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SUMMARY

Nanoscale biological systems operate in the presence of overwhelming vis-

cous drag and thermal diffusion, thus invalidating the use of macroscopically oriented

thinking to explain such systems. Rectified Brownian motion (RBM), in contrast,

is a distinctly nanoscale approach that thrives in thermal environments. The the-

sis discusses both the foundations and applications of RBM, with an emphasis on

nano-biology. Results from stochastic non-equilibrium steady state theory are used

to motivate a compelling definition for RBM. It follows that RBM is distinct from

both the so-called power stroke and Brownian ratchet approaches to nanoscale mech-

anisms. Several physical examples provide a concrete foundation for these theoretical

arguments. Notably, the molecular motors kinesin and myosin V are proposed to

function by means of a novel RBM mechanism: strain-induced bias amplification.

The conclusion is reached that RBM is a versatile and robust approach to nanoscale

biology.
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CHAPTER I

INTRODUCTION

Biological cells are characterized by vastly smaller length scales and weaker energy

scales than found in macroscopic systems [62]. An E.coli bacterium, for example,

measures only micrometers in diameter, while many intracellular processes are driven

by the free energy of adenosine triphosphate (ATP) hydrolysis (approximately 12 −

20 kBT at physiological conditions) [85]. As a result of these small and weak scales,

the hydrodynamics of cellular life resides in the extreme low Reynolds number (≪ 1)

limit [46], and inertial effects are negligible compared to those of viscous drag. Motion

is thus overdamped and described by a combination of two primary modes of motion:

drift and diffusion. This thesis focuses on a distinctly diffusion-driven scheme, rectified

Brownian motion (RBM), that is prevalent in subcellular biology.

Historically, a “power stroke” approach to cellular and subcellular mechanochemi-

cal mechanisms has frequently been employed, especially in the treatment of molecular

motors [93].1 Analogous to a power stroke in a macroscopic motor, a nanoscale power

stroke continually expends free energy to effectively generate a force that overcomes

viscous drag and other retarding forces that inhibit motion. Nanoscale enzymes that

perform a power stroke require a specialized molecular structure responsible for the

generation and transmission of a power stroke energy, e.g. a stiff molecular level

arm connected to an enzymatic “motor” base that progressively anneals hydrogen

bonds [100]. However, such an adapted structure is frequently absent, either fully or

in part, in many biological mechanisms.

1Molecular motors are mechanochemical enzymes that use chemical free energy, e.g. from ATP
hydrolysis, to generate rectilinear or rotational motion. In the case of rectilinear motion, this is
frequently done by interacting with a long molecular track, e.g. actin or microtubule.
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A viable alternative to such a power stroke scheme is RBM, which instead har-

nesses naturally occurring thermal fluctuations from the fluid medium [20, 59]. Ther-

mal diffusion spontaneously generates nanometer displacements in a time of order mi-

croseconds, such that diffusion can quickly provide significant spatial displacements in

a nanoscale mechanism. This diffusion can be rectified on average by non-equilibrium

boundary conditions, which are in turn established by the expenditure of free energy.

The emphasis in RBM is thus how boundary effects contribute to the irreversibility

and free energy expenditure in a mechanism.2

The recognition that RBM can be used as a means to drive nanoscale devices is

not itself new; A. Huxley utilized RBM five decades ago in an early model to explain

muscle contraction [36]. However, the relatively recent wealth of structural and kinetic

information for proteins and their activity, respectively, has provided evidence that

RBM may be a dominant scheme in previously power stroke-dominated realms of

nano-biology. The dimeric molecular motor kinesin is one such example treated in

this thesis.3 Kinesin has two “heads” that alternately step along the length of a

microtubule in a “hand-over-hand” manner, such that the initially rearward head

becomes mobile and binds in front of the initially forward head [103]. This mobile

head is compelled to the forward position by an interaction with the other stationary

head, as mediated primarily by non-rigid elements that connect the heads [76]. The

lack of rigid elements suggests that a Brownian motion scheme, at least in part,

governs the forward stepping of kinesin [21, 52].

Despite such progress in the realm of molecular-scale mechanisms, the argument

that RBM is fundamental to nano-biology has encountered resistance. For example,

some have considered RBM to be just another term for the more familiar Brownian

ratchets, while others have concluded that a Brownian motion mechanism is too slow

2Indeed, RBM will be defined to be a subset of boundary driven systems as a whole [66].
3Kinesin is discussed primarily in Chapters 5 and 6. There, Figure 7 provides further structural

information.
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to sufficiently explain the how molecular motors can progress against experimental

retarding loads of several picoNewtons [35]. This thesis attempts to address these

issues from multiple angles. In particular, the foundations of RBM are laid down by

physically oriented discussions of low Reynolds number dynamics and non-equilibrium

steady state theory. The role of the non-equilibrium free energy profile and its connec-

tion to irreversibility will serve a key role in this endeavor. These underlying principles

are illustrated by means of several physical examples that are commonly discussed

in cellular biology. In this manner, RBM is argued to be a powerful, versatile, and

ubiquitous tool in intracellular processes.

Of particular interest is a new RBM scheme for molecular motors: strain-induced

bias amplification. Strain-induced bias amplification simultaneously explains how

internal strain between two molecular motor heads can both ensure chemical coor-

dination and sensitize the system to strongly favor forward binding over rearward

binding for a mobile head [52].4 Bias amplification models depend critically on the

role of boundary effects, in contrast to power stroke approaches, and will be demon-

strated to provide an explanation to apparent experimental discrepancies in molecular

motors. This is reviewed in the latter portion of this thesis, where bias amplification

is applied as a unified scheme for the molecular motors kinesin and myosin V.

The thesis is outlined as follows. Chapter 2 reviews the necessary mathematical

background that will be used to understand both the kinetic and thermodynamic

formalism of small systems, including a brief review of Langevin equations, Fokker-

Planck equations, and results that relate irreversibility to free energy expenditure.

Chapter 3 utilizes these results to build a coherent picture of RBM as a widespread

scheme in nanoscale biological systems. The argument is made that RBM is both a

distinct and even preferable alternative to power stroke and Brownian ratchet models.

4Chemical coordination refers to a correlation between the respective internal states of the two
heads, such that the heads are kept chemically out of phase. If the heads instead operated indepen-
dently, a molecular motor would tend to rapidly detach from its track [13].
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The remaining chapters explore particular applications of RBM to biological systems.

Chapter 4 covers two relatively simple systems that play essential roles in fundamen-

tal metabolic processes: the ubiquinone shuttle and rotary enzymes. Simple models

for ubiquinone and rotary enzymes will highlight many of the topics discussed pre-

viously. New detailed molecular dynamics (MD) simulations are also discussed for

the biotin rotary enzyme, in the interest of investigating the kinetics of a non-trival

system. Chapter 5 discusses bias amplification models for the conventional variants

of the molecular motors kinesin and myosin V. Chapter 6 presents a more detailed

and physically motivated model for kinesin, based on the principles in Chapter 5.

The ability for this model to reproduce experimental results is discussed. Chapter 7

contains concluding remarks.
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CHAPTER II

MATHEMATICAL BACKGROUND

This chapter provides a background of the formalism behind the analysis of fluctuat-

ing systems, with emphasis on those found in nanoscale biological mechanisms. Sec-

tion 2.1 briefly reviews time-continuous stochastic processes. Section 2.2 provides a

coherent discussion of free energy and irreversibility and will be referenced frequently

in this thesis.

2.1 Stochastic Processes

The dynamics of nanoscale biological mechanisms are heavily influenced by a tumul-

tuous liquid environment. Investigation of such systems by direct simulation, e.g. by

molecular dynamics, is computationally expensive or even prohibitive. Fortunately,

stochastic models offer a simpler alternative that frequently reproduce the quantita-

tive aspects of diffusive motion.1 This stochastic approach to diffusion is typically

presented in either a Langevin form or a Fokker-Planck form, each an essentially

equivalent representation of the same random process. These two approaches are

briefly discussed below, following a very short discussion of reaction networks (also

known as master equations). A thorough review of this background material can be

found in the combination of a few references [19, 23, 72].

1Rigorous examples of classical diffusion exist [15, 27], and these may deviate from stochastic
diffusion in significant ways.

5



2.1.1 Reaction Networks

A closed reaction network for a finite number of states represents one of the most

fundamental time-continuous stochastic systems, often used in the modeling of non-

equilibrium chemical reactions [32, 80].

A reaction network is a Markov process described by the rates Kji for a transition

from state i to state j. All transitions are here assumed to be bidirectional,2 such

that Kji 6= 0 implies Kij 6= 0. Letting pi be the time-dependent probability to be at

state i, the probability distribution of the reaction network is evolved according to

the master equation

dpi

dt
=

∑

j|j 6=i

Jij (1)

Jij = Kijpj − Kjipi

with Jij the probability current from state i to state j.

Equivalently, the theory can be built upon stochastic trajectories. Supposing the

system is at state i, a transition to some other state occurs with an exponentially

distributed waiting time of rate Ki =
∑

j 6=i Kji, while the probability that this tran-

sition produces some particular state j is Kji/Ki. The path integral representation

of a reaction network in Section 2.2.1 will demonstrate the theoretical usefulness of

the trajectory picture.

2.1.2 Langevin Equations

Langevin equations are an approach to stochastic ordinary differential equations,

written as an ODE with an additional noise term. In the case of a multi-dimensional

system, a non-linear Langevin equation can be written [19, 72]

dxi

dt
= hi(~x) +

∑

j

gij(~x)ξj(t) (2)

2This is a necessary condition for any system treated with the free energy formalism in Section 2.2.
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with each ξi(t) a noise function that must be specified (each such noise is assumed

to be statistically independent of the others), and the functions hi and gij are “drift”

and “noise” terms, respectively.3 The noise combination
∑

j gijξj represents forces

from the environment that, though unknown, can be statistically characterized.

A typical example (the only case needed in this thesis) is normalized Gaussian

white noise,4 which is characterized by the two-time correlation function

〈ξ(t)〉 = 0

〈ξ(t1)ξ(t2)〉 = δ(t1 − t2) (3)

with angular brackets representing an average over realizations of the Gaussian white

noise, and δ(t) the Dirac delta function. All higher order correlation functions can be

derived from Eq. 3 on the condition of Gaussian noise, where correlation functions

effectively factorize [72].5 While Gaussian white noise is far from an ordinary function,

physical systems always have a finite correlation time in their noise. In this vein, the

manipulation of Gaussian white noise is often treated in physical applications as if

the noise is an ordinary smooth function of time.

As an example of how Langevin equations are handled, consider simple integrated

white noise (h(x, t) = 0 and g(x, t) = 1). The solution in this case is written

x(t) =

∫ t

0

dt0 ξ(t0) + x0 (4)

By Eq. 3, this process has a constant average

〈x(t)〉 =

∫ t

0

dt1 〈ξ(t1)〉 = x0 (5)

and a variance that increases linearly with time

〈

(x(t) − x0)
2
〉

=

∫ t

0

dt1

∫ t

0

dt2 〈ξ(t1)ξ(t2)〉 = t (6)

3The precise role of these functions can be determined by examining stochastic averages, e.g. in
Eq. 7 below.

4Correlated (“colored”) noise is also typical. For example, the fluctuating velocity of an inertial
Brownian particle can be viewed as a correlated noise that drives the positional variable.

5White noise that satisfies Eq. 3 may deviate from a Gaussian distribution in higher order corre-
lation functions, but Gaussian white noise is typical in many physical stochastic processes [19].
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for t ≥ 0. All higher order moments of Gaussian white noise can be derived from a

Gaussian distribution with the above average and variance.

Solutions to Eq. 2 can be solved in a similar manner, using Taylor approximations

and Eq. 3 to define propagation. This physically minded approach (by Stratonovich)

produces the short-time moments [19, 72]6

〈∆xi〉 ≈ hiτ +
∑

kj

1

2
gkj

∂

∂xk

gijτ

〈∆xi∆xj〉 ≈
∑

k

gik gjkτ (7)

with ∆xi = xi(t + τ) − xi(t) and with functions evaluated at ~x(t) and time t. Stochas-

tic evolution follows from Gaussian propagators with the moments in Eq. 7. The extra

term due to spatially dependent gij is a noise-induced drift, e.g. which may arise for

diffusion in a thermal gradient. For simplicity, this thesis avoids spatially dependent

noise and the associated noise-induced drift.

2.1.3 Fokker-Planck Equations

The Fokker-Planck equation for a diffusive stochastic process governs the evolution in

time of the probability distribution [23, 72], providing an equivalent representation of

the Langevin dynamics. Since the probability distribution is a natural object of study

in non-equilibrium systems (consider the entropy function), Fokker-Planck equations

often provide a cleaner picture of steady state thermodynamics.

The functional form of the Fokker-Planck equation can be motivated from various

standpoints, but it ultimately is found to be equivalent to the probability conservation

equation

∂p(~x, t)

∂t
= −~∇ · ~J(~x, t)

Ji(~x, t) =

(

Vi(~x) −
∑

j

∂

∂xj
Dij(~x)

)

p(~x, t) (8)

6An alternate (and equivalent) Ito formulation of stochastic integration can be used at the expense
of treating the noise as an ordinary function.
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with p the distribution, ~J the probability current (which includes Fick’s law), Vi the

local mean drift vector, and Dij a local diffusion matrix. The short-time propagator

for a time τ is a Gaussian distribution with average change in position 〈∆xi〉 ≈ Viτ

and covariance matrix 〈∆xi∆xj〉 ≈ 2Dijτ [72]. Comparison of these moments to those

in Eq. 7 can be used to relate the Fokker-Planck and Langevin representations of a

stochastic process.

A common variant of Eq. 8 is the Smoluchowski equation for an overdamped

particle with a constant diffusion matrix

∂p(~x, t)

∂t
= −~∇ · ~J(~x, t)

Ji(~x, t) =
∑

j

(

Γ−1
ij Fj(~x) − Dij

∂

∂xj

)

p(~x, t) (9)

where Γij is a constant drag matrix. The relation
∑

j ΓijDjk = kBTδik, with δik

the Kronecker delta, is imposed as a consequence of fluctuation-dissipation relations

(revisited in Section 3.1). In this form, Eq. 9 can be used to represent the diffusive

fluctuations of enzymatic complexes in nanoscale biological systems.

2.2 Requisite Non-equilibrium Steady State Theory

Few general statements can be made concerning the thermodynamics of systems far

from equilibrium. However, results in this subject continue to surface, e.g. the

many fluctuation theorems that relate heat generation to irreversibility [2, 11, 12,

24, 26, 22, 47], or whole steady state thermodynamic formalisms [31, 57, 78]. This

section outlines several necessary results related to non-equilibrium thermodynamics

in preparation for their application to nanoscale biological systems. Results in this

theory are typically demonstrated in terms of the reaction networks in Section 2.1.1,

but the generalization of results to continuum systems will typically be valid.

An assumption used throughout the theory presented below is the nonexistence

of truly irreversible transitions. This condition limits the general applicability of the
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theory, e.g. excluding a thermodynamic treatment that explicitly includes the iner-

tial dynamics of a Brownian particle.7 An appropriate overdamped limit of macro-

molecular dynamics should then be assumed. This limit is sensible for the naturally

overdamped environment of nanoscale mechanisms, as justified in Section 3.1.

2.2.1 Path Integral Representations of Stochastic Systems

Modern non-equilibrium steady state (NESS) theory contains several theorems that

are formulated in terms of stochastic trajectories.8 These are derived from, or at least

related to, path integral representations of stochastic propagation [40, 47, 67]. A few

essential results related to path integrals in stochastic systems are presented here in

preparation for their thermodynamic interpretation in Section 2.2.2.

For a reaction network, the propagator Pt(j|i) from state i to j in a time t is given

by the corresponding matrix element of the exponentiated generating matrix Ŵ

Pt(j|i) = 〈j| exp(Ŵ t)|i〉 (10)

with

Wkp = (1 − δkp) Kkp − δkp Kp (11)

for arbitrary states k and p, and Kp =
∑

k|k 6=p Kkp the escape rate from state p. As

usual, the path integral approach repeatedly applies the completeness relation to

achieve an expression for Pt(j|i) that only requires matrix elements for the short

times δt

〈k| exp(Ŵδt)|p〉 ≈ exp(Wkp δt) + O(δt2) (12)

Defining a path as a sequence of visited states, the final form for the Pt(j|i) can

expressed as a weighted summation over all possible paths P that begin at state i

and end at state j

Pt(j|i) =
∑

P|i→j

wt(P) (13)

7This failure can be attributed to the singular nature of the diffusion matrix in an inertial system.
8For example, the Jarzynski equality.
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where wt(P) is the weight for the path P. Supposing a given path is labeled P =

{1 → 2 → . . . → n}, where the numbers may refer to any labeled sequence of states,

wt(P) is defined

wt(P) =

∫ ∞

0

d∆t1

∫ ∞

0

d∆t2 · · ·
∫ ∞

0

d∆tn w(P, {∆ti}) δ
(

∑

∆ti − t
)

(14)

with

w(P, {∆ti}) = Kn,n−1 · · ·K3,2K2,1 e−Kn∆tn · · · e−K2∆t2e−K1∆t1 (15)

defined for the set {∆ti} of waiting times in each state of P.

An important relation follows. The ratio of the path weight wt(P) over the weight

of the reversed path wt(PR) is dependent only on the sequence of states in P. Ex-

plicitly,

wt(P)

wt(PR)
=

Kn,n−1 · · ·K3,2K2,1

K1,2K2,3 · · ·Kn−1,n

(16)

If the path is a cycle C, with first and final states identical, then

wt(C)

wt(CR)
=

K1,nKn,n−1 · · ·K3,2K2,1

K1,2K2,3 · · ·Kn−1,nKn,1
(17)

Equations 16 and 17 will be important in Section 2.2.2, where non-equilibrium fluc-

tuations are discussed.

There are a few complications in generalizing Equations 16 and 17 to diffusive

processes, e.g. due to the infinite path length of a diffusive trajectory. One approach

that preserves the result in Eq. 16 is to use a finite state approximation to the diffusive

state space. Alternatively, a return to the finite time-sliced version of the path integral

is possible. This latter approach utilizes the known Gaussian short-time propagators

to provide the weight for a trajectory [72]. For example, consider one-dimensional

diffusive motion, with diffusion constant D and local mean velocity v. An approximate

ratio (taken in a logarithm that is multiplied by a thermal energy) between forward

and backward propagation over a time τ is

kBT ln

(

Pτ (x2|x1)

Pτ (x1|x2)

)

≈ (x2 − x1)
kBT

D
v = (x2 − x1)Γv = (x2 − x1)F (18)
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with Γ = kBT/D the effective drag constant and F = Γv the effective applied force

(e.g. ref. Eq. 9). Eq. 18 can then be used to form weights in the path integral formula

(written for multiple dimensions and with spatially constant noise)

kBT ln

(

wt(P)

wt(PR)

)

=

∫

P

~dx · ~F (x) (19)

with the right hand side a time-discretized integral of the force along the trajectory

P. In the case of a locally conservative force ~F = −~∇U , Eq. 19 can be integrated

kBT ln

(

wt(P)

wt(PR)

)

= U(x1) − U(x2) (20)

Eq. 20 can be used, for instance, to derive the detailed balance condition in an

equilibrium system.

2.2.2 Steady State, Free Energy, and Irreversibility

Long-time behavior of a stochastic mechanism asymptotically approaches the steady

state probability distribution p
(s)
i , which can be used to build a thermodynamic theory

of fluctuating non-equilibrium processes [80]. Non-equilibrium fluctuations in the

overdamped systems of interest arise when p
(s)
i breaks the detailed balance symmetry,

i.e. when Jji 6= 0 for some pair of states, thus producing a flow of probability current

that can be used to perform useful tasks on average.

An equivalent (and presently more useful) picture of NESS dynamics exists in

terms of stochastic trajectories [47], where non-equilibrium fluctuations arise due to

an irreversibility in the system. Irreversibility is best defined in terms of the path

integral representation of the NESS. The NESS probabilistic weight Pt(P) of a path

P, from state i to j in a time interval t, follows from the combination of propagator

and steady state weights (ref. Eq. 14)

Pt(P) = wt(P) p
(s)
i (21)

By Eq. 16, it follows that

Pt(P)

Pt(PR)
=

wt(P) p
(s)
i

wt(PR) p
(s)
j

(22)
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which deviates from unity only in the case that a path has a preferred direction at

steady state, i.e. that the path is partially irreversible.

The kinetic relation Eq. 22 appears in other contexts. An object long used in the

study NESS dynamics and thermodynamics is the affinity [32, 80]. The affinity, in its

many forms, establishes a non-equilibrium measure of irreversibility in the system. A

valid definition of the pairwise affinity Aji for the transition from i to j is

Aji = kBT ln
Kji p

s
i

Kij ps
j

(23)

which is zero only when Jji = 0. Thus, equilibrium is equivalent to globally zero

pairwise affinity. The affinity A(P) along a path P, from state i to state j, is in turn

defined to be the sum of pairwise affinities along the path

A(P) = kBT ln
wt(P) p

(s)
i

wt(PR) p
(s)
j

= kBT ln
Pt(P)

Pt(PR)
(24)

where Eq. 22 has been used. The path affinity thus measures the directional irre-

versibility along P. The cycle affinity is defined similarly9

A(C) = kBT ln
wt(C)

wt(CR)
= kBT ln

Pt(C)

Pt(CR)
(25)

which has the advantage of independence from the NESS distribution (it is an intrinsic

property of the cycle).

The kinetic significance of the affinity is related to its thermodynamic interpreta-

tion as the free energy expenditure for a transition, i.e.

Aji = −∆µji (26)

The validity of Eq. 26 can be argued from multiple standpoints, such as has been done

for reaction networks and diffusive systems [24, 25, 80]. Consider the irreversible heat

production rate long used in NESS theory, which is the positive quantity

Q̇irr =
1

2

∑

ij

AjiJji (27)

9Eq. 25 is related to the Watanabe formula [37, 64].
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that is found from an analysis of the time dependence of the entropy S = −
∑

i pi ln pi

[80]. If Eq. 27 is interpreted as composed of macroscopic transitions in an isothermal

system, then Eq. 26 would be the free energy expenditure (negative heat production)

for completing such a spontaneous macroscopic transition. Moreover, pairwise spon-

taneous probability current only accompanies a negative pairwise free energy. For

these reasons, Eq. 26 provides a sensible non-equilibrium version of the free energy.

The relationship between the affinity and free energy may be more transparent

for processes driven by a single-valued underlying energy potential function,10 i.e.

those processes in some region R (that is generally open to external transitions)

that satisfies Kjip
0
i = Kijp

0
j for some distribution p0

i = e−Ui/kBT . Ui is the energy

of the processes that supplies the unique equilibrium distribution in R. The NESS

distribution can then be written p
(s)
i = e(µi−Ui)/kBT , where µi has the interpretation

of a chemical potential. The path affinity simplifies in this case

A(P) = kBT ln
p

(s)
1 p0

n

p0
1 p

(s)
n

= kBT ln e(µ1−µn)/kBT

= µ1 − µn = −∆µn1 (28)

such that

Pτ (P)

Pτ (PR)
= e−∆µn1/kBT (29)

Spontaneous current along a path arises from a chemical potential gradient, as ex-

pected.

A caveat of the affinity-based free energy Eq. 26 is that it cannot generally be

interpreted as a logically separable thermodynamic free energy, in that it is only

defined at steady state (excepting the cases of cycles and long stochastically sampled

paths, the latter of which are used in fluctuation theorems). This difficulty is related

to the inability to identify a particular locus of entropy production in Eq. 27 [32].

For example, the total entropy production rate is unchanged if the pairwise affinity

10These are discussed again in Section 2.2.4.
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is replaced by a new affinity

Ãji = Aji + Vj − Vi (30)

for some state function Vi.
11 For this reason, reference to the entropy production rate

in a given region of state space is more precisely defined as the restricted summation

in Eq. 27 over this region.

2.2.3 Example: Diffusion in a Potential

An example that is readily treated and interpreted with the formalism in Section 2.2.2

is the Fokker-Planck equation for a one-dimensional, overdamped particle in a poten-

tial U(x) (ref. Section 2.1.3) [23, 31, 65]

∂p(x, t)

∂t
= −∂J(x, t)

∂x

J(x, t) = −D

(

1

kBT

∂U(x)

∂x
+

∂

∂x

)

p(x, t) (31)

The steady state p(s)(x) of this problem can be solved from the condition J(x, t) = J ,

where J is the steady state current. Explicitly

J = −D

(

1

kBT

∂U(x)

∂x
+

∂

∂x

)

p(s)(x) (32)

A chemical potential can be introduced to simplify Eq. 32. If µ(x) = U(x) +

kBT ln(p(s)(x)δ0), for some constant distance δ0, then

∂

∂x
eµ(x)/kBT = −Jδ0

D
eU(x)/kBT (33)

Equivalently

∂µ(x)

∂x
= −kBT

D

J

p(s)(x)
= −Γv(x) (34)

The thermodynamic force Π = −∂µ(x)/∂x in a diffusing system is thus equal to the

mean drag force Γv(x), for ensemble velocity v(x) = J/p(s)(x) and drag coefficient

Γ = kBT/D.

11This follows from the steady state condition
∑

i Jji = 0.
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An alternative approach to this problem is by means of the continuum expression

for the affinity kernel (to be integrated along a path) [65]

Π(x) = F (x) − kBT
∂

∂x
ln p(s)(x) (35)

with F (x) = −∂U(x)/∂x. The irreversible heat production rate Q̇irr associated with

the interval [a, b] is then

Q̇irr =

∫ b

a

dx Π(x)J(x)

= −J (µ(b) − µ(a)) = −J∆µ ≥ 0 (36)

Entropy production in this case thus retains the bilinear form assumed in near-

equilibrium theory, though J and ∆µ are typically nonlinearly related to one another.

The treatment of free energy in the higher dimensional case (e.g. assuming

isotropic diffusion) is entirely similar [65], with a thermodynamic force

~Π(x) = ~F (x) − kBT ~∇ ln p(s)(x) (37)

that can be interpreted to arise from the negative ensemble velocity drag force at

steady state. ~Π is integrable when the force is integrable, i.e. ~F = −~∇U , such that a

free energy profile satisfying ~Π = −~∇µ arises

µ(x) = µ0 + U(x) + kBT ln p(s)(x) (38)

The existence of µ(x) for diffusion is a useful simplification of the system energetics,

as will be discussed below in Section 2.2.4, and will be taken in Section 3.5 to be

generally valid for all RBM systems.

2.2.4 Free Energy Potentials

As will be discussed further in Section 3.3, a system driven by only a few sources

of free energy has important restrictions imposed on its kinetics [32, 50]. The cycle

free energy ∆µ(C) in such systems can only be equal to integer linear combinations
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of a basic set of free energies, assumed to arise from N fundamental cycles with free

energies ∆Gi (i = 1, ..., N). Then

∆µ(C) =
∑

i

ni∆Gi (39)

for integers ni. Eq. 39 can be viewed as a topological characterization of cycles in

state space. From this condition, path free energies are similarly restricted. Suppose

two paths, P1 and P2, with shared initial and final endpoints. The application of

Eq. 39 to the cycle C12 = P1 + PR
2 implies

∆µ(P1) = ∆µ(P2) +
∑

i

ni∆Gi (40)

for the set of integers corresponding to ∆µ(C12).

A consequence of Equations 39 and 40 is the appearance of a NESS free energy

potential µ(x) that describes irreversibility. Suppose that a region R in state space

satisfies ∆µ(C) = 0 for all internal cycles C. Then, Eq. 40 can be used to prove path

independence for all internal paths between common endpoints xf and xi, i.e.

∆µ(P) = µ(xf) − µ(xi) (41)

The function µ(x) provides all information concerning irreversibility for trajectories

in R, and thus inherits many useful properties of the affinity.12 More generally, a

multi-valued free energy potential can be constructed by the inclusion of branches

that are consistent with Eq. 40, but this is a straightforward complication.

A special situation arises for systems that have tight mechanochemical coupling,

i.e. systems for which completion of the mechanical portion of the device (e.g. a

diffusive step) is statistically equivalent to completion of the chemical portion (e.g. the

reaction cycle of ATP). More precisely, tight mechanochemical coupling implies any

cycle C in state space that completes n mechanical steps must satisfy ∆µ(C) = n∆G,

12For example, nonzero probability current only arises in the direction of a negative free energy
gradient.
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with ∆G the free energy for the fundamental cycle of the device.13 Such a system

is one with a “gate,” i.e. a transition through which all cycles with nonzero affinity

must pass. µ(x) is defined for a stochastic process on either side of this gate by this

condition (cycles that do not cross this gate have zero affinity). A process between

two such gates similarly has a potential. Gated systems will be useful in the case of

RBM, since many systems, e.g. the examples in Chapters 4 and 5, tend to be gated

by one or more steps.

As a final note, the existence of a potential µ(x) in a region R allows irreversibility

to locally be expressed more directly in terms of short-time propagators, rather than

the more fundamental individual path path weights in Eq. 56. Assume two states,

x1 and x2, that are contained within R. If the propagators Pτ (x2|x1) and Pτ (x1|x2)

both only have statistically relevant contributions for paths of a given free energy

class (ref. Eq. 40), then

µ(x2) − µ(x1) ≈ −kBT ln

(

Pτ (x2|x1)p
(s)(x1)

Pτ (x1|x2)p(s)(x2)

)

(42)

Thus, the free energy profile locally provides a measure of deviation of detailed balance

conditions.14 Regions of approximately equal free energy potential are nearly at

equilibrium conditions, and regions with steep free energy gradients have strongly

irreversible underlying trajectories.

13∆G includes contributions to the free energy from any external reactions and any external work
done in a cycle of the device.

14This is obvious for a single chemical transition (ref. the pairwise affinity in Eq. 23).
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CHAPTER III

FOUNDATIONS OF RECTIFIED BROWNIAN MOTION

An argument for the ubiquity of Brownian motion-based mechanisms in nanoscale

biology follows from an appreciation for the rapidity of diffusive transport at the

nanoscale in conjunction with the thermodynamic formalism reviewed in Section 2.2.

RBM is defined as a particular class of Brownian motion mechanisms, providing a

viable alternative to both power stroke models and Brownian ratchets. This definition

is inspired from the principle of how irreversibility is related to Brownian motion and

other fluctuation-based mechanisms.

Sections 3.1 and 3.2 outlines results relating to characteristic time and length

scales that accompany diffusive motion, including preliminary statements concerning

the role of power stroke versus Brownian motion transport. Section 3.3 applies sev-

eral non-equilibrium results in the context of the enzymatic systems, in particular

discussing the relevance of boundary driven systems in the principle of rectification.

Sections 3.4 and 3.5 formulate proposed definitions for RBM and power strokes that

are consistent with these principles.

3.1 Viscosity and Thermal Noise

An appreciation for the immense effects of viscosity and thermal fluctuations at the

nanoscale is critical in the understanding of cellular and intracellular dynamics [62].

Low Reynolds number behavior imposes heavy viscous damping that quickly elimi-

nates inertial effects,1 but thermal fluctuations provide a vigorous means to generate

rapid spatial displacements in the form of diffusion [90]. As discussed presently, an

1Systems that are too small, i.e. those that begin to become comparable to the molecular size of
water, may require special consideration.
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examination of the interplay between viscous drag and thermal heat provides insight

into how a RBM scheme can power a molecular device. Preliminary comments are

also made on how Brownian motion-based versus power stroke-based mechanisms can

be distinguished.

The effects of viscous drag on a nanoscale body can be made once drag tensors

have been obtained for the linear equations of low Reynolds number flow [44, 46].

For definiteness, consider the lowest order solution for flow around a spherical body

(first derived by Stokes) with mass m, radius R, and a position described by a linear

coordinate x. If the drag force is written Fdrag = −Γẋ, where ẋ is the velocity, then

Γ = 6πηR (43)

is the drag coefficient for a sphere in a medium with dynamic viscosity η. The corre-

sponding relaxation time τ = m/Γ to dissipate a mean initial velocity v0 (ignoring dif-

fusive effects) is incredibly short for nanoscale systems, consistent with a small mean

inertial range v0τ in most systems. For example, if the head domain of a kinesin head

is approximated by a sphere with radius R = 6 nm and a mass m = 6 × 10−23 kg, the

inertial lifetime is only picoseconds in water with η = 1 cp [21]. Even if such a body

was launched forward with kinetic energy equal to the entire free energy of ATP,

the resulting inertial displacement would be a small fraction of the 16 nm distance

required for kinesin’s functionality.

An overdamped description is thus appropriate when analyzing nanoscale dynam-

ics. The addition of thermal fluctuations does not alter this result, but investigation

of inertial dynamics in light of thermal noise leads to simple, but useful, results

for diffusional displacement and inertial energetics. Consider a particle with viscous

drag coefficient Γ (e.g. from Eq. 43) with thermal noise modeled by a second-order

Langevin equation (ref. Section 2.1.2 and [23])

mẍ = −Γẋ + F + ξ(t) (44)
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where ξ(t) is a stochastic Gaussian white noise modeling fluctuations from the thermal

bath, and F is an applied constant external force. ξ(t) is both an unbiased and

uncorrelated in time, such that (as before with Eq. 3)

〈ξ(t)〉 = 0

〈ξ(t1)ξ(t2)〉 = Aδ(t1 − t2) (45)

where A is the magnitude of the noise (to be defined shortly in Eq. 47), and angular

brackets 〈 · 〉 denote averaging over realizations of the noise. The solution to Eq. 44

is straightforward

x(t) − x(0) =
1

m

∫ t

0

dt1

∫ t1

0

dt2 e(t2−t1)/τ ξ(t2)

+ (v0 − vF ) τ
(

1 − e−t/τ
)

+ vF t (46)

vF = F/Γ the asymptotic mean velocity due to F , and τ = m/Γ again the relaxation

time. Eq. 46 determines all relevant averages for the system, as demonstrated in

Section 2.1.2 and Appendix A.1. A is then fixed by ensuring that the asymptotic

variance of the velocity Aτ/2m2 equals the squared thermal velocity v2
T = kBT/m,

i.e.

A = 2ΓkBT (47)

A similar treatment of the positional variance at zero force sets the diffusion constant

D = 〈∆x2(t → ∞)〉 /2t

D =
kBT

Γ
(48)

Equations 47 and 48 may also be derived from the more general fluctuation-dissipation

relations by Onsager and Einstein.

Two sources of power input drive the Brownian particle in Eq. 44: the mechanical

power by the constant force F and the power of thermal fluctuations. The me-

chanical power rapidly (for times greater than τ) approaches the deterministic value
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〈

Ẇ
〉

= FvF . The power due to thermal noise is a much larger constant

〈

Q̇in(t)
〉

≡ 〈ξ(t)ẋ(t)〉 =
kBT

τ
(49)

The ratio of these is
〈

Ẇ
〉

〈

Q̇in

〉 =
vF τ

LF
(50)

where the characteristic length LF = kBT/F has been used. The inertial-like distance

vF τ in a nanoscale system is typically orders of magnitude smaller than LF , indicating

that thermal power is by far the dominant source of power input. However, thermal

power is balanced by equally large viscous drag dissipation heat

Q̇out = Γẋ2 (51)

that approaches kBT
τ

for ensembles near thermal equilibrium. The imbalance between

viscous drag output and thermal power input rapidly approaches the mean drag heat

ΓvF , which is relatively small compared to the thermal power itself.2

While viscous drag and thermal fluctuations set the dominant power scales of all

Brownian dynamics, this does not determine the relevance of thermal diffusion in the

actual generation of spatial displacements. Specifically, compare the “power stroke”

time τPS = LΓ/F (the time to travel a distance L at velocity vF ) to the Brownian

motion time τBM = L2/2D (the time for the diffusional width
√

2Dt to equal L). The

ratio τBM/τPS is

τBM

τPS
=

L

2LF
(52)

where LF = kBT/F as before. Brownian motion is thus the dominant mode of trans-

port for distances much shorter than LF . An alternate interpretation of Eq. 52 is that

power stroke principles dominate when the viscous heat F L generated by the force

2Notice that the mean irreversible heat dissipation in this case rapidly approaches the work done
on the particle (a statement of energy balance). This last observation is familiar from overdamped
deterministic dynamics but fails to be true in general (consider equilibrium systems).
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F is much greater than kBT . This last observation will again appear in Section 3.3

in a different context.

The relative contribution of power stroke and Brownian motion components in

the abstracted flagellar propulsion of an E. coli bacterium can already be examined

at this level of complexity, without recourse to elaborate equilibrium theory.3 No-

tice, however, the molecular mechanism itself is more complicated and may receive

significant contributions from Brownian motion [102]. Following H. Berg [4], E. coli

is approximated by a sphere of radius 1 µm with the density of water. The bac-

terium propels itself in runs that last approximately τtot = 1 s, with a secular velocity

approximately v = 2 × 10−5 m/s. Motion takes place in a fluid with η = 1 cp at tem-

perature T = 298 K. The mean drift distance vτtot = 20 µm accumulated during a

given run is many times the diffusional distance
√

2Dτtot = 0.7 µm. Consistently, a

viscous drag heat of 2000 kBT also indicates a power stroke (by Eq. 52). Flagellar

propulsion as an abstract mechanism thus exemplifies a power stroke. Indeed, this

must be true if E.coli is to effectively overcome diffusion in order to seek out food

sources in chemotaxis. The situation is quite different for the diffusion of a kinesin

head, which can freely diffuse the required 16 nm stepping distance in only 2 µs. This

rate is rapid compared to the overall rate of kinesin, which is of order milliseconds.

3.2 Simple Models of Rectified Brownian Motion

The inclusion of non-equilibrium boundary conditions is sufficient to rectify Brown-

ian motion. The implementation of rectification is frequently done by the imposition

of effectively absorbing and reflecting boundary conditions that respectively promote

and inhibit diffusing trajectories to transition into other regions of state space. These

boundaries can be established by the coupling of a few essentially irreversible events,

3E.coli is indeed overdamped. Its inertial lifetime is estimated to be τ = 0.2 µs. Once propulsion
has ceased, the mean inertia from flagellar propulsion would in this time have the bacterium drift
less than an angstrom on average. [4]

23



e.g. a statistically favorable chemical reaction, to mechanical progression in the sys-

tem.

A straightforward and illustrative example is one-dimensional overdamped 4 diffu-

sion in a potential. Supposing a coordinate x, a force potential U(x), and a diffusion

constant D, the mean first passage time (MFPT) for a diffusive process to travel from

a reflecting boundary at x = 0 to an absorbing boundary at x = L is [23]

τMFPT =
1

D

∫ L

0

dy

∫ y

0

dz e(U(y)−U(z))/kBT (53)

The characteristic times τPS and τBM from free diffusion are faithfully reproduced by

Eq. 53 for U(x) = −Fx (FL ≫ kBT ) and a constant potential, respectively. Recti-

fication produces more pronounced effects once an uphill potential barrier is instead

considered. If U(x) = Fx (FL ≫ kBT ), then τMFPT become exponentially large

τMFPT ≈ L 2
F

D
eFL/kBT (54)

as would be expected from transition state theory [30]. Mechanical work can thus be

generated from thermal fluctuations in the presence of rectification. An early RBM

model for kinesin utilized this approach to oppose 3 pN over a 16 nm stepping dis-

tance, i.e. a 12 kBT potential barrier, with a characteristic time of milliseconds5.

Generally, the utilization of rectification to bring about thermally-driven barrier pen-

etration is a recurrent scheme in nano-biology.

While the introduction of reflecting and absorbing boundaries considerably sim-

plifies the analysis of a diffusive process, there are several unphysical artifacts that

arise. The most obvious is the irreversibility at these boundaries, which can be inter-

preted as an infinite expenditure of free energy. A physical system always has some

probability for reversing a transition. Two artifacts more closely tied to diffusion are

4Recall that the assumption of overdamped dynamics is needed for the NESS formalism used in
this thesis.

5Notice that this model assumes external force is applied directly to a tethered head, rather than
at some intermediate point between the heads.
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the divergences of the NESS free energy profile µ(x) and ensemble velocity v(x) near

an absorbing boundary (ref. Section 2.2). By definition, the probability density at

an absorbing boundary is zero. If ǫ is a distance to the boundary, a linear approxi-

mation of the probability density near the boundary leads to a µ ∼ ln(ǫ) divergence

and a v ∼ 1/ǫ divergence. These two divergences are related, e.g. by Eq. 34, and

signal a breakdown of the overdamped formalism assumed presently. Indeed, if an

absorbing boundary was imposed instead on the inertial dynamics of Section 3.1, the

maximum velocity expected at the absorbing boundary would be limited in scale by

the equilibrium thermal velocity
√

kBT/m.

3.3 Steady State Properties of Nanoscale Biological Pro-

cesses

Cellular enzymes are isothermal motors that spontaneously perform tasks by virtue

of a coupling to available free energy. On the assumption that the enzyme state and

ambient chemical concentrations provide a complete description of the system,6 a non-

equilibrium thermodynamic approach to enzyme kinetics can be constructed [32, 65].

Such a non-equilibrium theory was reviewed in Section 2.2, primarily emphasizing

mathematical relations that generally hold for stochastic systems. Revisiting the

content of Section 2.2 with a physical interpretation is an important step in appreci-

ating the role of irreversibility, particularly as it relates to defining RBM systems.

In contrast to the mathematical approach in Section 2.2.2, where paths in state

space were the natural objects, the most basic thermodynamic objects in fluctuating

non-equilibrium thermodynamics are cycles. The decomposition of global free energy

expenditure in terms of fundamental cycles (each with an associated thermodynamic

force) has been long known [32, 80], in analogy to theorems in circuit theory. An

enzyme that performs a cyclic motion C in state space must only leave the environment

6The environment is thus assumed to quickly equilibrate in response to changes in the enzyme.
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changed, with an assumed environmental free energy difference ∆G. The cycle free

energy is accordingly defined ∆µ(C) = ∆G. Since each enzyme typically only couples

to a finite number of distinct reactions, all such ∆G should arise from a finite set of

fundamental free energies (ref. Eq. 39).

The affinity-based version of the cycle free energy (ref. Eq. 25) is identified

with this physical picture, providing ties between thermodynamics and irreversibility.

Namely, the steady state weight of a cyclic path in state space is exponentially biased

by free energy expenditure

Pτ (C)

Pτ (CR)
= e−∆µ(C)/kBT (55)

Such an emphasis on cycles is consistent with the ability for localized rectification to

induce global non-equilibrium currents. As long as µ(C) < 0 for a cycle, energetically

uphill actions can be statistically biased forward. Compare this view to the macro-

scopic “power stroke” view of thermodynamics, which forbids autonomous processes

that require an observable increase in free energy, i.e. a macroscopic activation, to

function.7 That is, mechanical work in a power stroke model is generated only by

means of a continual expenditure of free energy. RBM requires the much weaker

condition based on Eq. 55, and thus, RBM is a natural approach for basic molecular

processes.

The generalization of cycle free energies to path free energies is somewhat less

inspired from macroscopic thermodynamics and instead is based on kinetic relations.

The affinity-based path free energy (ref. Eq. 24) allows a detailed description of

irreversibility, via [47]

Pτ (P)

Pτ (PR)
= e−∆µ(P)/kBT (56)

Related advantages of this formulation for the free energy expenditure are discussed

7The fact that a power stroke has rather specific kinetic and thermodynamic characteristics,
compared to general stochastic processes, is a key motivation for the definition of a power stroke in
Section 3.5.
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in Section 2.2.2. An alternative, though not preferred, choice for the path free energy

is the “physical” free energy difference (ref. Eq. 16)

∆U(P) = −kBT ln
wt(P)

wt(PR)
(57)

which is more directly measured by examining short time propagation outside of

steady state.8 The two are simply related by

∆µ(P) − ∆U(P) = kBT ln
p(s)(xf )

p(s)(xi)
(58)

for initial and final states xi and xf , respectively. Transitions can satisfy ∆U ≈ ∆µ (in

the sense of relative magnitudes) if both |∆U | ≫ kBT and the endpoints of the steady

state distribution are not exponentially different. Since these conditions frequently

occur for macroscopic processes, intrinsic irreversibility of macroscopic free energy

transduction is sensible, and the two versions of the free energy do not need to be

distinguished. The asymptotically long trajectories in fluctuations theorems have a

similar correspondence between the two free energies.

The existence of a free energy potential (either of the µ(x) or U(x) variety) is both

natural and useful in the study of nanoscale systems coupled to a finite number of

free energy sources (ref. Section 2.2.4). However, despite the ubiquity of potentials,

the degree that a potential affects steady state flow should not be underestimated. A

primary consequence is that a region R with a potential µ(x) is a boundary driven

process (this is discussed for a reaction network in Appendix A.2). Essentially, the

existence of a potential µ(x) in a region R implies that the irreversible heat production

rate Q̇irr associated with R reduces to boundary terms. For a continuous system,

defining the thermodynamic force ~Π = −~∇µ and the steady state current ~J , the kernel

~Π · ~J in the integrand for Q̇irr reduces to a divergence

~J · ~Π = − ~J · ~∇µ = −~∇ ·
(

µ ~J
)

(59)

8When ∆U is globally derived from a potential U(x), the Boltzmann distribution of U(x) provides
the equilibrium distribution. This is of course consistent with U(x) being the free energy of the
quasi-equilibrium state x.
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where the steady state condition ~∇ · ~J = 0 has been used. Eq. 59 makes clear why

regions with a potential are boundary driven.

Boundary driven processes are quite common in practice, e.g. occurring in all dif-

fusive processes driven by a finite number of fundamental cycles (ref. Section 2.2.4).

However, a special type of boundary driven process, which we label a “rectified pro-

cess,” frequently describes diffusive transport in nanoscale biological mechanisms. A

rectified process in a region R is defined as a boundary driven process that supports

probability current at two boundaries, ∂R1 and ∂R2, that are separated in state

space. By Eq. 59 and Eq. 28, the free energy expenditure and current in R can

be interpreted as a boundary rectification phenomenon if one boundary is held at a

higher µ(x) potential than the other. Indeed, if the boundaries in a rectified process

are defined as equipotential surfaces of µ(x), then probability current between the

boundaries is always rectified to flow towards the surface of lower free energy. Sec-

tion 3.5 will use this interpretation of rectification in the definition of RBM, defining

RBM in the class of processes that are suitably approximated by a rectified process.

H. Qian has already emphasized the interpretation of rectification in terms of bound-

ary driven processes, but rectified processes are presently adopted for their directional

structure [66].

Due to the relevance of this point in the definition of RBM, notice that an approx-

imate boundary driven process may not share certain features that accompany a true

boundary driven process. For example, there may not exist boundary conditions for

an approximate boundary driven process that lead to equilibrium conditions. What is

shared in both cases is a typical tight coupling between the mechanical state and free

energy expenditure, by definition of the validity of an approximate free energy poten-

tial µ(x). The validity of µ(x) is equivalent to the statistical dominance of trajectories

from a single free energy class, in the sense of Eq. 40, for stochastically observed tra-

jectories. This free energy class of trajectories can be interpreted as the boundary
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driven portion of the system. A system with aberrant trajectories pruned from the

dynamics produces an exact boundary driven system that statistically approximates

the real process. It is in this sense that we interpret an approximate rectified process.

3.4 Regions of Reversibility

A useful concept to be used shortly is that of a region of approximate reversibility.

Supposing that a potential µ(x) exists, a local region of approximate reversibility ǫ

may be defined for the state x0

R(x0, ǫ) = {x : |µ(x) − µ(x0)| < ǫ , x connected to x0} (60)

where the last condition is to ensure R(x0, ǫ) is a connected region containing x0. For

example, ǫ = kBT is such a choice, though smaller values are equally useful. Such

regions have bounded affinities between all interior points, and for sufficiently small

ǫ, they can be shown to approach local equilibrium.

Consider this in the case of diffusion. One-dimensional diffusion at steady state

from x = 0 to an absorbing barrier at x = L (ref. Section 3.2) has a linearly varying

probability density, with an associated logarithmic free energy profile

∆µ(x) ≡ µ(x) − µ(0) = kBT ln
L − x

L
(61)

If xn is defined such that ∆µ(xn) = −nkBT , Brownian motion can be described by

intervals of approximate irreversibility

∆xn ≡ xn − xn−1 = L(e1 − 1)e−n (62)

Each interval ∆xn is (1 − e−1) ≈ 63% the remaining forward distance L − xn−1 to

the absorbing barrier, with the implication that the boundary-related irreversibility

of a purely diffusive process follows from approximately reversible regions of length

comparable to the distance to the boundary. These large regions of reversibility are
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typical of diffusion-based spatial transport, and appear even in the most severe case

of an absorbing boundary.

Regions of reversibility along a given direction of mechanical progress form the

definitions for power strokes and RBM in Section 3.5 (though the notation in Eq. 60

will be avoided).

3.5 Rectified Brownian Motion, Power Strokes, and Brow-

nian Ratchets

The distinction between power stroke and Brownian motion based mechanisms in

nano-biology has frequently been done in the literature, especially concerning molec-

ular motors [93]. Such a division is intuitively clear in many examples, but a set of

precise criteria has been largely lacking for the general case. The NESS approach

fortunately provides several compelling criteria that can be used for this purpose,

leading here to a set of proposed distinguishing characteristics for all of RBM, power

strokes, and Brownian ratchets.9

Recall that a power stroke is intuitively a continual and directional release of

stored internal energy that is used to push the system through the viscous medium

and possibly used to generate mechanical work. Free energy expenditure in this case

continuously compels a power stroke forward by means of a “force,” which in this case

is interpreted as a free energy gradient that strongly biases propagation (ref. Eq. 42).

A power stroke forbids large fluctuations from providing productive spatial transport,

since this would necessarily imply a Brownian motion based mechanism.10 A power

stroke for characteristic spatial resolution δ is thus characterized by the absence of

regions of reversibility (in the sense of Section 3.4) longer than δ along the power

stroke. This condition of progressive irreversibility at a resolution δ is a necessary

9There exist several competing definitions for what constitutes a Brownian ratchet, and so a
particular such definition will be adopted.

10More properly, this would be a thermal fluctuation based mechanism, but this distinction is
largely unnecessary for physical systems.
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condition for any power stroke.

The most direct method to identify progressive irreversibility is by means of ex-

amining the path free energy of a representative path PPS along the power stroke.11

By the assumption of progressive irreversibility, PPS can be partitioned into many

smaller paths Pi that each progress a distance δ and satisfy

−∆µ(Pi) & kBT (63)

Such a decomposition naturally arises in simple Fokker-Planck models for a power

stroke, and Appendix A.3 outlines the details for the one-dimensional case. A second

necessary condition for a power stroke follows

−∆µ(PPS) ≫ kBT (64)

i.e. power strokes must be essentially irreversible as a whole (this is the “power” in a

power stroke). Failure of either Equations 63 or 64 to apply signals the absence of a

power stroke. For an example that will be revisited in Section 4.1, the diffusive spatial

transport in ubiquinone has a heat production per traversal that is many orders of

magnitude smaller than kBT and thus clearly not a power stroke.

A secondary concern for a power stroke is the ability to persist forward during

application of an opposing external force (the role of a power stroke in macroscopic

motors is often to overcome external loads). Robustness of progressive irreversibility

under a given range of external forces can be imposed as an additional condition for

a power stroke, if desired. However, this complication will not be explored presently.

The condition of progressive irreversibility in Equations 63 and 64 is usually not

sufficient to identify a power stroke. “Futile heat,” which is not associated with

the observed irreversibility of spatial displacements, may lead to spurious directional

irreversibility. This concern can be alleviated in the case of rectified processes (ref.

11Such a path may be sampled from the steady state of the system.
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Section 3.3). Approximate rectified processes occur relatively often in many nanoscale

biological mechanisms of interest, e.g. for molecular motors with tight mechanochem-

ical coupling (ref. Section 2.2.4). A free energy potential µ(x) must then exist. Thus,

there is not futile heat, in the sense that free energy expenditure and mechanical

progression are tightly coupled.12 Given the existence of a rectified process, a pro-

posed definition for a power stroke is a process with progressive irreversibility along a

given direction. This definition can be refined (e.g. with the above condition for the

robustness under external force), but it satisfies the basic notion that a power stroke

compels the system forward by a continual expenditure of free energy.

The failure of progressive irreversibility implies that there exists a large region

of approximate reversibility in the direction of mechanical progression. With this

motivation, a spatial motion in a mechanism governed by a rectified process is said

to be RBM when power strokes are inadequate to explain the mechanism, e.g. that

the irreversibility of the mechanism is not explained by a few dominating power

strokes.13 RBM is thus defined to be complementary to power stroke mechanisms in

the set of rectified processes. Examples of RBM mechanisms are largely consistent

with this definition [20, 21, 36, 52]. The seeming lack of a strong biological selection

for power stroke systems, in light of the robustness of diffusion at the nanoscale, would

appear to make the special condition of progressive irreversibility unnecessary for the

fundamental mechanisms of nano-biology. RBM is thus conjectured to be prevalent

in nano-biology. Only when the required distance of diffusive spatial transport is

large, e.g. many microns, does the failure of thermal diffusion relative to drift-based

schemes truly occur.

Brownian ratchets can be compared with the above definition above for RBM.

The well-known Brownian ratchets, as defined by Reimann and Hängii [69], typically

12Mechanical progression may in this case be measured by equipotential surfaces of µ(x).
13This definition can be refined for a particular set of models, but the basic notion of RBM remains

clear.
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are taken to obey the one-dimensional reaction-diffusion equation (periodic in some

spatial length L)

∂pi

∂t
= −∂Ji

∂x
+
∑

j

Kijpj −
∑

j

Kjipi

Ji = −Di

(

1

kBT

∂Ui

∂x
+

∂

∂x

)

pi (65)

with Ji the ith species spatial probability current, Di the diffusion constant, Ui the

periodic force potential function, and Kji the periodic position-dependent transition

rate from species i to j. Brownian ratchets are restricted to those systems that in-

clude Brownian motion as an essential component, i.e. the power stroke picture is

insufficient in a Brownian ratchet mechanism. Periodicity of the potentials implies

that nonzero cycle free energies only arise from cycles that twist around the reac-

tion coordinate (ref. Section 3.3), and these reactions can be coupled to mechanical

movement.

The dynamics in Eq. 65 typically has a loose correspondence between mechanical

progression and free energy expenditure [68], and this fact excludes the existence

of an underlying rectified process for mechanical progression. Brownian ratchets

thus lack an interpretation in terms of boundary rectification (in the sense of the

path free energy), and they are accordingly distinct from RBM mechanisms. The

type of rectification in Brownian ratchets instead occurs in the statistical sense of a

net drift that arises from breaking the detailed balance symmetry of an equilibrium

system [68].14

It should be made clear that Brownian ratchets also generally differ from RBM

mechanisms on a simpler basis. Namely, Brownian ratchets require a periodic ratchet

potential, while RBM mechanisms do not require any such ratchet potential. Ubiquinone

and rotary enzymes, for example, are RBM mechanisms that lack spatially periodic

14This is Curie’s principle, which asserts that an effect not prohibited a priori from symmetry
principles should be expected to occur. [69]
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potentials (ref. Chapter 4). RBM mechanisms are in this respect more general than

Brownian ratchets.

A closing word on the definitions for power strokes and RBM is in order. While

there exists room to improve on the above definitions, a feature that appears to be

firm in the present approach is that power strokes are best understood as distinct

objects in a mechanism. A different approach, notably that characterized by the

works of Peskin, Wang, and Oster [60, 100], assumes that general mechanisms can

be decomposed into simple percentages of power stroke and Brownian motion-based

motion.15 That is, some simple measurement provides the values ρPS and ρBM that

quantify the importance of power stroke and Brownian motion, respectively (Eq. 52

is an example for such a measurement in a very simple setting). These are comple-

mentary, satisfying ρPS + ρBM = 1. While sensible in certain circumstances, such a

decomposition encounters difficulty in general situations.16 For example, consider the

proposed strain-induced bias amplification mechanism in conventional dimeric kinesin

(ref. Section 5.1), which depends critically on the existence of both diffusion and the

so-called neck linker zippering [71], the latter of which is often thought to be a power

stroke component. Supposing that this mechanism can be decomposed into Brownian

motion and power stroke components risks erroneously asserting the independence of

such components.

15In these cited works, the term “Brownian ratchet” is used to describe Brownian motion-based
mechanisms.

16Some of these problems are related to the arbitrariness of the measure used. A measure may be
ill fit to the basic notion of what a power stroke actually entails.
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CHAPTER IV

UBIQUINONE AND ROTARY ENZYMES

The simplest application and interpretation of RBM arises in two systems fundamen-

tal to cellular metabolism: the ubiquinone shuttle and rotary enzymes [85]. Spatial

transport in both systems is achieved exclusively through thermal fluctuations, while

rectification follows from reactions at the boundaries of thermal diffusion. The con-

ceptual aspects of RBM can be simply explored through these systems.

Simple models for ubiquinone and a rotary enzyme are discussed in Sections 4.1

and 4.2, respectively. The appearance of a rectified process naturally arises in these

models. Section 4.3 revisits the discussion of rotary enzymes in the case of biotin, in-

cluding a summarized account of results from molecular dynamics simulations. Char-

acteristic properties of biotin diffusion are presented from these simulations.

4.1 Ubiquinone Model, Revisited

The ubiquinone shuttle is an essential step in the biased facilitated diffusion of pro-

tons across a membrane barrier. Two electrons and two protons are transferred to

ubiquinone by a donor reaction near one side of the membrane and taken again by

an acceptor reaction near the other side. Free energy from this redox reaction takes

part in the energetically uphill task of building a large proton concentration gradient

across the boundary [85]. Ubiquinone’s structure consists of a reactive head that par-

ticipates in redox reactions that is connected to a long, hydrophobic isoprenoid tail

that gives ubiquinone the overall hydrophobic character necessary to reside in a lipid

bilayer. The model for this situation is taken from an earlier paper [20], and consists

of one-dimensional diffusion of the two forms of ubiquinone between two reactive sites

(ref. Fig. 1). Discussion of this model will mostly be a review of results that arise
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Figure 1: A model for the ubiquinone shuttle [20]. The ubiquinone molecule in
this simplified model functions as an intermediate carrier of protons and electrons
between donor and acceptor molecules on opposite sides of a lipid membrane bilayer.
Oxidized (UQ) and reduced (UQH2) forms of ubiquinone are interconverted via redox
reactions between donor molecules (oxidized form DO, reduced form DR) and acceptor
molecules (oxidized form AO, reduced form AR). Redox reactions are assumed to
occur at a reactive site of small width δ around the membrane boundaries. Ubiquinone
undergoes free diffusion in a coordinate x between the two boundaries at locations
x = 0 and x = L, and this diffusion is rectified by non-equilibrium redox reactions
that drive the flow of electrons from donor to acceptor molecules on average.

from the solution found in the earlier paper [20].

Ubiquinone is modeled to be a spherical particle of radius R = 0.75 nm, immersed

in a lipid medium of viscosity η = 25 cP (the approximate viscosity of an oleate lipid

medium). Viscous drag on ubiquinone is thus given by the Stokes formula Eq. 43.1

Parameters for this model can be derived on the assumption that the ubiquinone tail

is wrapped around the hydrophilic head in a compact structure, e.g. as a shield to

the hydrophilic core. However, molecular dynamics simulations suggest ubiquinone

diffuses with the long isoprenoid tail in an extended structure [84]. The assumptions of

the simpler spherical model are not severe in terms of order of magnitude estimates,

since diffusion will be demonstrated to be mostly transparent from a free energy

standpoint.

The free energy difference that drives ubiquinone is given as usual by the contri-

butions of standard redox free energy potentials and by concentration terms. For the

1The Stokes formula can be considered an order of magnitude estimate.
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donor reaction, ubiquinone is reduced with free energy (per reaction)

∆GD = ∆G
(0)
D + kBT ln

(

[DO]2[UQH2]

[DR]2[UQ]

)

(66)

where [ · ] are concentrations, and ∆G
(0)
D is a pH-dependent redox free energy. The

acceptor reaction oxidizes ubiquinone with free energy (per reaction)

∆GA = ∆G
(0)
A + kBT ln

(

[AR]2[UQ]

[AO]2[UQH2]

)

(67)

The total free energy for the ubiquinone cycle is ∆µ = ∆GD + ∆GA and satisfies

∆µ < 0 if the process is spontaneous in the forward direction.

The diffusive motion for both oxidized and reduced forms of ubiquinone are gov-

erned by two purely diffusive Fokker-Planck equations with probability densities g(x)

and f(x), respectively. The small boundary layer of length δ near the membrane

surfaces interconverts these forms by reactions between effective chemical states

X0 = f(0) δ XL = f(L) δ

(68)

Y0 = g(0) δ YL = g(L) δ

such that diffusion is biased by the boundary chemical kinetics

Ẋ0 = −α0X0 + β0Y0 + D
∂f

∂x
(0, t)

Ẏ0 = α0X0 − β0Y0 + D
∂g

∂x
(0, t)

(69)

ẊL = −αLXL + βLYL − D
∂f

∂x
(L, t)

ẎL = αLXL − βLYL − D
∂g

∂x
(L, t)

with rate constants consistent with Equations 66 and 67. Solution of the steady state

can be done with straightforward algebraic manipulations and will not be provided
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here. The natural diffusive rate constant

r = D/Lδ (70)

arises in the steady state solution, and the rapidity of diffusion is characterized by

the fact that r is physically many orders of magnitude smaller than the chemical

reaction rates. Ubiquinone in this model thus diffuses between the boundaries many

times before partaking in a chemical reaction. The use of effective states in Eq. 68 is

consistent with a reaction-limited model.

Despite the rapid transport of a ubiquinone between boundaries of a membrane,

this motion is highly reversible in nature. Consider the irreversible heat production

rate Q̇irr due to non-equilibrium diffusion. Evaluation of Q̇irr for a given ubiquinone

form reduces to a boundary term (ref. Eq. 59)

Q̇irr = J (kBT ln ps(0) − kBT ln ps(L)) (71)

= J (µ(0) − µ(L)) = −J∆µ

where −∆µ is the heat production associated with the steady state traversal of the

membrane. Substituting the steady state solution into Eq. 71, the free energies for

diffusion in the reduced and oxidized species are

∆µf/kBT = (µf(L) − µf(0)) /kBT

= ln

(

1 +
βL(α0 + β0)

r(β0 + βL)

)

− ln

(

1 +
β0(αL + βL)

r(β0 + βL)

)

(72)

∆µg/kBT = (µg(L) − µg(0)) /kBT

= ln

(

1 +
αL(α0 + β0)

r(α0 + αL)

)

− ln

(

1 +
α0(αL + βL)

r(α0 + αL)

)
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Assuming that r is much larger than the reaction rates, Eq. 72 is approximately

∆µf/kBT ≈ βL(α0 + β0) − β0(αL + βL)

r(β0 + βL)

(73)

∆µg/kBT ≈ αL(α0 + β0) − α0(αL + βL)

r(α0 + αL)

Thus, the characteristic heat production due to non-equilibrium diffusion is here

several orders of magnitude smaller than kBT per cycle, with a corresponding irre-

versibility e−∆µ/kBT of the same magnitude. The concentration terms for each form

of ubiquinone in Equations 66 and 67 can accordingly be approximated by constants,

and the ubiquinone shuttle from a free energy standpoint appears to be a simple

intermediate chemical state.

The characteristic heat production rate Q̇irr can be compared to other character-

istic heat production rates in ubiquinone’s diffusion. If ubiquinone was a uniformly

moving body at the characteristic diffusion velocity vL = L/τBM = 2D/L, then the

frictional dissipation rate Q̇uniform (ref. Section 3.1) is2

Q̇uniform = Γv2
L =

2kBT

τBM
(74)

i.e. a large heat production rate of 2kBT per diffusional time τBM . The still larger

(and primarily reversible) heat Q̇τ = kBT/τ due to thermal fluctuations is of order

kBT per nanosecond. These quantities satisfy the strong inequalities

Q̇τ ≫ Q̇uniform ≫ Q̇irr (75)

Heat production due to Brownian motion by far dominates other characteristic scales,

as usual for nanoscale mechanisms, while the relative largeness of Q̇uniform is due to

the reaction-limited nature of diffusion.

2Q̇uniform is a measure of the the minimal irreversible heat production of a uniform power stroke
before diffusive motion becomes the dominant mode of transport (e.g. ref. Eq. 52)
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4.2 Simple Rotary Enzyme Model

The analysis of ubiquinone is similar to that of the rotary enzymes [20]. Rotary

enzymes are flexible, chain-like prosthetic groups that facilitate the transport of re-

action intermediates between spatially separated catalytic regions on a much larger

protein (for simplicity, reactions during diffusion between catalytic sites are ignored).

These occur in several varieties, including biotin, lipoamide, and phosphopanteth-

eine [85], each of which has a specific reactive terminus.3 Rotary enzymes all have

a low molecular weight, equivalent to only a few amino acids, but their extended

structure exaggerates the effects of drag from the surrounding aqueous environment,

such that an approximate diffusive interpretation of motion is possible.

A simple model for a rotary enzyme replaces the reactive head with an overdamped

particle in a three-dimensional conservative force field −∇U , with U derived from the

entropic and enthalpic contributions of the flexible chain.4 In this manner, the flexible

portion of the chain is treated in a mean-field sense. The catalytic sites that support

chemical changes of the head correspond to a set of two-dimensional surfaces Σi on the

protein, where the forward sense of the reaction is directed from catalytic site i to i + 1

(excepting in the final reaction of the periodic chemical cycle). The rotary enzyme’s

chemical state is similarly ordered, with the reaction between chemical states i and

i + 1 occurring at Σi.

Since the entropy production kernel for such diffusion reduces to a divergence

(ref. Eq. 59), irreversible heat dissipation due to the Σi → Σi+1 diffusional mode is a

boundary term

Q̇irr(i → i + 1) =

∫

Σi

µi
~ji · ~dSi −

∫

Σi+1

µi
~ji · ~dSi+1 (76)

with forwardly oriented (in the direction of the reaction) surface elements ~dSi, the ith

3Phosphopantetheine is also known as a long group in coenzyme A.
4Effective drag tensors and diffusion tensors of the head also have contributions from the chain.
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species NESS chemical potential µi, and current density ~ji. Like ubiquinone, reaction

rates may be considered much slower than diffusional times, such that approximate

equilibration of a diffusive state occurs and free energy expenditure due to diffusion

is small. Of course, if diffusion tends to get trapped in effective bound states at a

catalytic site (neglected in the above model), a more detailed treatment is necessary.

The simplest variant of the catalytic site model is that of a rigid rotor with a

single rotational degree of freedom θ that diffuses between two catalytic sites, e.g.

θ1 = 0 and θ2 = π. This model can be mapped exactly to the ubiquinone model in

Section 4.1. Supposing diffusive forces alone, basic estimates of the diffusion time to

subtend this angle are of roughly of order nanoseconds for biotin or lipoamide.5

4.3 Biotin Rotary Enzyme Molecular Dyanmics Simula-

tion

The simple rotary enzyme model in Section 4.2 is useful for outlining free energy

expenditure, but a proper explanation of motion is lacking. For instance, there are

at least two different limits for a rotary enzyme: free thermally driven diffusion (stiff

chain with a loose pivot) and discrete conformational diffusion (transitions between a

discrete number of bond angles along the chain). Each of these provides a potentially

different characteristic timescale for diffusion.

In this interest, a molecular dynamics simulation of the biotin rotary enzyme

(biocytin) was done to probe its behavior. Biocytin is a biotinylated lysine amino

acid (ref. Fig. 2) and functions as a carrier of activated CO2 [85]. Several informative

results from this simulation are given in the following sections. The lipoamide rotary

enzyme is structurally identical to biotin with respect to its chain, and consequently,

many of the results are expected to apply to lipoamide as well.

5Estimates can be derived from a bead-model assumption [16].
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reactive
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peptide bond
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protein

Figure 2: Biocytin is constructed by a peptide linkage between the amino acid lysine
and biotin. The distal ureido hydrogen (attached to nitrogen) on the reactive head
can be exchanged for a carboxyl group, providing a means for a facilitated transfer
of CO2. The base of lysine connects to the remainder of the protein through peptide
linkages.

4.3.1 Simulation Details

To investigate the dynamics of the biotin rotary enzyme in the presence of water,

two molecular dynamics simulations of 8 ns each were performed using the NAMD

package [61]. A 2 fs timestep was used. Rigid bonds were taken for hydrogen atoms.

An all atom OPLS force field parameter set (dated November 2000) governed the

dynamics of water and lysine portions [38, 53], with additional OPLS parameters for

biotin from a different source [49]. The method of parameterization for the rotary

enzyme is briefly discussed in Fig. 3.

42



A collection of 798 TIP3P water molecules made the aqueous environment [51]. 6

Cubic periodic boundary conditions were applied, with a periodic length approxi-

mately 2.912 nm that was determined by an initial simulation at temperature 298 K

and pressure 1 atm.7 An initial thermalization unique to each of the two simulations

was done at fixed volume for 100 ps, with subsequent simulations done at fixed energy

and volume. Actual average initial temperatures vary between 297 to 302 K, with a

positive drift of roughly 2 K over 8 ns. Initial average (group) pressures range from

roughly 15 to 85 atm, with a drift of roughly 40 atm.8 These conditions may vary

too greatly to form precise estimates, but examination of biocytin’s motion did not

reveal a reason to question order of magnitude estimates.

A neutral variant of the biocytin was used for the model, where the amine and

carboxyl groups at the base of the lysine portion were replaced with neutral nitrogen

and carbon atoms, respectively. The four atoms that constitute the base (hydrogen,

two carbons, and a nitrogen) of the rotary enzyme were fixed in space to simulate

attachment to a much larger body (a protein). The initial configuration of biocytin

in each simulation resembled the upright configuration in Fig. 2.

4.3.2 Results

The qualitative motion by biotin in both simulations displayed several expected traits.

For example, the carbon-carbon bonds in the chain have a considerable dihedral inter-

action that fixes their position to an effectively discrete number of states at the given

temperature, while the rigid peptide bond structure has relatively significant angular

freedom for rotations about the bounding carbon atoms (this has been checked, e.g.

6The TIP3P water model has its own difficulties. For example, the self-diffusion constant of
TIP3P water as used is already factor of 2 too large compared to normal water [51].

7This is not so far removed from the expected 1.8 nm maximum length of biocytin, but this
length is expected to provide sufficient room to avoid strong self interaction through the periodic
boundaries.

8Estimates of pressure fluctuations can be estimated to be roughly 270 atm in magnitude. Pres-
sure estimates for small, essentially incompressible systems are expected to fluctuate greatly.
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Region A
Region B

Region C

Figure 3: Construction of the parameterization for biotin follows from the patching
between three regions: (A) the lysine residue, (B) the peptide linkage, and (C) biotin.
If (B) is assumed to locally resemble a repeating glycine polypeptide, parameterization
from available sets for each region can essentially be taken from known parameter sets.
Where there is an ambiguity in or a lack of a given interaction in the separate regions
of a patch (this is particularly troublesome for dihedral interactions), preference is
given towards maintaining regions A and C over region B.

by investigation with the ab initio program GAMESS [79]). Motion is thus charac-

terized by three primary effects: discrete changes between equilibrium positions of

carbon-carbon bonds (roughly occurring somewhere in the chain several times every

100 picoseconds), diffusion due to the partial rotational freedom of the peptide bond,

and diffusive fluctuations contributed from the finite rigidity of the carbon-carbon

bonds. The latter two effects appear to be significant for the fine diffusive fitting of

the reactive head into catalytic site, while global diffusion appears to be primarily

due to changes in the carbon-carbon dihedral angles. Diffusion of the reactive head

across essentially its entire range of motion was observed in each of the 8 ns simula-

tions, such that a potentially successful diffusive search for a nearby catalytic site is

expected to occur on the order of tens of nanoseconds. Global diffusion thus occurs

on a slower timescale than the perfect rotor at the end of Section 4.2.
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A measurement of interest is the effective rotational diffusion constant for short-

time motion. The effective rotational diffusion constant for the reactive head gives a

characteristic time for the head to explore the immediately available state space. This

measurement was performed by creating a normalized vector ~n(t) from the central

(alpha) carbon of the lysine base to the center of the biotin head (taken to be the bond

adjacent to the two heterocycles), and then measuring the mean angular deviation of

this vector in increments of τ = 200 fs. If the time increments are sufficiently small,

the rotational diffusion constant for isotropic rotational diffusion (rotational diffusion

constant D) on a sphere is [4]

〈

|∆~n(τ)|2
〉

≡
〈

|~n(t + τ) − ~n(t)|2
〉

≈ 4Dτ (77)

This “point” measurement, done in both simulations, is found to be D = 0.87 rad2/ns,

with a relative difference between simulations of approximately 2%. This measure-

ment can be compared to the histogram of the variable |∆~n(τ)|2, which is exponen-

tially distributed in the case of pure rotational diffusion. Fit of an exponential to

such a histogram is produces an estimate of D approximately 5 to 8% lower than

the point measurement (ref. Fig. 4), with again the two simulations producing close

results. Again, diffusional searches of the local state space with a timescale of several

nanoseconds is expected. Note that a difficulty with the rotational diffusion picture

is that biotin occasionally wraps around to bring the head near the base, amplifying

the effect of spatial fluctuations on angular measurements. Additionally, this measure

misses any anisotropy of diffusion that may be significant in the mechanism.

In short, these results support that global diffusion is primarily governed by di-

hedral bond angle transitions, with significant local flexibility of the chain for each

of these dihedral configurations. The free energy formalism of the previous sections

of course applies to this more complicated picture of diffusion as well, and the assur-

ance of a potential µ(x) for the biocytin dynamics follows from the assumption that

reactions occur only at catalytic sites (ref. Section 4.2). Further analysis of these
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Figure 4: A histogram for the τ = 200 fs distribution of |∆~n(τ)|2. Dots are bin
counts centered horizontally on each respective interval of the histogram, while the
smooth line is a best fit exponential that corresponds to D ≈0.8 rad2/ns.

simulations or of analogous simulations may be released in the future.
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CHAPTER V

MOLECULAR MOTORS

The diffusive transport harnessed in ubiquinone and rotary enzymes is ideal for

nanometer transport, but a typical biological cell may be many micrometers in diame-

ter and may additionally require the organization of large vesicles.1 The characteristic

time for diffusion scales quadratically in the transport distance and linearly in the

radius of a spherical body; an increase in scale of either of these distances can lead

to problematically large diffusion times. A cellular mechanism designed to overcome

this difficulty is the active transport of cellular cargo by means of molecular mo-

tors. Molecular motors consume free energy to direct motion of the cargo [91], such

that transport can be achieved in a time that scales linearly in transport distance.

Additionally, the biased fluctuating motion of these molecular motors is responsible

in higher organisms for producing muscular contraction [98]. These functions make

molecular motors worthy of the intense study they have received in the literature.

The molecular motors kinesin and myosin V have become key figures in the study

of molecular motors in general [93, 5, 92, 6, 8], owing in part to their interesting prop-

erty (processivity) that a single motor can linearly transport attached cargo for long

distances before dissociation of the motor from its track. The essential configurational

aspects of forward motion have been established for conventional kinesin and myosin

V as a “hand over hand” stepping pattern [103, 101]. This pattern is reminiscent of

ordinary human walking, since the track binding domains (heads) alternatively bind

in front of one another. The detailed physical mechanism underlying these motors

has long been a matter of debate, particularly concerning the relevance of Brownian

1The axons of certain nerve cells are macroscopic in length.
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motion versus power stroke principles.2 This chapter pursues the argument that RBM

is a likely candidate for both motors.

5.1 Rectified Brownian Motion Model

The power stroke description of molecular motors is characterized by a large con-

figurational free energy decrease associated with the motion of a tethered head in

the forward direction, e.g. as favored in [92, 81]. Diffusion functions here only in

an assisting role to orient the head appropriately for binding. In the case of ki-

nesin (ref. Fig. 5), adoption of the power stroke view was seriously challenged by

the determination of a small associated neck linker zippering energy (“power stroke”

energy) [70], with an associated “power stroke” force generation smaller than that

seen in experiment.3

This failure of power stroke arguments to predict this so-called amplified step-

ping bias does not violate thermodynamics, but rather, emphasizes the role of whole

cycles in small system thermodynamics (ref. Eq. 55). The existence of essentially

irreversible transitions associated with bound states, e.g. phosphate release after

ATP hydrolysis, in either kinesin or myosin V provide significant contributions to the

overall free energy expenditure in a typical stochastic trajectory. Indeed, if the free

energy expenditure, via Eq. 56, due to bound state transitions is comparable to the

total free energy expenditure in a standard mechanical cycle, the residual free energy

remaining for spatial motion need not be large. A proper account of irreversibility

can in this way be used to discount a power stroke scheme as the primary contributer

of irreversibility in a mechanism. Such an analysis can be done due to the “gated”

tight mechanochemical coupling of these motors [93], which allows approximate con-

struction of a system-wide free energy profile for an analogous system that neglects

2In the case of myosin V, recent experiments have measured diffusional effects directly [82].
3Force generation is here measured in terms of the ability for a molecular motor to move against

a given external load.
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rare backwards binding events (ref. Section 2.2.4).

A recent study (included as part of this thesis) has indeed found many attractive

qualities for an RBM model of kinesin, including a simultaneous explanation for both

chemical coordination and bias amplification through the presence of internal strain

between the two kinesin heads [52].4 The essence of this approach lies in the ability

for small effects (i.e. neck linker zippering), which slightly change the ensemble av-

eraged position of a diffusing tethered head, to exponentially change the frequency

of relatively rare binding events. In short, a diffusing head binds forward most often

because it visits that site most often, and these visitation probabilities can be con-

trolled with a weak neck linker zippering energy. The details of this argument are

presented anew in the latter part of this section in the case of myosin V, but the

essential picture for kinesin is presented in Fig. 5. It is not insignificant that experi-

mental investigations may have also determined an entirely similar RBM mechanism

for ribosomes [48], where a small energetic difference between the acceptance of cog-

nate tRNA and near-cognate tRNA is proposed to induce a spatial shift in the tRNA

position that amplifies relatively rare diffusive fluctuations of a tRNA molecule.

The details of chemical coordination and bias amplification in myosin V (ref.

Fig. 6) are similar to kinesin, in that both effects may be simultaneously explained by

the presence of internal torques between the two heads. This approach presents an

alternative model to power stroke models of myosin V. For these purposes, consider

an actin-bound myosin V head (head 1) that anchors the otherwise free myosin motor,

such that the tethered head (head 2) is unbound and able to diffuse. The present

RBM approach to myosin V requires that this intermediate tethered head 2 must

strongly prefer forward binding over backward binding if forward motion is to be

ensured. This can be measured by the ratio of forward to backward binding rates,

termed the bias ξ, for the diffusing head 2. In kinesin, ξ predicts the bias from

4Notice that this model appears in Chapter 6.
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an intermediate “parked state” [28, 1], though the role of ξ in a detailed myosin V

mechanism may differ. Demonstrating that ξ is large for our RBM model, using only

small changes in internal configuration, is done presently.

As in previous models of myosin V [45, 96], interaction between these two heads

occurs in part or in whole through the elastic strain of the myosin necks (the flexibility

of the hinge connecting the two myosin necks may also be considered). The free

energies E(f) and E(b) for the elastic strain when head 2 is in a forward or backward

binding configuration, respectively, are functions of the angles θ1 and θ2, as depicted

in Fig. 6. E(b) is related to E(f) by the exchange of θ1 and θ2. The rate for head 2 to

bind either forward or backward is assumed to obey a simple form of Kramer’s rate

law [30]

k = k0 e−U(θ1,θ2)/kBT (78)

such that the binding rate k is proportional, up to a multiplicative constant k0, to

the Boltzmann factor of the elastic strain free energy U(θ1, θ2) for a given binding

configuration. This approach predicts that a symmetry state with θ1 = θ2 will bind

forward or backward with equal probability.

Suppose the existence of two nucleotide-dependent states that impose given values

on θ1 and θ2: an uncocked state with angle θ0, and a cocked state with angle θ0 + δθ

that is lower in energy by the value ǫ. Some may refer to the uncocked and cocked

states as pre-power stroke and post-power stroke states, respectively, with ǫ being the

power stroke energy, but this view will be seen not to be appropriate for the model

at hand.

Using Eq. 78 to determine binding rates for a given pair nucleotide states, the total

rate of forward binding is taken to be the weighted sum of forward rates from the

uncocked and cocked states, such that cocked states are eǫ/kBT more likely. Backwards

binding is treated similarly. With head 2 restricted to be in the uncocked state, the
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bias ξ is

ξ =
e−E(f)(θ0,θ0)/kBT + eǫ/kBT e−E(f)(θ0+δθ,θ0)/kBT

e−E(b)(θ0,θ0)/kBT + eǫ/kBT e−E(b)(θ0+δθ,θ0)/kBT
(79)

where the overall prefactor k0 in Eq. 78 vanishes for this simple model. Upon sim-

plifying Eq. 79 by identifying through symmetry E(f)(θ0, θ0) = E(b)(θ0, θ0) = E0, the

general expression for the stepping bias in the present context is

ξ =
1 + eǫ/kBT e−[E(f)(θ0+δθ,θ0)−E0]/kBT

1 + eǫ/kBT e−[E(b)(θ0+δθ,θ0)−E0]/kBT
(80)

A few assumptions on the system simplify Eq. 80 into a form more suitable for inter-

pretation. The first of these is to suppose dominance of the elastic strain free energy

terms, in the sense that the numerator is approximated by eǫ/kBT e−[E(f)(θ0+δθ,θ0)]/kBT

while the denominator is approximated by 1. This assumption relies on the existence

of large elastic free energy changes upon variation of θ1 and θ2 (demonstrated for

a particular model at the end of this section). A further assumption that the Tay-

lor expansion E(f)(θ0 + δθ, θ0) ≈ E0 − T δθ is valid, where T = −∂E(f)

∂θ1
(θ0, θ0) is an

effective internal torque, finally reduces Eq. 80 to

ξ ≈ eǫ/kBT eT δθ/kBT (81)

The usual factor eǫ/kBT is recognized as the estimate of the stepping bias in the power

stroke scheme (ref. Appendix A.3 and Eq. 107), such that eT δθ/kBT is interpreted as

a bias amplification factor. Eq. 81 demonstrates, as with kinesin, how the stepping

bias of a system may depend strongly on the presence of internal strain (cf. [52]).

To assume that the internal torque T is a large quantity is consistent with the

known coordinating role of internal strain, which has been experimentally observed

in the form of force-activated chemical gates within a myosin head [95, 63, 94]. The

chemical states of each head are in this manner kept out of phase to prevent the rapid

dissociation of myosin V from actin and to keep myosin V highly processive. Large

T would then also lead to bias amplification through Eq. 81. The observation that
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bias amplification and coordination may be tied to a common cause (internal strain)

is a compelling feature of an RBM approach to myosin V.

How does this ability for forward motion change in light of a given retarding load

on the system? Power stroke models address this issue by assuming that the anchored

head domain has a highly energetic change in conformation that pushes the system

forward - an external force is overcome directly. However, the analysis of an RBM

model is not so singularly focused. Estimates of the ability for myosin V to oppose an

external load require analysis of, among other things, the bias amplification factor,

the susceptibility of the elastic necks themselves, and the natural unit of torque for

the cocked state Tǫ = ǫ/δθ. (In contrast to power stroke models, an RBM model

of myosin can take δθ small, such that Tǫ can readily become comparable to the

torques generated on the neck by several-piconewton external forces.) Estimates of

these factors appear to allow a strong RBM component in the mechanism of myosin

V. For instance, if we assume a temperature 300 K, δθ = 10 degrees, and a single

myosin neck length of 30 nm, then a moderate energy of ǫ = 2.5 kBT is sufficient

for Tǫ to oppose 2 pN loads on a myosin neck. Even when this estimate fails, bias

amplification factors can ensure stepping remains forward, for similar reasons that

forward bias may persist in Eq. 81 even if ǫ < 0.

As a numerical example of bias amplification in myosin V, the link model and

parameters adopted by Lan and Sun are used [45] (that of Vilfan is also viable [96]),

such that the elastic energy of the necks is assumed to be given by minimization of

the energy function

El = −kBT

6
∑

i=2

lp
a3

[

~r
(1)
i · ~r (1)

i−1 + ~r
(2)
i · ~r (2)

i−1 − 2a2
]

+C(~r
(1)
i , ~r

(2)
i ) (82)

where ~r
(j)
i is the displacement vector of the ith link for the myosin neck bound to head

j, a = 5.0 nm is the length of a single link for a neck, lp = 120 nm is the persistence
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length of the necks, and C(~r
(1)
i , ~r

(2)
i ) is a constraint such that

∑6
i=1 ~r

(1)
i =

∑6
i=1 ~r

(2)
i .

All vectors are taken, for simplicity, to exist in a two-dimensional plane. The angles

θ1 and θ2 from the previous discussion are identified with the angle of the first link in

each chain (ref. Fig. 6), and these act as constraints on the minimization of the energy

Eq. 82. The “vertical” uncocked angle θ0 = π/2 is chosen for definiteness. Estimates

of T for this particular model provide T ≈ 13 kBT/rad, such that bias amplification

factors of an order of magnitude readily arise from δθ of a mere ten degrees. Hence,

the small configurational changes due to the cocked state provide a bias amplification

that can readily account for a significant order of magnitude or larger discrepancy

between the power stroke estimate and the actual bias ξ.

53



+–

+– +

ATP binding

Figure 5: Kinesin moves along microtubule in the plus direction by alternately
attaching each head to the beta-tubulin subunits (light orange), producing a 16 nm
translation for a given head and a 8 nm translation for the center of mass of the
kinesin dimer. The two heads are approximately 6 nm in diameter and can together
move forward against externally applied retarding forces up to 7 pN [6]. Kinesin
is attached by a polypeptide neck linker (black lines) to the coiled-coil stalk, which
binds cargo. This neck linker can either be free (left head, top) or bound weakly to
a head in a zippered state (left head, bottom), depending on the nucleotide state of
the head. Entropic and enthalpic contributions from the neck linkers and the coiled-
coil provide tensions between the heads. Illustrated above is the spatial displacement
step, occurring by means of strain-induced bias amplification. In the unzippered state
of kinesin, the probability distribution (the unimodal curve) of the kinesin head does
not favor either the forward (plus end) or backward (minus end) binding site, by
symmetry. However, the small change induced by neck linker zippering is amplified
by an exponential relative increase of the probability distribution near the forward
binding site. This is related to the slope of the distribution near bound states, i.e.
related to a force. Since a kinesin head visits the forward site more often, irreversible
binding (rectification) can keep the head at the binding site to produce a forward
step. Power stroke models cannot explain such a mechanism, due to the weakness of
neck linker zippering.
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Figure 6: An illustration of myosin V head domains bound to actin, with semi-
flexible necks meeting at a common hinge and myosin head domains binding 36 nm
apart at the actin pseudo-repeat length. The forward sense of motion is to the right,
and the labeling of the angles corresponds to forward binding (backward binding
would exchange the order of θ1 and θ2 in the diagram). Given these angles, the
elastic free energy may be determined for a given model of the myosin necks, e.g.
that of Lan and Sun used in the text [45]. Notice that this picture does not take
into account the observed ability for myosin V to bind at lengths unequal to the
pseudo-repeat length of actin [8, 45], but this complication does not seriously affect
the argument in the text.

55



CHAPTER VI

RECTIFIED BROWNIAN MOTION MODEL FOR

KINESIN

The approach to bias amplification models in Section 5.1 is sufficiently complex to

present the basic idea that boundary rectification can produce a stepping bias much

larger than power stroke thinking can provide. A more developed model was devel-

oped by us in the case of kinesin [52]. Bias amplification in kinesin is distinct from

myosin V in that a rather large entropic component (due to the neck linkers, ref.

Fig 7) is expected to contribute to internal strain.1 Thermal fluctuations are thus

responsible for both elastic potentials and motility.

The remaining sections in this chapter reproduce (essentially verbatim) this work

done for kinesin in [52]. Motivation for the kinesin model follows from known struc-

tural and chemical functional elements (discussed in Section 6.1). An experimentally

characterized force-dependent chemical gate, which we label T-gate, serves in this

model to both ensure chemical coordination and to explain the tapering of kinesin’s

velocity for increasing external load forces. The model itself is split into two different

portions: the bias amplification mechanism that determines stepping bias (discussed

in Sections 6.2 and 6.3, with many of the details for the full model in Appendix B.1),

and the waiting mechanism that determines the rate of ATP hydrolysis for a head

(discussed in Section 6.4). This separation is possible due to the rapidity of the

diffusive step under a wide range of external loads. Concluding remarks appear in

Section 6.5.

1Enthalpic contributions also have reason to arise from unwinding of the coiled-coil stalk that
binds cargo, but these contributions were mostly ignored in this kinesin model.
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Figure 7: A doubly-bound kinesin dimer oriented with the microtubule plus-end to
the right. The N-terminal kinesin heads can bind to tubulin [33, 34, 93, 39]. The
kinesin heads are connected by two neck linkers, ∼ 15 amino acids (a.a.) each [71],
and these neck linkers end in a coiled-coil “stalk” that can connect cargo through light
chains and mediate tension, indicated by F (the load force). Entropic considerations
for the neck linkers suggest a thermal force, Fth, which resists neck linker extension.
A microtubule-bound head in an ATP or hydrolyzed ATP (ADP.P) state will initiate
immobilization (zippering) of its neck linker onto itself through a series of hydrogen
bonds, schematically indicated by hatched lines. This figure outlines structures found
in Protein Data Bank file: 1IA0 [39].

6.1 Structural and Chemical Functional Elements

Experiments have isolated several components that participate in kinesin’s forward

cycle. Our model incorporates a number of these components through simplified

representations that are appropriate for our level of detail. Here, the more involved

discussion of our model is preceded with several brief treatments of the elements in

kinesin’s modeling.
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6.1.1 Neck Linkers and the Coiled-Coil Neck

Of central importance to the understanding of kinesin’s cycle are the elements that

connect the two kinesin heads, namely, the two non-rigid neck linkers that together

merge into a fairly stable coiled-coil neck [71]. The coiled-coil was originally supposed

to provide, through its unwinding, an essential ingredient for the existence of kinesin’s

forward motion, but experiments do not support such a theory [73]. Neck linkers are

then assumed to provide the leading functional contributions, in part by forming

entropic springs that generate a force by virtue of thermal fluctuations alone. These

entropic springs supply an “internal strain” that guides kinesin’s functioning [13], e.g.

by coordinating chemical states through activation of T-gate (ref. Section 6.1.4).

For the neck linker entropic force, a model from the study of polymers will be called

upon to approximate our ∼ 12− 15 amino acid (a.a.) neck linker chain. Though the

length of a neck linker is far removed from the length of most polymers, the 12 − 15

neck linker units may already be sufficient for common polymer statistical mechanical

chains models to apply when fluctuations are included (e.g. the variance of extension

for a forced, diffusing neck linker is allowed to be comparable to the mean extension).

The most appropriate standard model for a peptide backbone is the freely-rotating-

chain [18], due to the axial nature of peptide bonds (if the bond angle is very small,

then results are known as the worm-like-chain (WLC) [42, 77]). Instead, an effective

freely-jointed-chain (FJC) model is used for the sake of simplicity [43, 18]. The

reduction of a chain force to an effective FJC or WLC is not uncommon, e.g. for

DNA [10].

A computationally friendly form of the FJC force model utilizes a rational poly-

nomial approximation that gives the correct asymptotic results for large and small

extensions of length x [9]:

f(x) = η
kBT

a
K(x/Na), K(α) ≡ α(3 − α2)

(1 − α2)
(83)
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where α is the relative extension x/Na, a is a link length for one amino acid, N is the

number of amino acids in a neck linker, and η is a fitting parameter to set the correct

linear regime dependence. The linear regime force constant, 3ηkBT/Na2, can readily

scale to several piconewtons per nanometer for parameters describing peptide bonds.

The x-integral of this force function provides a free energy potential that defines the

single-chain Boltzmann probability density, ρN :

ρN (x) = Z−1
N e−ηN G(x/Na)

G(α) ≡ 1
2
α2 − ln(1 − α2)

(84)

where ZN is a normalization constant. Expected values for the model parameters

are η of order unity and the virtual peptide bond length a ≈ 0.38 nm (compare to

a = 0.35 nm for the axial distance per amino acid in a β-sheet).

Though coiled-coil unwinding was not found essential for the forward motion of

kinesin [73], steric aspects of the coiled-coil and its unwinding contribute substantially

to bias calculations. Our modeling assumes that the width of the coiled-coil (possibly

partially unwound) provides a given length ∆d to the head-to-head extension in addi-

tion to the neck linkers. Acting upon the one-dimensional representation to be used

for kinesin’s diffusive step (akin to a reaction coordinate, ref. Section 6.2 and Ap-

pendix B.1), the coiled-coil prompts modeling of the tethered head’s diffusion within

an effective reduced interval, [−d, d] = [−d0 + ∆d, d0 − ∆d], where d0 ∼ 8.2 nm is

the original binding distance. This reduced interval minimally accounts for the extra

reach due to the width of the coiled-coil. Notice that though the coiled-coil exten-

sion in the real system will dynamically change in response to entropic neck linker

forces, this time-dependent effect is ignored in our model. Our model similarly ig-

nores the restoring force due to coiled-coil unwinding (a static element that produces

no intrinsic force).
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6.1.2 Neck Linker Zippering

Estimated only to possess a free energy difference of ∼ 2 kBT [70, 99], neck linker

zippering is surprisingly essential for kinesin’s processive motor function [71, 7, 87].

Our modeling of neck linker zippering borrows from work done in protein folding,

specifically the formation of β-hairpins. From statistical-mechanical investigations,

β-hairpins exhibit bistable cooperative behavior due to competition between hydro-

gen bond formation and the configurational entropy of a solvated chain [17, 55, 54].

This bistability inspires a finite two-state zippering model (the kinematics are made

more precise in Appendix B.1), where the state with several formed hydrogen bonds

is labeled the “zippered” state, and the absence of zippered bonds is labeled the

“unzippered” state.

The basic purpose of zippering is to immobilize neck linker links in the micro-

tubule plus direction, thus shifting the anchoring point (point of emanation) for the

microtubule-bound head’s neck linker toward the forward binding site. Supposing

that Nz is the number of immobilized links in the zippered state, the act of zipper-

ing is modeled by a change that simultaneously shifts this anchoring point a plus-

directed distance ∆x = Nza and reduces the number of solvated neck linker links for

the microtubule-bound head by Nz.

Since the external load will tend to place a strain on the neck linker, a Bell form [3]

is taken for the Boltzmann probability of being in the zippered state (probability Pz)

vs. the unzippered state (probability Pu)
2

Pz/Pu = e−∆µzu/kBT

(85)

∆µzu = ∆µ0 + Fδzu

2Notice that the notation here differs from that in earlier sections. This chapter does not make
use of the affinity-based free energy.
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with ∆µzu the free energy of zippering, ∆µ0 the free energy at zero load, F the

external load, and δzu the characteristic distance for zippering. Our model takes

δzu = γNza, with Nz the number of zippered links, a the link length, and γ is a pure

number. For γ = 1, δzu is then the length of the zippered segment.

At biological temperatures, Fzu = kBT/δzu defines a characteristic force of Fzu ∼ 2

piconewtons if δzu ∼ 2 nanometers (approximately 5 zippered neck linker links).

Zippering then remains forwardly biased for loads up to ∼ 4 pN for zippering energies

of magnitude 2 kBT . Reaching this force does not necessarily imply that kinesin has

stalled, since a small probability to be in a zippered state can be sufficient for an

overall forward bias (ref. Section 6.2 for an explanation of this, as a result of the

amplification of bias).

6.1.3 Weak Binding

When a kinesin head is in the ADP nucleotide state, the bonding strength of the head

with tubulin is observed to be markedly lower than in other states, and consequently,

the microtubule-bound ADP state has been labeled weak binding (strong binding has

higher bonding strength and is associated with the ATP and no-nucleotide states).

Measurements were done by Uemura et al. to determine weak state unbinding rates

when a weakly bound head is under external forcing [89, 88], finding that a natural

forward bias exists in weak state unbinding. Our model uses a more symmetric form

of weak state unbinding rates that is directionally independent:

kW (F ) = (1 s−1) · eF · 3.0 nm/kBT (86)

with F the applied force magnitude. Eq. 86 approaches the rates of other internal

processes, e.g. 150 s−1, when F ∼ 7 pN. Such forces are attainable with entropic neck

linker tensions.
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6.1.4 T-gate

Chemical coordination between the heads of a doubly-bound kinesin dimer has been

linked to internal strain activating a gate (T-gate) that prevents the binding of ATP

to the plus-end head [75, 74, 13]. This coordinating mechanism allows the forward

head to remain in the no-nucleotide state until the rearward head releases phosphate

and detaches, thereby relieving the rearward force on the forward head and allowing

ATP to bind. Without this coordination, kinesin would be unable to take more than

a few steps before dissociation. T-gate thus establishes an important link between

mechanical forces and chemical rates.

Further effects of T-gate are discussed in Section 6.4, within the context of the

waiting mechanism.

6.2 Bias Amplification Mechanism Revisited

Much of kinesin’s functionality can be explained by the bias amplification argument

in Section 5.1. Only the basic details for this argument are again presented, such that

the parameters for the bias ξ in Eq. 81 can be deduced.

Kinesin’s stepping bias is derived from the probability for the tethered kinesin head

to strongly bind either forward or backward once ATP has bound to the microtubule-

bound head.3 The likelihood of a tethered kinesin head to bind either forward or

backward is directly related to the frequency (probability) for this head to visit each

respective binding site. This visitation probability may be predicted by the free

energy Boltzmann factor that corresponds to system configurations with a kinesin

head near a given binding site (this approach is similar to that in transition state

theory).

Suppose, as described in Section 6.1.2, that a small “shift” in the tethered head

3This depends on previously mentioned “parked state” in Hackney’s gate [28], which prevents a
tethered ADP-bound head from binding to microtubule until ATP binds to the microtubule-bound
head. Hackney’s gate continues to provide intriguing experimental results [1].
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probability density towards the microtubule plus-direction results when the neck

linker is in the zippered state. The required energy to ensure this shift against an

applied external load is accordingly small up to a limiting load value, such that zip-

pering itself remains a weak effect. This internal strain sensitizes kinesin to the small

changes due to zippering, by the argument in Section 5.1.

A function U(x) is identified with the free energy for kinesin in the unzippered

state to have a given head-to-head extension x along the microtubule, where the one-

dimensional coordinate x is positive for extensions toward the microtubule plus-end.

U(x) is assumed to be an even function in x, where evenness is motivated by the

expectation to find approximately neutral intrinsic stepping bias for an unzippered

state (neck linker zippering would not be needed otherwise). In relation to the un-

zippered state, the zippered state free energy function is given through a translation

of the neck linker origin and the addition of the energy difference ∆µ0 corresponding

to the zippering energy, i.e. U(x) → U(x − ∆x) + ∆µ0. Translations are sufficient

to introduce asymmetric favorability of the forward binding site, such that exponen-

tially large biasing changes will appear. A translation only approximates the effect

of zippering, since physically, zippering also alters the shape of U(x) by reducing the

number of solvated chain links (ref. Section 6.1.2). Forward and backward binding

are defined to occur at x = d and x = −d, respectively.

Assuming that a Taylor expansion to first order is valid for the energy function

in the transition rate, i.e. U(d − ∆x) ≈ U(d) − λ∆x, then we can again derive the

expression ξ ∼ e−∆µ0/kBT eλ∆x/kBT in the limit of strong biasing (up to subexponential

terms that would be used in Kramer’s formula). Thus, eλ∆x/kBT can be interpreted

as the amplification factor of the naive zippering energy Boltzmann term. Numerical

values of the amplification factor can be readily estimated. The choice ∆x = 2 nm

is made for the zippering distance, corresponding to approximately 5 zippered neck

linker links. λ = ∂U
∂x

(d) is related to an effective internal strain of the system near
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the boundary. By consideration of entropic neck linker forces (Eq. 83), λ = 10 pN is

chosen as an example effective force. These values lead to an amplification factor of

130 at biological temperatures (ξ ≈ 1000 if ∆µ0 = −2 kBT ).

The strength of this simple model is its presentation of the origin of bias. However,

certain relevant elements of kinesin’s cycle (e.g. weak state binding and unbinding)

have been ignored for the purpose of conceptual clarity. Section 6.3 and Appendix B.1

resolve these shortcomings with a more detailed consideration of kinesin’s functional

elements.

6.3 Detailed Biasing Mechanism

The heuristic model of biasing in Section 6.2 can be expanded into a detailed model

that considers carefully the roles of weak binding, zippering, and entropic neck linker

forces. Elaboration on the structural and mathematical details of this biasing mech-

anism are found in Appendix B.1. Conclusions of this detailed model are similar

to earlier assertions: that the rate for the diffusing head to weakly bind during the

biasing mechanism is proportional to the stationary probability density ps for this

head in the vicinity of the binding site (ref. Equations 78, 110, and 118), and that

the stepping bias ξ(F ) at load F generally also depends on weak state unbinding

rates (ref. Equations 86 and 119). A convenient numerical observation, that the

biases ξ(F ) for physically relevant parameters satisfy an approximate Bell form (as

in experiment [56, 6]), allows a parameterization of ξ(F ) in terms of the zero-load

bias and stall force. In this manner, all provided examples of this section are selected

to match the “measured” bias Bell form with a zero load bias of 1000 (i.e. 99.9%

forward) and a stall force of 7.0 pN.

Two useful cases arise for the parameters of the biasing mechanism: those lacking

and those retaining weak state unbinding. Elimination of weak binding effects in the

former case emphasizes the diffusional origins of bias utilized by the heuristic model.
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To demonstrate specific solutions of the modeling parameters for both of these cases,

example parameter sets that match the measured bias are presented below.

Both of these examples share the parameters: T = 300 K, N = 13 (13 total neck

linker links), a = 0.38 nm (virtual link length), d0 = 8.2 nm (distance to the next

binding site), ∆µ0 = −2 kBT (zippering energy), and kS = 300 s−1 (the strong bind-

ing rate constant used in Eq. 119). The remaining parameters were made variable and

matched to the “measured” bias Bell form with the construction in Appendix B.1: η

(neck linker force constant in Eq. 83), Nz (number of zippered links in the zippered

state), ∆d (static extension of the coiled-coil in Section 6.1.1), and γ (a scaling pa-

rameter for δzu, the Bell length of zippering in Eq. 85). For the case lacking weak

state unbinding, these are: η = 1.4, Nz = 4, ∆d = 4.6 nm, and γ = 1.0. For the case

with weak state unbinding, these are: η = 0.86, Nz = 5, ∆d = 5.0 nm, and γ = 0.5.

Other example parameter sets that match the measured bias certainly exist, but they

are not explored here. Further details for the example lacking weak state unbinding

are given in Fig. 9.

Evident in these numerical examples are the large predicted coiled-coil extensions.

However, this observation may not translate well into the corresponding physical

statement that large coiled-coil unwinding exists during the biasing mechanism. This

problem arises due to the ignored restoring forces that are generated by unwinding of

the coiled-coil, where these forces will alter bias calculations. Introduction of a force-

extension model for the coiled-coil (not an entirely trivial task) would better address

susceptibility of the coiled-coil to large extensions. Regardless of these technicalities,

a 10-fold reduction in kinesin’s processivity has been attributed to experimental sta-

bilization of the coiled-coil (to prevent unwinding) [73], which indicates that some

coiled-coil unwinding is natural in kinesin’s normal forward cycle and should appear

in modeling. Large ∆d values may then be reasonable.

Results of our model also indicate that the biasing mechanism remains a fast

65



step within kinesin’s cycle as the external load is increased. Relevant to this is the

rate for a diffusing head to weakly bind, with forward and backward binding rates

kD
+ and kD

− , respectively. The most rapid rate of these at a given external load,

i.e. max(kD
+ , kD

−), approximates the rate of the biasing mechanism’s diffusional step.

Numerical examples (e.g. the above examples) indicate that this maximum rate

tends to not decrease by more than a factor of 20 at increasing loads - a factor small

enough to leave the diffusional step relatively fast. In contrast, the diffusional bias

kD
+/kD

− undergoes larger changes through the combined effect of kD
+ decreasing and

kD
− increasing. Numerical examples further suggest that these observations are not

drastically altered with the inclusion of weak state unbinding events.

The combination of entropic neck linker forces and weak binding states in this

biasing mechanism provides an avenue for the exploration of the ADP gate discovered

by Hackney [28]. Hackney observed that in the combined absence of ATP (i.e. without

zippering) and external load, the free head of a singly-bound kinesin dimer binds to

microtubule only slowly, if at all. This situation is a “parked” state [6]. Judging

from similarities between the unzippered state in the biasing mechanism and this

parked state, e.g. that each lacks neck linker zippering, Hackney’s gate should be a

consequence of long lifetimes for an unzippered-like state (compare to the unzippered

zero-load state in Fig. 9). Long parked lifetimes in Hackney’s experiment may then

occur, for instance, if weak state unbinding becomes much faster than the strong

binding rate kS. The analysis of this approach is not done here, but this path to

Hackney’s gate remains attractive.

6.4 Waiting Mechanism

The biasing mechanism of Section 6.3 is primarily suitable for describing the direction

of stepping. Since biasing remains relatively fast, the dwell times for kinesin’s cycle

are rather taken to arise from the chemical steps that occur outside of biasing -
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collectively labeled the “waiting mechanism.” Some important technicalities in the

logical separation of biasing and waiting are presented in Fig. 10. T-gate’s mechano-

chemical coupling is invoked as the principal contributer to the waiting mechanism

at rate limiting conditions, directly coupling the stress of an external load (in a

geometry similar to frame 5 of Fig. 8) to the rate at which kinesin binds ambient

ATP. Rate limiting aspects of kinesin’s cycle, at either high load or low [ATP] , are

then determined by ATP binding rates.

A common element in the numerous models for dwell times is a Bell length of

magnitude 2− 3 nm that is responsible for rate-limiting behavior at external loads of

several piconewtons [56, 6]. Supposing that T-gate indeed manages dwell times, then

this Bell exponent characterizes the load dependence of T-gate. This identification

is consistent in magnitude with the fact that T-gate’s coordinating mechanism is

activated by internal strain on order of several piconewtons. A rate model, presented

in Fig. 11, is based on the ansatz chosen for a natural lifetime within T-gate:

τ(F ) = τ0

{(

R0

R0 + 1

)

e−FδT /kBT +

(

1

R0 + 1

)}−1

(87)

with τ0, R0, and δT constants to be determined. Eq. 87 is intentionally similar to

Eq. 3 used by Nishiyama et al. [56], though Eq. 87 is an ad hoc way to implement

a ceiling in T-gate’s ability to inhibit ATP (e.g. due to higher loads altering the

accessibility of the nucleotide pocket differently). The placement of τ(F ) within our

rate model is similar to Fig. 2 of Block et al. [5], with their k−2 set to zero. Additional

details are in Fig. 11.

Further development of the waiting mechanism would inappropriately shift em-

phasis away from the central topics of this chapter, i.e. the origin of bias and the role

of T-gate. No doubt that a more detailed rate model could be developed to describe

dwell times, but this has been done many times previously.
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6.5 Concluding Comments on the Kinesin Model

Kinesin’s biasing mechanism harnesses RBM principles to amplify neck linker zipper-

ing by effectively altering boundary conditions, that is, by altering the exponentially

sensitive probabilities to visit forward and backward binding sites. At low loads,

kinesin’s step then is a process that is biased by virtual absorbing and reflecting

boundaries (such boundary conditions were taken ad hoc in a previous work [21]),

though at high loads and particularly at stall, absorbing and reflecting boundaries

are a poor approximation. The remainder of kinesin’s stepping is largely orchestrated

by T-gate, including the coordination of chemical steps and the appearance of large

dwell times at rate-limiting conditions.

There exist several improvements to this kinesin model that should be incorpo-

rated in future models of kinesin. The most obvious is the need for a detailed treat-

ment of the forces that would arise from extension of the coiled-coil and neck linker

forces, e.g. done through molecular dynamics simulations. Additionally, the stability

of the “parked” state in Hackney’s gate that precedes ATP uptake has not been di-

rectly addressed by the results of this model. Addressing each of these concerns will

lead to welcome refinements.
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Figure 8: Key aspects of kinesin’s forward (plus-end) cycle have been elucidated
through a varied multitude of experiments, including cryo-EM, x-ray structural, force
bead, and others [97, 71, 7, 75, 29, 83, 14, 41]. This process is briefly reviewed, where
“T” labels the ATP nucleotide state, “D” the ADP nucleotide state, “∗” the no-
nucleotide state, and “P” the phosphate after ATP hydrolysis. The free head is
shaded to clarify motion between frames. Frames 1,2: the free head weakly binds to
the plus-end binding site, leading to strong binding once ADP is released. ATP bind-
ing to the plus-end head is inhibited by a coordinating mechanism (labeled T-gate,
ref. Section 6.1.4) that is activated by the internal strain. Frames 3–5: hydrolysis of
ATP in the minus-end head leads to an intermediate ADP-phosphate state, “D.P,”
and phosphate release alters the binding of the minus-end head into weak binding,
which allows rapid release of the minus-end head from tubulin [13]. Frame 5 is to
be identified with the parked state in Carter and Cross [6]. Frame 6: the free head
tends not to strongly bind until ATP binds to the microtubule-bound head [28]. ATP
binding initiates zippering of the microtubule-bound head’s neck linker, coinciding
with a large acceleration of the rate for the free head to bind onto microtubule. This
entire forward cycle consumes one ATP and moves the center of mass of the system
∼ 8 nm.
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Figure 9: Plots of zippered and unzippered stationary probability densities (in
arbitrary units) vs. the reduced interval [−d, d] (ref. Section 6.1.1 and Eq. 110), for
the case example in Section 6.3 that ignores the effects of weak state unbinding. The
use of the reduced interval, which subtracts the coiled-coil extension, hides the fact
that zippering is a small change (∼ 2 nm) compared to the distance travelled by one
head (∼ 16 nm). Zippering probabilities, e.g. Eq. 85, are not represented in these
plots. As discussed in Section 6.2, the small and decreasing tails of the distribution
are responsible for the generation of large biases. Apparent in these plots are the
competing influences of zippering, which shifts the density towards the plus-end, and
of loads, which shifts the density towards the minus end. Stall occurs when all these
effects balance one another. The inclusion of weak state unbinding in the model
preserves many of the features presented here.
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Figure 10: Much of the biasing mechanism is assumed to occur in the parked geom-
etry of frame 5 in Fig. 8, where the external load acting on the microtubule-bound
head leads to long dwell times (ref. Section 6.4). However, the free head could have,
in the time before ATP uptake, an opportunity to bind rearward during a period
when forward binding is virtually excluded (due to no zippering). Thus, bias would
then be [ATP] dependent due to [ATP] dependence of the waiting mechanism. In (a),
a fast step is outlined that corrects this undesired backward stepping. Since the for-
ward head experiences strain due to the rearward-bound head, ATP uptake is greatly
inhibited in the forward head, and thus, there exists a much larger probability that
the rearward head detaches first (at the expense of one ATP hydrolysis). In contrast,
(b) outlines how a “real” backward step may occur once the waiting mechanism has
ended, i.e. once ATP has bound to the microtubule-bound head. Notice that if the
rearward head binds as in (b), the forward head is at least one chemical step ahead
of the rearward head. With a few assumptions, the forward head in (b) may then be
expected to release first on average. Events in (b) where instead the rearward head
unbinds will alter the simple relation between binding and stepping direction, but
these (potentially uncommon) events are ignored at the level of detail in this model.
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Figure 11: Part (a) illustrates a rate model to minimally describe T-gate’s effect
on dwell times (actually, the steady-state natural lifetime). Such a simple model
would doubtfully predict detailed measurements, e.g. the randomness [86]. The
dashed region that contains abstract states s1 and s2 describes the overall ATP uptake
mechanism, which includes T-gate within a Michaelis-Menton structure. The state
s3 represents the remainder of kinesin’s chemical cycle. A particular form of the force
dependent rate, k(F ) = 1/τ(F ), is taken from Eq. 87. Part (b) provides a plot of
dwell times from the rate model in part (a) with parameters deduced by fitting to
the model of Nishiyama et al. [56], fitting with better than visual accuracy. That
the agreement with Nishiyama et al. is excellent is likely a result of the choice in
Eq. 87, but this is not to state that our rate model is identical with theirs (e.g. in the
manner [ATP] dependence is included). Used in part (b): δ = 3.10 nm, R0 = 193,
k̃+ = 5.08 s−1 µM−1, k− = 137 s−1, k(0) = 857 s−1, k3 = 137 s−1, and T = 300 K.
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CHAPTER VII

CONCLUSION

This thesis has examined RBM anew from several different aspects, including exam-

ining physical scales, non-equilibium constructs, and biological examples. The notion

that RBM provides a natural and robust framework for nanoscale biological systems

has been supported by these arguments. Emphasis has been placed on the path

and cycle free energies as a powerful route to provide insight into the advantages and

widespread applicability of RBM compared to the macroscopic alternative: the power

stroke. Indeed, power stroke schemes should be viewed as the exception in very small

biological systems, since they appeal incorrectly to deterministic ideals. A further

distinction with RBM was also made in reference to Brownian ratchets, which we

present as a distinct class of systems on the basis of free energy structure, notably

the failure of a boundary-driven interpretation for Brownian ratchets. Examples of

RBM were provided for ubiquinone, rotary enzymes, and molecular motors, listed in

the order of increasing complexity of the underlying mechanism. In particular, bias

amplification was found to be a functional alternative to power stroke and Brownian

ratchet approaches.

RBM, being a general scheme, has room for future work in both the refinement

of its precise definition and in the elucidation of new mechanisms. The definition

presented in this thesis has the compelling feature of following directly from NESS

measures of irreversibility, rather than through some arbitrary measure that is in-

spired by model power strokes. A primary difficulty in this definition was an appeal

to a logical sense of mechanical progression in a power stroke, along which the non-

equilibrium free energy profile could be examined. Refinements on this definition are
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indeed welcome. New RBM mechanisms grounded in a compelling definition of RBM

also offer interesting prospects. For example, how might the technology for efficient

manmade nano-machines be inspired from cellular mechanisms? Such questions are

currently left to speculation.
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APPENDIX A

FOUNDATIONS OF RBM

A.1 Example: Brownian Motion

The calculation of averages for the Brownian particle using the Langevin equations

in Section 3.1 follows from the combination of white noise averages Eq. 45 and the

solution Eq. 46 [90]. For example, the heat input due to thermal noise is derived to

be

〈

Q̇in

〉

≡ 〈ξ(t)ẋ〉

=

〈

ξ(t)

(

1

m

∫ t

0

dt2 e(t2−t)/τ ξ(t2)

+ (v0 − vF ) e−t/τ + vF

)〉

=
A

m

(
∫ t

0

dt2 e(t2−t)/τ δ(t − t2) + 0

)

=
A

m

∫ t

0

dt2 δ(t − t2)

=
A

2m
=

kBT

τ
(88)

i.e. a constant. Similar procedures can demonstrate that the average of the trajectory

follows the deterministic relaxation:

〈v(t)〉 = (v0 − vF )e−t/τ + vF (89)
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where, as before, v0 is the initial velocity at t = 0, and vF = F/Γ is the asymptotic

velocity. The velocity correlation function is readily derived as well

〈v(t1)v(t2)〉 − 〈v(t1)〉 〈v(t2)〉 =

v2
T

(

e−|t1−t2|/τ − e−(t1+t2)/τ
)

(90)

with vT =
√

kBT/m the thermal velocity. In particular, the variance of v(t) is:

〈

v(t)2
〉

− 〈v(t)〉2 = v2
T

(

1 − e−2t/τ
)

(91)

which approaches the usual value v2
T of equilibrium thermodynamics for time t ≫ τ .

Other averages, e.g. the diffusion constant 〈x2〉 − 〈x〉2, are completely analogous.

Supposing that the initial velocity v0 is averaged over the Boltzmann distribution

(represented by { · }) simplifies many results. Equations 89 and 91 become

{〈v(t)〉} = vF

(

1 − e−t/τ
)

(92)

{〈

v(t)2
〉}

− {〈v(t)〉}2 = v2
T (93)

Equations 92 and 93 can be applied to investigate the average power delivered to the

particle under the influence of the force F

{〈F v(t)〉} = F {〈v(t)〉} = FvF

(

1 − e−t/τ
)

(94)

and also the difference between thermal power input and dissipative drag output to

the medium
{〈

Q̇in − Γv(t)2
〉}

= −FvF

(

1 − e−t/τ
)2 ≤ 0 (95)

Notice that the large factors of kBT/τ due to Brownian fluctuations exactly cancel

in Eq. 95, suggesting that the average heat exchange with the medium is a sensible

quantity in the overdamped limit (ref. Eq. 34 in the next section). The diffusional

growth of the positional variance also simplifies in this case

d

dt

{〈

x2
〉}

= 2D(t) (96)
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for the time-dependent diffusion constant D(t) = D(1 − e−t/τ ) and D = kBT/Γ. This

result approaches the standard d
dt
{〈x2〉} = 2D for t ≫ τ , and is more generally known

as the Ornstein-Fürth formula [90].

A.2 Irreversible Heat Production and Boundary Driven Pro-

cesses

The irreversible heat production rate Q̇irr in Eq. 27 is a useful quantity in chemical

kinetics. If the contribution in the summation for Q̇irr is zero for any given set of

transitions, these transitions must support zero steady state current. If transitions

between all states in an entire region R are associated with zero irreversible heat

production, then R must have null internal steady state current (a form of local

equilibrium) [80].

A special class of systems, i.e. those with a NESS free energy potential for the

path free energy, have a special interpretation in terms of Q̇irr. To see this, suppose

a region R in a reaction network has the potential µi. Q̇irr can be decomposed into

Q̇irr = −1

2

∑

i∈R

∑

j∈R

∆µijJij −
∑

i∈R

∑

j /∈R

∆µijJij −
1

2

∑

i/∈R

∑

j /∈R

∆µijJij (97)

The term for transitions within R is simplified by use of the divergentless condition

for steady state currents (derived from the master equation)

∑

i

Jij =
∑

j

Jij = 0 (98)

which implies

1

2

∑

i∈R

∑

j∈R

∆µijJij =
1

2

∑

i∈R

∑

j∈R

(µi − µj)Jij =
∑

i∈R

∑

j∈R

µiJij

=
∑

i∈R

µi

∑

j∈R

Jij =
∑

i∈R

µi





∑

j

−
∑

j /∈R



Jij

= −
∑

i∈R

∑

j /∈R

µiJij (99)
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i.e. the heat contribution for transitions between states in R reduces to a boundary

term. If the potential for states at this boundary is constant, a second application of

Eq. 98 demonstrates the heat production rate in Eq. 99 is zero. Thus, R is internally

at equilibrium if and only if its boundary is at equilibrium, and the process within R

is a boundary driven process.

Boundary driven systems can also be discussed in terms of the path affinity for

a process with a potential (ref. Eq. 28). The path affinity is zero between states of

equal µi potential, and in particular, a region with an equipotential boundary cannot

have biased internal trajectories. The appearance of the heat generation as a non-

equilibrium potential function can similarly be used to approach boundary driven

systems [67].

A.3 Power Strokes in the Deterministic Limit of Fokker-

Planck Equations

The spatial displacements in a mechanism are often approximated suitably by a

Fokker-Planck equation. When the dynamics additionally are dominated by the de-

terministic drift portion of the Fokker-Planck equation, the dynamics can be shown

to have progressive irreversibility (ref. Equations 63 and 64) and to thus typically

satisfy the proposed definition of a power stroke in Section 3.5. This is outlined for

a simple one-dimensional example, where all statements can in principle be explored

explicitly.

The one-dimensional Fokker-Planck equation, Eq. 31, is used to formulate a simple

example of a power stroke. The power stroke starts at position x = 0 and ends at

x = L, and can be taken to have the steady state probability distribution

p(s)(x) =
e(µ(x)−U(x))/kBT

∫ L

0
ds e(µ(s)−U(s))/kBT

(100)

that has been normalized for simplicity. A positive probability current J is taken (in

the direction of the power stroke), such that by Eq. 34, the free energy function µ(x)
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is monotonically decreasing. The potential energy function U(x) is assumed to be

monotonically decreasing, with a “power stroke energy” ∆U = U(L) − U(0) many

times larger in magnitude than kBT . Furthermore, the force F = −∂U/∂x is always

sufficiently large and varies slowly throughout the power stroke (these conditions can

be made precise). These restrictions on U(x) can be relaxed in some cases that are not

explored here. The NESS free energy difference ∆µ(x) = µ(x) − µ(0) is determined

from Eq. 33 to be

e∆µ(x)/kBT = 1 −
(

1 − e∆µ0/kBT
)

∫ x

0
ds eU(s)/kBT

∫ L

0
ds eU(s)/kBT

(101)

for a total free energy expenditure ∆µ(L) = ∆µ0. Equations 100 and 101 provide all

the relevant information to explore this proposed power stroke in this section.

The dynamics here need not arise purely from explicit forces and interactions with

the medium (in the sense of the discussion in Section 3.1), where changes in the free

energy profile are interpreted as arising from irreversible viscous heat production. Let

the probability current J(x) of the stationary probability distribution p(s)(x) instead

be defined by

J(x) =

(

V (x) − D
∂

∂x

)

p(s)(x) (102)

for drift velocity V (x) and diffusion constant D. Then, the drag constant Γ and force

F = −∂U/∂x can be defined by Γ = D/kBT and F = ΓV , respectively. Eq. 34 still

holds, i.e. ∂µ/∂x = −Γv, such that Γ provides an effective drag force constant that

provides the irreversible heat generation for a given non-equilibrium ensemble velocity

v. This generalization may be useful in systems where chemical transitions contribute

to the fluctuations already imposed by the viscous medium, which may arise from the

many chemical interactions in a molecular power stroke mechanism [58]. Whether

irreversible heat is primarily chemical or viscous drag in nature is inconsequential

here.

Progressive irreversibility for this model follows from the conditions on U(x) along
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with a further condition

∆µ0 ≈ ∆U (103)

The results here are mostly insensitive to moderate violations of Eq. 103, where,

for example, the case with ∆U < ∆µ0 requires care primarily for values of x that

satisfy ∆U(x) . ∆µ0 (this is a region where the power stroke has allowed approximate

thermal equilibration). The most basic observation is that the steady state velocity

profile

v(x) =
F (x)

Γ
− D

∂

∂x
ln p(s)(x) (104)

is dominated in most regions by the deterministic term. That is, deterministic drift

follows

v(x) ≈ F (x)

Γ
(105)

Thus, Brownian motion can be demonstrated directly to be mostly irrelevant for

steady state dynamics, such that a deterministic limit is approached. By Eq. 34,

the gradient in the NESS free energy potential for a power stroke is dominated by

dissipation due to explicit forces

∂µ

∂x
(x) ≈ −F (x) (106)

or upon integration

∆µ(x) ≈ ∆U(x) (107)

The heat generated by the viscous dissipation thus arises from a release of internal

energy, as would be predicted by macroscopic thermodynamics. Due to the assumed

functional form for U(x), the system is also progressively irreversible. The interval

0 < x < L can be partitioned into many path segments Pi that satisfy

−∆µ(Pi) ∼ kBT (108)

where the spatial width of each Pi is approximately

LF (xi) = kBT/F (xi) (109)
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for a representative point xi in Pi. Eq. 109 reiterates the conclusion in Eq. 52:

irreversibility sets in when irreversible viscous drag heat exceeds kBT .
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APPENDIX B

RBM KINESIN MODEL

B.1 Extended Model of Biasing

This section develops a model to explain kinesin’s bias in a manner more complete

than the heuristic model in Section 6.2. The roles of weak binding, diffusion, and

internal strain in these dynamics are incorporated through the considerations of Sec-

tion 6.1. Key results are congruent with those from transition state theory.

The framework of the present model, as with the heuristic model, utilizes a co-

ordinate x along the microtubule that represents the position of an unbound kinesin

head relative to the microtubule-bound head. x is restricted to exist on the reduced

interval x ∈ [−d, d] (ref. Section 6.1.1), and the boundaries x = −d, d of this reduced

interval represent binding sites that can induce transitions to and from weak binding

states. Connecting the two heads are the neck linkers, which join at a neck linker

junction (i.e. an effective coiled-coil) that is located at some point y in the reduced

interval. Load is exerted at this junction by the coiled-coil stalk, such that a factor

e−Fy/kBT weights neck linker contributions in the probability density calculations (ref.

Eq. 110 below).

The combined influence of neck linkers and external load supplies a free energy

landscape for the variable x, as partitioned into the stationary Boltzmann distribu-

tions pz,s(x) and pu,s(x) for the zippered and unzippered states, respectively. These
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Figure 12: A network diagram to describe the bias of kinesin’s step, providing the
rates necessary for Eq. 119. s0 represents the reduced interval, the state where one
kinesin head remains unbound. s+ and s− represent the plus and minus-end weak
binding states, respectively. J is the steady state probability current entering the
process (due to kinesin binding ATP to the microtubule-bound head), and J+, J− are
the exiting currents (due to strong binding transitions). The labels kD

± are given to the
rates of weak binding from a diffusing state, kW

± to the rates of weak state unbinding
(e.g. from Eq. 86), and kS

± to the rates of strong binding. As a simplification, the
strong binding rates equal a constant kS that is independent of load. The essential
irreversibility of the strong binding step corresponds to a large free energy decrease
for strong binding transitions (consistent with the RBM principle).

distributions are obtained through the convolution:

pz,s(x) = Z−1
z

∫ ∞

−∞

ρN−Nz
(y − Nza) ρN(x − y) e−Fy/kBT dy

(110)

pu,s(x) = Z−1
u

∫ ∞

−∞

ρN(y) ρN(x − y) e−Fy/kBT dy

with N the number of peptide units per neck linker, ρN the neck linker density (ref.

Eq. 84), F the load force at the junction of the neck linkers, and a the link length. Zz

and Zu are constants at a given load, with their ratio determined by the free energy

of zippering ∆µzu (ref. Eq. 85):

Pz / Pu =

∫

pz,s(x)dx
∫

pu,s(x)dx
= e−∆µzu/kBT (111)

Once Zz and Zu are determined by normalization of the total probability Pz + Pu,

the stationary probability distribution for the unbound state is known.
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For the loads and parameter ranges considered, the distributions in equations 110

and 111 have a single most probable zippering state in the neighborhood of each bind-

ing site (zippered for plus-directed binding, unzippered for minus-directed binding).

An approximation used routinely below is then to assume that only zippered states

bind forward and only unzippered states bind rearward, i.e. to neglect contributions

of the less favorable zippering state. Relaxation of this assumption is simple but

clutters the details of the model.

Kinetic aspects of our model are included to determine binding and unbind-

ing rates. This kinetic portion in the reduced interval obeys a pair of coupled,

one-dimensional Fokker-Planck equations that reproduce the stationary densities in

Eq. 110. Define Uz(x) and Uu(x) to be the respective free energy functions that

generate these densities at a given load - that is:

pz,s(x) = e−Uz(x)/kBT

pu,s(x) = e−Uu(x)/kBT (112)

Using these definitions, the non-stationary zippered and unzippered densities pz(x, t)

and pu(x, t), respectively, are taken to satisfy:

∂pz(x, t)

∂t
= −D

∂

∂x

(

− 1

kBT

∂Uz

∂x
pz −

∂pz

∂x

)

+ Wuz(x)pu − Wzu(x)pz

∂pu(x, t)

∂t
= −D

∂

∂x

(

− 1

kBT

∂Uu

∂x
pu −

∂pu

∂x

)

− Wuz(x)pu + Wzu(x)pz (113)

Wuz(x) / Wzu(x) = e−∆Uzu(x)/kBT

with ∆Uzu(x) = Uz(x) − Uu(x), D the diffusion coefficient, and Wzu(x) and Wuz(x)

the transition rates between zippering states. Direct substitution verifies that Eq. 112

is the stationary solution to Eq. 113.

Implicit in Eq. 113 is the peculiarity that the head-to-head separation x is as-

sumed to change on a timescale much slower than the position y of the neck linker
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junction (y is integrated out). This assumption can be considered merely a modeling

simplification, consistent in spirit with the choice to use a reduced interval in place

of the coiled-coil (ref. Section 6.1.1).

Weak binding states in our model may transform to and from diffusing states via

weak unbinding and binding, respectively, at the boundaries of the reduced interval

(x = ±d). Coupling relations are here given for the plus-end binding site, while

behavior for the minus-end site is supposed identical. At a given time, there exists a

probability PW to exist in the weakly bound state. Coupling between the continuously

diffusing system and the weak binding state is achieved through the introduction of

boundary conditions that linearly relate PW to the values pz(x) and ∂pz

∂x
(x) at the

plus-end boundary (ref. Appendix B.2 for an alternative, discrete approach). This

linear relation is established via two parameters, v+ and v̂−, such that:

dPW

dt
= −v+PW + v̂−pz(d)

(114)

dPW

dt
= J(d) , J(x) = −D

(

1

kBT

∂Uz

∂x
(x) +

∂

∂x

)

pz(x)

where J(x) is understood to be the probability current in the continuum. Eq. 114

implies both dPW

dt
= J(d), which is the statement of probability conservation, and

−v+PW + v̂−pz(d) = J(d), which provides the aforementioned linear boundary con-

dition. v̂− is interpreted as the affinity to weakly bind when near a binding site, with

binding rate v̂−pz(d). v+ is the rate for a weak state to unbind back into the reduced

interval at position x = d. In our model, v̂− is assumed to be a constant, while v+

may vary with internal strain according to Eq. 86 (thus requiring the calculation of

the entropic neck linker force on a weakly bound kinesin head at a given load).

Binding and unbinding rates may now be calculated via approximations similar to

those in transition state theory, where as a simplification, rates most strongly depend

on configurations near the binding site [104]. The rate formulae below are in this way
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explored with an uncoupled approach that considers only the single most probable

zippering state in the vicinity of each binding site. For conciseness, only the plus-

end boundary x = d will be considered. Analogous results apply to the minus-end

boundary.

Transition rates between meta-stable states often reduce to a knowledge of mean

first passage times (MFPT’s) [104, 23], which for our problem are the mean times for

the system to either weakly bind or unbind. Letting τ(x) be the MFPT for a given

process (either binding or unbinding) that at initial time has the position x within

the reduced interval, the function τ(x) for a one-dimensional, zippered state head in

the potential Uz(x) satisfies [23]:

− 1

kBT

∂Uz

∂x
(x)

∂τ

∂x
(x) +

∂2τ

∂x2
(x) = − 1

D
(115)

such that a set of boundary conditions (related to weak binding) define a unique

solution for τ(x). Eq. 115 is solvable with straightforward integrals.

Denote x0 as some typical point in the reduced interval away from the boundaries

(e.g. x0 = 0), and W as the plus-end weak binding state (not to be confused with the

rates Wzu, Wuz). The MFPT for a given process starting at this weak binding state is

denoted τW . Weak state binding, i.e. the process starting at x0 and ending at W , is

denoted x0 → W , while unbinding, i.e. the process starting at W and ending at x0,

is denoted W → x0. The MFPT for each of these may be calculated using Eq. 115

with the boundary conditions:

x0 → W : τW = 0 , ∂τ
∂x

(d) = − v̂
−

D
τ(d) , ∂τ

∂x
(−d) = 0

(116)

W → x0 : τW = τ(d) + 1
v+

, ∂τ
∂x

(d) = 1
D

v̂
−

v+
, τ(x0) = 0

as may be derived from consideration of the backwards equation [23]. A brief outline

of the derivation that leads to Eq. 116 can be found in Appendix B.2.
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With a few assumptions, related to the free energy profile near the boundary,

these MFPT’s can be expressed using:

δ− ≡ D/v̂− , δth ≡
∫ d

x0

ps(d)

ps(x)
dx (117)

to give:

τ(x0 → W ) ≈ δth + δ−
Dps(d)

(118)

τ(W → x0) ≈ 1

v+

(

1 +
δth

δ−

)

Using Eq. 118, the low affinity (δth ≪ δ−) and high affinity (δ− ≪ δth) limits are

clearly expressed.

The low affinity limit is taken for our modeling, such that δth need not be known.

On physical grounds, this limit reflects that there exists an entropic barrier before the

onset of binding, e.g. due to the orientational specificity of binding that is excluded

from the one-dimensional model. As expected from transition state theory, the low

affinity limit predicts that the rates of weak binding (v̂−ps(±d)) and unbinding (v+)

are equal to the quasi-equilibrium rate of crossing the state boundaries x = ±d. In

contrast, the high affinity limit problematically hinders escape from the boundaries

x = ±d, as indicated by the reduction of the weak state unbinding rate from the

desired value v+.

Once binding and unbinding rates have been determined, calculation of the total

bias in our model follows from the rate diagram in Fig. 12, where the rates kD
+ , kW

+ ,

and kS
+ are defined in the figure caption. In steady state, the bias (i.e. the ratio of

the probability currents J+ and J− for forward and backward binding, respectively)
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is then:

ξtot ≡
J+

J−
= ξDξW

(119)

ξD ≡ kD
+

kD
−

, ξW ≡ 1 + (kW
− /kS

−)

1 + (kW
+ /kS

+)

with ξD representative of the bias due to diffusion leading to weak binding and ξW

representative of transitions from weak binding states. As expected, if weak binding

states are long-lived compared to strong binding transitions (not generally true), the

overall bias is purely a diffusional/zippering effect. Notice that the parameter v̂−

disappears from Eq. 119, due to taking the ratio kD
+/kD

− (this assumes v̂− is equal at

each binding site).

Numerical calculation of the stationary distribution ps(x), needed in Eq. 118, was

done with the convolution in Eq. 110. Both Eq. 110 and its normalization can be

evaluated through direct numerical integration. For estimates of weak state unbinding

(from Eq. 86), the force on a weakly bound head must be known. This may be done

by finding the equilibrium position y = y∗ of the neck linker junction, such that the

forces on this junction (due to the load and the forces of the neck linkers) are balanced

for kinesin’s doubly-bound configuration. The entropic neck linker force in Eq. 83 was

in this way used to find y∗ with a simple root finding routine, which then provided

the needed force that determines the rate of weak state unbinding.

B.2 Mean First Passage Time Boundary Conditions

The boundary conditions in Eq. 116, used for the calculation of mean first passage

times in Appendix B.1, are not all obvious at first glance. Their derivation is readily

achieved through consideration of a discrete rate theory in the limit of a small grid

spacing. Basic steps of this reasoning are presented in the following text, though some

well-known results are only cited. A different treatment exists that avoids the limit of
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a discrete theory. However, such an approach is somewhat less straightforward than

the discrete approach.

Consider a series of states labeled with index i. A probabilistic process with

one-dimensional, nearest-neighbor transitions is taken to evolve as:

∂Pi

∂t
= Pi−1w

+
i−1 + Pi+1w

−
i+1 − Pi

(

w+
i + w−

i

)

(120)

with t the time, Pi the probability to be in state i, and w±
i the transition rates from

state i to states i ± 1. Points of exit for this process may be created through the

creation of an absorbing state, such that Pj = 0 is imposed for some state j.

The mean first passage time problem for Eq. 120 is readily solved. In analogy to

the continuous case, the mean first passage time function τi is the mean time for a

process that starts in state i to first exit via an absorbing state. The function τi can

be shown to satisfy the recurrence relation [23]:

−1 = w+
i (τi+1 − τi) + w−

i (τi−1 − τi) (121)

A unique solution to Eq. 121 follows from appropriate boundary conditions, such as

τj = 0 when there exists an absorbing state at j.

A useful continuous limit exists for a choice of transition rates in Eq. 120. Using

the new variable xi = iδ in the limit δ → 0, the rates:

w+
i =

A(xi)

2δ
+

D

δ2
, w−

i = −A(xi)

2δ
+

D

δ2
(122)

reproduce the distribution of the continuous stochastic process with velocity field

A(x) and diffusion constant D [23]. Likewise with the above rates, the continuous

limit of Eq. 121 is Eq. 115 if A(x) = − D
kBT

∂U
∂x

(x).

With the above developments, construction of a system with mixed continuous and

discrete parts may be analyzed with a discrete approach. For the current demonstra-

tion of weak binding and unbinding, a weakly bound state is identified with i = −1,
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while the continuously diffusing states of an unbound tethered head are identified

with i ≥ 0. Transitions to and from the weakly bound state are defined:

w−
−1 = 0 , w+

−1 = v+ , w−
0 =

v̂−
δ

, w+
0 =

A(x0)

2δ
+

D

δ2
(123)

with Eq. 122 defining the remaining transition rates for i > 0. It can be demon-

strated that with these definitions, the dynamical boundary conditions Eq. 114 in

Appendix B.1 are satisfied. Thus, the dynamics of this system are as supposed.

Additionally, Eq. 121 then straightforwardly leads to both the boundary conditions

Eq. 116 and the continuous equation Eq. 115 for the mean first passage time problem,

where the cases of weak binding and unbinding in Eq. 116 correspond to the presence

or absence, respectively, of an absorbing state at i = −1.
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