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SUMMARY

Content distribution is the primary function of the Internet today. Technologies like

multicast and peer-to-peer networks hold the potential to serve content to large populations

in a scalable manner. While multicast provides an efficient transport mechanism for one-

to-many and many-to-many delivery of data in an Internet environment, the peer-to-peer

networks allow scalable content location and retrieval among large groups of users in the

Internet.

Incorporating quality-consciousness in these technologies is necessary to enhance the

overall experience of clients. This dissertation focuses on the architectures and mechanisms

to enhance multicast and peer-to-peer content distribution through quality-consciousness.

In particular, the following aspects of quality-consciousness are addressed: 1) client latency,

2) service differentiation, and 3) content quality.

Data analysis shows that the existing multicast scheduling algorithms behave unfairly

when the access conditions for the popular files changes. They favor the popular files

while penalizing the files whose access conditions have not changed. To maintain the client

latency for all files under dynamic access conditions we develop a novel multicast scheduling

algorithm that requires no change in server provisioning.

Service differentiation is a desirable functionality for both multicast and peer-to-

peer networks. For multicast, we design a scalable and low overhead service differentiation

architecture. For peer-to-peer networks, we focus on a protocol to provide different levels

of service to peers based on their contributions in the system.

The ability to associate reliable reputations with peers in a peer-to-peer network is a

useful feature of these networks. Reliable reputations can help establish trust in these

networks and hence improve content quality. They can also be used as a substrate for a

service differentiation scheme for these networks. This dissertation develops two methods

of tracking peer reputations with varying degrees of reliability and overheads.
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CHAPTER I

INTRODUCTION

The Internet of today primarily focuses on content distribution. The growth in the variety

of content and the numbers of users accessing that content has led to the invention of

many technologies for large-scale content distribution in the Internet. The focus of this

dissertation are two such large-scale content distribution technologies: multicast and peer-

to-peer (P2P) networks.

Multicast is capable of performing one-to-many and many-to-many delivery of data

scalably and efficiently in an Internet environment. Even when as few as 20-40 receivers

are simultaneously served by multicast, the bandwidth savings are estimated to be 60-70%

compared to the unicast delivery of the same data to the same set of receivers [9].

P2P networks have revolutionized the concept of content distribution. In February 2003,

a study of digital music behaviors by market research firm Ipsos 1 estimated the music file-

sharers just within the U.S to be over 40 million. With each peer capable of being a server

in addition to being a client, these networks have opened up new possibilities for large-scale

content distribution without the need for dedicated centralized server infrastructure.

Incorporating quality-consciousness in both multicast and P2P networks is necessary to

enhance the overall experience of the users of these technologies. This dissertation focuses

on the architectures and mechanisms to enhance multicast and P2P content distribution

through quality-consciousness. In particular, the following aspects of quality-consciousness

are addressed: 1) client latency, 2) service differentiation, and 3) content quality.

• Client Latency: Analysis of server access logs revealed that the small percentage of

files that account for the most load on the server exhibit a very dynamic popularity

behavior. The existing multicast scheduling algorithms behave unfairly under variable

1http://www.ipsos-pa.com/dsp d us.cfm?id to view=1743
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access conditions and favor the popular files while penalizing the files whose access

conditions have not changed. To maintain the client latency for all files under dynamic

access conditions we develop a novel multicast scheduling algorithm Minimum Waiting

Time (MWT) that requires no change in server provisioning.

• Service Differentiation: Service differentiation is a desirable functionality for both

multicast and P2P networks. To provide scalable service differentiation for multi-

cast, we design an architecture comprised of two low overhead inter-operable limited

branching techniques. The proposed techniques set up and tear down multicast state

in the routers as new receivers join and leave while keeping the core of each domain

simple. All the complexity of receiver join and leave is pushed to the edge routers.

Due to the goodwill nature of P2P networks, incentives are necessary to motivate

peers to contribute to the common good of the system. The promise of a better

service to peers (through service differentiation) that contribute more could be a

useful strategy. We design a protocol to provide different levels of service to peers

based on their contributions in the system.

• Content Quality: The ability to associate reliable reputations with peers in a P2P

network is a useful feature of these networks. Reliable reputations can help establish

trust in these networks and hence improve content quality. They can also be used as

a substrate for a service differentiation scheme for these networks.

This dissertation develops two methods of tracking peer reputations with varying de-

grees of reliability and overheads. We first focus on a formally verifiable reputation

tracking scheme. By compromising some reliability in reputation tracking, a more

flexible and lower overhead scheme becomes feasible. We then develop a lower over-

head reputation tracking scheme and discuss the reliability and overhead trade-offs in

each of the schemes.

The remainder of this dissertation is organized as follows. In chapter 2 we review

the related work. Chapter 3 discusses the performance results of the existing multicast

scheduling algorithms and presents the MWT algorithm. Chapters 4 and 5 focus on service

2



differentiation for multicast and P2P networks respectively. In chapters 6 and 7, we present

the two mechanisms for tracking reputations of peers in a peer-to-peer network that vary

in overheads and reliability. Finally, chapter 8 gives a summary of the contributions of this

dissertation and discusses the future research directions arising out of this work.
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CHAPTER II

RELATED WORK

A significant amount of research is available on the technologies for large-scale content

distribution. In describing the related work in the following sections, we focus only on the

work closely related to the focus areas of this dissertation, namely, quality-consciousness in

multicast and per-to-peer (P2P) networks. Specifically, we review the work related to client

latency for multicast clients in section 2.1, work related to service differentiation for P2P

networks and multicast in section 2.2, and that related to content quality in P2P networks

section 2.3.

2.1 Client Latency

One of the factors affecting client latency for multimedia multicast clients is the manner

in which the multicast server schedules files. The multicast server scheduling algorithm in

chapter 3 is motivated by the observations about the popularity dynamics of multimedia files

from server access log analysis. As a result, we split the related work for this section in two

categories: 1) analysis of multimedia server access logs and 2) multicast server scheduling.

2.1.1 Analysis of Multimedia Access Logs

Acharya et al [2] characterized non-streaming multimedia content stored at the web servers.

Authors in [3] present an analysis of a six-month trace data from the mMOD (multicast

Media on Demand) system that had a mix of educational and entertainment videos. Both

of these studies observed a high temporal locality of accesses, and that the rankings of the

video titles by popularity did not fit a Zipf distribution.

The studies of client accesses to the audio content from the MANIC system [39] and low-

bit rate videos from the Classroom2000 system [28] analyze the accesses to the educational

media servers in terms of the daily variation in server loads, distribution of media session

durations, and client interactivity.
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With the goal of identifying important parameters for generating synthetic workloads,

study [8] analyzes educational media server workloads for two media servers: eTeach and

BIBS. The client arrivals in BIBS can be characterized as Poisson, and arrivals in eTeach

workload are closer to a heavy-tailed Pareto distribution. The authors also observe that

the media delivered per session depends on the file length.

In [16] Chesire et al analyze media proxy workload at a large university. The authors

conclude that most of the multimedia sessions are less than 10 minutes long and that 78%

of the media objects are accessed only once.

Workload analysis of enterprise media server workloads done in [15] found that a small

percentage of newly introduced files constituted most of the accesses in any given month

and that 45%-50% of the accesses to the most popular files occured during the first week of

their introduction. This observation suggests that the small percentage of files that account

for the most load on the server exhibit a very dynamic popularity behavior. We investigate

this issue further in chapter 3 with access logs from Georgia Tech’s web and FTP server

logs.

2.1.2 Multicast Server Scheduling

The client latency depends in part on the scheduling of multimedia files at the multicast

server. Many multicast scheduling algorithms are available in research literature. Dan et.

al. [19] have proposed first come first served (FCFS), maximum queue length (MQL), and

FCFS-n. In FCFS, when a channel becomes available, the server multicasts the stream

to the client that has been waiting the longest. All the clients that have requests already

queued for the same video also get served. In MQL, the video that has the most number

of requests queued for it is selected when a channel becomes available. FCFS-n is similar

to FCFS, except that n channels are pre-allocated for the most powerful videos. FCFS is

fair since it always serves the client that has been waiting for the longest duration before

others. MQL attempts to maximize the number of clients served by being biased for the

more popular videos, but it does so at the expense of not being fair to the clients that

request the unpopular videos. FCFS-n was not observed to improve the performance of
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FCFS significantly and requires choosing an appropriate n.

MQL tends to be too aggressive in scheduling popular videos considering only the queue

length, while FCFS completely ignores the queue length and focuses only on the arrival

time to reduce defections. Aggarwal et. al. [6] proposed maximum factored queue length

(MFQL), a scheduling policy with a notion of factored queue length. The factored queue

length is obtained by weighting each video queue length with the square root of its popu-

larity, a factor which is biased against the popular videos. The authors show that MFQL

yields excellent empirical results in terms of standard performance measures such as average

latency, reneging rates, and fairness.

With on-demand data broadcast in mind, Aksoy at. al. proposed RxW [7], a parameter-

ized broadcast scheduling algorithm that makes scheduling decisions based on the current

request queue and adapts well with client population and access pattern changes. At each

scheduling decision, the RxW algorithm chooses to broadcast the page with the maximal

R ∗W value where R is the number of outstanding requests for a page and W is the time

the the oldest outstanding request for that page has been waiting.

2.2 Service Differentiation

2.2.1 Service Differentiation for P2P networks

Service differentiation in P2P networks is a relatively untouched area of research. Just like

ours, both the existing approaches in this area utilize the reputations of peers to provide

service differentiation. Work in [33] proposes an admission control scheme for differentiating

among the requests for content based on peer reputations. The decision criterion in this

scheme is binary in that the requests for content are either admitted or denied. Detailed

parameters impacting content search and download functionalities are not considered.

Widely deployed decentralized P2P software, Kazaa, uses the notion of participation

level [32] in order to track peer reputations in the form of their contributions to the system.

Kazaa defines a participation level for each peer based on the MBytes it transfers and

the integrity of the files it serves. Each user rates the integrity of the files it downloads

as excellent, average, poor, or delete file. Based on the ratio of Mbytes uploaded and
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downloaded and the integrity rating of the files, the peers are assigned to three categories:

low, medium, and high. The participation level score varies between 0 and 1000. A new

user starts at a medium participation level of 100. The participation level score is used

in prioritizing among peers during periods of high demand. Though this solution has very

little overhead, it offers no security against selfish peers that know how to alter the part of

their software that computes participation level. This approach is closest in spirit to the

service differentiation protocol proposed in chapter 5 and the reputation systems proposed

in chapters 6 and 7.

2.2.2 Service Differentiation for Multicast

IETF’s differentiated services (DS) framework [10] proposes a service differentiation archi-

tecture to provide quality of service (QoS) for unicast communication. A DS domain is

comprised of boundary nodes and core nodes. Boundary nodes interconnect the DS domain

to other DS or non-DS capable domains while core nodes only connect to other core or

boundary nodes within the same DS domain. Traffic enters a DS domain at an ingress node

and leaves at an egress node.

The DS framework uses a six bit DS field from the IP header to define DS codepoints.

All the packets with the same codepoint that cross a link in a particular direction form

a behavior aggregate. The DS boundary nodes at the customer egress set the appropri-

ate codepoint in each packet in accordance with the customers’ service level agreement

(SLA) and the packet joins the correct behavior aggregate. From this point on, subsequent

boundary or core nodes in various DS domains have no information about a particular cus-

tomer’s flow, they only deal with behavior aggregates. This contributes significantly to the

scalability of the architecture.

The DS framework is specified with unicast in mind. There has been some work in the

direction of utilizing the DS framework for providing service differentiation for multicast.

Bless and Wehrle [11] pointed out the challenges in using the existing DS architecture for

multicast communication. They proposed to extend the multicast routing tables to include

codepoints to provide QoS for multicast in the DS framework. This involves changing IP
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multicast protocols.

Striegel and Manimaran [52] proposed an encapsulation-based approach called DSMCast

for providing multicast support in a DS domain. Their approach consists of adding a

DSMCast header to each packet at the edge of the DS domain by the ingress router. Upon

receiving such a packet, a core router will inspect the packet to determine which interfaces

the packet should be replicated on based on the information contained in the DSMCast

header. This solution keeps the core routers simple but incurs bandwidth overhead for every

multicast data packet. This approach is scalable in terms of the number of multicast groups,

but not in terms of bandwidth overhead because the DSMCast header size is dependent on

the number of receivers in each DS domain.

Our approach in chapter 4 is scalable both in terms of the number of multicast groups,

as well in terms of the number of receivers. There are two kinds of overheads in both of our

techniques: 1) signaling overhead to set up and tear down state in appropriate routers, a

small one-time overhead incurred for each receiver join and leave and is independent of the

duration of data flow and 2) bandwidth overhead in terms of extra packet hops incurred

because of possibly moving the branching point, a topology dependent overhead. There is

no bandwidth overhead in terms of extra headers in individual data packets.

2.3 Content Quality in P2P Networks

An approach to improving content quality in P2P networks is to track peer behavior and to

map it to the reputation of the peer. This can help increase trustworthiness of entities and

content in these networks, and hence improve content quality. Aberer and Despotovic [1]

have proposed a binary trust model for P2P networks, i.e. a peer is either trustworthy or

it is not. Assuming that maliciousness is an exception, the peers in this model only store

information about their view of the malicious behavior of the peers they interact with. The

overall trust is computed on the fly by querying appropriate peers. This system does not

have any preventive measure against inserting arbitrary complaints about peers.

The proposal for tracking reputations in P2P networks by Demiani et. al. [18] involves

keeping separate local repositories for resources and peers. They assume binary values
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for each of the repositories. Peers update their local repositories for the resources and

their offerers upon finishing transactions. The criteria for such updates are subjective. To

compute trust values for resources and the peers on the fly using votes, they enhance the

2 phase Gnutella search and download protocol into a 5 phase protocol called XRep. The

first phase of this protocol enhances the resource searching to include sending a digest of

the resource. Upon selecting a resource, in the second phase the querying peer broadcasts

other peers to find out the reputations of the offerers and their view of the resource. The

third phase involves the evaluation of votes to judge the reputation of the resource and

their offerers. In the fourth phase, the querying peer explicitly checks the selected peer to

counter any spoofing attacks. The final phase is similar to the download in Gnutella. While

this work addresses many security considerations for both P2P networks and the reputation

system, it offers no incentive to the peers to participate in XRep. Moreover, reputations

in this work are subjective and the inference involves on-demand computations that have

high overheads and latency and introduce unknown amount of inaccuracy due to the high

churn rates observed in these networks.

The Free Haven project [20] is a system of anonymous storage with goals of resisting

powerful adversaries to find or destroy any stored data. For accountability purposes, they

develop a centralized reputation system that attempts to limit the damage done by misbe-

having servers. Each server locally keeps track of reputation and credibility values for all

the other servers it trusts, along with the confidence ratings. Servers broadcast referrals

in circumstances like when they log an honest completion of a trade, or when they sus-

pect some data is lost, or when the reputation and credibility values for any server change

considerably.

EigenRep [31] is a reputation management system for P2P networks. Each peer locally

stores its own view of the reputation of the peers it does transactions with. The global

reputation of each peer is computed by using the local reputation values assigned to it by

other peers, but weighted by the global reputation of the assigning peers. This method of

reputation inference rules out the possibility of malicious peers maligning the reputation of

other peers.
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NICE [35] is a platform for implementing cooperative distributed applications. Peers

in NICE gain access to the remote resources by bartering local resources. The reputation

in NICE is stored in the form of a cookie which can take real values in the [0, 1] interval

and is based on a peer’s subjective satisfaction from the transaction. As against all the

above reputation systems where the locally stored reputations were an indication of that

peer’s view of the credibility of the peers it had had transactions with, the locally stored

reputations in NICE are an indication of the satisfaction of others peers that it served. The

system does not assume peers will store cookies that have low values. Since the peers store

their own reputations, no cooperation is required from other peers for storage purposes.

However, to compute the reputations when needed, cooperation from the other peers in the

system is a must, just like in the case of other reputation systems. Work in [21] explores

similar ideas in order to form a rating system for P2P networks.

PeerTrust [56] is also a feedback based trust management system where peers quantify

and compare the reputation of other peers. The trust for a peer in this system is also a

non-decreasing scalar and is subjective but differs from the other reputation systems in that

it is computed based on the three factors: 1) the amount of satisfaction received by the

other peers in the system, 2) the total number of interactions, and 3) a balancing factor

to offset the impact of malicious peers that misreport other peers’ service. Each peer is

mapped to maintain a small database that stores a portion of the global trust data. Though

this reputation storage scheme differs from that in other reputation systems, it still requires

cooperation from the peers for storing the reputations. Maliciousness is countered by having

multiple peers responsible for storing the same portion of the database. Voting can be used

if these databases differ. Trust is computed on the fly through querying potentially multiple

databases over the network.

TrustMe [48] introduces the notion of anonymity in computing and storing peer reputa-

tions. Several other aspects of this system are similar to those of PeerTrust. For example,

it requires cooperation from the peers for storing reputations of other peers.

Work by Vishnumurthy et. al. [55] comes closest in spirit to the reputation system

proposed in this paper in that it uses a scalar value called KARMA that tracks each peer’s
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resource consumption and contribution. KARMA’s however in this system are not stored

locally with the peer’s but with a dedicated group of nodes.
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CHAPTER III

A NOVEL MULTICAST SCHEDULING SCHEME FOR

MULTICAST SERVERS WITH VARIABLE ACCESS

PATTERNS

3.1 Introduction

Multicast communication accomplishes one-to-many and many-to-many delivery of data in

an Internet environment. It is scalable and efficient because it outperforms unicast even

for a small number of receivers. It has been observed in [9] that even for 20-40 receivers,

multicast can be 60-70% more efficient than unicast in the Internet.

A multicast server accomplishes multicast of a video in essentially two phases: the first

phase, batch scheduling, involves selecting a batch of requests for a particular video; the

second phase, channel allocation, involves deciding how the channel should be allocated for

the selected video.

There are two major approaches for channel allocation for unicast and multicast: per-

sistent channel allocation, and channel merging. In persistent channel connection, once a

channel is allocated to a video, it is used for multicasting the entire video to that batch of

clients. Channel merging algorithms like the ones proposed in [29, 30, 5, 22] classify chan-

nels into regular channels and patching channels. The basic idea is to transmit part of the

video on the patching channel and possibly merge the clients on to the persistent channel

that is in the process of transmitting the same video. This can be done only if the clients

are able to receive data at a higher bit rates. We assume persistent channel allocation for

simplicity and focus on the performance of the batch scheduling schemes.

Various batch scheduling algorithms have been proposed in the literature. In first come

first served (FCFS), when a channel becomes available, the server multicasts the stream

to the client that has been waiting the longest. All the clients that have requests already
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queued for the same video also get served. In maximum queue length (MQL [19]), the video

that has the most number of requests queued for it is selected when a channel becomes

available. Maximum factored queue length (MFQL [6]) is a batch scheduling policy with a

notion of factored queue length. RxW [7] is a parameterized broadcast scheduling algorithm

that makes scheduling decisions based on the current request queue and adapts well with

client population and access pattern changes. It is important to note that all these batch

scheduling schemes are designed for static server access patterns.

Studies of media server workloads [8, 14] show that the accesses to the server vary

highly with time and the reason for this is the dynamic access patterns of a small number

of popular videos. To test our conjecture that other kinds of servers may also experience

variable number of accesses due to dynamic popularity of a small percentage of their popular

files, we collected logs from a FTP and a web server. Analysis of these logs confirmed that

the accesses to these servers are also highly variable.

The latency experienced by the multicast clients depends not only on the batch schedul-

ing and channel allocation schemes but also on the server access pattern, network conditions,

and the location of the receivers. Focusing on batch scheduling, our first goal is to evalu-

ate the performance of the existing batch scheduling schemes under variable server access

patterns. To that end, and motivated by the observations from the server logs, we generate

three synthetic logs with different file popularity dynamics. For evaluating the performance

of the existing batch scheduling algorithms on these synthetic logs we consider client latency

and reneging of requests. While even during constant number of accesses to the server some

batch scheduling schemes perform better than others, we observe that all of them degrade

in performance when the accesses to the multicast server fluctuate over time. During the

periods when a small percentage of popular files exhibit dynamic profiles all the schemes

favor the dynamic files, giving them much lower client latency compared to the times when

they have constant accesses. They do so at the cost of penalizing the less popular files

that have not experienced a change in access patterns. Also, the reneging during periods

of higher accesses is very high.

To correct this situation, our second goal is to develop a novel multicast scheduling
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scheme called M inimum W aiting T ime (MWT) that provides lower client latencies to files

that do not have dynamic profiles, while maintaining the response time for dynamic files. It

is more fair compared to existing multicast scheduling schemes because it does not provide

better performance to the popular files that have dynamic profiles. By trading the lower

than average client latencies for the dynamic files for providing lower latencies for the files

with static profiles MWT also reduces the reneging of requests, leading to better server

resource utilization.

3.2 File Popularity Dynamics

3.2.1 Server Log Analysis

The study of educational media server workloads [8] found that there were very few periods

of stationary relative file access frequency. This indicates that the accesses to the media

servers fluctuate with time and that the media file popularity patterns are dynamic.

Analysis of enterprise media logs [14] observed that the file popularity for the media

server workloads can be approximated by a Zipf-like distribution at varying time scales and

that in any given month, total accesses to the media servers are dominated by the new

files introduced in that month. Furthermore, approximately 50% of the accesses to any file

occur in the first week of their introduction. These findings corroborate the observations

of [8] in terms of fluctuation in the number of server accesses and the dynamic nature of the

file popularity. The duration of server logs used in these studies varied from 1 month to 29

months, implying that these observations are not related to the duration of the logs. While

the media servers used in both of these studies were not very busy servers (educational

media servers in study [8] had 538 and 606 requests per day and enterprise media servers

used in study [14] had 23 and 753 requests per day), they raise an important question about

the file popularity dynamics. We ask the question if similar file popularity dynamics exist

in the workloads of other kinds of more busy servers, i.e., FTP and web servers; implying

that variable server accesses may indeed be a widely prevalent phenomenon.

To investigate this issue, we collected access logs from two unicast servers: GT-FTP

(FTP logs collected from Georgia Tech’s Linux Mirror site); and GT-CoC (HTTP logs
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collected from Georgia Tech’s College of Computing web server). Table 1 lists some of the

characteristics of each of the logs. It shows that these logs vary from the server logs used

in the multimedia studies [8, 14] in terms of duration, number of requests per day, and the

number of unique files.

Table 1: Profile of log collection sites.
GT-FTP GT-CoC

Duration 12/22/00-10/23/01 4/30/01-10/23/01
Total Sessions 14,344,037 37,372,732

# Unique Clients 84,144 1,103,692
# Unique Files 676,315 492,084

Average File Size .737 .046
(in MBytes)

Median File Size .017 .0015
(in MBytes)

Table 1 shows that these logs vary from the server logs used in the multimedia studies [8,

14] in several ways. The duration of these logs, 10 months and 6 months falls in between

that of the study in [8] (1 month and 3.5 months) and the study in [14] (21 months and

29 months). The number of requests that the FTP and web servers experience per day,

46, 876 and 211, 145 respectively, are much higher. The number of unique files accessed

in FTP/web logs, 676, 315/492, 084 respectively is also much higher than the 73, 1506 for

study [8], and 2999, 412 for the study [14].

We experimented with various daily and overall (for the entire duration of the logs)

access thresholds for individual files to investigate the access patterns of the most popular

files in the above logs. Choosing the daily access thresholds of 4, 000 for GT-FTP, and

15, 000 for GT-CoC; and overall access thresholds of 15, 000 for GT-FTP and 150, 000 for

GT-CoC narrowed down the number of popular files to 13 (.002% of total) for GT-FTP and

23 (.005% of total) for GT-CoC. The graphs in figure 1 show the overall access pattern at

GT-FTP and the three types of access patterns that the most popular files exhibited. 6 out

of the 13 most popular files peaked up in popularity for a very short time (see figure 1(b)

for an example) and then were not accessed throughout the logs, 4 files had a modest profile

(see figure 1(c) for an example), and 3 files peaked up quickly in popularity and then there
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was a slow decay (see figure 1(d) for an example). As the graph of the overall accesses

indicates, the FTP server gained additional popularity into the 100th day into the logs,

hence the most popular files belonged to the latter part of the logs.
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Figure 1: FTP server access patterns.

Analysis of file access dynamics for GT-CoC led to different file dynamics. The graphs in

figure 2 show the overall access pattern at GT-WWW and the three types of access patterns

that the most popular files exhibited. 20 out of the 23 most popular files exhibited a very

modest profile (see figure 2(b) for an example), 2 files sharply peaked in popularity for a

short time and then were not accessed again for the duration of the logs (see figure 2(c) for

an example), and only 1 file showed a popularity pattern consisting of multiple popularity

plateaus (see figure 2(d)).

While the mix of popular files with modest and other kinds of profiles may be site

dependent, the above analysis leads to the conclusion that dynamic file popularity is indeed

a very pervasive phenomenon.
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Figure 2: WWW server access patterns.

3.2.2 Synthetic Logs

To test the impact of file popularity dynamics, we generated three synthetic logs, 12 hour

each, for a multicast server that serves 100 files whose sizes range from 0 to 5MBytes. The

ideas was to have shorter duration logs with the same characteristics in terms of file access

patterns as that of longer duration logs, only compressed in time. These logs are Zipf

distributed with a parameter of 1.0. The exponentially distributed request arrival rate for

these logs is 350 requests per minute. The requests for files in the Ist log stay constant on

an hourly basis. 95% of the files in the IInd log have a constant access pattern throughout

the logs but the 5% most popular files in the Zipf distribution (numbered 0 through 4)

exhibit a dynamic profile, fluctuating the server accesses. In the IIIrd log, the top 10% of

the popular files (numbered 0 through 9) exhibit a dynamic profile, forming two peaks in

activity. In each peak of activity, 5% of the files participate. Also, the manner in which

the 10% popular files exhibit dynamic profiles is different. The files in the first peak of
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activity rise gradually in popularity and either continue to be popular or gradually decrease

in popularity. This peak in server accesses occurs from the 2nd hour until the 6th. On the

other hand, the files in the second peak quickly rise in popularity at the 10th hour and the

popularity subsides just as quickly. The graphs in figure 3 show the hourly server accesses

and the hourly accesses for the individual popular files exhibiting a dynamic profile. An

important point to note about these logs is that all the three logs have the same total load

on the multicast server in the 12 hour duration. This is important to study the impact of

dynamic file profiles on the multicast batch scheduling.
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Figure 3: Synthetic workloads for server and popular files.

3.3 Evaluation of Multicast Scheduling Schemes

We begin by reviewing various batch scheduling algorithms proposed in the literature.

Dan et. al. [19] proposed first come first served (FCFS), maximum queue length (MQL),

and FCFS-n as the batching policies. In FCFS, when a channel becomes available, the

server multicasts the stream to the client that has been waiting the longest. All the clients

that have requests already queued for the same video also get served. In MQL, the video

that has the most number of requests queued for it is selected when a channel becomes

available. FCFS-n is similar to FCFS, except that n channels are pre-allocated for the

most powerful videos. FCFS is fair since it serves the client that has been waiting for the

longest duration. MQL attempts to maximize the number of clients served by being biased

for the more popular videos, but it does so at the expense of fairness to the clients that

request the unpopular videos. FCFS-n was not observed to improve the performance of

FCFS significantly and requires choosing an appropriate n.
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MQL tends to be too aggressive in scheduling popular videos considering only the queue

length, while FCFS completely ignores the queue length and focuses only on arrival time to

reduce defections. Aggarwal et. al. [6] proposed maximum factored queue length (MFQL),

a batch scheduling policy with a notion of factored queue length. The factored queue

length is obtained by weighting the queue length of each video with the square root of its

popularity, a factor which is biased against the popular videos. The authors show that

MFQL yields excellent empirical results in terms of standard performance measures such

as average latency, reneging rates, and fairness. With on-demand data broadcast in mind,

Aksoy at. al. proposed RxW [7], a parameterized broadcast scheduling algorithm that

makes scheduling decisions based on the current request queue and adapts well with client

population and access pattern changes. At each scheduling decision, the RxW algorithm

chooses to broadcast the video with the maximal R ∗ W value where R is the number of

outstanding requests for a video and W is the time the the oldest outstanding request for

that video has been waiting.

Next, we evaluate the performance of FCFS, MQL, MFQL, and RxW batch scheduling

schemes under dynamic file popularity using the synthetic logs we generated in section 3.2.2.

The metrics we consider are client latency and client reneging. Client latency can be defined

in a variety of ways. One can define it to be the time it takes for the client to start receiving

the file from the time of its request. Varying network conditions would make it hard to

judge the impact of file popularity dynamics on each of the scheduling policies. Moreover,

it is hard to simulate real world network conditions. Hence, we decided not to take into

account the network conditions while finding the client latency. We define client latency

to be the time a client request spends waiting for the server. It is the time from the point

the server receives a request to the point it starts serving this request. After the request

has been waiting in the queue for some amount of time, the client may decide to go away

without waiting for the delivery of the file. The amount of time after which the client does

so is called the reneging time.

For our event driven simulations, we considered a multicast server with 100 transmission

channels and a transmission rate of 100kbps. For each of the logs, we studied the average
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hourly client latency for all the files, just the popular files that are causing the increase in

server accesses (dynamic files), and the rest of the files.

Recall that the MFQL batch scheduling algorithm requires the square root of file popu-

larity in addition to the queue length. Since the file popularity of some of the files changes

dynamically, we decided to experiment with various values of smoothing parameter α in the

following standard moving weighted average equation:

fnew = α ∗ fold + (1− α) ∗ fsample

fold in the above equation represents the previously estimated popularity for a particular

file, fsample represents the number of requests for this file in this estimation interval, and

fnew is the new popularity value for this file. We experimented with α = 0.1, 0.5, 0.8 for

two different estimation intervals. The first interval was 50 minutes, meaning that we

estimated the popularity of each file every 50 minutes. We chose this interval to ensure

the misalignment of the popularity estimation interval with increase in file popularity in

the synthetic logs. The second interval we experimented with was 8 minutes. It turns out

that α = 0.5 and popularity estimation interval of 50 minutes produced the best results

and ways of popularity estimation do not differ significantly from each other. We also

experimented with static MFQL (static-MFQL) where the Zipf probabilities were used as

static popularity values for the simulations (we refer to this case as the static-MFQL). In

general such information is not likely to be available ahead of time.

The graphs in figure 4 show the average hourly client latency and reneging for MQL,

MFQL (50 minute popularity estimation interval and α = 0.5), static-MFQL, and RxW for

the case when the load on the server is Zipf distributed but constant (basically, using Ist

synthetic log). We eliminate presenting FCFS results because FCFS performs poorly on

both counts. We tested the schemes for three reneging times: 1 minute, 2 minutes, and 5

minutes.

As expected, MFQL (both static-MFQL and when α = 0.5 and popularity estimation

interval 50 minutes) outperforms all other scheduling schemes in terms of providing the
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Figure 4: Average client latency and reneging for all files combined for synthetic log I.

clients with lower access latency and in terms of the number of clients reneging every hour.

We then tested the performance of all the above schemes for IInd and IIIrd logs, where the

most popular 5% and 10% of files have dynamic access profiles. The graphs in figure 5 show

the average hourly client latency and reneging for all the files, just the top 5% dynamic files,

and the rest of the 95% of the files for the IInd synthetic log when the reneging happens

after 2 minutes of waiting. The results for log III and other reneging times were similar.
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Figure 5: Average client latency and reneging for synthetic log II.

As figures 5 show, MQL performs the worst among all the schemes in terms of graceful

degradation when the accesses to the server is increased because of temporary increase in
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the number of accesses to the most popular 5% of the files. Even though the average client

latency for all the files combined from hours 2 through 6 is lower than the case of Ist log

(when the access patterns for all files were constant), it comes at the cost of penalizing the

rest of the 95% of the files, whose access patterns are constant throughout the logs. The top

5% of the dynamic files get much better performance for all the schemes. Reneging during

the peak access period also goes up considerably and even the best performing schemes

(RxW and static-MFQL) experience about 50% more reneging for above graphs compared

to the constant access case. Once again, most of the reneging happens for the 95% of the

files and the top 5% popular files fair much better.

3.4 Minimum Waiting Time Scheduling Scheme

Next, we propose a new multicast batch scheduling scheme called MWT (M inimum W aiting

T ime) for the multicast servers that experience variable number of accesses. MWT is de-

signed with the following objective.

Objective: To provide similar average client latency to all files, irrespective of their popu-

larity under all access conditions, while keeping the reneging to a minimum.

To illustrate the objective, we observe that during the period the server is experiencing

higher number of accesses:

• a file fi experiencing a surge in demand should get similar client latency to a file fj

whose accesses have not changed over time.

• the client latency of any file fi should be the same as it would have been when the

server accesses were constant.

• the system reneging should be as close as possible to that experienced when the access

pattern is constant.

MWT attempts to be as fair in terms of which files experience reneging, as is important

to reduce the number of requests that experience reneging. It tries to reduce the reneging

of requests for files whose demands have not changed, at the same time not increasing the

reneging of files contributing to the heavy access conditions much. It accomplishes this goal
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by leveraging the fact that the files contributing to the heavy access conditions experience

lower client latencies during peak access conditions than when their demand patterns are

constant.

Since MFQL exhibits the best performance under constant access conditions and is

known to be fair, during the periods when a multicast server is experiencing constant

accesses for all its files according to their Zipf popularity, MWT behaves just like MFQL.

When the accesses for the popular files increase, causing the accesses to the multicast server

to increase as well, MWT gives priority to the files not experiencing a variation in their

access pattern. If the first request for any of the dynamic files has been waiting for less time

than a factor of the reneging time MWT schedules the files whose access pattern has not

changed instead. The factor that decides the minimum waiting time for the dynamic files

is called the min wait factor. Figures 6 show the pseudo-code for how MWT chooses one

of the two files fi and fj to schedule an available channel under heavy access conditions:

if (f_i == dynamic_file and f_j != dynamic_file) {
if (f_i->first_request_wait_time <

reneging_time/min_wait_factor) {
schedule f_j

} else {
do as MFQL would

} } else {
do as MFQL would

}

Figure 6: MWT algorithm for heavy access conditions.

For reneging times of 1 minute, 2 minutes, and 5 minutes, we experimented with various

min wait factors (4, 3, 2, 1.5, 1) for synthetic logs II and III. The min wait factor that

provides the best results depends on the reneging time of the file. We assume that all

the files have the same reneging time in one run. Assuming that the multicast server has

the knowledge about reneging times it can use an appropriate wait factor to increase the

fairness among the files in terms of client latency and increase system utilization by reducing

reneging. The graphs in figures 7 and 8 compare the performance of MWT to static-MFQL

and show the results for the case when the reneging time is 2 minutes for synthetic logs II

and III.
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Figure 7: MWT for Synthetic Log II (Reneging=2min)
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Figure 8: MWT for synthetic log III (reneging=2min).

As the graphs in figures 7 show, the average client latency for all files for a min wait

factor of 2 comes close to the average latency for the constant access case of log I, as shown

in figure 4. Although the average client latency for the 95% of the files is better for min wait

factor of 1.5 and 1, it is not desirable, because the benefit comes at the cost of significantly

degrading the average client latency for the 5% dynamic files, impacting the overall latency

as well. The overall reneging as well as the reneging for the 5% dynamic and the rest of the

95% files are significantly better than static-MFQL for both min wait factors of 2 and 1.5.

However, when the min wait factor decreases to 1 (causing the first request of 5% files to
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wait at least the same amount as the reneging time) the overall reneging increases because

of the reneging in the requests for popular files.

The results for log III are similar. This log has two peaks, one between the hours of 2

and 6, and another sharp one at the 10th hour. The first peak is contributed by the top 5%

most popular files and the second one by the next 5% most popular files. The best min wait

factor for log III is also 2. As the graphs in figures 8 show, the benefits of using MWT are

more pronounced for log III in terms of decrease in the reneging of requests for the second

peak.

The results of experimenting with various min wait factors for other reneging times (1

minute and 5 minutes) for both synthetic logs II and III were similar. In general, the bigger

the reneging time, the smaller the min wait factor required (implying larger the average

delay in scheduling the dynamic files) by MWT.

3.5 Conclusion

This work makes two main contributions. First, using the logs from FTP and web logs it

recognizes the fact that the accesses to multicast servers vary significantly over time. This

is primarily due a small percentage of popular files that exhibit dynamic profiles. Second,

using synthetic workloads it concludes that the existing multicast schemes do not perform

well under variable access patterns. To alleviate that situation, this work develops a novel

multicast scheduling scheme, MWT. MWT keeps the average client latency for all files

during periods of heavy accesses similar to that during constant server access conditions.

It trades the lower than average latency for the dynamic files during peak access conditions

for better response time to the files whose request patterns remain unchanged over time. It

also reduces the reneging of requests for all files compared to MFQL.
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CHAPTER IV

LIMITED BRANCHING TECHNIQUES FOR

PROVIDING MULTICAST COMMUNICATION IN A

DIFFERENTIATED SERVICES NETWORK

4.1 Introduction

The differentiated Services (DS) architecture [10] scalably implements service differentiation

for unicast communication in the Internet. Due to the dynamic join/leave of multiple

potentially heterogeneous receivers unique challenges stand in the way of providing service

differentiation for multicast utilizing the scalable DS paradigm. This is because when new

receivers join the multicast group, branches may get added to the existing multicast tree

without prior resource allocation and this can adversely affect the unicast and multicast

traffic for which resources have previously been reserved.

This chapter proposes a scalable architecture called M-DS, to provide QoS for mul-

ticast communication utilizing the DS framework. The architecture allows each Internet

domain to choose between the two proposed limited branching techniques, namely, edge-

router branching and limited-core branching. For each of the techniques, we define two

signaling protocols; one for resource allocation on membership discovery and another for

resource deallocation on membership termination on subnetworks. The signaling for re-

source allocation configures state in appropriate routers to be used during multicast data

transmission. After this phase, data can begin to flow for multicast with QoS, as it would

be in the case of DS for unicast. The signaling for resource deallocation resets the con-

figuration changes made by the signaling for resource allocation. For both the techniques,

flows are aggregated for scalability, just as in the DS framework for unicast. Also, both

the techniques use the multicast state already set up in individual domains for routing

packets and inter-operate with each other. Not changing multicast tables also facilitates
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the co-existence of IP multicast without the QoS requirements. These techniques have low

message overhead during signaling and no per-packet overhead during data transmission in

terms of extra headers in individual data packets. However, they require changes in the

routers to accommodate these techniques in a DS framework.

4.2 Differentiated Services (DS) Architecture

A DS domain is comprised of boundary nodes and core nodes. Boundary nodes interconnect

the DS domain to other DS or non-DS capable domains while core nodes only connect to

other core or boundary nodes within the same DS domain. Traffic enters a DS domain at

an ingress node and leaves at an egress node. Figure 9 shows a DS domain DS1, boundary

nodes B1 and B2, and core nodes C1, C2, and C3. B2 connects DS1 to a second domain

DS2.

To

DS1

DS2
B1 B2

C1

C2

C3

EgressIngress

Figure 9: Various entities in a DS domain.

The DS framework uses a six bit DS field from the IP header to define DS codepoints. All

the packets with the same codepoint that cross a link in a particular direction form a behavior

aggregate. The DS boundary nodes at the customer egress set the appropriate codepoint

in each packet in accordance with the customers’ service level agreement (SLA) and the

packet joins the correct behavior aggregate. From this point on, subsequent boundary or

core nodes in various DS domains have no information about a particular customer’s flow,

they only deal with behavior aggregates. This contributes significantly to the scalability of

the architecture. The DS architecture specifies various components needed to treat packets

belonging to various behavior aggregates at the boundary nodes of the DS domains. Traffic

classifiers separate submitted traffic into different classes. The packets from different classes

matching some specified rule are subjected to metering, shaping, policing and/or remarking
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to ensure that traffic entering a DS domain conforms to the SLA. Traffic forwarding in the

core DS nodes is very simple; the core nodes apply the appropriate per hop behavior to

each behavior aggregate.

4.3 Challenges

Providing quality of service (QoS) for multicast communication using the DS framework

poses unique challenges. Multicast sources generally do not know the identity of receivers.

The source sends out one copy of the data and the IP layer multicast routers make dupli-

cate copies where needed in the network to reach all receivers of the group. Also, group

membership in multicast is dynamic and the receivers are heterogeneous. Out of these

issues, heterogeneity is not a stumbling block because at the application layer, receivers

with different resource requirements can join different multicast groups [36], so within a

particular multicast group, the resource requirements are homogeneous. However, dynamic

group membership makes it challenging to provide QoS for multicast communication.

The DS architecture for unicast can not be used as is to accomplish QoS for multicast

without affecting other traffic adversely. The main reason for this is because scalability in the

DS architecture for unicast is achieved by distinguishing between the functionality of core

and boundary routers in each domain and by traffic aggregation. Except for the routers

near the source, all routers along the way deal only with behavior aggregates in the DS

architecture. In multicast, however, new members may join a multicast group dynamically

and as a result, several routers in the core of the network may duplicate packets to reach the

new receivers. Keeping the core routers simple to preserve the DS scalability would imply

core routers assign the same codepoint to the duplicated packets as to the original packets.

As a result, new branches can get added to the existing multicast tree without prior resource

reservation. This problem is termed as non-reservation subtree (NRS) problem in [11]. NRS

can potentially lead to violation of SLAs between the DS peers and hence compromises QoS

for one or more classes of traffic.
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4.4 Architecture Components and Assumptions

An example of the various entities of the M-DS architecture is shown in figure 10. It shows

two DS domains, with the multicast source attached to domain DS1 and receivers R1 and

R2 on the same subnetwork attached to domain DS2 through the designated router (DR).

Each domain has boundary and core routers. The figure also shows the bandwidth brokers

BB1, and BB2, for domains DS1 and DS2 respectively. The DRs initiate the signaling with

the BB of their domain upon each multicast group membership discovery and termination

on their respective subnetworks. The bandwidth brokers (BB) handle resource allocation

and deallocation requests in their domain by contacting their peers.
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To DS3 To DS4
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CR     Core Router

DS     Differentiated Services Domain

BB      Bandwidth Broker

R Receiveri

DR Designated Router

BR Boundary Router

Figure 10: Components of the M-DS architecture.

The architecture makes the following assumptions about the infrastructure. First, each

DS domain has static unicast SLAs for aggregates of flows with its peer domains for all

its ingress and egress router pairs. Admission requests for both unicast and multicast are

handled dynamically by the BB of each domain by contacting the BBs in peer domains.

These assumptions are consistent with those of the QBone BB work group [53]. Second,

each BB is configured as a BGP-4 router and hence has TCP connections for communicating

with its peer BBs and the DRs of its domains for communication during signaling. It also has

access to unicast and multicast routing information. Third, each BB has a data repository

containing router configurations and policy information. It needs this to be able to make

decisions to allocate and deallocate resources. Fourth, sources register with the BB of their
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domain before sending data. The BBs propagate this information to peer BBs to inform

about the active multicast sources.1 Fifth, we assume that all receivers know what QoS to

ask for. The resource request can be carried in a manner similar to the one prescribed by

the RSVP specification [12].

Next, we describe the signaling protocols for the join and leave of multicast receivers in

edge-router branching technique.

4.5 Edge-router Branching

Edge-router branching uses existing unicast SLAs and exploits multicast scalability at the

domain granularity because it allows branching to occur only at the ingress and egress

routers. If there are any branching points in the core of the domains, they are moved to the

ingress of the domain. This keeps all the complexity confined to the edge of the network

and hence the core nodes are kept scalable as in the case of DS for unicast.

4.5.1 Signaling Protocol for Admission

Signaling is initiated by the DRs of the domains when they discover a multicast group

in their subnetwork. The DR sends a message to the BB of its group, giving it its own

IP address, the QoS requirements and the multicast group address G. Subsequently, this

BB may contact its peer BB to convey this information and so on. Notice that for each

subsequent receiver joining the same subnetwork served by this DR, no action needs to be

taken as long as the QoS requirements and G are the same.

The BB extracts the QoS information and G and then finds out if the resources for this

request have already been allocated in its domain. Because if they are, no new resources

are to be allocated. The BB needs two pieces of information to make that decision.

1. Appropriate entries from the current resource allocation table: this table contains

resource allocation information for each pair of ingress and egress routers in the domain

along with the multicast groups they serve. It also contains the number of different

1This is essentially similar to how MSDP [38] requires the RPs [23] in each domain to advertise active
sources.
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subnetworks (identified by the IP addresses of the DRs) each ingress-egress router

pair serves, directly or indirectly. Keeping the number of the subnetworks served

corresponding to each ingress-egress router pairs helps the BB know when to deallocate

the resources in its domain. Entries in this table are filled after making a decision

that resources can be granted. To find out the appropriate entry, the BB first finds

out the pair of ingress and egress routers in its domain in the path from the multicast

source for group G to the DR. It does that using the routing information that it has

access to as a BGP-4 router.

2. If the branching point for G lies in its domain: while the signaling protocol is in

progress, multicast state is being set up in the domain using the IP multicast protocol

in use in that domain. The core routers in every domain that determine that they

are going to be the branching point for group G communicate this information to

their BB by sending the corresponding multicast forwarding table entry. The BB sets

a timer to get this information from the branching point router(s) in its domain. If

the timer expires without the BB getting a reply, it assumes that no branching point

exists in its domain.

Based on the above information, three cases arise for the ingress-egress router pair

needed to satisfy this request, as outlined in figure 11.

4.5.1.1 Case 1: Allocation Exists

This case arises if the BB finds an entry in the current resource allocation table with the

requested QoS corresponding to the ingress and egress routers needed to serve the new

request for group G. This implies that adequate resources have already been allocated.

Nothing needs to be done other than updating the number of subnetworks served by this

ingress-egress router pair in the current resource allocation table and the BB replies in the

path to the DR affirmatively and signaling is terminated. The new receivers are grafted to

the existing multicast tree and since multicast state is already set up, they can start getting

data.
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Figure 11: Signaling steps in edge-router branching technique upon membership discovery.

Figure 12 depicts the signaling for the case when R1 is present and R2 wants to join

group G. The signaling for this case returns from DS2 and does not need to go all the way

to domain DS1.

4.5.1.2 Case 2: No Allocation, No Branching Point

The second case arises if no resources have been allocated for G in this domain with the

requested QoS. In this case, the BB does not find any entry with the requested QoS in the

current resource allocation table corresponding to the ingress and egress routers needed to

serve the new request. Also, no branching point router replies to the BB. The BB makes

a decision to grant resources in the form of an SLA between the ingress-egress router pair

based on policy information and SLA availability.
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Figure 12: Signaling for case 1.

Note that to be able to use the existing multicast routing state during actual data

transmission, the SLAs have to be multicast routed unicast SLAs, i.e., unicast SLAs that

follow the same path from ingress to egress routers as the multicast route would take. If not,

there are two options. The first involves communicating with all routers in the unicast and

multicast routes between ingress and egress routers and re-installing the multicast routing

state to reflect the new route according to the available unicast SLA. The second option is

to use IP tunneling [40] to use normal unicast SLAs.

If the resources are granted, the BB updates the current resource allocation table for the

latest bandwidth allocation corresponding to the ingress-egress router pair involved and sets

the subnetwork count for the corresponding entry to one. The signaling does not terminate

here for this case and the BB signals the upstream peer BB. Upon receipt of the message,

the peer BB runs the same protocol as this BB.

Figure 13 depicts the signaling for the case when R1 joins group G in a two domain

network. No resource allocations exist for G in either domain DS1 or DS2, so new resources

are allocated in both domains when R1 joins. The signaling goes all the way to the multicast

source’s domain before returning back to the DR in this case.

4.5.1.3 Case 3: Branching Needed

The third case arises if one or more core routers send the corresponding multicast forwarding

table entry to the BB of their domain, informing that they would be the branching point for
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Figure 13: Signaling for case 2.

group G. This implies that the multicast tree passes through this domain but branching is

required to graft the new receivers to the existing multicast tree. If the allocated resources

are adequate for the new QoS request, new receivers can be grafted to the existing tree.

The edge-router branching technique does not allow any branching point in the middle of

any domain, hence to be able to graft new receivers to group G, an additional SLA from

the ingress router to the new egress is used if one is available.

Figure 14 shows the use of two separate SLAs in a domain when the branching point

exists in a domain.

Conventional Mutlicast(a)

Boundary Router
Branching Point Router

(b)

Branching Point Router+
Boundary Router

Boundary Router

M-DS

Figure 14: Two different SLAs when branching point exists in the domain.

Since all SLAs are unicast SLAs, to be able to use the new SLA, the BB moves all

branching points from its core to the ingress of the domain and enhances the role of the

ingress router to act as a branching point in addition to being an ingress router. This
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technique makes the core router functionality very scalable, just as in the DS for unicast

communication but doing so amounts to introducing some changes in multicast routing. The

BB extracts the new routing information using the multicast forwarding table entry sent to

it by the core branching point router(s) and conveys the appropriate routing information

to the ingress router. The details on how the ingress router performs routing during data

transmission and how core branching point router(s) use their existing multicast routing

state are explained in section 4.7. There is no per-packet bandwidth overhead during data

transmission and some changes are required to be made to router functionality.

After moving the branching point to the ingress, the BB creates a new entry for this

ingress-egress router pair in the current resource allocation table and sets the subnetwork

count for the corresponding entry to one. To complete the signaling, the BB signals af-

firmatively in the path toward the DR and data transmission begins for the new receivers

since multicast state is already set up.

Figure 15 depicts the signaling for the case when R1 and R2 are present and branching

is needed in DS2 for data to reach R3. New resources are allocated in DS2 and signaling

returns to the DR without going all the way to domain DS1.
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Figure 15: Signaling for case 3.

At any point in the path to the source, if resources are denied, signaling returns from

that BB all the way back to the DR, freeing all the resources and canceling all configuration

changes and table updates. Most IP multicast routing protocols are based on soft state

protocols and if data transmission does not begin, routing state vanishes automatically due
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to lack of a refresh. In our case, since the source will not be sending data to the new

receivers unless resources are allocated all the way, the IP multicast routing state would

vanish automatically.

4.5.1.4 Additional Considerations

In addition to the signaling overhead described above that is incurred when DRs make

resource allocation/deallocation requests, depending on the protocol in use in a domain,

there may be some state maintenance overhead also for our protocols. Many multicast

protocols like PIM-SM [23] are based on the notion of soft state. Hence, routers periodically

send state join/prune messages to reflect the latest receiver population for various multicast

groups. If the underlying routing changes are reflected in these periodic messages, the action

of moving the branching points from the core of a domain to the ingress (as in the third)

case described above will have to be carried out in that domain. In addition, depending on

the amount of traffic from particular sources, PIM-SM switches from shared tree to source

specific tree, which can lead to a change in the branching points in one or more domains. In

this case also, the action of moving the branching point from the core to the ingress router

will have to be carried out.

4.5.2 Signaling Protocol for Departure

The protocol for the case when resources need to be deallocated for multicast group G is

very similar to that of the case when they need to be allocated; only allocation of resources

become deallocations. As in the case of allocation of resources, the DRs first contact the

BB responsible for their domain. The BB uses the routing information it has to look up

the ingress-egress router pair serving this receiver in its domain. There are two possible

scenarios. First is that the subnetwork count corresponding to the ingress-egress router pair

is one. This means this was the last receiver group served from this branch of multicast

tree. Second is that the subnetwork count is greater than one, implying that there are

more receivers on subnetworks in this domain or other domains that are being served by

this ingress-egress router pair. In the first case, the resources can be deallocated and the

corresponding entry from the current resource allocation table can be removed. Also, the
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changes made to the functionality of the ingress router of this domain are undone and peer

BB in the path toward the source is signaled to carry out the leave protocol as well. In

the second case, the subnetwork count is decremented by one because resources can not be

deallocated yet and the adequate changes are made to the functionality of the ingress router.

For the second case, the signaling can return from this point back to the DR confirming

that the last receiver’s leave from group G is complete.

4.5.3 Formal Description of Edge-router Branching

In this section, we describe the basic state transitions of all the entities of the M-DS archi-

tecture (with respect to a particular multicast group G and QoS requirements) that undergo

changes with respect to their functionality in the case of the DS for unicast. Such entities

in each domain are: the receivers, DRs, core routers, ingress routers, and the BB.

Receivers A receiver R is in one of the three states at any point of time: READY (ready

to receive data), WAITING (has contacted the DR with group G and QoS information and

is waiting to receive data), or RECEIVING (successfully receiving data). If t denotes the

time, T the event of a time-out that prompts the receiver to contact its DR again, and N

the maximum number of time-outs, the transitions for R are as shown in figure 16. We use

done to denote the transition onto the starting state for all the entities.

G
, Q

oS

done

t >= NT t >= T

successG, QoS

RECEIVINGWAITINGREADY

Figure 16: State transition diagram for multicast receivers.

Designated Routers The state transitions for a DR look almost identical to those of a

receiver. Upon DISCOVERY (multicast discovery), the DR transitions to state WAITING

(by providing its IP address, multicast group G, and R’s QoS requirements to the BB of its

domain). It transitions to state RECEIVING when it starts getting data for R (denoted by
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success). Assuming that the time-out period is T , the transitions are as shown in figure 17.

G
, Q

oS

, IPG, QoS

DISCOVERY

done

t >= NT t >= T

success

RECEIVINGWAITING

Figure 17: State transition diagram for DR.

Core Routers While the IP multicast routing state is being set-up in a particular core

router, it is in state SETUP. If we denote the event of core router discovering it is a

branching point router by BP , depending on whether or not it is a branching point router,

it transitions into state CONTACTING, whereby it contacts the BB of domain to give the

BB its appropriate multicast forwarding table entry. The state when it is receiving data

and processing it according to the M-DS routing rules described in section 4.7 is called

RECEIVING. These states yield the state transition diagram shown in figure 18.

CONTACTING RECEIVINGSETUP

BP data

no BP

done

Figure 18: State transition diagram for the core router.

Ingress Routers An ingress router starts out in state CONTACTED when it is contacted

by the BB for duplicating the packets for multicast group G instead of the original core

branching point router. While in this state the ingress router records information sent

by the BB for use during data transmission for G. Upon receiving multicast data, the

ingress router processes and forwards it according to the rules described in section 4.7 and

transitions into state RECEIVING. The state transition diagram is as shown in figure 19.

38



RECEIVINGCONTACTED

done

data

Figure 19: State transition diagram for the ingress router.

Bandwidth Broker We begin by describing the ten states of a BB that involve either

contacting a peer BB or a DR of its domain, or the states BB is in after being contacted by

a peer BB or the DR of its domain. We use downstream to indicate the direction of data

flow from the source to the receiver and upstream for the direction from the receiver to the

source. The BB is in state CONTACTED/RA when it is contacted by its downstream peer

BB or DR for resource allocation. It is in state CONTACTED/RD when it is contacted for

resource deallocation by the downstream peer BB or DR. The states where it is contacted

for successful allocation/successful deallocation/failed signaling by upstream BB are CON-

TACTED/SA, CONTACTED/SD, and CONTACTED/FS respectively. The corresponding

five states for the case when the BB has to contact its peer BBs or DRs are given by CON-

TACT/RA, CONTACT/RD, CONTACT/SA, CONTACT/SD, and CONTACT/FS, with

the upstream becoming downstream and vice versa. The transitions between these states

occur because of the following events:

• looking up the routing information (RI) to find out the ingress and egress routers in

its domain that the SLA for group G requires, denoted by L-RI.

• looking up the current resource allocation table (CRAT) to find out if appropriate

resource allocations exist between ingress and egress routers for group G, denoted by

L-CRAT.

• expiration of timer that was started to get a response from all the core routers that

act as branching point routers for group G, denoted by T .

• getting a response from the core branching point router (CR) before the expiration of

the timer, denoted by R-CR.
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• availability of an SLA between the ingress and egress routers for G, denoted by A-SLA.

• using the forwarding table entry (entries) sent by the core branching point router(s)

to send M-DS routing information to the new branching point router (the ingress

router), denoted by S -RI.

• updating the count of networks that a particular ingress/egress router pair serves (for

deallocation purposes), denoted by C .

• BB discovering that it does not have any peer BB on the upstream (implying that the

source is in the BB’s domain), denoted by S .

• undoing the routing changes sent to the branching point router (ingress router) and

deallocating resources, denoted by U .

Figure 20 shows the transitions between the ten BB states. The BB can start out in

any of the five CONTACTED states and end up in any of the five CONTACT states. The

figure shows dashed lines for the case when the BB is contacted by the upstream router and

solid lines for when the BB is contacted by the downstream router.

4.6 Limited-core Branching

The edge-router branching technique uses the available unicast SLAs in each domain and

concatenates them to make up end to end multicast SLAs. It exploits multicast scalability

only at the domain level, and hence incurs extra packet hops. This simplifies the core of

the domain but introduces extra packet hops during data transmission. A good trade-off

between making all core routers that are branching points complex versus incurring extra

packet hops is to limit the number of core routers that would be allowed to be branching

point routers. This is the motivation behind limited core branching.

For the edge-router branching technique, we assumed that the SLAs in a domain existed

only between ingress and egress router pairs, for the purposes of the limited-core branching

technique, we assume that additional SLAs have been defined from certain special core

routers to some egress points in addition to the usual unicast SLAs. These special core
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Figure 20: State transition diagram for the BB.

routers are the only ones that can be used as branching points in the domain. We do not

address the issue of optimal placement strategy of special core routers, optimal number of

such routers, and whether special core routers can be dynamically changed when receiver

population changes. That remains an issue of future investigation.

The rest is a simple extension of the three cases we described for edge-router branching.

The manner in which the first two cases, namely when no resource allocations exist and

when exact resource allocations exist and no branching is needed, are dealt with as before.

The only difference is in the way the third case is handled. For every new membership

discovery if the BB finds out that a branching point exists in its domain it first finds out

if there is a special core router configured in its domain that is also a branching point. If

there is, and appropriate resources are available, then for the path subsequent to that core

router in the domain the core’s functionality is enhanced to be similar to that of the ingress

router in edge-router branching. The ingress router can still be configured as a branching
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point router as a fall back mechanism.

Figure 21 shows an example of a domain that runs limited-core branching with one

special core router. In general, the special core routers do not have to be the branching

point routers but in order to keep the routing described in section 4.7 simple we assume that

a special core router acts as a branching point only if it was the original branching point

router. This simplification is necessary because otherwise the routing state for the other

core routers may also to be changed. Figure 21 shows a situation when the receivers have

joined a multicast group G and require exiting at 5 egress routers in a domain. The role of

branching point B4 has been upgraded to that of special core router SC, while the behavior

of other branching points B1, B2, and B3 remains the same as in edge-router branching. As

a result, the ingress router will be instructed to make 4 duplicate copies of packets, one to

reach receivers R1 and R2, and one each to reach R3, R4, and R5. The special core router

will be instructed to make two copies to reach R1 and R2. The special core router has

become more complex than B1, B2, and B3 because it performs a functionality similar to

the ingress router (but for fewer traffic flows) but the number of packets traversing the path

between the ingress I and special core router has been reduced compared to the edge-router

branching.
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Ri  =
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Ei  =  Egress Routers 
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R1

SC, B4
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Figure 21: Different roles of routers in limited-core branching.
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Limited-core branching reaps the benefits of minimized packet hops during data trans-

mission while keeping the technique scalable by limiting the number of special core routers

allowed at the cost of a slight increase in complexity, which is controllable by individual

domains. Any domain can opt to using limited-core branching independently of other do-

mains and can configure as many special core routers as it chooses. This is because both

the edge-router branching and limited-core branching techniques inter-operate.

4.7 Routing Under M-DS Architecture

Both the edge-router branching and limited-core branching techniques require modifications

to the functionality of the routers. Assuming that the special core routers are only allowed

to act as branching point routers for limited-branching technique if they were the original

branching point routers (to avoid changing the multicast state for other core routers in

a domain), the routing concerns for both the techniques are similar. We now describe

the routing details for the edge-router branching technique for the case when branching is

required to graft the new receivers to an existing multicast tree.

The basic idea behind the new routing is to keep the core of the domain simple. As

a result, any branching point is moved from the core of the domain to the ingress. The

ingress router would now need to duplicate packets (and hence act as the new branching

point router) to reach all the receivers instead of the original core branching point router.

The complication arises when these identical duplicate packets reach the original branching

point router in the core of the domain. The technique described in this section helps the

ingress router in putting information in the packets that guides the original core branching

point router to use the multicast routing information it already has and forward the data

packets on the correct outgoing interfaces without any duplication.

Routing Entry Sent by the Core Branching Point Router to the BB During

the signaling for resource allocation when a core router of a domain determines that it is

going to be the branching point router to graft the new receiver of group G to the existing

multicast tree it sends its corresponding multicast forwarding table route entry to the BB of
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its domain. A forwarding table route entry in an IP multicast routing table includes fields

such as source address, multicast group address, incoming interface from which the packets

are accepted, list of outgoing interfaces to which packets are sent, and the corresponding

TTLs (Time To Live).

Routing Information Sent by the BB to the New Branching Point The BB

uses the multicast forwarding entry sent by the core branching point router of its domain

to deduce and communicate the routing information to the new branching point router

(ingress router). It can aggregate multiple forwarding entries for the same multicast group

from different core branching points in doing so. The routing information sent by the

BB contains the multicast address for which the packets have to be duplicated, outgoing

interface number for the ingress router, and the number of entries; one for each original

core branching point router. Each entry contains the IP address of the core branching

point router for identity purposes, the number of duplicate packets that the core branching

point router would have made, TTL, and the individual bit vectors corresponding to each

outgoing interface of the original core branching point router, one each corresponding to

the number of duplicate packets (see figure 22). The BB determines the new branching

point router’s outgoing interface corresponding to the original core branching point router’s

incoming interface using the router configurations it has.

k

(n)

Outgoing Interface
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1

(k) 

Core Branching Router ID

 
Entry 1

New Branching Point Router’s

Entry n

Number of Entries

Multicast Group Address

Bit Vector

Bit Vector
TTL

Number of Duplicate Packets

Figure 22: Routing information for the new branching point router.

The BB fills out the TTL by adding hops between the new branching point router and

original core branching point router to original core branching point router’s TTL. The

number of duplicate packets depends on the number of receivers served out of an outgoing
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interfaces in the original core branching point router’s multicast forwarding table entry.

During data transmission, the ingress router uses the bit vector in the new routing

information to put routing information in IP packets. This routing information is used by

the original core branching point router in deciding which of its outgoing interfaces should

the packet be forwarded on. The values that this bit vector can take will become clear once

we define how the packets will be processed at the core branching point router.

Since all routers have a fast path, for efficiency purposes, we describe two methods of

processing the multicast packets. There is a 2 bit unused field adjacent to the codepoint field

in IP. If the maximum number of outgoing interfaces corresponding to any single incoming

interface in a actual multicast routing table entry is 4, it would be faster to use those 2 bits

to forward packets compared to the other option we will define shortly. In this case, the

bit vector that the BB would send in the new routing information during signaling phase

would be xx111111. Each xx bits correspond to one outgoing interface corresponding a

routing table entry. For example, 00 would be put for packets that are to be forwarded on

interface 1 for the branching point router. Similarly, values 01, 10, and 11 corresponding

to outgoing interfaces 2, 3, and 4. Notice that the actual number of outgoing interfaces

for the branching point router may be more than the number of outgoing interfaces in the

forwarding table route entry.

New Branching Point Router Functionality The ingress router extracts the entries

for each core branching point router from the information sent by the BB. For each entry,

it makes as many packets as indicated by the number of duplicate packets field. To help the

original core branching point router process each of these duplicate packets, we propose a

solution that utilizes the IP options field as shown in figure 23. In each of the duplicate

packets, the new branching point router copies the core branching router ID, and the bit

vector.

Core Branching Router ID1000101 1 Length Bit Vector

Figure 23: New IP option.
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The first bit in the first octet of figure 23 is to ensure copying of this new field in all

fragments. The next two bits define a new option class for DS for multicast, and the last

5 bits define a new option type with number = 1. The second octet contains the length

of this IP option. Following that are the core branching point router identity and the bit

vector.

Core Branching Point Router Functionality Upon seeing a multicast packet, the

original core branching point router extracts the ID field from the IP option field along

with the bit vector. If the ID field matches its own IP address, it processes the packets,

otherwise, it just forwards it without doing anything. The processing of the packets is

simple. The bit vector from the packet (assume of size one octet) can take 256 values, one

corresponding to each outgoing interface of core branching point router. The core branching

point router uses this bit vector and the relevant multicast forwarding table entry for group

G, and maps the outgoing interface in the multicast entry to the bit vector. After the

mapping, instead of making duplicate packets using the multicast entry, it forwards the

packet on that interfaces.

4.8 Performance Evaluation

The proposed techniques move the multicast branching points to the edge of the domains

for scalability, incurring extra packet hops in the multicast tree. Also, they require sig-

naling protocols to be run for membership discovery and termination on subnetworks. For

evaluating the performance we designed simulations to estimate the extra packet hops and

signaling overheads in terms of the number of messages.

The main results of evaluating these overheads can be summarized as follows. First, the

total signaling overhead per membership discovery and termination on subnetworks under

both techniques is similar for all the topologies tested. It varies between 3.75 and 7 messages

per receiver join and is small compared to the average per second routing overhead of 23

messages/second per BGP-4 router [54]. Second, the simplicity of the edge-router branching

technique comes at the cost of extra bandwidth consumption in terms of packet hops during

46



data transmission. The effect is more pronounced when receivers are clustered together.

Third, the minimal controllable additional complexity of limited-core branching technique

compared to edge-router branching saves the extra bandwidth consumption compared to

edge-router branching by about 40%.

4.8.1 Simulation Setup

We used GT-ITM [13] to generate various topologies comprising of 744, 2646, and 6384

nodes each. Compared to the size of the Internet, these topologies seem small, but we

believe that our simulations on these topologies produce results that prove the feasibility of

deployment of both the techniques. The reason for this is the following. Signaling overhead

in the proposed techniques depends on the number of domains in the topologies, not the

number of nodes. In choosing the number of domains in the topologies, we used the results of

a simple traceroute experiment we performed using random destinations across the globe.

Our results indicated that most packets cross between 3 and 5 domains between source

and destination. All the paths in our topologies have these properties. Simulations were

conducted using a custom simulator written in C. It implements Dijkstra’s shortest path

algorithm for multicast routing. The details about the number of transit, stub, and total

domains in these topologies are shown in table 2.

Table 2: Simulation topologies.
#Nodes #Transit domains #Stub domains per #Total domains

transit domain
744 4 3 12
2646 6 4 24
6384 7 5 35

To estimate the extra packet hops and the signaling overhead for both the techniques,

we experimented with two types of placement of receivers, random and clustered. For ran-

dom placement of receivers, we specified the total number of receivers to be placed in an

entire topology. For clustered placement, we specified the number of stub domains the

receivers should be placed in and the number of receivers per stub domain. Our simulator
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implements Dijkstra’s shortest path algorithm for multicast routing. To estimate the band-

width overhead in terms of extra packet hops compared to the multicast routing under both

techniques, we placed the receivers statically. To estimate the signaling overhead for both

the techniques, we experimented with dynamic join and leave of receivers. We varied the

mean time in the group for the receivers and experimented with uniform and exponential

distributions of receivers’ time in the multicast group. All simulations assume a maximum

of one receiver per subnetwork, making the results presented in this section conservative. In

real scenarios there may be more than one receiver on each subnetwork and signaling will

take place only once for the membership discovery and termination in this case. Further,

the simulations assume that all the receivers join the same multicast group, and that a

receiver join request is never denied for lack of resources.

4.8.2 Bandwidth Overhead

Figures 24 (a) and (b) show the percentage extra packet hops (compared to the total hops

using shortest path multicast routing) for various topologies for edge-router branching. The

receivers are statically placed randomly and in clusters. The graph for clustered placement

of receivers is not smooth because the extra hops are closely tied to the actual placement

of receivers. We ran the tests on various topologies for each number of nodes, with similar

results. The overhead is less for random placement of receivers, about 10% extra packet hops

compared to total hops for 140 receivers; compared to about 40% when the same number of

receivers are clustered. This is expected because random placement of multicast receivers

does not lend itself to as much savings in packet hops because of lack of commonality in

the path to the receivers. The overhead does not increase substantially beyond a certain

percentage when more receivers are added to the clustered placement. This is evident from

the fact that in going from 140 to 450 clustered receivers, the overhead only goes from 40%

to 50%. This seems logical because adding more receivers to the same domain after a point

would not increase the overhead further.

Figures 25 (a) and (b) show the percentage extra packet hops for random and clustered

placement of receivers for limited-core branching. The plots show three cases, when 1,

48



0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

10

Number of receivers

P
er

ce
nt

ag
e 

ex
tr

a 
ho

ps

Random Placement of Receivers

6384 nodes
2646 nodes
744 nodes 

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40

45

50

Number of receivers

P
er

ce
nt

ag
e 

ex
tr

a 
ho

ps

Clustered Placement of Receivers

6384 nodes
2646 nodes
744 nodes 

(a) Random placement. (b) Clustered placement.

Figure 24: Percentage extra hops for edge-router branching.

2, and 4 actual branching points are configured as special routers in each domain for the

topology with 6384 nodes. For clustered placement of receivers, configuring 4 branching

points as special routers in each domain brings down the percentage of extra hops to about

30% of actual packet hops under multicast routing, which is about 40% saving compared

to edge-router branching technique. Also, note that configuring more branching points as

special routers for random placement of receivers does not make a difference in the savings.

This implies that the decision about configuring branching point depends on the placement

of receivers.
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Figure 25: Percentage extra hops for limited-core branching.
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4.8.3 Signaling Overhead

To estimate the signaling overhead, figures 26 (a) and (b) show the number of signaling

messages for when the receivers join dynamically. They show it for random and clustered

placement of receivers for all three topologies for edge-router branching. The mean time

between the arrival of receivers in the group for these plots is 60 minutes and the distribution

of receivers’ time in group is uniform. Since signaling is at the domain level and all the

simulation topologies have a similar number of domains in the paths to the receivers the

signaling message overhead is almost independent of the number of nodes in the topology.

As expected, the signaling overhead is more for random placement of receivers than for the

clustered placement. The message overhead for 140 clustered placement receivers is about

50% less compared to similar number of randomly placed receivers. This is so because for

clustered receivers, the signaling does not have to go all the way to the sender because of

the presence of other receivers.

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

1000

Number of receivers

S
ig

na
lin

g 
m

sg
s

Uniform Distribution, Meantime 60 min, Random Receivers, Join Msgs

6384 nodes
2646 nodes
744 nodes 

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

1400

Number of receivers

S
ig

na
lin

g 
m

sg
s

Uniform Distribution, Meantime 60 min, Clustered Receivers, Join Msgs

6384 nodes
2646 nodes
744 nodes 

(a) Random placement. (b) Clustered placement.

Figure 26: Signaling messages for receiver join in edge-router branching.

We experimented with exponential distribution as well with the mean time in group

ranging from 2 minutes to 2 hours, the results were almost the same. Since the protocols

involve a similar amount of signaling overhead for both join and leave of each receiver, the

corresponding plots for the overhead when receivers leave were identical. The signaling in

the case of limited-core branching involves only as many additional messages as the number

of branching points in each domain. Hence, the signaling overhead for it is expected to be

50



similar to that in the case of edge-router branching.

Assume 100 receivers join the same multicast group, one every 2 minutes. From figure 26,

for random placement of receivers, the approximate number of join messages per receiver

is about 7 (700 messages/100 receivers). The corresponding figure for clustered placement

is 375/100 = 3.75. The number of receivers per second is about approximately 1 for both

cases. Using these two numbers for each of random and clustered case, we find that the

number of messages per second is about 7 for the random case and 3.75 for the clustered

case. Each BGP-4 router processes about 23 messages/second on an average [54]. For edge-

router branching, all domains combined that are involved in getting data to the receiver

process between 3.75 to 7 messages per second for our topologies, a small overhead.

The above results on the signaling are conservative because we assume only a maximum

of one receiver per subnetwork. In reality, because of the manner in which IGMP works,

signaling would be carried out once for every membership initiation and termination on a

subnetwork. hence, for subsequent receivers on the same subnetwork, there is no signaling

overhead.

4.9 Conclusion

The DS framework is a scalable way to provide QoS for unicast communication. Dynamic

join/leave of receivers in multicast poses unique challenges in utilizing the DS framework

to provide support for multicast communication. This chapter proposes M-DS, a scalable

architecture that consists of two inter-operable techniques for providing service differenti-

ation for multicast utilizing the DS paradigm. Both the techniques, edge-router branching

and limited-core branching define two signaling protocols each to be run upon membership

discovery and termination on subnetworks. Signaling allocates and deallocates resources

and sets up state in the relevant routers to be used during data transmission. Upon the

completion of signaling, data flows in as in the case of DS for unicast. The edge-router

branching technique exploits the multicast scalability at a domain granularity and moves

all the branching points required to graft new receivers to the existing multicast tree to the

ingress of the domain. The limited-core branching technique allows a limited number of
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branching points to exist in a domain. This introduces a small amount of extra complexity

but exploits multicast scalability in a more effective manner.

Even though both techniques use the IP multicast routing state already set up in indi-

vidual domains for forwarding packets during actual data transmission, incorporating them

in the DS framework requires that the functionality of all the routers be enhanced. But for

actual data transmission, only a few routers would need to use this enhanced functionality.

Simulations show the feasibility of the proposed techniques since they incur modest

signaling and bandwidth overheads. Because these techniques do not introduce any extra

headers in the data packets, they do not involve any per packet bandwidth overhead during

data transmission.
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CHAPTER V

REPUTATION-BASED SERVICE DIFFERENTIATION IN

PEER-TO-PEER NETWORKS

5.1 Introduction

Peer-to-peer (P2P) networks have introduced a new paradigm in content distribution. Each

peer is both a client and a server in these networks. Users are drawn to these networks

due to the ability to locate a wide variety of multimedia content. The popularity of these

networks can be judged by the fact that the query-response traffic in 2000 − 2001 due to

Gnutella comprised about 1.7% of the total traffic in the Internet backbones in December

2000 [44].

P2P networks essentially come in three flavors: 1) centralized P2P networks like Nap-

ster, 2) decentralized unstructured networks like Gnutella and Kazaa, and 3) decentralized

structured networks like CAN [42] and CHORD [51]. All are founded on the fundamental

principle of cooperation among the peers. Getting content from a P2P network involves

two phases: 1) content search and 2) content download. Content search in centralized P2P

networks is facilitated by a central server while it is carried out by the peers themselves for

both the decentralized flavors. Content download in all the flavors occurs directly between

the downloading peer and the serving peer.

Each peer in a P2P network is capable of being a client and a server. Perhaps this inher-

ent notion of equality of peers is one of the reasons why service differentiation issues have

not received much attention from the research community. However, as the population of

these networks increases, issues like free-loading behavior1 make it necessary to differentiate

among peers. The presence of free-loaders is evidenced by several measurement studies of

the deployed instances of P2P systems like Napster and Gnutella. It has been reported [4]

1Free-loaders are peers who only download content but do not serve it to the other peers.
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that at the time of the study, nearly 70% of Gnutella users shared no files, and nearly 50%

of all responses were returned by the top 1% of sharing hosts. Also, the study in [46] quotes

the free-loaders to be about 25% in Gnutella but much less in Napster.

There are two main directions one can pursue in order to provide service differentiation

in P2P networks. First, peers can be explicitly charged money depending on the class of

service they belong to. However, due to the absence of the traditional client-server model

of delivery in P2P networks, pricing issues in these networks are yet to be resolved. Second,

the fact that the peers differ from each other in the services and resources they provide (or

are able to provide) can be exploited. A measure of the latter is generally referred to as the

reputation of the peer and has been explored extensively in various contexts to motivate

participants to cooperate for the common good.

Price and credit-based approaches have been explored in ad-hoc networks for stimulating

cooperation among the nodes [57, 41]. The concept of reputations has been explored toward

the same goal in P2P networks [1, 18, 31, 35, 56, 26]. The basic idea behind these reputation

systems is to assign a reputation to each peer based on the satisfaction experienced by the

other peers from the services it provides to them. While being able to find reputable peers

is beneficial from the perspective of a peer wishing to retrieve content, it may serve as

a disincentive for peers acting as servers to have a good reputation for the fear of being

overwhelmed. An effective service differentiation scheme could serve as a motivation for the

peers to possess good reputations.

Focusing on Gnutella-like P2P networks, this work takes the approach of using peer

reputations to address service differentiation issues in P2P networks. Essentially, Kazaa

uses a similar concept. Its participation level2 can be viewed as a simplified form of a

reputation. The participation level is used to differentiate among the peers in that peers

with a higher participation level are served before others during heavy access conditions.

Assuming that a service differentiation scheme consisting of three levels of service (LoS)

is used, figure 27 shows an example of how the peer reputation scores (RSs) can be mapped

2The participation level is locally updated for each peer based on the number and size of integrity rated
files served by it.
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to various LoSs using parameters a and b. In this scheme, peers for whom RS < a are

eligible for basic LoS. a ≤ RS < b provides enhanced LoS to the peers. Peers with RS > b

receive premium LoS. The parameter a and b are expected to be known to each peer in the

P2P network.

LoSPremium

L
oS

Enhanced LoS

Basic LoS

RS < a

a <= RS < b

b >= RS

Reputation Score (RS)

Figure 27: An example of three levels of service in a P2P network.

The goal of service differentiation is not to provide hard guarantees but to create a

distinction among the peers based on their contributions to the system. The basic idea

being, the more the contribution, the better the relative service. While service differentiation

parameters are well understood and studied in the context of the Internet (e.g. delay, jitter,

bandwidth), they are still to be defined for the P2P networks. Focusing on Gnutella like

P2P networks, this work makes three main contributions: 1) it defines a set of parameters

that are suitable for service differentiation in P2P networks, 2) it proposes SDP, a protocol

to accomplish service differentiation using the proposed parameters, and 3) it identifies a

set of features that are necessary in the reputation system to be used as a basis for service

differentiation.

5.2 Service Differentiation Parameters

Peers carry out three main functions in a P2P network: 1) bootstrapping, 2) content search,

and 3) content download. The overall experience of a peer in a P2P network depends on

the network conditions and the services and resources provided by the other peers during

each of these functions. The network conditions depend on many factors that may not be

controllable within a P2P overlay topology and as a result are not considered in this paper.

Bootstrapping is required to allow peers to join the network. In Gnutella like P2P
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networks, to search for content, a querying peer generates a query with appropriate keywords

and sends it to all the peers that it is directly connected to in the overlay topology. The

peers who process this query reply back if they have the content in their shared directory

and forward the request to the peers they are directly connected to depending on the hop-

count (or the TTL) of the query. This forwarding continues until the TTL specified by the

querying peer is exhausted. Upon receiving the replies, the querying peer selects a peer to

download the content from. At that point, the content download typically uses a HTTP or

a TCP connection with the selected peer.

Next, we describe the set of parameters that can be mapped to each LoS. They are

guided by the factors that create service differentiation during the bootstrapping, content

search, and content download functions in a P2P network; and hence the peer’s perception

of service quality. The parameters described here are based on the salient features of the

widely deployed Gnutella-like P2P networks and the results of the current research on

similar unstructured decentralized P2P networks.

5.2.1 Factors Affecting Bootstrapping

During the bootstrapping process, the type of peers a peer directly connects to in the overlay

topology play an important role in its overall satisfaction from content search and download

functions later on. For example, apart from how cooperative the connecting peers are, their

actual network distance, processing power, memory, bandwidth, and storage capacity are

important factors.

5.2.2 Factors Affecting Content Search

The success of the search phase requires that the other peers be online, agree to search for

the content from their shared directory, and forward the query further depending on the

hop count of the query. The overall experience during this process is impacted by the type,

quality, and quantity of the content other peers place in the shared directory. The following

factors can be used as a basis for service differentiation because they impact the perception

of service for peers during content search:

Number of hops: To search for content, the querying peer sets the maximum number
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of hops in the overlay topology its query would take, by denoting the hop-count. While the

success of the content search phase depends on many other factors as well, the number of

hops plays an important role. Hence, setting a hop-limit could act as a component of the

service differentiation scheme.

Premium content: Peers can choose to classify some of the content they share as

premium content, which they can make available only to peers eligible for certain minimum

LoS. This classification can be done through some system wide guidelines.

Hard to find content: A special utility of the P2P networks for many peers comes

from being able to access hard-to-find content. Although classifying content as hard-to-find

may be based on subjective criteria, peers can potentially reserve the hard-to-find content

only for peers with a certain minimum LoS.

Query caching: Sripanidkulchai [49] found that the popularity of search strings in

Gnutella follows a Zipf-like distribution and that caching a small number of queries results

in a significant decrease in the traffic in the Internet. In order to distinguish among the

peers with various LoSs, the outcome of caching queries may be made available only to

peers with a certain minimum LoS eligibility.

Cached content: Kazaa distinguishes between the functionality of supernodes and the

rest of the peers in its P2P network. Peers with higher bandwidths can choose to become su-

pernodes in a Kazaa P2P network. During idle periods, the supernodes actively query other

peers in the network and cache the content so retrieved. This gives the supernodes access to

additional content and when queries for the cached content arrive at the supernodes, they

can get served faster. For faster retrieval of content in unstructured P2P networks, Cohen

et. al. [17] have also proposed caching strategies. Due to its potential to improve peer

experience, caching could be used to distinguish among peers with different LoS eligibility.

Interest-based locality: By exploiting interest-based locality, Sripanidkulchai et.

al. [50] have proposed an efficient content search solution for unstructured P2P networks.

The basic idea is for peers that share similar interests to create shortcuts to each other.

These shortcuts can then be used to locate content faster. The basic Gnutella content search

paradigm remains as a backup mechanism. In creating such shortcuts, peer LoS eligibility
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may be used as an additional deciding factor.

Load balancing: An enhancement to maintaining a shortcut to peers that share com-

mon interests (as described above) would be to maintain the most recent load for those

peers as well. Such an information can help in avoiding already overwhelmed peers and

potentially get the content faster. The availability of such information however would re-

quire a periodic protocol to assess the load on the peers with similar interests. But if this

information is available, it can be provided to peers eligible for certain minimum LoS during

the content search phase.

5.2.3 Factors Affecting Content Download

Successful content download requires that the chosen peer be online and serve the content

when requested. The quality of the downloaded content is an important consideration in the

overall experience from the downloaded content. The processing power of the serving peer,

its storage capacity, and the bandwidth at which the actual download occurs also contribute

to the satisfaction of the peers interested in the content. A high bandwidth querier peer is

likely to have a better experience with the system if it downloads content from another high

bandwidth peer. During the content download phase, the following factors can be used as

a basis for service differentiation because they impact a peer’s overall experience:

Rate of transfer: During content download from the chosen peer, the rate of transfer

may be dependent on the LoS the downloading peer is eligible for. The basic idea is to

restrict the portion of capacity used to serve the peers with less than a certain LoS. These

restrictions may either be in effect all the time or may be used only during periods of heavy

loads.

Scheduling policy: During periods of heavy load or even otherwise, peers may use

various scheduling policies in order to give priority in serving content to the peers with with

premium LoS over the peers with enhanced LoS. Similarly, they may prioritize enhanced

LoS peers over those with basic LoS eligibility.

and to enhanced LoS over basic LoS.
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5.3 Service Differentiation Protocol (SDP)

SDP enhances the basic functionality of Gnutella-like P2P protocols to include the service

differentiation functionality. It assumes that the peers have immediate access to their own

reputation scores. Assuming that the P2P network stores reputations in a decentralized

manner, one way to accomplish this is through local storage of reputations. However,

security issues in such a storage need to be carefully addressed. Another alternative is to

compute reputations just-in-time from a distributed storage. These issues are described in

detail in section 5.4.

SDP assumes that the mapping of the reputation scores to the LoSs is known to all

the peers in the P2P network. Such a mapping could be statically configured into the

software or could be downloaded from the bootstrapping infrastructure3 when a peer joins

the network. SDP is flexible about the structure of peer reputations. It only requires that

the structure of the reputation scores be known to all peers.

The anonymity issues in SDP are dealt with in a manner similar to those in the popular

unstructured P2P protocols. The details of this and other security issues are discussed in

section 5.6.

5.3.1 SDP Details

During the bootstrapping process, most popular unstructured P2P protocols provide an

option to connect only to high-capacity (in terms of bandwidth, processing power, mem-

ory, and storage) peers. Such high-capacity peers are referred to as supernodes in Kazaa

and ultrapeers in Limewire (www.limewire.com). Additionally, binning scheme of the type

proposed in [43] can be used to allow peers to connect to peers close-by in the Internet

topology. These factors impact the quality of service (QoS) perceived by the peers and can

be incorporated in a service differentiation scheme. In this paper, we focus only on the

service differentiation during the search and download process of the content retrieval.

For the subsequent SDP description, we build on the Gnutella specification [24]. Con-

sequently, all enhancements proposed by SDP are on top of such a protocol and use similar

3The bootstrapping infrastructure used by Gnutella is called GWebCache [27].
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terminology.

5.3.1.1 Content Search:

This section describes how the content search part of unstructured P2P protocols can be

modified to incorporate the service differentiation functionality using the parameters de-

scribed in section 5.2.2.

Search phase 1: The peer who initiates the search request sends its reputation score

along with the Query message. We refer to this enhanced query as Query SDP. It includes

the peer’s reputation score in addition to the standard fields like TTL, hops, search criteria

etc.

Search phase 2: Each peer who receives Query SDP extracts the reputation score.

This score is used to map the peer to the LoS it is eligible for and for processing the

query accordingly. This mapping can be done by using parameters a and b of the type

described in section 5.2. The LoS specific processing is referred to as the searchProcess SDP.

Since the processing is dependent only on the reputation score, SDP does not require any

identification for the querying peer. Also, the peers who process the query do not have to

cache the reputation scores for any other peer in this scheme. This is because the reputation

scores may change over time.

Examples of functions that would be a part of searchProcess SDP are shown in fig-

ure 28. These functions would provide appropriate LoS using the parameters described in

section 5.2.2. Assuming three LoSs implies that there are three separate functions, one for

each LoS. The functions in figure 28 assume that the number of allowable hops for basic,

enhanced, and premium LoS are given by hops basic, hops enhanced, and hops premium

respectively. The basic idea behind these functions is the following. If a peer’s query has

already traversed more hops than it was eligible for, it is dropped immediately. However, if

it has not traversed extra hops but would go farther than should (based on the TTL+Hops),

then appropriate value for the TTL needs to be set. Furthermore, for enhanced and pre-

mium LoS peers, additional lookups are needed for service differentiation.
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After the LoS specific processing, the query continues to be processed per Gnutella guide-

lines. This is denoted by process Query at the end of each of the functions in figure 28. Since

interest-based locality and load balancing parameters from section 5.2.2 require additional

protocols to be run, we eliminate them from these functions. However, if such information is

available, it can be incorporated easily. The functions currently use query caching results,

cached content, premium content and hard-to-find content for differentiating among the

peers.
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Figure 28: Functions for service differentiation during content search.

Search phase 3: Notice from the functions in figure 28 that the LoS specific query

processing may amount to dropping the query. But if the query is not dropped during

search phase 2, peers forward it on their outgoing interfaces according to the Gnutella spec-

ifications. In the case a response is to be sent back to the querying peer after processing the

query, QueryHit SDP is sent. QueryHit SDP is an enhancement to the Gnutella QueryHit

message. It allows peers who reply to optionally put their reputation scores in the response.

This is to help the querying peer make a decision about who to download the content from

based on the reputation of the responders.
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5.3.1.2 Content Download:

This section describes how SDP enhances the content download process in unstructured

P2P protocols to incorporate support for service differentiation. SDP uses the parameters

described in section 5.2.3 for this phase.

Download phase 1: In Gnutella, after selecting a peer to download the content from,

the querying peer connects to the selected peer using a TCP or HTTP connection. Just as

in search phase 1, this phase also requires the querying peer to send its reputation score

while establishing the connection for downloading.

Download phase 2: Before serving the content, the sender peer maps the reputation

score to the LoS the requester peer is eligible for. Once the LoS is decided, the sender peer

picks the appropriate rate of transfer and scheduling policy for the LoS.

The topic of what transfer rates to use and the particular scheduling policies employed

needs more research and is beyond the current scope of this dissertation.

5.4 Desirable Reputation System Features

This section describes how the requirements of SDP translate into guidelines for a reputa-

tion system for P2P networks. It also compares the existing reputation systems for their

suitability in accomplishing service differentiation using SDP. The reputation systems can

be evaluated along the following dimensions:

• Centralized or decentralized: Storing reputations centrally is a reasonable choice

for Ebay (www.ebay.com) and Slashdot (www.slashdot.org) style systems. However,

having to retrieve reputations from a central location is not a scalable choice for SDP

because even one search/download can lead to many peers attempting to retrieve the

reputation of the requester peer.

• Reputation inference: The reputation systems proposed in [1, 18, 31, 35, 56]

store reputations in a distributed fashion and require reputations to be computed on-

demand. These schemes have the advantage of complete decentralization but suffer
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from the following drawbacks: 1) they require cooperation from the peers in perform-

ing computations and storage, 2) latency is introduced in acquiring reputation scores,

3) as each search in SDP requires many peers to have access to the reputation scores,

not having the reputation scores readily available is highly unscalable and 4) the high

peer churn rates observed in deployed Gnutella-like P2P networks may introduce un-

predictable inaccuracy in reputations. As a result, SDP requires that the peers store

their own reputations locally, making it possible to piggyback the reputation values

while conducting the P2P functions. Since each LoS in SDP corresponds to a range

of reputation values, SDP does not require the reputations to be highly accurate, but

they need to be reliable.

• Subjective or objective criteria: In order to keep the reputation computations

distributed, all the existing decentralized reputation systems [1, 18, 31, 35, 56] are

based on a subjective reputations. The recipient peers in these reputation systems

assign a reputation score to the transaction based on their satisfaction from the con-

tent received. Subjectiveness is part of the reason for incurring on-demand reputation

inference overheads. A mechanism that uses objective criteria for computing repu-

tations could not only remove the need for on-demand reputation inference but also

enable incorporating a detailed set of rules to judge a peer’s cooperation in the P2P

network.

• Other features: Reputation scores could be scalar or vector. SDP is indifferent to

the structure of reputation scores as long as all the peers in the system know the

interpretation of the reputation scores they receive. The range of values allowable

by a reputation system is another consideration. Although several of the existing

reputation systems have a limited range of values that peer reputations can assume,

reputation values in most of the proposed reputation systems are non-decreasing. SDP

can adapt to the change in the range of reputation scores in the system by changing

the maping of the LoSs and hence does not prescribe a fixed range of reputation

values.
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5.5 Performance Evaluation

SDP can be evaluated along the following dimensions:

• Effectiveness: the actual differentiation in services received by peers belonging to

different LoSs during the content search and download phases

• Sensitivity to participation: expecting that all peers in the system run SDP for it

to be effective is not possible because peers could be running different versions of the

the underlying Gnutella protocol and also could be malicious. As a result, gauging

the sensitivity of SDP to the extent of participation required from peers is important

• Overheads: an estimation of overheads of SDP due to the enhancements to the

Gnutella Query and QueryHit messages and extra processing on the part of peers

who process the content search and download requests

• Impact of parameter values: the exact values of service differentiation parameters

used while mapping them to various LoSs.

The overheads in SDP involve extra processing and sending of reputation scores along

with the content search and download requests. The bandwidth consumed in sending repu-

tations depends on their structure and the evaluation for these overheads would be specific

to the reputation system used. To understand the impact of parameter values further re-

search is required. As a result, the simulations presented here focus on the first two aspects

from the above list.

To estimate the effectiveness of SDP in providing service differentiation we assume that

parameters like premium content, hard-to-find content, cached queries, and cached files

are constant across all the LoSs. The only parameter that differentiates among peers with

different LoSs is the number of hops their queries are allowed to go. We focus only on the

search aspect and assume that all the peers are running SDP. To test the sensitivity to

participation by the peers during content search we only consider the lack of participation

to mean that the peers are not SDP enhanced. As a result, they process the queries as they

would in the case of Gnutella.
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All simulations assume a three LoS (basic, enhanced, premium) scheme. They also

assume that the peers exhibit greedy behavior in that the number of hops they specify in

their searches exceed the eligibility of their reputation scores. Peers are assumed to stay in

the system for the entire duration of the logs and their reputations do not change during

that time period.

5.5.1 Simulation Setup

We generated connected topologies with peer populations ranging from 5000 to 25, 000.

Each peer in the simulation topologies is connected on an average to about 4 other peers in

the system. Compared to the actual populations of widely deployed P2P networks, these

topologies are small. However, our main goal in the preliminary evaluation presented in

this work is to observe the general trends in the design of SDP-like protocol.

We assume that the total number of files in each topology is the same as the peer

population. The file popularities are Zipf distributed with a parameter of 1.0 and the file

sizes are uniformly distributed between 0-8MBytes. At the beginning of the simulations,

each peer possesses one unique file. As the peers access more files, they cache them and

serve them to other peers. This leads to the file propagation. The cache size at each peer

is limited, implying that peers can not cache any more than a certain number of files.

The requests for files in this system are uniformly distributed among all the peers with an

exponential inter-arrival time of 50 requests/second. The simulation logs are 1 hour long

for each topology.

For the evaluations, we experimented with population sizes of 5000, 10, 000, and 25, 000

peers in the system. We assumed three combinations of the percentage of peers eligible

for basic, enhanced, and premium LoS respectively. These combinations were (20, 20, 60)

(40, 40, 20), and (60, 20, 20). Subsequently, we refer to each of them as the percentage-tuple

for simplicity. The first, second, and third entries of each percentage-tuple correspond to

the percentage of peers eligible for basic, enhanced, and premium LoS respectively. For

each population size and each percentage-tuple, we experimented with various cache sizes

(50-1000 files) and various sets of hop-tuples. Each hop-tuple (i, j, k) corresponds to the
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maximum number of hops the queries for basic, enhanced, and premium LoS peers are

allowed to go respectively. With all other parameters staying constant, the effect of varying

population sizes was that the smaller the peer population in the topology, the more the

successes during content search (and hence lesser failures). This is expected because the

effects of file propagation are visible much sooner for smaller topologies. Also, for each

topology, the results of varying the cache sizes were identical. We now present the results

of varying the percentage-tuple and hop-tuple for the topology with a population size of

10, 000 and a cache size of 1000 files.

Figures 29(a), 29(b), and 29(c) show the effect of hop-tuple and percentage-tuple on the

success of queries for the basic, enhanced, and premium LoS peers respectively. Irrespective

of the particular hop-tuple, the success rates for premium LoS peers are the highest. The

success rates for enhanced LoS peers are better than those of basic LoS but worse than the

premium LoS peers. This shows that for the topologies tested, SDP is able to provide service

differentiation for content search using just the number of hops. Comparing across graphs

for peers belonging to the same LoS respectively, we note that for basic and enhanced

LoS peers, as the percentage of peers eligible for the same service increases, the success

rate deteriorates. This is expected because the presence of more basic and enhanced peers

implies fewer premium peers and less successes during content search. The total effect is

that of lesser propagation of files. Also, as expected, as the number of hops for an individual

LoS increase, the corresponding success rates improve as well.
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(a) %-tuple (20,20,60).
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(b) %-tuple (40,40,20).

1−3−5 2−4−6 3−5−7 1−4−7 2−5−8 1−5−9
0

10

20

30

40

50

60

70

80

90

100

110

%
 s

uc
ce

ss

Hop−tuples

basic
enhanced
premium

(c) %-tuple (60,20,20).

Figure 29: Effectiveness of SDP during content search.
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Figures 30(a), 30(b), 30(c), 30(d), 30(e), and 30(f) show the effect of (lack of) partic-

ipation on the effectiveness of SDP during content search for percentage-tuple (40, 40, 20)

and hop-tuples (1, 3, 5), (1, 4, 7), (1, 5, 9), (2, 4, 6), (2, 5, 8), and (3, 5, 7) respectively. The

non-participating peers were preferentially chosen from peers with lower LoS eligibility since

those peers are likely to lack the motivation to participate. The graphs for percentage-tuples

(20, 20, 60) and (60, 20, 20) were similar.

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

110

%
 s

uc
ce

ss

% peers not participating

Percentage−tuple (40, 40, 20)

basic
enhanced
premium

(a) Hop-tuple: (1, 3, 5).
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(b) Hop-tuple: (1, 4, 7).
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(c) Hop-tuple: (1, 5, 9).
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(d) Hop-tuple: (2, 4, 6).
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(e) Hop-tuple: (2, 5, 8).

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

110

%
 s

uc
ce

ss

% peers not participating

Percentage−tuple (40, 40, 20)

basic
enhanced
premium

(f) Hop-tuple: (3, 5, 7).

Figure 30: Effect of participation on SDP during search.

The first observation from these graphs is that as the difference in hops between basic,

enhanced, and premium LoS increases, so does the difference in the % of successes for

queries. This is expected because a query that traverses more hops has a higher chance of

being successful. Also, as a smaller percentage of peers participates in SDP, the overall trend

in all the graphs is that of decreased service differentiation among the basic, enhanced, and

premium LoS peers. Under the assumption that the peers are greedy, the presence of more
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non-SDP peers means that more peers with lower LoS will be able to get content search

replies from farther away than their LoS justifies. For all the figures 30(a), 30(b), 30(c),

30(d), 30(e), and 30(f), when the percentage of peers not participating increases beyond

30-35%, the difference in service received by peers belonging to various LoSs diminishes

very quickly.

5.6 Discussion of Security and Participation Issues

Decentralization is one of the core strengths of the P2P networks because it makes them

robust to failures. However, the same decentralization makes it hard to enforce rules in

any light-weight manner. As a result, enforcing the service differentiation proposed in this

paper is not possible without incurring high overheads. We now discuss the security and

participation issues for SDP.

Security Issues: Malicious peers can thwart SDP in two primary ways. First, they

may not give better LoS to peers who are eligible for enhanced or premium LoS. Second,

they may collude with other peers and give each other a better LoS than their reputation

justifies. The latter is not a serious issue because peers often interact with a large number

of other unknown peers. However, unless behavior of all peers is tracked, the occurrence of

the first problem can not be eliminated. Current P2P networks do not have any provisions

for isolating misbehaving peers and work on the goodwill of majority of the peers. SDP

functions on the belief that if a peer trusts the reputation of the other peer, it will be willing

to provide them with appropriate LoS. Moreover, the rewards from malicious behavior while

providing service differentiation are limited unlike the one’s that are possible by being able

to assume a good reputation score without earning it.

Another important issues is that of anonymity. Gnutella like protocols do not address

issues related to anonymity. Since SDP does not change the anonymity characteristics of

the underlying protocol, it does not provide any anonymity to the peers. However, since

SDP makes the service differentiation decisions based only on the reputation scores and not

on who sent it, it is independent of whether or not the underlying P2P network provides

anonymity.
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Participation Issues: The lack of participation in SDP may not necessarily arise out

of malicious behavior. Some peers may fail to participate because they may be running

a non-SDP enhanced version of the P2P software. As the evaluation results show, SDP

is relatively insensitive to a small percentage of peers not providing the appropriate LoS.

During the content search phase, the redundancy of results may offset the effect of such

peers because peers who do not send their reputation scores with their search replies may

be avoided for content download.

5.7 Conclusion

In this chapter we presented SDP, a protocol for service differentiation in Gnutella like P2P

networks. Preliminary simulation results show that SDP is able to create service differenti-

ation during content search and that the service differentiation is sensitive to the percentage

of non-participating peers in the system. When the percentage of non-participating peers

increases beyond a certain point, the distinction across peers belonging to various LoSs

vanishes rapidly.

In this work we proposed a set of parameters that can be used by SDP to provide

different LoSs. These parameters can affect the outcome of content search and download in

Gnutella-like networks. More research is required in order to assess the impact of individual

parameters on service differentiation. This work is also preliminary in terms of the mapping

of parameters to the various LoSs.

The eligibility of peers for various LoSs in SDP is decided based on their reputations.

To function efficiently, SDP requires the peer reputations to be universally comparable and

locally stored. Further, the reputations need to be reliable, but not highly accurate. In

chapter 6, we discuss the design of a reputation system that fits these criteria.
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CHAPTER VI

RELIABLE REPUTATIONS FOR PEER-TO-PEER

NETWORKS

6.1 Introduction

The peer-to-peer (P2P) networks like Gnutella and Kazaa can perform large-scale content

distribution without the need for dedicated high-capacity servers. However, among other

issues, these networks suffer from lack of trust and free-loading1. The content quality in

P2P networks suffers due to the lack of trust because a downloading peer cannot be certain

about the quality of content it receives.

The ability to associate reliable reputations with peers that are based on the contribu-

tions of peers in the system can greatly improve trust in P2P networks, and hence content

quality. Reliable reputations are also a basis for the service differentiation protocol (SDP)

described in chapter 5. SDP can serve to motivate free-loaders to be cooperative members

of the P2P community. Further, reputations can be used in making decisions about who

to serve content to and who to request content from. When a peer comes online, it can

potentially use reputations to decide who to directly connect to in the overlay topology.

In this work we investigate the design of a reputation system in which a peer’s reputation

is based on its past behavior. Tracking peer reputations in a centralized P2P network like

Napster is not difficult because the search for content is facilitated by a central server.

The lack of any central authority in the functioning of decentralized P2P networks makes

the problem of accurate reputation tracking a challenging one. In fact, we find that a

certain amount of centralization is necessary to build a viable reputation system. Since

unstructured P2P networks are the most prevalent today, the reputation system proposed

in this work mainly focuses on unstructured decentralized P2P networks like Gnutella, but

1Free-loaders are peers who only download content but do not serve it to the other peers.
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it can easily be adapted for structured decentralized P2P systems also.

Reputations can be tracked either objectively or subjectively. In subjective reputation

systems ([1], [18], [31], [35], [56]) peers use their own opinion about a transaction to as-

sociate a score with the transaction. Subjective reputations have the advantage that the

reputations can be tracked in a completely decentralized manner but they require cooper-

ation from peers in storing the reputation scores. Also, the reputations so computed are

not universally comparable, a requirement of SDP (chapter 5). Inferring the reputation of

any peer in a system that tracks reputations subjectively requires on-demand computations

which could have high overheads and unknown amount of inaccuracy due to unpredictable

peer churn rates. Table 3 highlights the main differences between objective and subjective

reputations.

Table 3: Distinguishing features of subjective and objective reputations.
Subjective Objective
reputations reputations

Decentralized reputation computations possible Yes No
Universally comparable reputations No Yes
On the fly computation required Yes No

for inferring reputations
Cooperation required for storage Yes No
and computation of reputations

Our work takes the approach of defining a set of objective criteria for tracking univer-

sally comparable reputations. The proposed mechanism, debit-credit reputation computation

(DCRC), essentially tracks the resources contributed to and used by the peers during the

normal P2P functions of content search and download by means of non-negative points that

represent a peer’s reputation score. It credits peer reputation scores for serving content and

debits for downloading. It also offers additional credits for query processing and forwarding,

and staying online.

For the reputation scores to be reliable, they have to be updated and stored securely

to prevent malicious peers from thwarting the reputation system. An ideal solution will be

light-weight, completely distributed, and compute trustworthy reputation scores that can

be locally stored. Since a fully distributed solution does not seem possible, we introduce a
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partially distributed solution that uses an infrastructure of reputation computation agents

(RCAs) to offer reliable reputation tracking by defeating attacks from selfish peers2. This

design not only renders reliability to the reputations but also allows reputations to be stored

locally (another requirement of SDP) at the peers for fast retrieval. We formally specify

and verify the reliability properties of the DCRC scheme.

6.2 Details of the Reputation System

In decentralized unstructured P2P networks like Gnutella, content retrieval involves a con-

tent search phase and a content download phase. To search for the desired content, a peer

generates a query with appropriate keywords and sends it to all the peers that it is directly

connected to in the Gnutella overlay topology. The peers who process this query reply back

if they have the content in their shared directory or forward the request to the peers they are

directly connected to depending on the hop count of the query. This forwarding continues

until the hop count specified by the querying peer is exhausted. Once the querying peer

receives all the replies, it selects a peer to download the content from. At that point, the

content download typically uses a HTTP or a TCP connection.

The success of the search phase in Gnutella-like P2P networks requires that the other

peers be online, agree to search for the content from their shared directory, and forward the

query further depending on the hop count of the query. The success of the download phase

requires that the chosen peer be online and serve the content when requested. For successful

content retrieval, the type, quality, and quantity of the content each peer places in the

shared directory plays an important role. The reputation system proposed here essentially

measures each peer’s participation in the system based on these objective factors.

Next, we describe the DCRC scheme which credits peer reputation scores for serving

content and debits them for downloading. Additionally, it offers credits for query processing

and forwarding, and staying online. In a perfect world, each peer’s local software can update

and store its reputation score. However, this simple mechanism could be thwarted by the

2The security threats to reputation tracking arise from peers that are malicious and/or selfish. The goal
of malicious peers is only to attack the system, not to benefit from it. Our focus is on selfish peers whose
goal is to maximize their reputations.
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peers by altering the score computations to their benefit or by tampering with the value

of the stored counter. Our solution to prevent such occurrences is discussed in section 6.3.

For now, for describing how reputations are computed in the DCRC scheme we assume that

the updates to reputation scores take place locally.

6.2.1 Debit-Credit Reputation Computation (DCRC) Scheme

DCRC uses two tunable system parameters: 1) file size factor f , f ∈ integer and 2) time

factor (in hours) t, t ∈ integer. The file size factor, f , determines how many MBytes of

data transfer results in a unit increment to the reputation score and the time factor, t, is

used to determine the granularity at which peer cooperation in the system for sharing and

staying online is rewarded. These parameters ensure that the reputation scores stay within

a certain range of non-negative values. They do so by tuning the system for larger file sizes,

and longer stay in the system. Utilizing these parameters, a peer’s total reputation score is

computed using the following four components:

Query-Response Credit (QRC): The DCRC scheme uses average query-response

message size to credit peer reputations for processing the query-response messages. If the

average query response message size is denoted by QR, the number of points earned for

each query processed are given by:

QR

It has been reported [44] that the average query-response traffic in a Gnutella network

is about .75 KB per second per connection. Also, most connections generated about 15

messages per second. This gives a rough estimate of the average query-response message

size to be 0.00006 MBytes. This value can be used to specify QR.

Upload Credit (UC) and Download Debit (DD): Peers get credit for serving

content and debit for downloading it. For a file of size s MBytes the debit and credit to the

reputation score is given by:

s

f
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Sharing Credit (SC): During the content search phase, in addition to peer availability,

another important factor is the amount of content shared. Some peers may be sharing

hard-to-find content. QRC, UC, and DC may not give any credit to such peers because

by definition, such content may not be heavily accessed. SC is intended to capture this

effect. In practice, it is very hard to implement this correctly in a light-weight fashion3.

But assuming it can be implemented, if a peer shares n files where the size of jth file is

given by sj , at the elapse of each time factor the number of points it will earn are given by:

n∑

j=1

sj

f

The total reputation score for a peer k who processes a query-response messages, facil-

itates b uploads, performs c downloads in d time factors is given by:

Reputation Scorek = (a×QRC +
b∑

l=1

UC l −
c∑

m=1

DDm + d× SC)

where UC l and DDm are the upload credit and download debit for files l and m respec-

tively.

6.3 Reliable Reputation Computations

As the local computation of reputations using the objective criteria described in 6.2.1 are

not reliable, DCRC utilizes an infrastructure of RCAs. We first discuss the assumptions

about the functionality of the RCA infrastructure (section 6.3.1) and the terminology used

(section 6.3.2) before the details ( 6.3.3).

6.3.1 Infrastructure

Gnutella uses an infrastructure of bootstrapping servers [27] to bootstrap new peers into

the network. The functionality of the existing bootstrapping servers can be enhanced to

incorporate the functions required of the RCA infrastructure. For simplicity of subsequent

description, we assume that the RCA infrastructure is a single entity. Issues in the division

of functionality among various RCAs are discussed in section 6.5.

3For this reason for the rest of this paper we assume SC is not provided.
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A peer who is interested in getting its reputation tracked first enrolls itself with the

RCA to get a (public, private) key pair. This distribution of (public, private) key pair can

be thought of as similar to that of public key infrastructure (PKI) in the sense that only

one enrolled identity is permissible per peer4. Alternately, a scalable public key distribution

infrastructure such as the one proposed in [37] can also be used, if one is available.

The digest of a peer’s public key is used to identify it. We assume that the (public,

private) key pair of the RCA is denoted by {PKRCA, SKRCA} and that each peer has

access to the RCA’s public key and that the peers can obtain public keys of other peers in

the system when needed.

The RCA is expected to have a copy of all content served by the enrolled peers for the

purposes of ensuring content reliability. The creators of the content can provide the RCA

with the content when they initialy create it. Further, we assume that the RCA is not

malicious but peers can collude with other peers in self-interest.

The DCRC scheme involves additional overheads to keep the most up-to-date view

of each peer’s reputation which some peers may not want to incur. Also, some peers

may not want to get their reputation tracked for privacy reasons. Existing designs of

these networks do not provide peer anonymity and our goal in this work is not to propose

alternate designs for Gnutella style P2P networks. For these reasons, enrollment in the

reputation computations is voluntary. Peers who choose not to enroll always maintain a

default reputation score of 0, the minimum allowable by the system. Peers who enroll can

enhance their scores by being good citizens of the P2P network. They can also save their

reputation scores across sessions. Thus, a cooperative peer can maintain benefits of its

participation in the system in spite of being off-line for a while.

6.3.2 Terminology

A P2P system comprises of only one type of entities - the peers. All the peers in a P2P

system are treated homogeneously in spite of the heterogeneity because each peer is capable

of performing the task of both a client as well as a server. The introduction of voluntary

4A peer can however generate any number of unenrolled identities.
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enrollment in reputation computations distinguishes between peers that are enrolled and

peers that are unenrolled. With the introduction of the RCA to perform reputation compu-

tations reliably, a P2P system now can be thought of as three types of entities: 1) enrolled

peers, 2) unenrolled peers, and 3) RCAs.

Depending on the stage of the content retrieval and the role of a peer (enrolled or

unenrolled), its designation changes. We refer to the peer that generates the query as

the querying peer/querier in this paper. All the peers that receive and process the query

are called searching peers/searchers. Once the querying peer receives all the replies, it

chooses a peer to download the content object from. At that point, it becomes a down-

loading peer/downloader. The peer that serves the content is referred to as the serv-

ing peer/server. The (public, private keys of querier, searcher, downloader, and server

are denoted by {PKquery, SKquery}, {PKsearch, SKsearch}, {PKdownload, SKdownload}, and

{PKserve, SKserve} respectively.

6.3.3 Details

The reputation tracking in the DCRC scheme is essentially done in two steps: 1) searchers

save proofs of their contributions during content search to collect query-response credit

(QRC) and the RCA saves transaction state about content download that can be converted

into upload credit (UC) for the servers and 2) searchers periodically send QRCs to the RCA.

The RCA processes the QRC for the searchers, UC for the servers, and the corresponding

download debit (DD) for the downloaders. It then sends the encrypted QRCs and UCs as

reputations to each for keeping locally but stores the DDs with itself to ensure they are not

dropped by the recipient peers.

6.3.3.1 Proofs of Peer Contributions

To save the proofs of their contributions, for every query-response message processed during

content search the enrolled searchers save {searcher identity, querier identity, query keywords,

time stamp}SK query as the proof of searching (pSearch).

The RCA facilitates content download for reliability of content delivery. The following

protocol takes place between an enrolled downloader and enrolled server at the time of the
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file download5:

Step 1: The downloader sends a request for content to the server, denoted by DownloadReq.

This message contains {downloader identity, content identity, time stamp} SKdownload
.

Step 2: The server generates a session specific symmetric key called SymKey using the

information in DownloadReq and encrypts the content with it. This encrypted content is

then sent to the downloader as ContentDelivery. Encrypting the content guarantees that

the downloader is not able to access the content unless it has access to the SymKey.

Step 3: The server sends KeyTransfer message which contains {{server identity, down-

loader identity, content identity, time stamp}SKserve , SymKey}PKRCA
to the RCA. Encryp-

tion by PKRCA ensures no one but the RCA is able to decrypt the information and signing

by SKserve ensures that the identity of the server is verified. This message is necessary be-

cause neither the downloader nor the server are trusted entities of the system. As a result,

a trusted third party is necessary in order to ensure a fair transaction between them.

Step 4: After receiving the encrypted content, the downloader sends ContentRcvd message

containing {server identity, downloader identity, content identity, encrypted content digest,

time stamp}SKdownload
. This message confirms that the downloader received the encrypted

content. The time stamp in this message indicates the time at which the downloader re-

ceived the encrypted content. The digest is useful in verifying the integrity of the encrypted

content and can be produced by using an algorithm like MD5 [45].

Step 5: After decrypting the ContentRcvd message from the downloader, the RCA first

encrypts the content locally stored under content identity (using SymKey from the Key-

Transfer message) and calculates its digest. The matching of content identity ensures that

the downloader is not tricked into receiving any other content than the one it selected to get.

We assume that the RCA uses the same algorithm to compute the digest as the downloader.

If the digests match, the integrity of the content is verified.

To complete the transaction between the serving and requesting peers, the RCA can

now pass the SymKey key securely to the downloader. It sends a KeyDelivery message

5It is important to note that if any of the peers are not enrolled, the following exchange does not take
place. This means that by creating additional unenrolled identities peers cannot earn any credit to their
reputations.
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with {content identity, RCA ID, SymKey}PKdownload
to the downloader. Encrypting this

message with downloader’s public key ensures that the message can not be snooped upon

and that only the downloader is able to decrypt it. At this point, the downloader has

received both the content and the SymKey and can decrypt the content.

The RCA does not store the SymKey with itself after delivery. However, it does

store transaction state of the form (downloader identity, server identity, file name, file size,

time stamp, credit processed list) for reputation credit inference purposes. The credit processed list

is the list of peers who have already received the credit. It could have multiple entries for

each peer depending on what type of credit it has already received. For example, the list

could have one entry each for QRC, UC, and DD for each peer. The RCA uses this list to

ensure that peers receive each type of credit only once.

Figure 31 shows the communication between the RCA, searcher, and the downloader in

the above protocol.

RCA 

4. ContentRcvd5.KeyDelivery3. KeyTransfer

2. ContentDelivery

1. DownloadReq

Peer
Serving Downloading

Peer

Figure 31: Protocol for secure content download.

6.3.3.2 Processing at the RCA

Periodically, the enrolled queriers send the pSearchs collected thus far to the RCA. Using

the pSearchs and the transaction state, the RCA processes the QRCs, UCs, and the DDs.

Processing upload credit (UC) and download debit (DD): Using the criteria

prescribed in section 6.2.1, the RCA infers the total UC for the servers and the corresponding

DD for the downloaders. It then updates the credit processed list for the relevant entries

of the transaction state with the identities of the peers that received UC and DD and sends

an encrypted reputation score of the form {RCA identity, time stamp, reputation score,
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server identity}SKRCA
to the serving peers. The encryption allows the peers to store their

own reputations locally without being able to tamper with them. To avoid having the

downloaders drop negative reputation scores, the RCA retains the DDs in the form of debit

state with itself until those peers send some credits for processing.

Processing query-response credit (QRC): Since peers can forge QRCs for the files

that were never downloaded, the QRCs from the pSearchs are not processed until the cor-

responding UCs and DDs are processed, irrespective of when they arrive. Also, the RCA

uses the topology snapshots it maintains while processing the pSearchs. After inferring the

QRCs using pSearchs and the transaction state, the RCA updates the credit processed list

and sends an encrypted reputation score of the form {RCA identity, time stamp, reputa-

tion score, searcher identity}SKRCA
to the peers that sent the QRCs.

Processing sharing credit (SC): Without active monitoring, SC cannot be processed

for the searchers in a manner that gives each peer credit for staying online to serve the hard-

to-find content and the overheads of monitoring could be prohibitive. An alternative is to

use the transaction state to infer how long a peer was online and process the SC. As in the

case of UC and QRC, the RCA updates the credit processed list and sends an encrypted

reputation score to the appropriate peers.

6.3.4 Formal Specification

The formal specification of the DCRC scheme using a version of Abstract Protocol No-

tation [25] is presented in the APPENDIX. It contains a process each for the 5 entities:

queriers, We assume that there are n peers and m distinct files in the system and that the

encryption and decryption are denoted by NCR and DCR respectively.

6.4 Attack Analysis

For peers that behave in self-interest, we prove that the mechanisms to ensure the reliability

of reputations for enrolled peers in the DCRC scheme satisfy the following properties:

1. only peers that contribute to the search and download should be able to collect credit.

2. no downloading peer should be debited unless it receives the content completely.
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3. no serving peer should be able to collect credit without serving the content completely.

4. the credit and debit settlement should occur at most once for each content download.

We divide collusion scenarios into two types: 1) those where peers acting out of self-

interest collude to increase each other’s reputation scores and 2) those where the increase in

one peer’s reputation score results in a penalty to the reputation score of the peer facilitating

it. The above properties are only valid for the first scenario. The peers contributing to the

second type of collusion do not act out of self-interest but do not fall under the category of

malicious peers either. Section 6.5 discusses the implications of the second type of collusion.

6.4.1 Attacks and Actions

To defeat the above security goals an adversary can mount the following attacks to com-

promise the reliability of reputation computations:

• a0: earn credit without doing any work in the system.

• a1: earn credit for useless work.

• a2: earn credit for partial file transfer.

• a3: earn credit instead of someone else (with or without their consent).

• a4: earn credit more than once for the same work6.

• a5: get content without earning a debit.

To launch each of the above attacks, a selfish peer can use one or more actions. These

actions can broadly be divided into 3 categories: 1) identity related, including impersonation

and repudiation, 2) IP address related, including spoofing and TCP hijacking, and 3) message

and content related. Out of these three categories of actions, only the last one can be used to

mount attacks on on the DCRC scheme. The identity related actions are ruled out because

each enrolled peer is uniquely identifiable by the digest of its public key and the process

6Since every credit has a debit, earning credit more than once implies some other peer receives undue
debit.
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of (public, private) distribution is assumed to be safe. The IP address related actions are

not of concern because a peer is identified only through the digest of its public key and is

allowed to legitimately change IP addresses while maintaining the same identity. We next

formalize the definitions of possible message and content related actions that can be used

by the selfish peers to launch attacks on DCRC:

Forgery: Generation of fake messages or content by an enrolled peer in collusion with, or

without another enrolled peer.

Modification: Alteration of messages or content in transit through interception.

Replay: Retransmission of a valid message either by the originator or by another peer who

snooped on the message in transit.

6.4.2 Formal Verification

Figure 32 shows the flow of messages in the DCRC scheme between the querier (q), searcher

(sc), downloader (d), server (sr), and the RCA (r). The content search and download

related messages are shown by solid lines and the debit-credit settlement messages are

shown by dashed lines.
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Figure 32: Interactions among the five entities.

The interactions among the five entities in figure 32 can be divided in three main cate-

gories: 1) between the querier q, searcher sc, and the RCA during content search and the

corresponding credit settlement (denoted by q−sc−r), 2) between the downloader d, server

sr, and the RCA r during content download (denoted by d − sr − r), and 3) between the
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RCA r, downloader d, and the server sr during debit-credit settlement (denoted r−d−sr).

Table 4 shows a listing of possible attacks during each of the three interactions.

Table 4: Attacks possible during each interaction.
a0 a1 a2 a3 a4 a5

q − sc− r X X X
d− sr − r X X X X X
r − sr X X

We use convergence theory to verify the reliability of the DCRC scheme. In convergence

theory, a protocol is called secure if it satisfies the following three conditions [34]:

Closure: In each protocol computation whose first state is safe7, every state is safe.

Convergence: In each protocol computation whose first state is unsafe8, there is a safe

state.

Protection: In each protocol transition whose first state is unsafe, the critical variables of

the protocol do not change their values.

As argued in [34] each protocol satisfies the closure condition. This is because the

protocol states are defined from a valid domain of values and the transitions occur only

when actions whose guards are true are executed. Hence, to formally prove a protocol is

secure, it is sufficient to show that the protocol satisfies the convergence and protection

conditions.

For the three categories of interactions, we now describe how the attacks described

in table 4 are launched using forgery (F), modification (M), and replay (R) and how the

security built in DCRC counters them. In the subsequent discussion and in figure 33, the

safe states are denoted by Si, i ∈ I, with S0 being the initial state for each interaction.

The unsafe states are denoted by Ui, i ∈ I and the actions of forgery, modification, and

replay are labeled as F , M , and R respectively.

7A computation of a protocol is an infinite sequence (p0, p1, ...) of protocol states such that each pair
(pi, p(i + 1)) of successive states in the sequence is a protocol transition. A state is safe if it occurs in any
protocol computation (p0, p1, ...) where p0 is an initial state of the protocol.

8A state is unsafe if it can be reached by some adversary action starting from a safe state, or if it occurs
in some protocol computation (p0, p1, ...) where p0 is an error state of the protocol.
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6.4.2.1 Interaction q-sc-r:

Attacks a0, a3, and a4 can be launched by selfish peers during credit settlement for content

search contribution.

The protocol starts in state S0 when a searcher sends out a query in search for content.

During normal operation of the protocol, the enrolled searchers save pSearchs as a proof

of their work, leading the protocol to move to S1. When these pSearchs are sent to the

RCA, the protocol moves to state S2. Upon receiving the pSearchs, the RCA infers the

query-response credit (QRC) and sends them to the searchers, leading the protocol to state

S3. Finally, when the searchers send acks for receiving QRC, the protocol returns to state

S0.

From S0, the protocol moves to unsafe state U0 instead if selfish enrolled peers save

forged pSearchs and launch attack a0. There are several possibilities for forging pSearchs:

1) peers can guess the key words, time stamps, and the entities involved in valid queries in

the system (given that the number of files and peers in a P2P network are likely to be large,

forging legitimate transactions and their time stamps is not possible), 2) they can snoop on

queries not encountered in their section of the network, or 3) they can obtain information
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about valid queries from other colluding peers. When the forged pSearchs are sent to the

RCA, unsafe state U1 results. However, since the RCA maintains snapshots of connectivity

information, the forged pSearchs fail to earn any credit and the protocol returns to the

initial state S0. In state U1 however, if a searcher sends pSearchs, unsafe state U2 results.

The RCA can identify a valid pSearch from a forged one using the topology snapshots. As

a result, effectively the protocol is in safe state S2 and the normal operation of sending the

corresponding QRC can be carried out, defeating attack a0.

In state S1, selfish peers can launch attacks a3 and a4 by modifying valid pSearchs on

the way to the RCA and by replaying old pSearchs respectively. Either of these actions cause

the protocol to move to unsafe state U3. The transaction state maintained by the RCA

helps avoid replays and the signing of pSearchs rules out the possibility of modification.

The result is that the protocol returns to safe state S1, defeating the attacks. If however,

in U3, a valid pSearch arrives at the RCA, the protocol moves to unsafe state U2. As the

modified and replayed pSearchs fail to fetch credit,the net effect is that the protocol returns

to state S2 and the valid credits can now be processed.

Attack a3 can also be launched in state S2 when QRCs are being sent out. An enrolled

selfish peer can modify a QRC destined for a searcher leading the protocol to an unsafe

state U4. Since the QRCs are signed, modified QRCs are not of any use. Also, not receiving

an ack for the QRC causes the RCA to timeout and the protocol resumes in state S2. It

is important to notice that QRCs can also be snooped upon in transit. However, that does

not cause any interruption to the protocol operation.

6.4.2.2 Interaction d-sr-r:

The interaction between the downloader, server, and the RCA is susceptible to attacks a1

through a4.

The interaction during content download content starts in state S0. When a downloader

sends a DownloadReq to the server, the protocol progresses to state S4. Upon Content-

Delivery, the state changes to S5. The KeyTransfer message leads the protocol to state

S6. When the downloader sends ContentRcvd message, state S7 results. Finally, when the
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RCA sends the KeyDelivery message, the protocol returns to its original state.

To launch attack a5 a selfish enrolled peer can modify the DownloadReq or a selfish

searcher could forge an incorrect DownloadReq to hide its identity to avoid debit. These

actions lead the protocol to unsafe state U6. However, since DownloadReq is signed, the

attack is avoided and the protocol returns to safe state S0. If however, a valid DownloadReq

arrives in state U6, unsafe state U7 results. The RCA identifies such a request and safe

state S4 results.

While in state S4, a selfish server can launch attacks a1 and a2 by delivering incorrect

or partial content through actions F and R and cause the protocol to reach unsafe state

U8. Though the server may not be able to save itself much effort, it may do so in the

event it does not possess the actual content the downloader selected to get from it. In U8,

the selfish server can send the KeyTransfer message to the RCA which results in state U9.

The SymKey in this message may or may not be useful to decrypt the content previously

delivered but that detail is immaterial because the content is not what the downloader

expected to get. When the downloader sends the ContentRcvd message to the RCA with

the digest of the received content, unsafe state U10 results. At this point, the RCA checks

the message digest of the actual content with the one in ContentRcvd and concludes that

incorrect content has been sent to the downloader. The effect is that the downloader times

out waiting for the KeyDelivery message from the RCA and the protocol returns to the

initial state S0, defeating the attacks.

In state S5 after ContentDelivery by a server, a selfish peer can launch attacks a3 and a4

to claim the upload credit (UC) instead of the server (perhaps because it also has the content

denoted by content id). It can do so by forging the KeyTransfer message or replaying an

old one and causing the protocol to enter unsafe state U11. If the KeyTransfer message

was just encrypted, the RCA could not distinguish a valid one from a forged or replayed

message. However, since the KeyTransfer message includes a signature that identifies the

server, downloader, time stamp, and the content id, these attacks will fail and the protocol

will resume in state S5. There is a possibility that a valid KeyTransfer message will arrive

at the RCA in state U11, causing the system state to change to U12. Since the RCA can
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distinguish a valid message from a forged or replayed one, the net effect is for the protocol

to resume in safe state S6.

To avoid debit for the received content, a selfish downloader can launch attack a5 in

state S6. It can do so by forging its identity in the ContentRcvd message, causing the

protocol to enter unsafe state U13. Since in this case, the identity of the downloader in the

ContentRcvd message will fail to match that in KeyTransfer message, this attack will fail

and the protocol will revert back to safe initial state S0.

Since KeyDelivery is encrypted by the RCA, no attack can be launched in S7. It is

also important to note that snooping of ContentDelivery, KeyTransfer, and KeyDelivery is

possible by selfish peers in order to launch attack a5 but can cause no harm to the protocol

because all three are encrypted. As a result, no state changes are required if these messages

are snooped.

6.4.2.3 Interaction r-sr:

Periodically, the RCA starts in state S0 and processes the upload credit (UC) and the

download debit (DD) for the servers and the downloaders using the maintained transaction

state. Upon finishing the processing, it sends the UC to the respective servers, causing the

protocol to enter state S8. When the servers acknowledge the receipt of UC, state S0 is

restored.

Attacks a0 and a3 can be launched by selfish peers by snooping on the UCs in transit or

by modification. Since the UC is signed, snooping does not cause damage to the protocol

operation. However, modification causes the protocol to enter unsafe state U14. When the

UC does not reach the server, the RCA times out waiting for the acknowledgment of the

UC. The result is that the initial protocol state S0 is restored and the RCA can resend the

UC. In any event, both the attacks are defeated.

The specification of the DCRC scheme satisfies the convergence and protection condi-

tions. The convergence condition is satisfied because for every unsafe state Ui, i ∈ I ∃ Si,

i ∈ I. The protection condition is satisfied because the critical variables: transaction state

maintained at the RCA, searcher id, server id, downloader id, content id, and time stamp
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are not modified in any unsafe state.

6.5 Deployment Considerations

We now discus the practical considerations in incorporating the DCRC scheme in the de-

ployed instances of P2P networks like Gnutella and Kazaa.

Multiple identities: Since the enrollment in reputation tracking is voluntary, the

scheme cannot guard against multiple identities. Even enrolled peers who cannot create

more than one enrolled identity can create other identities that are not enrolled in the

reputation tracking. However, since the RCA processes QRC, UC, and SC only for the

enrolled peers, no credit can be earned in the system by the unenrolled identities.

Collusion: In analyzing the attacks possible on the proposed reputation tracking

schemes, we focussed only on the selfish peers. Since the underlying Gnutella infrastructure

itself is vulnerable to attacks from the malicious peers, we chose not to focus on them for

reputation tracking purposes. However, there is a third category of peers that deserves

attention. Certain enrolled peers may be willing to incur debits to their reputation scores

in order to help other targeted peers through collusion. They can do so by agreeing on fake

content downloads. Though the RCA can detect simple collusion of this nature, in general

it cannot prevent a collusion where certain enrolled peers agree to penalizing themselves

for the sake of others. However, given that most peers are expected to be unknown to each

other, an occurrence of such a collusion should be insignificant in practice.

Inaccuracies in reputation computations: There are several sources of inaccuracies

in reputation computations. Since the RCA does not synchronize the processing of pSearchs,

by the time certain peers choose to contact the RCA to obtain the QRCs, the corresponding

transaction state may have been erased due to the upper bounds on memory requirements

for storing it. Similarly, the download debit state maintained by the RCA may be lost

by the time those peers contact the RCA with credit requests. In fact, peers can avoid

debits stored at the RCA by not contacting the RCA with credit requests for a long enough

duration such that the debit state gets erased (although, they will also not be able to collect

any credit for their work in the system in the meanwhile).
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A P2P transaction between an enrolled peer and an unenrolled peer causes the enrolled

peer to be not be able to collect the credit for its work in the system. Thus, the enrollment of

peers in the reputation computations also impacts the accuracy of reputation computations.

The net result of all these sources of inaccuracies is the decreased accuracy of reputation

computations. It is important for the applications using peer reputations as a substrate to

understand these trade-offs.

Reliance on the RCA infrastructure: The DCRC scheme relies on the RCA infras-

tructure for reliable reputation tracking. The deployed Gnutella-like P2P networks depend

on an infrastructure of voluntary bootstrapping servers [27] to allow new peers to join the

system. The existing bootstrapping infrastructure can be enhanced to provide the RCA

functionality. However, since the RCA needs to be trustworthy one cannot depend on

voluntary compliance.

Choosing an RCA: In describing the schemes we assumed that the RCA is a central-

ized entity. Clearly, this assumption is not robust against failures. One way to share the

load among an infrastructure of RCAs is for each RCA to be made responsible for certain

number or types of files. This would distribute the load among the RCAs. The RCAs

dealing with a certain number or types of files can further be replicated for robustness.

However, doing so would require synchronization of transaction state among them.

Consolidation of reputations: Periodically, when the peers send the pSearchs to the

RCA, they collect encrypted and time-stamped reputation scores to be stored locally. For

ease of presenting aggregate reputation scores that the applications using reputation scores

may require, the RCA can perform consolidation of reputation scores.

Though reputations can be saved across sessions, to prevent peers from earning a good

reputation once and never contributing resources again to the P2P system, upper bounds

on the life of reputations need to be defined. These upper bounds can also be used during

consolidation of reputations.

Reputations for new peers: All peers start with a reputation score of 0. The new

peers start earning reputation by placing content in their shared directory or by serving

the downloaded content. When their uploads exceed the downloads, their reputation will
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become non-negative. Further, they can earn QRC for simply being a part of the system.

6.6 Performance Evaluation

For the performance evaluation, we focus on two aspects: 1) overheads of reputation com-

putations in the DCRC scheme and 2) the trade-offs in the accuracy of reputation computa-

tions with the state maintenance at the RCA, percentage enrollment of peers in reputation

tracking, and the frequency at which the RCA processes the debits and credits to reputation

scores.

6.6.1 Overheads

In comparison with the Gnutella protocol, the DCRC scheme incur four types of overheads

for each content download: 1) extra messages during content download, 2) messages ex-

changed periodically between the RCA, searchers, and servers for reputation computation

purposes, 3) extra computations in order to encrypt and decrypt messages using public and

shared key cryptography and in performing hash computations, and 4) crawl overhead for

the RCA in order to obtain periodic snapshots of P2P network topology.

Table 5: Upper bounds on overheads in DCRC.
Search Download Reputation related

Extra messages 0 3 2 + 3
∑h

k=1 nk

Public key
∑h

k=1 nk 5 1 +
∑h

k=1 nk

encryptions
Public key 0 4 1 + 2

∑h
k=1 nk

decryptions
Symmetric key 0 3 0
operations
Hash computations 0 2 0

Table 5 summarizes the upper bounds on these overheads for each download assuming

that all peers in a P2P network are enrolled in reputation computations (the RCA crawl

overheads are not considered). In table 5, the average number of neighbors each peer is

connected to is denoted by n, and the hop-count for queries is denoted by h. We now

describe the entries of the table.
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Extra messages: DCRC does not require any extra messages during content search.

Content download in Gnutella requires a request to download content before the actual

download. In addition to this, the DCRC protocol requires three messages during content

download: 1) KeyTransfer, 2) ContentRcvd, and 3) KeyDelivery.

Using the transaction state, the RCA infers UC and DD periodically. It then sends a

message containing the UC to each server. Including the acknowledgment for this message,

two such messages are required for each content download. This is an upper bound be-

cause if some servers have contributed to multiple downloads in a period their UCs can be

aggregated, bringing the overall messages required in DCRC.

Additionally, up to
∑h

k=1 nk searchers can send pSearchs for collecting QRC for each

download. In practice, searchers collect pSearchs and send them together periodically, so the

average number of messages will be lesser. Sending the corresponding QRCs and receiving

their acknowledgments by the RCA requires 2
∑h

k=1 nk messages.

The first row in table 5 presents the extra messages during search, download, and

reputation computations. The upper bound on the total number of extra messages required

for each successful content download in DCRC is: 3 + 2 +
∑h

k=1 nk + 2
∑h

k=1 nk = 5 +

3
∑h

k=1 nk.

Security related operations: We next turn our attention to quantifying the security

related operations required in the DCRC scheme for each download. In contrast, Gnutella

does not require any such operations. In symmetric key cryptography, encryption and

decryption are symmetric. However, the encryption operations in public key cryptography

are about 100 times slower than the decryption. Digest computations are typically 10, 000

times faster than the public key encryption. Due to the difference in processing for each of

these operations we list these overheads separately in table 5.

In generating the pSearchs each searcher performs one signing operation using its private

key, leading to up to
∑h

k=1 nk public key encryption operations during content search.

Content download in DCRC involves both public and symmetric key operations and also

digest computations. Steps 1 through 5 during content download require 9 public key

operations (5 encryptions and 4 decryptions), 3 symmetric key operations, and 2 hash
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computations.

The RCA decrypts the pSearchs before generating QRCs and signs the QRCs before

sending them. Upon receipts of the QRCs, the searchers decrypt the QRCs. Thus, the

upper bound on the number of public key encryptions and decryptions during content

search are
∑h

k=1 nk and 2
∑h

k=1 nk respectively. Similarly, the RCA encrypts the UC before

sending it to the server and the server decrypts it, leading to 1 encryption and 1 decryption

per download.

6.6.2 Simulation Evaluation of Reliability Trade-offs

Section 6.5 discussed the potential causes for inaccuracies in the reputations of peers com-

puted using the DCRC scheme. We now evaluate the tradeoffs in the accuracy of DCRC

reputation computations with: 1) transaction state maintained by the RCA, 2) percentage

enrollment of peers in reputation computations, and 3) the periodicity at which the RCA

processes the debits and credits to the reputation scores. The simulations assume that only

the UCs, DDs, and the QRCs are processed and do not consider SC.

To evaluate the inaccuracies in reputation computations, we generated 6 hour long

synthetic P2P request logs with exponential inter-arrival time and an average request rate

of 50 requests per second. The peer population in these logs varies from 10, 000 unique peers

to 500, 000. The logs assume that all the peers stay in the system for the entire duration.

The enrollment of peers in getting the reputations tracked varies from 25% to 100%. The

peers access 100 unique files and the accesses to these files are are uniformly distributed.

Referring to the periodicity at which the RCA processes the debits and credits as settle-

ment period, figure 34(a) shows the percentage of the QRC credit lost for a peer population

of 100, 000 because by the time the searchers contacted the RCA with their pSearchs the

corresponding transaction state at the RCA had been erased. The peer enrollment in rep-

utation computations is assumed to be 100% in figure 34(a) and we experimented with the

transaction state at the RCA to be about 25, 000, 50, 000, 75, 000, and 100, 000 file transfers.

As can be seen from the figure, there is a clear tradeoff between the amount of transaction

state maintained at the RCA and the settlement period. The trends for other population
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sizes were similar.

Figure 34(b) shows the impact of percentage enrollment on the percentage of UCs that

could not processed because one of the peers was not enrolled to get its reputations tracked.

We show the results for the logs with a peer population of 500, 000. The results for other

logs were similar. As expected, the percentage of unprocessed receipts peaks when the

enrollment reaches 50%.

In addition to the transaction state, the DCRC scheme requires the RCA to maintain

debit state for peers after processing the UCs and the corresponding DDs. This is necessary

to ensure that peers do not drop the negative reputation scores. The amount of debit state

maintained at the RCA effects the accuracy of reputation computations. Figure 34(c) shows

the effect of settlement period on the percentage of debit lost as a result of the amount of

debit state maintained at the RCA. These results are also for the logs with peer population

100, 000 and an enrollment of 100%. Though the number of entries in the state maintained

are different, the results of figure 34(a) and 34(c) show very similar trends as expected.
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Figure 34: Quantifying the accuracy of reputation computations.

6.7 Conclusion

Reliable reputations can help to establish trust and motivate peers to contribute to the

common good of P2P networks. All of the previous proposals for reputation tracking

in P2P networks have focussed on accomplishing the task in a decentralized manner. A
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consequence of this choice is that the resulting reputations are based on subjective criteria

and are not universally comparable. The latter is a requirement for protocols like SDP,

proposed in chapter 5. Further, reliability issues in reputation computations have thus far

not received much attention.

This chapter proposes a reputation system for decentralized unstructured P2P networks

like Gnutella that uses objective criteria for computing reputations. In order to ensure the

reliability of reputation computations in the presence of peers who act in self-interest and

to allow the reputations to be locally stored we propose a solution that utilizes the RCA

infrastructure. The requirement of trustworthiness for the RCA infrastructure suggests that

a voluntary infrastructure of the kind used for bootstrapping Gnutella clients may not be

sufficient.

Formally verifiable reliability in reputation computations proposed in this chapter comes

at the cost of overheads to the Gnutella system. For applications that require high relia-

bility these overheads may be acceptable. But for other kinds of applications where some

compromise in reliability may be acceptable, these overheads may be an overkill. Chapter 7

is devoted to the discussion of the trade-offs between reliability and overheads in reputation

computations. Using the same objective criteria discussed in section 6.2.1, in chapter 7 we

propose a lower overhead reputation system.
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Appendix: Formal Specification for Strong Reputations

In Abstract Protocol Notation, each entity of the protocol is denoted by a process. Each

process p in turn is defined by a set of constants, inputs, variables, parameters, and actions.

The constants of p have fixed values while the inputs can be read but not updated. The

variables can be read and updated by the actions of p. A parameter declared in a process

is used to write a finite set of actions as one action, with one action for each possible value

of the parameter. Each action of a process is of the form < guard >→< statement >.

The guard of an action is one of the 3 forms: 1) a boolean expression over the constants

and variables of p, 2) a receive guard of the form rcv< message >from q; where q is

another process in the protocol, and 3) a timeout that contains a boolean expression over

the constants and variables of every process and the contents of all channels in a protocol.

An action is executed only when its guard is true and consists of executing the statement of

this action. Details on the types of variables and statements can be found in [25]. Comments

can be added anywhere in a process definition; each comment is placed between the two

brackets { and }.
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process querier[i: 0...n-1]

inp K−1
self , K self : integer; {own keys}

KRCA : integer; {RCA’s public key}
K : array [0...n-1] of integer; {public keys of all peers}

var new query : boolean;

keywords : string;

reply : integer;

par j : array [0...n-1] of integer; {for peers}
begin

new query = true → {new query generated}
keywords := any;

send query(keywords) to searcher[j]; {send to all direct neighbors}
new query := false;

| timeout reply = 0 → {ready to resend query}
new query := true;

end
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process searcher[i: 0...n-1]

inp K−1
self , K self : integer; {own keys}

KRCA : integer; {RCA’s public key}
K : array [0...n-1] of integer; {public keys of all peers}

var timer : boolean;

pSearch : array [0...p-1] of string; {#pSearchs< p}
keywords’, time stamp, credit’, ack : string;

querierID : integer;

reputation : array [0...p-1] of real; {#reputations < p}
par j : array [0...n-1] of integer; {for peers}
begin rcv query(keywords’) from querier[j] →

pSearch[k] := NCR(K−1
,(MD5(K self | querierID | keywords’ | time stamp)));

{save pSearch}
| timeout timer = true →

send pSearch[k] to RCA;

timer := false;

| rcv credit’ from RCA →
reputation[k] := DCR(KRCA, credit’); {save reputation}
send ack to RCA;

end
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process downloader[i: 0...n-1]

inp K−1
self , K self : integer; {own keys}

KRCA : integer; {RCA’s public key}
K : array [0...n-1] of integer {public keys of all peers}

var select, timer : boolean;

content’ : binary;

time stamp, msg’ : string;

contentID, RCA ID, serverID, symKey : integer;

par j : array [0...n-1] of integer; {for peers}
begin

select = true → {a server selected for download}
send downloadReq(NCR(K−1

self , (MD5(K self ) | contentID

| time stamp))) to server[j];

select := false;

| rcv contentDelivery(content’) from server[j] →
send contentRcvd(NCR(K−1

self , (serverID | MD5(K self ) | contentID

| MD5(content’) | time stamp))) to RCA;

| timeout timer = true →
select := true; {resend request}
timer := false;

| rcv keyDelivery(msg’) from RCA →
(contentID, RCA ID, symKey) := DCR(K−1

self , (msg’));

DCR(symKey, content); {decrypt content}
end
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process server[i: 0...n-1]

inp K−1
self , K self : integer; {own keys}

KRIA : integer; {RIA’s public key}
K : array [0...n-1] of integer; {public keys of all peers}

var content : array [0...m-1] of binary;

time stamp, request’, ack : string;

contentID, downloaderID, symKey, credit’ : integer;

reputation : array [0...p-1] of real;{#reputations < p}
par j : array [0...n-1] of integer; {for peers}
begin

rcv downloadReq(request’) from downloader[j] →
(downloaderID, contentID, time stamp) := DCR(K j , (request’));

symKey := DES(contentID | downloaderID | time stamp);

{generate symKey using DES}
send contentDelivery(NCR(symKey, (content[contentID]))) to downloader[j];

send keyTransfer(NCR(KRIA, NCR(K−1self, (MD5(K self )|downloaderID

|contentID|time stamp))|symKey)) to RIA;

| rcv credit’ from RIA →
reputation[k] := DCR(KRIA, (credit’)); save reputation

send ack to RCA;

end
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process RCA
inp K−1

RCA, KRCA: integer; {own keys}
K : array [0...n-1] of integer {public keys of all peers}

var content : array [0...m-1] of binary;
keyRcvd, digestRcvd : array [0...n-1] of boolean;
time stamp, trans his : string
symKey, contentID, serverID : array [0...n-1] of integer;
digest, msg’ : integer;
downloaderID, searcherID : integer;
reputation, credit, debit : array [0...j-1] of real;

par j, l : array [0...n-1] of integer; {for peers}
beginrcv keyTransfer(msg’) from server[j] →

(serverID[j], downloaderID, contentID[j], symKey[j] := DCR(K−1
RCA, (msg’));

if digestRcvd[j] := true →{content digest already rcvd}
send keyDelivery(NCR(K j , (contentID[j] | RCA ID | symKey[j]))) to downloader[j];
digestRcvd[j] := false;
update(trans his); {update transaction history}

fi
| rcv contentReceived(msg’) from downloader[j] →

(serverID[j], downloaderID, contentID[j], digest, time stamp):= DCR(K j ,(msg’));
if keyRcvd[j] := true & digest = MD5(NCR(symKey[j], (content[contentID[j]]))) →

send keyDelivery(NCR(K j , (contentID[j] | RCA ID | symKey[j]))) to downloader[j];
update(trans his);
keyRcvd[j] := false;

fi
| timeout timer = true → {time to process debits/credits}

process(trans his); {timer for bill acks not shown}
reputation[j] := NCR(K−1

RCA,(serverID[j] | contentID[j] | time stamp | credit[j])) {one msg/peer}
if reputation[j]-debit[j] >= 0 →

send reputation[j]-debit[j] to to server[j];
debit[l]; {save corresponding debit for the downloader[l]}

fi
timer := false;

| rcv pSearch(msg’) from searcher[j] →
if match(trans his, DCR(K j , (msg’))) = false → skip {state erased}
| match(trans his, DCR(K j , (msg’))) = true →

send (NCR(K−1
RCA,(searcherID | contentID[j] | time stamp | credit[j]))) to searcher[j]

fi
end
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CHAPTER VII

TRADE-OFFS BETWEEN RELIABILITY AND

OVERHEADS IN REPUTATION TRACKING IN

PEER-TO-PEER NETWORKS

7.1 Introduction

The success of peer-to-peer (P2P) networks hinges on the participation of peers in the

system. Reliable reputations are a desirable feature of these networks because they can

serve as the basis for the incentive schemes to encourage participation and address issues

of lack of trust and free-loading1.

In chapter 5, we described a service differentiation protocol (SDP) for Gnutella-like P2P

networks with the goal of discouraging free-loading. SDP utilizes reputations as a substrate

to accomplish its goal. Chapter 6 proposed a reputation system with features desired by

SDP. Reputations in the debit-credit reputation computation (DCRC) scheme proposed in

chapter 6 are objective and hence universally comparable. DCRC utilizes an infrastructure

of reputation computation agents (RCAs) to track peer reputations reliably. The design

allows for the reputations to be stored locally for fast retrieval.

The reliability of reputation computations in DCRC scheme are formally verifiable.

However, the extent to which the RCA infrastructure is utilized to facilitate content down-

load to ensure reliable reputation tracking introduces an undesirable centralization during

P2P content download. It also creates an unavoidable dependence on the RCA infras-

tructure. The work in this chapter is motivated by these concerns. This chapter explores

the trade-offs between reliability and overheads (and hence the dependence on the RCA

infrastructure) in reputation tracking. Specifically, referring to the reputation tracking in

1Free-loaders are peers who only download content but do not serve it to the other peers.
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DCRC scheme proposed in chapter 6 as strong reputations, this work proposes weak rep-

utations. The weak reputations retain the basic properties of the DCRC scheme, namely,

using objective criteria for reputation tracking and local storage of reputations. However,

they remove the dependency on the RCA infrastructure during P2P content download. The

RCA infrastructure in weak reputations is no longer a bottleneck in normal P2P operations

and needs only be contacted periodically for reputation related computations. Evaluations

show that the change in the functionality of the RCA infrastructure lowers the overheads

of reputation computations. However, the lowered overheads come at the cost of decreased

reliability, which may be acceptable for certain applications.

We also investigate an alternate scheme to compute low overhead (and hence lower

reliability) reputations. The credit-only reputation computation (CORC) scheme uses the

same objective criteria to track reputations as the DCRC scheme and allows the reputations

to be locally stored with the help of the RCA infrastructure. Conceptually, the reputation

tracking in CORC scheme is similar to the weak reputations in terms of the overheads and

reliability. The main difference compared to the DCRC scheme is that the CORC scheme

credits peer reputation scores for serving content but offers no debits2. The expiration on the

scores instead serves as a debit. Just like in the DCRC scheme, the CORC scheme offers

additional credits for query processing and forwarding, and staying online. Though the

CORC scheme has several desirable properties, analysis shows that it is prone to collusion

which makes it impractical.

The basic assumptions about the RCA infrastructure and the terminology used in de-

scribing weak reputations as well as the CORC scheme are the same as in section 6.3. The

only difference being that since the RCA in weak reputations is not involved in content

download, it does not need to have a copy of the content served by the peers. Also, just

as in the case of strong reputations, a peer in weak reputations can choose not to have its

reputation tracked, in which case it will always have a reputation score of 0, the minimum

reputation score allowed by the system.

2As described in chapter 6, the DCRC scheme credits peer reputation scores for serving content and
debits them for downloading.
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7.2 Assumptions

This section reviews the assumptions about the infrastructure and terminology used in this

chapter. These are essentially the same set of assumptions that were described in section 6.3.

A peer who is interested in getting its reputation tracked first enrolls itself with the

RCA to get a (public, private) key pair. The digest of a peer’s public key is used to identify

it. This distribution of (public, private) key pair can be thought of as similar to that of

public key infrastructure (PKI) in the sense that only one enrolled identity is permissible

per peer3. The (public, private) key pair of the RCA is denoted by {PKRCA, SKRCA} and

all the peers have access to the RCA’s public key. They can obtain the public keys of other

peers in the system when needed.

We assume that the RCA is not malicious but peers can collude with other peers in self-

interest. For simplicity of description we assume that the RCA infrastructure is a single

entity.

Due to the enrollment requirement, a P2P system now has three types of entities: 1)

enrolled peers, 2) unenrolled peers, and 3) RCAs. As before, we refer to the peer that

generates the query as the querying peer/querier in this paper. All the peers that receive and

process the query are called searching peers/searchers. Once the querying peer receives all

the replies, it chooses a peer to download the content object from. At that point, it becomes

a downloading peer/downloader. The peer that serves the content is referred to as the

serving peer/server. The (public, private keys of querier, searcher, downloader, and server

are denoted by {PKquery, SKquery}, {PKsearch, SKsearch}, {PKdownload, SKdownload}, and

{PKserve, SKserve} respectively.

7.3 Weak Reputations

This section describes the weak reputations. We begin with a discussion of the design space

for positioning the weak reputations in terms of reliability and the overheads incurred.

3A peer can however generate any number of unenrolled identities.
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7.3.1 Design Space

Figure 35 shows the design space of solutions. The leftmost end of the spectrum corresponds

to minimum overhead solution. The current implementations of Gnutella like P2P networks

which do not have any support for reputation tracking fall here. The rightmost end of

the spectrum corresponds to a hypothetical fool-proof reputation tracking solution which is

capable of guarding against all possible security attacks4. As expected, this is the maximum

overhead solution. Any solution that tracks reputations falls in between these two ends of

the spectrum.

Reputations
None

(also eBay)

WeakKazaa’s

Level
Participation

(hypothetical)
Reputations
Fool−proof

Reputations
Strong

Reliability

Overheads

Figure 35: Spectrum of reliable reputation computation solutions.

Kazaa uses the notion of participation level ([32]) in order to track peer contribution.

Kazaa software locally updates the net MBytes served by each peer. In times when the

request rate is high, the participation level is used to prioritize among downloaders. Though

this solution has very little overhead, it offers no security against selfish peers that know

how to alter the part of their software that computes participation level.

The strong and weak reputations fall in between Kazaa’s participation level and the

hypothetical fool-proof reputation tracking solutions in terms of overheads and reliability.

Both the solutions utilize the RCA infrastructure to varying degrees in offering reliability

to the reputation computations. The weak reputations can conceptually be thought of as

similar to the reputations maintained in eBay in terms of reliability. Buyers and sellers

in eBay can leave incorrect feedback and can also collude. However, the reputations so

maintained are still useful.

4We call it hypothetical because it is resistant against even undiscovered attacks.
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7.3.2 Details

Reputation tracking in weak reputations is also done in two steps, just like in the case of

strong reputations. However, the details differ from those for strong reputations (6.3.3):

1) peers enrolled in reputation tracking now save proofs of their contributions both during

P2P search and download functionalities to collect query-response credit (QRC) and upload

credit (UC) and 2) they periodically send these proofs to the RCA. The RCA processes UC,

the corresponding download debit (DD) and the QRC and sends the encrypted reputations

to relevant peers for keeping locally. Just as in the case of strong reputations, the RCA

stores the DD with itself to ensure that peers do not drop them. We now describe the proof

of contributions saved by the peers and the processing at the RCA.

7.3.2.1 Proof of Peer Contributions

pSearch: For every query-response message processed during the content search, a searcher

peer saves {searcher identity, query keywords, time stamp, querier identity}SK query as the

proof of searching (pSearch), just as in the case of strong reputations.

pServe: For saving the proof of serving (pServe), the following exchange takes place

between the enrolled downloader and the enrolled server peer at the time of the file down-

load5:

• The downloader sends a requester portion of the receipt (RPR) in the form of {downloader identity,

server identity, file name, file size, time stamp}SK download
to the sender peer.

• The server peer verifies the information using PK s and stores {downloader identity,

server identity, file name, file size, time stamp}SK download
}SK serve as pServe. At that

point, it serves the content to the downloader.

7.3.2.2 Processing at the RCA

Periodically, the enrolled peers send the pSearchs and pServes collected thus far to the

RCA. The RCA uses these to maintain transaction state of the form (downloader identity,

5It is important to note that if any of the peers are not enrolled, the following exchange does not take
place. This means that by creating additional unenrolled identities peers cannot earn any credit to their
reputations.
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server identity, file name, file size, time stamp, credit processed list). The credit processed list

is similar to that in strong reputations. Notice that since the RCA does not interfere with

the search and download functionality, as does in the case of strong reputations, it can not

maintain any state by itself. It relies on the pServes to maintain the transaction state about

downloads.

Processing upload credit (UC) and download debit (DD): The RCA in weak rep-

utations uses pServes to infer the UC for the serving peers and the corresponding DD for the

downloading peers. Just as for strong reputations, it then updates the credit processed list

and sends encrypted reputations of the form {RCA identity, time stamp, reputation score,

server identity}SKRCA
to the relevant serving peers. To avoid having the downloaders drop

negative reputation scores, the RCA retains the DDs in the form of debit state with itself

until those peers send some credits for processing, just like in strong reputations.

Processing query-response credit (QRC): Since peers can forge QRCs for files that

were never downloaded, the QRC from the pSearchs is not processed until the correspond-

ing UCs and DDs are processed, even if they arrive before the pServes. After inferring

QRCs using pSearchs and the transaction state, the RCA updates the credit processed list

and sends an encrypted reputation score of the form {RCA identity, time stamp, reputa-

tion score, searcher identity}SKRCA
to the searchers.

7.4 Attack Analysis

Just like in the case of strong reputations, the security mechanisms in weak reputations are

mainly designed to counter attacks launched by enrolled peers that are selfish, not malicious.

The discussion in section 6.5 about enrolled peers that are not malicious or selfish but agree

to suffering a penalty for others’ sake applies equally well to weak reputations.

The signing of pSearchs for QRC and pServes for UC provides protection against message

forgery and modification attacks. The credit processed list maintained by the RCA along

with the time stamps in the pSearchs and pServes guard against message replay attacks.

These ensure that peers can only collect credit once and that only peers that send the

signed pServes and pSearchs can collect the credit. As a result, the last property out of the
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4 properties listed in section 6.4 is satisfied. However, the rest of the 3 properties are not

satisfied for weak reputations because of the possibility of the following attacks:

Collusion to collect QRC: Peers collect pSearchs while processing content search

queries without the intervention of any overseeing authority. The RCA postpones process-

ing of pSearchs sent by the peers until it receives the corresponding pServes. This precludes

peers from generating pSearchs for downloads that did not take place in the system. How-

ever, peers can collude with each other to collect pSearchs (and hence QRC) by supplying

information about the queries that any of them have processed since the RCA does not

have a way of verifying the pSearchs. In practice such a collusion is not worth it for two

reasons: 1) the main issue the reputations help address is that of motiving peers to con-

tribute to the system. Peers have ample opportunity to cooperate in the system and earn

QRC for processing queries they encounter and 2) since the QRC is expected to be very

small as compared to the UC (as described in section 6.2.1) such a collusion would not be

very beneficial.

Limited content reliability: In order to allow the server peers to collect credit for

serving content, the downloaders are required to send the receiver portion of the receipt

(RPR) as described in section 7.3.2.1 before they can receive the content from the server.

This ensures that the downloaders cannot avoid a debit to their reputations if they consume

servers’ resources. However, the exchange for collecting pServe does not protect the down-

loaders from avoiding debits in cases where they do not get the requested content in its

entirety either due to servers’ selfishness or network failures. As as result, there is limited

content reliability for the downloaders in weak reputations. significant cost. To circumvent

the problem in a light-weight manner, the weak reputations allow the downloaders to report

such servers’ to the RCA. Upon receiving many such complaints, such peers may be black-

listed. Though the system offers no advantages for doing so, the misreporting is prone to

peers colluding to malign the reputation of certain targeted peers and is a hard problem to

solve in general.

Though the exchange to collect pServe offers only limited content reliability, including

the identity of the servers in the RPR guarantees that the server peers do not collude with
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other peers to share the RPR. Otherwise, multiple peers could collect pServes and each

could cause a debit for the downloader. The downloader can choose to generate RPRs even

for the transfers that did not take place but doing so would only cause more debits to be

accumulated in its account with the RCA.

7.5 Credit-only Reputation Computation (CORC) Scheme

The CORC scheme is very similar to the weak reputations in terms of overheads and reli-

ability except for the fact that there are no debits (DD) for content download. The time

stamp on the reputations serves to expire the credits earned by searching the content (QRC),

serving the content (UC), and by staying online (SC). CORC also utilizes the RCA infras-

tructure, just like weak reputations and allows the peers to store their reputations locally

for fast retrieval.

Peers collect proof of contributions in the form of pSearchs and pServes in CORC, just

like in the case of weak reputations (section 7.3.2.1). However, the exchange between the

downloader and the server during pServe is slightly different. The RPR for CORC is sent

after receiving the content. This is to prevent the server peers from collecting credits without

actually serving the content. This exchange to collect pServe is more fool proof compared

to that in the case of weak reputations. This is because although malicious receivers in this

scheme can choose not to send the receipt in spite of receiving the content, doing so is not

advantageous to them because CORC offers no debits to downloaders. Further, reporting

such downloaders to the RCA can prevent such occurrences.

Just like in the case of weak reputations, the pSearchs and the pServes are periodically

sent to the RCA. The processing at the RCA in the case of CORC differs from weak

reputations only in that the RCA does not maintain any debit state for the downloaders.

The RCA sends the encrypted reputation scores to the relevant peers and the time stamps

in the UC and QRCs serve to expire the reputation scores.

The lack of debit component in the CORC schemes leads to some important differences

with respect to the weak reputations. Table 6 summarizes the key differences. If a scheme

is better on some count, it is indicated in bold.
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Table 6: Key differences between the CORC scheme and weak reputations.

CORC Weak reputations
Possibility of collusion More Less

Consolidation of reputation No Yes
scores possible

Relative safety of pServe exchange More Less
during content download

RCA needs to maintain debit state No Yes

The main drawback of the CORC scheme is the possibility of mutually beneficial collu-

sion among peers who act in self-interest. This is because the CORC scheme does not offer

debits to the downloader. Colluding peers in CORC can achieve high reputation scores by

transferring a set of files to each other continually. The debit component of DCRC prevents

such an occurrence from happening. Since the RCA maintains transaction state for some

amount of time about transactions, it can potentially run algorithms to detect collusion

among peers to increase their reputation score. This can be done by giving fewer credits if

the same set of peers have many transactions with each other, especially if the files com-

prise a small set. However, determined peers can easily thwart such simple algorithms. The

other aspects of the vulnerabilities of the CORC scheme are similar to the attack analysis

discussed in section 7.4.

The lack of debit component in CORC also gives rise to several other differences, as

shown in table 6. Since the time stamps in CORC are used for expiring the reputation

scores, the reputation scores collected over a period of time cannot be consolidated for

ease of presenting when required. However, the exchange to collect pServe during content

download is relatively more secure in CORC. Further, the RCA in the case of CORC does

not have to maintain debit state.

7.6 Evaluation of Overheads

In comparison with the Gnutella protocol, the weak reputations incur three types of over-

heads for each content download: 1) an extra message during content download, 2) messages
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exchanged periodically between the RCA, searchers, and servers for reputation computa-

tion purposes, and 3) extra computations in order to encrypt and decrypt messages using

public key cryptography. Compared to the strong reputations the weak reputations have

fewer overheads. They do not have RCA crawl overhead or the overhead for symmetric key

operations and hash computations.

We evaluate the overheads for weak reputations in two ways. First, we evaluate the

upper bounds on these overheads. These upper bounds can be compared to the upper

bounds for the case of strong reputations 6.6.1. Second, we do a comparative evaluation of

the overheads between weak and strong reputations through simulations.

7.6.1 Upper Bounds on Overheads

Table 7 summarizes the upper bounds on the extra messages and public key operations

for each download assuming that all peers in a P2P network are enrolled in reputation

computations. Just as in the case of strong reputations, the average number of neighbors

each peer is connected to is denoted by n and the hop-count for queries is denoted by h.

We now describe the entries of the table.

Table 7: Upper bounds on overheads in weak reputations.
Search Download Reputation related

Extra messages 0 1 3 + 3
∑h

k=1 nk

Public key
∑h

k=1 nk 2 1 +
∑h

k=1 nk

encryptions
Public key 0 1 2 + 2

∑h
k=1 nk

decryptions
Symmetric key 0 0 0
operations
Hash computations 0 0 0

Extra messages: Weak reputations also do not have any extra messages during content

search. However, during content download they require one extra message to be sent by

the downloader.

The RCA infers UC and DD periodically using the pServes sent by the servers. It

then sends a message containing the UC to each server. Including the acknowledgment for
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this message, three extra messages are required for reputation inference for each content

download. Additionally, up to
∑h

k=1 nk searchers can send pSearchs for collecting QRC for

each download. Sending the corresponding QRCs and receiving their acknowledgments by

the RCA requires 2
∑h

k=1 nk additional messages.

The first row in table 7 presents the extra messages during search, download, and

reputation computations. The upper bound on the total number of extra messages required

for each successful content download in weak reputations is: 1 + 3 + 3
∑h

k=1 nk = 4 +

3
∑h

k=1 nk. Compared to the strong reputations, there is one less message per content

download.

Security related operations: In generating the pSearchs each searcher performs one

signing operation using its private key, leading to up to
∑h

k=1 nk public key encryption

operations during content search. Content download in weak reputations involves 2 public

key encryptions and 1 public key decryption.

Further, The RCA decrypts the pSearchs before generating QRCs and signs the QRCs

before sending them. Upon receipt of the QRCs, the searchers decrypts the QRCs. Thus,

the upper bound on the number of public key encryptions and decryptions during content

search are
∑h

k=1 nk and 2
∑h

k=1 nk respectively. Further, 1 encryption and decryption each

is required for sending and receiving the UC.

7.6.2 Comparison of Weak and Strong Reputations Through Simulations

To compare the overheads between strong and weak reputations through simulations, we

generated connected topologies with peer populations ranging from 5000 to 50, 000. Each

peer in these topologies is connected on an average to about 4 other peers in the system.

The requests for files in this system are uniformly distributed among all the peers with an

exponential inter-arrival time of 50 requests/second. The simulation logs are 1 hour long

for each topology. The number of hops queries are allowed to go varied from 4 hops to 7

hops. The number of hops were constant for all peers for one run.

We assume that the total number of files in each topology is the same as the peer

population. The file popularities are Zipf distributed with a parameter of 1.0 and the file
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sizes are uniformly distributed between 0-8MBytes. To model a relatively stable state of the

P2P system where some peers cache and serve more files than some others, we modeled the

number of files cached by each peer in the system as a Zipf distribution with a parameter

of 1.0. To create multiple logical small-worlds where some peers serve more files than the

others we created 100 groups of peers for each population size. Within each group the

number of cached files were Zipf distributed.

For the evaluations, we experimented with population sizes of 5000, 10, 000, 25, 000 and

50, 000. With the number of hops staying constant, the effect of varying population sizes

was that the smaller the peer population in the topology, the more the successes during

content search (and hence lesser failures). This is expected because for smaller topologies,

the number copies of files in the system are more. Since our goal is to compare the strong and

weak reputations for their overheads, as long as they are both tested under same conditions

the conclusions are not expected to change.

We now present the results of the topology with 50, 000 peers where each query is

allowed to go 7 hops. The settlement period (the periodicity at which the RCA processes

the reputation related debits and credits) varies between 600 seconds to 3600 seconds for

the graphs shown in figures 36(a), 36(b), 36(c), and 36(d). Figure 36(a) shows the difference

in the number of total extra messages in the system between strong and weak reputations.

Figure 36(b) and 36(c) show the difference in the total number of encryption and decryption

operations between the two schemes respectively. Figure 36(d) shows the total number of

symmetric key operations and hash computations in the system for strong reputations.

Weak reputations do not have this overhead. The RCA crawl overheads required in strong

reputations were not analyzed.

In all the graphs the total overheads as well as the difference in overheads between strong

and weak reputations increases with the increase in settlement period. This is because the

number of total downloads increase with the settlement period, leading to higher overall

overheads on the system. Further, the downloads contribute most to the difference in

overheads between strong and weak reputations, which leads to more divergence between

strong and weak reputations.
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(b) Number of public key encryptions.
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(c) Number of public key decryptions.
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Figure 36: Overheads of strong and weak reputations.

Figures 37(a) and 37(b) show the affect of varying hops on the overheads for strong and

weak reputations for topologies with 10, 000 and 50, 000 peers respectively. The settlement

period was set to 2400 seconds for these graphs. As expected, with increase in the number of

hops the queries are allowed to go, the overheads increase. Also, the difference in overheads

between strong and weak reputations stayed constant.

7.7 Conclusion

The strong and weak reputations proposed in chapters 6 and 7 require the presence of a

trustworthy RCA infrastructure to ensure reliability in reputation computations. Existing
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Figure 37: Effect of varying the number of hops.

Gnutella-like P2P networks also utilize a bootstrapping infrastructure to facilitate peer join

in the network. However, the requirements on the bootstrapping infrastructure are much

less stringent and voluntary compliance is sufficient. The requirement of a trustworthy RCA

infrastructure in the case of strong and weak reputations amounts to changing the basic

nature of a P2P network.

While many proposals to track peer reputations in P2P networks are available, to our

knowledge this is the first work that explores the trade-offs in reliability and overheads in

reputation tracking. Though the strong reputations proposed in chapter 6 track reputations

with formally verifiable reliability, they introduce a centralized bottleneck during content

download, require the RCA infrastructure to crawl the P2P network to maintain snapshots

of the topology, and incur higher overheads on the underlying P2P network compared to

the weak reputations. The RCA infrastructure in weak reputations on the other hand is

not a bottleneck for normal P2P operations of search and downloads and only needs to be

contacted periodically. Applications that utilize peer reputations need to understand these

trade-offs in overheads and reliability in reputation tracking.

We considered another lower overhead (and hence lower reliability) reputation tracking

scheme, the credit-only reputation computation (CORC). Though it offers certain advan-

tages over the weak reputations, it suffers from collusion by selfish peers and is impractical
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from the standpoint of further consideration.
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CHAPTER VIII

SUMMARY OF CONTRIBUTIONS

Quality-consciousness in large-scale content distribution technologies can significantly en-

hance the overall experience of the users of these technologies. This dissertation focused

on the architectures and mechanisms to enhance multicast and peer-to-peer content distri-

bution through quality-consciousness. In particular, it addressed the following aspects of

quality-consciousness: 1) client latency, 2) service differentiation, and 3) content quality.

The contributions of this dissertation under each of these categories are summarized in

sections 8.1, 8.2, and 8.3. Section 8.4 discusses several future work directions that arise out

of this dissertation.

8.1 Client Latency

Previous research analyzing access logs for multimedia servers indicated that the server load

is highly variable. This variation is caused by the dynamic nature of a small percentage

of popular files. To test the conjecture that the phenomenon may not be restricted to

multimedia files but may occur for a variety of content in the Internet, we collected web and

FTP logs from Georgia Tech’s servers. Analysis of these logs confirmed the conjecture that

a small percentage of files with variable access patterns cause most of the load variability

for the servers, irrespective of the content type and protocol used to retrieve it.

Guided by the file dynamics observed in the collected logs, we generated three synthetic

multimedia server logs with varying number of hourly accesses to the multimedia server.

The evaluation of these logs for client latency and reneging of requests led to the following

contributions1:

• We concluded that during the periods when a small percentage of popular files exhibit

dynamic access profiles, all available multicast scheduling schemes favor the dynamic

1This work appeared in ICC 2003.
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files, giving them much lower client latency compared to the times when they have

constant accesses. They do so at the cost of penalizing the less popular files that have

not experienced a change in access pattern. Also, the reneging during the periods of

higher accesses is very high.

• We proposed a novel multicast scheduling scheme called M inimum W aiting T ime

(MWT) that provides lower client latencies to the files that do not have dynamic

profiles, while maintaining the response time for the dynamic files during variable

access conditions. It does so by ensuring a minimum waiting time for the dynamic

files during heavy access conditions. MWT is fair to all the files in terms of response

time. It reduces the reneging of requests due to better batching of requests, leading

to a better server resource utilization.

8.2 Service Differentiation

The service differentiation aspect was addressed for multicast as well as P2P networks. The

contributions for each of them are:

8.2.1 Service Differentiation for Multicast:

This dissertation proposes a scalable architecture called M-DS (multicast-DS) to provide

service differentiation for multicast utilizing the differentiated services (DS) framework2.

The architecture uses one of two interoperable limited branching techniques, namely, edge-

router branching and limited-core branching. The edge-router branching technique exploits

the multicast scalability at a domain granularity and moves all the branching points required

to graft new receivers to the existing multicast tree to the ingress of the domain. The limited-

core branching technique allows a limited number of branching points to exist in a domain.

This introduces a small amount of extra complexity but exploits multicast scalability in a

more effective manner.

M-DS preserves the DS scalability, does not incur any per-packet overhead due to extra

headers in data packets, and routes packets using the IP multicast routing tables that are

2This work appeared in IC 2002.
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already set up in individual domains, albeit by enhancing the router functionality. Perfor-

mance evaluation through simulations in terms of signaling overhead and extra bandwidth

required shows that it is practical to include the proposed techniques in the DS framework.

8.2.2 Service Differentiation for P2P Networks:

Service differentiation can be very useful in dissuading free-loading in P2P networks. We

developed SDP, a protocol for service differentiation in decentralized unstructured P2P

networks like Gnutella and Kazaa that utilizes peer reputations as a substrate. The goal of

service differentiation is not to provide hard guarantees but to create a distinction among

the peers based on their contributions to the system. The basic idea being, the more the

contribution the better the relative service.

Specifically, this work makes the following contributions3:

• The service differentiation parameters are well understood and studied in the context

of the Internet (e.g. delay, jitter, bandwidth) but they are still to be defined for the

P2P networks. This work defines a set of parameters that can be used to create

service differentiation in P2P networks. These parameters affect the content search

and download functions of P2P networks.

• It proposes service differentiation protocol SDP. SDP uses service differentiation pa-

rameters and accomplishes the goal by enhancing the Gnutella specification. A pre-

liminary evaluation of the service differentiation achieved during the content search

phase shows the promise of the approach.

• It identifies a set of features necessary in a reputation system so that the reputation

system can be used for the application of service differentiation.

8.3 Content Quality

Reliable reputations are useful in establishing trust in P2P networks and hence in improv-

ing content quality. They can also be used as a substrate for SDP proposed in chapter 5.

3This work appeared in NGC 2003.
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Concentrating on Gnutella-like P2P networks, in chapters 6 and 7, we proposed two differ-

ent schemes of tracking peer reputations that possess the properties desired by SDP. The

schemes utilize objective criteria for updating peer reputations, making peer reputations

universally comparable. Most of the other existing proposals for reputation tracking in

P2P networks have focused on accomplishing the task in a decentralized manner. Even

though the decentralized solutions are more in-tune with the spirit of P2P networks, they

themselves require cooperation from the peers in the system-the very problem incentive

techniques that utilize reputations try to solve.

In order to secure the updates to reputations from peers who act in their self-interest,

a partially distributed approach utilizing the RCA is proposed. The use of the RCA infras-

tructure allows the reputations to be stored locally at the peers which is another property

desired by SDP. Specifically, the contributions of chapters 6 and 7 are4:

• The reliability issue in reputation tracking in P2P networks has so far only been

addressed in an ad-hoc manner in the existing research literature. We formally ver-

ified that the reputation tracking in strong reputations (referred to as the DCRC in

chapter 6) can function correctly in the presence of selfish peers in the system.

• Due to the inherent decentralization in the P2P networks, a low overhead method

to track accurate reputations does not seem feasible. We evaluated the trade-offs

in the accuracy of reputation computations in the proposed scheme with the state

maintenance at the RCA, percentage enrollment of peers in reputation tracking, and

the frequency at which the RCA processes the debits and credits to reputation scores

in chapter 6.

• The issue of overheads in reputation tracking had also not been addressed before this

work. The overheads incurred by reputation tracking could compromise the scalability

of the underlying P2P network. The reliability of strong reputations comes at the

cost of introducing a centralized bottleneck during content download, and additional

overheads. In chapter 7, we proposed weak reputations that trade some reliability in

4Parts of this work appeared in NOSSDAV 2003.
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reputation computations for lower overheads. Analytical evaluation and simulations

show that the overheads and reliability trade-offs in weak reputation are more practical

for potential deployment.

• We considered another lower overhead (and hence lower reliability) reputation track-

ing scheme, credit-only reputation computation (CORC). Though it offers certain

advantages over the weak reputations, it suffers from the possibility of collusion by

selfish peers and is impractical from the standpoint of further consideration.

8.4 Future Directions

Some of the future directions arising out of the work in this dissertation are:

• On-demand P2P overlays have been explored recently [47] to handle large-scale con-

tent distribution. For flash crowds, server may be the best place to put in the necessary

measures. Application layer multicast using the MWT algorithm proposed in chap-

ter 3 is worth exploring either stand-alone or in conjunction with on-demand P2P

overlays proposed in [47] to handle flash crowds.

• The M-DS architecture proposed in chapter 4 can provide scalable service differen-

tiation for IP multicast. It has been argued that multicast functionality should be

provided as an application layer enhancement. An architecture similar to M-DS but

for application layer multicast is worth a consideration.

• Chapter 5 proposed a set of parameters to be used for service differentiation using SDP.

Quantifying how each or a set of those parameters affect the service differentiation

perceived by the users would be a useful study to undertake. It would help determine

which factors should be incorporated in SDP.
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