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SUMMARY

With the growth of mobile data services and bandwidth, several applications

and streaming services have emerged that made video quality and technologies im-

portant fields of research and development. Understanding perceptual video quality

can be achieved through understanding and tightly linking the perceptual nature of

the human visual system and varying characteristics and dynamics of video contents.

In this dissertation, the objective of the proposed research is to investigate percep-

tual quality assessment and analysis of videos subject to different types of distortion.

We propose utilizing adaptive content dynamics to examine the impact of different er-

ror sources on the perceptual quality of the video. We design perceptual video quality

estimators using novel handcrafted features inspired by the human visual properties.

We explore new feature spaces and utilize them to capture varying video dynamics

as experienced by our visual perception. Specifically, we introduce a new framework

for perceptual video quality using pixel-level optical flow maps where we propose a

motion processing procedure inspired by the hierarchical processing of motion in the

visual cortex. Furthermore, we propose another perceptual video quality assessment

approach by examining the varying properties of the tempospatial power spectrum.

Using the power spectrum, we design a novel sensitivity measure to capture the impact

of distortions on visual perception. This work includes a full-reference computation-

ally efficient framework that captures both spatial and temporal characteristics in the

frequency domain. We also examine the performance of various statistical moments

and pooling strategies, at both spatial and temporal levels, with different visual fea-

ture maps. This aims at revealing the optimal pooling strategies most correlated with

visual perception for every feature space with respect to different distortions.

xiii



CHAPTER I

INTRODUCTION

Over the past decade, video streaming services have gained a massive popularity and

both content and the number of users are continuously growing. The continuous

growth of Internet traffic in general, and video traffic in particular, has triggered

the signal processing and communication communities concern with bandwidth and

quality of experience (QoE). Global IP traffic has increased significantly over the

past years and is expected to continue growing over the next few years. Mobile data

traffic has increased 4000-fold over the past decade. It is also predicted to reach 30.6

exabytes per month by 2020 (over eightfold increase from 2015), out of which 75% will

be video traffic (11-fold increase from 55% in 2015) [16]. Average mobile connection

speed is expected to grow from 2 Mbps in 2015 to 6.2 Mbps in 2020 [17]. Mobile

video represented more than half of global mobile data traffic beginning in 2012,

indicating that it is already affecting traffic today, not just in the future. A million

minutes of video content is estimated to cross the network every second by 2018 [17].

It is estimated that a growth of 68% in global mobile connections will occur by 2020

reaching 11.6 billion mobile connections. Mobile video traffic will account for over

75% of that total. Furthermore, busy-hour1 Internet traffic is growing more rapidly

than average Internet traffic [16, 17]. Thus, the standardization bodies are adapting

to this growth by motivating technologies that increase the efficiency of bandwidth

utilization, data compression and QoE.

Nevertheless, as mobile video traffic increases rapidly and streaming technology

adapts to comply with the demand, the importance of quality of experience (QoE)

1Busy-hour is the busiest 60-minute period in a day [16].
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has been more emphasized. A survey published in 2015 revealed that one out of five

viewers will abandon a poor streaming service immediately while 75% will tolerate a

bad stream for up to four minutes [18]. To establish stable video streaming networks

while maintaining high quality of the videos, perceptual video quality assessment

(PVQA) becomes an essential research topic in the video communication society. To

motivate this topic and research, we introduce an example to show the impact of cod-

ing operations on data dependency in recent video coding standards on video quality.

Furthermore, we show the impact of network errors or losses under such coding con-

ditions. As it will be explained in details in Chapter 2, H.246/MPEG-4 Advance

video coding (AVC) is the most common video coding standard in active systems.

Its successor, H.265/MPEG-H High Efficiency Video Coding (HEVC) standard, was

introduced in 2013. The design of HEVC standard included many new features to

efficiently enable random access and bitstream splicing. Many functionalities such

as channel switching, seeking operations, and dynamic streaming services require a

good support of random access. These features, however, make the bitstream and the

decoded sequence more sensitive to errors and losses due to the higher level of data

dependency. This, in turn, introduces more challenges in terms of video quality as-

sessment and monitoring, error concealment, etc. To this end, we examine the impact

of channel errors or losses on the fidelity of the decoded HEVC video by estimating

the channel-induced distortion.

HEVC employs an open Group of Picture (GOP) format in which inter-coded

pictures (temporal redundancy) are used more frequently than AVC to allow higher

compression gain. In contrast to H.246/MPEG-4 AVC, H.265/MPEG-H HEVC em-

ploys an open GOP operation. In this format, a new clean random access (CRA)

picture syntax is used wherein an intra-coded picture (spatial redundancy) is used

at the location of random access point (RAP) to facilitate efficient temporal cod-

ing [12]. The intra period varies depending on the frame rate to introduce higher

2



4.2 Prediction

Frames of video are coded using Intra or Inter prediction. Figure 6 shows a sequence of coded 
video frames or coded pictures. The first picture (0) is coded using Intra prediction only, using 
spatial prediction from other regions of the same picture. Subsequent pictures are predicted from 
one, two or more reference pictures, using Inter and/or Intra prediction for each Prediction Unit 
(PU). The prediction sources for each picture are indicated by arrows.

0
(IDR)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pictures

Bits per picture

Figure 6: Sequence of coded pictures (source: Parabola Research)

Each Coding Unit (CU) is partitioned into one or more Prediction Units (PUs), each of which is 
predicted using Intra or Inter prediction.

Intra prediction: Each PU is predicted from neighbouring image data in the same picture, using DC 
prediction (an average value for the PU), planar prediction (fitting a plane surface to the PU) or 
directional prediction (extrapolating from neighbouring data).

Inter prediction: Each PU is predicted from image data in one or two reference pictures (before or 
after the current picture in display order), using motion compensated prediction. Motion vectors 
have up to quarter-sample resolution (luma component). 

Figure 7 shows two examples of Prediction Units. The CTU in the centre of the Figure is predicted 
using a single 64x64 PU. All the samples in this PU are predicted using the same motion 
compensated inter prediction from one or two reference frames. Shown on the right is an 8x16 PU, 
which is part of the prediction structure for a 32x32 CU.

HEVC: An introduction to High Efficiency Video Coding

© Iain Richardson/Vcodex.com 2013 7 of 12

Figure 1: The open GOP structure in HEVC coded videos [1]
.

compression gain [19]. This coding structure is shown in Fig. 1. In this figure, frames

are represented using circles and the order at the bottom of the figure is the pic-

ture order count (POC). The Red circle represents a intra-coded frame (I-frame),

where the frame is compressed utilizing spatial redundancy only and independent of

other frames. Yellow circles represent inter-coded frames (P-frames), where frames

are compressed exploiting both spatial and temporal redundancies in I- and P-frames.

Green circles represent another type of inter-coded frames (B-frames), where frames

are compressed exploiting both spatial and temporal redundancies in other I-, P-, and

B-frames. The picture quality and packet size are the highest for I-frames, followed

by P-frames and B-frames, respectively2. The sequence starts with an I-frame (POC

0) which is followed by a P-frame (POC 8) and 7 B-frames (POCs 2 through 7) to

form an open GOP of size 8. The next open GOP starts with the P-frame (POC 8)

from the previous GOP (frames 8-16 in Fig. 1). This pattern continues until the end

of the intra period. The arrows in the figure represent decoding dependencies.

In HEVC, favouring inter-coding over intra-coding is more subtle than in AVC. As

a result, HEVC imposes a very high data dependency between the frames. Henceforth,

the impact of channel-induced errors on certain frames that potentially propagate to

the end of the GOP is more significant in HEVC than in AVC. Fig. 2 shows an example

2The details and axioms of video coding and compression will be discussed in details in Sec-
tions 2.1.1.2 and 2.1.2

3
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Figure 2: The impact of loosing frame 8 on the SSIM values of the GOP for BQMall

sequence; frame rate is 60 frames per second.

of the impact of loosing the Network Abstraction Layer (NAL) unit corresponding to

frame 8 and replacing it with the temporally closest available frame at the decoder,

which is frame 0 in this example (See Fig. 1). In our simulations and tests, we abide

by the recommended encoding format wherein every frame is taken as a single slice

which is encapsulated in a separate NAL unit [20]. Fig. 2 shows that the channel loss

under these coding conditions propagates until a new I-frame is encountered, which

is frame 64 in this example.

In light of these concerns, the issue of primary focus in this dissertation is the

impact of all these operations and sources of distortion on the end user’s perceived

quality of experience. Under the assumption that we do not have access to the decoder

and we only have access to the decoded pictures, we do not have knowledge of how

losses have propagated to other frames. Furthermore, for some error concealment

4



techniques, it might be hard to measure the propagated error through the traces

of temporal error concealment, as proposed in [21, 22]. Hence, in order to estimate

these distortions, we can only rely on the spatial and temporal features of the decoded

video.

The goal in this work is to assess, understand, and analyze video quality, its char-

acteristics, and its changing features under different coding, streaming and content

conditions. The variation in contents and coding parameters cause a change in the

dynamics that affect the perceived quality. We tackle this problem by studying the

variations in content dynamics and features tempospatially. In streaming applica-

tions, coding parameters and bitstream format vary depending on the application

and compression standard. Additionally, the content provider in some applications

could encrypt the bitstream or deny access to it. Consequently, it is not possible to

examine the bitstream and its metadata. In such cases, video quality can only be

evaluated by pixel-based methods which evaluate the video contents directly. Further-

more, it is not possible to accurately examine the perceptual quality of visual media

without examining perceptual stimuli in video contents, including spatial, temporal,

frequency and any visually correlated characteristics. The examination of the impact

of video contents and visual features on visual perception can be best achieved by

analyzing pixel-level features. In this dissertation, we investigate different features

and criteria for perceptual video quality assessment focusing on both spatial and tem-

poral features. We propose algorithms and techniques towards this end exploring new

video properties and novel features spaces.

1.1 Contributions and Dissertation Organization

The contributions of this dissertation can be summarized as follows:

1. In Chapter 3, we propose a perceptual video quality assessment approach us-

ing optical flow-based distortions maps. This is a reduced-reference perceptual
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video quality metric to estimate distortion due to compression and network

losses. The proposed technique does not make any assumption about the coding

conditions or video sequence. It rather explores the temporal changes between

the frames by analyzing the variations in the statistical properties of the optical

flow.

2. In Chapter 4, we propose utilizing power spectral analysis to estimate the per-

ceptual quality of videos. This chapter includes two new perceptual quality

metrics. We start by designing a low-complexity no-reference video quality

measure to estimate the channel-induced distortion at the frame-level due to

network losses. Secondly, we propose a perceptual objective quality assessment

framework based on tempospatially unified power-spectral density characteris-

tics. This is a full-reference perceptual video quality assessment metric for dis-

torted videos by analyzing the power spectral density. This estimation approach

relies on the changes in video dynamic calculated in the frequency domain and

are primarily caused by distortion.

3. In Chapter 5, three distortion maps are analyzed, spatially and temporally, to

identify the most effective statistical moments and pooling strategies with re-

spect to PVQA. The three distortion maps examine three visual feature: pixel

fidelity, local structural similarity and motion fields. We show the most signifi-

cant spatial and temporal features correlated with perception for every distor-

tion map with respect to different distortion types. We use this data to draw

insights about the human perception and its sensitivity to distortion. We also

demonstrate that the same distortions across databases yield different results

in terms of PVQA evaluation and verification. This work reveals the necessity

for a verification and validation framework for PVQA databases.

6



The rest of this dissertation is organized as follows. Following the motivational in-

troduction and problem description, Chapter 2 introduces the necessary background

information about video coding, visual perception and perceptual video quality as-

sessment. This part includes a comprehensive literature survey spanning all prior arts

in this domain. Chapters 3, 4, and 5 introduce the novel contributions of this dis-

sertation. Chapter 3 introduces a new framework for PVQA using pixel-level optical

flow maps. Chapter 4 introduces the details of a proposed approach to video quality

assessment by examining the varying dynamics of the tempospatial power spectrum.

This chapter includes two novel algorithms: the first is a no-reference low-complexity

metric for streaming applications, and the second is a general full-reference framework

to perceptual quality assessment utilizing tempospatially unified power spectra. In

Chapter 5, we examine the performance of various statistical moments and pooling

strategies, at both spatial and temporal levels, with different visual feature maps.

Finally, Chapter 6 details the conclusion remarks and future plans of this work.

7



CHAPTER II

BACKGROUND AND PRIOR ART

This chapter starts by introducing the fundamentals and necessary background re-

lated to video coding, compression and distortions. This is followed by an overview of

the human visual system and the relevant characteristics to PVQA. In Section 2.4, the

fundamentals and background of perceptual video quality assessment are discussed in

details. This is followed by a thorough literature survey of prior arts in this domain.

The survey concludes by highlighting the contributions in this dissertation and their

novelties with respect to prior art.

2.1 Digital Video Streaming and Compression

Since the eighties of the past century, various standards and tools of video compres-

sion have been developed. The goal has been to maximize compression rate while

maintaining video visual quality. Until recently, two organizations dominated video

compression standardization. The first was the International Telecommunications

Union Telecommunications Standardization Sector (ITU-T) Video Coding Experts

Group (VCEG). The second was the International Standardization Organization and

International Electrotechnical Commission (ISO/IEC) Moving Picture Experts Group

(MPEG) [2]. The ITU-T developed a series of coding standards starting with H.261,

H.262, and H.263 standard [23]. The MPEG also developed a number of standards

including MPEG-1, MPEG-2, MPEG-3 and MPEG-4. Then, a joint collaboration

forming the Joint Video Team (JVT) resulted in the H.264/MPEG-4 AVC stan-

dard [24]. MPEG and VCEG went on to establish the Joint Collaborative Team on

Video Coding (JCT-VC), which developed the High Efficiency Video Coding (HEVC)

standard [12, 25]. Before we discuss the history and advances in video coding, we
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discuss the essentials and axioms of digital video compression and coding. This is fol-

lowed by an overview of the video coding standards developments and history. To the

best of the author’s knowledge, this overview is the first of its kind in terms of com-

prehensiveness spanning all efforts from standardizations bodies, industry and major

players worldwide. This aims to highlight the technological evolution and market

competition in this rich domain which are major motivations behind this work 1.

2.1.1 Video Coding Fundamentals

2.1.1.1 Scope of Coding Standardization

Figure 3: The basic components of video streaming system.

Figure 3 illustrates the basic components of a video streaming system. Given a

sequence of time-moving pictures, the encoder performs a lossy compression operation

to encode video pictures in a bitstream. During transmission, the bitstream is subject

to different sources of errors and erasures inducing distortions to the decoded video.

Upon receiving packets, a decoder performs a reconstruction of the time-moving pic-

tures from the received, possibly corrupted, bitstream. The post-processing and error

1The survey introduced here focuses on video technology without discussing the details of audio
development, which is out of the scope of this dissertation.
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concealment modules then try to enhance the quality of the decoded video and com-

pensate for different distortions. This process yields a best-effort video sequence.

Video standards targets establishing a universal framework and format for video

streaming, storage and recording maintaining compatibility across devices, platforms,

networks, etc. Thus, video standard development process goes through the following

steps [26]:

• Identification of requirements

• Developments phase

• Selection of basic methods

• Collaboration phase

• Draft international standard

• Validation phase

• International standard

The scope of video and image coding standardization defines only bitstream format

(syntax) and decoder of video codec. This framework does not specifically define the

encoder design but defines the output format. A standard also defines several tools

and components for compression, not all of which are required to produce a com-

plaint bitstream. Only a subset of these tools must be implemented in the decoder

to ensure universal comparability. This allows researchers, developers and architects

room for optimization, complexity reduction for implementability and different appli-

cations [2, 26]. This flexibility however comes with no guarantees of quality, perceptual

or otherwise. In fact, this design makes predicting and modeling compression artifact

and subsequent distortions very hard to predict and characterize.
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Figure 4: The basic components of a transform video coding system.

2.1.1.2 Video Coding Operations

The basic components a transform video compression are shown in Figure 4. This di-

gram shows the basic blocks in the encoder and decoder. The fundamental operations

of a transform video coding system are:

Partition and Mode Decision: When a video frame or slice is encoded, it may be

compressed utilizing spatial redundancy, in which case the frame is known as an

intra-frame (I-frame). An I-frame is compressed spatially and without any de-

pendency on other frames. Alternatively, a frame maybe compressed exploiting

temporal redundancy, in which case the frame is known to be an inter-frame (P-

frame or B-frame). The compression ratio of inter-frames is significantly higher

than that for intra-frames. This is because exploiting temporal redundancy al-

lows for more flexibility in terms of search for redundant contents. The motion

compensation module searches for similar contents in reference frames and only

differential data (residuals) are compressed. Figure 4 shows the processing path
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for each coding mode. Inter-frames have two compression modes. It may be

compressed using forward prediction (P-frame) using only previous frames, I-

or P-frames. Alternatively, a B-frame is compressed using bi-directional pre-

diction from both earlier and later frames. As a result, B-frames have higher

compression ratios than P-frames [23].

For any given frame to be encoded, the search range is confined to a set of

candidate slices in the decoded frames buffer with which block-based correlation

is maximal. Then, the closest matching blocks, also known as reference slices,

are chosen for prediction and compensation.

Prediction and Compensation: After choosing the coding mode for currently en-

coded frame (slice), the encoder utilizes spatial and temporal redundancy in-

between slices to reduce the amount of transmitted data. This is performed by

calculating (i) the difference between encoded frame and the reference block,

and (ii) the motion vector accounting for the tempospatial displacement of the

predicted block. This process yields a residual frame and a set of motion vectors

for each block in the predicted frame. Further operations maybe performed to

reduce the energy of the residuals making this signal more sparse to enhance

the compression efficiency This operation is known in video coding as motion

compensation. As a result, the transmitted bitstream contains only the resul-

tant residual frame and motion vectors for any encoded frame. At the receiver

side, these operations are reversed by the decoder to reconstruct the predicted

frame.

Transformation: After a frame is intra- or inter-compensated, the residuals are

transformed to the frequency domain for further redundancy elimination and

decorrelation. The human visual system has a higher sensitivity to certain fre-

quency bands than others. This implies that the contents falling in frequency
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ranges to which the HVS is more sensitive will have a higher impact on visual

perceptual quality. This fact is utilized in video coding to allocate separate be-

tween contents in different frequency bands of different significance to the HVS.

Then, more resources and bits are allocated to contents in more visually sig-

nificant frequency bands. As a results, the compression efficiency is improved

without significantly compromising visual quality. The discrete cosine trans-

form (DCT) is the most common frequency domain transformation used for

this purpose in video coding. DCT facilitates the basic three requirements a

transform must satisfy for video coding operations which are reversibility, com-

putational feasibility, and facilitation of data decorrelation [27]. The first two

are of higher significance at the decoder where this transformation operation

is reversed to reconstruct (decode) images. The third requirement enables the

visually inspired processing alluded earlier.

Quantization: Following transformation, all video data is quantized to improve cod-

ing efficiency. The level of quantization varies depending on several aspects

including available bandwidth and resources, application and content delivery

requirements, visual quality requirements, etc. The level of quantization is con-

trolled using a quantization parameter (QP). Higher QP values correspond to

more coarse quantization. In other words, the QP value is inversely proportional

to the resultant bitrate and visual video quality.

Entropy Coding: This is a form of compression where the encoder takes advan-

tage of the fact that certain symbols are more likely to exist in the transmitted

data. The operations of entropy coding, also known as variable length coding

(VLC), are generally independent of the medium characteristics. The encoder

assigns variable-length codewords to each symbol [27]. Two popular approaches

to entropy coding are Hoffman and arithmetic coding, where arithmetic coding
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may be viewed as a generalized form of Hoffman coding. Arithmetic coding

encodes the entire message into one number represented in a single arithmetic

base where Hoffman codes represent every symbol of the message using a series

of digits in the arithmetic base. As a result, general arithmetic coding some-

times reaches optimal entropy encoding much more closely than Huffman codes.

Latest generations of video codecs, including H.264/MPEG-4 AVC and HEVC,

employ context-adaptive binary arithmetic coding (CABAC) solely or in com-

bination with other arithmetic coding schemes. This is a lossless compression

technique, yet the way it is utilized in video coding standards results a lossy

compression.

2.1.2 The Beginning and Early Generations of Video Codecs

In 1984, the International Telegraph and Telephone Consultative Committee (CCITT)2

published the first generation of video compression standards, H.120. A second revised

version was introduced in 1988 that introduced motion compensation and backward

prediction. At the time, the codec mainly targeted video conferencing applications

but the video quality was not very adequate. Nonetheless, H.120 was a seed that

led to much knowledge about video technology. It was not until late 1990 when the

ITU-T approved H.261 as a successor to H.120 and first truly practical video coding

standard. A second revision was introduced in 1993 adding backward-compatible

high-resolution graphics trick mode. H.261 was the first codec to introduce all the

major concepts dominating nowadays video codecs such as, 16× 16 macroblock mo-

tion compensation, 8 × 8 DCT, scalar quantization, zig-zag scan, run-length, and

variable-length coding. These efforts coincided with the ISO/IEC Moving Picture

2Now known as the ITU-T Video Coding Experts Group (VCEG), a part of the International
Telecommunications Union Telecommunications Standardization Sector (ITU-T), a United Nations
organization [2].
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Experts Group (MPEG)3 introducing its first coding standard, MPEG-1 in 1993,

which offer a higher bitrate than H.261 and better quality. MPEG-1 inherited the

features of H.261 and introduced new tools like bi-directional motion prediction, half-

pixel motion, slice-structured coding, DC-only D pictures and quantization weighting

matrices. The ITU-T also introduced H.263 coding standard in 1994 as an extension

to H.261 and better quality for low bandwidth application on telephony and data

networks [27, 28].

In 1994, ITU-T and MPEG jointly developed MPEG-2/H.262 which offered a

higher bitrate with support for interlaced-scan pictures and higher DC quantization

precision. It also allowed various forms of scalability and concealment of motion

vectors for I-frames. MPEG-2/H.262 was widely used for DVD and high-definition

video (HDV). It is still used via backward compatibility with following generation of

coding standards [23, 27].

The H.263 encoder is based on hybrid DPCM/DCT coding refinements and im-

provements. H.263 introduced new features and tools including supporting bidirec-

tional MC and sub-QCIF formats. H.263 has several improvements and variations

over two versions that were released between 1995 and 2001. These improvements

included key enhancements such as error resilience, improved compression efficiency,

custom and flexible video formats, scalability for resilience and multipoint, supple-

mental enhancement information, etc. To facilitate these improvements, techniques

like macroblock and block-level reference picture selection, picture header repetition,

and spare reference pictures were introduced. Furthermore, the progressive develop-

ment of H.263 coincided with the introduction of MPEG-4 Part 2, MPEG-4 Visual

(formally ISO/IEC 14496-2) which had its first release in early 1999 [2, 27]. MPEG-4

part 2 was based on the H.263 baseline profile adding several new features such as

3International Standardization Organization and International Electrotechnical Commission,
Joint Technical Committee Number 1, Subcommittee 29, Working Group 11.
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increased coding efficiency enhancements, error resilience/packet loss enhancements,

segmented coding of shapes, zero-tree wavelet coding of still textures, coding of syn-

thetic and semi-synthetic content, 10 and 12-bit sampling, and others. MPEG-4 part

v2 and v3 were later released in early 2000 and 2001, respectively [2, 27].

Following this brief introductory history about the inception and early advances

of video coding standards leading to the paradigm-shifting release of H.264/MPEG-4

AVC in 2003, we discuss in the following section the standards that followed since

the early 2000s to recent days.

2.1.3 H.264/MPEG-4 Part 10 Advanced Video Coding (AVC)

In 1998, VCEG issued a call for contributions that targeted a new video coding

standard that offers double the coding efficiency and capability of MPEG 4 Visual,

H.263 or any coding standard in operation at the time. The efforts were mainly led

VCEG co-chaired by Gary Sullivan (Microsoft, U.S.) and Thomas Wiegand (Heinrich

Hertz Institute, Germany) [11]. By December 2001, MPEG ISO/IEC JTC 1/SC

29/WG 11 joined VCEG to form the Joint Video Coding (JVC) team, which became

in charger of finalizing the standard. The final draft and specifications approval

eventuated in May 2003, declaring the official introduction of H.264/MPEG-4 Part 10

Advanced Video Coding (AVC). The unprecedented compression efficiency and tools

introduced in this standard enabled the revolution of video technology and online

streaming applications the world has witnessed over the past decade. In fact, the

development of H.264/MPEG-4 AVC continued for over a decade following its initial

release which resulted in over 22 amendments, including three major extensions for

Fidelity Range Extensions (FRExt), Scalable Video Coding (SVC) and Multiview

Video Coding (MVC) [29–32]. To the day of writing this dissertation, H.264/MPEG-

4 AVC remains the most dominant video coding standard in active systems with an

estimated market share of 74% [33].
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The major design enhancements and coding tools introduced in the initial release

of H.264/MPEG-4 AVC were mainly in the prediction of picture contents. These new

features included [11]:

• Variable block-size motion compen-

sation with small block sizes

• Quarter-sample-accurate motion

compensation

• Motion vectors over picture bound-

aries

• Multiple reference picture motion

compensation

• Decoupling of referencing order

from display order

• Decoupling of picture representa-

tion methods from picture referenc-

ing capability

• Weighted prediction

• Improved skipped and direct motion

inference

• Directional spatial prediction for in-

tra coding

• In-the-loop deblocking filtering

In addition to prediction, other enhancements and tools in the codec design in-

cluded:

• Small block-size transform

• Hierarchical block transform

• Short word-length transform

• Exact-match inverse transform

• Arithmetic entropy coding

• Context-adaptive entropy coding

Furthermore, H.264/MPEG-4 AVC included several new features that allowed for

more robustness to data errors, networks losses and flexibility for operation over a

variety of platforms and networks. These features include:

• Parameter set structure • NAL unit syntax structure
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• Flexible slice size

• Flexible macroblock ordering

(FMO)

• Arbitrary slice ordering (ASO)

• Redundant pictures

• Data Partitioning

• SP/SI synchronization/switching

pictures

More details and technical aspects of about these features and tools can be found

in [11, 27].

2.1.4 H.265/MPEG-H Part 2 High Efficiency Video Coding (HEVC)

The growth and miscellany of video applications combined with the increase in resolu-

tion formats and quality beyond high-definition (HD), such as 4k and 8K, were major

incentives that motivated various interested parties to investigate coding efficiency

superior to H.264/MPEG-4 AVC’s capabilities. The ITU-T VCEG and ISO/IEC

MPEG began their investigations in mid-2004 and started identifying potential key

technology areas (KTAs) to study in early 2005 [34]. A KTA software codebase was

developed from H.264/MPEG-4 AVC joint model (JM) to test and verify potential

technologies. The investigatory efforts continued in pursuit of technologies that en-

abled improving the coding efficiency. In January 2010, the two groups formed the

joint collaborative team on video coding (JCT-VC) which became the official group

overseeing the development and investigation of the project that later was named

HEVC. These efforts resulted in the first working draft and first HEVC test model

(HM) in October 2010. The development process continued (and still does) until

the initial release of the final draft international standard in January 2013. Both

ITU-T and MPEG adopted HEVC later that year as approved standards H.265 and

MPEG-H Part 2, respectively [11].

HEVC offers double the coding efficiency of AVC maintaining the same picture

fidelity. This comes at the expense of high encoding complexity that is estimated
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Figure 6: H.264/MPEG-4 AVC video encoder [11].

Figure 7: H.265/MPEG-H HEVC video encoder (decoder modeling elements shaded
in light gray) [12].
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to be ten-fold more than AVC or possibly higher [9, 35]. The coding tools and new

features introduced in HEVC exploits tempospatial redundancies more efficiently than

its predecessors. This is enabled by higher flexibility in segmentation and block size

selection by employing a quadtree structure and signaling. Whereas macroblocks

(MBs) are the core of the coding layer in preceding standards, HEVC employs coding

tree unit (CTU) and coding tree block (CTB) structure. In this new structure,

the encoder has the flexibility to choose CTU size which can be larger than the

traditional 16 × 16 macroblock size supported by AVC. A CTU can be partitioned

into additional Coding Units (CU). Furthermore, this flexibility in CTU and CU size

is extended to allow segmentation of the luma and chroma components separately

using CTBs. Each CTB can be further segmented into coding blocks (CBs) to support

more compression efficiency. The same concept is applied to prediction and transform

operations by partitioning CBs into Prediction Blocks (PBs) and Transform Blocks

(TBs), respectively. Table 1 highlights the major novel technical features introduced

in HEVC compared to AVC. Figures 6-7 show the encoder and decoder blocks in both

standards [11].

2.1.5 Beyond ITU-T and MPEG: Towards Royalty-Free Video Standards

In the early 2000’s, several efforts emerged to develop coding standards and video

technology that targeted specific or general applications to compete and possibly re-

place the standards developed by ITU-T and MPEG. The main motivation behind

these efforts was to break a dominant grip MPEG and VCEG had on video technol-

ogy enforcing substantially high royalty fees charged by companies that hold patents

on technologies implemented in these standards [3, 10, 36–38]. As a result, several

efforts initiated around the time H.264/MPEG-4 Part 10 AVC was in development

and released. We summarize these efforts by categorizing them into the two ma-

jor directions they reached nowadays without detailing the technical specifications.
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Table 1: New features introduced in HEVC compared to AVC.

H.264/MPEG-4 AVC H.265/MPEG-H HEVC

16× 16 Macrobloack
Coding Unit quad-tree structure
(64× 64 down to 8× 8)

Partition down to 4× 4
Prediction Unites (64× 64 to 4× 4)
with asymmetric motion prediction

Transforms 8× 8 and 4× 4
DCT

Transform Units (DCT 32× 32 to
4× 4 and DST 4× 4)

Intra prediction (9 modes) Intra prediction (35 modes)

Inter prediction luma 6-tap
+ 2-tap to 1

4 -pel
Inter prediction luma 8-tap to 1

2 -pel
and 7-tap to 1

4 -pel

Inter prediction chroma
bi-linear interpolation

Inter prediction chroma 4-tap to 1
8 -pel

Motion vector prediction
Advanced motion vector prediction
(spatial + temporal)

8b/sample storage & output 8b or 10b/sample storage & output

In-loop deblocking filter
In-loop deblocking filter, Sample
Adaptive Offset (SAO)

CABAC or CAVLC CABAC using parallel operations

Nonetheless, while the basic structure and fundamentals of video coding are common

among all these codecs, their performance varies depending on intended application

and rigor of development process. Figure 5 shows a chronological progression of the

development of these different projects and standards with a comparative performance

layout.

Audio Video Coding Standard (AVS): AVS is a working group responsible for

digital audiovisual standardization initiated by the government of the People’s

Republic of China. It was founded by the Ministry of Information Industry in

June 2002 and approved by the Standardization Administration of China [5, 36].

This initiative originated from the Chinese government’s desire to alleviate the

overwhelming royalty and licensing fees China had to pay to foreign companies

in order to utilize video technologies developed by MPEG and VCEG. This
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working group released the AVS1 standard in 2012. Furthermore, the AVS

workgroup released a final committee draft of the second generation, AVS2,

in mid 2015. In terms of performance, AVS2 is expected to introduce 50%

bitrate saving over previous generations, e.g. H.264 and AVS1, which makes

it a competitor to HEVC. Chinese companies own 90% of AVS patents [5].

However, the AVS generation of codecs never gained popularity outside China

due to the royalty-free efforts by major industry leaders on the opposite side of

the Pacific.

The projects and developments towards open and royalty-free technology took

different routes and were driven by several parties in the industry. Most of these efforts

have been merging into the recently established Alliance for Open Media (AOMedia)

and channeled towards the newly targeted royalty-free video standard, AV1. These

efforts can be summarized as follows:

On2 Technologies - TrueMotion VP3-VP8: In May 2000, On2 Technologies4

introduced its first royalty-free5 lossy video compression format, On2 TrueMo-

tion VP3. Upon its release, VP3 lacked formal specification for the bitstream

format beyond the source code released by On2 Technologies. On2 Technolo-

gies released VP4 a year later, which was considered technically complementary

to VP3. On2 Technologies continued developing this technology line which re-

sulted in four more releases until the release of TrueMotion VP8 in 2008 [39].

Matroska Multimedia Container: This is a free container and file format based

on an open standard developed by the Matroska Development Team and is

licensed under GNU L-GPL. It is a file format that can hold an unlimited

number of video, audio, picture, or subtitle tracks in one file. The project was

4Formerly known as The Duck Corporation.
5VP3 was originally a proprietary and patented video codec.
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announced in December 2002 and is based on Extensible Binary Meta Language

(EBML), a binary derivative of XML. The use of EBML enabled introducing

significant advantages in terms of future format extensibility while maintaining

file support in old parsers [38].

Xiph.Org Foundation - Theora and Daala: On2 Technologies donated VP3.2

to Xiph.Org Foundation, a non-profit organization that produces free multime-

dia formats and software tools. The Xiph.Org Foundation started developing

Theora in 2001, another free lossy video compression format, which was re-

leased in 2004. While the development and releases of Theora continued until

its latest release in 2011, another project morphed on its basis in 2004, Daala.

Daala’s development started in 2004 and continues to this day by Xiph.Org

Foundation, Mozilla Corporation, the Internet Engineering Task Force (IETF)

and other contributors. Daala had its initial release in May 2013 [40].

Google Inc. - WebM: In February 2010, On2 Technologies was acquired by Google

Inc. After the acquisition, VP8 became the core technology to Google’s new

royalty-free video file format project, WebM, which had its first release in May

2010. After the release of VP9 in December 2012, WebM was updated to support

the new standard. A Matroska profile is used to build the WebM container [10].

Cisco Systems, Inc. - Thor: Cisco Systems, Inc. announced in August 2015 the

release of their Thor video codec. Thor was denoted to the IETF as well, which

has already begun standardization activity towards next generation royalty-free

video codec [41, 42]. Nonetheless, Thor has been reported to be very far from

being complete and ready for active system deployment [33].

Alliance for Open Media (AOMedia) - AV1: In September 2015, Amazon, Cisco,

Google, Intel, Microsoft, Mozilla, and Netflix founded the Alliance for Open

Media (AOMedia), a joint development foundation whose soul purpose is the
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development of open standards for media codecs and formats amenable to the

market and consumers evolving requirements. This move gained popularity on

the industry side which prompted more companies to join the alliance including

Adobe, AMD, ARM, Broadcom, Nvidia and others. The organization is cur-

rently working on the next generation of open, royalty-free video coding format,

AOMedia Video 1 (AV1). AV1 is expected to be released in 2017 [3]. All the

previously mentioned projects are now channeled towards this technology that

promises to fulfill the streaming and market requirement, especially over the

web. The Alliance is targeting a 50% improvement over HEVC and VP9 while

maintaining reasonable increases in encoding and playback overhead [43]. Given

the industrial power and technology behind it, AV1 is expected to be quickly

integrated in existing technology and systems, especially the ones provided by

contributing companies. To list a few, the Alliance members are primary leaders

in the following technologies and services [43]:

• Codec development: Cisco (Thor), Google (VPX), Mozilla (Daala)

• Web browsers: Google (Chrome), Mozilla (Firefox), Microsoft (Edge)

• Content: Amazon (Amazon Video), Google (YouTube), Netflix

• Hardware co-processing: AMD (CPUs, graphics), ARM (SoCs, other chips),

Intel (CPUs), NVIDIA (SoC, GPUs)

• Mobile platforms: Google (Android), Microsoft (Windows Phone)

• Over-The-Top (OTT) devices: Amazon (Amazon Fire TV), Google (Chrome-

cast, Android TV)

2.2 Distortions in Videos

In this section, we provide an overview of the different types of perceptual distortions

experienced in display and streaming applications. Video distortions can be classified
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under four general categories based on the source or cause of the distortion [44, 45]:

Acquisition: such as camera noise, motion blur, line/frame jittering, etc.

Compression: these include any artifacts due to lossy compression

Channel-induced: these distortions occur due to video transmission over error-

prone networks/channels, such as video freezing, jittering, incorrectly decoded

blocks due to erasures, packet loss and delay, etc.

Due to the non-linearity of the quantization process, and the energy distributing

effects of the inverse DCT, it is not possible to predict the form or nature of

compression distortions or the subsequent channel-induced ones [44, 45].

Post-processing: these occur during post-processing and display, such as post de-

blocking and noise

filtering, spatial scaling, retargeting, chromatic aberration, pincushion distor-

tion, etc

In the context of PVQA, video distortions are usually classified into two cate-

gories based on the dimension in pixel domain in which they are perceived : spatial or

temporal distortions. A spatial distortion is perceived or detected in a frame indepen-

dent of the neighboring frames. In other words, a spatial distortion can be observed

or detected in a still image (frame). Temporal distortions represent the temporal

inconsistency of spatial features in-between frames. They are identified via the pro-

gression, variation, or fluctuation of spatial distortions in pixels, blocks or objects in

the temporal domain [45]. Both temporal and spatial distortions negatively impact

user’s experience. Nonetheless, temporal distortions are more likely to distract human

perception and negatively impact quality of experience [45]. The level of distraction

also depends on several parameters including distortion magnitude, location of the

distortion in the scene, and frame rate.
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Yuen and Wu [44] categorized compression and channel-induced distortions as

follows:

• Blocking effect

• DCT Basis image effect (quantiza-

tion)

• Blurring

• Color bleeding

• Staircase effect

• Ringing

• Mosaic Patterns

• False coloring

• False Edge

• MC mismatch

• Mosquito effect

• Temporal fluctuation in stationary

area

• Chrominance Mismatch

• Temporal Distortions:

– Jerkiness

– Scene Changes

– Smearing

– Ghosting

– up/down-sampling

Furthermore, Zeng et al. [45] classified compression artifacts in recent generation

of video codecs as follows:

• spatial:

– blurring

– blocking

∗ mosaicing effect

∗ staircase effect

∗ false edge

– ringing

– basic pattern effect

– color bleeding

• temporal:

– flickering

∗ mosquito noise
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∗ fine-granularity flickering

∗ coarse-granularity flicker-

ing

– jerkiness

– floating

∗ texture floating

∗ edge neighborhood float-

ing

2.3 Human Visual System and Visual Perception

In this section, we discuss the nature of the HVS and visual perception features and

functions related to video processing and perceptual quality assessment.

Figure 8: Hierarchical processing of visual streams in HVS (Adopted with changes
from [13]).

The process of visual perception begins when light passes through the corneas,

pupils, and lenses in our eyes. Light then passes through to the photoreceptors (rods

and cones) of the retina where the scene (image) is inversely reflected. The rods

(contrast receptors) and cones (color receptors) translates visual data to produce

neurological outputs to the ganglion cells in the retina. Two outputs emerge from

the ganglion cells to the lateral geniculate nucleus (LGN): (i) M cells outputs and P

cells outputs. The M and P cells in the ganglion compliment each other. While M

cells are highly sensitive to contrast and lightly sensitive to color, P cells have the

opposite sensational properties. Furthermore, M cells receive inputs from both rods
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and cones where P cells receive inputs from cones only [13, 46–48].

After passing through the optic nerve and chiasm, this information is passed to

the LGN. The LGN performs some spatial correlation and temporal correlations and

decorrelations of the visual signals received from both eyes. Visual computations and

analysis performed by the LGN serve as a feedback control to the eyes to focus and

converge to the principle plane of interest in the object space. The LGN performs

stereoscopic and velocity computations determining the relative positions of objects

in the visual field associating tags with said objects. This functionality is believed to

guide the visual system’s attention to important visual information [49].

The majority of signals from LGN are passed to the primary visual cortex, V1,

where intricate spatial maps are constructed via rigorous edge-detection and spatial

processing focusing on fine spatial and color details. The HVS is believed to oper-

ate using two main processing pathways both of which originate from V1, the dorsal

stream and ventral stream. Figure 8 shows a hierarchical processing block diagram

of the two pathways in the visual cortex. The ventral stream is believed to be re-

sponsible for object recognition and representation, and color perception [13]. Some

studies also associate the ventral stream with long term-memory storage. The dorsal

stream is believed to be responsible for the motion processing and object locations

representation. It is also associated with control of eyes and arms, especially when

visual data is required for saccades6 or reaching control. Figure 8 depicts the various

areas in the visual cortex responsible for processing different visual information.

While some details and anatomical aspects of the neurological functions are be-

yond the scope of this dissertation, we focus here on the characteristics relevant to

visual media processing and engineering.

Primary Visual Cortex (V1): This is the earliest and most fundamental area in

6Saccade is the term given to rapid, ballistic movements of the eyes that abruptly change the
point of fixation [47].
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the visual cortex. It excels in spatial processing and pattern recognition. Visual

data processing and encoding in V1 is characterized by edge-detection opera-

tions. In fact, Gabor filter banks are often used to model the spatial processing

performed in V1 [48, 50–52]. The processing of both static scenes and motion

begins in V1 and both processing streams (ventral and dorsal) initiate from

V1. In fact, studies and recent evidence have shown that this area is inherently

multisensory, and not only restricted to visual processing [51, 53].

Vision Field: The HVS perceives the world using two modes of vision: foveal and

peripheral vision. Photorecpetors and ganglion cells in the retina are none

uniformally distributed. Photorecpetors and ganglion cell are more dense in

the the center of the retina (fovea) and gradually become less dense further

away from the center (periphery). As a result, foveal vision has the highest

sensitivity and visual perception is achieved with the highest resolution and

details. Foveal vision primarily targets the point of fixation or center of gaze

in the visual field [54]. The resolution of perceived objects decreases gradually

as the distance from the fovea (or fixation point) increases. Peripheral vision

has a lower perceptual resolution and distinguishable details than foveal vision

with a high sensitivity to flicker and motion [55].

Contrast Sensitivity: While the HVS has the ability to perceive a wide range of

intensity levels and ambients, the distinction between different brightness values

(e.g. shades of gray) is governed by the contrast sensitivity function (CSF). The

encoding of brightness (perceived intensity) of an image in the visual cortex

relies on local contrast variations. Different intensity levels in an image are

distinguished by encoding the variation ratio or difference between intensity

levels, instead of the absolute value of intensity. The HVS perceives variations

in intensity values within a certain contrast threshold. This means that some
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perceived contrast variations in a bright image (scene) may not be perceived

by the HVS in a darker one. The minimum perceivable contrast defines the

contrast threshold and its inverse defines the contrast sensitivity. Hence, the

CSF defines the perceivable contrast range as a function of spatial frequencies.

Utilizing the CSF requires an accurate measurement of local contrasts [54].

Light Adaptation: The HVS has an ability to adapt to different lightness and

brightness conditions by controlling the pupils’ diameter. This in turn controls

the amount of light that passes to the photoreceptors. This nature, in combi-

nation with contrast sensitivity, allows the HVS to operate more efficiently over

a wide range of intensity values following Weber’s law [56].

Spatial and Temporal Masking: The HVS has spatial and temporal masking prop-

erties. This refers to the phenomenon of variable ability to detect a visual

signal or feature (target) in the presence of another image, scene or context

(mask) [57, 58]. This phenomenon is often modeled using just noticeable dif-

ference (JND) concept. This is done by estimating the frequency response as a

function of the spatial frequency which forms a visual sensitivity model. This

model is often used for measuring distortions’ visibility and reduce the percep-

tual effect of compression artifacts. Such models also take into account the CSF

of the HVS [58]. The masking effect of the target is stronger when the mask

shares the same spatial frequency and orientation. This phenomenon, some-

times characterized by band-pass filtering, explains the well-known property of

the HVS that it has a higher sensitivity to distortions in low frequencies than

distortions in high frequency bands. Temporal masking can be tougher to char-

acterize and understand. Studies have associated the perception of temporal

distortions to visual attention. Furthermore, studies in this domain often as-

sume the HVS to be a limited system [59] which led to more understanding of
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the visual contribution to the perception. Nonetheless, several past and recent

studies have shown that perception is a multisensory and multimodality process

even at the very early stages [46, 48, 51, 53, 60].

Motion Perception: Motion perception start in the V1 area and continues mainly

through the dorsal stream (Figure 8). After passing through V2, motion pro-

cessing takes place in the middle temporal (MT/V5) which also communicates

directly with V1. MT cells are believed to be sensitive to properties associated

with 2D motion including directionality, speed and spatial frequencies without

color selectivity. These characteristics allow the MT area to perform a hier-

archal processing of motion fields characterizing both local and global motion

patterns. As a result, the HVS can identify local moving points along with the

global motion of an object (identified by its edge)7 [13]. Several other areas in

the visual cortex are involved directly or indirectly in motion processing includ-

ing medial superior temporal (MTS). There has been also evidence that the

ventral stream also contributes to motion processing and perception [60]. In

general, motion processing is a complicated process in human perception that

is relatively less understood than other visual percepts.

2.4 Perceptual Video Quality Assessment

The problem of VQA, in general, has been a popular field of research over the past

decade [8-43]. Most of these works target quantifying the video quality in a way that

models the HVS’s criteria of assessment. There are two ways, in general, to measure

the quality of a video: subjective and objective assessment methods.

7In Chapter 3, we adopt this approach by applying hierarchical processing of motion fields from
gradient-based optical flow maps.
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Subjective quality assessment is considered the best way to establish a ground

truth to characterize perceptual video quality. In subjective methods, subjects (view-

ers) watch video clips and assign a quality score. Average quality for a processed

video sequence is known as the Mean Opinion Score (MOS). The latest revision of

ITU-T P.910 subjective VQA methods for multimedia applications [14] includes a rec-

ommendation of four main categories of methods. First, there is the absolute category

rating (ACR) method in which the test sequences are presented one at a time and are

rated independently on a category scale. This is a single stimulus method. Secondly,

there is the absolute category rating with hidden reference (ACH-HR) method in

which the test sequences are presented one at a time and are rated independently on

a category scale. The tests must include a reference video of each test sequence, which

is displayed as any other test. A differential quality score (DMOS) will be computed

between each test sequence and its corresponding (hidden) reference at the analysis

stage. This procedure is known as hidden reference. Thirdly, there is the degradation

category rating (DCR) method in which the test sequences are presented in pairs.

The subject is first presented with the source reference, while the second stimulus is

a processed version of the same reference video. This method is a double stimulus

impairment scale method. Finally, there is the method of pair comparisons (PC)

in which the test sequences are presented in pairs. The same sequence is presented

first through one system under test and then through another system. The choice

of which method is suitable for a particular application depends on many criteria

including context, purpose and the stage of the development process in which the

test is performed [14]. Tables 2 summarizes the latest and most common perceptual

video quality assessment databases available from different research groups.

The main problem with subjective quality assessment is that it is too demanding

in terms of labor and time. Therefore, objective quality metrics are designed to asses
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the QoE of the end user. Objective VQA research targets developing quality met-

rics capable of predicting subjective video quality without subjective tests. A good

perceptual objective metric should predict and be statistically well-correlated with

subjective data. Since objective video quality evaluation methods are based on math-

ematical and algorithmic models independent of user feedback, they can be applied

in more versatile ways to several applications. Objective quality assessment generally

is composed of two steps. First , the image (frame) distortion is estimated producing

a local distortion map. The accuracy of the estimation in this step depends on the

visual features used and the processing mechanism. Secondly, one pooling function

or more are used to statistically merge distortion map values into a single quality

score [92]. A detailed discussion of objective quality metrics and their categories is

presented in Section 2.5.

Video coding standards generally target improving video streaming efficiency by

reconstructing video frames in a compressed manner. However, most codecs, includ-

ing recent ones, are designed to compress video data by maximizing the peak signal

to noise ratio (PSNR) [11, 12]. PSNR is a logarithmic representation of the inverse

of mean square error between original and distorted video frames. The higher the

PSNR value, the higher fidelity of the distorted frame compared to the original one.

Nonetheless, PSNR does not correlate very well with the human perception [93–100].

Hence, there is a need in the both the research and industrial communities to de-

velop accurate ways to estimate video quality as perceived by the HVS. It has been

established that the perception of spatial impairments in a video can be reduced in

the presence of large motion in the video. Moreover, the perception of temporal

distortions is affected by the amount of spatial details [23]. The processing and anal-

ysis of video features generally utilizes intensity information because human vision

is more sensitive to luminance differences than chromatic ones. Hence, processing

and analysis of video features usually takes place on the luminance component of the
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video [92, 101]. Furthermore, the HVS is sensitive to contrast variation. Contrast is

the deviation between intensity values that makes an object or a region distinguish-

able. Neurons in the visual cortex of the brain are stimulated by contrast values

above a certain threshold [102]. Human contrast sensitivity function determines the

visibility of the distortion and level of attention to it [92, 103].

Henceforth, the perceptual quality assessment work in this dissertation takes into

account these facts and builds on them. This inspired the design of a new feature

space using pixel-level motion fields to address the first step of objective quality metric

design. Since the deviation of intensity is important, we do not only quantify these

variation in the intensity space. We also take this one step further and track these

variations temporally. We utilize optical flow maps at the pixel level to monitor the

rate of change in the intensity values in the temporal and spatial domains. The full

details of this approach is discussed in Chapter 3.

2.5 Literature Survey

2.5.1 Perceptual VQA Fundamentals

In this section, we review the latest in the field of VQA in general. Objective VQA

techniques can be classified into three categories. This classification is based on the

magnitude of information required by the VQA technique about the original video

sequence. First, there are full-reference (FR) approaches, which require full access to

the reference video. These include PSNR, SSIM, NQM, VPM and others. Secondly,

there are reduced-reference (RR) approaches, which require a set of coarse features

extracted from the reference video sequence to estimate the quality of the recon-

structed video. Thirdly, there are no-reference (NR) quality assessment techniques,

which do not require any information about the reference video. Furthermore, NR

VQA techniques can be divided into three classes. A class of NR approaches, NR-

bitstream (NR-B), utilizes only the contents of the received bitstream at the decoder
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to estimate the quality of the reconstructed video. Another class of NR approaches,

NR-pixel (NR-P), relies only on features and characteristics of decoded frames and

pixels to estimate the quality of the reconstructed video. Finally, there are hybrid

approaches, NR-bitsream/pixel (NR-BP), which relies on features and information

obtained from both the received bitstream and decoded frames. We note here that

the framework proposed in this work can best fit under the RR VQA techniques.

The effect of temporal distortion on video quality and the impact of scene motion

on perceptual quality is examined in [98]. A subjective quality assessment campaign is

conducted using videos with high quality to examine the human response to jerkiness

and jitter employing different combinations of strength, duration and distribution of

the temporal impairments. The study shows that for low frame-rates, longer impair-

ment duration results in a decreased perceptual quality. Nonetheless, the duration of

the impairment is independent of the perceptual quality for high and medium frame

rates. Furthermore, reducing the frame rate across the entire video does not cause a

significant degradation in perceptual quality. The study also refutes the notion that

lower-motion results in better quality compared to higher-motion under the same

frame rate degradation. However, head-and-shoulder scenes, a low-motion content, is

severely impacted by decimating frame rate.

Seshadrinathan et al. [72] conducted a subjective study of video quality on a

collection of videos subject to different distortion conditions. The study produced

the Mobile LIVE Video Quality Database with 150 distorted videos generated from

10 uncompressed videos. Every video was displayed and evaluated by 38 subjects.

The authors also report the performance of several IQA and VQA algorithms on the

these videos and correlations with the Difference Mean Opinion Score (DMOS).

In [96], Hemami and Reibman conducted a survey of the relevant work in no-

reference quality assessment of images and videos at the time. The study proposes a

three-stage paradigm for NR quality assessment allowing for HVS aspects and insights
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to be included. The study also benchmarks the different metrics in the study taking

into account potential applications and assessment criteria.

The work by Chikkerur et al. [97] aims at categorizing the existing metrics based

on the features used for quality assessment; natural scenes features or HVS-inspired

perceptual features. The authors further subcategorize the metrics in natural scenes

class into statistical feauture-based or visual feature-based approaches. Similarly, the

metrics in the perceptual class are subcategorized into spatial-domain and frequency-

domain approaches. It is reported that the natural visual statistics based MultiScale-

Structural SIMilarity index (MS-SSIM), the natural visual feature based Video Qual-

ity Metric (VQM), and the perceptual tempospatial frequency-domain based MOtion-

based Video Integrity Evaluation (MOVIE) index give the best performance for the

LIVE Video Quality Database.

The work of Winkler et al. [104] studies, benchmarks and analyzes a large set

of image and video quality assessment databases. This work provides a quantita-

tive comparison of these databases in terms of source content, test conditions, and

subjective ratings, etc. This kind of works allows researchers to enhance their un-

derstanding of these databases and improve on the process of building and designing

future databases.

2.5.2 VQA Metrics and Algorithms

Many FR VQA algorithms emerged as extensions to preexisting image quality as-

sessment techniques. Those include PSNR [105], mean square error (MSE), struc-

tural similarity index (SSIM) and its variants [93, 106], visual signal to noise ratio

(VSNR) [80], and visual information fidelity (VIF) [94]. These FR algorithms oper-

ate at the frame level to estimate the video quality using different error and visual

criteria. These, however, do not always precisely predict the perceptual quality of

videos subject to different types of distortion [95–100].
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One of the early standardization attempts for video quality monitoring was the

National Telecommunications and Information Administration (NTIA) 2003 standard

of the General Model for estimating video quality and its associated calibration tech-

niques. This was the only video quality estimator considered to perform well for both

the 525-line and 625-line video tests. In [107], the authors provide a description of

the NTIA the General Model and its associated calibration techniques. The study

summarizes the test results from the VQEG FRTV Phase II tests and eleven other

subjective data sets, all of which were used to develop the method.

LeCallet et al. [108] proposed a convolution neural networks (CNN) based ob-

jective quality assessment technique to the valuate the perceptual quality of digital

videos. This approach uses CNN to continuously evaluate video quality in an attempt

to mimic the HVS perception. The paper aims at establishing a foundation for using

CNN to combine and pool different objective features extracted from the frames to

assess the video quality in a RR configuration. The efficacy of this framework was

validated on various MPEG-2 videos with bit rates ranging 2-6 Mb/s. Under these

conditions, this approach was reported to correlate well linearly with the recorded

subjective scores.

In [109], a relative quality metric (rPSNR) is introduced for large-scale, real-time

on-line monitoring of streamed video quality. To account for network losses, The

authors start by modeling the loss-distortion as a function of application-specific pa-

rameters such as codec, error-concealment, bit rate, slicing strategy, scene features,

etc. This framework relies on the network to provide a benchmark for quality com-

parison to facilitate fast real-time quality assessment. This approach was validated

by means of simulations and experiments.

In [100], the authors propose a hybrid metrics for video quality estimation in

real-time utilizing both bitstream information and pixel features. The study also

includes a review of the evolution of video quality metrics and their evolution, and
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an overview of the emerging trends in quality measurement at the time. The work in

[110] investigates bit rate-distortion and bit rate variability-distortion performance of

single-layer video traffic of the H.264/AVC codec and SVC extension. The authors

also analyze some frame characteristics from both standards and their impact on

traffic and bit rate. The authors report that H.264/AVC codec and SVC extension

produce lower bit rate compared to MPEG-4 Part 2. This gain, however, comes

at the price of higher traffic variability. The study also examines the effect of this

increase in bit rate variability and its impact on frame losses and bufferless statistical

multiplexing. The authors show that in some networked applications, the classical

way of evaluating the bit rate-distortion improvements is insufficient.

In [111], a hybrid approach utilizing both subjective and objective features to eval-

uate the QoE of a video over wireless networks is introduced. The proposed Pseudo

Subjective Quality Assessment (PSQA) is claimed to minimizes the disadvantages of

subjective and objective approaches, which makes it suitable for real-time operations.

Naccari et al. [21] proposed a no-reference video quality monitoring (NORM) algo-

rithm for assessing the quality degradation with H.264/AVC streamed videos subject

to channel induced distortions. The NORM algorithm is a bitstream level quality es-

timator that operates at the macroblock level at the decoder. It estimates the quality

degradation by accounting for effect of error concealment on the spatial and temporal

domains, as well as the effect of temporal motion-compensation due to video com-

pression. The authors point out that this approach can be used to predict MOSs in

forward prediction systems. The paper includes a RR scenario where this framework

is used to predict SSIM values.

In [59], a FR video quality metrics is proposed based on the temporal progression

of spatial distortions. This model first evaluates the distortion at eye fixation level

leading to a short-term tempospatial pooling of spatial segments. A global score

for the whole video is then estimated by performing global long-term pooling of the
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Table 3: A summary of the main features used common and recent algorithms and
metrics for VQA.

segmented tempospatial scores. The authors report their approach to have a regular

improvement over other video assessment metrics.

The work in [52] introduces a FR VQA motion-based metric, the (MOVIE) index.

The MOVIE index takes into account both spatial and temporal (and tempospatial)

aspects of distortion assessment. At the time of its development, this metric was

reported to compete with algorithms developed and submitted to the VQEG FRTV

Phase 1 study in addition to other following metrics. Staelens et al. [112] proposed a

new subjective assessment methodology for full-length movies. The study highlights

the importance of real-life QoE assessment and mainly aims at evaluating the user’s

audiovisual experience under the same conditions viewers typically watch TV. The

authors demonstrate that there exists major differences in terms of impairment vis-

ibility and tolerance between the subjective results of their proposed methods, and

subjective test conducted using a standardized method.
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In [123], the authors investigate the relation between network QoS, application

QoS and the user’s QoE in HTTP video streaming. The study examines the corre-

lation between network QoS and application QoS both analytically and empirically.

The authors then proceed to perform a subjective campaign to determine the rela-

tionship between application QoS and QoE. The study reports that variations in the

QoE is mainly driven by rebuffering frequency. In [78], the effect of frame rate and

quantization on perceptual quality of a video is investigated. The proposed approach

evaluates the product of a spatial quality factor and a temporal correlation factor,

both of which are modeled analytically. The model’s parameters can be estimated

from the video features. The authors validate their work on their subjective score

and other databases achieving a high Pearson’s correlation coefficient with the MOS.

In [124], the technical advancements, standards and proprietary solutions are sur-

veyed in an attempt to define the driving parameters of QoE in HTTP adaptive

streaming (HAS) of Internet videos. The study provides a survey of QoE related

works from human computer interaction and networking domains. It also revisits the

subjective work focused on QoE-driven video adaptation. Consequently, the study

identifies the influence factors on QoE and their corresponding models. Furthermore,

open issues, conflicting reports and technical factors affecting QoE are discussed. The

paper targets researchers and developers concerned with HTTP streaming in general

and user-centric QoE. The recent work of Baik et al. [125] attempts to quantify the

QoE of mobile video streaming. The study considers only three factors as the main

of causes of distortion: spatial distortions, types of buffering and resolution changes.

Each of these are modeled using machine learning to estimate their contribution to

quality degradation. This is network-level approach without including any visual

features, image/video processing or HVS insights.

In this dissertation, we address the problem of PVQA by focusing on pixel-based

techniques. Pixel-based approaches are more accurate since they examine the visual
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stimuli that viewers observe. They also do not rely on the bitstream metadata which

is insufficient and may not be accessible. We design algorithms and metrics utilizing

novel features that have not been fully investigated in previous work. Namely, we

design a metric utilizing pixel-level motion fields. Furthermore, we also propose two

metrics utilizing the tempospatial characteristics of the power spectral density of

video contents. The proposed metrics incorporate both spatial and temporal features

of the video. In addition, we also analyze different visual feature maps and their

corresponding temporal and spatial statistical moments to determine their correlation

with perception. This analysis improves our understand of human perception and its

sensitivity to distortion. This knowledge is essential in the design and verification of

accurate perceptual quality metrics.
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CHAPTER III

PERCEPTUAL QUALITY ASSESSMENT USING

OPTICAL FLOW FEATURES (PEQASO)

The research community has been investigating different criteria and features in the

digital video processing to model the assessment methodology of the HVS [21, 58, 78,

108, 111, 124, 129–134]. As it was explained earlier, perceptual quality assessment

highly depends on the human sensitivity to contrasts and brightness variations in

both the spatial and temporal domains. Furthermore, video codecs use block-based

operations to temporally compress the video signal. As the survey of prior art showed,

VQA algorithms usually examine block-based motion vectors (and sometimes the

residuals) to analyze the temporal features of the video. We argue here that these

compressed descriptors do not provide sufficient information about the distortion or

video dynamics. Furthermore, these elements ignore the human visual criteria of

perceptual assessment, which is the sensitivity to intensity and contrast. Since the

deviation of intensity is important from a human perception standpoint, we quantify

these variations in intensity and track these variations temporally. Thus, we propose

utilizing gradient-based optical flow at the pixel level as an intensity variability map.

By examining and processing the optical flow maps at various scales, we can estimate

the distortion within a frame at the pixel level by capturing the inconsistencies in

these optical flow maps. This approach incorporates the hierarchal local and global

processing mechanism of motion in the visual system alluded in Section 2.3 [131–133].

45



3.1 Optical Flow Preliminaries

There are several approaches to computing motion fields in videos. Block-matching

is the most commonly used approach, especially in video coding [11, 12, 23]. Motion

fields generated using block-based approaches do not capture all the details and vari-

ations at the pixel level. Thus, we focus here on gradient-based estimation, which

produces a pixel-level motion map [135–137]. Optical flow methods estimate the

motion between two frames taken at times t and t + ∆t at every pixel. Assuming

that pixel intensities are translated from one frame to the next, the intensity value

at location (x, y, t), I (x, y, t), will change by ∆x, ∆y and ∆t between two frames.

Assuming the intensity to be constant along a motion trajectory, this implies the

following constraint [27, 138]:

dI (x, y, t)

dt
= 0 (1)

This expression denotes the rate of change in intensity along the motion trajectory.

Using the chain rule, the constraint in (1) can be approximated as follows:

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0 (2)

∂I

∂x
U +

∂I

∂y
V +

∂I

∂t
= 0 (3)

where U = ∆x
∆t

, V = ∆y
∆t

are the x and y components of the velocity or optical

flow of I(x, y, t) and ∂I
∂x

, ∂I
∂y

and ∂I
∂t

are the derivatives of the frame at (x, y, t) in

the corresponding directions. This expression is known as the optical flow equation

(OFE). Since the equation contains two variables, it cannot be solved directly. This

is the aperture problem of optical flow estimation [27, 138]. Optical flow methods

introduce additional constraints for estimating the actual flow. The gradient-based

approach in [135] for instance makes use of finite differences to overcome the aperture

problem. However, the proposed VQA framework does not rely on the calculation

method and can be deployed using any optical flow algorithm.
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Let the distortion in the frame at location (x, y, t) be denoted by ε (x, y, t). The

intensity value in the distorted frame I (x, y, t) + ε (x, y, t), where 0 ≤ I (x, y, t) +

ε (x, y, t) ≤ 1. Hence, the expression in (3) can be written as follows:

∂I

∂x
U +

∂I

∂y
V +

∂I

∂t
+
∂ε

∂x
µ+

∂ε

∂y
ν +

∂ε

∂t
= 0 (4)

where µ = ∆x
∆t

, ν = ∆y
∆t

are the x and y components of the velocity or optical flow of

ε(x, y, t) and ∂ε
∂x

, ∂ε
∂y

and ∂ε
∂t

are the derivatives of the distortion signal in the frame

at (x, y, t) in the corresponding directions. Furthermore, let ρ(x, y, t) denote the

magnitude of the distortion signal flow velocity,

ρ(x, y, t) =
√
µ(x, y, t)2 + ν(x, y, t)2. (5)

The magnitude ρ(x, y, t) represents the rate of change in the intensity signal caus-

ing a distortion between frames. Hence, the aggregate of this signal in the spatial

domain,
∑
∀x
∑
∀y ρ(x, y, t), yields a quantification of motion field causing the distor-

tion at any instant of time, t. In the following section of this chapter, we propose

an algorithm to process the optical flow maps to estimate the motion field causing

a perceptual distortion in the frame. We process the optical flow map at multiple

spatial scales and estimate a multi-scale perceptual distortion moving from local to

more global descriptors in the frame.

3.1.1 Video Quality Monitoring Using Optical Flow

Figure 9 shows the visualizations of the optical flow maps of original frames, decoded

frames with compression artifacts only, and frames with channel-induced distortion,

respectively1. The optical flow tends to be less homogeneous with the increase of

distortion in the frames. These optical flow images clearly show that any distortion

or artifact in the frame will cause a disturbance to the original natural motion field.

Furthermore, Figure 10 shows empirically estimated probability density functions

1The optical flow images in Fig 9 were generated using the software implementation in [139].
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(a) Anchor frame 240 (b) Anchor frame 241

(c) Residual frame (d) Anchor optical flow

(e) Optical flow of frame with compression arti-
facts only

(f) Optical flow of frame with channel-induced
distortion

Figure 9: Example from video HC in the Mobile LIVE database [28] that shows
the differences between the optical flow maps of the anchor, error-free decoded and
distorted frames.
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Figure 10: Probability density function of the optical flow maps in Figure 9 (e) and
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(PDFs) of these optical flows, Rk, for the error-free and corrupted frames. The

figures show that there is a discrepancy in the optical flow caused by distortion in

the frame. The change in the PDF of the optical flow map shows that the statistical

features of the error-free map are different from the statistics of the distorted map.

It should be noted that the SSIM values of the corrupted frame in this case is 0.998.

In this work, our goal is to capture these inconsistencies in the optical flows

throughout the video due to the channel-induced distortions. Let fk be the frame

of interest. Furthermore, let Uk and Vk denote the matrices of its horizontal and

vertical optical flow velocities, respectively. Furthermore, let Rk denote the matrix

of magnitudes of the flow velocities [135]:

Rk =
√

U2
k + V2

k, (6)

where k is the temporal index of the frame in the received video. If the spatial

dimensions of the frame are M × N , then the dimensions of Uk, Vk, and Rk are

also M × N . All the results and experiments in this proposal were obtained using

the Horn-Schunck optical flow estimation method [135]. Nevertheless, the processing

framework introduced herein is valid for any optical flow estimation algorithm.

Figure 11 shows a flow chart of the process performed to each optical flow map
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Figure 11: Iterative optical flow frame-level processing flowchart.

of every frame. In an iterative manner, we examine the aggregate of magnitudes of

the optical flow maps at different scales. This approach was inspired by the diffusion

distance dissimilarity metric [140]. The following expressions are the core of this

iterative process:

R
(l)
k =Downsample2

[
R

(l−1)
k ∗ φ (σ)

]
and (7a)

δ (Rk) =
T∑
l=0

∑
∀i

∑
∀j

∣∣∣R(l)
k (i, j)

∣∣∣ , (7b)

where R
(l)
k is the downsampled version of R

(l−1)
k in iteration l, T is the total number

of iterations,
∣∣∣R(l)

k (i, j)
∣∣∣ is the magnitude of the optical flow at pixel (i, j), and φ (σ)

is a Gaussian kernel with standard deviation σ. In every iteration, we downsample

after smoothing the map with a Gaussian kernel. Then, we take the aggregate of

the magnitudes of this filtered version of optical flow map as an output from each

iteration. The number or iterations in this study was fixed to three iterations. The

aggregates from all the iterations are finally accumulated into one descriptor. This

process yields a descriptor of an optical flow map, δ (Rk).

Assuming a RR quality estimation configuration, the reference descriptor δ (Rk,ref),
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is estimated at the encoder and available at the decoder or quality estimator. The

decoder performs an identical operation and calculates the descriptor for the received

frame, δ (Rk,rx). The difference between the descriptors from the reference and re-

ceived videos are then used as a perceptual quality estimator as follows:

Dk =

∣∣∣∣log

[
δ (Rk,rx)

δ (Rk,ref)

]∣∣∣∣ . (8)

We denote Dk as the estimated distortion in frame k. This captures the inconsisten-

cies in the optical flow map at the frame level. Following the notation and optical

flow formulation alluded earlier, our RR algorithm quantifies the aggregates of the

matrices: ∑∑
(Rk + ρk) +

∑∑(
R

(1)
k + ρ

(1)
k

)
+
∑∑(

R
(2)
k + ρ

(2)
k

)
+ · · ·∑∑

Rk +
∑∑

R
(1)
k +

∑∑
R

(2)
k + · · ·

(9)

at multiple spatial scales to measure a frame’s distortion moving from local to global

descriptors. Hence, this metric captures the inconsistencies in the optical flow map

at the frame level. To estimate the perceptual quality at the sequence or GOP level,

P , we simply calculate the arithmetic mean for the picture set of interest:

P =
[
E
∀k

[Dk]
]α

(10)

where α is an empirically determined sequence-dependent parameter.

3.2 Experiments and Results

In this section, we discuss the experimental results and validation for the proposed

perceptual quality estimation framework. We tested the proposed framework on a

variety of test sequences subject to channel-induced distortion. The test sequences

were selected from three independent video quality assessment databases [15, 71, 79].

We show the results of each of these databases independently and the overall accuracy

of the perceptual quality estimation across databases.
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Figure 12: A sample of the difference between δ (Rk,rx) and δ (Rk,ref) for HC sequence
with H.264 compressed video with channel-induced distortion.

3.2.1 Video Quality Assessment Databases

3.2.1.1 Mobile LIVE Video Quality Assessment Database [71]

The Mobile LIVE video database was developed at the University of Texas at Austin.

It contains 10 reference videos. There is a total of 40 distorted videos with H.264

compression artifacts and 40 with channel-induced distortion. The videos were com-

pressed using H.264 SVC and transmitted over a simulated wireless IEEE 802.11

channel. To simulate channel distortion, these transmissions were subject to packet

loss to degrade the perceptual quality. Both reference and distorted videos were pro-

vided in raw YUV420 format with a resolution of 1280 × 720 pixels. The duration of

these videos is 10 s at frame rates of 25 fps.

3.2.1.2 CSIQ Video-Quality Database [15]

The CSIQ video-quality database was developed at Oklahoma State University Vi-

sion Lab. It contains 12 reference videos, 34 with H.264 compression distortion and

34 distorted videos with channel-induced distortion. Videos were compressed using
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Figure 13: Temporal Information (TI) and Spatial Information (SI) indices for the
three evaluated databases.

H.264 SVC and transmitted over a simulated wireless channel. These transmissions

were subject to packet loss to introduce distortions degrading the perceptual quality.

Both reference and distorted videos are provided in raw YUV420 format with a reso-

lution of 832× 480 pixels. The duration of these videos is 10 s at frame rates ranging

from 24 to 60 fps.

3.2.1.3 IVP Subjective Quality Video Database [79]

The IVP subjective quality video database was developed at the Chinese University

of Hong Kong. It contains 10 reference videos, 40 with H.264 compression, and 28

distorted videos with channel-induced distortion. The distorted videos were obtained
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via simulated transmission of H.264-compressed bitstreams through error-prone IP

networks. These transmissions were subject to packet-loss to introduce distortions

degrading the perceptual quality. Both reference and distorted videos are provided

in raw YUV420 format with a resolution of 1920× 1088 pixels. The duration of these

videos is 10 s at a frame rate of 25 fps.

Figure 13 temporal information (TI) and spatial information (SI) indices for the

three evaluated databases. These plots where obtained using the P.910 subjective

video quality assessment recommendation of the TU Telecommunication Standard-

ization Sector [14]. These plots show that the Mobile LIVE database mostly contains

sequences of low temporal and spatial complexity. The CSIQ video quality database

is mostly clustered in a medium to high spatial complexity and medium to low tem-

poral complexity. Finally, the IVP subjective quality database mostly contains videos

of medium spatial complexity and a widely varying range of temporal complexity.

3.2.2 Performance Metrics and Auxiliary Formulation

In this section, we briefly describe the performance metrics used in evaluating per-

ceived video quality estimators and metrics performance.

3.2.2.1 Linearity

Pearson correlation coefficient is used to measure the linearity of the predictions which

is formulated as

PLOCC =

∑T
s=1(xs − µx)(ys − µy)√∑T

s=1(xs − µx)2 ·
√∑T

s=1(ys − µy)2

, (11)

where xs is the estimated score and ys is the mean opinion score corresponding to a

video indexed with s, µ is the average operator, and T is the total number of videos.

3.2.2.2 Ranking

Spearman correlation coefficient is used to measure the monotonic relationship be-

tween quality estimates and subjective scores. Instead of using exact values, ranks
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of the values are used. For example, let the total number of videos be T with cor-

responding mean opinion scores (ys). Based on the rankings, the minimum score

should be ranked as 1, the maximum as T , and the others should be in between 1

and T based on their rankings. This process is applied to both subjective scores and

estimates. If the relative order of the subjective scores and the objective estimates

are same, correlation should be 1.0 otherwise it should be lower. The formulation of

Spearman correlation coefficient is given as

SROCC = 1− 6
∑T

s=1(Xs − Ys)2

T · (T 2 − 1)
, (12)

where Xs is the rank assigned to the score xs and Ys is the rank assigned to the

subjective score ys, which corresponds to video indexed with s, and T is the total

number of videos.

Kendall rank correlation coefficient is also based on ranking but we do not di-

rectly assign rankings to all estimates and scores. Instead, estimates and scores are

compared one by one. For example, xs is the estimate and ys is the mean subjective

score corresponding to a video indexed with s and we have xl and yl corresponding

to an video indexed with l. If xs > xl and ys > yl or xs < xl and ys < yl, these pairs

are denoted as concordant. If xs > xl and ys < yl or xs < xl and ys > yl, these pairs

are denoted as discordant. Finally, if xs = xl and ys = yl, this pair is neither con-

cordant nor disconcordant. Once all of the pair combinations are considered, Kendall

correlation coefficient is calculated as

KROCC =
(Tcor)− (Tdis)

0.5 · T · (T − 1))
, (13)

where Tcor is the number of concordant pairs, Tdis is the number of discordant pairs,

and T is the number of videos in a set.

3.2.3 Results and Validation

Figure 14 show scatter plots of the perceptual quality predictor, P , versus the re-

ported DMOS scores in the databases. Fig 14a shows a scatter for sequences with
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H.264 compression artifacts, while Figure 14b is a scatter plot for sequences with

channel-induced distortion. The plots show a good linear correlation of the tested

decoded sequences from the three databases. While this approach is pixel-based and

not limited by the codec, parameters or configuration, the results shows herein are

based on H.264 compressed videos sequences only due to their availability in all the

databases. Furthermore, Tables 5-6 report Spearman’s rank-order correlation coef-

ficient (SROCC) and Pearson-linear order correlation coefficient (PLOCC) for the

three databases separately. These statistics are provided for PeQASO and nine other

FR quality popular and well-accredited video and image quality assessment metrics.

The proposed work in [21] is the closest RR approach to our work for comparison

purposes. However, this algorithm operates on the bitstream metadata and the im-

plementation was done for older versions of H.264 bitstreams format. Furthermore,

recent databases provide only YUV video files without bitstreams. More importantly,

the algorithm is designed to estimate channel-induced distortion by examining meta-

data of the bitstream without taking into account compression artifacts. Hence, the

comparison with the NORM algorithm would not provide an objective assessment

of PeQASO’s performance. Therefore, it was not possible to compare with similar

RR quality assessment metrics. The most feasible solution was to compare the per-

formance with FR metrics where the reference for all the videos is the anchor video

without any distortion. We note here that the comparison with FR reference metrics

represents a more challenging competition for our RR metric given that the amount

of data required and computational complexity are much higher in FR metrics.

3.2.3.1 H.264 Compression Artifacts

We can observe that PeQASO is competitive with all the reported FR metrics. In

terms of SROCC, our metric ranked first on the mobile LIVE and IVP databases.

It also ranked second on the CSIQ with a marginal depreciation of 0.005 from the
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Figure 14: Scatter plot of the perceptual quality predictor, P , versus the reported
DMOS in the three subjective quality video databases. The blue and pink lines are
P ± σ and P ± 2σ, respectively, where σ is the data standard deviation. The red line
is the mean.

best performing metrics. Similarly, in terms of PLOCC, our metric ranked first on

both Mobile Live and IVP. In the CSIQ database, it again ranked second with a

depreciation of 0.008 from the best performing metric. This shows that PeQASO is

very suitable for online perceptual evaluation of a wide variety of sequences spanning

different spatial and temporal features.

We also tested the proposed metric across the databases while fixing the range

of temporal and spatial complexity range. The goal of this test is to benchmark the

metric in light of the video features eliminating any database-based bias. Figure 15

shows three different regions where we pooled the sequences based on their temporal

and spatial features regardless of the database. We note here that the videos across

the databases vary in coding configurations and parameters, nature of channel errors,

resolution, etc. The division of the three regions in Figure 15 was based on pooling

sequences with similar features together. We also tried to provide sufficient numerical

data for statistical analysis in every region. The top devision, R1, includes highly

temporally complex videos with varying spatial information complexity. The bottom

left devision, R2, contains low temporally complex videos with low spatial information
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Figure 15: Temporal Information (TI) and Spatial Information (SI) indices for the
all the tested sequences across the three databases.

complexity. The bottom right devision, R3, contains low temporally complex videos

with high spatial information complexity.

The correlation coefficients of this test are shown in Table 8. In addition to

SROCC and PLOCC, we also report Kindell’s rank-order correlation coefficient (KROCC).

The results in Table 8 show the efficacy of this approach in estimating the perceptual

quality of video with complex temporal contents as seen in R1 and overall perfor-

mance. It also shows the competitive performance of this algorithm for videos with

low temporal complexity, as seen in R2 and R3.

3.2.3.2 Channel-induced Distortion

In terms of SROCC, our metrics ranked first on the mobile LIVE database. It also

ranked seventh on the CSIQ and fourth on the IVP databases, respectively, with a

marginal depreciation (0.15 and 0.13, respectively) from the best performing metrics.

On the other hand, in terms of PLOCC, our metric ranked first on both Mobile Live

and IVP. It also ranked sixth on the CSIQ database with a depreciation of 0.12 from
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the best performing metric. This shows that PeQASO is very suitable for online

perceptual evaluation of a wide variety of sequences spanning different spatial and

temporal features.

The correlation coefficients of cross-database test are shown in Table 7. The

results again show that PeQASO provides a good prediction of the perceptual quality

of video with complex temporal contents as seen in R1. It also shows the competitive

performance of this algorithm for videos with low temporal complexity, as seen in R2

and R3.

3.2.4 Computational Complexity

In this section, a comparison of the computational complexity of the proposed met-

ric in this work and other metrics is shown. The numbers in the table show average

computation times for 120 frames. Those computations were obtained using the same

Windows 10 64-bit system with Core(TM) i7-6700K CPU @ 4.00GHz processor, 32.0

GB memory and MATLAB R2015b. We note here that computation times of MAT-

LAB functions involving multidimentional matrices computations vary drastically de-

pending on the the operating systems. Multidimentional matrices calculations have

been reported to be significantly faster on Ubuntu systems compared to Windows

and macOS systems given the same hardware specifications.

3.2.5 Limitations

The proposed approach relies on the estimation of optical flow maps for the observed

frames. Hence, any issue in the optical flow estimation will affect the quality esti-

mator. We noticed a difficulty in estimating the optical flow in the laser in the

IVP database. This sequence shows a sparkling instruments in a dark background.

It starts with an almost still scene with very minor motion caused by a laser beam.

Hence, it was difficult for the used Horn-Schunck optical flow estimation algorithm to

calculate an accurate optical flow map. However, other optical flow algorithms may
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overcome this limitation. This video was excluded from this study. Furthermore,

three data points were excluded from all the distorted videos in the three databases

in the channel-induced distortion case. This was due to precision issues in the cal-

culations that yielded numerical inconsistencies in the optical flow estimation of the

distorted sequences.
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CHAPTER IV

PERCEPTUAL QUALITY ASSESSMENT VIA POWER

SPECTRAL ANALYSIS

As it was explained in Section 2.3, the HVS has masking characteristics that varies

our abilities to perceive certain contents (target) in the presence of other contents

(mask). In this section, we take advantage of this phenomenon to model the distor-

tions (target) induced to original content (mask). We built this model by examining

the frequency domain components, particularly the power spectral density (PSD). We

argue that distortions cause a disruption of the original power spectra which impact

users’ viewing experiences negatively. The proposed model in this chapter introduces

a new theory to model the HVS’s sensitivity to distortions by measuring the resulting

disruption of the power spectra due to distortions.

One of the main characteristics that define a signal features in the frequency do-

main is the power spectral density (PSD). In the context of image processing, there

are some known correlations between spatial domain characteristics and their impact

on the frequency response and power spectrum. For instance, it has been established

that smooth spatial regions correspond to low frequency bands, while highly textured

areas correspond to the high frequency bands in the power spectrum [58, 59]. Nonethe-

less, the correspondence and relationship of spatial and temporal video features to

the power spectrum is still not very well established in the research community. The

works in this chapter is a unique endeavor to investigate this characteristic in the

context of perceptual video quality assessment. To the best of our knowledge, this

work is the first attempt to explore video quality assessment using power spectral

analysis.
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The contributions in this chapter are presented as follows. We begin this discus-

sion by introducing a no-reference low-complexity metrics for estimating frame-level

distortions in online streaming applications in Section 4.1. Following this work, we

discuss in Section 4.2 the details our proposed ubiquitous full-reference framework

for estimating sequence-level perceptual video quality via power of tempospatially

unified spectral density (POTUS) [141–143].

4.1 No-Reference Frame-Level Distortion Estimation

In this section, we explain our proposed no-reference video quality assessment metric.

The proposed approach relies on the fact that any channel-induced distortion will

result in a temporal inconsistency between frames within a GOP. We measure this

inconsistency through the temporal variation of the PSD across frames. Let fk and

fk−1 be the frame of interest and previous frame, respectively. Furthermore, let Sk

and Sk−1 denote their respective PSDs:

Sk [h, k] =
1

MN

∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

fk [m,n] e−j2π(hm+kn)

∣∣∣∣∣
2

(14)

where k is the temporal index of the frame in the received video, M × N is the

resolution of the video, and v and u are the discrete frequencies. We next divide the

PSD, Sk, into non-overlapping blocks of size L×L. We refer to the PSD of block i in

frame fk as Bk(i). Similarly, Bk−1(i) is the PSD of block i in frame fk−1. For every

block, we estimate the channel-induced distortion by measuring the energy difference

in the temporal domain as follows:

∆Bk(i) = Bk(i)−Bk−1(i). (15a)

We next measure the variation of the energy differences within block i in frame fk as

follows:

Gk(i) =
max [∆Bk(i)]√

Var [∆Bk(i)]
(15b)
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where max [·] is the maximum value in block ∆Bk(i), Var [·] is the variance of the

values in block ∆Bk(i), and Gk(i) is the ratio of the maximum PSD value in block i

to the standard deviation of the PSD of the block. Next, we compute the negative

mean of Gk(i), denoted by Dk, taken over all the spatial indices i in frame k as follows:

Dk = −E [Gk(i)] (15c)

where E [·] is the expectation operation taken over the spatial indices, i’s, for all the

blocks. It should be noted that while Bk(i) and ∆Bk(i) are square matrices, Dk(i)

and Dk are scalars. Furthermore, the obtained vector for the whole sequence of Dk

values is normalized to obtained D̃k. Finally, we amplify the the estimated distortion

as follows:

D̂k = D̃k · σs (k) (15d)

where σs (k) is the standard deviation of the vector
[
D̃k−s, · · · D̃k, · · · , D̃k+s

]
. s is

the window size, which is determined empirically.

The goal of the operation in (15d) is to scale the measured distortion in (15c)

within the context of its neighbouring frames. If the variance of the measured quantity

in (15c) is high, this indicates high variations in the PSD levels from one frame to

another, which indicates higher error likelihood within the GOP. In our experiments,

s = 5 and the block size is L× L = 16× 16 pixels.

Let us consider a scenario where a frame, k, has been lost and replaced by its

predecessor in display order. For this particular frame, (15c) produces Dk = 0. Since

−∞ < Dk ≤ 0, the normalized value will have values 0 ≤ D̃k ≤ 1.

4.1.1 Experiments and Results

All the experiments and tests follow the recommendations published by JCT-VC

for common test conditions for HEVC [19]. We use a subset of six difference video

sequences in our experiments. All the video sequences were coded using the HEVC
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standard using the test model version (HM 12.0) [20]. The coding was done using the

main random access profile. Next we detail the coding parameters and the obtained

results.

4.1.1.1 Coding Conditions and Simulations Parameters

Table 10 summarizes the sequences used in our experiments and the encoding param-

eters. We fix the initial Quantization Parameters (QPs) value to 32. For the error

patterns, we use the the loss patterns in the proposed NAL unit loss software [144].

The results shown in this part are performed with the 10% loss pattern, which results

in 5%-7% loss rate in the tested sequences. In our experiments, only inter-coded

frames are subject to losses. Furthermore, Figure 13 shows the spatial information

(SI) and temporal information (TI) indices on the luminance channel for the selected

sequences, as per the recommendation in [14]. The higher the score on the SI or the

TI scale, the more complex the spatial and temporal features of the test sequence.

In this context, we diversify the selection of sequences to validate our model under

different temporal and spatial features.

Table 10: Test Video Sequences

Sequence Resolution Intra FPS Number of
Period Frames

RaceHorses 832x480 24 30 300
BasketballDrill 832x480 48 50 500

PartyScene 832x480 48 50 500
BQMall 832x480 64 60 600

BasketballDrive 1920x1080 48 50 500
ParkScene 1920x1080 24 24 240

4.1.1.2 Results and Analysis

Figs. 17 and 18 show the calculated measures for RaceHorses and PartyScene se-

quences, respectively. From the two plots, we notice that the value of D̂k peaks at the

location of lowest SSIM score. These points correspond to the lost frames, which were
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Figure 16: Spatial information (SI) versus temporal information (TI) indices for the
selected sequences [14].

replaced by previous frames during the concealment process. In this case, Dk ≈ 0,

as alluded in Section 3.1.1. This value decreases for the following dependent frames

since only a subset of the CTUs in these frames depend on the lost frames.

Table 11: Correlation between the estimated frame distortion, Dk, and the full-
reference SSIM values.

Sequences Correlation Coefficients

RaceHorses 0.79
BasketballDrill 0.76

PartyScene 0.77
BQMall 0.70

BasketballDrive 0.80
ParkScene 0.77

In order to validate the proposed distortion model, we calculate the correlation

coefficients between the estimated distortion and the measured SSIM of the corrupted
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Figure 17: The proposed no-reference quality measure compared with the obtained
SSIM for the corrupted and error-free RaceHorses sequences.
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Figure 18: The proposed no-reference quality measure compared with the obtained
SSIM for the corrupted and error-free PartyScene sequences.
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sequence compared with the error-free one. Table 11 summarizes the experimental re-

sults for all the tested sequences. Note that the proposed model correlates well with

the SSIM values. The correlation coefficients for all test sequences range between

0.70 and 0.80. In particular, the proposed approach works well for the sequences

with low temporal complexity such as the ParkScene video sequence. In this case,

the majority of the changes in the PSDs between consecutive frames is due to the

channel-induced distortion. Furthermore, our distortion measure works well for se-

quences with medium or low temporal complexity, such as BasketballDrive and

BasketballDrill.

The correlation, however, tends to drop for the case of BQMall due to the complex

nature of localized motion in the video, as can be observed from the TI index in

Figure 13. Nonetheless, this problem can be overcome by incorporating spatial in-

consistency, which is beyond the scope of this work. The introduced low-complexity

metric still performs fairly well for the RaceHorses sequence, which is close the BQMall

in term of spatial and temporal features.

4.2 Power of Tempospatially Unified Spectral Density (PO-
TUS)

4.2.1 3D Power Spectral Density

For any signal, the power spectral density (PSD) describes the distribution of power in

the frequency domain for a given signal or time series. Let PSD be defined as S (ω)

as a function of the angular frequency, ω = 2πf , measured in radians per second,

where f is the frequency in Hz. Hence, the average power over time is given by

1

2π

∫ ∞
−∞
S (ω) dω (16)

Let x (t) be a continuous time stochastic process with limited energy, the Fourier
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transform is given by

X(f) = F {x (t)} =

∞∫
−∞

e−2πiftx(t)dt (17)

Parseval’s theorem establishes the unitary nature of the Fourier Transform. Plancherel

theorem then states that the integral of a signal’s squared modulus is equal to the

integral of the squared modulus of its frequency spectrum. Essentially, this means

that the total energy is the aggregate of power over time or spectral power across

frequency. This gives a way to estimate the PSD using the signal’s Fourier transform.

Parseval’s theorem is often written as:∫ ∞
−∞
|x(t)|2 dt =

1

2π

∫ ∞
−∞
|X(ω)|2 dω =

∫ ∞
−∞
|X(2πf)|2 df (18)

Assuming that the signal x (t) is truncated over the interval [−T, T ], the average

power over all time is given by the following time average:

lim
T→∞

1

2T

∫ T

−T
|x(t)|2 dt =

1

2π
lim
T→∞

1

2T

∫ ∞
−∞
|X(ω)|2 dω =

1

2π

∫ ∞
−∞
S (ω) dω (19)

Should this expression hold for continuous increments in the frequency domain,

the two terms on the right side of the expression can be written as follows to express

the cumulative power:

1

2π

∫ ω

−∞
S (ω) dω =

1

2π
lim
T→∞

1

2T

∫ ω

−∞
|X(ω)|2 dω. (20)

Taking the derivative of the two terms on the right side of this expression yields:

S (ω) = lim
T→∞

1

2T
|X(ω)|2 (21)

Let us consider a 3D discrete time-space video signal, x [m,n, o] ∈ RM×N×O,

with the one grayscale (luma) channel, where m and n are the spatial indices of

the 2D frame and o is the temporal (frame) index. as illustrated in Figure 19. In

practice, the frequency response of discrete time sequences is estimated by means of
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the Discrete Fourier Transform (DFT). This relationship between x [m,n, o] and its

DFT, X [h, k, l] ∈ CM×N×O, is defined as follows:

X [h, k, l] = DFT {x [m,n, o]} =
1√

MNO

M−1∑
m=0

N−1∑
n=0

O−1∑
o=0

x [m,n, o] e−j2π(
hm
M

+ kn
N

= lo
O )

(22)

x [m,n, o] = IDFT {X [h, k, l]} =
1√

MNO

M−1∑
h=0

N−1∑
k=0

O−1∑
l=0

x [m,n, o] ej2π(
hm
M

+ kn
N

= lo
O )

(23)

Therefore, Parseval’s theorem can be written as follow:

M−1∑
m=0

N−1∑
n=0

O−1∑
o=0

|x [m,n, o]|2 =
1

MNO

M−1∑
h=0

N−1∑
k=0

O−1∑
l=0

|X [h, k, l]|2 (24)

and the PSD, S [φh, φk, φl] ∈ RM×N×O, is given by

S [φh, φk, φl] =
1

MNO
|X [h, k, l] |2, (25)

where φh = 2πh/N , φk = 2πk/M and φl = 2πl/O are the angular frequency indices

in terms of the discrete frequency indices h, k and l.

In order to calculate the average power over time at every spatial frequency, the

expression in (25) is integrated over the temporal axis, O. That is

S [φh, φk] =
O∑
l=0

S [φh, φk, φl] , (26)

where S [φh, φk] ∈ RM×N . Figure 19 illustrates the processing framework for a tensor

of frames of size M ×N ×O.

S [φh, φk] ∈ RM×N represents a 2D plane containing tempospatial power spectral

features of the processed tensor. Given the original and a distorted version, the

following section explains the processing and fusion of original and distorted planes

to obtain a full-reference perceptual quality metric.
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Figure 19: 3D power spectral density tensor-level processing flowchart.

4.2.2 Perceptual Video Quality Assessment via Tempospatial Power Spec-
tral Analysis

In this section, we explain the proposed approach to perceptual video quality assess-

ment via power of tempospatially unified spectral density (POTUS). This frame-

work utilizes the 3D tempospatial power spectral densities. Let us consider two videos,

an anchor video free of distortion, xref [m,n, o], and a distorted version, xrx [m,n, o].

Furthermore, let the video be temporally segmented into a set of equal-size tensors,

M ×N ×O, where all tensors are composed of the same number of frames. Figure 20

shows a comparison of the tensor-level 2D time-average power spectral density planes

for reference and distorted videos. Furthermore, Figure 21 shows a comparison of the

tensor-level 2D time-average power spectral density planes for different video contents

with varying spatial and temporal features.

Figure 22 shows the incremental change in the tensor-level 2D time-average power

spectral density planes for four increasing levels of distortion.

For any given video, let the total number of tensors be T which depends on the
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Figure 20: Comparison of the tensor-level 2D time-average power spectral density
planes for reference and distorted videos.75



Figure 21: Comparison of the tensor-level 2D time-average power spectral density
planes for different video scenes. The center frame of 30-frame tensor is demonstrated
on the first row. All three videos were taken from the CSIQ VQA database.

total frame count and tensor size. In this context, we define the cross-correlation

between average power spectra maps from the anchor and distorted videos for any

tensor t = 0, · · · , T − 1, ζt [φh, φk]. Every point in the 2D cross-correlation map,

ζt [φh, φk], is obtained calculating the local cross-correlation of an 11× 11 window of

neighboring pixels, St∀φh ∈ [φh − 5, φh + 5] and φk ∈ [φk − 5, φk + 5]. To simplify

the notation, we denote this window of neighboring pixels at [φh, φk] of tensor t as

Nφh,φk,t. Thus, the expression for ζt [φh, φk] is given by:

ζt [h, k] =
σSref,t·Srx,t [h, k] + C

σSref,t [h, k] · σSrx,t [h, k] + C
(27)
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Figure 22: The incremental change in PSD for the same video and same set of frames
subject to different distortion levels. This example was taken from the Mobile LIVE
database, sequence Panning Under Oak, frames 225−254. The distortion magnitudes
in the videos are as follows: r1>r2>r3>r4>Org where Org is the anchor video free
of distortion.
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Figure 23: Processing flow chart for the proposed 3D PSD-based perceptual quality
metric.

where

σSX,t
[h, k] =

√√√√ d∑
u=−d

d∑
v=−d

ωu,v(SX,t [h+ u, k + v]− µSX,t
[h, k])2, (28)

σSX,t·SY,t
[h, k] =

d∑
u=−d

d∑
v=−d

ωu,v(SX,t [h+ u, k + v]− µSX,t
[h, k])

× (SY,t [h+ u, k + v]− µSY,t
[h, k]), (29)

and

µSX,t
[h, k] =

d∑
u=−d

d∑
v=−d

ωu,vSX,t [h+ u, k + v] . (30)

where σSref,t·Srx,t is the cross-covariance, µSref,t and µSrx,t are the means, σSref,t and

σSrx,t are the standard deviations of Sref,t and Srx,t, respectively. The term ζt in (25)

defines the tempospatial full-reference perceptual quality for tensor t in the distorted

video in terms of its PSD. In our implementation, C = 4.5 × 10−4 is set to prevent

instability when denominator is very close zero. In addition, ω is derived from 2D

circular symmetric Gaussian weighting function with the window size of 11 × 11

(d = 5). Furthermore,

ζt =
1

MN

∑
∀h

∑
∀k

ζt [h, k] . (31)
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Henceforth, the overall video quality, P , is given by the average temporal quality of

its tensors. That is

P =
(

E
∀t

[
ζt
])β

, (32)

where β is an empirically determined sequence-dependent parameter. Figure 23 shows

a complete processing flow chart for the proposed 3D PSD-based perceptual quality

metric.

4.2.3 Visual Perception in POTUS

ζt [h, k] is a local cross-correlations map which does not evaluate fidelity, it rather

examines the contents in a certain frequency and quantifies the cross-correlation or

consistency of contents in that frequency neighborhood with original contents. All

the temporal and spatial contents corresponding to a certain frequency are unified

within this 2D map. Every frequency spectrum in the original contents emits a cer-

tain optical energy to stimulate the HVS. A visual distortion will alter this energy

in a certain way depending on the nature and severity of the distortion. This in

turn causes discomfort and annoyance to viewers. In the context of visual masking,

this framework models the visual sensitivity to distortions by estimating the power

spectral cross-correlation, where at every frequency this local cross-correlation es-

timates the human visual discomfort in that frequency neighborhood. Quantifying

the cross-correlation of spectral data in every frequency neighborhood measures the

masking effect of the original contents (mask) in the presence of distortion (target).

In other words, the local cross-correlation acts as a measure of annoyance or discom-

fort due to disruption of the original power spectrum caused by induced distortion.

A high positive correlation indicate the contents to be similar which yields little to

no distortion to the viewer. Low positive and negative local cross-correlation values

indicate a degradation in perceptual quality due to distortion. By averaging the map

to obtain ζt, we incorporate the contribution to discomfort from every frequency.

79



This averaging operation penalizes frequency spectra with low positive and negative

cross-correlations by reducing the overall average for the whole tensor’s perceptual

quality.

Figure 24: Normalization filter for numerical calibration of various spectrum ranges.

4.2.3.1 Normalization for Spectra Variability

Table 12: Normalizations parameters values for the three databases.

Database α β γ
LIVE Mobile 1 5 0.4

CSIQ 1.9 1 0.9
IVP 1 3 0.59

The numerical range and characteristics of the PSD depends on the tempospatial

features in the scene. The variations of temporal and spatial features and contents

in different videos produce different PSD features with possibly different numerical

ranges. To account for this variability in numerical ranges of the PSD of different

tensors, a normalization and calibration step is required to ensure the accuracy of

this metric. This step is performed a follows.

First, the mean of low frequency components, ζt,low, and mean low frequency

bands, ζt,high, are calculated. Figure 24 shows the filter applied to ζt [h, k] to separate
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the two regions in the frequency domain. The two means are used to calculate the

following ratios:

ζt,ratio =
ζt,low

ζt,high

, (33a)

ζt,norm ratio =
ζt,ratio

max
∀ distortions

{
ζt,ratio

} (33b)

where max
∀ distortions

{
ζt,ratio

}
is obtained from the set of all distorted tenors obtained from

distorted versions of a given video. The tensor level normalized quality score is then

given by:

ηt =

ζt − α
(
ζt,ratio

)β
, ζt,norm ratio > γ

ζt, otherwise
. (33c)

Table 12 shows the values of the α, β, and γ parameters used for every database.

Finally, the expression in (32) is updated to obtain the overall video quality, which is

given by the average temporal quality of its tensors:

P =E [η1, η2, · · · , ηT ] . (33d)

4.2.4 Experiments and Results

In this section, we discuss the experimental results and validation for the proposed

perceptual quality estimation framework. We tested the proposed framework on all

the distortion types included in three independent VQA databases [15, 71, 79] detailed

in 3.2.1. We show the results of each of these databases independently and the overall

accuracy of the perceptual quality estimation across databases when applicable.

Figure 25 show the scatter plots of POTUS versus DMOS scores in the three

databases. Furthermore, Tables 13-14 show the correlation coefficient for the POTUS

in terms of SROCC and PLOCC for the three tested databases. In general, POTUS

performed very well and was competitive with all other compared metrics. The

correlation coefficients in Tables 13-14 show that the POTUS leads the scores in
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(a) Mobile LIVE Database POTUS scatter plot (b) CSIQ database POTUS scatter plot

(c) IVP Database POTUS scatter plot

Figure 25: Scatter plot of the perceptual quality predictor, P , versus the reported
DMOS in the three subjective quality video databases. The blue and pink lines are
P ± σ and P ± 2σ, respectively, where σ is the data standard deviation. The red line
is the mean.

all distortion groups in the LIVE Mobile database in terms of both SROCC and

PLOCC. Furthermore, POTUS performed competitively in the CSIQ databases with

a marginal depreciation of 0.006 and 0.019 behind the best performing metric in the

database for SROCC and PLOCC, respectively. In the IVP database, the proposed

metric fell behind the best performing metric by 0.106 and 0.145 in terms of SROCC

and PLOCC, respectively. We note herein that these results were obtained without

curve fitting or any processing beyond the reported formulation.1

1Please refer to Table 9 in Section 3.2.4 for the computational complexity comparison.
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4.2.4.1 Compression Artifacts Performance

In general, POTUS performed well across different variations of compression artifacts

spanning the three tested databases. In terms of SROCC and PLOCC, the average

correlations of all distortion classes are 0.902 and 0.878, respectively. Considering

only H.264 compression, the average correlation is 0.893 and 0.882 for SROCC and

PLOCC, respectively.

4.2.4.2 Channel-Induced Distortions Performance

POTUS also performed well across different variations of channel-induced distortions

in the three databases. In terms of SROCC and PLOCC, the average correlations of

all distortion classes are 0.912 and 0.882, respectively.

4.2.4.3 3D Spectra Spatial and Temporal Decomposition

The advantage of using 3D PSD in the proposed approach is including both spatial

and temporal features towards the perceptual evaluation of video (tensor) quality.

In order to further examine the significance of spatial and temporal features in this

process, we further analyze our tempospatial tensor by utilizing the proposed 3D

spectra decomposition in Long and AlRegib [145]. Therein, the authors propose

decomposing a 3D FFT spectrum into two parts: a component related to temporal

variations and a component related to spatial variations. This decomposition is based

on spectral locations. For any given spectral point X [h, k, l] in (22), the spatial and

temporal components are given by projecting the point onto the spatial and temporal

axes, respectively. Therefore, the spatial decomposition, Xs [h, k, l], and temporal

decomposition Xs [h, k, l], are given by:

Xs [h, k, l] =Xt [h, k, l]×
√
h2 + k2

√
h2 + k2 + l2

(34a)

Xt [h, k, l] =Xt [h, k, l]× l√
h2 + k2 + l2

(34b)
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We use these two components to examine the performance of the spatial and

temporal components of POTUS. on the videos in the Mobile LIVE database. The

results in Table 15 show the correlations coefficients with the DMOS scores of the

spatial and temporal components. One can observe that while the spatial correlations

are always higher, the temporal correlations are very close. This also shows the human

visual system’s distraction by spatial distortions more than temporal ones.

Table 15: Spatial and temporal decomposition correlation coefficients.

Distortion
Spearman Correlation Coefficient
Spatial Temporal Uncomposed

Compression 0.826 0.777 0.9586
Wireless 0.837 0.730 0.9518

Rate adaptation 0.591 0.444 0.8789
Temporal dynamics 0.561 0.449 0.8113

All 0.721 0.632 0.8576

Distortion
Pearson Correlation Coefficient
Spatial Temporal Uncomposed

Compression 0.816 0.752 0.9513
Wireless 0.825 0.735 0.9488

Rate adaptation 0.548 0.383 0.8562
Temporal dynamics 0.550 0.423 0.7988

All 0.706 0.618 0.8501
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CHAPTER V

FEATURES TO PERCEPTION: TEMPOSPATIAL

POOLING STRATEGIES FOR DIFFERENT VISUAL

DISTORTION MAPS

5.1 Tempospatial Video Pooling for PVQA

A raw video is a large data structure considering the time axes and three colour

channels. In most applications, we tend to simplify this structure by ignoring the color

components (chrominance) and process the luminance channel only. Nonetheless,

this single-channel video remains a huge three dimensional data structure that can

be processed, segmented and pooled following several strategies. Furthermore, most

of the work so far suggest compacting this large data structure into a single floating

number to assign a quality score. Hence, there is a need for a concrete understanding

of the statistical properties of visual feature maps used in such algorithms. This

section will focus on the significance of statistical pooling strategies, at the spatial

and the temporal levels, and its correlation with the visual feature maps in video

processing.

There are several ways to perform statistical pooling of video features and data.

We define the process of pooling video features in both the spatial and temporal

(time) domains as tempospatial processing. There are two major approaches to per-

form tempospatial pooling. First, there is intra-frame spatial processing where spatial

pooling is performed for every frame independently first to obtain frame-level descrip-

tors. These descriptors are then used to perform temporal pooling. This is the most

common approach in video quality assessment because of simplicity and computa-

tional efficiency. Secondly, other approaches propose inter-frame spatial processing
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Figure 26: Inter-frame tempospatial processing of temporally correlated blocks.

of correlated blocks where we perform statistical pooling of different combinations

of temporally correlated spatial slices (blocks) across frames. The cube, which is a

composite of the correlated spatial blocks, is then processed and pooled to produce a

single or multiple descriptors.

We focus on the first approach, namely, intra-frame spatial processing. The goals

are twofold. First, we show the efficacy of different statistical moments (pooling) for

different distortion maps. Secondly, we examine the performance of different distor-

tion maps over different distortion types and databases. We look at the performance

of three full-reference pixel-level distortion maps: squared error, local SSIM values

for each pixel and absolute difference of optical flow.

Let the frame of interest be fk with a resolution of M × N . The first distortion

map examines the fidelity of pixels. Thus, the first spatial distortion map is given by:

DSE
k [m,n] =

[
f rx
k [m,n]− f ref

k [m,n]
]2

(35)

∀m ∈ [0,M − 1], n ∈ [0, N − 1],

where f ref
k and f rx

k are the luminance channels of the reference and received frame,

respectively. The second spatial distortion map measures the local similarity structure

at the pixel level. It is given by [146]:

DSSIM
k [m,n] = (36)
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(2µref[m,n]µrx[m,n] + c1)(2σ(ref,rx)[m,n] + c2)

(µ2
ref[m,n] + µ2

rx[m,n] + c1)(σ2
ref[m,n] + σ2

rx[m,n] + c2)
,

where µrx, µref, σrx, σref, and σ(ref,rx) are the local means, standard deviations, and

cross-covariance for images reference frame, ref, and received one, rx. c1 and c2 are

regularization constants. The third feature map is based on the optical flow and it

captures the deviation within the motion field of the received and distorted frame

from the original one. Let Uk and Vk denote the matrices of the horizontal and

vertical optical flow velocities, respectively, of frame, fk. Furthermore, let Rk =√
U2
k + V2

k denote the matrix of magnitudes of the flow velocities [135]. The motion

field distortion map is given by:

DOF
k [m,n] =|Rrx

k [m,n]−Rref
k [m,n]| (37)

where Rrx
k and Rref

k are the optical flow maps of the received and reference frames,

respectively. All the results in this paper were obtained using the Horn-Schunck

optical flow method [135].

Figure 27 shows visual examples from Chipmunks sequence in the CSIQ Video-

Quality database [15] that shows the three distortion maps used in this study.

In the following sections, we show the data of eight spatial pooling operations

and nine temporal pooling operations for all three distortion maps. In the spatial

domain, we focus on the following statistics: mean, standard deviation, mean to

standard deviation ratio, l1-norm, l2-norm, maximum, kurtosis and skewness.

In the temporal domain operations, we add the median.

5.2 Experiments and Results

5.2.1 Databases and Test Videos

Table 16 shows a summary of the three databases used in this paper and their video

contents. Furthermore, Figure 28 shows the temporal information (TI) and spatial
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(a) Anchor frame 37 (b) Distorted frame 37

(c) Optical flow of anchor frame (d) Optical flow of distorted frame

(e) Squared residual map: DSE
k (f) SSIM distortion map: DSSIM

k

(g) Optical flow map residual, DOF
k

Figure 27: Example from video Chipmunks in the CSIQ Video-Quality database [15]
that shows the three distortion maps used in this study. The SSIM value of the
distorted frame to the anchor is 0.97 and the PSNR value is 31.55 dB.
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Table 16: Summary of the VQA databases used in this study and their video contents.

Database
No. of

Sequences
No. of

Distortions
Total no. of

Distorted Videos
Resolution Duration (s)

Frame Rate
(fps)

Mobile LIVE [71] 10 6 197 1280× 720 10 25
CSIQ [15] 12 6 216 832× 480 10 24-60
IVP [79] 10 4 128 1920× 1088 10 25

information (SI) indices for the three evaluated databases. These plots where ob-

tained using the P.910 subjective video quality assessment recommendation of the

TU Telecommunication Standardization Sector [14].
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Figure 28: Spatial information (SI) versus temporal information (TI) of the tested
sequences from the the three used VQA databases.

5.2.2 Results and Analysis

Tables 19, 23, and 27 in Appendix 5.A show the top three most effective operations,

with respect to the Spearman’s rank-order correlation coefficient (SROCC), applied

on the squared error distortion map, the structure similarity map, and the optical

flow map, respectively. Furthermore, Tables 20, 24, and 28 show the top three most

effective operations, with respect to the Pearson’s linear-order correlation coefficients

(PLOCC). The results are shown separately for every class of distortion in three

databases [15, 71, 79]. Additionally, Tables 19-28 show the number of videos used
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to obtain the correlation scores. In all the cases, we used the maximum number of

videos provided in every database. Every cell reports the following: (i) the used

spatial pooling strategy, (ii) the used temporal pooling strategy, (iii) the SROCC

value, and (iv) the average number of frames per sequence.

In order to understand these raw tables and large data, further analysis were

performed on Tables 19, 20, 23 24, 27, 28 (Appendix 5.A) to uncover significant

patterns in these results. We report a summary of the results and findings in terms

of both, SROCC and PLOCC in Tables 17-18.

In temporal pooling, we used all the frames in the video with two exceptions. In

the cases of frame-freezes (live feed) and temporal dynamics in the Mobile LIVE [71],

we performed the pooling over last 50% and 60% of the frames, respectively. In the

frame-freeze case, this was done to eliminate the redundant frames due to buffering.

In the temporal dynamics case, this was done to maximize the correlation coefficients

as the DMOS values are more biased towards the quality of last few seconds of the

video. The entries highlighted with bold text indicate the best performing distortion

map among all three features.

5.2.2.1 Distortion Maps Performance

Studying Tables 19, 20, 23 24, 27, 28 (Appendix 5.A), we make several key observa-

tions.

• For all compression artifacts, the DSSIM
k map works best for four out of nine

total test sets. The optical flow, DOF
k , ranks second with three sets.

• For H.264 compression in particular, DSSIM
k superseded the other two and per-

formed best when all the sequences from all databases were pooled in one set.

• For the case of channel-induced distortions, DOF
k performed best followed by

DSE
k . The DOF

k map yielded the best correlation with DMOS values when all

the sequences were pooled together.
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• The tables show a total of 18 test sets: six from LIVE, six from CSIQ, four

from IVP, and two cross-database sets. In general, the optical flow map, DOF
k ,

performed best in seven test sets. The SSIM map, DSSIM
k , came in second

performing best in six sets. Finally, DSE
k performed best in five test sets.

• In the cross-database tests, DOF
k performed best for H.264 channel-induced dis-

tortions, and SSIM performed best with H.264 compression.

• By looking at the correlation coefficients values across Tables 19,23, 27, the

squared error is considered the weakest if we exclude MJPEG compression.

While it performed best for 5 video sets including MJPEG compression, the cor-

relation coefficients of the other four sets using the other two feature maps are

very competitive. This is an indication that human perception is mostly

sensitive to motion and spatial structures in videos. Hence, any arti-

fact or distortion affecting motion fields and spatial structures are expected to

reduce video perceptual quality.

Furthermore, looking at the results of similar distortions across databases, we

noticed a variation in terms of efficacy of feature maps and pooling strategies. We

discuss here the case of H.264 compression artifacts with respect to DSE
k operations

in 19. Spatial domain operations are consistent across all three databases and the

cross-database validation. The max and kurtosis are clearly the three most effective

spatial pooling operations in this case. However, the temporal pooling operations

do not follow the same behaviour. The LIVE database produced the max and mean,

the CSIQ database produced skewness and kurtosis, and finally the IVP database

produced mean and l2-norm. The cross-database results show that l2-norm and mean

are the most effective operations when all the sequences from three databases are

pooled together.

Additionally, let us look at the case of H.264 streams subject to channel-induced
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distortions with respect to DSE
k operations in Table 19. In spatial domain operations,

the LIVE database produced the max and kurtosis, the CSIQ database produced

mean to standard deviation ratio, and finally the IVP database produced mean

to standard deviation ratio and max. The cross-database results show that max

and kurtosis are the most effective operation when all the sequences from three

databases are pooled together. Furthermore, in the temporal domain, the variability

of operations is higher. The LIVE database produced the standard deviation and

max, the CSIQ database produced standard deviation, skewness and kurtosis,

and finally the IVP database produced mean and l2-norm. The cross-database results

show that mean and median are the most effective operation when all the sequences

from three databases are pooled together. In this case, the three databases are sta-

tistically uncorrelated when the sequences are processed separately.

This shows that the development process and subjective scores processing and

regularization methods are different among the databases. This irregularity leads to

ambiguous and misleading results when an approach is validated using the data of

one database or another. This shows a need for a validation and a verification frame-

work for perceptual quality assessment databases. The existence of such framework

would guarantee a consistency in PVQA databases and lead the community to better

understanding of human perception.

5.2.2.2 Pooling Operations Performance

Table 17 summarizes the number of occurrences of operations in Tables 19,23, 27.

Each entry in this table, represents the number of occurrences of the pooling operation

in the respective domain in Tables 19,23, 27. Furthermore, Table 18 summarizes the

number of occurrences of these pooling operations in terms of PLOCC. We note here

the following key observations from Tables 17-18.

• In the spatial domain, there is an overwhelming dominance of the maximum for
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Table 17: Number of occurrences of video pooling operations among the best three
scenarios of SROCC for each distortion map. The red cells indicate that the oper-
ation’s frequency is 35% or higher, and the blue ones indicate 20%-35% frequency.
These numbers are based on the statistics in Tables 19,23, 27.

Operation
Spatial Temporal

SE SSIM OF All Maps SE SSIM OF All Maps
Total Count 54 54 54 162 54 54 54 162

mean 1 4 2 7 14 7 12 33
std 4 20 4 28 6 5 6 17
mean/std 9 15 2 26 3 3 2 8
kurtosis 12 3 15 30 2 2 5 9
skewness 2 4 0 6 3 2 3 8
max 24 4 28 56 8 9 6 23
l1-norm 1 3 1 5 5 4 1 10
l2-norm 1 1 2 4 5 8 8 21
median 8 14 11 33

Table 18: Number of occurrences of video pooling operations among the best three
scenarios of PLOCC for each distortion map. The red cells indicate that the oper-
ation’s frequency is 35% or higher, and the blue ones indicate 20%-35% frequency.
These numbers are based on the statistics in Tables 20,24, 28.

Operation
Spatial Temporal

SE SSIM OF All Maps SE SSIM OF All Maps
Total Count 54 54 54 162 54 54 54 162

mean 3 0 2 5 16 8 8 32
std 4 28 4 36 7 3 6 16
mean/std 3 15 3 21 6 4 1 11
kurtosis 14 3 15 32 2 1 7 10
skewness 1 1 1 3 3 2 3 8
max 25 6 25 56 7 7 6 20
l1-norm 2 1 3 6 6 8 7 21
l2-norm 2 0 1 3 3 11 8 22
median 4 10 8 22
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the DSE
k and DOF

k . The maximum was frequent in almost 46% of the operations in

both maps. This shows that the human perception is mostly distracted

by the maximum distortion in the spatial domain in terms of fidelity

and motion distortion.

• Furthermore, the standard deviation seems to dominate the spatial opera-

tions based on DSSIM
k . This indicates that human perception is sensitive

to the variability of structural distortion in the frames. However,

the temporal pooling is highly variant for DSSIM
k . The most effective temporal

pooling operations in this case are median, mean and l2-norm.

• In the temporal domain, the mean and median were dominant, which indicates

that human perception is mostly affected by the average temporal

variations in distortion.
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5.A Best Performing Pooling Strategies for the Tested Dis-
tortion Maps
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

This dissertation addresses perceptual video quality assessment in different applica-

tions, contents and conditions. We started by introducing a comprehensive back-

ground about video technology, coding, and perceptual quality assessment. We tie

this work and closely examine the correlation with visual perception and the charac-

teristic of the human visual system. The contributions of this thesis are three-fold.

Firstly, we propose PeQASO, a perceptual video quality assessment approach us-

ing optical flow-based distortions maps. We propose a reduced-reference perceptual

video quality metric to estimate distortion due to compression and network losses.

The proposed technique does not make any assumption about the coding conditions

or video sequence. It rather explores the temporal changes between the frames by

analyzing the variations in the statistical properties of the optical flow. We validate

our approach by testing it on various sequences and compare our estimated quality

metric with the DMOS values at the sequences level reported in three independent

databases for sequences subject to network errors or losses. Our experiments show

that the proposed technique captures the perceptual quality very well. PeQASO was

the first work to utilize pixel-level optical flow maps to examine the fidelity of motion

fields.

Secondly, we propose utilizing power spectral analysis to estimate the perceptual

quality of videos. We start by designing a low-complexity no-reference video quality

measure to estimate the channel-induced distortion at the frame-level due to net-

work losses. More importantly, we propose POTUS, a perceptual objective quality
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assessment framework based on tempospatially unified power-spectral density charac-

teristics. POTUS is a perceptual video quality assessment metric for distorted videos

by analyzing the power spectral density of a group of pictures. This is an estimation

approach that relies on the changes in video dynamic calculated in the frequency do-

main and are primarily caused by distortion. We obtain a feature map by processing

a 3D PSD tensor obtained from a set of distorted frames. This is a full-reference

tempospatial approach that considers both temporal and spatial PSD characteris-

tics. This makes it ubiquitously suitable for videos with different motion patterns

and spatial contents. Our technique does not make any assumptions on the coding

conditions, streaming conditions or distortion. This approach is also computationally

inexpensive which makes it feasible for real-time and practical implementations. We

validate our proposed metric by testing it on a variety of distorted sequences from

PVQA databases. The results show that our metric estimates the perceptual quality

at the sequence level accurately. We report the correlation coefficients with the dif-

ferential mean opinion scores reported in the databases. The results show high and

competitive correlations compared with the state of the art techniques. This is also

the first time the power spectral density have been utilized as a feature to understand

and evaluate video quality.

Finally, we analyze three distortion maps spatially and temporally, and identify

the most effective statistical moments and pooling strategies with respect to PVQA.

The three distortion maps examine three visual feature: pixel fidelity, local structural

similarity and motion fields. We show the most significant spatial and temporal

features correlated with perception for every distortion map. For every distortion

type in the databases, we identify the best performing operation for each map and

the overall best. We use this data to draw insights about the human perception and

its sensitivity to distortion. We also demonstrate that the same distortions across

databases yield different results in terms of PVQA evaluation and verification. This
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warrants the need for a verification and validation framework for PVQA databases.

6.1 Future Research Directions

Perceptual video quality remains a highly emphasized field of research. We believe

that deeper understanding of the human visual processing is an essential ingredient to

design accurate and practical visual computational models. This work will continue

investigating various human visual processing characteristics that can be incorporated

in future video systems. The processing mechanism of the HVS remains an open

field of investigation in computational neuroscience. As future studies and research

continue to reveal more about the HVS, especially temporal and motion processing,

we will continue to examine these findings and incorporate them in visual media

processing systems.

Additionally, the work proposed herein can be exploited to serve purposes beyond

perceptual video quality. The proposed features and algorithms can be utilized in

several video applications including video retrieval, classification and enhancement.

Video quality assessment algorithms work as a measure of the variation between video

contents in different features domains. Hence, such algorithms can be extended to

discriminate between features of different video classes and contents. Furthermore,

the inherited perceptual nature of video quality algorithms makes them suitable to be

used as optimization engines for video enhancement algorithms. We plan to explore

the utility of the proposed features and metrics in such applications.

Furthermore, deep learning can be utilized in this work to facilitate more ap-

plications and efficient processing of the proposed techniques. We plan to explore

architecture design and the utility of deep learning networks in video quality assess-

ment applications. The proposed full- and reduced-reference metrics can be extended

using deep learning to facilitate real-time no-reference video quality monitoring. The

handcrafted features and distortion maps can be incorporated into the deep network
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design to efficiently and accurately serve diverse applications.
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