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Abstract—The problem of simultaneous localization and map-
ping (SLAM) is addressed using a graphical method. The main
contributions are a computational complexity that scales well with
the size of the environment, the elimination of most of the lineariza-
tion inaccuracies, and a more flexible and robust data association.
We also present a detection criteria for closing loops. We show how
multiple topological constraints can be imposed on the graphical
solution by a process of coarse fitting followed by fine tuning. The
coarse fitting is performed using an approximate system. This ap-
proximate system can be shown to possess all the local symmetries.
Observations made during the SLAM process often contain sym-
metries, that is to say, directions of change to the state space that
do not affect the observed quantities. It is important that these
directions do not shift as we approximate the system by, for ex-
ample, linearization. The approximate system is both linear and
block diagonal. This makes it a very simple system to work with
especially when imposing global topological constraints on the so-
lution. These global constraints are nonlinear. We show how these
constraints can be discovered automatically. We develop a method
of testing multiple hypotheses for data matching using the graph.
This method is derived from statistical theory and only requires
simple counting of observations. The central insight is to examine
the probability of not observing the same features on a return to
a region. We present results with data from an outdoor scenario
using a SICK laser scanner.

Index Terms—Autonomous navigation, data association, local-
ization, mapping, mobile robots, nonlinear estimation, simultane-
ous localization and mapping (SLAM).

I. INTRODUCTION

THE problem of simultaneous localization and mapping
(SLAM) has a robot trying to localize itself to a map while

it concurrently is creating the map. SLAM is a widely studied
problem [1] that initially was studied using an extended Kalman
filter (EKF) [2]–[5]. However, the EKF has some shortcomings.
First of all, the algorithm has quadratic complexity with respect
to the size of the map. This problem has been solved in a number
of ways [6]–[9]. However, the main problem with the EKF is
that long before the computational cost becomes problematic,
the map is likely to become inconsistent due to nonlinear effects
[10], [11]. The linearization also makes it difficult to impose
global constraints. One approach is to use a pose graph and
impose the constraint on the edges of the graph as done in [12]
using scan matching to set the links between poses. For us, a
map is a set of features and their locations. These features are
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observed using some sensor attached to a robot, for instance, a
SICK laser scanner or a camera. The features might be walls,
lines, points, etc.

The map estimation problem involves topological and geo-
metrical aspects. The topology specifies the global connections
in the map, whereas the geometrical part is related to the local
poses of the features and the robot. Rather than integrating these
two aspects directly in a homogeneous estimation problem, we
have decided to adopt a graph-based approach that in some as-
pects is reminiscent of the work by Lu and Milos [12]. Also
relevant here are works by [13]–[16].

In our Graphical SLAM method, the map is represented as a
graph of features and robot poses linked by energy nodes cor-
responding to odometry and feature observations. The SLAM
problem is posed as an energy minimization problem, which is
solved iteratively using relaxation. The energy is computed as
the negative of the log-likelihood of the measurements.

The extended information filter (EIF) [17], can be thought of
as a linearization approximation of our graph. The EIF infor-
mation matrix can be represented by edges in a graph where the
state is represented by the nodes. The robot pose at earlier times
is marginalized out, i.e., it is replaced by its expectation value as
a function of the remaining state variables and only the current
pose is kept in the graph (see Fig. 1). This creates a densely
connected graph for which it is computationally expensive to
compute the expected state.

In our graph, the edges are replaced by energy nodes connect-
ing the state nodes. These energy nodes are not constant numbers
but rather functions. The information matrix corresponds to the
Hessian of the energy in our theory. This Hessian is recalcu-
lated upon each change of the state. Thus, linearization errors
are much smaller than in EIF and EKF. Also, our graph does
not become densely connected as we chose to not marginalize
out all the pose nodes. By leaving some pose nodes, we achieve
sparseness without any of the consistency problems of sparse
EIF (SEIF).

In [18], a graphical method is presented for fast computation
of the SLAM solution based on organizing the computations
into a tree. Each node of the tree represents the contributions
from a subset of the measurements. By carefully building up the
tree and eliminating state variables as one goes, the dimension-
ality of the nodes is about constant and thus a log N complexity
is achieved. The tree map method and the method which we
shall present share the same divide-and-conquer approach to
the global optimization problem. The tree map method carries it
further to really huge maps, while we concern ourselves some-
what more on the practical aspects of accuracy for moderately
sized maps.

Another closely related work is [19]. Their approach is to
form a hybrid map with fine detail in local maps and a much
coarser graph giving the topology. Each node of their graph is
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Fig. 1. Progress of the EIF is illustrated graphically. Here, the nodes for the
robot poses are marginalized out at each step (filled arrowheads) leading to a
densely connected graph of feature nodes and the current pose.

a local map. The local maps are small enough so that problems
with linearization do not occur. The larger scale loop constraints
are imposed on the graph in a way that is analogous to our coarse
adjustment of the graph. For them, features from different local
maps remain different and need not be made “consistent.” In
our approach, we try to bring the individual common features
from different star nodes into a best common position. It can be
questioned whether this is needed and, perhaps, the local map
approach is sufficient for applications.

In [20], the pose chain graph is solved by a method of
marginalization of all poses not directly involved in the loop
constraints. This greatly simplifies the calculation when there
are very many loops in the graph. As in the previous two works,
features are not directly part of the graph and no attempt is made
to force overlapping regions to be identical. Marginalization is
also a part of our method, but we do not look at such extreme
numbers of loops and do not need to carry out the marginaliza-
tion as far.

Another major issue in SLAM is data association. This is
the problem in each step to match recently observed features.
When closing a loop, there can be a significant difference be-
tween the map and the observed features, which is a challenge.
One strategy is to address this through the use of expecta-
tion maximization (EM), as presented in [21]. The decision
to close a loop can be evaluated using the joint compatibil-
ity test [22], [23], when the state covariance matrix is avail-
able. An alternative solution to these problems was proposed
in [24].

The linearization problems of some SLAM methods are
avoided by using an explicitly nonlinear energy formulation.
This energy is minimized by iteratively linearizing around the
current solution. In this way, the system is always linearized
around a single and current state, which may be far from some
of the intermediate states.

The presented approach has a time complexity that is inde-
pendent of the size of the map, as long as new areas are being
explored. A return to a previously visited area requires a more
expensive update to be done to ensure global consistency. The
map is held locally consistent by an energy relaxation proce-
dure, but global consistency requires some special treatment. A
final advantage is that data associations can be changed at any
time during the process.

The basic feature representation is presented in Section II,
and the overall graphical model is presented in Section III. The
stepwise updating is presented in Section IV. Through simpli-
fication of the graph, as presented in Sections V and VI, the
complexity can be reduced. This simplification can be utilized
after detection of loops (Section VII) for imposing topological
constraints as presented in Section VIII. The methodology has
been evaluated on a significant number of scenes, both in- and

outdoor. Example results for outdoor scenes are presented in
Section IX. Finally, the conclusion and discussion are presented
in Section X.

II. FEATURE REPRESENTATION IN THE M-SPACE

Observations made during the SLAM process often contain
symmetries, that is to say, directions of change to the state space
that do not affect the observed quantities. It is important that
these directions do not shift as we approximate the system by, for
example, linearization. To this end, we would like to be able to
explicitly represent and separate out the symmetries of our mea-
surements. Our feature representation is the measurement sub-
space or simply the M-space [25], [26]. The features are param-
eterized by a set of coordinates {xf}, which have well-defined
transformation rules under translations and rotations. So, ifxo =
T (xf |xr) are the feature parameters in a new reference frame,1

which is parameterized by xr, then changes to these coordinates
satisfy

δxo = Jofδxf + Jorδxr. (1)

The J ′s are the Jacobians of the transformation.
The features are observed by taking measurements. These

measurements then give us some information on some direc-
tions in the feature parameter space. That is to say, we gain
information in a subspace of the full feature space. It is the
union of the subspaces from all the measurements that consti-
tute the M-space. Perturbations in these directions (notated as
δxp), are projected from changes in the parameter space δxf by
the B matrices.

δxp = B(xf )δxf (2)

δxf = B̃(xf )δxp (3)

Ipp = B(xf )B̃(xf ). (4)

The Ipp is the identity matrix in the measurement subspace.
The idea is to use the measurements to calculate a δxp and,

then, the previously-mentioned equations to get changes to the
xf . An example of a measurement symmetry is a measurement
of a line feature where only the angle and perpendicular distance
to the line are measured. These observations then are invariant to
changes in the length of the line. The M-space in this case is the
movement of the two endpoints perpendicular to the line. The
B matrix will have two rows that project out these directions of
movement.

III. THE SLAM GRAPH

We have introduced graphical SLAM in [26] and [27]. The
graph represents the likelihood of our measurements and data as-
sociations. It is built up from state nodes and energy nodes where
each edge runs between a state node and an energy node (see
Fig. 2). The simplest state nodes are pose nodes that represent

1Here the notation T(. . .) is used to signify a transformation of coordinates
to a new rotated and translated basis. The subscript r is used for the transforma-
tion’s coordinates (often the robot sensor frame), and o is used for the feature
coordinates in the new frame (often some observation frame).
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Fig. 2. This shows how a graph is built up. The lighter pose nodes are labeled P,
the feature nodes F. The darker smaller circles are the energy nodes representing
measurements. We, sometimes, focus attention to the subgraph of just pose nodes
and the energy nodes connecting them. This subgraph is shown with heavier
edges here.

the state of the robot and sensor poses at some point in time.
Other state nodes represent features. An energy node calculates
an energy, based on the state of all its attached state nodes. This
energy originates from measurements of the relative position of
the state nodes. If the measurements2 η obey some probability
distribution, given the states P (η|xf ), then the energy is given
by

E(xf , η) = − log(P (η|xf )) − Λκ (5)

Here, κ is 1, if the measurement is matched to an existing feature
and 0 otherwise. The Λ then gives some energy gain for using
existing features to explain new measurements. Thus, if one
finds that the energy decreases after adding an energy node, the
match can be considered to be correct. One can test various
combinations of data associations by attaching edges between
nodes in the graph.

The Λ term arises from an assumption that the priori distri-
bution over the domain of possible maps is e−ΛNf , where the
number of features in the map is Nf . In other words, we intro-
duce a bias for simple maps. In practice, the Λ enters the data
association in the same way as a threshold on the Mahalanobis
distance does for the EKF. The difference is that we can evaluate
the likelihood more accurately than the EKF. The magnitudes
for Λ are typically between 1 and 16 depending on how well
separated the features are.

The nodes and edges can be added immediately when observ-
ing a new feature. In the M-space model, new features will not
have any effect on the map until they collect enough information
to initialize some of the M-space dimensions. At that time, all
the edges of the feature can be tested again to see if they lower
the energy. Thus, the measurements are not added in any final
way but can be removed later. We also add energy nodes for
odometry linking two pose nodes.

2The η here is an innovation vector for the measurements. One chooses a
function for the innovation that depends on the observation and the state. The
innovation should have zero expectation value averaged over the measurement
noise. It will also be necessary to make assumptions about the distribution
of noise projected into the innovation. We assume Gaussian, but that is not a
fundamental requirement. An example would be the difference in the angle and
distance to a wall between the measurement and that predicted by the current
state of the robot and wall.

Typically, the measurements η depend on the position of the
features relative to some sensor attached to the robot. So, if the
robot sensor frame has coordinates xr and the relative feature
coordinates are xo = T (xf |xr), then we can estimate a small
change in the predicted measurement η(xo)

δη = Jηoδxo =

(
JηoJor︸ ︷︷ ︸

robotpose

JηoJof B̃f︸ ︷︷ ︸
feature

)(
δxr

δxp

)
. (6)

If the η are Gaussian with covariance Cηη and mean 0, then the
energy is given by

E =
1
2
η(xo)T C−1

ηη · η(xo) − Λκ. (7)

Putting this together, we can write the gradient Gm for the
energy.3

Gm = ηT C−1
ηη

(
JηoJor JηoJof B̃f

)
(8)

We can also calculate the Hessian of the energy in a similar
fashion

Hmm =
(

JT
orJ

T
ηo

B̃T
f JT

ofJT
ηo

)
C−1

ηη

(
JηoJor JηoJof B̃f

)
. (9)

These quantities E, Hmm, and Gm are calculated by the en-
ergy nodes based on the state nodes. They are the fundamental
quantities of the graphical SLAM method.

IV. GRAPH RELAXATION

Each state node has a number of edges connecting it to energy
nodes. These energy nodes can calculate the nonlinear energy
function and its derivatives at the current state. Then, for each
state node, we can sum the contributions to the gradient and
Hessian from each attached energy node. Using the gradient
and Hessian, we can relax the state node, that is, move it toward
a lower energy state

Hmm∆xm = −Gm (10)

where the Hessian and gradient are taken with respect to just
this one state node’s coordinates by adding up the contributions
from all the attached energy nodes. We use this formula for each
node, in turn, for a section of the graph. The result is similar
to a Gauss–Seidel iterative solution for the minimum energy
state of a linear system. So, after introducing a perturbation to
the system in the form of a new energy node, we relax all the
state nodes attached to the energy node. We, then, calculate the
change in energy of each energy node attached to these state
nodes. If significant change to an energy node has occurred, it
gets added to a list of energy nodes. We, then, take this list and
repeat the process.

How do we define significant change in an energy node. We
first require that the energy change be greater than a nominal
small amount 0.01. This test eliminates most changes. Then, we
test the relative change in energy, that is, the ratio of the change
to the energy after relaxation. If this relative change is larger

3The subscript m here is to emphasize that the gradient is with respect to the
M-space perturbation as opposed to the full feature space with subscript f . The
gradient also includes the robot sensor frame coordinates. So, m = (r , p).



734 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 4, AUGUST 2007

than some small percentage (we used 5%), then we include the
energy node in the list.

This way of organizing the updates by state-attached energy
nodes that change was inspired by the work in [28]. The result
is a more efficient relaxation as no extra calculation needs to be
done to decide where to move next. This is because the energy
is always calculated after relaxing a state node in order to assure
a decrease in energy. If the energy were to go up, the step size
is reduced until a decrease is achieved.

We are able to have the relaxation move through the graph to
those nodes that have the largest stresses. If the graph has lots
of stress, the update will quickly expand to a large portion of
the graph. On the other hand, most of the time, the relaxation
can stay local and terminates quickly.

We show in the next section how to reduce the number of
pose and energy nodes in the graph by forming star nodes. This
reduction is not done until the measurements are somewhat
mature. Therefore, the most recent path of the robot has a dense
representation in the graph. This section of the graph is referred
to as the tail as it looks like the robot has a tail of pose nodes that
it is dragging after it. In fact, the pose nodes do not follow the
robot but are being constantly created at the robot location and
reduced by forming stars at the end of the tail. This tail needs
special attention during relaxation.

The tail presents problems as stress is normally introduced at
one end and is slow to propagate along the tail. We found the
solution was to relax the tail as a unit. We solve the linearized
system of tail pose states holding the feature states fixed. The
technical details follow.

The Hessian H of the subsystem consisting only of the pose
nodes in the tail is block tridiagonal with 3 × 3 blocks.4 This
system can be solved easily with care given to the numerical
stability. We do not solve the block tridiagonal system Hx =
−G directly but rather H ′x′ = −G′, where H ′ = PT HP , x =
Px′, and G′ = PT G. Here, P is

P =


I 0 0 · · ·
I I 0 · · ·
I I I · · ·
· · · · · · · · · · · ·

 . (11)

Here, I is the block identity matrix. The reason for doing this is
that H is simple but numerically unstable, while H ′ is strongly
block diagonally dominant. There is 100% fill produced by
P , but by being careful to exploit the special structure, the
complexity remains linear in the number of nodes in the tail.
Every 25 steps, we relax the whole tail and, then, the features
attached to it.

Using these two relaxation schemes, we found that updates
could be done in reasonable time. The calculations needed for
an update do not depend on the size of the map but instead on
the amount of stress being introduced. When the robot is ex-
ploring new areas, very little stress is added and the updates go
very fast. When the robot returns to a region previously visited,
the graph must loop back on itself creating tension that needs

4This is because each pose node has three coordinates and is attached to two
other pose nodes.

Fig. 3. This shows how a graph is reduced starting from the basic graph. We
linearize all the energy nodes (enclosed by the dotted curves) attached to every
other pose node into a star. We, then, eliminate the pose nodes that have only
one edge. We, then, repeat with the pose node between two stars to merge them.

to be resolved. It is then that updates begin to take significant
time. This variable update time is awkward for a program that
is to run under real-time constraints. It is necessary to have a
queue of updates and have the program running out of sync
with the sensor. Sometimes, the queue will be growing while,
at other times, it will shrink. On the other hand, it is an ad-
vantage that the size of the map does not add any calculation
so that very large graphs can be built. In practice, we found
that the variation in update time was not very significant. The
key is not to relax too hard any one iteration but rather rely
on the cumulative effects of successive iterations to reduce the
tension.

V. GRAPH REDUCTION BY STAR NODES

The graph as described so far is a robust and flexible SLAM
method. However, we will need to impose global constraints
on the graph. The high dimensionality will make this difficult.
Therefore, we will reduce the number of state nodes. We also
will maintain a local frame of reference and, thus, avoid the
problems of linearization in a global frame.

Consider a set of energy nodes. The gradient and Hessian
terms from these nodes are collected together in a star node.
This star can then replace the set as long as the changes in the
state are small. If some state node only has edges to this star,
we can eliminate its state from the quadratic energy. This is
the reduction we are after, but we will also create fill in the
Hessian. In addition, we will exploit the fact that the entire
system approximated by the star is invariant with respect to
the transformations of all the star’s state nodes. This will al-
low us to transform the linearization coefficients (the Hessian
and gradient), to any other local frame. Thus, we can remove
the major component of linearization errors. All that will re-
main is the linearization errors due to relative movements be-
tween the star’s states. As the star is formed in a mature part
of the graph, we have reason to expect such movements to
be small. We now will show how to derive a formula for the
energy of such a star that can be recentered around any new
state. We also show explicitly how the M-space symmetries are
preserved.
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The energy for the star looks so far like the Taylor expansion
around x̄ = (x̄b, x̄a, x̄f ):5

E = E(x̄) + Gm(x̄) ·
(

δxb

δxq

)
+ · · · . (12)

Here, we have split the state perturbation vector δxm into δxb

and δxq. The xb is one of the pose node coordinates to become
the “base” pose of the star and δxq are the other pose and feature
coordinates. We now transform all the coordinates to the base
frame so that they become δxo = T (δxq|xb). We can write the
following identities:

I =
(

I 0
−BJ−1

of Job BJ−1
of

)(
I 0

Job Jof B̃

)
(13)

(
δxb

δxo

)
=

(
I 0

Job Jof B̃

)
·
(

δxb

δxq

)
(14)

Gm

(
δxb

δxq

)
= Gm

(
I 0

−BJ−1
of Job BJ−1

of

) (
δxb

δxo

)
. (15)

The B and Jof matrices in (15) are block diagonal matrices with
blocks for each state node that is connected to the set of energy
nodes. The Job is a column of blocks. The original energy nodes
were invariant under transformations of all the state nodes to
a new frame. Thus, the matrix multiplying δxb, as shown in
the previous equations, must vanish identically. Also, we can
always find the full Gm from the Gq and the symmetry matrices

Gm = ( Gb Gq ) = Gq

(
BJ−1

of

) (
Job Jof B̃

)
. (16)

We define Q = BJ−1
of and Q̃ = (Job, Jof B̃) and write the in-

variance relation more compactly as

Gm(x̄) = {Gq(x̄)Q(x̄)}Q̃(x̄). (17)

We can do the same for the Hessian

Hmm(x̄) = Q̃(x̄)T {Q(x̄)T Hqq(x̄)Q(x̄)}Q̃(x̄). (18)

At this point, we examine our choice of linearization point x̄.
We chose to relinearize the energy nodes around a point that
produces Gq = 0. This is the equilibrium point of the star node
if it were isolated from the rest of the graph. This choice makes
the star node independent of the current state of the graph.

The Hqq matrix is the Hessian at the linearization point with-
out the rows and columns of the base node. We want to have an
explicitly stable representation; hence, we do a singular value
decomposition of Hqq.

Hqq =
n∑

k=1

UkλkUT
k . (19)

Here, k runs over the n positive eigenvalues λ and Uk are the
eigenvectors. Define the projection into the eigenspace

ūk = UT
k Qx̄o uk = UT

k Qxo ∆uk = uk − ūk. (20)

5The star here has two pose nodes, which we we subscript b before/base and
a after. It will also have a number of feature nodes that we simply denote by f .
From here on, we refer to the entire set of star node coordinates by x.

We can now write the energy for the star node in a compact
invariant and stable form

E = E(u) +
n∑

k=1

λk

2
(∆uk)2. (21)

We can also calculate the derivatives of the energy around any
new state. So, for example, the gradient at x becomes

Gm(x) =
n∑

k=1

∆uk(x)λk

2
UT

k Q(x̄)Q̃(x). (22)

So, the eigenvalues and eigenvectors are saved along with Q
and ūk. These can, then, be used to find the energy for any new
state.

VI. STAR FORMATION

Having seen in the previous section how we can turn a set of
energy nodes into a star node, we now discuss the choice of sets
to turn into stars. We want to reduce the graph complexity by
forming stars that include all edges from some state node. Then,
that state node can be eliminated. We also need to limit the size
of the stars as the calculation for creating the star eventually
becomes a problem. Typically, we stop at a dimensionality of
40 for the star node.

We start building stars out of energy nodes attached to poses
older than a certain age. A pose node is selected and all its
attached energy nodes are combined into a star. We select every
other pose node so as to form a chain of alternating pose and star
nodes. We refer to stars made from combining the measurement
nodes as level 0 stars. We can, then, again take every other pose
and make stars, but now we will be making stars out of two level
0 stars. We call these level 1 stars. By continuing in this way,
we combine stars of the same level to form stars of one higher
level.

By forming the star nodes, we have committed to a lineariza-
tion around the relative state in the local frames for the stars.
The linearization is taken around the point that minimizes the
energy for just the star’s measurements, cut out of the rest of
the graph. If the data associations are correct and the sensor
errors relatively small, then the movement of the state from this
linearization point will be small. The point is global movements
of the star as a whole cause no error. Only relative movement of
states within the star cause linearization error.

We define four sections of the graph. One is the tail, which
consists of the current robot pose node and all the pose nodes
before it back to the first star node. Next is the formation set
in which stars are still being built up level by level. So, the
formation set consists of alternating pose and star nodes. These
stars are being combined pairwise to form bigger stars according
to the rule of combining stars of the same level. When a star
in the formation set gets large enough, all stars before it in the
formation set are forced to merge, as much as possible, under a
maximum-size constraint. Then, these large stars are removed
from the formation set and moved to the loop set.

The loop set is where we try to build in global constraints to
the graph. It will be discussed in the next section. The remainder
of the graph is then the fourth set, the mature nodes.
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The length of the tail is a variable that depends on the current
features being observed. We do not eliminate energy nodes from
features that are still being observed and have not been fully
initialized.6

When we notice that a star in the loop set and one from the
mature nodes share feature nodes, we try to combine them in
order to build in the topological constraint in the graph. This
can be done if the features they have in common are sufficient
to define the transformation between the base frames.

VII. FINDING LOOPS AUTOMATICALLY

In [27], a simple loop in the graph was found by stopping
the SLAM program and entering the match between features
from the start of the loop and the end of the loop by hand. Here,
we present a way to have the SLAM program itself discover
this match. We use an estimate of the energy increase from the
match as a criterion.

Our approach is to find sets of features from both ends of
the loop that can give us the constraint around the loop. Then,
we use the information in the graph to estimate the energy gain
from closing the loop. If there is a gain, then we can make the
match and close the loop.

As the graph is being built, the new measurements are
matched to the features that are close to the current robot pose,
as measured along the edges of the graph. Thus, the edges of
the graph have a distance associated with them that approxi-
mates how strongly the two nodes are correlated. The shortest
distance from any feature node to the current pose node can
then be found and the node labeled with the distance. The ones
nearest the current pose are kept on a list that is matched to at
each step.

By only trying to match features close in graph distance, we
can prevent false matches from occurring when the robot closes
a loop with significant error. Of course, this also prevents the
map from ever closing loops; so, we need a second method to
find matches over larger graph distances (see Appendixes I and
II). That method must look at more features simultaneously.
Thus, we wait until a patch has been mapped and star nodes
formed before we attempt to do loop closing.

The loop set contains the newly formed large stars. The loop
features are the features with an edge to the loop set. This loop
set has stars added to it at a low frequency as described earlier.

Periodically, the loop set will be tested for loop closing. If no
loop is found, the oldest stars are removed from the loop set and
added to the set of mature stars. Some small number of stars
remain in the loop set to be tested again.

Now, we need to narrow the list of potential matches. We use
the metric information that we have for the features to match
them within a tolerance that increases as the graph distance
between the features increases. So, we are not in the so-called
kidnapped robot situation where we know nothing. Instead, we
are in a gray area between knowing nothing and having a good
idea of the relative positions of the map patches we want to

6In the M-space representation, it is possible to partially initialize the features.

match. We use the graph distance to give some measure of this
grayness.

We start by forming a list of match features that are not
attached to the tail or loop set. Then, for each loop feature i we
find all features j from the set of match features that satisfy this
relation:7

(ixf − jxf )T BT
i WijBi(ixf − jxf ) < 1. (23)

The Bi matrix is evaluated at the current estimate of ixf and Wij

is a weight matrix that depends on the graph distance between
the two features. This graph distance can be roughly approxi-
mated by the difference in the distance from the current pose
node for the two features. The larger the graph distance between
the features, the smaller W becomes. Ideally, one would use an
inverse covariance matrix for W as in the joint compatibility
test. Unfortunately, the correlations between distant features are
not easily found from our graph.8 One approximation available
is the graph distance. Our W was proportional to the reciprocal
of the graph distance. Each of the features i now has a list of
features j that it could match to.

We now form pairs of features from those loop features that
were matched. Each pair is tested to see if it defines a transfor-
mation, (i.e., for walls: is the angle between them large enough).
If so, this pair becomes the base pair of a set of hypotheses. There
will be one hypothesis for each distinct match between the pair
and the match features. Each hypothesis then will be able to
define a transformation based on the pair. All other potential
matches are transformed with this transformation. Then, each
match is tested by applying a threshold to rijdij

dij = (ixf − jx′
f )T BT

i HiBi(ixf − jx′
f ) (24)

rij =
m

trHi
+

Maij

M + aijtrHi
(25)

aij =
trHj

trHj + trHi
. (26)

The Hi and Hj are the Hessians of the energy with respect to
feature i and j, respectively, and jx′

f = T (jxf ) is the trans-
formed matched feature. M is a large constant and m a small
one. What we are trying to estimate here is the increase in energy
caused by matching the two features.

The dij is an estimate of the energy increase of making the
match, assuming we simply transform the end of the graph
with no cost from the other features and then do not adjust
the feature locations further. Then, aij estimates the reduction
from the relative movement of features i and j after relaxation
with no consideration of the other features. The rij is then a
transformation of the estimate to avoid two possible problems.
If the information of feature i, trHi, is well between m and
M , then rij ≈ aij . For very high amounts of information, it

7This formula is simplified slightly. Some minor modification needs to be
made to Bi to account for different M-spaces of the two features; so that there
are projection and scaling matrices to the common M-Space of the i and j
features. Before testing with (23), we apply a few simple tests that eliminate the
impossible candidates.

8These correlations are available in the EKF SLAM, but, typically, are inac-
curate due to the accumulated linearization errors.
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would be impossible to shift the features even one millimeter to
merge them. That is why we chose M to be 106 corresponding
to millimeter accuracy. This avoids unreasonably stiff criteria.
On the other hand, if the information is very low, the features
might be moved unreasonably far from the current positions.
That is, the function of m, which is set to 100 corresponding to
10 cm.

This estimated increase rijdij needs to be balanced against
the gain from matching the features as in (5). In addition, we
need to consider the likelihood of not having seen the same
feature when the robot was in this area previously. Define the
probability of observing a feature i in our set of loop features
as pi. If we try ni times, we have a probability of (1 − pi)ni of
not observing it and 1 − (1 − pi)ni of observing it at least once.
With these, we can now define Lh, a part of the energy of this
hypothesis

Lh = −
∑

i∈matched

log(1−(1−pi)ni)−
∑

i∈unmatched

log(1−pi)ni.

(27)
Now, how do we estimate ni, the number of times we tried
to “see” the looped feature from the match features part of
the graph and pi the probability of seeing i. This is done by
maintaining two counters for every feature. One counter is in-
cremented each time the feature should be seen from the current
robot pose. The other counter is incremented when the feature is
seen. The ratio of these is then pi. The ni is then the maximum
of the first counter over all potential matches j.

By using (27), we make it harder to not match important very
visible features and easier to not match hard-to-see features. It
also tends to match important features to important features. A
nice point is there are no parameters to choose while deciding
our thresholds. We need only to count. Combining all these
terms, i.e., (27), (24), and (5), we find our cost function that
needs to be minimized

Cost = Lh +
∑

i∈matched

(rijdij − Λ(dim)i). (28)

Here, (dim)i is the dimension of the feature and Λ is the same
value used to match individual measurements (5). This gives the
thresholds on individual features to produce the smallest cost.
We also set some minimum number of matches before accepting
the loop closure.

VIII. SOLVING THE TOPOLOGICAL CONSTRAINTS

In the previous section, we showed how loops in the graph
can be discovered automatically. Now, we must close the graph
explicitly. We start by combining some of the stars in the loop
set. We do this so as to form a single star from the loop set that has
edges to the pair of features needed to define the transformation
between frames. We do the same for the matched stars from the
mature nodes. So, we then have a pair of stars, one from the
loop set and one from the mature nodes that can be used to fix
the transformation between the two parts of the graph. These
two stars will eventually be merged, which will build the newly
discovered topological constraint into the graph explicitly.

We first constrain the graph to have the indicated transforma-
tion when traversing from one star to the other. We solve for
the path of pose nodes around the loop with all loop constraints
imposed, which is described later. Having a path that satisfies
all loop constraints, we move the edges from the loop features
to their respective matched features. We can then carefully relax
the features by turning on one edge at a time, starting with the
strongest edges. The strength of the edge is given by the number
of measurements that contributed to it. We move around the
graph following the path from star to star, first adding all strong
edges and relaxing the features, then relaxing the poses. We then
go through the graph a second time adding the weaker edges.
The tail section is built up similarly one edge at a time.

After relaxing the graph, the two stars can be merged, which
will then build the constraint into the graph explicitly the next
time a new loop is discovered. Later, such an explicit constraint
can be found by searching for cycles in the graph.

The critical step is how to find the pose states that solve the
constraints around all loops in the graph. We start by cutting off
the tail from the graph. Thus, the only energy nodes that are still
part of the graph are star nodes.

The feature nodes that have edges to more than one star are
temporarily assumed to be different features for each star. Thus,
these feature states can be eliminated from each star. As we
are only interested in the pose nodes, this elimination amounts
to taking H−1 for the star and ignoring the feature part, as
we will explain later in this section. This is simply to write
down the matrix in question because we have the eigenvector
decomposition of each star node’s energy. We give the details
now.

We recall that the xo variables of star j were the xm relative to
the base pose node of the star. The innovation in these δxo was
defined relative to the star equilibrium point. Thus, δx0 = 0 im-
plies that Gj = 0. The Hessian with respect to the xo variables
of the jth star and the innovation of the relative coordinates of
star j are defined as

Hj ≡ QT HqqQ, qj ≡ δxo. (29)

The imposition of the global constraint on the pose states will
require us to solve an equation that looks for each star node j,
like

Hjqj =
(

ζj

0

)
. (30)

Here, ζj is obtained from solving the Lagrange multiplier part
and has the dimension of the pose nodes for star j less the base
pose node. The 0 is showing explicitly that the feature part of
the right-hand side is zero. We do not care about the feature part
of qj either; hence, we do not care about the feature part of H−1

j

when solving this. We now show how we get to (30).
We write the constraint for all closed loops in the graph as∑

j∈stars

Cjqj = c. (31)

Here, Cj are matrices that depend on linearizing the cumulative
transformations around the loops. They do not have any parts
multiplying feature states. So, the qj are the changes to the
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relative robot pose coordinates across a star. The sum is taken
over all the star nodes. By adding the relative transformations
around a loop, one finally ends up at a pose node related to the
start pose node by a displacement c. This c is inferred by the
matching of features from the start and end of the loop. We can,
then, formulate a cost function with this constraint built in by
using a Lagrange multiplier γ∑

j∈stars

qT
j Hjqj + γ

( ∑
j∈stars

Cjqj − c

)
. (32)

Setting the variation to 0 leads to the equations∑
j∈stars

(
Hj CT

j

Cj 0

)(
qj

γ

)
=

(
0
c

)
(33)

qj = −
(
H−1

j CT
j

)
γ (34)

γ = −

 ∑
j∈stars

CjH
−1
j CT

j

−1

c. (35)

So, as promised, we never had to compute the feature parts as
we are only interested in correcting the pose nodes. The feature
nodes will be relaxed as part of the fine tuning. These coarse
calculations are all of low complexity and linear in the number
of star nodes. The inverse of a matrix of size the order of the
number of loops in the graph is needed. The other inverses, as
said, are already available after forming the stars. Calculating C
is normally the most difficult part.9 The computation for each
loop is linear in the size of the loop. This coarse calculation
takes insignificant time compared to the fine tuning. The fine
tuning can take on order of seconds for a large map. The time
complexity of the fine tuning is not easy to determine. One
needs to relax each node a number of times, which depends on
the structure of the graph and the statistics of the measurements.

A variation on this is to use the current relative states of
the pose nodes rather than the star equilibrium positions. The
motivation is that these are already carefully relaxed locally
and will, thus, lead to less local tension at the start of the fine
tuning. The star Hessians are still used as described. This tends
to give slightly better results when the current state is close
to satisfying the constraint. We got the best results from using
a weighted average where the weight depends on how large a
transformation is needed to close the loop. When the current
graph state is close to correct, we give it a higher weight.

IX. EXPERIMENTS

A. Simulations

In order to demonstrate the basic premise that the graphical
method could produce more accurate SLAM estimates more
quickly than the EKF in some situations, we ran a simulation. By
using simulated data, we can avoid problems of data association

9We should mention as a practical point that if the corrections are significant,
the linearization of the constraints may need to be done a few times. This will
lead to minor modifications as earlier for linearization away from the Gq = 0
point.

Fig. 4. EKF versus graph SLAM on simulated data. The paths follow the point
features (not shown) in a sawtooth pattern. The features are ten units below and
two units to the left of the robot along the path. The graph SLAM solution
typically is more accurate and much faster in this particular situation.

and focus on the computational aspects of the two methods.
All the measurements are modeled exactly and drawn from
Gaussian distributions. The associations are given and outliers
are processed along with inliers for two simulations and a third
was done with Λ equal to 16.

The simulated environment consists of 1000-point features
that could represent underwater sonar reflectors being detected
by a surface vessel moving in 2-D. They are arranged in a saw-
tooth pattern ten units below and two to the left of the robot.
The simulated robot receives range and bearing information.
The bearing angles are modeled as Gaussian random variables,
as is the range.10 About eight features are within the sensor range
along most of the path. The path has 10 809 poses from which
91.423 measurements in total were taken. Two simulations
were done with different amounts of odometry error (Fig. 4)
and the high-drift data processed with and without outliers
included.

The EKF solutions took 56 min, 3 s, 55 min 3 s, and 19 min
49 s, respectively, for the three simulations. The Graph SLAM
took 6 min 46 s, 6 min 45 s, and 8 min 14 s. No loop clos-
ing or star node reduction was done as this was a test of the
basic computational behavior on a simple path with no loops.
Loops will significantly increase the computational burden on
the graphical method while not affecting the EKF. Adding the
star nodes increased computation time by about 15 s while not
significantly changing the results.

The statistics from the simulation are shown in Table I. Simu-
lation 1 was with low odometric drift and all outliers, while
2 was with higher drift. The third simulation had the out-
liers removed. Having the true path allowed us to compare
each incremental change in pose tangential and normal to the
path as well as the angular change. The mean errors for these
three are shown (in that order, in the mean vector). The un-
biased estimate of the covariance of the errors is also shown.
There were 10 808 increments. Thus, a rough idea of the er-
ror in the mean (or bias) is found by dividing the covariance

10Standard deviations were (0.01, 0.002, and 0.01), the first two being the
polar angles in radians and the last is the range.
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TABLE I
SUMMARY OF THE STATISTICS FROM THE SIMULATIONS

matrices by 10 808 and taking the square root. The covariance
also gives a direct comparison of the errors inherent in the two
methods.

The graphical method had significantly lower errors on the
high-odometry drift simulation as compared to the EKF. The
first simulation was less conclusive for the tangential and an-
gular parts. The component normal to the path seemed to have
significantly lower errors for the graphical case. We believe this
is due to the effects of the linearizations. In addition, there is
some weak evidence for bias in the EKF solution, which could
be the result of the fact that all the features are to the left of the
robot path. This could conceivably lead to a bias, although the
exact mechanism was not determined. As expected, the inclu-
sion of the outliers was better handled by the graphical method,
which can be attributed to the linearizations of the EKF being
much worse for the outliers.

B. Outdoor Experiments

We tested our ideas using data sets collected on an outdoor
ATRV robot equipped with a SICK laser scanner and a 6-axis
inertial sensor.

We show an example data set around our former laboratory
building driving the robot by hand. The map is approximately
100 m2. The path starting inside the laboratory travels down
the corridor and out the front door, then around the building in
a clockwise sense. After reentering via the front door, the first
loop was detected. The robot then proceeded out the back door
and detected a second loop. The path then went around to the

Fig. 5. This shows the map of the example data set just prior (left) to the
discovery of each of the three loops and just after (right) imposing the constraint.
One can see the improvement after each new constraint is added.

front door again and closed a third loop. Finally, back in the
laboratory, the entire map was relaxed.

For this data set, the walls are often not found as there was
work being done on the building. This forces the robot to cover
large distances with no features at all. Such a situation is nor-
mally ruining for an SLAM program, but, here, we can recover
by imposing topological constraints on the map. The results are
shown as a sequence in Fig. 5. One can see that as each new con-
straint is added to the graph, the map improves. The final graph
has 47 star nodes in total. It has two star nodes with more than
two pose nodes. There is one star node with four pose nodes at-
tached and one with six. These then allow the constraints around
the loops to be reimposed automatically when each global up-
date is done. At the end, the global update is done one last time
to remove any extra tension in the map. The result is shown in
Fig. 6. One can see that no mistakes were made in loop closing,
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Fig. 6. Final map with the robot parked back in its laboratory. The path of
the robot is shown as a solid line connecting the star nodes. The star nodes are
spaced about every 2 m along this path. The handmade map of the building is
shown for comparison.

but one match was not found in the lower right corner. The
“missed” match was due to inconsistency between the indoor
and outdoor sections of the map. The indoor sections could be
matched or the outdoor but not both. This was probably due to
tire slippage on crossing the threshold of the outer doorway to
the lab.

The running time for the SLAM program is dependent on
the processor. Here, we ran on a 550-MHz Pentium III. Graph
updates took about 40 ms per step on average and the search for
loops along with the imposition of the constraints added about
15% to the execution time. The scan period is 200 ms. Hence,
the updates are able to keep up in this case.

The loop closing has been tried on even larger data sets and
found to work similarly, but the time to find loops scaled quadrat-
ically with the number of features that needed to be checked.
The number of features that need to be checked depends on the
path taken by the robot and the density of features in the envi-
ronment as well as the amount of pose error expected around
the loop. So, when the features are dense or there is large pose
uncertainty at loop closing, the time for discovering the loops
greatly exceeded on-line limits. This is a fundamental limita-
tion of any approach that tries to examine many hypotheses.
The loop-closing criteria did correctly close the loops even in
the harder situation.

X. CONCLUSION

We have shown how our graphical SLAM method can be
used to both discover and solve multiple topological constraints
on the map. We have done extensive tests with real data to con-
firm the validity of our approach. Our experience with these tests
was that the search for and imposition of the topological con-
straints added about 10–20% overhead to the SLAM program.
This depends on how often loops are formed. This overhead
comes at the time the robot returns to a previously explored
region. At other times, the SLAM is done quite quickly and the
calculation time is independent of map size. So, for small maps,
the time and quality is comparable to an EKF implementation
we have done.

One expects that this method will be substantially faster and
produce better maps than an EKF for really large data sets. This
is due to the better treatment of nonlinearities and the fact that
the updates are all local until global constraints are imposed.

We only linearize measurements in a local frame and explic-
itly maintain the invariants and symmetries in all measurements.
This maintains the consistency in all of our approximations.
Methods that linearize in a global frame can suffer from incon-
sistencies.

The criteria we use for loop detection were reliable and should
be generally useful for closing loops even for other SLAM
approaches. It seems to be important to consider the chance
of not seeing features as well as measuring the similarity of the
matched features. The method does scale badly with the number
of features to be considered in hypothesis testing. If that number
is too high, some other means must be used to lower the number
of possibilities before testing with our criteria.

APPENDIX I

Test of Sufficiency

We need to test if a subset of features ixf is sufficient to
fully define a transformation based on minimizing (28) to the
matched j features. We start with the identity transformation
with xr = 0 as our linearization point. To find the correction,
we would need to solve∑

i∈matched

rijJ
T
orB

T
i HiBi(ixf − jx′

f − Jorδxr+) = 0. (36)

The sum is over the subset of loop features that are matched. So,
if the matrix multiplying δxr is rank 3, the subset is sufficient.

Notice that here the transformation is applied to jxf . When
we actually close the loop, we apply the inverse transform to
ixf . It is the need for the Hessian Hi that makes it easier to
transform jxf while estimating the transform. We solve this
several times, relinearizing each time until the adjustment to the
transformation becomes small.

APPENDIX II

Graph Distances

We use a distance measure for an edge based on the Hessian
of the edge’s energy node. Each edge to an energy node has
one state node. We consider the submatrix of the energy node’s
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Hessian that corresponds to the edge’s state node. We calcu-
late the eigenvalues and average the reciprocals of the nonzero
eigenvalues. This is, then, the distance measure for the edge.

When conducting the graph search, we do not search paths
that pass through feature nodes as the features normally are
not sufficient to define the transformation. Thus, the paths pass
through pose nodes and star nodes along the pose–star edges.
The feature distances are then found by following all the fea-
ture’s edges to the attached energy node and taking the lowest
distance.

The search is repeated each time a loop closing is searched
for, which happens at a relatively low frequency. During the time
between such searches, the distances are approximated locally
as we add edges to the graph.
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