.  

2.3.2 Biological Applications 

In the context of biology, pattern recognition has been used in a wide variety of systems 

ranging from histopathology, to whole organism classification. With the advent of higher 

power microscopy and confocal based approaches, recently there has been a push 

towards classification and analysis of single cells.  One general approach is to use high 

content imaging or other analogous platforms to image single cells at extremely high 

resolution, and then extract sets of quantitative metrics describing their shape or 

distributions of proteins within the cell [194-196]. While these approaches are relegated 

to the single cell level, many have addressed issues related to single cell identification in 

tissues via nuclear segmentation algorithms which take advantage of machine learning 

components [197-208]. Many of these approaches are devoted to the field of 
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histopathology, where segmentation and automatic identification of cells provides a 

crucial step towards automated tumor detection methods [197, 202, 203, 207]. These 

algorithms are now sophisticated enough to segment nuclei in a variety of image types, 

and many open source platforms have started to incorporate such approaches into their 

frameworks (IMARIS, Matlab, Cell Profiler, and Illitask). With the advent of such 

algorithms, another popular technique called image-cytometry has emerged which allows 

the extraction of protein or RNA species levels on a per cell basis [102, 105].  While this 

approach has certainly been a useful single cell analysis tool in the context of stem cells, 

it does not take into account spatial information. Other tissue level approaches have used 

a variety of machine learning algorithms to classify patterns where the scale has ranged 

from classification of patterns in local tissues[209-212], to whole embryos/organism 

classification in the case of Caenorhabditis elegans (C. elegans) [213-216], and 

drosophila [200, 217-220]. While classification paradigms exist at both the single cell, 

and tissue levels, the field has yet to utilize the information inherent in single cell 

approaches to perform tissue level classifications.  
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CHAPTER 3  COMPUTATIONAL MODELS OF 3D 

MULTICELLULAR STEM CELL AGGREGATES
1
 

 Introduction 3.1

Embryonic stem cells (ESCs) can differentiate into cells of the three germ lineages: 

mesoderm, endoderm and ectoderm. Multicellular aggregates composed of 

undifferentiated ESCs in suspension culture [221, 222], provide an enticing platform to 

study complex morphogenetic events [223-227]. Despite the recent success of this 

approach in generating complex tissues, robust methods to control aggregate 

differentiation in vitro remain limited due to an incomplete understanding of the complex 

interactions within the 3D multicellular aggregates that mitigate cell fate decisions [228, 

229]. Therefore, although many studies  have examined the effects of individual signaling 

pathways or molecules on ESC differentiation[14, 16, 19, 58, 70, 74, 75, 83, 86], new 

approaches that allow systematic investigation of combinations of parallel factors that 

regulate stem cell differentiation are needed to more accurately predict cell responses to 

complex micro-environmental cues. Computational modeling strategies provide one 

method to systematically investigate cues governing spatial patterns of differentiation in 

ESC aggregates. 

                                                 

 

 

1
 Modified from: 

White DE, Kinney MA, McDevitt TC, Kemp ML. Spatial Pattern dynamics of 3D Stem Cell Loss of 

Pluripotency via Rules Based Computational Modeling. PLoS Comput Biol. 9.3(2013) 
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Classically, computational modeling has been used in a variety of contexts to 

identify specific mechanisms leading to observed biological phenomena [21, 120, 131, 

159, 230, 231]. While systems of ordinary differential equations have been used to model 

protein and gene interaction networks for single cells [20-22, 24] extending these 

methodologies to groups of cells in a tissue is problematic for a variety of reasons. ODEs 

are highly parameterized systems and while this level of description works well in the 

context of isolated cells, it is computationally prohibitive to screen all parameter sets to 

find conditions which modulate spatial pattern formation on a tissue level. Furthermore, 

in the context of tissues, it is important to consider spatial heterogeneity of soluble cue 

secretion [133, 232], which adds additional computational complexity in the form of 

partial differential equation solvers. Keeping track of all these parameters and the added 

computational intensity makes rapid screening of parameter sets modulating spatial 

pattern formation extremely difficult.  

Alternatively agent based modeling (ABM) provides a flexible, modular 

framework to study complex regulatory cues. Simple rules can be defined to allow cells 

to transition between different states. These functions can be defined in any manner, and 

previous work has defined such transitions in the form of probability density functions 

(PDFs) [231]. PDFs defined in this manner have fewer parameters and can be easily 

modified to govern transition as a function of any input, which allows for a rapid 

screening of different rule types leading to spatial pattern differentiation. However, there 

is a trade-off with ABM models of this type; while they allow rapid sampling of 

parameter space, it is difficult to extract information about specific molecular 

mechanisms which give rise to the high level rules.   
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Another challenge with modeling multicellular aggregates is that the physical 

location of each cell as well as cell-cell interactions must be monitored and maintained 

through time. The aggregate undergoes substantial cell division, and in some cases 

migration, which can make modeling physical interactions a computationally intensive 

task [15, 33, 37, 150, 176]. ABM models provide an answer to these problems and a 

variety of approaches ranging from the cellular Potts method [174-177], to mass spring 

tissue approximations [172, 179] have been used to model biological systems [35]. While 

approaches such as the cellular Potts method allow for energy based approximations of 

physical cell parameters, these models do not scale well to large cell numbers. Various 

advances in mass spring systems [179, 180] coupled with the ease of generating spatial 

data structures over large point clouds (such as KD-Trees) make this a viable option for 

simulating aggregates with many cells. This study showed that a mass spring approach 

captured relevant physical parameters of ESC aggregates during division and 

differentiation; also demonstrated the utility of computational rules based modeling to 

predict emergent spatial patterns associated with the pluripotent transcription factor in 

Oct4 and investigate macroscopic principles that can play important roles in determining 

cell fate transitions.  

 

 Materials and Methods 3.2

3.2.1 Cell Culture 

A murine embryonic stem cell line (D3) transfected with an Oct4-GFP construct was 

used (phOCT3-EGFP1; provided by Wei Cui, Ph.D., Imperial College, London, UK). For 

this particular experiment these cells were used after several passages and splits, and thus 
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did not show robust GFP expression under confocal or flow cytometry; thus 

immunostaining was necessary to visualize Oct4 expression. These cells were cultured in 

monolayer on 100 mm tissue culture plates coated with 0.67% gelatin in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 15% fetal bovine serum(FBS) 

(Hyclone, Logan, UT),  2mM L-glutamine (Mediatech), 100 U/ml penicillin, 100 ug/ml 

streptomyocin, and 0.25 ug/ml amphotericin (Mediatech), 1x MEM nonessential amino 

acis solcuiotn (Mediatech), 0.1 mM 2-mercaptoethanol (FisherChecmical, Fairlawn, NJ), 

and 10
3
 U/ml leukemia inhibitory factor (LIF) (Chemicon Internation, Temecula, CA). 

Cells were passaged every 2-3 days prior to reaching 70% confluence.  

3.2.2 Immunostaining and Confocal Microscopy 

ESC aggregates were collected for staining and fixed in 10% formalin for 45 minutes. 

Aggregates were permeabilized for 30 minutes in 1.0% TritonX-100, re-fixed in formalin 

for 15 minutes, and blocked in blocking buffer (2% bovine serum albumin, 0.1% Tween-

20 in PBS) for 3 hours. Samples were stained with a goat Oct4-antibody (Santa Cruz) 

overnight at 4 °C. After three washes in blocking buffer, aggregates were subsequently 

stained with a secondary donkey anti-goat Alexa Fluor 488 conjugated antibody (1:200 

Santa Cruz) for 4 hours at 4 °C.  Staining with Alexa Flour 546 Phalloidin (1:20 

Molecular Probes) and Hoescht (1:100) was performed concurrently for 25 minutes at 4 

°C. Samples were washed and resuspended in blocking buffer, and imaged using a Zeiss 

LSM 510 Confocal Microscope using Ar, He, Ne and Chameleon lasers. A single image 

was taken at the top of the aggregate and at a depth of 25 μm into the aggregate. For each 

time-point, 25 images were obtained.   
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3.2.3 ESC Aggregate Formation and Culture 

Undifferentiated embryonic stem cells were dissociated from monolayer culture using 

0.05% trypsin-EDTA solution (Mediatech) to obtain a single cell suspension and added 

to AggreWells
™

 (Stem Cell Technologies) [85] six well plate inserts to form six thousand 

aggregates of either 250 (1.5 million cells/ml) or 1000 (6 million cells/ml) cell per ESC 

aggregate. Aggregates were allowed to form in the wells for 20 hours, at which point they 

were removed and transferred into rotary culture at 60 RPM on a 100 mm plate at a 

density of 2000 aggregates in 10 mls of medium [233]. Aggregates were re-fed every 2 

days, and 75% of the spent medium was replaced with fresh medium at each exchange. 

Aggregates were cultured in this manner for up to 7 days of differentiation.  

3.2.4 Pattern Analysis 

Spatial patterns of Oct4 expression were classified into six different categories, random, 

inside-out, outside-in, connected, differentiated, or undifferentiated. For an image to be 

classified as undifferentiated, 90% or more of the cells in the image had to positively 

express Oct4. Conversely, for an image to be classified as differentiated no more than 

10% of the cells could stain positive for Oct4. If the number of positive Oct4 cells fell in 

between these two levels, the pattern of differentiation was classified as either random, 

inside-out, outside-in, or connected. Inside-out patterns were characterized by 

differentiation in the middle of the aggregate and undifferentiated cells on the outside. 

Conversely, outside-in patterns exhibited differentiation on the outside and 

undifferentiated cells in the middle. Connected patterns were defined as multiple distinct 

connected regions of cells of the same state. Random patterns displayed no identifiable 

pattern.  For each time point, 25 confocal images of ESC aggregates were analyzed. 
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Pattern matching was performed on the output from the model as well as the 

experimental confocal images. Two blinded observers were used to classify the 

experimental confocal images. In the case of the in silico results, metrics such as the total 

number of differentiated cells, and average number of distinct cell clusters were used to 

aid in classifying patterns, with a total of 73 1000-cell aggregates and 66 250-cell 

aggregates analyzed. A cluster was defined as two or more cells of the same type and 

clusters were identified throughout the entire 3D aggregate.  

3.2.5 Analysis of ESC Aggregate Size 

ESC aggregates were harvested at various time points and fixed for 45 minutes in 10% 

formalin. ESC aggregates were imaged using bright field microscopy via a 4x objective 

on an EVOS microscope. Three representative images were taken for each sample. 

Images were analyzed by using threshold, watershed, and image particle detection 

operations in ImageJ. Aggregate radius was derived by computing the cross sectional 

area, approximating the EB as a circle, and calculating the radius accordingly. The 

circularity of the aggregates was calculated by fitting an ellipse to their area, and taking 

the ratio of the minor to the major axes. 

3.2.6 Rules Based Modeling 

Rules based modeling was carried out using probabilities to govern state changes. Linear, 

hyperbolic and Hill-type probabilities have been previously examined in the context of 

stem cell differentiation and thus similar Hill-type probability laws were used in this 

work [231]. All of these rules were designed to be functions only of the number of 

nearest neighbors to reduce complexity. For the “random” rule, a basal probability 

associated with the state change was set to 1% as this led to complete differentiation of 

the aggregate. In the case of the “positive feedback” rule, the differentiation probability 
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was influenced according to         (3-1 3-

1. 

 P(x) =  
𝛽 

𝜀
,  𝜀 = 12         (3-1) 

       

where β represents the number of nodes connected in the differentiated state, normalized 

by the total possible number of neighboring nodes ε, which for a face-centered cubic or 

hexagonal close-packed spherical packing arrangement is 12. In the case of the 

“competing feedback” rule the probability was determined according to equation 3-2. 

P(x) =  
1

1+𝑒𝛾−𝛽         (3-2) 

       

where β represents the number of neighboring nodes in the differentiated state, and γ 

represents the number of neighboring nodes in the undifferentiated state. This function 

produces a similar sigmoidal shape as the Hill function, but does not require the inclusion 

of the additional Hill coefficient.  

3.2.7 Determining Growth Rate 

After aggregate sizes were determined, the number of cells in a spheroid was 

approximated by first determining the volume of the spheroid based upon known 

aggregate radii. Next an average cell volume was calculated using the average cell 

diameter of 6.6 +/- .3287 μm. By assuming a maximal close packed configuration for 

spheroids (.7408), the volume of the aggregate was adjusted to contain the cells. Cell 

numbers were calculated by dividing the adjusted aggregate volume by the volume of a 
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single spheroid. To calculate the cellular growth rate equation 3-3 was applied between 

discrete time points.  

𝑐(𝑡) =  𝑐0𝑒𝑘𝑡                                                       (3-3) 

 

This method produced growth rates over which closely matched the proliferation of 

Oct4+ pluripotent mESCs in 2D.  By applying this same process for later day ESC 

aggregates, a division time for an Oct4- cell was also calculated. The growth rates could 

then be fit to equation 3-4 determine doubling times that were used in the model for 

Oct4+ and Oct4- negative cells. 

 

𝑡2 =
ln (2)

ln (1+𝑟)
          (3-4) 

 

3.2.8 Dynamic Modeling 

Modeling of dynamic cell movement was accomplished using custom C# code with the 

aid of XNA package for vector math and 3D visualization. Cells were modeled as rigid 

spheres connected by springs to depict cell-cell physical connections. A complete 

collision detection algorithm was used to resolve all possible collisions at each time step 

of the simulation. Simulations were run for a period of 144 hours (6 days), until 99 

percent of the cells had changed state or until 40,000 total cells existed in the model as 

computational time increased dramatically with increased cell number above this limit. 

Cells were allowed to change fate instantaneously. The kinetics of the simulations were 

fit to model growth curves, thus the probabilities were given different weights to assure 

pattern formation was observed. In the case of the random and positive feedback rules, no 

weights were applied to the rules as the random parameter induced complete 

differentiation over the 144 hour simulation period. However, in the case of the 
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competing feedback rule a 0.01 weight was applied to adjust differentiation kinetics to 

match those observed experimentally. 10 simulations were run for each different rule set 

and simulations were run in parallel using an Intel Core i7 X980 3.33 GHz CPU with 

12.0 GB of RAM.  

3.2.9 Software Tools 

Rules based modeling was achieved using a Python language with the following freely 

available software packages: pyode, numpy, matplotlib, python imaging library (PIL) and 

vpython. Physical aggregation simulations of structure were performed using PyODE as 

the underlying physics engine. Results were plotted via the aid of numpy and matplotlib. 

The 2D aggregate slices were visualized using PIL. The 3D aggregate was visualized 

using vpython.  

3.2.10 Statistical Analysis 

All experiments were performed in triplicate and data was presented as the mean +/- the 

standard deviation. Significance was determined using a student’s t-test with a 

significance level of p< 0.05.  

 Results 3.3

3.3.1 Modeling Embryoid Body Structure 

The overarching goal in constructing a model description of ESC aggregates was to 

accurately recapitulate the overall multicellular structure based on the physical properties 

of individual mouse embryonic stem cells (mESCs). Prior models of multicellular 

structures have described the individual cellular agents as incompressible objects 

consisting of ellipsoids [234]. In this study a physics-based modeling approach was 



 27 

implemented in which cells were modeled as incompressible rigid spheres as this was a 

powerful and portable method for representing complex aggregate shapes [235, 236]. To 

determine if modeling mESCs as spheres was appropriate, the effective surface area 

(Figure 3-1 A) and radii (Figure 3-1 B) of individual ESCs were experimentally 

determined via Coulter counter analysis. The average surface area to volume ratio of the 

mESC line was 3.26 +/- 0.15, which is only ~8% higher than the theoretical value of 3.00 

for a spheroid. Due to the increased computational costs associated with ellipsoid 

collision detection algorithms and the relatively low error in the surface area-to-volume 

ratio (< 10%), each cellular agent was represented as a sphere. The distribution of cell 

radii from the Coulter counter measurements (Figure 3-1 A, B) were used to create the 

population of spheres for each agent in the aggregate simulations. These cell agents were 

randomly seeded into a box, which served as an initial boundary for the simulation, and 

then forced to aggregate using a gravitational point source into the subsequent 

multicellular spheroidal structure. This is analogous to centrifugation into a pyramidal 

well were centrifugation forces cells to initiate the aggregation process. 
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Figure 3-1 : Aggregate Modeling Methodology. Dissociated mouse embryonic stem cells 

(mESCs) were analyzed via Coulter counter for surface area (A) and radius (B).  In silico 

aggregates were generated in a physical modeling process in which cells were generated 

and then forcibly aggregated (C). ESC multicellular aggregates were formed via ultra-

high throughput methods for two initial cell numbers: 250 and 1000 - a representative 

image for 1000 cell/aggregate seeding density(D). The black box in first column is 

digitally enlarged in the second column.  Circularity was calculated by fitting the 

aggregate to an ellipse and taking the ratio of the two radii labeled R1 and R2 

respectively. Aggregates were analyzed for two macro scale aggregate properties: radius 

(E) and circularity (F).  Confocal images were used to analyze local aggregate properties 

– a representative 1000 cell/aggregate seeding density (G). Aggregate local properties 

were assessed by two metrics: connection length (H) and number of connections (I). 

 

 

 

The structures of in silico and in vitro aggregates were assessed for aggregates of 250 and 

1000 cells seeding densities using four parameters: radius, circularity, connection count, 

and connection lengths. Size and circularity were used to assess the entire aggregate 

structure and were experimentally determined through the analysis of phase contrast 
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images, while similar measurements were obtained using projections of the in silico 

aggregates onto a 2-dimensional plan (Figure3-1 D). The results indicated that the model 

appropriately captured the macroscopic features of the relative aggregates since there 

were no statistical differences between the model and experimental metrics (Figure 3-1 

F). The connection count and connection length parameters were calculated from the 

spatial distribution of individual cells comprising the aggregates and served as 

quantifiable metrics for assessing local micro-scale organization within aggregates. These 

parameters were assessed by individual cell labeling performed in confocal microscopy 

images and via computational algorithms for the in silico aggregates (Figure 3-1 G).  As 

an example, the blue box in Figure 3-1 G highlights a cell with an average connection 

length of 14.87 +/- 2.07 microns and connection number of 4. In silico aggregates were 

“virtually sectioned” (at a 10 μm thickness) to perform similar analysis on a 2D 

projection, and neither the average circularity nor the connection lengths differed 

statistically from the experimentally derived aggregate values (Figure 3-1 H,I). Overall, 

quantitative comparison of four different physical parameters indicated that the physical 

model accurately captured the structure of individual aggregates on both the aggregate 

and cellular scales, providing an accurate structural framework for subsequent analysis of 

spatial patterning. 

3.3.2 Spatial Patterns Occur During Differentiation 

Throughout the subsequent discussion of the results, pluripotent cells that exhibit loss of 

Oct4 expression are simply referred to as “differentiated”, acknowledging the caveat that 

Oct4- cells are not terminally differentiated. As Oct4 is concomitant with loss of 

pluripotency, it was used to monitor the pluripotent state of the cells [125, 237-239]. Loss 
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of Oct4 has commonly been modeled as a bi-stable transition, which causes an all or none 

response [114, 125, 130].  The temporal patterns of loss of pluripotency were evaluated 

in 250- and 1000-cell ESC aggregates via confocal microscopy to examine Oct4 

expression.  Starting from a homogeneous population of undifferentiated cells, spatial 

heterogeneity (as defined by loss of Oct4 expression) was observed over the 

differentiation time course. In order to capture the diversity of spatial pattern 

heterogeneity, a classification system was developed. Based on preliminary results from 

both the experimentally derived aggregates and the model, six different categories of 

patterns were proposed: Oct4+, inside-out, outside-in, connected, random, and Oct4- 

(Figure 3-2). These patterns were loosely grouped into three larger categories: Oct4+, 

transitioning, and Oct4-. The outside-in, inside-out, connected, and random patterns were 

all considered transition patterns as they captured intermediate stages of the 

differentiation process. Inside-out patterns were characterized by differentiation in the 

middle of the aggregates and undifferentiated cells on the outside; conversely outside-in 

patterns exhibit differentiation on the outside and undifferentiated cells in the middle. 

Connected patterns were defined as multiple distinct connected regions of cells of the 

same state, whereas random patterns were classified as no identifiable pattern based on a 

lack of connectivity.  
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Figure 3-2: Classification of spatial differentiation patterns within ESC aggregates. Six 

classifications are  used to described Oct4 expression patterns: undifferentiated, inside-

out, outside-in, connected, random, and differentiated. Confocal images shown on top are 

stained with DAPI (blue), phalloidin (red) and Oct4 (green) (with a scale bar of 25 μm). 

The model generates patterns similar to confocal images with Oct4- cells (dark blue) and 

Oct4+ cells (cyan). Scale bar represents 25 μm. 

 

 

 

In the smaller 250-cell ESC aggregates, Oct4 expression persisted for up to six days 

(Figure 3-3 A). Rapid loss of Oct4 was observed between days 3 and 5 (Figure 3-3 C) 

and the patterns associated with differentiation were classified entirely as “connected” 

(Figure 3-3 D). In 1000-cell aggregates, differentiation patterns were assessed over a 7-

day period (Figure 3-3 B). Differentiation was observed to occur at a later time than the 

smaller 250-cell aggregates, with transition patterns occurring from days 4 to 7 (Figure 

3-3 E). The spatial patterns in the 1000-cell aggregates associated with differentiation 

were more varied than the 250-cell aggregates but also were primarily classified as 

“connected” (Figure 3-3 F).  At each time point, pattern classification for each aggregate 

size was performed to generate temporal differentiation profiles for each time point 

(Figure 3-3 D,F). The trajectories of differentiation were calculated by assessing how the 

number of differentiated, undifferentiated, and transitioning patterns changed over time. 
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Although the types of patterns associated with differentiation only changed slightly with 

aggregate size (Figure 3-3 D,F), the kinetics of the process appeared to change 

appreciably. The 250-cell aggregates began differentiating at ~ day 3 and finished within 

one day, whereas the 1000-cell aggregates started a similar process later at ~ day 4, and 

took 3 days to nearly exhaust Oct4 expression (Figure 3-3 C,E). 

 

 

Figure 3-3: Differentiation kinetics differ by aggregate size. Confocal images of 

aggregates stained with DAPI (blue), phalloidin (red), and Oct4 (green) shown at a depth 

of 25 μm for ESC aggregates of (A) 250  and (B) 1000 cells. (C, E) Temporal dynamics 

of observed patterns for 250 cell aggregates (C) and 1000 cell aggregates (E). (D, F) The 

overall distribution of observed patterns for 250 cell aggregates over 6 days in culture (D) 

and 1000 cell ESC aggregates over 7 days in culture (F). Scale bars on all images are 25 

μm. 
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3.3.3 Rules Based Modeling of the Cellular Microenvironment 

After validating the generation of an appropriate 3D geometry for ESC aggregates, rules 

based modeling was performed by creating network structures, in which “nodes” 

represented individual cells, and “connections” represented physical interactions between 

adjacent cells; nodes were allowed to convey information with the macrostructure along 

the defined connections. The goal was to determine if simple rules accurately produced 

the distribution of spatial patterns observed experimentally. During these initial 

simulations the macro-structures were assumed to be static (i.e. no proliferation, 

migration or apoptosis). Cells could exist in either of two states: undifferentiated (Oct4 +) 

or differentiated (Oct4 -). The transition between these two states was chosen as binary 

based on previous modeling work [125] and occurred based on different rule 

formulations: “random”, “positive feedback” or “competing feedback” (Figure 3-4). The 

random rule configuration represented a stochastic, basal differentiation probability 

(Figure 3-4 A). The positive feedback rule was based on a paradigm in which 

differentiated cells biased neighboring cells to differentiate (Figure 3-4 B) and was 

inspired by differentiation induced via direct cell-cell interactions [240, 241]. Finally, the 

competing feedback rule depicts a situation where differentiated cells promoted 

subsequent differentiation of neighboring cells while undifferentiated cells inhibited this 

transition (Figure 3-4 C). Positive feedback in this rule was based upon the known role of 

soluble factors to maintain pluripotency [242], while negative feedback comes from the 

differentiation induced via the cell-cell interactions discussed above [240, 241].  



 34 

 

Figure 3-4: Overview of Rule Configurations. Three different rule configurations 

governing transitions from the undifferentiated to differentiated state are shown: random 

(A), positive feedback (B), and competing feedback (C). The random rule is governed by 

a constant probability of differentiation denoted by α (A). The positive feedback rule 

takes into account Oct4- cells denoted by β, and allows them to positively influence the 

differentiation probability (B). The competing feedback rule take into account β and also 

the number of Oct4+ cells denoted by γ (C). In the case of the positive feedback and 

competing feedback rules, the probability are combined using an or-gate logical operator. 

Representation of the probaility density functions P(x) are shown for each rule. 

 

 

3.3.4 Quantitative in Silico Pattern Analysis 

To glean insight into the evolution of simulated spatial patterns, two quantitative metrics 

were used, undifferentiated cluster number (UCN) and differentiated cluster number 
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(DCN), to assess pattern formation and simulation trajectories against a normalized time 

(τ) axis. Analyzing the cell phenotype transitions by the UCN and DCN metrics revealed 

distinct paths of pattern formation for each of the different rules. From such curves, 

critical points (τ = 0.2, τ = 0.4, and τ = 0.6) representing rapid changes or important 

regions across all rules were chosen and representative aggregate slices were displayed 

(Figure 3-5 B,E,H). Analysis of the trajectories themselves revealed insight about the 

types of clusters being formed in the “connected” patterns. In the “positive feedback” 

scenario, the loss of Oct4 expression was characterized by a high number of 

differentiated or undifferentiated clusters, suggesting localized intercellular neighbor 

influences regulating phenotype transition (Figure 3-5 D). The peak in UCN at τ = 0.6 

was characterized by a large number of isolated pockets of undifferentiated cells. In 

contrast, the “competing feedback” rule peaked through a high number of differentiated 

clusters, but never amassed a high undifferentiated cluster number (Figure 3-5 G) which 

matched the larger isolated and persistent clusters of Oct4 positive cells experimentally 

observed in both the 250- and 1000-cell aggregates. Taken together, these data indicate 

that the “competing feedback” rule matched the patterns observed biologically with the 

highest fidelity for the different size aggregates examined.   
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Figure 3-5: Spatial pattern trajectories of differentiation for 1000 cell aggregates. (A, D, 

G) Pattern trajectories are shown for all three rules for 1000-cell aggregates plotted 

against a normalized time axis (τ) where the time step was divided by the total number of 

time steps required for the simulation to complete. (B, E, H) Representative “virtual 

sections” of aggregates over the course of a simulation. Cyan represents Oct4+ cells 

while blue signifies Oct4- cells. (C, F, I) Differences in the kinetics of modeled 

differentiation for all three rules. All scale bars are 25 μm. 

 

 

 

Furthermore, the trajectory analysis provided novel information about the evolution of 

certain patterns. For example, random differentiation was characterized by a high initial 

spike in the DCN as this signified the emergence of several small clusters of 

differentiated cells (Figure 3-5 A), and the duration of this spike represents how long the 

random patterns persisted throughout the duration of the model. If the UCN remained 

fairly low, the pattern transitioned into a connected phenotype, again evidenced by the 

low number of undifferentiated clusters of cells (Figure 3-5 B). When the UCN remains 
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at 1, this signified either an inside-out, or outside-in pattern. However, if the UCN 

transitioned towards a high value, this signified that the differentiation was still largely 

governed by random patterns (Figure 3-5 A). Overall, these measures provide 

quantitative metrics for assessing the types of patterns formed, and the evolution of these 

patterns over time. One limitation of the model, however, was that the kinetics of pattern 

formation could not explain the differences in kinetics experimentally observed between 

different aggregate sizes (Figure 3-3 D,F). This suggested that although a static size 

aggregate modeling approach was sufficient for predicting the prevalence of different 

spatial pattern classifications, it did not fully capture the kinetics of experimental Oct4 

loss. In order to further investigate the kinetics of the pattern transitions, the modeling 

framework was modified to include cell division and aggregate growth. 

3.3.5 Dynamic Rules Based Modeling 

Dynamic processes, such as cell division and growth of the ESC aggregates, were 

implemented to test the hypothesis that cell division and growth influence spatial patterns 

of Oct4 expression loss. To investigate the effect of cell division on this loss of 

pluripotency transition, a revised model which simulated growing multicellular structures 

was created. With this approach, cells were modeled as rigid spheres while cell-cell 

connections were represented by springs that maintained the overall macro-structure of 

the aggregate (Figure 3-7 A). The size of differentiating ESCs did not change appreciably 

with time, which reduced complexity from the model description (Figure 3-7 B). The first 

step was to determine an estimated cellular division rate for Oct4+ and Oct- cells. This 

was accomplished using experimental growth data approximated from the size of the 

aggregates (Figure 3-7 C), which yielded a division rate of ~ 21 hours for Oct4+ cells and 

~ 51 hours for Oct4- cells which is consistent with the literature [243]. Using these 

division rates, the rules derived in the former static model were applied to the new 



 38 

dynamic model. As an internal control, division simulations with no rules were run to 

monitor any bias introduced by the model (Figure 3-6) and found that the cells grew in an 

exponential manner (Figure 3-6 A,F), while the density of the aggregates remained 

constant (Figure 3-6 C). The circularity of the network also remained constant with time 

(Figure 3-6 D). Connection length remained constant as a function of the aggregate 

radius, whereas the connection number decreased on the outer layer of the aggregate, as 

was expected (Figure 3-6 E). Taken together these results suggest that structurally no bias 

was introduced into the model by introducing cell division. 

 

 
Figure 3-6: Dynamic modeling does not alter network structure. Control metrics for the 

dynamic cell simulations were plotted as functions of time:  cell number, (A), radius (B), 

density (C), and circularity (D). Internal network parameters for the average connection 

length and average number of connections as a function of aggregate radius (E) behaved 

as expected. A representative trace for the growth of an aggregate starting at 50 cells 

shows a visual representation of the growing aggregate structrues (F).  
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Figure 3-7: The effects of cell division on spatial pattern trajectories. (A) Mass spring 

schema for modeling cellular division and adhesion. (B) Coulter coulter data showing the 

radius of stem cells from embryoid bodies and how they change over the 6 day 

differentiation time course. (C) Estimated sizes of embryoid bodies used to estimate 

growth rates. (D) Representative virtual slices of simulated 250 and 1000 cell dividing 

embryoid bodies for the three different rules. Oct4+ cells are shown in teal and Oct4- 

cells in blue. UCN, DCN time plot trajecory for the 250 cell ESC aggregates (E) and 

1000 cell ESC aggregates (F). (G) Summation of the variance in the UCN, DCN 

trajectories. (H) The percent of undifferetiated cells as a function of time. 

 

  

     

Next the spatial patterns formed under the various rule configurations during enlargement 

of the aggregates over a 5-7 day period were examined (the pattern trajectories now 

normalized by the cell number to account for cell growth). Trajectories simulated over 

the 6 day culture period indicated consistent pattern distributions and their evolution over 

time (Figure 3-7 E,F). While few differences were observed in the trajectories as a 

function of aggregate size, the cumulative variance in the UCN and DCN metrics was 
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greater for the 250 cell aggregates (Figure 3-7 G), which suggested a more heterogeneous 

population of differentiated cells. At later time points (> Day 5) the positive feedback 

rule generated clusters of undifferentiated cells predominantly on the outer edges of the 

ESC aggregate. In contrast, the competing feedback rule produced larger clusters of 

undifferentiated cells localized towards the center of the aggregate. The trajectories of 

these growth simulations matched the general shape of the trajectories for the static 

simulations (Figure 3-5), with a notable exception for the random rule. Analysis of the 

percentage of undifferentiated trajectories revealed that over half the cells remained 

undifferentiated at the seven day time point, which may explain the absence of the DCN 

to UCN transition observed in the previous static model simulations.   

The motivation behind modeling a dynamic aggregate structure was to more 

closely recapitulate the emergent morphogenic processes occurring over the transitional 

5-7 day period and to investigate whether the inclusion of cell division and aggregate 

enlargement influenced emergent spatial patterns (Figure 3-7 H). In the case of the 

random and competing feedback rules, no observable difference in the percentage of 

differentiated cells appeared, however the positive feedback rule resulted in a lower 

percentage of undifferentiated in the 1000 cell/aggregate density versus 250 cell 

aggregates, which was likely due to the total number of cells present. Taken together 

these results suggested that differential cell division did not significantly influence the 

formation or evolution of patterns over time and the pattern formation process was 

dominated by the regulatory mechanisms encoded in the probabilistic rules. 
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 Discussion 3.4

Differentiation is a complex biological process involving the coordinated regulation of 

multiple genes by intrinsic and extrinsic factors. Rather than attempt to model the 

intricate network of genetic circuitry, signaling mechanisms, and environmental cues, 

loss of pluripotency was approached from a simplified perspective designed to elucidate 

the most basic principles dictating pattern formation in a spherical multicellular system. 

A dynamic modeling framework capable of recapitulating the physical properties of ESC 

aggregates for multiple aggregate sizes was developed. This framework allowed 

simulation of how different probabilistic rules were manifested in the emergence of 

spatial patterns and examination of the evolution of these patterns over time. Through 

comparison of the simulated pattern trajectories with the pattern classification developed 

for the experimental data, it was determined that all possible pattern classes could be 

explained by the rules employed.  

Differentiation is classically thought of as a binary transition from the 

undifferentiated pluripotent stem cell state to differentiated phenotypes [5,31,46]. Models 

of stem cell differentiation often consider these events on a population basis [244] or at 

an intracellular signaling level [245]. This study shows that the transition from Oct4+ to 

Oct4- states produces dynamic, spatially heterogeneous patterns in a continuous manner. 

These results indicated that modeling embryonic stem cell (ESC) fate decisions as a 

stochastic, binary process is sufficient to predict the dominant emergent spatial patterns 

of loss of pluripotency. Additionally, 250- and 1000-cell ESC aggregates underwent loss 

of pluripotency through the same intermediate patterns, which suggested that the macro 

processes governing this early stem cell transition (while occurring at different rates) 

were largely independent of size.  
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 Our modeling approach created in silico aggregates with similar properties to in 

vitro ESC aggregates. The spring based constraint representing cellular adhesions was 

able to accurately capture the evolution of the aggregate architecture. Additionally, the 

high-level rules described here were able to reproduce the emergence of a variety of 

spatial patterns, all of were observed experimentally in ESC aggregates. Both modeled 

and experimental aggregates demonstrated enrichment in connected patterns of cells. 

Quantification of model simulation outputs by differentiated and undifferentiated cluster 

number (DCN and UCN) allowed visual representation of the time evolution of 

connected patterns in 3D multicellular aggregate systems. The use of the UCN and DCN 

metrics provided information about not only the types of connected patterns formed, but 

also the transitions between the different types of spatial patterns. A combination of 

analyses using these metrics and manual pattern identification indicated that the 

“competing feedback” rule scheme (that accounted for opposing influences of 

neighboring pluripotent and differentiated cells) produced a distribution of spatial 

patterns that closely resembled the experimentally observed spatial patterns for both 250- 

and 1000-cell aggregates. This was observed in both the static and dynamic division 

models, and could be hypothetically represented biologically as a combination of cell-cell 

signaling and the complex interplay of local soluble factors and other chemical gradients 

that influence pluripotent cell fate decisions  [241, 246-248]. However, this is only one 

possible explanation for a coarse-grained description, and a variety of other signaling 

pathways and molecules are likely involved in regulating this transition. Interestingly, 

none of the rules generated spatial patterns if cells were not allowed to also 

spontaneously differentiate at a low rate random rate (α = 0.0075). Though, for the 



 43 

positive feedback rule, this follows directly from the construction of the probability 

equations, the formation of strongly connected patterns was also not observed in the 

competing feedback rule without the inclusion of this low stochastic rate (data not 

shown) suggesting random component is important to capture the experimentally 

observed transition patterns.  

The static structure model predicted small differences in the Oct4 expression 

kinetics of aggregates with different cell seeding numbers should exist; however, the 

slight changes observed did not capture the full extent of the variation present in the 

experimental results. The inclusion of cell division (with a faster division rate for 

pluripotent cells) was also not able to explain the difference in the kinetics of this 

process. These results indicated that additional factors in the changing culture 

environment may modulate the kinetics of Oct4 loss in a size-dependent manner; 

hydrodynamic effects [83], diffusion limitations and/or local chemical gradients may 

need to be taken into account for changing aggregates sizes [249, 250] in order to 

reproduce the experimentally observed differences in differentiation kinetics. It is also 

possible that the rules chosen did not describe the system with sufficient resolution. 

Furthermore, the model was constructed such that all cells have the same strength when 

affecting other cells, which assumes that cells convey the same amount of information 

regardless of the amount of cell connections or the amount of shared cell area, an 

assumption that may need to be refined as more detailed information about the nature and 

directionality of intracellular communication is included. Future developments will 

account for cell migration, local versus distal cell-cell communication and diffusion 

within the aggregate to investigate how these traits affect the physical microenvironment.  
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The top-down modeling approach described in this study provided new insight 

into the spatial pattern development associated with differentiation of ESCs in 3D 

aggregate structures. Surprisingly, without explicitly modeling diffusion gradients or 

specific signal transduction mechanisms, features of temporal and spatial regulation were 

elucidated. The proposed modeling technique demonstrated validity for examining spatial 

pattern formation during differentiation. The UCN and DCN metrics provided a 

preliminary way to examine spatial pattern formation; however, short of counting clusters 

by hand, no direct comparisons between computational models and experimental data 

could be achieved, highlighting the need for a common pattern classification system.  
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CHAPTER 4  QUANTITATIVE PATTERN ANALYSIS  

 Introduction 4.1

In order to accurately compare computational modeling and experimental data sets, a 

common description for both systems was needed. Typically comparisons between 

spatial patterns are by deriving sets of metrics which can be used to distinguish between 

different classes of patterns. These metrics are then used as inputs for machine learning 

algorithms which seek to define sets of features which can classify or distinguish 

different pattern types. Pattern classification schemes can be broken down into two broad 

classes: supervised vs. unsupervised. In the case of unsupervised learning, the computer 

attempts to extract meaningful metrics (such as sets of pixels from an image) and then 

assigns them to different classes. In the case of supervised learning the user provides a set 

of ground truths which define values for a given pixel of location in space. Thus 

supervised pattern classification can be reformulated into an optimization problem where 

a ground truth set of data is compared to the classification algorithm outputs until the 

differences are minimized. Each of these algorithms have different costs, while 

unsupervised algorithms are unbiased they require a lot of data to ultimately extract 

meaningful information. However, supervised pattern schemas can be trained with 

significantly less data, but are inherently more biased as the user specifies what classes of 

pattern exist in the system. In many cases, such as biological images, it can be difficult to 

obtain a large enough data set to train unsupervised algorithms. To this end, in silico 

images are often created (rearrangements and transformation of existing biological 

images) to provide enough data for classifier optimization. Thus, though unsupervised 

approaches often produce models with more sensitivity due to their unbiased nature, there 
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exists a trade-off between the amount of data available and the type of pattern 

classification schema which can be used.  

In the context of biological spatial pattern classification numerous features are 

often extracted from images of large scale tissues, or of images single cells. Classification 

algorithms for pattern recognition in Drosophila and C. elegans have gained widespread 

popularity, and are robust for each system of interest [251-257]. Classification 

approaches analyzing how single cells change size and shape for studying changes in 

cellular morphology have been applied as well [194, 196]. Often similar metrics can be 

extracted from images at either scale such as shape, entropy, complexity, and texture 

metrics; however interpreting the physical meaning of metrics like complexity and 

entropy can be difficult [194, 196]. Furthermore, though some attempts have been made 

to bridge these scales [258], as of yet, no one has utilized single cell information to 

inform spatial pattern classification. This would be ideal for classifying complex 

aggregates of cells, as information about how many cells display a given phenotype 

would be available, as well as information about their localization and spatial 

distributions. One way to address these challenges is to view cellular aggregates as large 

networks of cells, and utilize network theory to extract quantitative metrics from such 

networks.  

 In Chapter 3, only two metrics (the undifferentiated (Oct4+) cluster number 

(UCN) and differentiated (Oct4-) cluster number(DCN)) were used to describe spatial 

patterns. Though the UCN and DCN metrics provided some discrimination between 

different pattern types, follow up studies indicated that they did not provide sufficient 

resolution to distinguish between all experimentally observed pattern types. Therefore to 

further discriminate between different spatial patterns, a more complete set of metrics 
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was needed. These studies addressed this issue by deriving a set of novel network based 

metrics for classification of various spatial and temporal patterns. Network based analysis 

was used because it inherently maintains single cell spatial information while also linking 

neighboring cells together. This allows traversal of the networks to extract phenotypic 

subnetworks or clusters which were further analyzed; this recursive process generated a 

wealth of metrics which were used to classify various different spatial pattern types. The 

existing computational modeling platform was used to generate relevant ESC aggregate 

structures which represented 7 different spatial pattern types to create a data set with 

enough data points to accurately fit classifiers for each pattern types. The results of this 

study indicated that supervised classifiers trained with the network derived metrics can 

accurately classify spatial patterns with an accuracy of > 95%.  

 Materials and Methods 4.2

4.2.1 In Silico Pattern Generation 

In silico patterns were generated using 7 different pattern generators: Undifferentiated, 

Differentiated, Inside-Out, Outside-In, Random, Globular, and Snaked. The differentiated 

patterns were created by assigning a differentiated state to all except 5% of the cells. The 

undifferentiated states were created by assigning an undifferentiated state to all but 5% of 

the cells. The 5 % margin was incorporated to allow for some of the error creeping into 

the biological data sets from the network digitization algorithm. Outside-In patterns were 

generated using a radius parameter; all cells within the radius were set to undifferentiated 

while all cells outside were set to differentiated. Inside-Out patterns were generated using 

a radius parameter; all cells inside the radius were set to differentiated, while all cells 

outside were set to undifferentiated. Random patterns were generated by randomly setting 

a fraction of the cells to a differentiated state. Globular patterns were created using two 
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parameters: a seed number, and expansion number. The seed number governed how 

many differentiated cell clusters would be found initially, and the expansion parameter 

governed how many layers of nearest neighbors would be turned into a differentiated 

state. For example, an expansion parameter of 2 would turn all cells within 2 network 

connections away to a differentiated state. Snaked parameters were generated using two 

parameters: the number of seeds, and the elongation of each seed. The number of seeds 

again denoted the number of initial starting locations that were differentiated. Each of 

these conditions was then extended to a length of n, by picking a random neighbor and 

changing its state to differentiated and repeating the process until the target length was 

reached.  

4.2.2 Principal Component Analysis 

Principal component analysis was performed using sklearn for the python programming 

language and used primarily as a dimensional reduction technique for data visualization. 

The python package Matplotlib was used to plot all PCA plots, while the heatmaps 

displaying component information where created with custom written code using a 

combination of the python packages numpy and the PIL. All data points were mean 

centered and unit variance scaled as required by the PCA algorithm using the scale 

function from sklearn. The PCA algorithm relied on singular value decomposition, which 

can lead to multiple fitted estimators displaying the data with principal components 

flipped. When automatic dimension fitting was required, the method of Thomas P. 

Minkas was used [259].  
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4.2.3 Classification 

The following classification methods from the python package sklearn were used: SGD, 

NuSVC, SVC, linear SVC, Decision Tree, K Nearest Neighbors. In all cases, classifiers 

were trained using a training data set, followed by subsequent classification of a test set 

for metric evaluation. The data set was split into a test and training set using a simple K-

Fold splitting strategy (where k = 2). Grid searches for the sets were also performed as 

outlined in appendix A.4.2. This code set up the grid searches which were then 

subsequently run and returned the best trained classifier. These classifiers were then 

evaluated using the following criterion: recall, precision, f1_score, area under the curve, 

average precision, accuracy. Accuracy was computed as the fraction of completely 

accurate predictions. The average precision scores and the area under the curve were 

derived from the precision-recall curve, where the average precision was the average 

value over the curve, and the area was the integral of the entire curve. The precision score 

measures the ability of the classifier to not label a negative sample as positive. The recall 

score was the ability of the classifier to find all positive samples. The f-measure was a 

weighted harmonic mean between the precision and recall scores and was computed as F1 

= 2* (precision*recall) / (precision + recall). 

4.2.4 Clustering 

The clustering algorithms K-means, Ward Hierarchical, BDSCAN, Mean-Shift and 

Affinity propagation were all used from the sklearn distribution. The affinity propagation 

method was used with all default parameters (damping coefficient of .5, max iterations at 

200)[260]. For the MeanShift algorithm all default parameters (automatic bandwidth 

estimation, automatic cluster determination) were used [261]. The Ward algorithm was 
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used for hierarchical clustering, and the n_clusters parameter was varied as needed. The 

K-means algorithm was used with default parameters except the n_clusters parameter 

which was varied as needed. The DBSCAN algorithm was run with all default 

parameters (epsilon 0.5 representing the allowable distance between samples, and min 

samples of 5 which represents the number of points adjacent for this to be considered a 

core point)[262]. To evaluate cluster efficacy 6 metrics were used: homogeneity, 

completeness, v-measure, silhouette coefficient, adjusted rand score, and adjusted mutual 

information score. Homogeneity measured the extent to which each cluster only contains 

members of a single data class. Completeness measured to what extent all measures of a 

given class are assigned to the same cluster. The v-measure was a harmonic mean 

between the completeness and homogeneity and was computed as follows 

2*(homogeneity*completeness) / (homogeneity + completeness). The adjusted rand score 

took into account random labeling artifacts for data sets with small amounts of points. 

Similarly the adjusted mutual information score is a mutual information score normalized 

against chance to give a measure of the agreement between the true labels and the labels 

provided by the clustering. 

4.2.5 Regression 

Regression models were evaluated across a myriad of different approaches: linear, ridge, 

lasso, elastic net, least angle (LARs), LARs lasso, orthogonal matching pursuit (OMP), 

Bayesian, Bayesian ridge, Logistic, Stochastic Gradient Descent (SGD). The regression 

algorithms were all freely available through the python sklearn distribution. In all cases, a 

grid search was run to find the best regression model for the given data set during the 

training phase. The data was split into a training and test set using a simple K-Fold 
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splitting method (where k=2). The models were evaluated using two criteria: the R
2
 score 

and the mean squared error.  The R
2
 score, also called the coefficient of determination, 

described how likely the model is to fit a future observation. The mean square error 

referred to how accurately the model fit the data. All functions were evaluated in python 

using the sklearn.metrics system.  

 Results 4.3

4.3.1 Utilizing Network Theory to Derive Quantitative Metrics 

In order to identify appropriate metrics for characterizing spatial patterns, a flexible and 

expedient computational framework was necessary to generate a large data set comprised 

of various types of multicellular patterns. Previous studies reported  that embryonic stem 

cell (ESC) aggregates contained 4 distinct transitional pattern classes associated with the 

loss of the pluripotency marker Oct4: outside-in, inside-out, random, and connected [263] 

(section 3.2.4). Here, an in silico training set was generated by using pattern generation 

algorithms to simulate spatial features of differentiation in 3D multicellular aggregates. 

Due to the high variance of patterns present in the connected pattern class, two additional 

distinct pattern populations were included within the connected group: globular and 

snaked. Combined with the starting (Oct4+) and ending (Oct4-) populations, the final 

modeling dataset contained seven distinct pattern types. The author postulated that 

counting cell clusters, or sub-networks, would provide discrimination between patterns; 

therefore, various metrics related to the number, size and distribution of these sub-

networks were defined (Figure 4-1). In addition, two sub-networks (Oct4+ and Oct4-) 

were examined because of Oct4 transitions from high to low expression as a result of 

differentiation[102, 105].  
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Figure 4-1: Network based metrics for characterizing spatial pattern evolution. The whole 

network and sub network properties are outlined and annotated to give a visual 

representation of what each metric represents. In this example, U refers to 

undifferentiated Oct4+ cells, while D refers to more differentiated Oct4- cells.  

 

 

 

Principal component analysis (PCA) was performed to determine if the network-derived 

metrics captured differences in spatial patterns (Figure 4-2). PCA generated a 2D 

projection of all samples that revealed some overlap between different pattern classes, 

particularly for the globular and snaked patterns (Figure 4-2B), but in general the 

different classes could be readily distinguished. Furthermore, a continuum of patterns 

was observed (Figure 4-2A) suggesting a natural pattern evolution (starting from random 

and moving down towards differentiated). The model was able to explain 72.14% of the 

variance in the data set: 46.5% with PC-1, 13.9% with PC-2 and 11.7% with PC-3. The 

first principal component represented the stage of differentiation and was positively 

correlated with variables associated with differentiated clusters or overall differentiation, 

whereas the second and third principal components were associated with spatial sub-

network descriptors. PCA also revealed that most metrics contributed significantly to the 

model (with the exception of standard deviation associated with  Oct4+ cluster size, 

Oct4+ node count, and Oct4+ radial position), indicating that including most of the 

metrics were important to comprehensively describe the data (Figure 4-2B).  
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Figure 4-2: Validation of spatial network metrics for pattern classification. (A) Examples 

of experimental (green = Oct4 Ab, blue = DAPI, red = phalloidin) and in silico generated 

pattern classes (teal – Oct4+, blue Oct4 -). Scale bars are 100 μm and 35 μm for the 

experimental and in silico images, respectively. Each image is mapped onto the PCA plot 

of the resulting pattern space, color coded by individual pattern type. (B) PCA axis 

analysis showing how each metric contributes to the given principal component axis. 

 

4.3.2 Quantitative Pattern Classification via Network Metrics 

To quantitatively test how effectively network-derived metrics distinguished different 

pattern types, a variety of clustering and regression techniques were employed. The k-

means and Ward (hierarchical) clustering methods could not sort the different classes of 

patterns into distinct clusters as indicated by the relatively weak (~0.5) homogeneity and 
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completeness scores (Figure 4-3A) and the overall cluster distributions. The predictive 

value of the regression models were also poor with R
2
 values generally below 0.4 (Figure 

4-3 B) and large mean square error values (Figure 4-3 C). Consequently, regression and 

clustering did not provide predictive power for pattern identification from the given 

metric set.  

 

 

Figure 4-3: Quantitative Assessment of Clustering and Regression for Pattern 

Classification. (A) Scoring metrics for the efficacy of clustering to sort out different 

pattern types. The color scale indicates poor scores in black, and good scores in red. (B) 

The R
2
 and (C) mean squared error for the regression techniques when asked to predict 

pattern types based on network value inputs.  
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Figure 4-4: Quanitative Measures of Classification Performance. The recall, precision, f1, 

area under the curve, average precision and accuracy were evaluated for all classification 

algorithms assessed. Color scale ranges from 0 – 1 where 0 indicates a poor score while 1 

indicates the best score possible.  

 

 

 

In contrast, logistic regression performed very well (Figure 4-3 B, R
2
 > 0.95); because 

logistic regression is actually a classification method, this suggested the need for multi-

class prediction approaches. Various classification algorithms were assessed to determine 

their ability to distinguish between various pattern types: k nearest neighbor (KNN), state 

vector machines (SVM, NuSVC), stochastic gradient descent (SGD) and decision tree 

algorithms. All algorithms correctly classified patterns with an accuracy of > 0.95, except 

for SGD (Figure 4-4). Classifiers distinguished true negatives robustly (precision score > 

0.90) while also identifying all positive samples (recall score > 0.89). Classification 

labeling overlapped with the true labels as assessed via PCA dimensional reduction 

(Figure 4-5). The SVC classifier had the highest overall accuracy, precision, and recall 

scores, suggesting it was the most appropriate algorithm for classifying spatial patterns. 

Furthermore, the probability prediction method allows the classifier to probabilistically 

predict what class an observation may belong to. One interpretation of these probability 

assignments was that the pattern could be made up of multiple trained pattern classes, 

thus representing novel patterns combinations. Taken together, the classification results 

suggested that novel network based measurements provide a robust set of metrics for 

classification of complex spatial patterns.  
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Figure 4-5: Visual Assessment of Classification Performance. The predictions of each 

classifier for the test set projected down onto a 2D PCA axis (Figure 4-2). Different 

colors represent different pattern types. 

 

 Discussion 4.4

Various different approaches exist for pattern classification depending on the system of 

interest. In the case of patterns generated in 3D aggregates, supervised classification 

schemas were able to accurately capture the rich complexity. The issues associated with 

generating enough representative data for training the classification algorithms were 

addressed utilizing the previously existing computational modeling framework to create 

artificial in silico pattern representations; which were subsequently analyzed via the 

network approach and used to train the different classification algorithms. This approach 

was also convenient as it bypassed the need to collect large amounts of experimental 

images. Furthermore, because single cell segmentation is performed, simple 

rearrangements and transformations of the images would not suffice to generate a large 

enough representative data set of the observed experimental patterns. The resulting 
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classifiers were extremely robust at identifying different pattern types, and the ultimate 

state vector machine (SVM) model boasted a 99.9% accuracy score.  

 The SVM algorithms used in python’s sklearn toolbox also provide the ability to 

perform probability fits. Though this slows down the initial fitting, due to an expensive 5 

fold cross validation scheme, and lowers the feasible amounts of points which can be 

used for training, it allows the classifiers to come up with a percent confidence or 

probability that a given data point belongs to each pattern class. This is based on the 

underlying approach of SVM, which seeks to define a set of dividing hyperplanes in n-

dimensional space which maximize the distances to different sets of observations. When 

points are sufficiently close to the hyperplanes, the probability estimators may predict 

that it could belong to either of the two classes separated by that hyperplane. In this work 

a one-verse-all classification schemes is used, meaning that one classifier is trained for 

each pattern class. Snaked and globular pattern classes displayed the most overlap 

between the classifiers, with some slight overlap existing between the inside out and 

outside in patterns. Based on the principal component (PCA) results showing how the 

different patterns overlap in metric space (Figure 4-2), this made sense as these patterns 

shared the greatest amount of overlap in metric space.  

 The network approach is a novel technique for characterizing spatial patterns, as it 

extended networks to represent biologic cell representations. The ability to preserve 

spatial information while also maintaining single cell data is a crucial step forward in the 

field of biological pattern classification. This approach represents the first method 

capable of predicting tissue level spatial patterns by utilizing cell level measurements. 

With the recent advent of advanced light-sheet microscopy techniques capable of 

imaging through optically dense tissue[264-267] this network approach is currently the 

only approach capable of utilizing all that information to quantitatively analyze spatial 

pattern evolution and dynamics through time. Furthermore, this technique can be applied 

to any network containing cell data, regardless of the image source. To this end different 
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modalities, such as histological images, confocal microscopy, or even fluorescence 

microscopy could all be converted to networks and analyzed via this approach.  

 As mentioned previously (section 4.1), it is important to note that this approach 

depends on being able to discretize biologic signals. For simulated patterns, this 

presented no challenge as the states were easily defined by the models. However, in the 

case of biological signals, things are not always so discrete. The pluripotency 

transcription factor Oct4 can be easily ascribed to an on or off  “state”; however, other 

signals such as phosphorylation events or expression of Nanog often display continuous 

behavior. Setting thresholds for the state definitions would be crucial in these cases, and 

assessment of the spread of the markers present in the networks using a digital flow 

cytometry like approach would ensure that proper cutoffs are chosen.  

 This network method relied of phenotypic annotated networks in which each node 

represented a cell, and the connections in the network represented physical connections 

of a cell to its neighbors. The cells are ascribed to different states depending on particular 

biological markers; then for each different annotated cell type or state, the network can be 

analyzed recursively to extract information about the amount, size, and spatial 

distribution of these phenotypic subnetworks. This ability makes the algorithm scalable to 

any number of states present in the network, as the use of subsequent data reduction 

methods like PCA can map these high dimensional spaces down into few dimensions for 

visualization. In summary this study detailed the creation of a powerful network based 

pattern classification system capable of distinguishing biologically relevant patterns. 
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CHAPTER 5  ELUCIDATING MECHANISMS GOVERNING ESC 

AGGREGATE DIFFERENTIATION 

 Introduction 5.1

Model organisms, such as C. elegans, Drosophila, and zebrafish, are frequently used to 

interrogate the complex sets of regulatory cues and gene regulatory networks governing 

morphogenic processes, like gastrulation and neurulation, due to the technical ease in 

manipulating and imaging [255, 268, 269] these organisms. Pluripotent embryonic stem 

cell (ESC) aggregates present a complementary, alternative in vitro platform for 

investigating mechanisms of morphogenesis due to their intrinsic ability to differentiate 

into tissues from all three germ layers and yield formation of a variety of primitive tissues 

including optic cups [223], human intestinal lining [226] and cerebral organoids [224]. 

Each of these multicellular systems is highly complex both in terms of the heterotypic 

cell types that comprise the tissue and the emergent spatiotemporal organization 

dynamics exhibited by heterogeneous cell populations.  

Computational modeling of embryonic development has become an increasingly 

powerful tool to complement experimental investigations due largely to the fact that 

increased processing speed has reduced the barrier to multiscale simulations of complex 

multicellular organismal systems. Several different computational models have been 

constructed for C. elegans [270] and Drosophila [271-273] to comprehend the 

relationships between cell signaling and lineage development in order to gain new 

insights into the intricate interplay of mechanisms governing development. Stage-specific 

models have also been developed to examine phenomena such as gastrulation [274] and 

somite formation [235] at a mechanical level, while computational models of the 
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formation and differentiation of cells in the early mouse embryo [131] and in mouse ESC 

aggregates [263] explore mechanisms governing early cell fate decisions. Overall, these 

modeling approaches have provided a wealth of quantitative data to describe spatio-

temporal events associated with morphogenesis; however it remains extremely 

challenging to relate spatial modeling predictions directly with experimental outcomes 

due primarily to the difficulty in quantifying multicellular pattern features.  

The challenge of quantitatively describing emergent spatial patterns across 

computational and morphogenic multicellular systems has prevented high-throughput 

analysis of developmental processes. In experimental systems, divergent phenotypes are 

often characterized largely by visual inspection, thus lacking the quantitative rigor and 

objective criteria necessary for direct comparison with computational models. Though 

several techniques exist to automatically distinguish phenotypes at various spatial scales 

[252, 254, 275-277], they often lack the resolution of single-cell regulatory dynamics 

[252, 254], or are customized specifically for investigation of only specific systems [252, 

277]. As a result, quantitative metrics extracted from such studies cannot be easily 

translated between different modes of data analysis or across various model organisms. 

The object of this study is to derive a portable pattern recognition pipeline capable of 

handling various biological and computational inputs to enable direct quantitative 

comparisons on previously unattainable spatial and temporal scales between different 

multicellular systems. 

This study shows that previously defined network analysis schemata derived 

physiologically meaningful quantitative metrics capable of distinguishing subtleties 

between spatial phenotypes in a computationally tractable manner. This novel approach 
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extracts global metrics, such as path lengths and connectivity information, as well as 

local metrics based on attributes of specific clusters of cell phenotypes. Identification and 

comparisons of sub-networks within morphogenic systems allow for greater network 

quantification and significantly enrich the possible metric space by extracting specific 

subpopulation information. In a proof of concept study, network analysis was applied to 

spatial networks observed experimentally during differentiation of ESC aggregates and 

agent based computational modeling of ESC differentiation. This methodological tool 

provided the first quantitative description of spatio-temporal patterns associated with loss 

of pluripotency in ESC aggregates, and uncovered a paracrine mechanism capable of 

explaining the observed differences in spatiotemporal pattern kinetics associated with 

ESC aggregate differentiation. Consequently, this study described the creation of a 

powerful and modular pattern identification algorithm with sufficient portability to 

address meaningful questions about the spatiotemporal dynamics of biological pattern 

formation. 

 Materials and Methods 5.2

5.2.1 Network Reconstruction via Cell Profiler 

Cell Profiler (http://www.cellprofiler.org/)[278] was used to analyze all of the 2D 

samples. For confocal analysis, images were imported, split into their component 

channels (i.e. red, blue, green) and cell nuclei were detected using a local Otsu 

thresholding approach to provide a binary mask. Clumped nuclei were resolved using the 

“intensity” module, followed with the “novel propagation function” within Cell Profiler, 

which led to extended objects which were termed “cells”. In each object, the green signal 

(indicative of Oct4 expression) was measured and reported as the median and mean 
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value. Additionally, the number of adjacent nearest neighbors was measured and the data 

was then exported to a python script that reconstructed the networks by using a KDTree 

implementation from scipy. Images of the networks were generated using the python 

imaging library (PIL). Annotation was performed by thresholding the Oct4 intensity 

values received. In the case of multiple aggregates per image, the networks were split 

such that each individual network contained only one aggregate.  

5.2.2 Computational Modeling  

Computational modeling was carried out using a previously established framework with 

some slight modifications. A KDTree implementation as provided in the scipy.spatial 

package for python was used for detecting and resolving collisions. The form of the rule 

functions was changed from previous work into a more classical activation and 

deactivation function: 

 

𝑃(𝑥) =  𝛼            (5-1)           

𝑃(𝑥) =
1.0

𝑘1𝑛+ 𝑛𝑜𝑟𝑚𝑑
𝑛  , 𝑛𝑜𝑟𝑚𝑑 =

𝑑

𝜖
        (5-2) 

𝑃(𝑥) =  1 − 
1.0

𝑘2𝑛+ 𝑛𝑜𝑟𝑚𝑢
𝑛  , 𝑛𝑜𝑟𝑚𝑢 =

𝑢

𝜀
               (5-3) 

𝑃(𝑥) =  1 − 
1.0

𝑘2𝑛+ 𝑛𝑜𝑟𝑚𝑢
𝑛  and 

1.0

𝑘1𝑛+ 𝑛𝑜𝑟𝑚𝑑
𝑛                           (5-4) 

 

Where ε denotes the number of neighbors, used in calculated the normalized 

differentiation (d) or undifferentiated (u) signal based on the number of neighbors for 

each cell. The constants k1, and k2 represent the set points for activation and inhibition 

respectively. As previously described, the random differentiation coefficient was kept 
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constant in all subsequent simulations, but for the random rule by itself α was set to 

0.0075. These rules were considered to be satisfied if a randomly generated value was 

less than the calculated probability.  

5.2.3 Modeling Diffusion 

Modeling of diffusive species was carried out using a simple Euler forward integration 

scheme for solution. Though faster solutions exist, the forward integration scheme is 

stable even when solving reaction diffusion equations with spatially heterogeneous 

consumption and production terms. The diffusion equation was solved using three 

separate convolution kernels for each independent direction: x, y and z. The solution was 

simulated according to equation 5-5. 

 

𝐶(𝑡) = ∑ 𝐶𝑡−1 + 𝐷 ∗ 𝑑𝑡 ∗ (𝑙𝑥 + 𝑙𝑦 + 𝑙𝑧) + 𝑝 − 𝑞𝑡
0      (5-5)  

 

Where D is the diffusion coefficient, dt the time step of integration, p the source term, 

and q the consumption term, and lx, ly, lz are the solutions to the 1-D diffusion kernel in x, 

y, and z respectively. In the case of the source and sink terms, both are assumed to be 

independent of the concentration. The summation indicates that the solution is solved 

iteratively until either the upper time limit is met, or a steady state convergence is 

reached. Steady state was defined as no appreciable change (1E-5 of the current 

concentration) in the concentration gradient from a given time step to the next. All 

coefficients and constants were defined such that the final units of the concentration 

gradient where in μM, with a spatial resolution in μm. The time step dt, was subjected to 

the constraint in equation 5-6 for conditional stability of the integration scheme: 
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𝑑𝑡 =  
.5

𝐷(
1

∆𝑥
+

1

∆𝑦
+

1

∆𝑧
)
          (5-6) 

 

Where x, y, z represent the spatial resolution of the grid on which the solution was 

solved. All convolution was carried out using scipy.ndimage convolve function, while a 

specific gradient class was created for handling diffusion of different soluble species. The 

rules for differentiation based on diffusion were implemented using classical inhibition 

equations. In the case of positive induction, where the soluble factor induced 

differentiation, the probability was defined as is shown in equation 5-7. In the case of 

negative induction, where the soluble factor inhibited differentiation, equation 5-8 was 

used. In the case of a combined paracrine schema both equation 5-7 and 5-8 were used.  

 

𝑃(𝑥) =  
1.0

𝑘1𝑛+ 𝐴𝑛           (5-7) 

𝑃(𝑥) = 1 − 
1.0

𝑘2𝑛+ 𝐼𝑛           (5-8) 

 

Where A and I represent the concentrations of soluble activator and inhibitor at the cell 

location, k1 and k2 represent the half maximal response concentrations, and n governs 

the width of the resultant sigmoidal probability distribution. In the case where a cell 

location did not lie directly on a point defined on the gird, cubic interpolation was used to 

infer the value at these locations. Additionally, a counter was implemented which would 

keep track of the time delays associated with each soluble signaling factor, which 

essentially represented a signal duration parameter. This helped to modulate the response 

time of cell to given soluble signals.  
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5.2.4 Parameter Ranges 

For the various different rules a range of parameters was investigated to give a coherent 

sampling of the relevant parameter space. These parameter ranges are summarized for 

each rule in Table 5-1. For the paracrine rules, evaluation of the consumption to 

production coefficients ratio (denoted p/q) was performed separately as a test before large 

scale simulation were run. Taken together all of these parameter sets took ~ 2500 hours 

of cumulative simulation time to run, which on a 64 core cluster was equivalent to 

approximately 380 hours of run time (~ 15 days) and generated roughly 15 terabytes of 

data.  

 

Table 5-1: Parameter Ranges For Simulations 

Rule Set Parameter Name Range 

Local 

Random 

Α 0.001,0.0025, 0.005,0.0075, 0.01 

Local 

Negative 

Feedback 

α 

k1 

n1 

0.001, 0.005, 0.01 

0.1,0 .3, 0.5, 0.7, 0.9 

10,50 

Local 

Positive 

Feedback 

α 

k1 

n1 

0.001, 0.005, 0.01 

0.1, 0.3, 0.5, 0.7, 0.9 

10,50 

Local 

Competing 

Feedback 

α 

k1 

n1 

k2 

n2 

0.001, 0.005, 0.01 

0.1, 0.3, 0.6, 0.9 

10,50 

0.1, 0.3, 0.6, 0.9 

10,50 

Paracrine 

Positive 

α 

k1 

n1 

p/q 

0.001, 0.005 

0.006, .008, .01, .012, .014 

10, 50 

10, 50, 100 

Paracrine  

Negative 

α 

k1 

n1 

p/q 

0.001, 0.005 

0.006, 0.008, 0.01, 0.012,0 .014 

10, 50 

10, 50, 100 
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Table 5-1: Continued 

Paracrine 

Competing 

α 

k1 

n1 

k2 

n2 

p/q 

0.001, 0.005 

0.006, 0.008, 0.01, 0.012,0 .014 

10 

0.006,0 .008, 0.01,0 .012, 0.014 

10 

10, 50, 100 

 

 

 Results 5.3

5.3.1 Converting Experimental Images to Digital Networks 

Images of Oct 4+ to Oct4- transitions during differentiation of 3D murine ESC 

aggregates were acquired experimentally to determine how well network metrics 

captured an in vitro dynamic biological process. Since pluripotent differentiation is 

known to be modulated by aggregate size [250, 279, 280] , two starting cell densities 

were examined (250 and 1000 cells/aggregate). In order to apply the previously derived 

network metrics for pattern analysis, experimentally-obtained confocal images were 

converted into a network representation of the cells using a digital reconstruction pipeline 

(Figure 5-1). Briefly, this involves splitting the image up into component channels, and 

the performing segmentation of the cells based no nuclei, which is this case is on the blue 

channel. In this specific case cell bodies were the inferred using a propagation algorithm 

included in the Cell Profiler software suite. A representative time course of 

differentiation in 1000-cell aggregates (Figure 5-2) demonstrates the fidelity of this 

process in accurately converting images into annotated networks. 
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Figure 5-1: Network digitization process for 2D aggregate images. The process of 

splitting images and detecting cells is performed in Cell Profiler, while the subsequent 

steps are performed utilizing python. 

 

 

Figure 5-2: Fidelity of network digitization on experimental images. Experimental 

images (Oct4 green, DAPI blue, phallodin red) on top to reconstructed networks on 

bottom (blue, Oct4-, teal Oct4+). Scale bars are 100 μm.  

 

 

 

Once the networks are reconstructed, a cell state was next assigned based on phenotypic 

information. For this process a threshold was defined, below which cells were considered 

negative for the marker, and above which they were considered positive. In this work the 
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transcription factor of interest Oct4 undergoes a binary state transition during this time 

period, making this assumption justifiable. However, it is important to note that not all 

systems behave in this manner, and thus choosing a threshold for biological markers 

which display a continuum of expression can be complicated. To ease this process, this 

network based approach also enables image based cytometry analogous to flow 

cytometry results in which each cell can be plotted as a function of the various markers.  

 

5.3.2 Spatial Pattern Associated With Differentiation 

After acquiring confocal images of ESC aggregates of various sizes undergoing the 

differentiation process (Figure 5-3 A), the resultant digitized ESC aggregate networks 

were analyzed with the aforementioned network metrics. To analyze the trajectories of 

the aggregates over time, principal component analysis (PCA) was performed. PCA 

revealed an average trajectory through the latent variable space for cell aggregates in 

which all cells began in an undifferentiated state and proceeded through a transitioning 

period until finally settling into a differentiated state (Figure 5-3 B). The PCA model 

explained 76.1% of the variance in the data: 43.6% from PC-1, 22.2% from PC-2, and 

10.3% from PC-3 (Figure 5-3 C). All metrics significantly contributed to at least one 

principal component, suggesting that network-derived metrics capture the variance of 

biological spatial patterns. PC-1 represented differentiation, while PC-2 and PC-3 again 

correlated with spatial sub-network descriptors representing inter-pattern variation. The 

transitioning state was separated from the Oct4+ and Oct4- states largely by PC-2, 

suggesting that aggregates moving through the transitioning state had a high degree of 

intra-aggregate heterogeneity. The principal component metric weights for the 

experimental data closely mirrored the weights for the in silico training set, indicating 
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that network-derived metrics comprehensively capture the inherent biological variance 

that transpires during the course of ESC aggregate differentiation.  

 

 
Figure 5-3: Evaluation of spatial and temporal patterns during early ESC aggregate 

differentiation. (A) Shows the experimental plan and timeline. Samples were removed 

and analyzed for confocal microscopy on days 2-7. (B) PCA trajectory for 1000 cell 

aggregates. Circles highlight the states present. (C) Heat map of the weights of each 

metric in relation to each principal component. (D) Pattern annotations for what pattern 

class each sample falls into. (E) The pattern composition for each day of differentiation. 

(F) SVC classification identifies patterns which contain aspects of multiple core pattern 

classes. Top row shows experimental images, bottom row shows predicted pattern 

composition.  

 

   

 

While the Oct4+ and Oct4- states were quite distinct, the intermediate transitioning 

period displayed a great amount of variance (Figure 5-3 D). To determine if the variation 
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was due to differences in spatial patterns, classification was performed using the 

previously trained SVC classifier to characterize the distribution of spatial patterns in 

each state. Classification indicated that the initial state consisted largely of a mix of 

undifferentiated, random, and outside-in patterns, while the final state consisted of a mix 

of entirely differentiated and outside-in patterns (Figure 5-3, D,E). The variation with 

respect to each time-point peaked at days 5 and 6 (Figure 5-3B), and days 5 and 6 also 

displayed the most variation in spatial patterns (Figure 5-3 E), reflecting that the variation 

was due to the presence of diverse spatial patterns. Furthermore, SVC classification 

predicted that many of the aggregates at day 5 and 6 could belong to multiple pattern 

classes, indicating that these patterns were more spatially complex and thus displayed 

components of multiple different pattern types (Figure 5-3 F). Overall, spatial pattern 

evolution progressed in the following temporal order: undifferentiated, snaked, random, 

globular, inside-out, differentiated.  

Interestingly, similar pattern trajectories were also observed for the 250-cell 

aggregates (Figure 5-4). The Oct4- state was a little more compact indicating a more 

complete differentiation than in the 1000-cell trajectory (Figure 5-4 A). Overall, the 250-

cell aggregates underwent a much faster differentiation, over approximately a 24 hour 

period (starting at day 4), than the 1000–cell aggregates (Figure 5-4 C). This discrepancy 

in differentiation trajectories is consistent with literature showing different differentiation 

rates and fates based on aggregate sizes [250, 279-282]. These results represent a 

biological trajectory describing spatial pattern evolution in a portable quantitative 

fashion, but even more importantly, the analysis suggests that early differentiation in ESC 

aggregates progresses via quantifiable spatial patterns that do not display purely random 



 71 

characteristics. Furthermore, this is the first description of biological trajectories utilizing 

information from single cells to capture spatial pattern complexity.  

 

 

Figure 5-4: 250 cell/aggregate pattern trajectory. (A) The differentiation trajectory where 

each point represents an individually analyzed network. The circles denote which state 

the observation falls into. (B) Individual networks color-coded by pattern type. (C) 

Pattern distributions over the 5 day differentiation time course. 

 

 

5.3.3 Simulating Rules Based on Diffusion 

It has long been speculated the ESCs secrete molecules which affect the differentiation 

process [106, 258] and one prevalent example of this is secretion of the small peptide 

leukemia inhibitor factor (LIF) in ESCs[116, 283]. While various studies have shown that 

LIF is important in maintaining stem cell pluripotency, it is always difficult to measure 

the quantitative distributions of such gradients inside complex 3D structures. While 

techniques like FRAP can capture diffusive metrics, this requires small labeled dies 

whose diffusion coefficients differ by a few orders of magnitude from soluble protein 

species. One way to infer actions of these molecules is to use computational modeling 

approaches. However, while many models have been constructed to examine growth 

factor or nutrient penetrance into aggregates, only a few have been constructed to 

examine heterogeneous spatial evolution of gradients resultant from intra-aggregate 

paracrine signaling. This is largely due to computational limitations associated with the 

introduction of various spatial terms, which transforms the problem into a coupled 

reaction diffusion problem. Solving these problems requires simulation of each time step 
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iteratively as no steady state solutions exist, which represents a non-trivial computational 

cost.  

 To examine the effects of spatially heterogeneous consumption and production 

terms, a simple proof-of-concept study was performed. In this simulation a single cell in a 

small 100-cell aggregate was set to a differentiated state. A single paracrine factor was 

secreted which induced differentiation. The ratio of consumption to production of the 

factor was varied to ratios of 1:100 (Figure 5-5 A), 1:50 (Figure 5-5 B) and 1:10 (Figure 

5-5 C).  The resulting simulations showed that changing this ratio affected the gradient in 

two ways (Figure 5-5 D). The time it took the gradient to reach a 2E-5 μM concentration 

increased as the ratio decreased, as did the number of cells influenced or the width of 

gradient. The width of the gradient was defined as the area of the concentration gradient 

that was above 2E-5 μM. Ultimately for the subsequent simulations a 1:10 ratio was used 

as this demonstrated a gradient with the shortest width, which should thus impart the 

most spatial variability on the simulations.  
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Figure 5-5: Investigation of consumption/production ratios of soluble concentration 

gradient evolution. Representative transition trajectories for the 1:100 (A), 1:50 (B) and 

1:10 (C) consumption to production ratios. (d) The average cell length influenced by the 

paracrine gradient for the 1:100 (blue), 1:50 (green) and 1:10 (red) consumption to 

production ratios.  

 

5.3.4 Comparing Computational with Experimental Pattern Trajectories 

Next, to probe the mechanisms governing the formation of spatial patterns associated 

with differentiation, an agent based modeling approach was employed in which cells are 

allowed to proliferate, migrate, and differentiate within a 3D aggregate 

configuration[263]. In prior work, a simple set of rules based on local neighboring cell 

state(s) was used to govern changes in cells state; however, comparisons between 

modeling results were nearly impossible because a quantitative set of descriptors for 

assessing spatial patterns did not exists. In addition, comparison with experimental data 

could not be directly accomplished without a validated digitization strategy for 
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experimental data. These challenges were addressed simultaneously by enabling direct 

comparison between spatial patterns from computational models and experimental results 

via the use of these newly defined network metrics.  

Seven models with different rule schemes driving differentiation were 

investigated: random, local positive feedback, local negative feedforward, local 

competing feedback, paracrine activation, paracrine inhibition, and combined paracrine 

activation/inhibition (Figure 5-8 A). Simulations were carried out over a six-day period 

with different initial cell densities: 250- and 1000-cells/aggregate. Each rule set was 

simulated with multiple parameters to explore the breadth of pattern trajectory space 

(Table 5-1). PCA using the metrics described in figures 1 and 2, captured 76.5% of the 

simulation variance: 48.83% from PC-1, 17.7 from PC-2, and 9.9% from PC-3 (Figure 5-

6). Again, PC-1 represented differentiation, while the PC-2 was influenced by standard 

deviations in sub-network measurements, correlating with the formation of spatial 

patterns in the simulations.  

 

 

Figure 5-6: Principal Component Analysis for picking axes of largest variance. First 5 

principle component axes which together explain ~ 90% of the variance present in the 

data.  Red and blue indicate a positive or negative contribution respectively of the metric 

with the axes of variation.  
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The previously trained pattern classifiers were applied to assess the spatial patterns 

generated by the computational simulations and analyzed using hierarchical clustering 

(Figure 5-8 B). While the competing, negative feedforward, and positive feedback rules 

all generated similar pattern distributions and trajectories, the paracrine rules generated a 

more diverse set of pattern types.  When hierarchical clustering was performed across all 

rule sets simultaneously, a wide variety of behaviors emerged (Figure 5-7). The largest 

difference was between parameter sets which reached a terminal differentiated state, 

versus those that did not. These results indicate that various complex pattern evolutions 

and temporal kinetics can be achieved using parsimonious, generalized rule sets.  

 

 

Figure 5-7: Hierarchical clustering of pattern trajectories across all rule types. The top bar 

indicates what rule type the simulated pattern trajectory belong to, while the interior heat-

map colors indicate the pattern type which the simulation is progression through at that 

time.   

 

 

A powerful feature of the network-based methodology is the ability to directly compare 

results across different platforms, which allowed the modeling and experimental data sets 
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to be merged into a single metric set. PCA was used to assess which metric axes were 

most important for describing the variation, resulting in a set of 5 axes responsible for ~ 

90% of the variance along which to compare the different data sets (Figure 5-6). 

Previously it was postulated that a competing feedback scheme could capture the spatial 

pattern evolution during differentiation, but this mechanism failed to explain the kinetic 

differences between 250 and 1000-cell differentiation trajectories. To identify parameter 

sets and rules that did modulate differentiation based on aggregate size, a ratio of the 

differentiation rate of 250-cell to 1000-cell differentiation rate was calculated (Figure 5-8 

C). This ratio confirmed that local feedback rules did not exhibit significant size 

dependent differences, while nearly all of the paracrine rules did. Both the paracrine 

activation and competing paracrine rules resulted in slower differentiation of 1000-cell 

aggregates than 250 cell aggregates, matching experimental observations. However 

examination of the paracrine activation rule revealed that this difference was due to 1000-

cell aggregates not differentiating completely. By comparing these rules to the 

experimental data on the PCA axes derived previously, it could be determined that the 

paracrine competing rule set yielded the best fit (Figure 5-8 F). This rule accurately 

captured both the relevant time scales for differentiation (~24 hours in 250 

cells/aggregate and ~48 hours for 1000 cells/aggregate) and the spatial pattern evolution 

(Figure 5-8 D). Furthermore, this rule suggested that in the 250 cells/aggregates, 

differentiation was primarily induced by the absence of activator for the pluripotent state, 

while at the 1000 cells/aggregate size differentiation was largely caused by the buildup of 

a factor which induced differentiation (Figure 5-8 E). Taken together these results 

demonstrate a non-intuitive paracrine mechanism that can accurately explain 
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differentiation of ESC aggregates and hence demonstrate the power and utility of network 

based metrics for elucidating new mechanisms governing biological processes.  

 

 
Figure 5-8: Characterization of computationally pattern trajectories and comparison to 

experimental patterns. (A) Rules governing modeling. Red arrows, negative feedback, 

green arrows positive feedback, gradient boxes indicate a soluble morphogen gradient. 

(B) Hierarchal clustering using a ward linkage algorithm of the pattern trajectories for 

each parameters set, annotated by rule (gray scale bar). (C)The ratio of the 250-cell to 

1000-cell differentiation rate. Blue represents slower differentiation in 1000-cellular 

aggregates, while red represent faster differentiation. (D) Representative images showing 

the differentiation trajectories predicted by the competing paracrine rule. Cells in blue are 

Oct4-, cells in teal are Oct4+. (E) Percent differentiation for representative 250 (top) and 

1000-cell (bottom) simulations. Red represents differentiation induced via absence of 

soluble factor one, while blue represents differentiation induced via the presence of 

soluble factor 1. (F) PCA projections showing the fits of the 250 (top) and 1000-cell 

(bottom) experimental data (red) to the best fit simulations (blue). 
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 Discussion 5.4

Network and information theory provide a powerful tool for the analysis of many 

complex systems ranging from social[284, 285] to biological networks[286, 287]. For the 

first time, our work applies the principles of network theory to the study of morphogenic 

biological systems in a spatial manner. Increasingly, examples of emergent spatial 

patterns are being reported from initial pluripotent states, leading to organoids such as 

optic cups, cerebral tissues, or others
121-123

, however, quantitative descriptions of 

multicellular patterns are still lacking. The quantification could be used in a variety of 

ways: increased QC of organoid structures, elucidation of cellular dynamics during 

structure formation, comparison between different structures. Ultimately this technology 

and approach lends itself well to high throughput screening methods for  

 While a few strategies to examine spatial patterns in ESC aggregates have been 

examined, the extracted metrics are generally not sophisticated enough to capture 

complex structure formation.  For example Warmflash et al. recently used radial distance 

to delineate organization of differentiated phenotypes within micro-patterned ESC 

colonies [223, 224, 226, 288]. While this radial distance worked to some extent for 

capturing the different cell type distributions in their system, this was an artificially 

patterned system 2-D in which ring-like region so of differentiation emerged. Thus, the 

method would not be extendable to formation of germ layers happening in a more 

heterogeneous system such as a cellular aggregate. Herberg et al. used a similar method 

to compare spatial distributions of proteins in ESC colonies to computational 

models[258]. Here they calculated the variation on a per pixel basis for each colony of 

stem cells, and use this radial variation metric to calculate spatial heterogeneity within the 

colony. While this approach works somewhat well for 2D cultures, and could be adapted 

for 3D methods, it has some flaws. First, such methods will not give any information 
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about interacting cell types and will not scale well to multiple different interacting 

biological stimuli. Second, this approach is not sensitive enough to pick out more 

complex spatial patterns. The patterns distinguished are generally radial, and the 

calculated metric is more a measure of combined intensity than it is of any spatial 

distribution of these factors. For each colony, a single metric is extracted and 

subsequently used to distinguish between different pattern types. This does not readily 

allow for the use of multivariate approaches to classify different types of patterns, and it 

debatable whether the metrics presented have the resolution to do so. However, Herberg 

et al. do take their approach a step further than Warmflash et al., and compare the 

extracted metric to a computational model to show a good fit, which demonstrates that in 

theory the comparison of extracted model and image metrics is possible. To the author’s 

knowledge, this analytical approach uniquely enables the first direct quantitative 

comparison between computational modeling and complex emergent spatiotemporal 

patterns during multicellular lineage commitment in 3D ESC aggregates. 

 This method reconstructs cellular locations as interacting networks that can 

subsequently be further subdivided into biologically relevant sub-networks. As 

mentioned previously this network-based approach circumvents  problems associated 

with traditional classification methods that rely solely on standardized images [252] and 

use of individual pixel classification methodologies [236, 289]. While some systems exist 

for classifying spatial patterns in zebrafish [277], C. elegans [275] and Drosophila 

embryos [252], previous approaches require specifically orientated and annotated images, 

are specific to the organism of interest, and/or often do not have single cell resolution. 

This method is the first approach capable of integrating single cell information to 

quantitatively describe tissue level patterns. Single cell information integrated with the 

power of network based theory allows the extraction of both spatial and temporal data 

about the evolution of patterns.    
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 This work shows the derivation of spatial pattern trajectories associated with 

experimentally observed loss of Oct4 in ESC aggregates, and computational models of 

Oct4 loss in ESC aggregates. This network analysis approach highlights a potential novel 

mechanism in ESC differentiation by suggesting that ESC aggregate spatiotemporal 

pattern kinetics can be explained by a combined paracrine signaling methodology. A 

large body of literature exists which suggests that differentiation is heavily modulated by 

ESC size 
204,234,243-245

. However, as of yet, no one has been able to determine the 

mechanisms which govern this size-dependent regulation. The two paracrine process 

proposed here can explain these differences (a secreted factor responsible for maintaining 

pluripotency, and a factor which induces differentiation), and mirrors the known 

properties of soluble LIF and FGF4 signaling respectively [102, 106, 110, 290]. In fact 

stem cells are known to secrete both factors in the pluripotent state, and FGF4 has been 

shown to reduce Nanog expression, causing cells to enter a “primed” state, which makes 

them more responsive to differentiation cues.   

 It is worth noting that while the local rules are capable of capturing the spatial 

pattern evolution, they can’t explain the temporal kinetic differences associated with 

differentiation of different size aggregates. This apparent lack of local neighbor-to-

neighbor regulation of phenotypic state, as analyzed by our methodology, suggests that 

transmission of cell state information by intercellular cues, such as Notch, may impact 

later stages of differentiation than the time period examined here. However, in the 

mathematical analysis of diffusion consumption and production ratios (Figure 5-5) it was 

noted that a wide variety of behaviors can be attained via paracrine signaling. When the 

consumption to production rate is high (Figure 5-5 A), the concentration gradient 

influences a wider range of cells, and thus tends to unify patterns over space. However, at 

low levels (Figure 5-5 C) paracrine effects only reach a few cell lengths, leading to local 

pattern formation which mimics the contact mediated interactions.  
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 In summation, this novel pattern classification pipeline permits entirely new 

forms of quantitative analysis based upon the fundamental interconnectivity of 

multicellular networks, which could revolutionize the characterization of biologically 

complex spatiotemporal phenomena. 
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CHAPTER 6  APPLICATIONS OF NETWORK ANALYSIS  TO 

OTHER BIOLOGICAL SYSTEMS 

 Introduction 6.1

The work in previous chapters focused primarily on the Oct4 transition, as this is one of 

the first cell fate decision made during development, to try and understand biological 

mechanisms regulating this transition. In particular, the network based analysis technique 

developed in Chapters 4 and 5 provided unique biological insight into how soluble cues 

interact to form complex spatial patterns. However, while Oct4 transitions are important 

in the context of early cell fate decisions, ultimately the scalability and biological 

relevance of network based pattern analysis needed to be addressed. Along these lines, 

several key questions remained: could this approach scale to larger aggregates of cells, 

was analysis of markers which display gradient patterns of expression possible, does the 

method scale with the number of markers, and can it provide novel biological insight in 

the systems examined? To address these questions, three different model systems were 

analyzed. 

 The first system investigated at gastrulation in cichlid fishes. Specifically 

expression of distless homeobox gene (dlx3b) and BMP signaling via downstream 

phosphorylation of SMAD were monitored to examine formation of the neural plate 

during gastrulation. Though it was known that dlx3b was involved in the clearance of 

BMP from the neural plate, the complex spatial interplay of the two signaling molecules 

was still unclear. This work challenged the network based architecture by examining a 

marker (phosphorylated Smad) which displayed expression in a gradient fashion, as well 

as scaling the network size to thousands of cells. Furthermore, this approach yielded 

novel insight into the evolution of dlx3b gene expression with respect to BMP induced 

signaling.  
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 The next system investigated formation of neural progenitor domains via a 

process known as neurulation which occurs after gastrulation during development. This 

progenitor domain will first form motor neurons and then subsequently differentiate 

towards supporting glial cell types. This transition from motor neuron to glial cell types is 

commonly referred to as the glial switch. In this work, an ESC aggregate system was 

used to model the formation of neural progenitor domains, and subsequent differentiation 

towards motor neurons and glial cells. By examining the spatial patterns associated with 

this switch like behavior this work examined whether network analysis was sensitive 

enough to distinguish between soluble and secreted cues in the context of a complex 

differentiation pathway. Ultimately this approach yielded novel insight and suggested 

that a soluble factor secreted from motor neurons, which negatively regulated motor 

neuron differentiation from progenitor populations, was responsible for the switch to glial 

cell production.  

 The final system investigated was the formation of mesenchymal like regions in 

ESC aggregates which were thought to occur via an EMT-like process. This study 

examined whether network based analysis and properties could aid in the classification of 

various different cell structures present in histological images. Network based metrics 

were shown to be extremely useful for classification of several different cell types 

including mesenchymal like cell types, and dense epithelial regions. Furthermore, 

representation of aggregates as single data points in a reduced metric space allowed novel 

comparisons across experimental systems, as well as examination of intra and inter-

aggregate heterogeneity. Ultimately this work showed that network based spatial pattern 

analysis was capable of analyzing complex spatial pattern dynamics to provide unique 

biological insight across multiple systems in a portable fashion.  
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 Gastrulation in Cichlid Fish – The role of dlx3b and BMP signaling 6.2

6.2.1 Background 

To assess the applicability of network-based analysis on a tightly regulated biological 

process involving multiple biological signals, gastrulation of east African cichlid fish 

embryos was analyzed. East African cichlids represent a fascinating organism due to the 

adaptive radiation of the species, and the variety of isolated environments in which they 

live [301-305]. Specifically the cichlids in Lake Malawi have evolved into species which 

can be grouped into two larger groups: rock and sand. The sand dwellers feed primary at 

the surface, while the rock dwellers feed closer to the bottom. Due to the different cues 

present in the two environments, the brains of the fish develop quite differently. Work in 

the Streelman lab has shown that differences in brain development can be traced back to 

differences in early developmental stages, specifically formation and specification of the 

neural plate during gastrulation [306].  

 Gastrulation begins from a relatively undifferentiated cell aggregate that 

undergoes coordinated multicellular movement and differentiation to yield three tissue 

layers, a neural plate and rudimentary gut [307]. This fundamental developmental process 

occurs under the tight spatial and temporal control of morphogens, such as bone 

morphogenic protein (BMP), and subsequent activation of downstream Smad signaling 

via phosphorylation (designated as pSmad). BMP signaling moves in a dorsal-to-ventral 

direction across the entire embryo during gastrulation to eventually form a pSmad 

gradient [307] and the subsequent amount and rate of BMP removal correlates with 

expression of the distless homeobox gene, dlx3b[308]. As with pSmad activity, 

expression of the dlx3b gene went from being ubiquitous across the majority of the 
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embryo to specifically and strongly expressed in the neural plate boundary. The gene 

dlx3b is known to be important for specification of the preplacodal endoderm, and is 

crucial in establishing the boarder and evolution of the neural plate [309]. While the 

spatial localization of dlx3b is known throughout development, it is currently not well 

understood how the spatial temporal relationship between dlx3b expression and BMP 

expression varies in different species of cichlid fish. Assessing the temporal and spatial 

patterns of multiple correlated signals during morphogenic processes represents a 

powerful new application of network analysis which could provide insight into the 

species specific regulation of these cues during gastrulation. In this work, the properties 

of dlx3b gene expression were assessed with the hope of establishing a pipeline for 

quantifying spatio-temporal gene expression differences in cichlid species.  

6.2.2 Methods 

6.2.2.1 Three Dimensional Network Reconstruction 

First the confocal images were read by ImageJ, merged into a single channel and then 

saved as an image sequence. The image sequence was read using python and converted 

into a memory mapped array via the numpy package, which allows for analysis of large 

arrays that would normally exceed the amount of memory present in the computer’s 

RAM. Images were split into respective red, green, and blue components and then 

denoised using a Gaussian filter from scipy’s ndimage package. Initial thresholding was 

performed on the blue channel using a global Otsu approach from the python package 

skimage to identify grouped nuclei. Local maxima detection was performed to segment 

nuclei using the python package skimage and once detected, a merging step was 

performed to identify local maxima that were too close to each other, and these were 
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merged into a single new local maxima point. The local maxima points were then 

converted into seeds for nuclei detection and served as the subsequent nodes in the 

network. Connections were formed using a nearest neighbor approach using a KD Tree 

implementation from scipy, in which only neighbors within a certain distance (twice the 

cell radius) were connected to each other. The cells were then annotated by computing 

the average red and green values within radii around the points. A global threshold over 

all images was established for the red and green channels using an Otsu thresholding 

approach over all of the nodes. The networks were then filtered to remove unconnected 

subnetworks, and further filtered using a quality metric that excluded all nodes with a low 

blue signal in order to produce the final annotated network.  

6.2.2.2 Feature Elimination 

Feature elimination was performed utilizing a combination of techniques. A first 

approximation of important features was extracted by creating box plots of all metrics 

across all embryos examined. If a feature did not display a sufficient amount of variation, 

then it was removed for subsequent analysis. In this specific case, the cichlid markers 

tended to display as single, well connected clusters, making most of the metrics 

measuring variation between clusters irrelevant. Thus these metrics did not display 

enough variability across the embryos and were subsequently removed. The technical 

term for this process is variance thresholding, and it is one of the simplest feature 

selection tools available. To back up these results, univariate feature selection was also 

applied. In univariate feature selection the SelectPercentile function in SKlearn was 

applied. Recursive feature elimination, which uses recursion and linear fits, was also 

performed.  
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6.2.2.3 Cichlid Maintenance and Culture 

Cichlid maintenance and culture was performed by Jonathan Sylvester and Amanda 

Ballard. Several species of East African Cichlids were kept as brooding populations in 40 

gallon tanks, in two species per tank configurations, with total individuals equaling 30 to 

40. Male to female ratio is typically 1 to 4 up to 1 to 10, depending on species. Fishes 

were allowed to spawn naturally, then broods were taken from the female’s mouth 

approximately 24 hours post fertilization (hpf). A brood consisted of 20 to 80 eggs, 

depending on the species. Broods were grown in 150 mL flasks, in a mixture of tank 

water from which the mother lives, and methylene blue, to prevent fungal growth. A 

subset of individuals was taken from each brood at 36 hpf, and at 4 hour intervals until 48 

hpf to cover the entire duration of gastrulation. Embryos were fixed in 4% 

paraformaldehyde (PFA) at each time point of interest. 

6.2.2.4 Cichlid Embryo Staining and Confocal Imaging 

Immunostaining and imaging was performed by Jonathan Sylvester and Amanda Ballard. 

After fixation, expression of dlx3b was visualized using whole mount in situ 

hybridization, using a modification of previously published methods [310]. The gene was 

visualized using Fast Red (naphthol chromogen, Roche Diagnostics). After in situ 

hybridization, embryos were immunostained for pSmad 1,5,8 protein, using previously 

published protocols [311]. Embryos were then bathed in Vectashield (Vector Labs) 

containing DAPI and placed in a specially built mold that holds the embryo upright. 

Embryos were then scanned using a Zeiss LSM 700-405 confocal microscope and 

processed using LSM 700 software and Image J. 
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6.2.2.5 Path Finding Analysis 

Path finding algorithms were used to assess the likely flow of information through the 

system. Briefly, a set of waypoint nodes were chosen for the algorithms to pass through 

in a given order. For cichlid fish analysis, 3 waypoint nodes where chosen, a start node, 

an end node, and one in the middle of the gastrulation process. Simulations were run to 

find likely paths or flows of information by assigning a probability function to designate 

which node should be chosen next. In this case the PDF was directly related to the 

distance in the PCA reduced metric space. Thus, the resultant paths were reduced to the 

shortest distance representations in metric space constrained by passing through all 

waypoint nodes.  

6.2.3 Results 

Gastrulation in cichlid fish proceeds is coincident with the formation of the neural plate 

via dlx3b, and the subsequent clearing of the neural plate of phosphorylated Smad 

protein. To capture the complex spatio-temporal dynamics associated with this process, 

embryos at various stages of gastrulation were harvested; immunostained for 

phosphorylated Smad (pSmad) with in situ hybridization was performed against dlx3b. 

Next the embryos were oriented using a microfluidic embryo trap, and imaged using 

confocal microscopy. This produced 3D confocal image stacks for each embryo.  

 As many of the previous analysis performed were in 2D, the inherent 3D structure 

of cichlids presented a challenge, thus a 3D segmentation algorithm was implemented to 

output annotated spatial networks (Figure 6-1). Using the previously defined metrics, 

three separate sub-networks of cells were analyzed: pSmad+, dlx3b+ and pSmad+/dlx3b. 

In addition, several new metrics were added, such as the ratio of pSmad+/dlx3b+ nodes 
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to dlx3b+ nodes and pSmad+ nodes, as well as circularity and eccentricity measures for 

cell clusters in an effort to capture the additional spatial complexity of this system. This 

approach was subsequently validated by the software package IMARIS.  

 

 
Figure 6-1: Network digitization procedure for 3D confocal cichlid images. A Gaussian 

smoothing filtered was applied to filter out noise in the image. Next the image was 

thresholded using a local Otsu method. Next local maxima were detected using a local 

maxima filter. A simple thresholding and watershedding segmentation approach is used 

to separate individual cells using the maxima points as seeds. Next the network is 

reconstructed using a KD-tree method to infer cell connections. Final networks were 

generated by filtering out small unconnected nuclei. 

 

 

One problem with large multivariate data sets is choosing metrics which accurately 

describe the variation in the population. Metrics which do not change across the 
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population can confound subsequent analysis including classification, dimensional 

reduction, or clustering. For this data set many of the metrics which measure variation 

between clusters were not applicable as there was only one primary cluster identified for 

each signal type. To identify which features should be excluded from the data set a 

simple variance threshold method was applied, which only keeps metrics displaying a 

certain amount of variance within the population (Figure 6-1 A,B). This method 

confirmed the exclusion of metrics related to the standard deviation in clusters.  

 

 

 
Figure 6-2: Feature elimination in cichlid fishes. (A) Investigating clustering of metrics 

for metric elimination. The grayed out region shows metrics which all clustered together. 

This gray cluster consists of metrics related to the standard deviations in measured 

values. Data were normalized by each metric such that the max value along each metric 

was 1 (red), while the minimum value was 0 (blue). (B) Identification of informative 

features by examination of metric distributions. Red lines represent the means, while blue 

boxes represent the first quartile, blue dashed lines represent the second quartile, and 

green squares represent outliers. 

 

 

Initial hierarchical clustering analysis of the resulting metrics revealed segregation of the 

data set into three main clusters, but the majority of the data set fell into a single large 



 91 

cluster that was difficult to interpret (Figure 6-3 A). This mirrored results with other 

tissues, mainly the ESC aggregates discussed in Chapter 5 ( 

Figure 5-3). Thus, in order to analyze the clusters further, a PCA model was created 

which explained the majority (83.8%) of the variance: 51.3% from PC-1, 22.9% from 

PC-2, and 9.6% from PC3 (Figure 6-3 C,D). PC-1 correlated highly with metrics 

associated with the shape of pSmad+ and pSmad+/dlx3b+ clusters, while PC-2 was 

strongly inversely correlated with dlx3b+ cluster metrics, and PC-3 correlated with the 

eccentricities metrics. 

 

 

Figure 6-3: Pattern analysis during gastrulation of cichlid fish. (A) Representative 

schematic of gastrulation in cichlids on top,  experimental confocal data in middle (red – 

dlx3b, green – pSmad, blue DAPI, yellow pSmad+/dlx3b+) followed by network 

reconstructions on the bottom (red – dlx3b, green – pSmad, blue DAPI, yellow 

pSmad+/dlx3b). Scale bars are 100 μm. (B) Hierarchical clustering of the data set yields 

three distinct sub-clusters (highlighted by dividing blue dashed lines). (C) PCA of the 
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resulting data set reveals ( n >= 7 per time point) a distinct trajectory informed by time (0 

hours – red circle, 4 hours – green square, 8 hours -blue diamond). (D)  Heatmap of how 

each metric contributes to the principal component model. Blue indicates a strong 

negative contribution, while red indicates a strong positive contribution. (E) Annotated 

PCA plot showing the evolution of pattern formation over time during gastrulation in 

cichlid fish. All images have the same scale bar of 100 μm.  

 

 

This final PCA model not only revealed the initial and terminal states detected by 

hierarchical clustering, but more importantly, resolved the remaining data along a clear 

trajectory (Figure 6-3 C). Selecting various points along the trajectory revealed a set of 

patterns that matched the known biology, while also identifying subtle transition states 

between discrete time points (Figure 6-3 E). Early development time points (0 hours – 4 

hours) were characterized by a shrinking pSmad+ region with an increase in 

dlx3b+/pSmad+ regions, as indicated by the shift primarily in early time points along PC-

2. The midpoint of gastrulation (~4 hours) exhibited an important switch in the formation 

and shape of the dlx3b+ region, and the final developmental stage (4 hours – 8 hours) 

was heavily influenced by the emergence of a crescent of dlx3b expression, as indicated 

by its progression along the PC-1 axis. 

To test how well these metrics predicted the evolution, a set of path finding 

simulations intended to find the most likely flow of information through a given process 

were performed (Figure 6-4 A).The average trajectory for these simulations showed the 0 

hours samples peaking first, followed by a peak in the 4 hour, and 8 hour samples (Figure 

6-4 B). Analysis of the clusters indicated that early samples were marked by a high level 

of pSmad+ and pSmad+/dlx3b+ regions, followed by a gradual increase in the presence 

of solely dlx3b+ clusters (Figure 6-4 C). Taken together, these results indicate that the 

biological trajectory produced by this approach can distinguish the precise state of 

gastrulation of a biological sample regardless of when it was acquired during the process 
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(Figure 6-3 C,E, Figure 6-4 B), further demonstrating the unique strength of a 

quantitative network-based pattern classification approach for analyzing morphogenic 

processes.  

 

 

Figure 6-4: Quantifying cichlid differentiation via path-finding methods. (A) Predicted 

pattern trajectories through time show temporal ordering of early (0 hours, red), middle 

(4 hours green) and late gastrulation (8 hours blue). (B) Averages over all trajectories 

show state evolution from early, to middle to late gastrulation. (C) Average over all 

trajectories showing the evolution of different cluster number during gastrulation. 
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6.2.4 Discussion 

Gastrulation represents a complex stage during development in which the blastula 

undergoes a dramatic transformation in which the three germ layers, endoderm, 

ectoderm, and mesoderm are formed. The ectoderm tissue eventually gives rise to the 

neural plate which forms the neural tube and neural crest cells in a process called 

neurulation. These cells go on to form all of the tissue expressed in the nervous system, 

which underscores the importance of understanding the process of gastrulation and 

subsequent neurulation. As mentioned previously, prior work by the Streelman lab has 

shown that gene expression events occurring as early as gastrulation can be important for 

specifying downstream neural development.  Thus, pipelines for extracting quantitative 

single cell spatial information from images would be crucial for understanding these 

regulatory processes.  

 This work provides a pipeline for analysis of spatial protein and gene expression 

in cichlid fish embryos. Though it did not directly address the question of differences in 

dlx3b spatial expression patterns between cichlid species, this study showed the network 

based metric system accurately captured dlx3b and pSmad dynamics during gastrulation. 

This work highlighted the creation of a principal component (PCA) model which utilizes 

the network derived metrics to segregate embryos based on stage of gastrulation. The 

model highlights the evolution of pSmad+/dlx3b+ regions as key measurements for 

distinguishing early stage embryos, while the evolution of the subsequent dlx3b+ 

crescent is important for distinguishing later stage embryos.  

 The spatial expression levels of dlx3b were quite binary, the gene was either on or 

off, however, pSmad expression represented more of a challenge as it was present in a 

gradient. Gradient expression levels were difficult to digitize into a binary on/off state. 

For the context of this work, the threshold for pSmad positive clusters was set extremely 

low to capture a majority of the pSmad signaling present in the embryo. In the future 

more sensitivity could be achieved by splitting the pSmad region up into two or possible 
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even three regions with different expression levels. The relative size and spatial location 

of the different regions would provide further resolution into the dynamics of the BMP4 

induced pSmad gradient. 

 Taken together this work provided a proof of concept approach demonstrating 

that network analysis was powerful enough to classify early expression patterns during 

gastrulation in cichlid fish. The networks analyzed here were on the scale of tens of 

thousands of nodes, with tens to hundreds of cellular connections.  Furthermore, the 

patterns analyzed in this study were typically a single cluster of dlx3b or pSmad 

expression which challenged the sensitivity of the network based method to detect subtle 

differences from single large clusters of cells. In future collaboration with the Streelman 

lab this network based method will be used to classify embryos from different cichlid 

species to determine if there are differences in dlx3b expression during cichlid fish 

gastrulation.   

 

 Neural Differentiation and the Glial Switch: Turning on the Light 6.3

6.3.1 Background 

The glial switch remains an enigma in neuronal developmental biology. After the 

formation of the neural tube and crest cells (outlined in section 6.2.1), the ventral portion 

of the tube undergoes specification into neural progenitor domain under the control of a 

Sonic Hedgehog (Shh) gradient which is secreted from the notochord [312, 313], a group 

of cells formed during the gastrulation process. The notochord is responsible for the 

formation of the neural tube and crest during development. During development the Shh 

signaling gradient led to the formation of a progenitor pool (marked by Olig2)  which 

created motor neurons at early stages (marked via HB9) and oligodendrocyte precursor 

cells (marked by Olig2[314] and Nkx2.2[315]) at later stages.  
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 In the context of embryonic stem cell aggregates, motor neurons and glial cells 

proceed through a progenitor cell phenotype (marked via Olig2)[316] making this an 

appropriate in vitro system in which to study the glial switch. To elucidate possible 

molecular mechanisms governing the spatio-temporal patterns associated with the glial 

switch in vitro, network based analysis in combination with simulations were used. 

Different signaling paradigms like soluble signaling through TGFβ and local cell-cell 

interaction via Notch [317, 318] have been implicated in regulating progenitor cell 

populations. In this work a previously developed computational model was used (Chapter 

3) to ask questions about the factors regulating transitions between cell states. By 

comparing images to computational simulations via a network analysis approach, this 

study highlights several novel findings about biological regulation of the glial switch. 

First, the classical linear pathway in which a cell progressed through a nascent dividing 

progenitor state before they differentiated could not explain the cellular dynamics 

observed in this system. Second, the model suggested a soluble negative feedback 

mechanism existed which governed the differentiation of motor neurons from 

progenitors. Taken together these results highlight the power of network based analysis in 

combination with simulation to elucidate mechanisms governing complex spatial 

evolution of biological processes.   

6.3.2 Methods 

6.3.2.1 Network Reconstruction for 3D Networks 

First, confocal images were loaded into the commercial software package IMARIS. A 

blob finding routine for identifying nuclei or spots was run. This routine involved 

utilizing a Gaussian smoothing step with a filter size of 6.5 um, following by a 

subsequent local maxima detection step to identify seeds for nuclei. These seeds were 

then expanded via a region growing algorithm, and resulting clumps of nuclei were 

segmented using an intensity watershed algorithm based approach. For the purposes of 
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these studies this yielded sufficiently annotated nuclei, however, more sophisticated 

cellular segmentation techniques exist, particularly those using Gaussian Mixture Models 

(GMMs) to approximate nuclei. Then all of the properties of each spot were calculated 

(size, shape, and intensity information) and exported to a file which was then processed 

using a custom python script. In this case, IMARIS does not export neighbor connectivity 

information, so this information was inferred by reconstructing via a KDTree 

implementation (available under scipy.spatial.KDTree) with a distance cutoff of 22.5 um. 

This distance was chosen as it represented the one and a half times the average diameter 

of a cell, and it was inferred that this distance would capture most cellular interactions. 

Each node was then annotated according to the information form the respective channels, 

blue (channel 1) for Nuclei, green for HB9 (channel 2), red for Olig2 (channel 3), and 

cyan for Nkx2.2 (channel 4). For subsequent cluster analysis, cells were only considered 

to fall into the glial class if they stained positive for both Oli2 and Nkx2.2, while 

progenitors were identified as cells which only stained positive for Olig2. Though motor 

neuron progenitors (Olig2+/HB9+) could be identified via this analysis, they were not 

analyzed in the following models. Cells staining positive for Nkx2.2 were considered 

artifact and also not included in the analysis.  

 

6.3.2.2 Cell Culture and Aggregate Formation 

Mouse embryonic stem cells (mESCs) were thawed at 10^6 cells per 10 cm dish in 10 

mls media. Media was composed of a 1:1 mix of Advanced DMEM/F12 and AB2 

(ArunA Biomedical) with Knockout Serum Replacement (Life Tech, 10%), L-Glut (life 

tech, 2 mM), PenStrep (life tech, 1x), beta mercaptoethanol (100 um). Aggregates of cells 

were formed via rotary culture as described previously. Briefly after cell seeding ESC 

aggregates are formed via rotary culture at 50 RPM in an incubator at standard culture 

conditions (37 C and 5% CO2.) Aggregates were subsequently maintained in this 
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environment with exchanges of medium on days 1, 2, 3 and 6. To differentiate down the 

neural lineage retinoic acid and purmorphamine (Smoothened Hedgehog  (SHH) agonist) 

were added to the medium at a concentration of 1 uM on days 2,3 and 6. To induce 

maturation of neural cells types brain derived neurotrophic factor (BDNF) and glial-cell 

line derived neurotrophic factor (GDNF) were added to the medium on day 6 at a 10 

ng/ul concentration. The notch response inhibitor DAPT was added at day 3, 5 or 7 (and 

everyday thereafter) at a concentration of 1 uM which established 4 treatment groups, no 

DAPT treatment, DAPT at day 3, DAPT at day 5, and DAPT at day 7. 

6.3.2.3 Immunostaining and Confocal Microscopy 

ESC aggregates were collected for staining and fixed in 10% formalin for 45 minutes. 

EBs were permeabilized for 30 minutes in 1.0% TritonX-100, re-fixed in formalin for 15 

minutes, and blocked in blocking buffer (2% bovine serum albumin, 0.1% Tween-20 in 

PBS) for 3 hours. Olig2 (1:500, Millipore) and Nkx2.2 (1:5, DHSB) antibodies were 

applied overnight on day one. Secondary antibodies (Alexa Fluor 546 for Olig2 and 647 

for Nkx2.2, Life Tech) added for 4 hours, followed with a subsequent Anti-GFP antibody 

(conjugated to Alexa488) overnight staining step. After staining the aggregates were 

counterstained with Hoescht (1:100) for 25 minutes. At least 10 aggregates for each time 

point and treatment condition were imaged on a Zeiss LSM 710 Confocal microscope 

using Zen software.  The 40X oil objective was used to obtain sufficient spatial resolution 

with a 2-μm z-resolution for 80-100 μm stacks total.   

6.3.2.4 Agent Based Computational Modeling 

ESCs were modeled using a simple agent based modeling approach. Individual cells were 

allowed to proliferate, and change state. The state changes were defined via sets of 

probabilistic equations. Four different rule sets were considered for this analysis: linear 

model random, linear model feedback, fast model random and fast model feedback. The 

equations along with parameter values used are shown for each scenario below. In all 
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cases num_mn refers to the number of motor neurons present in the simulation, mn 

denotes motor neuron, np denotes neural progenitor and g denotes glial.  

6.3.2.4.1.1 Linear Model – Random Differentiation 

𝑃𝑛𝑝 = 𝛼           (6-1) 

 

𝑃𝑛𝑝→𝑚𝑛 = 𝛽           (6-2) 

 

𝑃𝑛𝑝→𝑔 = 𝛾           (6-3) 

 

Where α = .0005, β = .1 and γ = .001. 

6.3.2.4.1.2 Linear Model – Motor Neuron Feedback 

𝑃𝑛𝑝 = 𝛼           (6-4) 

 

𝑃𝑛𝑝→𝑚𝑛 = (
𝛽

(1+ (
𝑛𝑢𝑚_𝑚𝑛

𝑘1
)

𝑛
)
)          (6-5) 

 

𝑃𝑛𝑝→𝑔 = 𝛾           6-6) 

 

Where α = .0005, β = .1, γ = .001 and k1 = 200. 

6.3.2.4.1.3 Fast Model – Random Differentiation 

𝑃𝑛𝑝 = 𝛼            (6-7) 

 

𝑃𝑚𝑛 = 𝛽           (6-8) 

 

𝑃𝑛𝑝→𝑚𝑛 = 𝛾           (6-9) 

 

𝑃𝑛𝑝→𝑔 = 𝛿           (6-10) 

 

Where α = .0001, β = .001, γ = .01, δ = .001. 
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6.3.2.4.1.4 Fast Model – Motor Neuron Feedback 

𝑃𝑛𝑝 = 𝛼           (6-11) 

 

𝑃𝑚𝑛 = (
𝛽

(1+ (
𝑛𝑢𝑚_𝑚𝑛

𝑘1
)

𝑛
)
)         (6-12) 

 

𝑃𝑛𝑝→𝑚𝑛 = (
𝛾

(1+ (
𝑛𝑢𝑚_𝑚𝑛

𝑘2
)

𝑛
)
)         (6-13) 

 

𝑃𝑛𝑝→𝑔 = 𝛿           (6-14) 

 

Where α = .000099, β = .001, γ = .01, δ = .01,  k1 = 50, and k2 = 200 

 

6.3.2.5 3D Aggregate Computational Modeling 

Aggregate based ABM modeling was carried out in a similar manner to what was 

described in section 5.2.2. The only difference was the inclusion of either a gradient of 

soluble signaling factor X responsible for inhibiting differentiation, or a term regulating 

differentiation via direct cell-cell contact. Diffusion of factor X was solved as previously 

described in section 5.2.2. 

 

𝑃(𝑥) = 1 −  
𝑛𝑜𝑟𝑚_𝑚𝑛𝑛

(𝑘1+𝑛𝑜𝑟𝑚_𝑚𝑛)𝑛
         (6-15) 

 

𝑃(𝑥) = 1 −  
𝑋(𝑥,𝑦,𝑧)𝑛

(𝑘1+𝑋(𝑥,𝑦,𝑧))𝑛
         (6-16) 

 

Where X(x,y,z) represents the soluble factor X concentration at the cellular location 

(denoted as x, y and z), n represents the hill coefficient,  and norm_mn represents the 

number of motor neurons immediately ascent to a cell normalized by the total number of 
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cellular connections. These simulations were carried out with parameters shown in Table 

6-1. In all cases simulations were carried out for a 6 day time period *144 hours) or until 

an EB size of 60,000 was reached.  

 

Table 6-1: Parameter values for 3D ESC aggregate neural simulations 

Soluble Signaling Cell-Cell Signaling 

Parameter Value Parameter Value 

a 0.001, 0.005 a 0.001, 0.005, 0.01 

k1 0.01, 0.025, 0.04 k1 0.05, 0.1, 0.2 

k2 0.04, 0.055, 0.07, 0.09 k2 0.2, 0.3, 0.4 

n 30 n 29 

c 0.001, 0.01 c 0.001, 0.01 

 

 

Where a represents a basal differentiation rate for emergence of neural progenitors, k1 

and k2 govern the emergence of motor neurons either from the stem cell or progenitor 

pool, n is the hill coefficient in both cases, and c represents the glial differentiation 

probability from neural progenitors. As mentioned above the only difference between 

soluble and cell-cell interactions was the form of the equation used for state transition 

probabilities (equations 6-15 and 6-16 respectively). 

6.3.3 Results 

All of this work was carried out in conjunction with the Stice lab at UGA, where 

Raymond Swetenburg carried out the experiments for differentiation ESC aggregates 

towards their respective neural lineages. The first step in this process was to ascertain the 

spatio-temporal dynamics associated with motor neuron and glial cell formation using the 

in vitro ESC aggregate system. To do this network analysis was performed on 3D 

confocal stacks taken from days 3-9 of differentiation. The DAPT molecule (an inhibitor 

of notch response, specifically γ-secretase) was applied at days 3, 5 and 7 leading to a 

total of 4 different groups for analysis (Figure 6-5 A). Confocal stacks were digitized 
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with aid of the commercial software package IMARIS to generate robust network 

reconstruction and digitization of the images (Figure 6-5 B).  The reconstructed image 

showed that in the basal treatment (Figure 6-5C Tx (Day 0)) there is an initial burst of 

motor neurons, followed by a decline in motor neuron (HB9+) production, concomitant 

with an increase in progenitor (Olig2+) cells, and glial populations (Nkx2.2+/Olig2+) 

(Figure 6-5 D – top row). Interestingly, when DAPT treatment is administered early (Day 

3 or 5) the cultures regressed, and not progenitors were observed at later time points. 

However, when DAPT was administered at day 7 induction of a robust glial response was 

observed, indicating that notch may regulate the glial switch (Figure 6-5 D– bottom row).  

 

 

Figure 6-5: Analyzing neural differentiation kinetics in ESC aggregates. (A) The 

experimental outline for EB formation culture and treatment showing DAPT 

administration on Day3, 5 and 7. (B) The digitization of ESC aggregate images into 

networks via IMARIS. (C) Representative reconstructed networks showing and their 

dynamic changes with time (D) for each treatment. For each time point and treatment 10 

samples were analyzed. In (D) averages are shown +/- one standard deviation of the 

mean.  
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To investigate what rules were implicated in governing the temporal dynamics of neural 

differentiation in this ESC aggregate system, a simple stochastic cell model was 

implemented. Originally two rule sets were investigated (random and negative feedback 

Figure 6-6 A,B), however neither of these models could explain the plateau in motor 

neuron production. Several parameter sets utilizing the 3D agent based aggregate model 

were also investigated and were unable to recapitulate the experimental dynamics (data 

not shown). Thus, subsequent models were investigated in which motor neuron 

differentiation could proceed rapidly through the Olig2+ progenitor state which never 

allowed the progenitor population to become established. In this case even the random 

model was able to capture the dynamics of motor neuron production (Figure 6-6 C), and 

subsequent introduction of negative feedback via motor neurons inhibiting their own 

production lead to a near exceptional fit of the experimental data (Figure 6-6 D).  

 

 

 
Figure 6-6: Computational models of differentiation kinetics in ESC aggregates. (A) The 

random rule for a linear cascade and (B) a feedback rule for motor neuron are unable to 

capture experimental dynamics for motor neurons (green), progenitors (red) and glial 

cells (cyan). (C) Representative reconstructed networks showing and their dynamic 

changes with time (D) for each treatment. For each time point and treatment 10 samples 

were analyzed. In all cases experimental data is represented by the dashed lines, while 
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simulations the mean is graphed a solid line with a shaded region corresponding to +/- 

one standard deviation. In all cases 20 simulations were performed.  

 

 

To analyze the nature of the signal provided by motor neurons, spatial network analysis 

was employed. Here network based analysis was used to determine if the regulation by 

motor neurons was a soluble or local cell-cell interaction based effect. To do this the 

spatial expression signatures of Olig2 + (progenitors), Olig2+ /Nkx2.2+ (glial 

progenitors), HB9 + (motor neurons) and unmarked cells were quantified. Principal 

component analysis (PCA) of the variable space revealed a definitive set of axis capable 

of discriminating motor neuron and glial differentiation (Figure 6-7). Robust motor 

neuron differentiation in cultures is indicated by positive translocation along principal 

component (PC) 1 (33.17%), while glial differentiation is roughly indicated by 

translocation with principal component axis 2. Together these two axes only explained ~ 

50% of the variance in this system; interestingly 8 principal components were needed to 

describe 85% of the variance in this system, suggesting that other component axes may 

capture important differences in the data. 
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Figure 6-7: Analyzing neural differentiation kinetics in ESC aggregates. (A) PCA of the 

no DPAT control group, surrounded by representative images. (B) PCA of treatment with 

DAPT on day 7. (C) Heat map showing the contribution of each metric to principal 

components 1 and 2 where red indicates a positive correlation, and blue indicates a 

negative correlation. For each time point 10 samples were compared. 

 

 

Glial cells (Nkx2.2/Olig2+) and neural progenitors (Olig2+) were rare at early time-

points, and only around day 7 of differentiation as rapid induction of these cell types 

observed.  This rapid switch-like behavior seemed to implicate a soluble factor as the 

motor neuron signal, however to quantitatively assess this computation modeling 

simulations were performed. Two simulation rule sets were simulated, one in which 

motor neuron feedback was implemented as a soluble signal, and one in which it was 

implemented as a local cell interaction based signal. 

 Both parameter sets where produced trajectories which were able to match the 

experimentally observed data (Figure 6-8 A,B). The local rule produced a motor neuron 

trace which was similar to the experimental data, however, it failed to produce switch-

like transitions in the production of Olig2+ progenitor cells and Olig2+/Nkx2.2+ glial 
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cells (Figure 6-8 C,D). However, the soluble rule set was capable of producing stark 

rapid “switch-like” changes in the progenitor and glial cell populations (Figure 6-8 E,F) 

providing further evidence that the signal produced by motor neurons is likely transduced 

via a soluble factor. It is important to note that the top simulations from each rule set 

produced similar scores on the current objective function, suggesting that an alternative 

approach is needed to provide further resolution in distinguishing parameter sets which 

lead to switch like behaviors.  

 

 
Figure 6-8: Comparing spatial dynamics of neural differentiation to computational 

models. (A) The experimental data traces for DAPI + (blue), Olig2+ (red), HB9+ (green), 

and Olig2+Nkx2.2+ (cyan) cells. Lines represent mean with error-bars of +/- 1 standard 

deviation. (B) Distance from the experimental data to the simulations where blue 

represents soluble rule sets, and green represents local. (C) Representative simulation 

images of the best local-rule parameter set and the quantification of cell types over time 

(D). (C) Representative simulation images of the best soluble-rule parameter set and the 

quantification of cell types over time (D).  
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6.3.4 Discussion 

Utilizing network based analysis approaches this study uncovered several novel 

biological insights into regulation of the glial switch. First, the differentiation schema of 

the in vitro system was not strictly linear. Motor neurons appeared spontaneously in 

culture without observation of established progenitor populations. The model predicted 

the only way this could arise was if the motor neurons were able to rapidly move through 

the progenitor phase during early time points in culture. This drives the establishment of 

a population of motor neurons in the in vitro system which was observed seemingly 

before neural progenitors. The second important insight was that motor neurons must 

inhibit their differentiation in some manner. Computational models predicted that only 

when motor neurons negatively fed-back on their own production would the progenitor 

population be able to proliferate, which ultimately made the environment permissive for 

glial cell differentiation. It is important to note that the amount of glial cells arising in 

culture was consistent with a normal stochastic process that did not require any feedback 

to drive its production. Finally, spatial pattern analysis revealed that the signal secreted 

by motor neurons was likely a soluble factor. This is not without precedent in the 

literature where terminal neurons have been shown to feedback on progenitor cell 

populations and inhibit their proliferation [319, 320], but would be the first report of 

motor neurons inhibiting their own production in such a manner.  

 Another interesting aspect of this work is the system behavior upon treatment 

with DAPT. DAPT is a notch inhibitor, and it is thought that progenitor cell populations 

are established by local notch interactions between progenitor cell types which inhibit 

differentiation and promote self-renewal. This study indicated that upon DAPT treatment 

progenitor populations underwent subsequent differentiation towards glial cells at later 

time points. This was interesting because it agreed with the modeling hypothesis that the 

motor neurons secreted a factor which made the environment permissive for glial 

differentiation. Furthermore, by inhibiting self-renewal of the progenitors the resulting 
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progenitor population was primed for differentiation to glial cell types.  This leads to a 

variety of future studies which Raymond is currently performing in the Stice lab. The 

first study will address if motor neurons really do secrete a factor which inhibits 

progenitor differentiation via a conditioned medium study. In this study conditioned 

medium from motor neurons will be placed on neural progenitors in order to assess 

subsequent differentiation of motor neurons for the neural progenitor population. 

Additional studies will look at the ability of progenitors to bypass mitosis. The central 

idea for these studies is that progenitors at low density will not possess enough Notch 

signaling via cell-cell contact to remain in a progenitor state. To test this hypothesis cell 

division rates at various cell destines will be monitored in real time via an Olig2-GFP 

reporter line in the Stice lab. Taken together these future experiments will provide 

enhanced information about factors influencing the glial switch in vitro. In summation, 

this study highlights the power of spatial network comparisons between experimental and 

computational systems to elucidate non-intuitive novel biological relevant regulatory 

mechanisms.  

 

 Analysis of sources of intra and inter-aggregate variation via histology 6.4

6.4.1 Background 

Pluripotent stem cells have the ability to differentiate into all three germ layers, and when 

cultured as aggregates, can recapitulate various aspects of development [223-227]. These 

aggregate cultures produce cell and tissue types with markedly different morphology, 

even after a week in culture [263, 321]. Though population assays have been successful 

in capturing some phenotypic differences, questions about intra- and inter-aggregate 

variation still remain. While technologies such as light sheet and confocal microscopy 

provide a method to assess 2D/3D spatial heterogeneity, they require the use of reporter 
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lines or destructive staining analysis, are inherently low throughput, and require access to 

complex equipment [263, 268]. One alternative which has been around for decades is the 

use of histological staining for assaying complex tissues. Histology is inherently lower 

cost, and in many cases does not require assessment of specific markers to identify 

interesting morphological structures in tissues, which makes this technique popular in 

assessing various pathologies [322-326].  

 Histological staining preserves native local tissue conformation and spatial 

information; however a major limitation of histological analyses is that visual differences 

are extremely hard to measure quantitatively. Quantitative histology typically requires an 

expert to identify regions of tissue in order to extract semi-quantitative information that is 

inherently prone to user error and not high throughput. Previous efforts to identify cells 

with similar properties within histological sections using machine learning or pattern 

recognition approaches have attained limited success because these techniques often rely 

on specific markers or solely on cell shape information[203, 322-326]. This makes these 

methods inherently susceptible to shape-based bias from automated cellular detection 

algorithms [203, 322, 327].  This study describes the creation of a novel histological 

classification pipeline designed to improve single cell classification while also harnessing 

the power of networks to classify more complex cellular structures with simple rules.  

6.4.2 Methods 

6.4.2.1 ESC Aggregate Formation and Culture 

To initiate ESC differentiation, a single cell solution was obtained via dissociation in 

0.05% trypsin / 0.53 mM EDTA solution. ESC aggregates were formed via forced 

aggregation of single cells into 400 µm diameter PDMS microwells (AggreWell), with 
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approximately 1000 cells per well. After 20 hours of formation, EBs were removed from 

the microwells and maintained in suspension on a rotary orbital shaker at 65 rpm, with 

approximately 1500 EBs per plate[250]. Aggregates were fed via gravity-induced 

sedimentation and exchange of 90% of the media every other day throughout the 

remainder of the 14 day differentiation period. Aggregates were formed in the standard 

growth media, without LIF, and were subsequently cultured in N2B27 serum-free media 

once transferred to the rotary. The differentiation toward mesoderm lineages was 

accomplished via supplementation of basal N2B27 media with BMP4 (10 ng/mL)[321].  

6.4.2.2 Cell Culture 

A murine embryonic stem cell line (D3) was used. The undifferentiated cells were 

cultured on 100 mm tissue culture plates coated with 0.67% gelatin in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 15% fetal bovine serum(FBS) 

(Hyclone, Logan, UT),  2mM L-glutamine (Mediatech), 100 U/ml penicillin, 100 ug/ml 

streptomyocin, and 0.25 ug/ml amphotericin (Mediatech), 1x MEM nonessential amino 

acis solcuiotn (Mediatech), 0.1 mM 2-mercaptoethanol (FisherChecmical, Fairlawn, NJ), 

and 10
3
 U/ml leukemia inhibitory factor (LIF) (Chemicon Internation, Temecula, CA). 

Cells were passaged every 2-3 days prior to reaching 70% confluence.  

6.4.2.3 Histology 

For histological analysis, aggregates were collected via gravity-induced sedimentation, 

washed with PBS, and fixed in 10% formalin for 45 minutes under rotation.  Fixed 

samples were subsequently encapsulated within Histogel and processed via a series of 

graded ethanol and xylene rinses and embedded in paraffin. Paraffin-embedded samples 

were sectioned using a rotary microtome (Microtom HM310) to produce 5 µm sections, 
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which were mounted on glass slides.  Histological analysis was subsequently conducted 

via deparaffinization in graded xylene and ethanol, followed by staining with 

hematoxylin and eosin (H&E). Stained sections were imaged using a Nikon Eclipse 80i 

microscope with a SpotFlex digital camera. 

6.4.2.4 PCA 

Principal component analysis was performed using sklearn for the python programming 

language and used primarily as a dimensional reduction technique for data visualization. 

The python package Matplotlib was used to plot all PCA plots, while the heatmaps 

displaying component information where created with custom written code using a 

combination of the python packages numpy and the PIL. All data points were mean 

centered and unit variance scaled as required by the PCA algorithm using the scale 

function from sklearn. The PCA algorithm relied on singular value decomposition, which 

can lead to multiple fitted estimators displaying the data with principal components 

flipped. When automatic dimension fitting was required, the method of Thomas P. 

Minkas was used [259].  

6.4.2.5 Network Reconstruction via Cell Profiler 

Cell Profiler (http://www.cellprofiler.org/)[278] was used to analyze all of the 2D 

samples. For histological data, a spectral unmixing algorithm was applied using Cell 

Profiler to extract the nuclear staining and separate the cell cytoplasm stained with eosin, 

from the nuclei stained with hematoxylin. A global MCT algorithm was used to threshold 

each of the samples and nuclei were detected via an intensity based method in the 

“identify primary objects” module in Cell Profiler. The detected nuclei were used as 

seeds for cell detection using the thresholded eosin images and the “identify secondary 
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objects” module in Cell Profiler. Shape information (e.g. area, eccentricity, perimeter) 

was then analyzed using the measure object properties module. The number of nearest 

neighbors was computed using the “measure object neighbors” module and exported to 

the python script that reconstructed the networks as described above. For annotation of 

cell fate, a classification system was employed to use the cell and nuclei measured 

metrics along with network properties to classify mesenchymal cells.  

6.4.2.6 Classification 

Classification was performed utilizing the algorithms available in the sklearn package for 

python. In the case of the mesenchymal classifiers the following functions were used: 

linear SVC, decision tree, K nearest neighbors, and SVC with a RBF kernel. A 2 fold 

cross validation step was used for splitting data into test and training validations sets. The 

image yielded approximately 6000 cells for comparisons. All classifiers were trained 

using the grid search function in sklearn to optimize the resulting classifier. Classifiers 

were optimized for the precision score to eliminate as much false positive labeling as 

possible. To evaluate ground truths for training, images were annotated with masks 

showing which cells belonged to which type of structure. All classifiers were trained 

using a set of 15 images which contained various features of interest: mesenchymal 

regions, super-dense regions, aligned regions, lumen like structures, and rosettes.  

6.4.2.7 Scoring 

Generally all scoring functions were calculated as the distance of the point from a given 

plane. For the mesenchymal score, the following points were used to define the plane: p1 

= (0, -4), p2 = (-4, -5). In the case of the complexity scores the following points were 

used to define the plane: p1 = (0,-2), p2 = (-2, 0). In the case of the Lumen score the 
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following points were used: p1 = (0,0), p2 = (1E5, -2). In the case of the Super-dense 

score the following points were used: p1 = (0,10), p2 = (40,-10). All scoring functions 

were developed using control images to calibrate the scoring hyper-planes.  

6.4.3 Results 

6.4.3.1 Network Based Classification Improves Mesenchymal-like Region Classification 

in ESC aggregates 

Epithelial to mesenchymal transition or EMT is a striking example of a cellular transition 

which results in a change of cells at both the local and global scales. EMT like 

phenomena occurring in stem cells were examined during two separate treatments, one in 

which exogenous BMP4 was applied [250], and a second in which material in the form of 

microparticles were added to the system [328]. This work sought to classify the degree of 

mesenchymal morphogenesis present in histological images (Figure 6-9 A) utilizing a 

novel network metric based approach. Briefly, by converting the aggregate structure into 

a network, information about individual cell size and shape, as well as local connectivity 

information was used to describe complex phenotypes (Figure 6-9 B). This allowed the 

identification of complex structures by linking the power associated with single cell 

classification methods into a tissue based regime. Classification was attempted with 

several methods: decision trees, state vector machines (linear, and RBF kernels), and k-

nearest neighbors. When supplied with only the metrics for cell size and shape, the 

algorithms were not able to correctly distinguish mesenchymal cells robustly (Figure 6-9 

C). The low scoring was is in part due to errors introduced during the segmentation 

phase. Additionally, the classifiers tended to over classify cells as mesenchymal (Figure 

6-9C) leading to a low (< 75%) precision score, which is a measure of false positives 
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(Figure 6-9 D).  However, network properties (number of neighbors or local nuclear 

density) conveyed a striking correlation with the phenotypes of interest (Figure 6-10). 

Classifiers trained with the addition of these network properties identified mesenchymal 

cells with greater accuracy than those without, leading to a more accurate classification 

(Figure 6-9 E) and a significantly increased precision score (~ 91%).  This result 

demonstrated that network derived metrics can improve classification results when 

assessing individual cells.   

 

 

 
Figure 6-9: Network based metrics increase classification of mesenchymal-like regions in 

ESC aggregates. (A) Mesenchymal and epithelial like structures observed in ESC 

aggregates.  (B) The pipeline for extracting quantitative per cell metrics to use in 

classification of cells. (C) Representative images showing the classification of 

mesenchymal cells (red) over epithelial like cells (white). (D) The precision scores of 

different classification methods, where precision is measuring false positive 

discrimination.  (E) The network based classification algorithms applied to representative 

mesenchymal, and non-mesenchymal aggregates. Scale bars in all images are 50 μm.  
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Figure 6-10: Cell profiler segmentation of histological images reveals features which 

correlate with mesenchymal morphologies. Representative cellular segmentation of 

histological images are shown for Day2, 4, 7, and 14.  Identified cells are randomly color 

coded to provide maximal contrast between neighboring cells. The nuclei and cellular 

density colormaps both go form a minimum values in blue, to a maximum value in read 

to indicate relative packing densities, and illustrate their correlation with mesenchymal 

area.  
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6.4.3.2 Examining Spatio-Temporal Mesenchymal Morphogenesis in ESC Aggregates 

ESC aggregates were stained with hematoxylin and eosin after culture in basal serum-free 

medium or BMP4 treatment which yielded differences in cellular phenotypes and 

organization between the treatment conditions (Figure 6-11A,B). As noted previously, 

with BMP4 treatment, the cells adopted a mesenchymal morphology compared to the 

compact epithelial organization of ESC aggregates in basal conditions [321]. Histological 

images were initially processed with Cell Profiler and information about the geometries 

of the cells and nuclei were used to train classifiers that distinguished epithelial and 

mesenchymal morphologies.  
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Figure 6-11: Mesenchymal-Like morphogenesis is observed during soluble BMP4 

treatment of ESC aggregates. (A) The progression of differentiation over 14 days in 

culture with basal N2B27 medium.  (B) The progression of differentiation over 14 days 

in culture with BMP4 treatment. (C) Principal component analysis (PCA) of the network 

derived spatial metrics describing inter and intra-aggregate variability in basal N2B27 

treated aggregates (D) and BMP4 treated aggregates.  (E) The EMT score calculated for 

the N2B27 aggregates and (F) bmp4 aggregates.  

 

 

 

Using the previously trained mesenchymal classifier, the spatial and temporal 

distributions of epithelial and mesenchymal sub-networks were analyzed using network 

based analysis (Figure 6-12) to assess inter-aggregate variability. Individual subnetworks 

of mesenchymal cells identified with the classification algorithms were analyzed and a 

set of 19 metrics describing the mesenchymal-like and epithelial like regions were 

extracted. To examine the distribution of these metrics, principal component analysis 

(PCA) was employed to reduce the dimensionality of the data set. The PCA model 

explained 73.93% of the variance: 47.85% from PC-1, and 26.08% from PC-2 (Figure 

6-11C,D). PC-1 largely described the extent of differentiation, and was anti-correlated 

with the total object number and radii whereas PC-2 was anti-correlated with 

mesenchymal object number and correlated with epithelial object number making it a 

representative axis of the epithelial/ mesenchymal phenotypic spectrum (Figure 6-13).  
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Figure 6-12: Network metrics of mesenchymal regions in ESC aggregates. Identified 

mesenchymal cells (red) and epithelial like cells (green) are connected into networks 

(white lines). Different network based metrics are extracted from these on a whole 

network (left) or subnetwork (right) basis. 

 

 

   

 
Figure 6-13: Principal component (PCA) metric heat maps. Networks extracted from the 

networks and their positive (red) or negative (blue) contribution to each principal 

component.  

 

 

To further quantify this phenomenon, an EMT score was developed utilizing 

combinations of the important metrics derived from the PCA model. The EMT score was 

calculated such that 0 represented an aggregate which had equal amounts of 

mesenchymal and epithelial like regions, while a negative score corresponded to more 

epithelial-like regions, and a positive score correlated to more mesenchymal like regions. 

Using this score a clear evolution of multicellular patterns was evident for both the 

untreated (Figure 6-11 C) and BMP4-treated conditions (Figure 6-11 D). While the 

untreated ESC aggregates remained epithelial-like with time (Figure 6-11 C,E), the 
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BMP4-treated aggregates displayed an increasing mesenchymal population that peaked at 

day 7, but then subsequently regressed by day 14 (Figure 6-11 D,F). Interestingly at day 2 

untreated aggregates displayed slightly less packed morphologies than their BMP4 

treated counterparts.  These results indicated that, the response to BMP4 treatment 

appeared to be highly variable, with only a small subset of aggregates (5 of 23 or ~%21) 

displaying a robust mesenchymal response, suggesting that most of the variation in EMT 

response is due to inter-aggregate variability. 

6.4.3.3 Comparing Mesenchymal Responses induced via Incorporation of Microparticles 

and Soluble BMP4 Treatment 

BMP4 treatment is not the only system which can lead to EMT like events in ESC 

aggregates. Previously others had reported that introduction of GMA microparticles can 

also lead to EMT like transition.  In this study, three different groups were assessed, a 

group with microparticle treatment, a group without microparticles, and a group in which 

the microparticles and the SMAD inhibitor (SB1534) was employed (Figure 6-14 A). For 

contrast purposes, only the BMP4 results at day 7 were shown as these presented the 

most robust EMT response in the previous study. The mesenchymal classifiers performed 

quite robustly on this data set (Figure 6-15), and the resulting data points were added to 

the previous data set. After classification and network analysis, principal component 

analysis (PCA) was performed to analyze the resulting variation within the data set.  PC-

1 was able to explain 47.1% of the variance while PC-2 was able to explain 22.73% 

(Figure 6-14 B). The variables had similar components weights to those observed 

previously.  
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 To quantify the resulting mesenchymal morphogenesis, the EMT score was used. 

In contrast to the day 7 BMP4 treated group where roughly 21% of aggregates responded, 

the microparticle treated groups displayed robust mesenchymal morphologies (8 out of 

16 or 50%) (Figure 6-14 C). A slight response was observed in the basal group (1 out of 

15 or 6.66%) and no EMT like events were observed in the inhibited group (Figure 6-14 

C).  The variation in responses was lower in the inhibited and basal groups than in the 

microparticle treated groups. Though more aggregates responded in the microparticle 

groups, the variation appeared to have a similar magnitude as that observed in the BMP4 

treatment. Taken together these results suggested that microparticle treatments induced a 

more robust EMT like response than soluble BMP4 treatment. Furthermore, the variation 

present during the EMT process was likely due to inter-aggregate variation, as a 

homogenous EMT response was not observed in either treatment group. Finally, these 

results highlighted the utility of network based analysis for quantitatively describing 

spatial and temporal variation present during EMT like events in ESC aggregates.  
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Figure 6-14: Incorporation of microparticles leads to a more pronounced mesenchymal 

response than soluble BMP4 treatment. (A) Representative images for microparticle 

(MP) and basal, and inhabited groups (MP + inhibition).  (B) Principal component 

analysis (PCA) of the network derived spatial metrics describing inter and intra-aggregate 

variability.  (C) The EMT score calculated for Day 7 Bmp4 treatment in contrast with the 

microparticle, inhibition, and basal conditions.  
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Figure 6-15: Representative images of mesenchymal based classification for ESC 

aggregates treated with microparticles. Shows mesenchymal regions (red) and epithelial 

like regions (green) for the three treatment groups: ESC aggregates treated with 

microparticles, ESC aggregates treated with microparticles and inhibitor, and no 

microparticle controls.  

 

 

6.4.3.4 Examining Sources of Complexity in ESC Aggregates 

While the EMT score was able to explain some of the heterogeneity in the data set, it was 

also observed that quite a bit of variation existed along the orthogonal axis (Figure 6-16 

A). To assess variation along this axis and how it could explain differences between 

individual aggregates as well as between different treatment groups, a complexity score 

was defined. Complexity increased during the differentiation process for both basal 

(Figure 6-16 B) and BMP4 treated conditions peaking at day 14. In the context of the 

microparticle studies (Figure 6-16 C), the basal and inhibited groups had a lower 

complexity score then the microparticle group and also displayed a tighter distribution, 



 123 

indicating decreased variation between aggregates. Aggregates with high complexity 

scores contained regions of densely packed cells, lumen, rosettes, and epithelial like 

membrane structures (Figure 6-16 D). Thus, the complexity score was roughly a measure 

of inter-aggregate complexity, with larger aggregates containing more structure earning a 

larger complexity score.  

 

 
Figure 6-16: Exploring sources of complexity in ESC aggregates. (A) While the 

mesenchymal axis was clearly defined, another axis could be draw perpendicular to that 

which also captured a substantial portion of heterogeneity, denoted as the complexity 

axis. (B) Complexity scores for differentiation in basal N2B27 medium and (C) 

microparticle studies. (D) representative images showing possible complex structures 

which could contribute to intra-aggregate variability.  

 



 124 

6.4.3.5 Lumen-Like Structures were Enriched in Microparticle Treatment Groups 

Lumen classification was performed to assess the degree to which lumen formation 

contributed to the observable variation in the groups. Briefly lumen like regions were 

classified using shape descriptors (mainly the area, and form factor) to identify circular 

regions devoid of cells within aggregates. This worked quite well even in the presence of 

less dense mesenchymal regions (Figure 6-17 A). To examine the variation by group, the 

average lumen area (in pixels) and lumen count were plotted (Figure 6-17 B). Generally, 

aggregates contained many smaller lumen-like structures (Figure 6-17 Ci) as opposed to 

single larger lumen (Figure 6-17 Cii), however several aggregates had no lumen-like 

structures at all.  To quantify lumen formation a lumen score was assigned which took 

into account the total area of the lumens present in the aggregate. The microparticle and 

basal treatment groups displayed relatively high lumen formation, while inhibition 

generally resulted in less lumen formation. This correlated well with the decrease in 

complexity score noted earlier (Figure 6-16). The microparticle group displayed higher 

lumen formation then the basal group, and lumens were observed in all microparticles 

aggregates as opposed to ~ 50% in basal treatment, again correlating well with the 

increase in microparticle complexity scores. There was no difference in lumen formation 

in the basal and BMP4 treated groups at day 14, and a large portion of the aggregates (> 

50%) did not have any lumen formation at all, suggesting that the observed complexity in 

those aggregates must also be coming from another source. Taken together, these data 

suggest that the variation in complexity data in the microparticle studies could be due to 

changes in lumen composition between treatment groups. 
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Figure 6-17: Lumen like structures are enriched during microparticle induced 

differentiation. (A) Representative image of classification of lumen like structures. (B) 

Lumen count vs average lumen area on a per aggregate basis. (C) Representative images 

showing an aggregate with (i) many small lumens or (ii) one single large lumen. (D) 

Lumen score plotted as histograms showing relative lumen distributions across all 

treatment conditions. 

 

6.4.3.6 Dense Cell Regions were Enriched in Soluble BMP4 Treated Groups 

In addition to lumens structures, dense highly aligned and compact nuclear regions 

reminiscent of polarized epithelial membranes were also observed in the ESC aggregates. 

To classify regions of dense cells, simple rules for the area, local cellular density, and 

number of neighbors were applied. This resulted in classification of locally dense highly 

aligned structures, which were typically present on the outside of aggregates (Figure 6-18 

A). Plotting the number of dense structures against the average size of these structures 

(Figure 6-18 B) revealed a substantial difference between the day 14 BMP4 and N2B27 

treated groups (Figure 6-18 C i) in contrast to aggregates cultured in the microparticle 

study (Figure 6-18 C ii). To quantify these differences further a score for the epithelial 



 126 

density was calculated. While no appreciable differences could be observed between the 

individual groups within the microparticle studies, a drastic difference existed between 

the microparticle and BMP4, and a slight shift could be observed in the BMP4 treated 

group over the basal control (Figure 6-18 D) .This difference correlates with the increase 

seen in the complexity score of the Day 14 samples over the microparticle studies (Figure 

6-16), suggesting that these aligned epithelial like membrane structures were significantly 

enriched at day14 in the BMP4 studies, which correlated with the increased complexity 

observed at that time point. Taken together, these results indicated the BMP4 and 

microparticle studies produced differences not only in the degree of mesenchymal 

morphogenesis observed, but also in the types of subsequent complex structures formed 

even under basal culture conditions.  

 

 
Figure 6-18: Dense epithelial like structures are enriched during microparticle induced 

differentiation. (A) Representative image of classification of lumen like structures (white 

nodes represent negative cells, while red represents positive cells. (B) Dense epithelial 

count vs average area on a per aggregate basis. (C) Representative images showing an 
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aggregate with (i) a dense epithelial region or (ii) smaller thinner area. (D) Super dense 

region scores are bar plot showing the score for multiple different groups.  

 

 

6.4.4 Discussion 

Quantitative histology has long been a specialized field requiring a trained eye to pick out 

structures of interest. Though various efforts have been made to automatically detect cell 

types and lumen like structures via histology this has yet to be extended to recognizing 

more complex multicellular structures within ESC aggregates. Utilizing a network based 

approach this study addressed many of the challenges associated with quantifying 

complex structures. This work outlined the use of network analysis for classifying single 

cell phenotypes, as well as more complex aggregate structures in ESC aggregates. 

Furthermore, this approach allows quantitative assessment of sources of variation within 

these populations. The ability to derive universal metrics allows the comparison of 

histological samples across multiple different studies. To this end, the authors specifically 

excluded intensity information from the classifications schema, eliminating the need for 

image standardization before analysis. This method was applied to multiple systems of 

interest including ESC aggregates differentiated in the presence of BMP4, microparticles, 

and Smad inhibitor. In the BMP4 and microparticle cases mesenchymal differentiation 

was observed, although it appeared to a greater extent in the microparticle treated groups. 

Mesenchymal differentiation displayed a large inter-aggregate variation, with large 

differences in response present in the populations. Some of this heterogeneity could be 

explained by the formation of other complex multicellular structures within the 

aggregates. In the case of BMP4 differentiation a lot of the increased complexity 

observed at day 14 which could not be explained by mesenchymal differentiation was 
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explained by an increased in epithelial membrane like structures within the ESC 

aggregates. For the microparticle groups, differences in complexity could be explained by 

changes in the size and number of lumens formed during the differentiation process. 

Taken together these results highlight the utility of network based analysis to 

automatically detect complex multicellular features in histology, and also explain the 

inter-aggregate variation present across multiple studies of interest.  
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CHAPTER 7   PROBING MECHANISMS GOVERNING PATTERN 

FORMATION: A MULTISCALE MODEL APPROACH 

 Introduction 7.1

The core regulatory mechanisms governing ESC differentiation have been extensively 

studied, particularly for interactions in monolayer culture. The classic transcription 

factors Oct4, Sox2, and Nanog have been shown to interact with a larger web of factors 

including Klf4 and Rex1 all of which cooperate to regulate pluripotency[102, 103]. 

Furthermore, it is known that factors like Leukemia Inhibitory factor (LIF), and FGF are 

crucial in regulating self-renewal in ESCs. Specifically, LIF activates JAK/STAT 

signaling, which activates Sox2 and Klf4, both of which activate Oct4 transcription [67, 

291]. On the other hand, FGF4 signaling acts through MEK/ERK, inhibits Nanog 

expression, and ultimately leads to cells exiting pluripotency [106, 258, 292]. However, 

even though much is known about the interactions between Oct4, Sox2, and Nanog 

specific signaling molecules, it is extremely difficult to understand how all of these 

factors work together to regulate pluripotency. Particularly, the role of Nanog during 

differentiation has been quite controversial, with a variety of different theories as to how 

Nanog ultimately controls pluripotency [68, 102, 103, 106-108, 113].   

 Nanog overexpression studies show that Nanog is sufficient to maintain 

pluripotency in the absence of external signaling cues [106]. Under culture in LIF 

conditions, mouse ESCs display high levels of Sox2 and Oct4, but a heterogeneous 

population of Nanog can be observed [68, 102, 108, 109]. It is generally agreed that 

stochastic fluctuations in Nanog expression are the cause of the observed Nanog high and 

low states, however, the source of this stochasticity is unknown. A recent paper by Ochiai 
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et al. [109] showed that the contribution of intrinsic cell noise (represented by differences 

in cell-cell protein level) was about 45% as compared to extrinsic noise (related to 

environmental factors) in the total levels of Nanog heterogeneity. While Sasai et al. was 

able to explain the evolution of ESC pluripotency through a model implementing 

stochasticity at the epigenetic level, this has yet to be corroborated by experimental 

studies [293]. In fact, no epigenetic modifications which correlate in differences in Nanog 

expression have been identified [68, 109]. Other groups have shown that adding 

stochastic terms into Nanog expression was able to capture the relative proportions of 

cells in low and high states during various stages of differentiation [125, 130, 132]. 

However, investigations of the extrinsic factors governing this process have been largely 

ignored.  

 FGF4 signaling acting through MEK/MAPK pathways inhibits Nanog expression 

[68, 112, 113, 294]; thus FGF4 could be one such extrinsic factor responsible for 

heterogeneity in ESC differentiation. Furthermore, FGF4 is known to be secreted by ESC 

cells in the pluripotent state which mirrors the role of FGF4 during development where it 

is responsible for specifying early mesoderm and endoderm progenitors over ectodermal 

differentiation pathways. In particular, Nanog is known to repress expression of early 

endoderm transcription factor GATA6 which in term, repress expression of Nanog [113]. 

This is a classic example of a bi-stable toggle switch, which has long been specified to be 

important in governing key cell fate decisions at the transcriptional level. By inhibiting 

Nanog levels, FGF4 pushes ESCs towards differentiation down the endoderm lineage. 

Furthermore, FGF4 is thought to inhibit the expression of Nanog via activation of 
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repressors, while Nanog’s relatively short half-life (~ 2 hours) clears Nanog from the 

system.  

 Though FGF4 represents a promising soluble factor which could be responsible 

for this heterogeneity in Nanog expression, it is difficult to study the soluble gradients 

formed by such factors during the differentiation process. Furthermore, it is not clear 

exactly which receptor FGF4 is signaling to during this process, further confounding the 

results. Therefore, one promising approach to examine Nanog heterogeneity induced via 

FGF4 signaling is to investigate this phenomenon via computational modeling strategies. 

While various computational models have been constructed to look at ESC differentiation 

they suffer from a variety of problems, mainly instantaneous fate switches, and 

incorporation of scaling factors to induce differentiation [113, 125, 130, 294]. Herberg at 

al. addressed this problem recently using a multiscale modeling approach to explain 

Nanog expression heterogeneity in ESC cultures [106]. However, in this approach FGF4 

diffusion was not directly simulated; instead the authors opted to model FGF4 signaling 

as proportional to the contact area of neighboring cells. Results from Chapter 5 (and 

appendix A. 2) suggested that modeling soluble signaling versus local signaling can 

impact the overall pattern formation, which question the assumption of modeling FGF as 

a local cell based interaction, particularly in a freely diffusible 2D environment.  

 The objective of this study was to investigate the roles of inherent stochasticity 

and intrinsic FGF4 signaling in explaining heterogeneous Oct4 expression patterns 

observed in ESC aggregates. It was hypothesized that inclusion of inherent Nanog 

stochasticity with responsiveness to FGF4 would lead to the formation of complex spatial 

patterns. This study showed that Nanog heterogeneity, coupled with FGF4 expression 



 132 

was capable of capturing spatial patterns associated with loss of Nanog, and ultimately 

the eventual loss of Oct4/Sox2. Taken together these data represented a significant 

advancement in multiscale ESC aggregate models by integrating stochastic ODE and 

soluble PDE species together, and provided insight into the role of Nanog signaling in 

governing pluripotency.   

 Materials and Methods 7.2

7.2.1 Network Reconstruction of Confocal Images 

Cell Profiler (http://www.cellprofiler.org/)[278] was used to analyze all of the 2D 

samples. In this case, four different channels were captured in the confocal images to 

measure Sox2 (white), Oct4 (red), Nanog (green) and nuclei (blue). Therefore the 

confocal images were split into the component channels using an ImageJ macro resulting 

in 4 images for each original confocal file. In cell profiler the images were imported, and 

the nuclei were thresholded using a local MCT approach. The resulting binary mask was 

applied to all other channels: Oct4, Sox2, and Nanog. Clumped nuclei were separated 

using the intensity with a Laplacian of Gaussian (LOG) filter. Intensity information was 

extracted from each nuclei identified via the segmentation for all four different species. 

Additionally, the number of adjacent nearest neighbors was measured and the data was 

then exported to a python script that reconstructed the networks by using a KDTree 

implementation from Scipy. Images of the networks were generated using the python 

imaging library (PIL). Digital flow cytometry was performed by extracting the intensity 

values for the different colors, and normalizing them by the intensity of the nuclei in that 

area. This normalization was performed to negate local aberrance in the images 
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(equivalent to background subtraction). This normalized intensity value was also used for 

network annotation during the subsequent reconstruction of networks. 

7.2.2 Flow Cytometry 

ESCs were washed in PBS, and then trypsanized in .025% Trypsin with EDTA. Cells 

were then pelleted by centrifugation at 5 min at 1000 RPM. After exchanging the 

supernatant, the cells were fixed in 10% formalin for 15 min at 4 
o
C. Next cells were 

diluted into a working solution (.3% BSA 0.001% Tween by volume), then pelleted at 

4000 RPM for 2 min. After extracting the supernatant, the resulting cells were 

resuspended in 1 ml of permeabilizing solution (.5% Triton X in sterile H20). After 

centrifugation and aspiration, the cells were placed in blocking buffer (10% normal 

Donkey Serum (Jackson Scientific)) for 1 hour (vortexing every 15 minutes to prevent 

settling). After pelleting and removing the blocking buffer the cells are split into tubes, 

placed into 100 ml working buffer, and incubated with primary antibodies. In this case, a 

tri-staining assay for pluripotency was performed. The primary antibodies used were 

from eBiosciences (1:100 dilution, rat-α-mouse monoclonal, eBioMLC-51) for Nanog, 

Santa Cruz (1:100 dilution, goat-α-mouse N-19) for Oct 4, and Santa Cruz (1:100 

dilution, polyclonal rabbit-α-mouse H-65) for Sox2. After incubation samples were 

diluted into a 1 ml working buffer volume, pelleted, and then resuspended in 100 ml 

working buffer for secondary staining. Secondary antibody staining was performed 

(1:200 dilution, all secondary’s purchased from Invitrogen) and allowed incubate for 30 

min at 4 
o
C. The secondary antibody combinations used were donkey-α-rat AlexaFlour-

488 for Nanog, donkey-α-goat AlexaFlour-547 for Oct4 and donkey-α-rabbit AlexaFlour-

633 for Sox2. After incubation, cells were pelleted, and washed in working buffer for two 

cycles before a final resuspension in PBS. Cells were run through the Accuri© flow 

cytometer using high fluidics speed, and measured on the Fl-1 (488), Fl-2 (546), and Fl-

4(633) channels respectively. Color compensation between the Fl-1 and Fl-2 channels 
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was determined using single stained controls, and samples were adjusted in the Accuri 

software using the set color compensation function, and as was consistent with the 

literature, compensation was only necessary between the red (546) and green (488) 

channels.  

7.2.3 Immunostaining and confocal microscopy 

ESC aggregates were collected for staining and fixed in 10% formalin for 45 minutes. 

EBs were permeabilized for 30 minutes in 1.0% TritonX-100, re-fixed in formalin for 15 

minutes, and blocked in blocking buffer (2% bovine serum albumin, 0.1% Tween-20 in 

PBS) for 3 hours. For Nanog, Oct4, Sox2 tri-staining the following antibodies were used: 

eBiosciences (1:100 dilution, rat-α-mouse monoclonal, eBioMLC-51) for Nanog, Santa 

Cruz (1:100 dilution, goat-α-mouse N-19) for Oct 4, and Santa Cruz (1:100 dilution, 

polyclonal rabbit-α-mouse H-65) for Sox2. The secondary antibody combinations used 

were donkey-α-rat AlexaFlour-488 for Nanog, donkey-α-goat AlexaFlour-547 for Oct4 

and donkey-α-rabbit AlexaFlour-633 for Sox2 all at a 1:200 dilution. It is important to 

note that for this protocol, Sox2 rarely worked with the 633 secondary, suggesting an 

alternative Sox2 antibody may be in order or a new secondary combination may be 

necessary. Counterstaining with Hoechst (1:100) was performed for 25 minutes. Samples 

were washed, resuspended in blocking buffer, and imaged using a Zeiss LSM 710 

Confocal Microscope. A single image was taken at the top of the EB and at a depth of 45 

μm into the EB. For each time-point, 20 images were obtained.   

7.2.4 Stochastic ODE Modeling  

Stochastic differential equation systems were modeled using a custom simulation code 

written in python. A previous stochastic model for Nanog fluctuations containing three 

species (Oct4-Sox2, Nanog, and FGF) was modified to contain an additional LIF soluble 
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signal, as well as regulation of the Oct4-Sox2 complex via LIF (through downstream 

activation of STAT3), and a modulation of FGF secretion by Nanog.  Furthermore to 

specify the differentiation state, Gata6 was added to the model. Gata6 has been shown to 

inhibit Nanog, and Oct4-Sox2-Sox2 expression and serves as one of the earliest toggle 

switches in ESC differentiation. Additionally, Stat3 activation via LIF via JAK signaling 

molecules has been shown to be inhibited in the presence of FGF signaling via 

MEK/ERK, thus this was incorporated into the model [295]. This led to the system of 

equations shown in 7-1 through 7-5. 

 

𝑑𝑂𝑆

𝑑𝑡
=  

𝑎𝑂𝑆_𝑂𝑆𝑂𝑆

(
1

𝑘
+𝑂𝑆+𝑖𝐺𝑎𝑡𝑎6_𝑂𝑆∗𝐺𝑎𝑡𝑎6)

+
𝑎𝐿𝐼𝐹_𝑂𝑆∗𝐿𝐼𝐹

(
1

𝑘
+𝐿𝐼𝐹+ 𝑖𝐹𝐺𝐹_𝐿𝐼𝐹∗𝐹𝐺𝐹2))

 +
𝑎𝑁_𝑂𝑆∗𝑁

(
1

𝑘
+𝑁)

− 𝑘deg _𝑂𝑆 ∗ 𝑂𝑆 +

 𝛾(𝜎𝑂𝑆) ∗ 𝑂𝑆            (7-1) 

𝑑𝑁

𝑑𝑡
=  

𝑎𝑁_𝑁(𝑁∗𝑂𝑆)

(
1

𝑘
+𝑁∗𝑂𝑆+𝑖𝐹𝐺𝐹_𝑁∗𝐹𝐺𝐹)

−
𝑖𝐺𝑎𝑡𝑎6_𝑁∗𝐺𝑎𝑡𝑎6

(
1

𝑘
+𝐺𝑎𝑡𝑎6)

 − 𝑘deg _𝑁 ∗ 𝑁 +  𝛾(𝜎𝑁) ∗ 𝑁    (7-2) 

 

𝑑𝐿𝐼𝐹

𝑑𝑡
=  𝑘𝑝𝑟𝑜𝑑_𝐿𝐼𝐹 − 𝑘deg _𝐿𝐼𝐹 ∗ 𝐿𝐼𝐹         (7-3) 

 

𝑑𝐹𝐺𝐹

𝑑𝑡
= (

𝑂𝑆

(
1

𝑘
+𝑂𝑆)

) ∗ 𝑘𝑝𝑟𝑜𝑑𝐹𝐺𝐹
+  (

𝐺𝑎𝑡𝑎6

(
1

𝑘
+𝐺𝑎𝑡𝑎6)

) ∗ 𝑘𝑝𝑟𝑜𝑑_𝐹𝐺𝐹 − 𝑘deg_𝐹𝐺𝐹 ∗ 𝐹𝐺𝐹   (7-4) 

 

𝑑𝐺6

𝑑𝑡
= (

𝑎𝐿𝐼𝐹_𝑂𝑆𝐺𝑎𝑡𝑎6

(
1

𝑘
+𝐺𝑎𝑡𝑎6+𝑖𝑁_𝐺𝑎𝑡𝑎6∗𝑁𝑎𝑛𝑜𝑔+𝑖𝐿𝐼𝐹_𝐺𝑎𝑡𝑎6∗𝐿𝐼𝐹)

) +  𝛾(𝜎𝐺)  − 𝑘deg _𝐺𝑎𝑡𝑎6 ∗ 𝐺𝑎𝑡𝑎6   (7-5) 

 

Where N represents Nanog and OS represents an Oct4-Sox2 complex. Stochastic noise is 

generated as denoted by the γ which indicates a zero mean Gaussian process with a 

standard deviation of σ. It was assumed that appreciable noise is only associated with 

Oct4-Sox2, Nanog and Gata6 species, and no stochastic noise is associated with soluble 
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factor production. Parameters and initial conditions for the three different test cases, LIF, 

no LIF, and no FGF are shown in Table 7-1 through Table 7-6. 

 

Table 7-1: Parameter values for LIF simulations 

Parameter Value Parameter Value 

a_OS_OS 40 i_FGF_N 13 

a_LIF_OS 50 i_FGF_LIF 50 

a_N_O 1 kdeg_OS 0.8 

a_N_N 29 kdeg_N 1 

a_G_G 20 kdeg_FGF 0.1 

i_N_G 20 kdeg_LIF 0.1 

i_G_N 20 kdeg_Gata6 1 

i_Lif_G 0.01 σ_N 0.3 

i_OS_G 20 σ_OS 0.15 

prod_FGF 1 σ_Gata6 0.15 

prod_LIF 1   

 

 

Table 7-2: Initial Conditions values for LIF simulations 

Parameter Value Parameter Value 

LIF 100000000 Nanog 1 

FGF 0 Oct4 50 

Gata6 0.1   

 

 

 

Table 7-3:Parameter values for no LIF simulations 

Parameter Value Parameter Value 

a_OS_OS 40 i_FGF_N 13 

a_LIF_OS 50 i_FGF_LIF 50 

a_N_O 1 kdeg_OS 0.8 

a_N_N 29 kdeg_N 1 

a_G_G 20 kdeg_FGF 0.1 

i_N_G 20 kdeg_LIF 0.1 

i_G_N 20 kdeg_Gata6 1 

i_Lif_G .01 σ_N 0.3 

i_OS_G 20 σ_OS 0.15 

prod_FGF 1 σ_Gata6 0.15 

prod_LIF 1   
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Table 7-4: Initial Conditions values for LIF simulations 

Parameter Value Parameter Value 

LIF 0 Nanog 1 

FGF 0 Oct4 50 

Gata6 0.1   

 

Table 7-5: Parameter values for no FGF simulations 

Parameter Value Parameter Value 

a_OS_OS 40 i_FGF_N 0 

a_LIF_OS 50 i_FGF_LIF 0 

a_N_O 1 kdeg_OS 0.8 

a_N_N 29 kdeg_N 1 

a_G_G 20 kdeg_FGF 0.1 

i_N_G 20 kdeg_LIF 0.1 

i_G_N 20 kdeg_Gata6 1 

i_Lif_G 0.01 σ_N 0.3 

i_OS_G 20 σ_OS 0.15 

prod_FGF 1 σ_Gata6 0.15 

prod_LIF 1   

 

 

Table 7-6: Initial Conditions values for no FGF Simulations 

Parameter Value Parameter Value 

LIF 100000000 Nanog 1 

FGF 40 Oct4 50 

Gata6 0.1   

 

7.2.5 Multiscale Computational Modeling  

Multiscale computational modeling was accomplished utilizing previously described 

agent based model, coupled with the stochastic ODE system described above (section 

7.2.4). Briefly, cells are allowed to divide, and move based on rules governing their 

behavior. Physical constraints were applied using a KDTree collision detection based 

method with springs to assume inelastic collisions. Over each hour, a stochastic ODE 

simulation was run for each cell based on the internal variables (Section 7.2.4). The 

values of the Oct4, Nanog, and Gata6 species are stored for each time (over 144 hour 

time span) and used to determine the state of the cell. The spatial equations defining the 
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constants associated with LIF and FGF gradients were based on the previously described 

methods (Section 5.2.3). The parameter governing stochasticity in Nanog was varied 

between 0.3 and 0.7 (0.3, 0.4, 05,. 0.6, 0.7), and the parameter governing FGF production 

was varied between 1 to 1000 (1, 10, 250, 500, 1000)  to investigate potential roles of 

each parameter in governing spatial patterns.  

7.2.6 Sensitivity Analysis 

Sensitivity analysis was performed for each parameter (n = 22) and calculated according 

equation 7.5. 

𝑆 =  ∑
𝐹(𝑥𝑜)−𝐹(𝑥1)

𝑥𝑜−𝑥1

𝑡=𝑛
𝑡=0

1

𝑛
         (7-5) 

Where x0 and x1 were the values of the parameters and F(x) was the ODE function 

evaluated for the parameter value x. The resulting sensitivity was calculated with respect 

to each of the species in the model: Oct4, Nanog, Sox2, FGF, LIF and Gata6. An average 

sensitivity was also calculated by taking the average values of all species for each 

parameter. All sensitives are reported on a logarithmic base 10 scale. 

7.2.7 Monte Carlo Simulation  

In order to assess the topology of the parameter space and ultimately different models of 

model behavior, Monte Carlo simulations were used. A set of 200,000 parameters was 

generated to span the parameter space associated with the stochastic model described in 

section.  Parameters where chosen randomly accordingly a normal distribution with the 

ranges specified in Table 7-7.  

 

Table 7-7: Parameter Ranges for Monte Carlo Simulation 

Parameter Range Parameter Range 

a_OS_OS 1-100 i_FGF_N 1-50 

a_LIF_OS 1-100 i_FGF_LIF 1-100 

a_N_O 0.1-10 kdeg_OS .5 - 2 



 139 

Table 7-7: Continued 

a_N_N 1-50 kdeg_N 0.5 – 2 

a_G_G 1-50 kdeg_FGF 0.05-0.25 

i_N_G 1-50 kdeg_LIF 0.05 - .25 

i_G_N 1-50 kdeg_Gata6 0.5 - 2 

i_Lif_G 0.0001 -0 .1 σ_N 0.1-0.7 

i_OS_G 1, 50 σ_OS 0.01-0.03 

prod_FGF 0.1-10 σ_Gata6 0.01-0.03 

prod_LIF 0.1-10   

 

 

 

To achieve enough confidence in the simulation result, 100 simulations were run for each 

parameter set. The mean values for Oct4, and Nanog were calculated over time, and 

compared back to the basal simulation values as a means of visually representing the 

data. Additionally, a difference for the residence of Nanog low vs. Nanog high states was 

also computed to add a third dimension for comparison.  

 

 Results 7.3

7.3.1 Capturing Nanog/Oct4 Dynamics During Differentiation 

To confirm the presence of Nanog heterogeneity in mouse ESC culture, ESCs were 

cultured in 2D in the absence of LIF for a period of 4 days. Every 12 hours, cells were 

removed from the plate, stained, and then run through flow cytometry to assess the 

Nanog, Oct4 and Sox2 expression during loss of pluripotency (Figure 7-1 A). A Nanog 

high population could be observed in ~27% of the cells at early time-points suggesting 

the presence of Nanog heterogeneity in the ESC population (Figure 7-1 B-C). To quantify 

population shifts, the geometric mean of the population was calculated and plotted as an 

average over three replicates. Nanog was lost earlier than Sox2 and Oct4, falling to a 

minimum value by day 1.5 while Oct4/Sox2 fell to minimum values at ~ day 2 (Figure 

7-1 E). This difference in kinetics is consistent with experimental observations showing 

loss of pluripotency proceeds through an Oct4+/Sox2+/Nanog- intermediate before 
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subsequent loss of Oct4 and Sox2. High correlation between Oct4 and Sox2 levels was 

also observed, consistent with the literature (Figure 7-1 E). Based on this observation and 

the literature it was assumed for subsequent modeling efforts that Sox2/Oct4 can be 

simplified to a single active species.    

 

 

 

Figure 7-1: Nanog, Oct4 and Sox2 dynamics in mESC monolayer culture. (A) 

Representative side-scatter vs. forward-scatter flow cytometry plot showing the gate 

applied for subsequent analysis. (B) Nanog vs. Oct4 showing Nanog high and Nanog low 

states. (C) Nanog vs. Sox2 showing Nanog high and Nanog low states. (D) Oct4 vs. Sox2 

shows good correlation of Oct4 to Sox2. (E) Extracted geometric mean over time for 

Nanog (green), Oct4 (red) and Sox2 (blue) (n=3).  

 

 

 

To confirm that similar distributions of Nanog were also preset in 3D aggregates, ESC 

aggregates were cultured over 9 days to observe the loss of pluripotency. Samples were 

removed at Day 1, 4, 7, and 9 and assessed via confocal microscopy. To quantify 

individual cellular levels, digital flow cytometry was performed on the image stacks 

(Figure 7-2). At day 1, roughly 20% of the cell population was in the Nanog high state, 

while 80% was in the Nanog low state (Figure 7-2). This suggested that a substantial 

amount of heterogeneity already existed in this population even during early phases of 
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differentiation. Furthermore, the variance of the Nanog distribution was much broader 

than subsequent days, which was again consistent with experimental observations by 

others (Figure 7-2). By day 4, the population had shifted towards a mostly Oct4+/Nanog- 

population, although a small portion (~10%) of Oct4+/Nanog+ cells remained. By day 7 

the population had shifted towards Oct4-/Nanog-, but approximately 30% of the cell 

remained in the Oct4+/Nanog- state. However, by day 9, 77% of cells were Oct4-/Nanog- 

suggesting that loss of Oct4 had finally occurred. This overall population shift was 

consistent with prior reports of monolayer culture for ESCs[106, 294] and suggested a 

model in which Nanog was lost early in differentiation, while Sox2/Oct4 were lost later. 

Interestingly Oct4+/Nanog+ cells were observed even during subsequent differentiation 

events throughout the culture period, which suggested the maintenance of a resident 

pluripotent population during subsequent differentiation stages.  

 

 

Figure 7-2: Oct4 Nanog differentiation dynamics in ESC aggregates assessd via digital 

flow cytometry. (A) Histograms of Nanog (green) and Oct4 (red) populations at day1,4,7 

and 9 of differentiation. (B) Contour plots of Oct4 vr. Nanog populations, showing the 

progession of Nanog from a high to low state, followed by a subsequent change in Oct4 

expression.   

 



 142 

7.3.2 ODE Models of Nanog Fluctuations 

To investigate the observed Nanog fluctuations, a computational model in the literature 

capable of capturing Nanog fluctuations was implemented. This model consisted of a 

single Oct4/Sox2 species which encompassed the dynamics of both Oct4 and Sox2. This 

was a valid assumption for a number of reasons: first Oct4 and Sox2 dimerize to form a 

transcriptionally active dimer which activate Oct4/Sox2 expression in a positive feedback 

loop [36, 78, 79, 125]. Second, data in Figure 7-1 suggested that Oct4 and Sox2 co-vary 

which was consistent with literature findings [102, 106, 258]. This model included FGF 

signaling as a repressive factor of Nanog signaling, and also included stochastic noise in 

Nanog protein levels. However, in order to update this model based on findings in 

Chapter 5, the activation of Oct4/Sox2 via LIF (which activates STAT3) was added to the 

model. Additionally, Stat3 activation via JAK has been shown to be inhibited by MEK 

induced phosphorylation of ERK. Furthermore, several papers have shown that Nanog 

also activates Oct4/Sox2 transcription. These modifications resulted in the regulatory 

scheme shown in Figure 7-3.  

 

 

Figure 7-3: Signalling Network Regulating ESC pluripotency. The core transcription 

factor network for Oct4, Sox2 and Nanog is shown in the nucleus. Binding of FGF4 to 
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it’s receptor leads to activation of ERK via phosphorlyation, which in term inhibits 

Nanog expression via an unknown mechanism. Binding of LIF to it’s receptor leads to 

phosphorylation of Stat3 which translocates to the nuclues and actiavtes Sox2 and Oct4 

gene expression. Introduction of noise represents the inherent stochsticity shown to be 

associated with Nanog transcription.   

 

 

 

To test if this network architecture was capable of recapitulating differentiation, several 

scenarios where tested: a scenario in which LIF was absent which should induce 

differentiation, a scenario in which LIF was present which should induce heterogeneous 

Nanog expression, and a scenario in which ESCs were maintained in 2i which inhibited 

FGF4 signaling via ERK, thus reducing Nanog heterogeneity.  

 

 

 
Figure 7-4: Stochastic Network Modeling of ESCs. (A) The model architecture for LIF 

culture conditions (top) and the resulting simulation average trajectories (bottom) for 

Oct4 (red) and Nanog (green) (n=1000). (B) Model for 2i culture conditions (top) and the 

resulting simulation average trajectories (bottom) for Oct4 (red) and Nanog (green) 
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(n=1000).  (C) Model for differentiation conditions (top) and the resulting  simulation 

average trajectories (bottom) for Oct4 (red) and Nanog (green) (n=1000).  Middle lines 

represent means and outer lines represent +/- one standard deviation. (D) Individual 

simulations showing the heterogeneity present in differentiation time over a 2 day period. 

 

 

 

In the case of differentiation (i.e. no LIF present)  the model was fit to differentiation data 

from early ESC monolayer cultures (Figure 7-1), and rapid loss of Nanog could be 

observed. Once Nanog was lost Oct4 would follow within a time-frame of about 24 

hours, which was consistent with the previous monolayer culture data (Figure 7-1). To 

test the validity of the fitted parameters, the model was challenged with two hypothetical 

scenarios, culture in LIF, and culture in 2i. In the case of LIF maintained pluripotency, 

the model rapidly moves to a steady state level of Oct4/Sox2 complex (Figure 7-4 B). 

However, various amounts of Nanog heterogeneity could be observed, which to matched 

the 20% high versus low population present in ESC aggregate culture (Figure 7-2). When 

FGF signaling was inhibited (as with culture in 2i), the observed heterogeneity in Nanog 

signaling is abolished (Figure 7-4 C), which is consistent with other studies [106, 109, 

258, 294]. Importantly, the parameters here suggest that while the intracellular network 

components were important in stabilizing the various states, the switches between states 

were governed by robust signaling via soluble factors.  

 Once the simulation parameters were determined, sensitivity analysis was 

performed to investigate influences of each parameter (Figure 7-5). Each parameter was 

varied and the effect on each of the output variables was measured. The aggregate 

sensitivity for each parameter was performed by taking an average of the sensitivities 

over all species. From this exercise several key parameter emerged: p1, p5, and p16 

(Nanog degradation rate) all strongly modulated Nanog expression, while p1 and p5 

(Oct4/Sox2 activation parameters) as well as p13-16 (protein degradation parameters) 
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were all Oct4 regulators. In contrast, for Gata6 the positive feedback (p6) was the only 

parameter which drastically affected Gata6 regulation. Generally these parameters (p1, 

p5, p6, p13-16) correlated to the internal inhibition and degradation constants present in 

the network, suggesting that the network architecture needed to be finely tuned to 

recapitulate differentiation behavior. Interestingly, the parameters governing stochasticity 

for Nanog (p18) and FGF production (p21) displayed moderate influence on model 

outcomes, suggesting that these could be interesting to investigate for their roles on 

spatial differentiation patterns.  

 

 

Figure 7-5: Senstivity Analysis of the ESC pluripotency network. For each species in the 

model sensitvity analysis was performed: Nanog (green), Oct4-Sox2 (blue), Gata6 

(magenta), LIF (cyan), FGF (red), average (black). For the average, bars represent means 

and errorbars are +/- one standadrd deviation from the mean. All senstivites are graphed 

on a log10 scale.  

 

 

 

Next to assess the global stability of this parameter set Monte Carlo simulations were run 

(Figure 7-6). Using the results for the sensitivity analysis, parameter bounds were 

determined for all relevant parameters in the model. Then several Monte Carlo parameter 

sets were generated to equally sample the parameter distributions, and the distance from 
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the resulting simulation trajectory to the baseline fitted trajectory was computed for the 

Oct4 and Nanog species as well as the Nanog high/low residency time (Figure 7-6 A-C). 

For Oct4 and Nanog the top 100 parameter sets leading to maximal down-regulation and 

up-regulation were computed (Figure 7-6 D-F). For Oct4 p5, p13, p15 and p21 increased 

expression of Oct4, while p14 substantially decreased expression. For Nanog p12, p13 

and p21 led to increased levels, while p5 p13 and p15 led to decreased levels. 

Surprisingly, only a minimal effect was observed for Nanog stochasticity (p18) on the 

high/low Nanog residency time. The parameter p13 represented the scaling factor for the 

feedback response curves, while p15 and p15 represented the Oct4 and Nanog 

degradation constants respectively; however, p21 represented the production term for 

FGF4. These results confirmed the findings of the sensitivity analysis, and particularly 

highlighted the role of FGF4 production (p21). Collectively these results demonstrated 

that the final parameter set chosen for the model was appropriate for describing the 

experimental data. Furthermore, the combined Monte Carlo and sensitivity analysis 

revealed insight into which parameters modulated differentiation behavior. The 

parameters governing production of FGF4 and stochasticity for Nanog were particularly 

interesting and would be subsequently modulated in the following section to screen for 

effects on spatial pattern formation.  
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Figure 7-6: Monte Carlo examination of the parameter space. Monte Carlo simulations 

were run (n = 2E5) to examine the parameter space. The simualtions were quantified 

using three metrics, the average distance from the Oct4, Nanog and Percent time spent in 

Nanog High low states. Pairwise plots of parameter sets for Nanaog vs Oct4 (A), Oct4 vs. 

Percent Nanog High/Low (B) and Percent Nanog High/Low vs. Nanog (C). (D) The top 

100 parameter sets for Oct4 showing parameters which led to decreased (left) or 

increased (right) signal. (E) The top 100 parameter sets for Oct4 showing parameters 

which led to decreased (left) or increased (right) signal. (F) The top 100 parameter sets 

for Nanog High/Low residence showing parameters which lead to decrease (left) or 

increase (right) in signal. A low parameter vlaue is indicated in blue, while a high value is 

indicated in red.             

 

7.3.3 Modeling the Role of Nanog in ESC Spatial Differentiation 

 To assess spatial patterns associated with Nanog and Oct4, the stochastic model 

described was implemented in the agent based aggregate model. Based on the sensitivity 

analysis and Monte Carlo results, the parameter governing FGF4 production (p21) was a 



 148 

definite candidate for modulating differentiation behavior. This was consistent with the 

known role of FGF4 in modulating Nanog levels in ESCs; increased FGF4 production 

leads to decreased Nanog levels, thus increasing differentiation, while decreasing FGF4 

production leads to increased Nanog levels resulting in little differentiation. Interestingly, 

while the Monte Carlo results did not predict Nanog stochasticity would play a large role 

in ultimate differentiation decisions, the hypothesis based on the literature was that this 

parameter would be important in modulating spatial differentiation patterns. However, 

the Monte Carlo screen was designed to pick out parameters which maximally increased 

or decreased Oct4/Nanog expression, while the stochasticity parameter served as a 

modulator between the differentiation permissive Nanog low state and the differentiation 

resistant Nanog high state, meaning it would be difficult to pick up the effects of 

stochasticity via Monte Carlo approaches.   

  To assess the effects of intrinsic noise, versus the spatial heterogeneity induced by 

FGF4, the parameters governing the stochasticity and strength of FGF4 inhibition on 

Nanog were varied (Figure 7-7 A). With increasing FGF4 dependence, the pattern of 

Nanog differentiation was largely spatially homogenous, resulting in largely outside in 

differentiation (Figure 7-7 B). Increasing the patterns associated with Nanog stochasticity 

induced a more random looking spatial pattern (Figure 7-7 C) and, in contrast to the 

Monte Carlo results, Nanog stochasticity played a large role in modulating the systems 

spatial behavior. Increasing both the stochastic and the FGF4 production parameters 

resulted in a fast differentiation trajectory which had transient spatial patterns (Figure 7-7 

A). These results suggested that modulating both parameters not only tuned the spatial 

patterns associated with the system, but also the differentiation kinetics.  
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Figure 7-7: Multiscale modeling of Nanog fluctuations in ESC aggregates. (A) 

Representative simulation traces for low stochasticity high FGF4 production (red), high 

stochasticity low FGF4 production (green) and moderate stochasticity and moderate 

FGF4 production (blue). (B) Representative simulation images for low stochasticity, high 

FGF4 case. (C) Represenative simulation images for the high stochasticity low FGF4 

case. (D) Heatmap denoting the network based metric contributions to each of the 

principal components. Red indicates a positive contribution, while blue indicates a 

negative contribution.  

 

 

  

Under the parameters tested, no outside-in differentiation was observed, in contrast to the 

previous ABM model (section 5.3). In the ABM model, the outside-in component of 

differentiation was modulated by LIF signaling, which suggested that the parameter space 

tested here did not properly sample parameters which modulated LIF production.  

7.3.4 Nanog Spatial Pattern Assessment during Differentiation 

To assess the model predictions about the spatial distributions of Nanog, aggregates were 

cultured over a 10 day period, with samples taken at days 1, 3, 4, 5, 6, 7, 9, and 10 for 

confocal imaging and subsequent network analysis. First, Nanog spatial distributions 

were assessed during this process. From the previous digital flow results (Figure 7-2) it 

was expected that Nanog would transfer between two states. After network analysis, a 

principal component analysis (PCA) of the metric space resulted in three separate groups 

of Nanog expression (Figure 7-8). These groups correlated roughly with high relatively 
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homogenous expression of Nanog (Day 1, Figure 7-8 A bottom  left), to more 

heterogeneous expression (day 4 – 7, Figure 7-8 A, middle right), and finally a 

population which displayed radially distinct Nanog populations (day 8 – 10, Figure 7-8 

A,  upper left). Oct4 patterns matched the same type of states measured previously, albeit 

with slightly different kinetic in this case (Figure 7-8 C). Also, there appeared to be more 

inside-out differentiation than observed previously in Figure 5-3, suggesting that perhaps 

a different mechanism of differentiation could be occurring.  

 

 

Figure 7-8: Oct4 and Nanog trajectories during the loss of pluripotency transition in ESC 

aggregates. (A) Principal component analysis (PCA) of patterns of Nanog expression 

with representative images. (B) Heatmap showing the metric weights for each different 

principal component, where blue represents a negative correlation, and red a positive 

correlation. (C) PCA of patterns of Oct4 expression with representative images. (D) 

Heatmap showing the metric weights for each different prinicpal component, where blue 

represents a negative correlation, and red a positive correlation. All images are 
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thresholded with the same value to convert to a black white scale. All scale bars are 85 

μm.  

 

 

 

Next the Oct4 and Nanog spatial networks were combined to create a set of three 

different cell types for analysis: Oct4+/Nanog+, Oct4+/Nanog-, and Oct4-/Nanog-. In this 

case a clear trajectory from early to late differentiation was visualized via PCA (Figure 

7-9 A). Once again, though day 1 appeared to have a lot of heterogeneity along PC-1 and 

PC-2, it segregated nicely from the rest of the data set along PC-3 and correlated well 

with markers of Oct4+/Nanog+ size and count, suggesting it was a more enriched 

Nanog+ population than the other days (Figure 7-9 B). This is consistent with previously 

measured digital flow (Figure 7-2), and representative images (Figure 7-9 C). Analysis of 

the Oct4+/Nanog+ populations with respect to Oct4+/Nanog- populations showed that 

these cells were almost always surrounded Oct4+/Nanog- cell types, suggesting that a 

Oct4+/Nanog+ cell type precedes the Oct4+/Nanog- , and also suggested that these rare 

cells are often surrounded by more differentiated progeny.  All in all this data suggested 

that network analysis captured Nanog/Oct4 transitions during ESC differentiation. 

Furthermore, it also showed that Nanog transitions occur before subsequent loss of Oct4, 

and that these two spatial patterns may be related.  
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Figure 7-9: Combined Oct4 Nanog pattern trajecotory analysis. Principal component 

analysis (PCA) of the combined Oct4+Nanog+, Oct4+Nanog- and Oct4-Nanog- metrics 

spaces in 2D (A) and 3D (B) to show the seperation of day 1 from the rest of the data 

cloud. Representative images showing the evolution of Oct4 (red) and Nanog (green) 

spatial patterns over the 10 day differentiation period (C). Scale bar is 85 μm and DAPI is 

shown in blue. Overall the model needed six components to capture ~80% of the variance 

(D). 

 

 

 

While the patterns of differentiation observed here occur in an inside out fashion this was 

expected based on the multiscale modeling predictions. To directly compare the models 

with experimental data, PCA was performed on the combined data set.  Representative 

plots of the selected simulations (Figure 7-7) were depicted on the Oct4 spatial pattern 

axis (Figure 7-10).  The extreme cases, low stochasticity high FGF4, and high 

stochasticity low FGF4, did not appear to explain the spatial pattern evolution observed 

experimentally. In fact both simulations appeared to truncate early in the Oct4 pattern 

space. Only the moderate stochasticity, moderate FGF4 system produced spatial patterns 
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which matched the pattern progression observed experimentally. This result suggested 

that both FGF4 signaling and stochasticity needed to be present in moderate amounts in 

the system to capture the biologically observed pattern evolution.  

 

 

 

Figure 7-10: Comparisons of computational and experimental spatial Oct4 data. Principal 

component analysis (PCA) was performed on the combined computational and 

experimental data sets. The resulting PCA model captured 54.37% of the variance. (A,B) 

Representative views of the 3D PCA projection of the Oct4 experimental (shaded shapes) 

and computational (red, blue and green lines) data.  

 

 

 Discussion 7.4

Nanog displays stochastic fluctuations during embryonic stem cell (ESC) culture in a 

variety of different culture conditions [68, 102, 106]. This stochasticity is largely though 

to be inherent to the Nanog transcriptional machinery, however, it is also in part due to 

spatial heterogeneity in FGF4 signaling [106, 109, 113]. However, the extent to which 

Nanog stochasticity and spatial FGF4 gradients affect ESC differentiation has been 

largely unexplored. This work probed the roles of Nanog stochasticity and FGF4 

signaling using a computational modeling approach.  
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 To establish the spatial pattern associated with Nanog and Oct4 differentiation, 

network analysis was performed on ESC aggregates. This resulted in the quantification of 

Nanog spatial patterns which moved from an originally homogenous state, through a 

random internal state, to a final outside in state in which clusters of Nanog+ cells were 

seen primarily around the outside of the aggregate. The patterns of Oct4 differentiation 

observed in this study matched those observed in earlier work (Figure 5-3), although the 

kinetics and end points of differentiation appear to be slightly delayed. Furthermore, the 

day 10 samples displayed a striking morphology in which Oct4+ clusters are primarily 

located on the outside on the aggregates, which was in contrast to the earlier clusters of 

Oct4+ cells observed in the center of aggregates. The ABM model described in chapter 5 

predicted that this could be due to an increased aggregate size (where FGF4 signaling 

would dominate differentiation) which is consistent with the stochastic multiscale model 

implemented here, but it is also possible that staining or imaging artifacts could cause 

such radial patterns to emerge. To validate this, staining on histological sections could be 

performed to indicate whether these patterns are truly radial in nature.  

 This work shows that a multiscale modeling approach was useful for explaining 

relevant experimentally observed spatial phenomena. Though this work was not the first 

multiscale aggregate model to be constructed, it highlighted nicely how synergisms 

between network based signaling models, and agent based models can be exploited to 

answer questions about biological pattern formation. Sensitivity analysis revealed a 

family of parameters which were expected to drastically modulate differentiation 

kinetics. Of the parameters tested it was shown that factors regulating FGF4 production 

as well as inherent Nanog stochasticity were able to modulate pattern formation. 
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Furthermore, our model predicts spontaneous fluctuations of Nanog will arise in ESC 

aggregates, which matches reports in the literature [68, 113, 294]. One way to validate 

this result would be to use live imaging of aggregates with a Nanog reporter line to 

examine if stochastic fluctuations occur between the Nanog high and Nanog low state 

during differentiation.  

 The model described here represents an amalgamation of models from many 

sources. Interestingly, incorporation of the “negative repressor gene” hypothesis was 

crucial to explain the observed Oct4 on-off transition kinetics. In this model the gene 

took the form of Gata6 (a well-known antagonist to Oct4, Sox2 and Nanog) which 

specifies early primitive endoderm in the early mammalian blastocyst [113, 296]. Nanog 

and Gata6 actively inhibit each other’s expression, making this one of the first bi-stable 

toggle switches observed during development. The role of Gata6 was not explicitly 

explored in this study even though it was found to be crucial in modulating Oct4 

dynamics, therefore a subsequent study examining Gata6 dynamics is necessary. 

Furthermore, this model explicitly included the autocrine effects of LIF, known to 

promote pluripotency in mouse embryonic stem cells via Jak/STAT signaling, whereas 

previous models modulated differentiation using an artificial input. It was also important 

to include cross talk between the FGF4 MEK/ERK pathways and the LIF JAK/STAT 

pathway in order to accurately capture differentiation kinetics.  

 While digital flow cytometry is a well validated technique, the author notes that it 

is not a direct replacement for flow cytometery. However, technical limitations were 

encountered isolating cells for flow cytometry from cellular aggregates. It was extremely 

difficult to get enough cells out of the aggregates to quantify, and the subsequent 

antibody staining and wash steps reduced the cell number substantially. Rather than try to 

optimize this part of the protocol, the established digital flow technique was examined as 

an alternative for quantifying individual cell morphologies. Furthermore, this protocol 
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was a natural extension of the network based framework, as annotated cell information in 

the form of normalized intensities was already generated during the network digitization 

process. This approach was also ultimately useful for identifying intensity threshold 

cutoffs for subsequent digitization of networks, which was a necessary step for spatial 

pattern evaluation.  

 Taken together this work significantly advanced the understanding of how Nanog 

regulates pluripotency in the context of 3D multicellular aggregates. This hypothesis of 

this study was that Nanog regulation could be responsible for the observed Oct4 spatial 

patterns. A multiscale modeling approach implicated that Nanog regulation via inherent 

stochasticity and FGF4 signaling was crucial for explaining the Oct4 patterns observed in 

ESC aggregates. These studies showed inherent noise in Nanog transcriptional 

machinery, as well as the production of FGF4, and FGF4 regulation on Nanog 

transcription levels modulated complex spatial pattern phenotypes. Interestingly, this 

suggested that if the stochasticity associated with Nanog fluctuations could be uncoupled 

from FGF4 signaling and independently modulated, radically different types of pattern 

formation could result. However, due to the intrinsic link between FGF4 and Nanog 

stochasticity, it would be difficult to design an experiment which would completely 

decouple these two processes. In summary this work outlines a novel strategy for 

multiscale modeling of complex genetic regulatory networks in conjunction with soluble 

cues to examine spatial patterns associated with ESC aggregate differentiation.  
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CHAPTER 8  CONCLUSIONS AND FUTURE DIRECTIONS 

 Network Analysis 8.1

Network analysis is typically utilized to examine large interaction networks, ranging from 

social networks, to biological interaction networks. Various types of fields make use of 

network analysis to extract features form networks, such as shortest paths, clichés, and 

motif analysis. In the case of biological networks, these methods are employed to identify 

important species within these interactomes, or to identify enriched regulatory 

subnetworks.  In all cases these methods involve extracting some information form the 

network topology and using it to describe the network. In this work the basics of this 

network approach were extended to cover spatial dimensions. In this case a series of 

network descriptors were extracted from the network which describe spatial information 

and distributions of markers of various types.  

 The author borrowed the idea of identifying interesting subnetworks and their 

enrichment, instead opting to identify subnetworks from local cell phenotypes. Rather 

than simply reporting the numbers of such subnetworks, spatial information about the 

location of each of these subnetworks within the larger network, and also, their 

relationships to each other is extracted. The result is the creation of a novel modular 

spatial pattern recognition approach which allows extraction of a series of meaningful 

spatial pattern metrics as well as metrics related to the number of cells in a certain state 

across multiple different systems of interest. These metrics cluster broadly into two 

categories, those related solely to spatial information, and those related to relative number 

of cell/cell types present. Decoupling these two classes of metrics from each other in 

order to describe spatial pattern formation is a difficult task, and this work highlights that 

often  substantial portion of spatial pattern heterogeneity is inherently tied to differences 

in cell types present.   
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 This study tests the validity of this approach across a number of different model 

systems: ESC cellular aggregates, computational models, and Cichlid fish. A variety of 

different biological processes were tested: early loss of pluripotency, late mesenchymal 

like differentiation, neural differentiation, and gastrulation. The spatial scales assessed 

cover a wide variety of scales ranging from tens of microns (early ESC aggregates) up to 

hundreds of microns (late gastrulation). Due to restrictions with imaging, in the context 

of the networks measured this equates to anywhere from tens to thousands of network 

nodes (individual cells) with thousands to hundreds of thousands of network edges (or 

cellular interactions). Furthermore, in each biological system this work uncovered novel 

biological insight. 

 For loss of pluripotency in ESC aggregates this method uncovered a complex 

paracrine signaling mechanism which explained spatial patterns of differentiation as well 

as observed differences kinetics of ESC aggregates of differing sizes (Chapter 5 and 7). 

The two paracrine process proposed here explained these differences (one in a secreted 

factor is responsible for maintain pluripotency, and the other where more differentiated 

cells secrete a factor which induces differentiation), and mirrored the known properties of 

soluble LIF and FGF4 signaling respectively [102, 106, 110, 290].  Surprisingly but 

interestingly, the lack of local neighbor-to-neighbor regulation of phenotypic state, as 

analyzed by this methodology, suggested that transmission of cell state information by 

intercellular cues, such as Notch, may impact later stages of differentiation than the time 

period examined here.  Though one other report of comparing image derived metrics to 

computational metrics does exist (see section 5.4), this work represented the first direct 

quantitative comparison between computational modeling and complex emergent 

spatiotemporal patterns during multicellular lineage commitment in 3D ESC aggregates. 

 Analysis in cichlid was quite a difficult challenge (Section 6.2). The images to be 

analyzed were 3D confocal images, and much larger than anything previously analyzed. 

Furthermore, the readout of BMP signaling via measurement of pSmad, represented a 
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gradient of staining in response to the soluble gradient, which made creating a binary 

annotation out of this signal challenging. Furthermore the spatial pattern domains of 

interest were often one single subnetwork which changed shape over time. This 

represented an extreme from the ESC cases discussed previously, were many small 

subnetworks could be measured in a single aggregate. Nevertheless this approach proved 

sensitive enough to separate different cichlid fish embryos based on their staging during 

gastrulation, and identify key the key temporal changes in dlx3b gene expression and 

BMP signaling responsible for driving this event.  

 In the context of neural differentiation this approach was able to shed some light 

on the glial switch (Section 6.3). Here again ESC aggregates were used as a model 

system in order to try and understand the regulation of the switch form production of 

motor neurons to oligodendrocytes (glial cells). Using a hybrid approach of 

computational models with digital flow cytometry methods the study showed that there 

was no way a rigid differentiation schema was capable of explaining the robust motor 

neuron induction observed in this system, or the fact that these motor neurons appeared 

before the establishment of a supposed neural progenitor population. The model 

postulated that during early differentiation, this progenitor population is not stable, and it 

was not until a  substantial portion of motor neurons are established in the culture that 

these neural progenitors can establish themselves in this culture system. Furthermore, the 

models predicted that this signal was likely a soluble factor, providing evidence that this 

method was capable of distinguishing between soluble and local cell-cell modes of 

regulation. This highlighted the scalability of this approach for analyzing multiple 

different cell types of interest and the spatial pattern associated with each. The 

predictions of this model are being validated in collaboration with Raymond Swetenburg 

in Dr. Stice’s lab at the University of Georgia. 

 Analysis of histological data samples also provided a variety of new challenges 

(Section 6.4). First off, single cell markers are often not available in histological samples. 
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In this work network derived metrics were used to inform single cell classification 

efforts. This study showed that network based classification improved the performance of 

shape based classification methods substantially. Furthermore, this study highlighted a 

comparison between two entirely different biological systems which both induced 

epithelial to mesenchymal like transitions (EMT): treatment of ESC aggregate with 

BMP4, and gelatin methacrylate microparticles. The results showed that the 

microparticles appeared to induce slightly more pronounced EMT than the BMP4, but 

that the overall distributions and spatial patterns of this process were strikingly similar. 

This underscored the portability of this approach and its use in comparing experiments 

across different systems in a meaningful straightforward manner. The method also 

identified other structures in ESC aggregates: cysts and super-dense epithelial areas. 

Interestingly the method was unable to distinguish rosette like structures robustly, 

suggesting that further work is needed in validating and training those classifiers.  

In the future this approach could be applied to various single cell live imaging 

systems. A variety of such systems exist, and data from whole embryos undergoing 

development are already starting to become available form light sheet experiments. Many 

of these systems report robust systems for tracking, and identification of single cells 

during the process, however, as of yet, methods for quantifying the spatial evolution of 

these processes have not been explored. Our method synergizes well for these 

applications, as all of the data is inherently single cell and can be expressed in a network 

format. This allows extraction of similar spatial network metrics described here, but with 

the added advantage of following a single aggregate through time, which abolishes many 

of the issues with the subsequent data analysis techniques described in Section 7.3.  

 The multiple examples illustrated herein highlight the broad utility of network-

based analysis for identification of spatial biological patterns via the formulation of novel 

metrics. This study reports the derivation of pattern trajectories associated with several 

systems: experimentally observed loss of Oct4 in ESC aggregates, computational models 
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of Oct4 loss in ESC aggregates, and gastrulation in cichlids. Novel biological insights 

gained using our network analysis approach included: 1) differences in ESC aggregate 

spatiotemporal pattern kinetics can be explained by a combined paracrine signaling 

methodology, 2) gastrulation in cichlid fishes can be split into a set of discrete stages and 

3) neural progenitors undergo a spontaneous differentiation towards motor neurons, and 

motor neurons must actively inhibit this process via a soluble factor to drive glial 

differentiation. In the case of ESCs, a large body of literature exists which suggests that 

differentiation is heavily modulated by ESC size [112, 142, 151-153]. In summation, this 

novel pattern classification pipeline permits entirely new forms of quantitative analysis 

based upon the fundamental interconnectivity of multicellular networks, which could 

revolutionize the characterization of biologically complex spatiotemporal phenomena. 

 Computational Multiscale Modeling of Tissues 8.2

Biological systems present many interesting processes on multiple different spatial and 

temporal scales. These range from protein-protein molecular interactions, to cell-cell 

interactions, all the way up to tissue and organism level behaviors. Depending on the 

level at which the process of interest resides, various different methods can be used to 

simulate it. In the context of simulating dynamics in cellular aggregates or early 

developmental systems, a variety of biological processes need to be taken into account. 

Cells must be allowed to proliferate, move, and interact with their environment. During 

development, cells are heavily influenced by soluble queues, which need to be simulated 

over complex spatial domains. This can be accomplished utilizing forward Euler 

integration schemas to solve complex reaction diffusion processes, though the method is 

computationally intensive as it requires high spatial resolution (10-15 μm ~ one cell 

diameter) and complete integration through time. Even though these spatial soluble 

gradients can be simulated, cell responses to these cues are often not linear, and therefore 

the intracellular signaling dynamics are also important to consider. Furthermore, 
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depending on the stage or process simulated, it is necessary to consider single cell 

responses to account for stochastic fluctuations and spatial heterogeneity[297-299].  

Accounting for all of these properties leads to inherent multiscale models in which the 

specific signaling pathways governing cell responses to these signals, the location and 

behavior of single cells and the spatial simulation of the soluble signals is crucial.  

 Agent based modeling (ABM) is one such technique which allows simulation of 

each individual cell as its own entity. Classically agent based models have been used to 

study population dynamics, ecological niches, dynamic markets. The flexible framework 

for allowing entities to interact based on simple sets of rules is useful in a variety of 

contexts. In this work, ABM approaches are utilized to model cells in multicellular 

aggregates. The individual cells (or agents) are allowed to make decisions about 

movement, differentiation, and vision based on a simple set of rules. Differentiation was 

assumed to be governed by two sets of queues: soluble, and local cell-cell interactions. 

Examples of biologically relevant signals at play during early ESC loss of pluripotency 

are LIF, FGF4 and BMP, while relevant local signaling factors include Notch. While 

soluble factors have been implicated during early differentiation processes (FGF4, BMP, 

and Wnt), local cell-cell interactions such as Notch are typically relegated to maintenance 

of adult stem cell populations.  

 Division and other physical interactions were accounted for by simulating the 

group of cells as a mass spring network. This offered a variety of advantages over FE or 

continuum based approaches. First, the cells were maintained in a network structure, 

which made finding cell-cell interactions an inherently easy task. Second, it enabled rapid 

extraction of network based metrics from these physical networks. Thus the network 

structures used in this model serve largely two functions, the ability to maintain physical 

interactions, and keeping track of local cell-cell interactions. 

 ABM approaches generally suffer from a lack of quantitation. Even though 

simulation parameters can be tweaked until they match some experimental system, 
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quantitative extraction of metrics governing the evolution of these systems is quite 

difficult. Furthermore, due to the increased complexity in these systems many of the tools 

that were useful at the network level become much more difficult to implement. 

Sensitivity analysis and parameter fitting via optimization strategies become increasingly 

more computationally intensive as the time to run each simulation increases. Monte Carlo 

based approaches are out of the question due to the parameter space necessary and the 

time to run each simulation. Therefore to optimize parameters, a grid search method was 

used with only a sparse sampling of each parameter. This approach is not guaranteed to 

find an optimal solution, but rather it provides an idea of the landscape of behaviors the 

ABM models can provide. Using such approaches relevant ranges of behaviors for cells 

communicating to each other via both local and soluble paradigms were defined.  

 Interestingly, work in Chapter 3 showed that local cell–cell interactions could 

capture spatial pattern associated with differentiation. In later diffusion based 

simulations, depending on the ratio of parameters governing consumption, production 

and diffusion of the factor, gradients of various spatial dimensions could be achieved. 

Thus, it was possible to have both local paracrine like factor secretion, and also more 

global factor effects all stemming from secretion of soluble factors.  It is interesting to 

note that the network based approaches could distinguish these different signaling 

regimes, particularly in the context of neural differentiation (Section 6.3). However, in 

the neural work, the soluble factors were functioning on am more global scale, making 

the distinction between local interactions and this mode of signaling quite stark. In the 

case of the early ESC pluripotency, soluble factors were only implicated because those 

simulations lead to differences in differentiation between sizes. When the factors were 

functioning on a local paracrine scale it was difficult to tell them apart from pattern 

induced via local cell-cell interactions; however this is largely due to the fact that the two 

regimes simply lead to similar spatial pattern formation.   
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 While rules based modeling approaches can be useful for elucidating the general 

rules governing a systems behavior, extrapolating these rules into a set of relevant 

molecular mechanisms is quite difficult. Therefore, to increase the biological insight of 

these models, an underlying set of stochastic ODEs was used to drive cell behavior. After 

fitting this system to experimental data and validating the local parameter sets, sensitivity 

analysis revealed a set of parameters which were maximally influenced the system. Once 

this system was implemented in our ABM model, a similar approach was performed to 

see which of these parameters lead to. It was observed that the parameter governing 

Nanog stochasticity and FGF4 secretion had the most effect on the spatial pattern 

associated with this differentiation process. Thus this study could link the abstract 

parameters used in the rules based simulations back to particular molecular mechanisms 

which could be responsible for regulating spatial pattern development and evolution in 

ESC aggregates. In the future, it would be extremely interesting the modulate parameters 

governing FGF4 signaling possibly via application of inhibitors or via gene editing 

approaches. Unfortunately it is difficult at the current time to modulate Nanog 

stochasticity directly to test its effects on ESC differentiation. Some work has been done 

showing that through titration of different small molecules the noise associated with 

Nanog transcription can be increased, however, many of these are directly tied to FGF4 

signaling, so decoupling these two processes would be extremely difficult.   

 It is also important to note that the influence of the extracellular matrix 

environment is not taken into account in these simulations. While for early loss of 

pluripotency transitions, there is some evidence that matrix plays an important role in cell 

fate decisions[13, 18, 230], it is certainly an important determine factor in tissue 

maturation, EMT, and other extremely relevant processes to tissue development [12, 13, 

16-18, 56, 230]. In the future such interactions could be incorporated into the modeling 

framework in a variety of ways. Small agents could be secreted form the cells 

representing matrix molecules. This would allow for propagation of physical interactions 
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in a similar fashion to those described above for cells. However, though extremely 

accurate, this approach would likely lead to a dramatic increase in computational time, 

making it only practical if this resolution is absolutely required.  An alternative approach 

which has enjoyed some popularity in the simulation community is to treat the ECM as 

“gradient” which though it is not subject to diffusive conditions, can be degraded and 

deposited in a similar manner to a reaction diffusion system. This results in a robust 

modeling approach for simulating deposition and remodeling of matrix associated 

species, which would also work well in the context of the current diffusive framework.  

 Comparisons of Biological and Computational Data 8.3

In the course of creating mathematical models of systems, access to biological data for 

initial fitting and subsequent testing of the model is crucial. In the case of classical 

computational modeling of signaling systems utilizing ordinary differential equations 

(ODEs), this involves capturing active signaling dynamics over time typically through the 

use of antibodies recognizing active signaling proteins via either flow cytometry or 

western blot. Or in the case where reporter systems are present, live real-time readouts of 

the system in response to various inputs can be acquired. In either case subsequent 

comparisons between the model and experimental data can be performed.  

A variety of methods exist for optimizing parameters in mathematical models to 

fit to experimental data. An entire field of optimization theory has been utilized to derive 

a whole set of optimization algorithms including but not limited to: conjugate gradient 

descent, Powell, Broyden Fletcher GoldFarb Shanno (BFGS), Newton conjugate 

gradient, and downhill simplex algorithms. Each of these algorithms has strengths and 

weakness depending on the size of the optimization problem. Most of these methods 

work reasonably well assuming the problem is formulated in a linear fashion however, in 
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the case where stochastic noise is added to the system, this can be a bit more difficult to 

solve. Thus, for the case of the stochastic ODE simulations used in this work, a Monte 

Carlo based approach was used to sample parameter space to judge the viability of the 

current parameter set. This worked reasonably well as a substitute for the optimization 

algorithms, and gave a passable picture of the shape/size of the parameter space.  

In general, optimization approaches works quite well for well-defined systems of 

parameters where the output and objective function for comparison is well known; 

however, methods for comparing biological images to experimental simulations are still 

lacking. This work derives a common set of mathematical descriptors via network 

analysis which can be used in this fitting. Once these metrics are described they can be 

compared between any set of systems. However, this type of data presents several 

challenges. Many metrics are created for each pattern quantified leading to a high 

dimensional data set, and many different types of patterns are quantified at each time 

point which further complicates the process by creating multi-dimensional data clouds. 

For any large dimensional data set extraction of important features is crucial to 

understanding the data dynamics and accurately comparing the results. Simple Euclidean 

distance metric comparisons between high dimensional vectors fail to capture subtle 

differences in the data due to assigning even weights to all data for comparison. This 

study addressed this problem by using feature extraction method to identify important 

metrics in the data set, or in the case of principal component analysis (PCA) 

combinations of metrics in the data set which capture the most variance. Once the data 

was transformed into the space emphasizing important features, Euclidean distance 

metrics can be used to compare the data clouds.   
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However comparison between point n-dimensional clouds is still a complicated 

problem. A simple point by point comparison method works well for establishing 

distances between point clouds assuming that the clouds display some sort of uniform 

distribution. Depending on the system of interest, the point clouds may have separate 

subpopulations of behaviors with in each group for comparison. This work addresses this 

problem utilizing a novel network based approach which utilizes a KDTree combined 

with K-means clustering to split irregularly shaped data clouds up. One weakness of this 

approach is that it currently does not implement an automatic mode for selecting or 

testing if multiple clusters exist, the difference threshold between clusters must be 

specified. This threshold factor is equivalent in some sense to the p-value used in 

statistical tests. Incorporation of an unsupervised K-means approach for testing clusters 

would allow a more automated approach to cluster identification. It is important to note 

that this method is similar to Gaussian mixture models (GMM), however, fitting GMM 

models requires many points in the data cloud, where the approach outlined here works 

well for sparse data clouds. This approach works reasonably well for the data tested, and 

really only proved necessary in the cases where time points displayed strong bimodal or 

trimodal segregation into different states. However, further testing is needed to perfect 

this algorithm and rigorously test its ability to accurately estimate distances between 

point clouds in a reliable fashion. Additionally, a method for assessing whether these 

extracted differences are statistically different form each other is crucial for assessing the 

validity of this method.  

Once the pattern data is processed, the comparison between biological image data 

and simulation data can be achieved. Subsequent comparisons of the resultant data clouds 
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moving through time can be accomplished through a variety of ways. Time can be non-

dimensionalized, which results in computing the closest distance in a pairwise method for 

all clouds of data belonging to each process. Or, time can be enforced, and comparisons 

between data clouds are only enforced for given time points. In most of the analysis 

performed in this study time was enforced for such comparisons, but for the purposes of 

establishing if a simulation follows a different trend, simply shifted in the time, these 

methods were not sufficient. To answer this problem, the non-dimensionalized time 

comparisons were performed. All in all, this works highlights a strategy for comparing 

many sets of biological images to computational simulations in a tractable way. The 

strategies outlined herein represent a simple solution for comparing multidimensional 

data and could be applied to the comparisons of any such data sets. 

 Regulation of Pluripotency in Embryonic Stem Cells 8.4

The roles of Oct, Sox2 and Nanog in maintain pluripotency are well established. Oct4 

and Sox2 form a transcriptionally activated complex which in turn regulates a myriad of 

downstream genes, including Oct4 and Sox2 [72, 77, 78, 125]. Nanog, has also been 

shown to maintain pluripotency by repressing a series of genes associated with 

differentiation, most notably Gata6 [113]. Nanog activates itself in a positive feedback 

loop in addition to activating expression of Oct4 and Sox2, while the Oct4-Sox2 complex 

activates expression of Nanog. These redundant positive feedback loops maintains ESCs 

in a pluripotent state.  Classically in conditions favoring differentiation it is observed that 

Nanog is lost first, and Sox2 and Oct34 follow soon after; thus Nanog is often thought of 

as a master regulator of differentiation. However, in serum containing culture with LIF, 

stochastic fluctuations in Nanog levels have been observed [78, 79, 300]. Indeed many 

have observed that these fluctuations appear stochastic in 2D culture, where Nanog 

appears to switch back and forth between two cell fates. Until recently this process was 
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thought to be largely random, and either a product of intrinsic cellular stochasticity 

associated with Nanog, or perhaps diverse epigenetic regulation. A recent paper put forth 

by Ochiai et al. showed via a CRSIPR reporter system that the intrinsic and extrinsic 

noise have relatively equal contributions to Nanog heterogeneity in culture [109]. It is 

also well known that Nanog can be regulated by FGF signaling thorough MAPK 

pathways. This regulation is abolished in 2i culture, and leads to homogeneous Nanog 

expression. There are also scatter reports that ESC aggregates cultured in LIF and 2i 

appear to have a spatially random differentiation patterns, although this has yet to be 

confirmed with any quantitative methods.  

 This work highlights the existence of spatial patterns in Oct4 during the loss of 

pluripotency in ESC aggregates. These patterns co-vary with Sox2 expression, which 

agrees with the known roles of Oct4 and Sox2 in early differentiation steps. Agent based 

modeling revealed that loss of Oct4 was likely accomplished with a system containing 

two soluble factors, one which induces differentiation, and one which prevents it. Based 

on the literature it was concluded that these species are likely FGF4, which as discussed 

above is implicated in inducing differentiation via down-regulation of Nanog, and LIF 

which activates Oct4 and Sox2 directly via activation of Stat3 (via phosphorylation). In 

order for this model to accurately explain the results, particularly differentiation induced 

across different sizes, FGF4 must be a potent inducer of differentiation, and be capable of 

inducing resistance to LIF secreted by mouse embryonic stem cells. Reports in the 

literature indicate that ERK/MAK signaling is capable of inhibiting Stat3 

phosphorylation, providing a mechanism by which ESCs can ignore LIF induced 

pluripotency in the presence of enough FGF4. Our model further indicates that early 

spatial distributions in Nanog are responsible for subsequent patterns of Oct4 in ESC 

aggregate differentiation. A computational model constructed of this process indicated 

that the contributions of intrinsic and extrinsic noise in Nanog regulation are 

approximately equal. While the exact mechanism governing intrinsic noise at the Nanog 
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allele is unknown, our model predicts that the extrinsic noise can largely be captured by a 

spatially heterogeneous gradient of FGF. One possible way to test such claims would be 

to culture ESCs in 2i conditions, dissociate them to make 3D aggregates, and then expose 

them to the same differentiation conditions. The current model predicts that culture of 

ESCS in 2i containing conditions prior to differentiation would lead to more spatially 

random loss of Nanog and subsequent Oct4 patterns.   

 The model also suggests that Nanog fluctuations between high and low states do 

occur in ESC aggregates. Though this conclusion is only drawn from results based on the 

computational model, examining expression of Nanog in ESC aggregates in real time via 

live imaging and reporter system would address many of these questions. Real time 

imaging would allow comparisons of live single cell traces with spatial information to 

our computational models about Nanog fluctuations, while simultaneously allowing 

examination of a whole host of questions related to heterogeneity and perturbations in the 

microenvironment via. Ideally, differentiation trajectories would be studied using both a 

Nanog and a Gata6 reporter line. Gata6 and Nanog inhibit each other’s expression, with 

Gata6 typically being associated with early epiblast cell formation, making the Nanog-

Gata6 switch one of the first fate transition in development. Furthermore, this would be 

an excellent platform to probe Gata6 spatial expression in real time to see if the predicted 

Gata6 spatial patterns match those predicted by the computational model. This represents 

an excellent application and extension of our computational modeling and network 

analysis platforms, and would allow us to further address outstanding questions in the 

field regarding Nanog expression.   
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APPENDIX 

A.1. Supplementary Methods 

A.1.1. Network Based Metrics 

A.1.1.1. Loss of Pluripotency Binary Metrics (Oct4+, Oct4-) 

Oct4+_clust_# - the number of Oct4 + clusters (a cluster is defined as more than a single 

node) 

Oct4+_size_avg – the average radius of the Oct4+ clusters 

Oct4+_size_std – the standard deviation in the radius of the Oct4+ clusters 

Oct4+_nd_cnt_avg – the average number of nodes of the Oct4+ clusters 

Oct4+_nd_cnt_std – the standard deviation in the number of nodes of the Oct4+ clusters 

Oct4+_rad_dist_avg – the average radial distance of the Oct4+ clusters  

Oct4+_rad_dist_std – the standard deviation of the radial distances of the Oct4+ clusters 

Oct4-_clust_# - the number of Oct4- clusters (a cluster is defined as more than a single 

node) 

Oct4-_size_avg – the average radius of the Oct4- clusters 

Oct4-_size_std – the standard deviation in the radius of the Oct4- clusters 

Oct4-_nd_cnt_avg – the average number of nodes of the Oct4- clusters 

Oct4-_nd_cnt_std – the standard deviation in the number of nodes of the Oct4- clusters 

Oct4-_rad_dist_avg – the average radial distance of the Oct4- clusters  

Oct4-_rad_dist_std – the standard deviation of the radial distances of the Oct4- clusters 

Total_obj_# - the total number of cells in the system 

Object_#_ Oct4+ – the total number of Oct4+ cells in the system 

Object_#_ Oct4- – the total number of Oct4- cells in the system 

Percent_diff – the total number of Oct4- cells / the total number of cells 

Agg_radius – the maximal radius (size) of the aggregate as measured from the center 

 

A.1.1.2. Cichlid Gastrulation Multiclass Metrics (dlx3b+, pSmad+, pSmad/dlx3b+) 

dlx3b+_clust_# - the number of dlx3b+  clusters  

dlx3b+_size_avg – the average radius of the dlx3b+ clusters 

dlx3b+_size_std – the standard deviation in the radius of the dlx3b+ clusters 

dlx3b+_nd_cnt_avg – the average number of nodes of the dlx3b+ clusters 

dlx3b+_nd_cnt_std – the standard deviation in the number of nodes of the dlx3b+ clusters 

dlx3b+_rad_dist_avg – the average radial distance of the dlx3b+ clusters  

dlx3b+_rad_dist_std – the standard deviation of the radial distances of the dlx3b+ 

clusters 

dlx3b+_clust_circ_avg – the average circularity of the dlx3b+ clusters  

dlx3b+_clust_circ_std – the standard deviation of the circularities of the dlx3b+ clusters 

dlx3b+_ecc_avg – the average eccentricity of the dlx3b+ clusters  

dlx3b+_ecc_std – the standard deviation of the eccentricities of the dlx3b+ clusters 
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pSmad+_clust_# - the number of pSmad+ clusters 

pSmad+_size_avg – the average radius of the pSmad+ clusters 

pSmad+_size_std – the standard deviation in the radius of the pSmad+ clusters 

pSmad+_nd_cnt_avg – the average number of nodes of the pSmad+ clusters 

pSmad+_nd_cnt_std – the standard deviation in the number of nodes of the pSmad+ 

clusters 

pSmad+_rad_dist_avg – the average radial distance of the pSmad+ clusters  

pSmad+_rad_dist_std – the standard deviation of the radial distances of the pSmad+ 

clusters 

pSmad+_clust_circ_avg – the average circularity of the pSmad+ clusters  

pSmad+_clust_circ_std – the standard deviation of the circularities of the pSmad+ 

clusters 

pSmad+_ecc_avg – the average eccentricity of the pSmad+ clusters  

pSmad+_ecc_std – the standard deviation of the eccentricities of the pSmad+ clusters 

pSmad+/dlx3b+_clust_# - the number of pSmad+/ dlx3b+ clusters 

pSmad+/dlx3b+_size_avg – the average radius of the pSmad+/ dlx3b+ clusters 

pSmad+/dlx3b+_size_std – the standard deviation in the radius of the pSmad+/ dlx3b+ 

clusters 

pSmad+/dlx3b+_nd_cnt_avg – the average number of nodes of the pSmad+/ dlx3b+ 

clusters 

pSmad+/dlx3b+_nd_cnt_std – the standard deviation in the number of nodes of the 

pSmad+/ dlx3b+ clusters 

pSmad+/dlx3b+_rad_dist_avg – the average radial distance of the pSmad+/ dlx3b+  

clusters  

pSmad+/dlx3b+_rad_dist_std – the standard deviation of the radial distances of the 

pSmad+/ dlx3b+ clusters 

pSmad+/dlx3b+_clust_circ_avg – the average circularity of the pSmad+/ dlx3b+   

clusters  

pSmad+/dlx3b+_clust_circ_std – the standard deviation of the circularities of the 

pSmad+/ dlx3b+   clusters 

pSmad+/dlx3b+_ecc_avg – the average eccentricity of the pSmad+/ dlx3b+   clusters  

pSmad+/dlx3b+_ecc_std – the standard deviation of the eccentricities of the pSmad+/ 

dlx3b+   clusters 

pSmad+/dlx3b+_r_ratio – r_clust_nd_count_avg / y_clust_nd_count_avg  

pSmad+/dlx3b+_g_ratio - r_clust_nd_count_avg / y_clust_nd_count_avg 

Total_obj_# - the total number of cells in the system 

Object_#_pSmad+/dlx3b+ – the total number of pSmad+/dlx3b+ cells in the system 

Object_#_dlx3b+ – the total number of dlx3b+ cells in the system 

Object_#_ pSmad+ – the total number of pSmad+ cells in the system 

Agg_radius – the maximal radius (size) of the aggregate as measured from the center 

 

A.1.1.3. Mesenchymal Morphogenesis Binary Metrics (Mesenchymal, Epithelial) 

M_clust_# - the number of mesenchymal clusters  

M_size_avg – the average radius of the mesenchymal clusters 

M_size_std – the standard deviation in the radius of the mesenchymal clusters 
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M_nd_cnt_avg – the average number of nodes of the mesenchymal clusters 

M_nd_cnt_std – the standard deviation in the number of nodes of the mesenchymal 

clusters 

M_rad_dist_avg – the average radial distance of the mesenchymal clusters  

M_rad_dist_std – the standard deviation of the radial distances of the mesenchymal 

clusters 

E_clust_# - the number of epithelial clusters 

E_size_avg – the average radius of the epithelial clusters 

E_size_std – the standard deviation in the radius of the epithelial clusters 

E_nd_cnt_avg – the average number of nodes of the epithelial clusters 

E_nd_cnt_std – the standard deviation in the number of nodes of the epithelial clusters 

E_rad_dist_avg – the average radial distance of the epithelial clusters  

E_rad_dist_std – the standard deviation of the radial distances of the epithelial clusters 

Total_obj_# - the total number of cells in the system 

Object_#_E – the total number of mesenchymal cells in the system 

Object_#_M – the total number of epithelial cells in the system 

Percent_diff – the total number of epithelial cells / the total number of cells 

Agg_radius – the maximal radius (size) of the aggregate as measured from the center 

 

A.1.1.4. Neuronal Multiclass Metrics (Stem Cell, Olig2+, HB9+, Olig2+/Nkx2.2+) 

U_# - the number of unmarked clusters  

U_size_avg – the average radius of the unmarked clusters 

U_size_std – the standard deviation in the radius of the unmarked clusters 

U_nd_cnt_avg – the average number of nodes of the unmarked clusters 

U_nd_cnt_std – the standard deviation in the number of nodes of the unmarked clusters 

U_rad_dist_avg – the average radial distance of the unmarked clusters  

U_rad_dist_std – the standard deviation of the radial distances of the unmarked clusters 

NP_# - the number of progenitor clusters  

NP_size_avg – the average radius of the progenitor clusters 

NP_size_std – the standard deviation in the radius of the progenitor clusters 

NP_nd_cnt_avg – the average number of nodes of the progenitor clusters 

NP_nd_cnt_std – the standard deviation in the number of nodes of the progenitor clusters 

NP_rad_dist_avg – the average radial distance of the progenitor clusters  

NP_rad_dist_std – the standard deviation of the radial distances of the progenitor clusters 

MN_clust_# - the number of motor neuron clusters 

MN_size_avg – the average radius of the motor neuron clusters 

MN_size_std – the standard deviation in the radius of the motor neuron clusters 

MN_nd_cnt_avg – the average number of nodes of the motor neuron clusters 

MN_nd_cnt_std – the standard deviation in the number of nodes of the motor neuron 

clusters 

MN_rad_dist_avg – the average radial distance of the motor neuron clusters  

MN_rad_dist_std – the standard deviation of the radial distances of the motor neuron 

clusters 

G_clust_# - the number of glial clusters 
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G_size_avg – the average radius of the glial clusters 

G_size_std – the standard deviation in the radius of the glial clusters 

G_nd_cnt_avg – the average number of nodes of the glial clusters 

G_nd_cnt_std – the standard deviation in the number of nodes of the glial clusters 

G_rad_dist_avg – the average radial distance of the glial clusters  

G_rad_dist_std – the standard deviation of the radial distances of the glial clusters 

Total_obj_# - the total number of cells in the system 

Object_#_ MN  – the total number of motor neurons in the system 

Object_#_NP – the total number of progenitor cells in the system 

Object_#_G – the total number of glial cells in the system 

Object_#_U – the total number of unmarked cells in the system 

Agg_radius – the maximal radius (size) of the aggregate as measured from the center 

 

A.1.2. Classification - Grid Search Parameters (Python Code) 

A.1.2.1. NUSVC 

nus = [1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, .1],  

params = [{'nu':nus, 'kernel': ['linear']}, 

                 {'nu':nus, 'gamma':np.logspace(-5,0,num=6), 'kernel':['rbf']}, 

                 {'nu':nus, 'gamma':np.logspace(-5,0,num=6), 'degree':np.arange(2,5), 'kernel':['poly']}, 

                 {'nu':nus, 'gamma':np.logspace(-5,0,num=6), 'kernel':['sigmoid']}] 

 classifier = NuSVC(probability = True)        

 gs = GridSearchCV(classifier, params) 

A.1.2.2. SVC 

params = [{'C':np.logspace(-5,5,num=11), 'kernel': ['linear']}, 

                 {'C':np.logspace(-5,5,num=11), 'gamma':np.logspace(-5,0,num=6), 'kernel':['rbf']}, 

                 {'C':np.logspace(-5,5,num=11), 'gamma':np.logspace(-5,0,num=6), 'degree':np.arange(2,5), 'kernel':['poly']}, 

                {'C':np.logspace(-5,5,num=11), 'gamma':np.logspace(-5,0,num=6), 'kernel':['sigmoid']}] 

classifier = SVC(probability = True) 

gs = GridSearchCV(classifier, params) 

A.1.2.3. Stochastic Gradient Descent (SGD) 

params = [{'alpha':np.logspace(-5,5,num=11), 'loss':['log']}, 
                 {'alpha':np.logspace(-5,5,num=11), 'loss':['modified_huber']}, 

                 {'alpha':np.logspace(-5,5,num=11), 'loss':['perceptron']}, 

                 {'alpha':np.logspace(-5,5,num=11), 'loss':['squared_hinge']}]        

classifier = SGDClassifier(shuffle = True)      

 gs = GridSearchCV(classifier, params) 

A.1.2.4. Linear SVC 

params = [{'C':np.logspace(-5,5,num=22)}]       

classifier = LinearSVC()  

gs = GridSearchCV(classifier, params) 

A.1.2.5. Decision Tree 

params = [{'criterion':['entropy'], 'max_features':np.arange(1, len(ml))}, 
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                 {'criterion':['gini'], 'max_features':np.arange(1, len(ml))}]  

 classifier = DecisionTreeClassifier() 

 gs = GridSearchCV(classifier, params) 

A.1.2.6. K Nearest Neighbors 

params = [{'n_neighbors':np.arange(1,20)}]    

classifier = KNeighborsClassifier() 

gs = GridSearchCV(classifier, params) 
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