
TECHNIQUES FOR MULTIOBJECTIVE OPTIMIZATION WITH DISCRETE
VARIABLES: BOXED LINE METHOD AND TCHEBYCHEV WEIGHT SET

DECOMPOSITION

A Dissertation
Presented to

The Academic Faculty

By

Tyler A. Perini

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Georgia Institute of Technology

Georgia Institute of Technology

August 2021

Copyright © Tyler A. Perini 2021



TECHNIQUES FOR MULTIOBJECTIVE OPTIMIZATION WITH DISCRETE
VARIABLES: BOXED LINE METHOD AND TCHEBYCHEV WEIGHT SET

DECOMPOSITION

Approved by:

Dr. Natashia Boland, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Martin Savelsbergh
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Santanu Dey
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Pascal Van Hentenryck
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Amy Langville
Department of Mathematics
The College of Charleston

Date Approved: June 9, 2021



Graphical excellence is that which gives to the viewer the greatest number of ideas in the

shortest time with the least ink in the smallest space.

Edward R. Tufte



This work is dedicated to a best friend that I am too lucky to have and who is

appropriately named Star. No matter how far I go, you will always be my center point.

One might say that you belong to the kernel set of my life.



ACKNOWLEDGEMENTS

I would like to first give gratitude to the all-star list of women in operations research

who educated, motivated, and inspired me to become the person I am today. Special thanks

to Dr. Amy Langville, Dr. Natashia Boland, Dr. Pinar Keskinocak, and Dr. Julie Swann

for the opportunities, lessons, and experiences that will last a lifetime.

Second, I must share my appreciation to my brilliant and dedicated research partner,

Stephan Helfrich, with whom a thrilling collaboration led to exploring insights, elevating

ideas, developing timely breakthroughs, and (literally) climbing to new heights.

This work was supported by the National Science Foundation Graduate Research Fel-

lowship under Grant No. DGE-1650044.

v



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1: Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scalarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dichotomic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Motivating Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Timeline of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2: Boxed Line Method: An Exact Method for Biobjective Mixed Inte-
ger Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Structures of a BOMIP Frontier . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Basic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



2.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Outer Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Inner Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Line Segment Generation Subroutine . . . . . . . . . . . . . . . . 29

2.2.5 Complexity of the Basic Method . . . . . . . . . . . . . . . . . . . 31

2.3 Recursive Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Recursive Inner Loop . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.2 Line Segment Trimming Subroutine . . . . . . . . . . . . . . . . . 44

2.3.3 Outer Loop Modification . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.4 Complexity of the Recursive Method . . . . . . . . . . . . . . . . . 46

2.4 Same Integer Solution Enhancement . . . . . . . . . . . . . . . . . . . . . 47

2.5 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.1 Epsilon Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.2 Epsilon Sensitivity of Historical Instances . . . . . . . . . . . . . . 52

2.6 Instance Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7.1 Comparison between BLM variants . . . . . . . . . . . . . . . . . 55

2.7.2 Comparison with existing algorithms . . . . . . . . . . . . . . . . . 62

Chapter 3: Tchebychev Weight Space Decomposition: Geometry . . . . . . . . . 67

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



3.3 The Intersection of Weight Set Components . . . . . . . . . . . . . . . . . 82

3.4 A Polytopal Subdivision of the Weight Set Components . . . . . . . . . . . 84

3.5 The Dimension of the Weight Set Components . . . . . . . . . . . . . . . . 90

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 4: Tchebychev Weight Space Decomposition: Applications . . . . . . . 104

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Geometry of Weight Space Decomposition . . . . . . . . . . . . . . . . . . 112

4.3.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.2 Intersection Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.3 Boundary weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Computing Maximal LNPs with Complete Contributing Sets . . . . . . . . 123

4.5 Covering and Triangularization of Weight Set Components . . . . . . . . . 129

4.5.1 Triangularization and Plotting . . . . . . . . . . . . . . . . . . . . 135

4.6 Application to Primal Algorithms . . . . . . . . . . . . . . . . . . . . . . . 140

4.6.1 Comparison to Weighted Sum Decomposition . . . . . . . . . . . . 140

4.6.2 Primal Algorithm for Finding ND Set . . . . . . . . . . . . . . . . 143

4.6.3 Approximation of the Weight Space Decomposition . . . . . . . . . 145

4.6.4 Compromise Region . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

viii



Chapter 5: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Appendix A: Boxed Line Method: Relevant Algorithms . . . . . . . . . . . . . . 162

A.1 Line Segment Trimming Subroutine . . . . . . . . . . . . . . . . . . . . . 173

A.2 Instance Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.3 Comparison between BLM variants . . . . . . . . . . . . . . . . . . . . . . 177

Appendix B: Weight Space Decomposition . . . . . . . . . . . . . . . . . . . . . 182

B.1 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.2 Comparing Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

ix



LIST OF TABLES

1.1 Chapter contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Number of NDLSs found for different values ε. All five instances are from
the C160 class of instances and are solved by the basic method. . . . . . . . 53

2.2 Comparison between the different algorithms for historical instances, class
C320. Times are reported in seconds. . . . . . . . . . . . . . . . . . . . . . 61

2.3 Comparison between the different algorithms for generated instances with
n = 5000 and n = 75000. All metrics are averaged over five instances.
Times are reported in seconds. . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Comparison between εTCM and BLM (SIS variant for historic and recur-
sive variant for new instances). Times are reported in seconds. . . . . . . . 65

4.1 The maximal LNPs to which y1 contributes with complete contributing sets
in Example 10. For each LNP, the label used in Figure 4.3 is given as well
as the images in each dimensional contributing set, C1, C2, C3. Images
yb(2), and yb(3) refer to the dummy images. . . . . . . . . . . . . . . . . . 123

4.2 Progression of primal algorithm (Algorithm 3) on Example 10. . . . . . . . 145

4.3 Results from simulated computational study for restricting primal algo-
rithm to various compromise regions. Base case is represented by Λ1. . . . 152

A.1 Comparison between the different algorithms for historical instances, class
C160. Times are reported in seconds. . . . . . . . . . . . . . . . . . . . . . 178

A.2 Comparison between the different algorithms for historical instances, class
C320. Times are reported in seconds. . . . . . . . . . . . . . . . . . . . . . 179

A.3 Comparison between the different algorithms for generated instances, n =
5000. Times are reported in seconds. . . . . . . . . . . . . . . . . . . . . . 180

x



A.4 Comparison between the different algorithms for generated instances, n =
7500. Times are reported in seconds. . . . . . . . . . . . . . . . . . . . . . 181

B.1 Each element indicates the labels (e.g., i, j, b(k) for yi, yj, yb(k), respec-
tively) for the complete contributing set per local nadir weight. Each col-
umn is associated with one weight set component, and each row corre-
sponds to labels given in Figure B.1. . . . . . . . . . . . . . . . . . . . . . 183

xi



LIST OF FIGURES

1.1 Image set Y for classic biobjective problems. The ND set for minimization
is darkened. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Image set Y for BOMIP. The ND set for minimization is darkened. . . . . . 3

1.3 Dichotomic search for biobjective (MOP), adapted from [23]. The gradient
vectors are illustrated in the weight space in (c). . . . . . . . . . . . . . . . 7

1.4 Timelines of related MOP algorithms. . . . . . . . . . . . . . . . . . . . . 11

2.1 The key step in the Balanced Box Method (a) and the Boxed Line Method
(b). The remaining search regions (boxes) after the step are shaded. . . . . . 16

2.2 Outer loop procedure for the Balanced Box Method and the BLM when
z∗2 < µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Outer loop procedure for the BLM when z∗2 = µ. . . . . . . . . . . . . . . 24

2.4 The inner loop takes as input ND images zL, zR, and z∗. The output is the
(maximal) NDLS containing z∗, L(z1, z2), and the ND image that domi-
nates each open endpoint (if any). . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Observations about the construction of LP (2.6). . . . . . . . . . . . . . . . 28

2.6 The case that v lies on the current line segment and is a weak ND image of
the slice problem for y∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Three possible cases for finding a line segment of the slice containing z∗. . . 30

2.8 Examples of ND frontiers where we assume there is no containment be-
tween NDLS of distinct slices, and how to count the number of NDLS, n,
using (2.12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xii



2.9 A region Y with n = 0 NDLSs in its interior and g = 1 vertical gaps. An
arbitrary horizontal split line is shown as a dashed line. . . . . . . . . . . . 34

2.10 The only two cases for n = 1, g = 0: The NDLS must be incident to zR

to ensure no vertical gap, but the endpoint z1 may be either open or closed.
Both cases have the same worst-case: `(1, 0) = 1 and s(1, 0) = 1. . . . . . 35

2.11 General ND frontier where there are n ≥ 1 NDLSs. In the worst case for
counting single-objective IP solves, both endpoints are open. . . . . . . . . 38

2.12 The recursive inner loop applied to ND image z̄∗ returns NDLSs L(z1, z2)
and L(z̄∗, z̄2) and the isolated ND image ¯̄z∗. . . . . . . . . . . . . . . . . . 41

2.13 The line segment trimming subroutine prevents the recursive method from
cycling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.14 The recursive variant may return more than one continuous portion of the
ND frontier (e.g., the NDLS containing z∗ and 3 isolated ND images in the
example above), in which case the algorithm adds more than two boxes to
the queue (in white). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.15 The ND frontiers for two benchmark instances. The keys indicate the inte-
ger vector associated with each ND image. Notice the similar structure in
both: each integer vector contributes several small and continuous NDLSs
to the ND frontier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.16 The SIS variant applied when zL and zR are both generated by integer solu-
tion x∗I . The scalarization (2.16) with no-good constraint xI 6= x∗I will find
a point f(y∗) either above or below the line segment L(zL, zR), proceeding
with one of the three cases illustrated in (a), (b) and (c) above. . . . . . . . 50

2.17 If IP solver tolerances are not set appropriately, i.e., strictly less than the
algorithm’s ε, then IPs (especially lexicographic IPs) may return points that
are not nondominated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.18 An example of a generated randomized cone-width instance with four slices,
including Lk and the boundary of three cones. . . . . . . . . . . . . . . . . 54

xiii



3.1 An example with image set y1 = (1, 3, 4)>, y2 = (8, 2, 4)>, y3 = (4, 8, 2)>,
y4 = (6, 4, 6)>, y5 = (7, 7, 5) and their weight set components Λ(yr), r =
1, . . . , 5, for both weighted sum scalarization (b) and weighted Tchebychev
scalarization (c). Note that, for both scalarization, the restriction to weights
contained in Λ = {λ ∈ RP

≥ :
∑p

i=1 λi = 1} is without loss of generality.
Thus, λ3 = 1−λ1−λ2. The image y4 is not extreme supported. The image
y5 is not supported. The images y1 and y2 are adjacent with respect to the
weighted sum weight set decomposition though their weighted Tchebychev
weight set components do not intersect. . . . . . . . . . . . . . . . . . . . 68

3.2 The weight set components (a) - (d) of Example 6. For r = 1, 2, 3, 4, the
colored regions represent Λ(yr), the dots represents the kernel vertex λ(yr),
and the red line in (a) represents the convex combination of weights λ1 and
λ2 investigated in Example 6. The dashed lines indicate the decomposition
of the weight set components into its dimensional weight set components.
Notice that the “lower dimensional parts” along these dashed lines belong
to both adjacent dimensional weight set components. Indeed, such “lower
dimensional parts” can only occur in the intersection of dimensional weigt
set components (see Proposition 12). . . . . . . . . . . . . . . . . . . . . 76

3.3 The convexity property of Proposition 7. The intersection of the planes
of the form Hk,a (dashed lines) in (3.3) and the weight set components
are always convex sets. The green-gray and violet-gray checkerboard ar-
eas represent the intersection of weight set components Λ(y1) ∩ Λ(y2) and
Λ(y1)∩Λ(y3), respectively. See Figure 3.2 for a representation of the indi-
vidual weight set components. . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 The local nadir weights (a) λN({y1, y2}), (b) λN({y2, y3}) = λN({y3, y4}) =
λN({y2, y3, y4}) and (c) λN({y1, y2, y3}) for Example 6. The intersection
sets of weight set components are always star-shaped sets. In particular, the
corresponding local nadir weight is contained in the kernel. . . . . . . . . . 84

3.5 The grid for p = 3 which induced by affine subspaces of the form G(yr, i, j). 86

3.6 The construction of the polytopal subdivision of the weight set Λ ((a) and
(b)) according to (3.7) and the polytopal subdivision of the weight sets
components of Example 6 (c). See Figure 3.2 for a representation of the
individual weight set components. . . . . . . . . . . . . . . . . . . . . . . 88

3.7 The weight set components Λ(yr), r = 5, 6, 7, of Example 9. Remark
that yr ∈ YwN \ YN for r = 5, 6, 7, and thus the interior of at least one
dimensional weight set component is empty. . . . . . . . . . . . . . . . . . 95

xiv



3.8 Two weight set complexes can share a full-dimensional polytope P (a).
Thus the images are adjacent, but not proper adjacent. The adjacency of
the images in the image space is visualized in (b). The bold lines indicate
an overlapping of the corresponding weight set components. . . . . . . . . 96

3.9 Visualization of the argument implying (3.14) for p = 3 and I ′ = {1}. The
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SUMMARY

Many real-world applications involve multiple competing objectives, but due to conflict

between the objectives, it is generally impossible to find a feasible solution that optimizes

all, simultaneously. In contrast to single objective optimization, the goal in multiobjective

optimization is to generate a set of solutions that induces the nondominated (ND) frontier.

This thesis presents two techniques for multiobjective optimization problems with discrete

decision variables. First, the Boxed Line Method is an exact, criterion space search algo-

rithm for biobjective mixed integer programs (Chapter 2). A basic version of the algorithm

is presented with a recursive variant and other enhancements. The basic and recursive vari-

ants permit complexity analysis, which yields the first complexity results for this class of

algorithms. Additionally, a new instance generation method is presented, and a rigorous

computational study is conducted. Second, a novel weight space decomposition method

for integer programs with three (or more) objectives is presented with unique geometric

properties (Chapter 3). The weighted Tchebychev scalarization used for this weight space

decomposition provides the benefit of including unsupported ND images but at the cost

of convexity of weight set components. This work proves convexity-related properties of

the weight space components, including star-shapedness. Further, a polytopal decomposi-

tion is used to properly define dimension for these nonconvex components. The weighted

Tchebychev weight set decomposition is then applied as a “dual” perspective on the class of

multiobjective “primal” algorithms (Chapter 4). It is shown that existing algorithms do not

yield enough information for a complete decomposition, and the necessary modifications

required to yield the missing information is proven. Modifications for primal algorithms

to compute inner and outer approximations of the weight space components are presented.

Lastly, a primal algorithm is restricted to solving for a subset of the ND frontier, where this

subset represents the compromise between multiple decision makers’ weight vectors.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Many real-world applications involve multiple competing objectives. Due to conflict be-

tween objectives, it is generally impossible to find a feasible solution that optimizes all,

simultaneously. An implicit tradeoff exists between these objectives, and multiobjective

optimization explicitly reveals this tradeoff for decision makers. Historically, multiobjec-

tive optimization is one of the earliest fields of study in operations research.

In contrast to single-objective optimization, the goal in multiobjective optimization is to

generate a set of solutions that induces the nondominated frontier, also known as the Pareto

front. An image refers to a vector of objective values evaluated at a feasible solution. An

image is nondominated (ND) if there exists no other feasible solution that is at least as good

in all objective values and is better in one or more of them. The ND frontier is the set of

ND images.

Multiobjective optimization problems with discrete decision variables arise in many

fields, including scheduling [1], geographic information systems [2], facility location [3],

health care [4], and many more [5]. There has been enormous interest in these problems

from the evolutionary algorithms community; see, for example, the surveys of [6, 7, 8].

This interest largely concerns problems with continuous variables; the number of evolu-

tionary algorithms dealing with discrete variables, which will be our focus, is considerably

smaller [9, 10, 11]. Algorithms based on branch-and-bound, working in the space of the

decision variables, are given by [12, 13, 14].

We focus on problems with linear objective functions and constraints, and on exact

algorithms, which are guaranteed, in theory, to produce the complete ND frontier. Biob-

jective discrete optimization problems with all continuous or all discrete variables have a

simple ND frontier (Figures 1.1a and 1.1b, respectively) and have been studied for several
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(a) Biobjective linear program.
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(b) Biobjective integer program.

Figure 1.1: Image set Y for classic biobjective problems. The ND set for minimization is
darkened.

decades now; see, for example, the surveys of [15, 16]. Over the last thirty years, dozens

of methods for generating the ND frontier for pure integer problems have been developed.

However, there are have been critical gaps in the library of multiobjective techniques for

other classes of problems. We present two techniques that fill such gaps.

First, compared to pure continuous or pure integer problems, little attention has been

paid to the development of computationally effective algorithms for problems that mix con-

tinuous and discrete variables. Biobjective mixed integer linear programs (BOMIPs) have

only recently received vigorous interest, in part due to their additional numerical chal-

lenges. The ND frontiers of BOMIPs have a complex structure that includes elements from

both the pure integer and pure discrete frontiers, as illustrated in Figure 1.2. The frontier

can contain closed, open, and half-open line segments, as well as isolated points.

Second, for triobjective discrete optimization problems, much more attention has been

given to criterion space search algorithms than weight space algorithms (see citations in

Figure 1.4). Weight space decomposition has only been analyzed and applied for the

weighted sum scalarization, which is restricted to a subset of the ND images. By exclud-

ing some proportion of ND images, the resulting weight set decomposition gives a warped
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Figure 1.2: Image set Y for BOMIP. The ND set for minimization is darkened.

view of the value of each remaining image.

1.1 Preliminaries

A multiobjective optimization problem (MOP), with p ∈ N, p ≥ 2 objectives can be stated

as

min f(x) = min (f1(x), . . . , fp(x))T (MOP)

s.t. x ∈ X ,

where X ⊆ Rn, for n ∈ N, is called the feasible set, and f = (f1, . . . , fp)
T : Rn → Rp

is the (vector-valued) objective function. We denote by Y := f(X ) := {y ∈ Rp : y =

f(x), x ∈ X} the image set and call Rn and Rp the decision space and the image space

(or criterion or objective space), respectively.

Methods organized by the decision space include branch-and-bound methods, which

are not covered in this thesis. Alternatively, a criterion space search method is organized

by the image space to discover new images, which are found by existing, highly efficient

black box solvers.

This thesis focuses on two subclasses of (MOP), which are distinguished by structural
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properties. First, a biobjective mixed integer linear program (BOMIP) can be stated as

(MOP) with the added restriction that p = 2 andX ⊆ ZnI×RnC for finite nI and nC . In this

case, note that vector x ∈ X has nI integer components and nC continuous components,

and when it is convenient to differentiate between the components, we use the convention

x = (xI , xC) where xI ∈ ZnI and xC ∈ RnC . Let the projections of X onto the set

of integer and real vectors be defined as XI := {xI ∈ ZnI : (xI , xC) ∈ X for some

xC ∈ RnC} and XC := {xC ∈ RnC : (xI , xC) ∈ X for some xI ∈ ZnI}, respectively.

Chapter 2 presents a criterion space search method for BOMIP.

Second, a multiobjective discrete optimization problem (MODO) can be stated as (MOP)

with the added restriction that X ⊆ Zn for finite n. Chapters 3 and 4 focus on MODOs

with p ≥ 3 with some results that are specific to p = 3.

For y, ȳ ∈ Rp, denote the following component-wise orderings:

• y 5 ȳ is defined by yi ≤ ȳi for all i = 1, . . . , p;

• y ≤ ȳ is defined by y 5 ȳ and y 6= ȳ; and

• y < ȳ is defined by yi < ȳi for all i = 1, . . . , p.

The nonnegative orthant is defined by Rp
= := {t ∈ Rp : t = 0}. The sets Rp

≥ and Rp
> are

defined analogously. For minimization, a feasible solution x dominates (strictly dominates)

another solution x′ if f(x) ≤ f(x′) (f(x) < f(x′)). A feasible solution x∗ is efficient

(weakly efficient) if there does not exist another feasible solution x such that f(x) ≤ f(x∗)

(f(x) < f(x∗)). An image y = f(x) is nondominated (ND) if x is efficient, and let YN

denote the set of ND images, also called the nondominated frontier. An image y = f(x)

is weakly nondominated if x is weakly efficient, and let YwN denote the set of weakly ND

images. For a more detailed and thorough introduction on multiobjective optimization, see

[17].

We use the relative sense of the “interior” and “boundary” points of a set. LetB(n, y, r)

be the unit ball with dimension n centered at y with radius r, and suppose Y ⊂ Rn where
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dim(Y ) ≤ n. Now we say y belongs to the relative interior of set Y , denoted rint(Y ), if

there exists ε > 0 such that B(dim(Y ), y, ε) ⊆ Y . Otherwise, if no such ε exists, we say y

belongs to the relative boundary of of y, denoted rbound(Y ).

1.2 Scalarizations

Scalarizations transform (MOP) into a single-objective problem with the help of additional

parameters, such as weights or reference points. Under the proper conditions, such as

nonnegativity of the weight vector, solving the resulting single-objective problem yields a

single ND image. We use the term integer program (IP) to refer to any single-objective

problem that has integer variables, including mixed integer linear programs. Here we sum-

marize the scalarizations commonly used in the following chapters.

The lexicographic scalarization hierarchically minimizes the objectives in turn. We

define only the biobjective case: the case of minimizing f1(x) and then f2(x) is denoted by

η = lexmin{(f1(x), f2(x)) : x ∈ X}. (1.1)

Computationally, solving a lexicographic scalarization IP requires solving p IPs in se-

quence. In this case,

η1 = min{f1(x) : x ∈ X} and then (1.2)

η2 = min{f2(x) : f1(x) ≤ η1, x ∈ X} (1.3)

are solved. Then η = (η1, η2) is an ND image of (MOP). We note that in practice the second

IP tends to solve very quickly. In general, lexicographic scalarization can be defined for

any permutation of the objectives.

For vector λ ∈ Rp
≥, we refer to

min{λTf(x) : x ∈ X} (1.4)
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as the weighted sum scalarization with respect to λ [18]. The image of an optimal solution

is (weakly) ND if λ ∈ Rp
> (λ ∈ Rp

≥) [19]. By varying the weights, alternative ND images

can be found. Weighted sum scalarizations yield supported ND images. These are located

on the convex hull of the image set. ND images that are also extreme points of the convex

hull of Y are called extreme supported nondominated (ESND) images.

Let ‖y‖λ∞ := maxi=1,...,p{|λi yi|}. With a reference point s ∈ Rp and a given weight

vector λ ∈ Rp
≥, the weighted Tchebychev scalarization with respect to λ is defined as

min {‖f(x)− s‖λ∞ : x ∈ X}. (1.5)

In practice, (1.5) is modeled with an IP by introducing an auxiliary variable. Usually,

the reference point is chosen to be the ideal point, defined as yIi := minx∈X fi(x) for

i = 1, . . . , p, or to be a utopia point yU < yI . For weight λ ∈ Rp
> and reference point

s 5 yI , every optimal solution to ΠTS(λ) is at least weakly efficient for (MODO). If

the solution is unique, its image is ND [20]. Conversely, there exists a positive weight

vector for each ND image y′ such that an optimal solution x′ for the weighted Tchebychev

scalarization problem satisfies y′ = f(x′) [20].

Given weighted scalarizations (1.4) and (1.5), the weight space can be the organizing

principle for algorithm design, much like criterion space search. By restricting weights to

be nonnegative and have unit sum, the weight space is one dimension lower than the image

space, i.e., Rp−1
≥ . Chapters 3 and 4 present such a weight space technique.

A glossary and list of acronyms may be found in the end materials of this dissertation.

1.3 Dichotomic Search

We present the classic method of dichotomic search as an instructive example to highlight

a procedure for (MOP) that is relevant throughout this dissertation. This procedure was

co-discovered and published by Cohon [21] and Aneja and Nair [22] in the late 1970s. See
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Figure 1.3: Dichotomic search for biobjective (MOP), adapted from [23]. The gradient
vectors are illustrated in the weight space in (c).

[23] for a detailed summary of the procedure, which is illustrated here and in Figure 1.3.

Given a biobjective (MOP) (e.g., Figure 1.1), dichotomic search iteratively solves the

weighted sum scalarization (1.4) to discover all ESND images. At each step of the pro-

cedure, a pair of ESND images are compared: either they are certified as adjacent on

the convex hull of Y , or a new ESND image is found which proves them to be non-

adjacent. The procedure is initialized with the two “extreme” ND images, say yr =

lexmin(f1(x), f2(x)) : x ∈ X and ys = lexmin(f2(x), f1(x)) : x ∈ X . Then the (positive)

gradient vector for the line between yr and ys is computed, denoted by λ, and used as

the weight vector for the weighted sum scalarization (1.4). Figure 1.3(a) illustrates this

subproblem. One of two cases occur:

First, if the optimal value of (1.4) with respect to λ is less than λTyr = λTys, then a

new ESND image has been found. Denote the image by yt. Now, two new pairs of images

must be tested for adjacency: (yr, yt) and (ys, yt); see Figure 1.3(b). Second, if the optimal

value of (1.4) with respect to λ is equal to λTyr = λTys, then no new ESND image has

been found. The two images, yr and ys, are certified as adjacent. Dichotomic search is

generally implemented recursively, and it terminates when the full set of ESND images are

found and all adjacencies are certified.

For a multiobjective linear program, it is well-known that every efficient solution is

supported [24]. The ND frontier for the biobjective linear program can then be described
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as a set of line segments between adjacent ESND images; see Figure 1.1a. Therefore, we

say that the dichotomic search procedure completely “solves” biobjective linear programs.

The following two observations are relevant for the chapters to come.

There are various reasons one may want to terminate the dichotomic search procedure

before all ESND images are found or certified. In particular, if not all line segments from

conv(Y) (each segment defined by a pair of ESND images) are necessary, then many of the

subproblems may be skipped. This “restricted” dichotomic search is the basic premise of

the line segment generation routine presented in Chapter 2.

The gradient vectors, while used as a means to compute new ESND images or certify

adjacent pairs, may be viewed on their own for extra insights. The set of nonnegative weight

vectors with unit sum is shown in gray in Figure 1.3(c), and the weight vectors λ, λ′, λ′′ are

illustrated in black. If we assume adjacency between image pairs (yr, yt) and (ys, yt), as

shown in Figure 1.3(b), then we can conclude that for any weight vector λ ∈ conv (λ′, λ′′),

the optimal value for (1.4) with respect to λ is λTyt. This perspective from the weight space

and the partitioning of the weight set are fully explored in Chapters 3 and 4.

1.4 Motivating Applications

The following examples describe multiobjective applications which motivate the classes of

(MOP) we study.

Example 1 (BOMIP). A recent study [25] examines a biobjective hub-airport location

problem, which analyzes the network containing larger airports (“hubs”) and smaller air-

ports (“nodes”), specifically in Turkey. The decision makers are investors, and the objec-

tives are to minimize the total transportation cost and the total cost of using 2-stop routes.

The former objective reflects the preference of the airline companies, which is to prioritize

the efficient routing through hubs, while the latter reflects the preference of the customers,

which is to avoid unnecessary stops by flying directly between nodes. The resulting model

is a BOMIP. For small instances, the authors apply an exact BOMIP algorithm [26] that
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preceeded the Boxed Line Method presented in Chapter 2 (wherein we show our algorithm

performs better). For larger instances, the authors utilized a heuristic approach.

Example 2 (MODO). Recent work [27] studies urban freight distribution. Introducing

pollution related objectives into traditional vehicle routing problems is becoming more

common and is referred to as the pollution-routing problem. These problems are more so-

phisticated because they incorporate time-varying traffic conditions, vehicle payload, and

fuel consumption. This work studes the Steiner pollution-routing problem variant. The tri-

objective model aims to minimize (1) vehicle hiring cost, (2) total amount of fuel consumed,

and (3) total duration of the routes. The authors note that while this is a triobjective mixed

integer linear program, since only one objective function contains continuous variables,

then the ND frontier is a discrete set just as in MODO.1 They use the Quadrant Shrinking

Method [29], a criterion space search method, to solve for the ND set.

Example 3 (Multiple decision makers). The McRow method proposed by [30] is defined

for multiobjective linear programs with multiple experts or decision makers. Given a set

of weights, the McRow formulation returns a single solution to a min-max problem which

minimizes the “dissatisfaction” of the most dissatisfied expert. They primarily apply the

weighted sum scalarization but also note that this can be replaced by the weighted Tcheby-

chev scalarization. As an example, they implement their methodology to a disaster relief

application for a volcano in Indonesia.

This final example, in particular, implicitly uses the weight space for (MOP) algorithm

design. Unlike the image space, the weight space gives a more intuitive perspective of

preference weights, including dissatisfaction and compromises. However, the McRow re-

turns a single solution, whereas we propose to return all the solutions associated with the

set of expert weights. Chapter 4 formalizes this as an application of the novel weight space

decomposition.

1Similar to the conclusion made in [28].
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1.5 Timeline of Algorithms

We have so far discussed subclasses of (MOP), including one that has been solvable since

the 1970s (i.e., biobjective linear programs by dichotomic search). We briefly and visu-

ally summarize algorithms for the other relevant subclasses studied in this thesis. See

Figure 1.4.

Figure 1.4a includes only exact criterion space search algorithms for BOMIP; to the

best of our knowledge, the timeline is complete. In 2015, the Triangle Splitting Algorithm

[31] was the first to be published.2 As seen from the timeline, its publication was followed

by a flurry of attention to this class of problems. From 2015 to 2020, at least one new

BOMIP algorithm was published each year. The Boxed Line Method [32] is presented in

Chapter 2.

For MODOs with p = 3, Figure 1.4b gives only a representative sample of the published

criterion space search algorithms. Indeed, the true number of studies is massive. Over time,

the algorithms have become more and more sophisticated in the decomposition of the image

space and the subproblems solved. Rather than contributing to this class of algorithms, we

instead adapt the algorithm from Klamroth et al. [41] to contribute a new weight space

decomposition algorithm (see Chapter 4).

In contrast to criterion space search algorithms, the history of weight space search al-

gorithms for MODOs is much more sparse. Figure 1.4c highlights only the algorithms

that explicitly compute the weight set decomposition (or an approximation thereof). All of

these methods were defined for weighted sum scalarization. This motivated research into a

new weighted scalarization (Chapters 3 and 4).

2Since its publication, the Triangle Splitting Algorithm has since been cited 56 times. source: Google
Scholar.
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Figure 1.4: Timelines of related MOP algorithms.

1.6 Contributions

Chapter 2 presents a criterion space search algorithm developed for BOMIP called the

Boxed Line Method. This algorithm generalizes a previous algorithm for biobjective in-

teger programs to include continuous variables. The algorithm improves upon previous

BOMIP algorithms in multiple ways: BLM provides a parsimonious representation of the
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ND set (rather than splitting line segments into smaller segments), better approximates the

ND set in partial run-time, and shows superior performance in computational experiments.

The algorithm has two variants that permit analysis of the number of single-objective IPs

that they require to be solved: a basic, iterative version and a recursive version. For both

variants, we provide upper bounds on the number of single-objective IPs required to pro-

duce the ND frontier. These were the first analytic results of this type for multiobjective

mixed integer problems. In addition, a new class of instances was developed for study, and

thorough computational results were presented. This research was conducted in collabora-

tion with Diego Pecin, Natashia Boland, and Martin Savelsbergh: Tyler Perini developed

the algorithm design, complexity analyses, and instance generation, and Diego Pecin per-

formed the computational study. The research has been published in INFORMS Journal of

Computing [32] and received the 2020 INFORMS Computing Society Student Paper Prize.

Chapter 3 applies the weight set decomposition approach to the weighted Tchebychev

scalarization of MODOs, which has not been done before for more than two objectives.

The weighted Tchebychev scalarization implies a more sophisticated and rich structure in

comparison to the weighted sum scalarization. The primary contribution of this work is a

theoretical study of this structure and its properties, which provides a foundation for the

development of new algorithms to compute the weighted Tchebychev weight set decom-

position, which in particular includes the enumeration of all ND images of a MODOs. The

weight set components are shown to be nonconvex but have convexity related properties:

they are star-shaped as well as convex along rays emanating from a vertex of the weight

set. The intersections of weight set components are shown to coincide with weakly ND

images, and hence all convexity-related properties also apply, even though intersections of

star-shaped sets are, in general, not star-shaped. Weight set components are described as

unions of finitely many polytopes, which lays a well-defined foundation of the dimensional

analysis, including an adjacency structure for weight set components. This research was

conducted in collaboration with Stephan Helfrich, Pascal Halffmann, and Stefan Ruzika
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at Technical University of Kaiserslautern in addition to Natashia Boland. Tyler Perini and

Stephan Helfrich co-discovered many of the geometric properties of this weight space de-

composition in their PhD research: Tyler Perini contributed mainly to the study of intersec-

tion sets, and Stephan Helfrich contributed mainly to the convexity and polytopal analysis.

Chapter 4 extends the work of Chapter 3, maintaining focus on the weighted Tcheby-

chev scalarization. The concept of local nadir points are generalized and fully developed,

and an existing method to compute them is adapted to satisfy the needs of the weight space

decomposition. These methods are proven to be sufficient to compute weight set compo-

nents and cover the weight set. A triangularization method is presented which eliminates

redundancy for computing exact area of weight set components. Furthermore, this re-

search explores the tight relationship between the hyperrectangular level set of the weighted

Tchebychev scalarization and the “boxes” used by algorithms to decompose the image

space for MODOs. Insights from this weight space decomposition technique are used to

modify classic MODO algorithmic approaches. By doing so, inner and outer approxima-

tions of the weight set components can be produced during run-time. Additionally, com-

putation can be reduced by solving for ND images associated with a subset of the weight

set which represents the compromise between a set of weights. Simulated computational

experiments are presented. This research was also conducted in collaboration with Stephan

Helfrich, Pascal Halffmann, and Stefan Ruzika at Technical University of Kaiserslautern

in addition to Natashia Boland. Tyler Perini contributed to the applications to primal algo-

rithms and the computational study; Stephan Helfrich contributed to the proof of coverage;

and both contributed equally to the design of algorithms and theoretical results.

1.7 Outline

This dissertation discusses techniques for MOP with discrete variables. Table 1.1 summa-

rizes the topics covered by each chapter. Chapter 2 presents the Boxed Line Method in the

context of BOMIP. Chapter 3 explores fundamental geometric properties of the weighted
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Tchebychev weight space decomposition method for MODOs with three or more objec-

tives. Chapter 4 applies the weight space decomposition with algorithms adapted to com-

puting the weight set components exactly, computing approximations of the components,

and restricting criterion space search algorithms via the weight space. Chapter 5 concludes

with special computational considerations and motivations for future work.

Table 1.1: Chapter contents.

Chapter 2 Chapter 3 Chapter 4
p = 2 p ≥ 3 p = 3

Mixed Integer Pure Integer Pure Integer
Criterion Space Weight Space Weight Space

Algorithm, Theoretical Results Theoretical Results Algorithm, Theoretical Results
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CHAPTER 2

BOXED LINE METHOD: AN EXACT METHOD FOR BIOBJECTIVE MIXED

INTEGER PROGRAMS

Abstract. Despite recent interest in multiobjective integer programming, few

algorithms exist for solving biobjective mixed integer programs. We present

such an algorithm: the Boxed Line Method. For one of its variants, we prove

that the number of single-objective integer programs solved is bounded by a

linear function of the number of nondominated line segments in the nondom-

inated frontier; this is the first such complexity result. An extensive computa-

tional study demonstrates that the Boxed Line Method is also efficient in prac-

tice, and that it outperforms existing algorithms on a diverse set of instances.1

Recently, criterion space methods, in which the search for the nondominated (ND)

frontier operates over the space of the vector of objective function values, known as the

criterion space, have emerged. Such methods have the advantage of being able to exploit

advances in single-objective solver software, since these methods repeatedly solve single-

objective problems, both linear programs (LPs) and mixed integer linear programs (which

we will generically refer to as IPs), treating the single-objective solver as a “black box”.

Single-objective problems, either LPs or IPs, are the main “workhorses” of these algo-

rithms, which differ mainly in the structure and number of such problems that need to be

solved before the ND frontier is completely identified.

This chapter focuses on criterion space search algorithms for biobjective mixed integer

linear programs (BOMIPs). The first of such algorithms to be published was the Triangle

Splitting Algorithm (TSA) [31]. The TSA first identifies all extreme supported nondomi-

nated (ESND) images using dichotomic search [21, 22], which allows the remaining search

region to be divided into right-angled triangles. Each triangle is then split, either horizon-
1This work was published in INFORMS Journal on Computing (2019) [32], coauthored with Natashia

Boland, Diego Pecin, and Martin Savelsbergh, with Tyler Perini as first author. This work received the
INFORMS Computing Society Student Paper Prize in 2020.
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zL

zR

(a) ND images are filled.

zL

zR

(b) ND line segments are darkened.

Figure 2.1: The key step in the Balanced Box Method (a) and the Boxed Line Method (b).
The remaining search regions (boxes) after the step are shaded.

tally or vertically, with each half searched for a ND image so as to reduce the remaining

search region within the triangle to two rectangles. Within each rectangle, all ESND im-

ages are found (these are extreme and supported only in the local sense, i.e., within the

rectangle), and the process repeats. Line segments in the ND frontier are identified when

they form part of the hypotenuse of a triangle. TSA may split a line segment in the ND

frontier. This can occur even if the line segment is part of the frontier of a unique slice

problem, which is a biobjective LP defined by fixing the integer part of the solution. The

TSA thus requires a post-processing procedure to provide a parsimonious description of

the ND frontier.

The second algorithm published was the ε,Tabu-Constraint Method (εTCM) of [26],

which uses “tabu”, or no-good, constraints to identify line segments in the ND frontier,

combined with ε-constraints to progressively generate the frontier from right-to-left (or

vice versa).

In this chapter, the following are key contributions.

1. We propose a new criterion space search method for solving the BOMIP: the Boxed

Line Method (BLM). The method is designed to generalize the Balanced Box Method

(BBM) [52], which is a computationally effective method for MODO limited to two
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objectives. The BLM defaults to BBM in the absence of continuous variables. The

key step of the BBM is illustrated in Figure 2.1a: the rectangular search region (box)

is split, each half is searched for a ND image, which reduces the remaining search

region to two boxes having total area less than half that of the original box. To apply

this idea to BOMIP, we observe that when the split line passes through a line segment

of the frontier, the ND image found when the first half of the box is searched will lie

on the split line. In the BLM, we seek to extend this ND image to the line segment

in the ND frontier which contains it. Using the endpoints of this line segment gives a

remaining search region consisting of two boxes, with combined area less than half

that of the original box. Figure 2.1b illustrates this idea. As a consequence of the

idea, the resulting algorithm is amenable to analysis (discussed next) and produces a

parsimonious description of the ND frontier.

2. The algorithm has two variants that permit analysis of the number of single-objective

IPs that they require to be solved: a basic, iterative version and a recursive version.

For both variants, we provide upper bounds on the number of single-objective IPs

required to produce the ND frontier. These are the first analytic results of this type

for mixed integer multiobjective problems.

3. We design an enhancement that takes advantage of a property of the ND frontier

encountered in many BOMIP instances, which can provide a significant improvement

in algorithm runtime.

4. The benchmark instances originally proposed by [12], which have been used to test

recent methods, have a structure that is very sensitive to the numerical tolerances

used in algorithms. In these instances, the slice problems often have many short line

segments in their frontiers and include line segments that are close to horizontal or

close to vertical. The instances also have frontiers represented by a relatively small

number of slice problems, which can bias comparisons of algorithms if one of the
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algorithms is designed to exploit this structure. Here, we propose a new approach to

creating instances, in a controlled way. The approach facilitates validation of BOMIP

algorithms, by producing instances for which the frontiers are known precisely, a

priori. It also supplements the existing suite of test instances by providing instances

having different characteristics, such as having many slice problems contributing to

the frontier.

5. We provide computational results that demonstrate the relative strengths and weak-

nesses of the BLM variants on two classes of the new instances proposed here, as

well as on instances from [12]. The results in the latter case are compared with the

results of the TSA [31] and in both cases with the εTCM [26].

This chapter is structured as follows. In Section 2.1, we introduce unique structures of

the ND frontier for a BOMIP. The basic variant of the BLM is described in Section 2.2.

In Section 2.2.5, we prove that the method has an upper bound for the number of IPs. We

continue by presenting the recursive extension to the method in Section 2.3 along with its

better upper bound for the number of IPs in Section 2.3.4. The enhancement designed for a

structure common to many BOMIP instances is discussed in Section 2.4. In Section 2.5, we

discuss numerical issues in implementation and how they relate to the structure of existing

benchmark instances. Then in Section 2.6, we present our new instance generator method.

Finally, we give our computational study in Section 2.7 and summarize our findings.

2.1 Structures of a BOMIP Frontier

The ND frontier of a BOMIP can be described by nondominated line segments, vertical

gaps, and horizontal gaps. Define L(z1, z2) to be the line segment connecting endpoints

z1, z2 ∈ R2, i.e. L(z1, z2) := {ξz1 + (1 − ξ)z2 : 0 ≤ ξ ≤ 1} where the endpoints are

ordered so that z1
1 ≤ z2

1 . As defined, L(z1, z2) is a closed line segment. When z1 6= z2, we

can also have an open line segment (neither z1 nor z2 are part of the line segment) and a
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half-open line segment (either z1 or z2 is not part of the line segment); we refer to z1 and

z2 as closed, if they belong to the line segment, and as open otherwise. A line segment

L(z1, z2) is a point when z1 = z2.

A gap may appear in the ND frontier between two ND images in the vertical or hor-

izontal direction, or both; this is obvious for MODOs for which all ND images are iso-

lated points, but it is not a given fact when given mixed continuous and integer variables.

Between a ND image and an open endpoint of a line segment in the ND frontier there

must appear either a vertical or a horizontal gap. We define a vertical gap as an interval

(y−, y+) ⊂ R such that no ND image p exists with p2 ∈ (y−, y+) but where there does exist

a ND image p− with p−2 = y− and either a ND image p+ with p+
2 = y+ or a sequence of

ND images {p0, p1, ...} with limn→∞ p
n
2 = y+ (or both). A horizontal gap can be defined

similarly.

Given xI ∈ XI , the biobjective LP (BOLP) obtained from fixing the integer variables

to xI is called the slice problem for xI [53]. The ND frontier of a BOLP slice problem

consists of a (connected) set of (closed) line segments; we call this a slice. The ND frontier

of a slice problem for xI is called the slice for xI2.

We now develop a proper definition for nondominated line segments, including how

they should be enumerated for our complexity results. Define S to be the index set of all

feasible integer solutions in XI . For a slice problem with index s ∈ S, we denote its slice

by N s. If a slice problem with index s ∈ S contributes to the ND frontier of the BOMIP, so

N s∩N is nonempty, then we writeN s∩N = {Ls1, Ls2, ..., Lsn(s)}, where n(s) is the number

of line segments contributed to the ND frontier by the slice problem. (If N s ∩N is empty,

then n(s) = 0.) Each of the line segments, Lsi for some s ∈ S and i = 1, . . . , n(s), is a

nondominated line segment (NDLS). Note that a single maximal line segment in N s may

contribute several NDLSs to the ND frontier, consisting of non-overlapping sections of the

line segment. We make the natural assumption that the set N s ∩ N consists of maximal

2Note that our definition of a slice differs from the original definition by [53], where it is defined as the
feasible set for the slice problem as opposed to the resulting ND frontier.
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line segments, where maximal refers to set inclusion, so N s ∩ N provides the minimum

cardinality set of line segments that describes the slice’s intersection with the ND frontier

of the BOMIP. For a given BOMIP, we define the total number of NDLSs in the ND frontier

as

n∗ :=
∑
s∈S

n(s). (2.1)

2.2 Basic Method

Here we present the fundamental principles of the BLM. The four main components of

the algorithm are the initialization, outer loop, inner loop, and line segment generation

subroutine. In this chapter, we assume exact arithmetic. For example, we describe some

constraints as strict inequalities. These are implemented, in practice, as inequalities with

the right-hand side adjusted using the desired accuracy, ε > 0. The pseudocode provided in

the appendix makes this explicit. In practice, the numerical issues naturally encountered in

solving integer programs, which are even more pressing for mixed integer programs, make

it unreasonable to expect to determine the ND frontier exactly. In Section 2.5, we define

an approximation – an ε-nondominated frontier – and discuss the numerical challenges that

arise in finding it.

2.2.1 Initialization

The first stage, initialization, solves two lexicographic scalarization IPs of the form (1.1)

to determine the upper-leftmost ND image, zL = lexmin{(f1(x), f2(x)) : x ∈ X}, and

the lower-rightmost ND image, zR = lexmin{(f2(x), f1(x)) : x ∈ X}. In this chapter,

we refer to a rectangular region in criterion space as a “box” and describe it by its upper-

leftmost and lower-rightmost corner points. The entire ND frontier must lie in the box with

zL and zR as its two corner points, which we denote by B(zL, zR). Note that if zL = zR,

then B(zL, zR) is a point. We call a box with zLi = zRi for i = 1 or 2 (or both) trivially

small. If the box B(zL, zR) is trivially small, then the method terminates and one point is
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returned as the full ND frontier. Otherwise, two points are added to the current subset of

the ND frontier, which we call Ñ , and the box B(zL, zR) is added to the queue, which we

call Q, for further processing by the outer loop. In general, the basic method only adds

boxes to the queue if both corner points are the closed endpoints of a NDLS to which they

belong (we discuss this further in Section 2.2.5).

2.2.2 Outer Loop

To introduce the outer loop of the basic version of the BLM, we first describe the process

for the Balanced Box Method [52] because, in the first case we consider, the two algorithms

follow the same procedure. The steps are visually summarized in Figure 2.2.

The outer loop is defined as a while loop that ends once Q is empty. The main roles

of the outer loop are to remove boxes from Q for processing, split the boxes to begin

processing, (if necessary) call the inner loop to complete processing, and update Ñ with any

found ND images andQwith remaining boxes for future processing. Suppose a (nontrivial)

box B(zL, zR) is arbitrarily chosen from Q where zL and zR now represent the corner

points of the new box (not necessarily the ND images found by initialization). The outer

loop begins processing by choosing an arbitrary horizontal split line z2 = µ where µ ∈

(zR2 , z
L
2 ). We solve a lexicographic IP for a ND image on or below the split line, namely

z∗ = lexmin{(f1(x), f2(x)) : f2(x) ≤ µ, x ∈ X}. (2.2)

We note that the solution xR ∈ X , which maps to zR = f(xR), is feasible for (2.2), so in

practice we provide xR as an initial feasible solution to the solver. The next step is to form

a second split line, this time vertically at z∗1 and solve a second lexicographic minimization3

3The strict inequality used is a convenient shorthand: it is meant to be interpreted and implemented as
f1(x) ≤ z∗1 − ε for some ε > 0.
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f1(x)

f2(x)

zL

zR

(a) Initialization identifies zL and zR and de-
fines the white box to the queue. The outer
region in grey is ignored.

f1(x)

f2(x)

zL

zR

z∗

µ

(b) A horizontal split line z2 = µ is chosen
such that µ ∈ (zR2 , z

L
2 ). Lexicographically

minimizing f1(x) then f2(x) below the split
line yields z∗ where z∗2 < µ.

f1(x)

f2(x)

zL

zR

ẑ

z∗

z∗1

(c) A vertical split line is chosen at z∗1 . Lexico-
graphically minimizing f2(x) then f1(x) (strictly)
to the left of the split line yields ẑ.

f1(x)

f2(x)

zL

zR

ẑ

z∗

z∗1 − ε

(d) The approximation of the ND frontier,
Ñ , is updated with ẑ and z∗, and the two new
boxes (in white) are added to the queue, Q.

Figure 2.2: Outer loop procedure for the Balanced Box Method and the BLM when z∗2 < µ.

for the next ND image,

ẑ = lexmin{(f2(x), f1(x)) : f1(x) < z∗1 , x ∈ X}. (2.3)

The solution xL ∈ X that maps to zL = f(xL) is feasible for (2.3), so in practice, xL is

provided as an initial feasible solution to the solver.

Finally, the outer loop updates Ñ and Q, accordingly. First, z∗ and ẑ are added to Ñ .

Then, z∗ and ẑ are used respectively with zR and zL to define two new boxes, B(zL, ẑ) and
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B(z∗, zR), each of which is added to the queue if it is not trivially small. This concludes

the processing of one box by the outer loop when z∗2 < µ.

The BLM follows the above procedure when the first lexicographic minimization (2.2)

returns ND image z∗ such that z∗2 < µ. Note that when there are discrete variables, it is

possible for an arbitrary horizontal split line z2 = µ to not intersect any ND image, which

results in z∗2 < µ. In this case, we say that the outer loop has identified a vertical gap in the

ND frontier. Once a vertical gap is identified by the outer loop, the boxes resulting from

processing are such that this vertical gap is excluded from any subsequent boxes added to

the queue (we prove this formally in Section 2.2.5).

For a BOMIP with continuous variables, it is likely that the horizontal split line will

intersect an NDLS. In this case, the first lexicographic minimization (2.2) returns ND image

z∗ such that z∗2 = µ. The rest of the procedure is designed to identify the NDLS that contains

z∗, i.e., to find L(z1, z2) ⊂ B(zL, zR) such that z∗ ∈ L(z1, z2). This concept motivates the

name for the BLM.

The outer loop calls the inner loop, which returns L(z1, z2) (details on how this is done

are given in the Section 2.2.3). The inner loop returns endpoints z1 and z2, as well as

the ND image that dominates each open endpoint, if any. The outer loop updates the cur-

rent approximation of the ND frontier by adding L(z1, z2) to Ñ and updates the queue by

adding up to two nontrivial boxes. Since BLM only creates boxes for which both corner

points are ND, we initialize the boxes depending on the openness of the endpoints as fol-

lows. If z1 is closed, then B(zL, z1) is added to Q. Otherwise the inner loop has returned

a ND image, ẑ1, that dominates z1, and the box B(zL, ẑ1) is added to Q. Similarly, if z2 is

closed, then B(z2, zR) is added to Q. Otherwise, the inner loop has returned a ND image,

ẑ2, that dominates z2, and the box B(ẑ2, zR) is added to Q.

This concludes the processing of one box by the outer loop when z∗2 = µ, which is

summarized in Figure 2.3. The pseudocode is included in the Appendix, as Algorithm 4.
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f1(x)

f2(x)

zL

zR

(a) Suppose the box B(zL, zR) is chosen
from Q.

f1(x)

f2(x)

zL

zR

µ
z∗

(b) Minimizing f1(x) then f2(x) below the
split line µ yields z∗ where z∗2 = µ.

f1(x)

f2(x)

zL

zR

z1

z2

ẑ2

(c) The Inner Loop returns the NDLS containing
z∗, indicating whether each endpoint z1 and z2

are either open or closed, and the point(s) that
dominates its open endpoint(s) (e.g. ẑ2 dominates
z2).

f1(x)

f2(x)

zL

zR

z1

z2

ẑ2

(d) The approximation of the ND frontier
is updated with line segment L(z1, z2), and
two new boxes are added to the queue, e.g.,
B(zL, z1) and B(ẑ2, zR) (assuming they are
nontrivial).

Figure 2.3: Outer loop procedure for the BLM when z∗2 = µ.

2.2.3 Inner Loop

The inner loop is called when the outer loop is processing box B(zL, zR) and the split line

contains a ND image, z∗, i.e. when z∗2 = µ. The inner loop finds the NDLS, L(z1, z2),

that contains z∗. Its steps are visually summarized in Figure 2.4, and the pseudocode is

presented in the Appendix as Algorithm 5.

Let x∗ = (x∗I , x
∗
C) ∈ X be an optimal solution to (2.2) that maps to z∗ = f(x∗). The

first step in the inner loop is to provide an overestimation for the NDLS by generating
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f1(x)

f2(x)

z∗

z1

z2

(a) The gray corner points of the white box
are zL and zR. The darkened line is the ap-
proximation of the line segment immediately
after line generation subroutine. Note that
z2 is open because it lies directly above zR:
z2

1 = zR1 and z2
2 > zR2 .

f1(x)

f2(x)

z∗
f(y1) = v

z1

z2

(b) Solving (2.5) (within the white region
bounded by the previous z1,z2) identifies
f(y1), which is also equal to v. We update
z1 accordingly, so it is now open.

f1(x)

f2(x)

z∗

f(y2)

z1

v = z2

(c) Solving (2.5) again (within the white region
bounded by the previous z1,z2) identifies f(y2).
Since v is at the intersection of the slice contain-
ing z∗ with the line segment, v is equal to the new
z2, which is now closed.

f1(x)

f2(x)

z∗f(y3) = v
z1

z2

(d) Solving (2.5) yields f(y3), then solve for
v. Update z1, and one final weighted sum IP
confirms that L(z1, z2) is ND. Although z1

is open, in this case the ND image that dom-
inates it is already known, i.e. ẑ1 = f(y3).

Figure 2.4: The inner loop takes as input ND images zL, zR, and z∗. The output is the
(maximal) NDLS containing z∗, L(z1, z2), and the ND image that dominates each open
endpoint (if any).

the line segment containing z∗ in the slice for x∗I , restricted to B(zL, zR). We discuss the

details of the line segment generation subroutine in the Section 2.2.4. Here we assume the

following is given: the maximal line segment L(z1, z2) such that z∗ ∈ L(z1, z2), zL1 ≤

z1
1 ≤ z2

1 ≤ zR1 , zL2 ≥ z1
2 ≥ z2

2 ≥ zR2 , and z1, z2, and z∗ are all in the slice for x∗I .
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Since L(z1, z2) is part of the slice for x∗I , it must be that either (i) z1 = z2 or (ii) z1
1 < z2

1

and z1
2 > z2

2 . In the case that z1 = z∗ = z2, the slice consists of the isolated ND image z∗,

so the inner loop ends and returns z1 = z∗ and z2 = z∗ (both closed).

Otherwise, z1 6= z2, and the gradient vector of the line segment, L(z1, z2), normalized

to have unit length, is defined as

~w = (z1
2 − z2

2 , z
2
1 − z1

1)/||(z1
2 − z2

2 , z
2
1 − z1

1)||. (2.4)

In what follows, each weighted sum IP (1.4) is computed with λ = ~w.

Next, the endpoints of L(z1, z2) are restricted, iteratively, until only the ND portion of

it remains. Either or both ends are “trimmed” while always maintaining z∗ as the central

point between z1 and z2, ensuring that the final line segment contains z∗. Until the inner

loop terminates, each iteration updates the endpoints of the line segment, z1 or z2 (both

their coordinates and their open/closed flag), with any newfound knowledge. For instance,

immediately after the line generation subroutine provides L(z1, z2), both endpoints are

flagged as closed unless the following cases occur: (i) zR1 = z2
1 and zR2 < z2

2 , illustrated in

Figure 2.4a, in which case the endpoint z2 is dominated by zR, so z2 cannot be closed and

is flagged as open, and (ii) zL2 = z1
2 and zL1 < z1

1 , in which case z1 is flagged as open.

The inner loop is a while loop that continues until the entirety of the current line seg-

ment, L(z1, z2), is ND. To check this stopping condition, the following weighted sum IP,

f(y∗) = min{~wTf(x) : f1(x) ≤ z2
1 , f2(x) ≤ z1

2 , x ∈ X}, (2.5)

is solved, where the first inequality is strict if z2 is open and the second inequality is strict

if z1 is open. These conditionally strict inequalities are required to avoid cycling. Now

L(z1, z2) is ND if and only if (2.5) yields an optimal solution, y∗, with ~wTf(y∗) = ~wT z∗ (a

formal proof of this is provided in the Appendix). Hence, ~wTf(y∗) = ~wT z∗ is the stopping

criterion for the while loop.
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In the case that ~wTf(y∗) 6= ~wT z∗ it must be that ~wTf(y∗) < ~wT z∗, since z∗ in L(z1, z2)

ensures that the feasible solution mapping to z∗ is feasible for (2.5). Thus, the ND image

f(y∗) dominates a portion of the current line segment. There are two cases: either f(y∗)

is to the left or it is to the right of z∗. Without loss of generality, assume f1(y∗) < z∗1 (the

other case follows from a symmetric argument). There may be many other points from the

slice for y∗I that also dominate part of L(z1, z2): z1 is updated to exclude all such points

within the box by finding the point with integer solution y∗I that dominates part of L(z1, z2)

and has minimal z2-coordinate. Hence, we solve the LP

min{f2(x) : ~wTf(x) ≤ ~wT z∗, xI = y∗I , x ∈ X}. (2.6)

Let y′ be an optimal solution to (2.6) and define v = f(y′). We highlight some observations

about the LP defined in (2.6).

• Minimizing f2(x) ensures all points on the slice for y∗I that can dominate the current

line segment are excluded when z1
2 is updated. The idea is illustrated in Figure 2.5a.

• Even though the point v may lie on the line segment L(z1, z2), it will never be dom-

inated by any point from L(z1, z2) because of the first constraint, ~wTf(x) ≤ ~wT z∗.

Consider Figure 2.5b.

• While the first scalarization returns a ND image f(y∗), the point v may be dominated.

Consider Figure 2.5c. This issue will be discussed later.

• As it is an LP, (2.6) can be solved efficiently. Furthermore, since the solution y∗ is

feasible for (2.6), in implementation we provide this initial feasible solution to the

solver, which yields even greater efficiency.

Next, v is used to update z1. First, suppose v 6∈ L(z1, z2). Point ρ ∈ L(z1, z2) such

that ρ2 = v2 is computed and then z1 is updated: z1 = ρ and flagged to be open (see

Figure 2.5a). Otherwise, v ∈ L(z1, z2) and z1 is updated to z1 = v. Before updating the
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f1(x)

f2(x)

z∗f(y∗) v
ρ = New z1

(a) The slice for y∗I is dashed.
Minimizing f2(x) on this slice
finds v. Updating the upper
endpoint z1 to the point ρ (as
open) will prevent y∗I recurring
when solving (2.5).

f1(x)

f2(x)

z∗f(y∗)
v = New z1

(b) The minimization to find v
along the slice for y∗I cannot sur-
pass L(z1, z2) because of the con-
straint ~wT f(x) ≤ ~wT z∗. Since v ∈
L(z1, z2), z1 is updated as z1 = v
and flagged to be closed.

f1(x)

f2(x)

z∗f(y∗)
v = New z1

(c) The point v in this
example is dominated
by a point from an-
other slice (dotted)

.

Figure 2.5: Observations about the construction of LP (2.6).

open/closed flag for z1, we need to check for the possibility that v is a weakly ND point on

the slice for y∗I , as in Figure 2.6. If so, then the new z1 will be open and otherwise it will

be closed. To check this, the algorithm solves a second LP,

min{f1(x) : f2(x) = v2, xI = y∗I , x ∈ X}. (2.7)

Let y′′ be an optimal solution of (2.7) and update v = f(y′′). (Note that even this updated

v is still not necessarily a ND image of the BOMIP). If v1 < z1
1 , then the algorithm flags z1

as open, and otherwise it is flagged as closed.

After updating z1 as described, then, by convexity, it is guaranteed that no point from

the slice for y∗I can again be found. Since X is bounded, which implies that XI is finite, the

inner loop will terminate in a finite number of iterations. The resulting endpoints z1 and z2

will then define the NDLS containing z∗, L(z1, z2).

As a final step, the inner loop finds each ND image that dominates an endpoint that is

open. Let ẑ1 denote the ND image that dominates z1 when z1 is open, and let ẑ2 denote the

ND image that dominates z2 when z2 is open. To determine ẑi for i ∈ {1, 2}, two special
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f1(x)

f2(x)
z1

z2

z∗f(y∗) v

(a) f(y∗) dominates points from the line segment L(z1, z2).
The LP (2.6) has multiple optimal solutions. Finding v on
the current line segment requires checking for an alternative
optimum before updating the open/closed flag for z1.

f1(x)

f2(x)

v = New z1

f(y′′)

(b) Solving (2.7) yields y′′ with
f1(y′′) < v1, so the updated z1 is
flagged to be open.

Figure 2.6: The case that v lies on the current line segment and is a weak ND image of the
slice problem for y∗.

cases are checked first. (1) If z1
2 = zL2 , then clearly ẑ1 = zL (and similarly for z2 and zR).

(2) If z1
2 = f2(y∗) then ẑ1 = f(y∗) (see Figure 2.4d; and similarly if z2

1 = f1(y∗), then

ẑ2 = f(y∗)). Otherwise, the inner loop identifies these ND images by solving the IP

min{f1(x) : f2(x) ≤ z1
2 , x ∈ X}, (2.8)

if z1 is open, and by solving the IP

min{f2(x) : f1(x) ≤ z2
1 , x ∈ X}, (2.9)

if z2 is open. If z1 is open, ẑ1 = f(x̂1), where x̂1 is an optimal solution to (2.8), and if z2

is open, ẑ2 = f(x̂2), where x̂2 is an optimal solution to (2.9).

2.2.4 Line Segment Generation Subroutine

The purpose of the line segment generation subroutine is to provide the inner loop with

a single line segment that can be reduced to an NDLS by simply updating its endpoints.

The subroutine determines an overestimate of the NDLS containing a given ND image,
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f1(x)

f2(x)

z∗

(a) The ND image z∗ domi-
nates all other solutions with
the same integer solution: it
is an isolated ND image and
z1 = z2 = z∗.

f1(x)

f2(x)

z∗

z1

z2

(b) The ND image belongs to
exactly one line segment of its
slice (darkened): L(z1, z2).

f1(x)

f2(x)

z∗

z2

(c) The ND image belongs
to exactly two line segments
of the slice (darkened). The
line segment generation sub-
routine finds the one to the
lower right: L(z∗, z2).

Figure 2.7: Three possible cases for finding a line segment of the slice containing z∗.

z∗ = f(x∗), within B(zL, zR). Specifically, it finds a maximal line segment, L(z1, z2), of

the slice problem for given integer solution x∗I with z∗ ∈ L(z1, z2). Such a segment is an

NDLS of the slice problem min{(f1(x), f2(x)) : xI = x∗I , x ∈ X}. Figure 2.7 illustrates

the three possible cases for z∗: z∗ may be an isolated point or it may belong to one or two

line segments of the slice. When z∗ belongs to two line segments, the subroutine finds the

segment to the lower right, i.e., it takes z1 = z∗ (see Figure 2.7c).

Finding the maximal line segment, L(z1, z2), of the slice problem for given integer

solution x∗I with z∗ = f(x∗) ∈ L(z1, z2) can be done, in theory, by accessing the values

of the dual variables at the optimal branch-and-bound node of the IP that found z∗ and

applying LP duality theory. However, we are not confident that, in practice, the IP solver

will provide the LP dual variables needed, since it may have found z∗ with a primal heuris-

tic, eliminated variables and/or constraints or modified coefficients with preprocessing, or

added constraints. Therefore, we simply use a variant of dichotomic search [21, 22], re-

stricted to a box around z∗ of size sufficiently large to ensure that the gradient of any line

segment that contains z∗ and lies within the box can be calculated accurately.

The BLM requires the line generation subroutine to produce three interrelated forms of
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output. Primarily, it seeks the two endpoints of the line segment, z1 and z2. In addition,

as long as z1 6= z2, it seeks the gradient vector, ~w, of the line segment L(z1, z2). When

z1 = z2, we say that ~w does not exist; we note that when the gradient vector ~w exists, it is

normalized before it is returned. Obviously, if we have z1 and z2 6= z1, then it is trivial to

compute ~w. However, if ~w is discovered first, it is also possible to find each endpoint by

solving the following LPs:

x1 = arg min{f1(x) : ~wTf(x) ≤ ~wT z∗, f2(x) ≤ zL2 , xI = x∗I , x ∈ X}, and (2.10)

x2 = arg min{f2(x) : ~wTf(x) ≤ ~wT z∗, f1(x) ≤ zR1 , xI = x∗I , x ∈ X}. (2.11)

Then z1 = f(x1) and z2 = f(x2). (By construction, z1 or z2 should not be outside the

box B(zL, zR), since the box’s corner points are ND images.) Therefore, the subroutine

either finds both endpoints or the gradient of the line segment, and then the remaining

output can be computed accordingly. Because of this, Algorithm 8, giving details of the

subroutine, is flexible in the order in which these outputs are discovered. The algorithm

generally searches for z2 first, and in the case that neither z2 nor ~w are found, then it

assumes z2 = z∗ and searches for z1.

2.2.5 Complexity of the Basic Method

In this section, we prove a worst-case upper bound on the number of IPs solved in order

to generate the entire ND frontier. We do so by describing the number of IPs solved as a

function of the number of NDLSs in the ND frontier.

Consider a BOMIP where the feasible set, X , is nonempty and bounded (see (MOP)).

Recall that XI is the projection of X onto the set of integer vectors, and S is the index

set of XI . Let SN be the index set of feasible integer solutions whose slice has nonempty

intersection with the ND frontier, N , i.e. SN = {s ∈ S : N s ∩ N 6= ∅}. Recall that

for all s ∈ SN , we write N s ∩ N = {Ls1, Ls2, ..., Lsn(s)}, where, for each i = 1, . . . , n(s),
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zL

zR

(a) The cases above are “al-
lowed”: overlapping and intersect-
ing NDLSs from distinct slices, re-
sulting in n = 3.

zL

zR

(b) The cases above are assumed to not occur: a NDLS from
one slice contained within the NDLS from another. Without
the dashed and dotted slices, n = 1 and g = 2.

Figure 2.8: Examples of ND frontiers where we assume there is no containment between
NDLS of distinct slices, and how to count the number of NDLS, n, using (2.12).

Lsi is a (distinct, maximal) line segment. We make one technical assumption for ease of

exposition: for all distinct pairs of feasible integer solutions, s, t ∈ SN , we assume that

Lsi 6⊆ Ltj and Ltj 6⊆ Lsi for all i = 1, . . . , n(s) and j = 1, . . . , n(t)). We note that in

benchmark problems, (point) intersections between distinct slices in the ND frontier are

relatively common, but containment of an NDLS from one slice inside that from another is

relatively rare. Such containments do not prevent the algorithm from functioning correctly

and returning the entire ND frontier, but the counting of NDLSs becomes much more com-

plicated. This assumption does not rule out intersections or even overlap between slices;

compare Figures 2.8a and 2.8b.

In (2.1), we defined the total number of line segments by n∗ =
∑

s∈SN n(s). For the

following proofs, we use n(Y ) to represent the total number of line segments in a given

(nontrivial) box, Y := B(zL, zR), where zL and zR are ND images. We take n(Y ) to be the

number of line segments (including isolated ND images) in the strict interior of Y , which

excludes zL, zR:

n(Y ) :=
∑
s∈S

|N s ∩N ∩ Y \ {zL, zR}|. (2.12)
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See Figure 2.8 as an example of counting NDLS with this new definition. In addition, let

g(Y ) ≥ 0 be the number of vertical gaps in the ND frontier within Y . Note that since a

vertical gap is defined by its two incident ND images, it must be that g(Y ) ≤ n(Y ) + 1 for

all Y .

For simplicity of exposition, we drop the notation for dependence on Y , i.e., we use n

and g instead of n(Y ) and g(Y ), respectively. We will compute the specific bounds on the

number of IPs solved for different cases of Y with given n and g. Let `(n, g) be the worst

case number of lexicographic optimization IPs solved by the basic method in completely

processing an arbitrary box Y = B(zL, zR) with n NDLSs in the strict interior of Y and

g vertical gaps in the ND frontier. By “completely” processing, we mean processing any

resulting boxes added to the queue after processing Y , processing any resulting boxes added

to the queue after that, and so on until no more (nontrivial) boxes remain in the queue.

Similarly, let s(n, g) be the worst case number of single-objective optimization IPs (e.g.,

scalarized IPs) solved to completely process such a box Y . In general, we assume that no

trivial regions Y would appear from the queue because trivial boxes are not added to the

queue. Therefore, we define `(0, 0) = s(0, 0) = 0.

Example 4. For n = 0 and g = 1, `(0, 1) = 2 and s(0, 1) = 0.

Proof of Example 4. For any split line z2 = µ where zR2 < µ < zL2 , we have that the

first lexicographic optimization IP (5) returns zR. Since we have zR2 < µ, the algorithm

continues by solving a second lexicographic optimization IP (6), which yields zL. Note

that no new regions are added to the queue (because B(zL, zL) and B(zR, zR) are trivially

small), so we have that the iteration of the outer loop terminates having solved `(0, 1) = 2

lexicographic IPs and s(0, 1) = 0 scalarized IPs.

Example 5. For n = 1 and g = 0, `(1, 0) = 1 and s(1, 0) = 1.

Proof of Example 5. Since a single NDLS traverses Y , solving the first lexicographic min-

imization IP (5) with any split line z2 = µ where zR2 < µ < zL2 will result in z∗ on the
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zL

zR

µ

Figure 2.9: A region Y with n = 0 NDLSs in its interior and g = 1 vertical gaps. An
arbitrary horizontal split line is shown as a dashed line.

split line, i.e., z∗2 = µ. The line generation subroutine will generate the entire line segment

within Y , and because there are no vertical gaps, we must have that z1
2 = zL2 and z2

2 = zR2 .

Since zR is nondominated, the latter implies z2 = zR, and so z2 is closed. However, z1

may be open or closed; namely, if zL1 < z1
1 , z1 will be flagged as open. Regardless of

whether it is open or closed, the inner loop will solve the single-objective IP (8) once to

confirm that the line segment is indeed nondominated (recall that the IP formulation in-

cludes a conditionally strict inequality for the open endpoint which makes zL infeasible).

By our assumption that n = 1, an optimal solution must exist on the line segment. At the

end of the inner loop, since z1
2 = zL2 , no other single-objective IPs will be solved by the

inner loop since it is known that zL is the ND image that dominates z1. After the inner loop

concludes, the outer loop would not add any box to the queue, since they would both be

trivially small. Thus, `(1, 0) = 1 and s(1, 0) = 1.

As we described while illustrating the basic method, every iteration of the outer loop

identifies either a NDLS or a vertical gap. The following theorem proves that the algo-

rithm eliminates that line segment or gap completely before adding two new boxes to the

queue. This is an important characteristic which, for example, does not apply to the Tri-

angle Splitting Algorithm since it may divide a single NDLS into several smaller segments
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zL
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Figure 2.10: The only two cases for n = 1, g = 0: The NDLS must be incident to zR to
ensure no vertical gap, but the endpoint z1 may be either open or closed. Both cases have
the same worst-case: `(1, 0) = 1 and s(1, 0) = 1.

over more than one iteration. Proposition 1 proves this unique characteristic, which will

allow us to provide an upper bound for the number of iterations of the outer loop as well as

an appropriate equation for `(n, g).

Proposition 1. Suppose an iteration of the outer loop begins with a region Y having n ≥ 0

NDLSs in its strict interior and g ≥ 0 vertical gaps where n+ g ≥ 1.

1. At the end of the iteration, (up to) two nontrivial regions Y ′, Y ′′ are added to the

queue, say with n′, n′′ numbers of NDLSs in their interior and g′, g′′ vertical gaps,

respectively. Then we have n′+n′′ ≤ n and g′+g′′ ≤ g where at least one inequality

is strict. That is, after each iteration of the outer loop, one NDLS or one vertical gap

is eliminated completely from the total unexplored region(s).

2. The number of iterations of the outer loop required to finish completely processing

Y (including all subsequent boxes) is bounded above by n+ g.

3. `(n, g) = n+ 2g.

Proof of Proposition 1 (1). In one iteration of the outer loop, there are two cases for the

split line z2 = µ: either it intersects a vertical gap or it intersects a NDLS of the ND

frontier.
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In the first case, when the split line intersects a vertical gap of the ND frontier, we have

by construction that the two lexicographic minimizations (2.2) and (2.3) identify the two

ND images incident to the vertical gap, ẑ (above) and z∗ (below). Let the two resulting

regions be Y ′ = B(zL, ẑ) and Y ′′ = B(z∗, zR). We have of course decreased the total

number of vertical gaps in the ND frontier(s), so g′ + g′′ < g. However, the total number

of NDLSs in the interiors of Y ′ and Y ′′ is no greater than n, i.e. n′ + n′′ ≤ n. We have

satisfied the claim in first case.

In the second case, z∗ belongs to some NDLS L(z1, z2). Then we initialize regions Y ′

and Y ′′ based on ND images – either the closed endpoints (i.e., z1, z2) or the ND images

that dominate the open endpoints (i.e., ẑ1, ẑ2) – discovered by the inner loop in such a way

that guarantees the single NDLS L(z1, z2) is not split. Hence, we must have one fewer

NDLS in the remaining regions, i.e. n′+n′′ < n. We also have g′+g′′ ≤ g, which satisfies

the claim in the second case.

Proof of Proposition 1 (2). This result follows trivially from Proposition 1 (1). Since ev-

ery iteration of the outer loop eliminates an NDLS or a vertical gap from the unexplored

region(s), then after n + g iterations, there will only be trivial unexplored regions remain-

ing.

Proof of Proposition 1 (3). This result follows from the proof of Proposition 1 (1). Only

the outer loop solves lexicographic IPs. In every iteration of the outer loop, the horizontal

split line z2 = µ either intersects a vertical gap in the ND frontier or it intersects a NDLS.

If the split line intersects a NDLS, one lexicographic IP is solved for z∗, and if the split

line intersects a vertical gap, two lexicographic IPs are solved for z∗ and ẑ. Then it takes at

most `(n, g) = n + 2g lexicographic IP solves to process Y (at most one for each NDLS

and at most two for each vertical gaps). Also note that Examples 4 and 5 satisfy this upper

bound.

Lemma 1. For all g ∈ {0, 1, 2}, s(1, g) = 1.
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Proof. Note that we have already shown s(1, 0) = 1 by Example 5. Therefore, suppose

g = 1 or g = 2.

First, consider when the split line z2 = µ intersects the NDLS. Then solving one lexi-

cographic IP (5) finds z∗ such that z∗2 = µ (we do not count lexicographic IPs for s). Once

the line segment containing z∗ is generated, the single-objective IP (8) is solved to deter-

mine if the line segment is nondominated. As mentioned previously, the algorithm checks

if z1
2 = zL2 and zL1 < z1

1 , in which case endpoint z1 is flagged as open, and it is known that

zL dominates z1 (and similarly for z2 and zR). Note that by assumption, n = 1 implies

there are no other ND images in the interior of B(z1, z2) that dominate the line segment,

and by construction we have the conditionally strict inequality that prevents finding zL (or

zR) in the case that zL dominates z1 (or zR dominates z2). Hence, an optimal solution to

the single-objective IP (8) will certainly map to a point on the line segment, which will

terminate the while loop within the inner loop. Since the ND images that dominate the

open endpoints are known, no additional single-objective IPs will be solved to discover

what points dominate z1 or z2, and so the inner loop terminates.

Once the inner loop has generated the NDLS within the given region, the outer loop

will add at most two nontrivial boxes, whose interiors contain n′ = n′′ = 0 NDLSs, to the

queue. So we have for some nonnegative integers (g′, g′′) ∈ Z2
+ where g′ + g′′ = g but

g′, g′′ ≤ 1 (this follows from g′ ≤ n′ + 1 and g′′ ≤ n′′ + 1 where n′ = n′′ = 0). Therefore,

s(1, g) = 1 + s(0, g′) + s(0, g′′) = 1 because s(0, 0) = 0 by definition, and s(0, 1) = 0 by

Example 4. Thus, s(1, g) = 1 for g ∈ {0, 1, 2}.

Second, consider when the split line crosses at a vertical gap in the ND frontier. Note

that a single-objective IP is not solved until the inner loop is initiated, which respectively

does not occur until a ND image is found on the split line. Therefore there can be at most

g iterations of the outer loop in which z∗2 < µ, wherein each iteration is only performing

lexicographic IP solves as the split line identifies a vertical gap in the ND frontier which

is then removed by initiating new boxes to the queue (note we do not count any of these
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n′

n′′

zL

zR

Figure 2.11: General ND frontier where there are n ≥ 1 NDLSs. In the worst case for
counting single-objective IP solves, both endpoints are open.

lexicographic IP solves). Therefore, in at most g iterations the lexicographic optimization

IP will return z∗ such that z∗2 = µ. At such point, the process would follow the process

argued above, so again we have s(1, g) = 1 for g ∈ {0, 1, 2}.

Since g ≤ n + 1, we can therefore define the worst case number of IP solves as a

function of only n, the number of NDLS in the strict interior of Y :

ˆ̀(n) = max
g=1..n+1

`(n, g), (2.13)

ŝ(n) = max
g=1..n+1

s(n, g). (2.14)

We so far have ŝ(0) = 0, ŝ(1) = 1, and ˆ̀(n) = 3n+ 2 for all n ≥ 0 (since g ≤ n+ 1 gives

`(n, g) = n+ 2g ≤ n+ 2(n+ 1) = 3n+ 2).

Lemma 2. For all n ≥ 2, ŝ(n) = n+ 2 + ŝ(n− 1).

Proof of LEMMA 2. Assume there are n ≥ 2 NDLSs. Without loss of generality, we sup-

pose the number of vertical gaps in the ND frontier is arbitrary and only consider the case

that the split line z2 = µ intersects a NDLS; otherwise, when the split line intersects a

vertical gap, the box is processed in the outer loop without solving any scalarized or single-

objective IPs. Once the lexicographic IP (2.2) (which is not counted for ŝ) finds ND image
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z∗ on the split line, the inner loop is initiated. Since there are n − 1 other NDLSs in the

box, there are at worst n − 1 scalarized IPs (2.5) solved in updating the endpoints z1 and

z2. The nth solve of scalarized IP (2.5) confirms that the final endpoints on the line seg-

ment indeed define a NDLS. The worst case is when both z1 and z2 are open, z1
2 < zL2 ,

and z2
1 < zR1 since two additional single-objective IP solves are required to find the ND

images that dominate z1 and z2 (a figure illustrating this is given in the online supplement).

Therefore, we have for some n′+ n′′ = n− 1, ŝ(n) = n+ 2 + ŝ(n′) + ŝ(n′′). So it follows

that the worst case is ŝ(n) = n+ 2 + maxi=0,..,n−1 {ŝ(i) + ŝ(n− 1− i)}.

We now use induction to complete the proof. First observe that for n = 2, as required,

ŝ(n) = n+ 2 + max
i=0,1
{ŝ(i) + ŝ(2− 1− i)} = n+ 2 + ŝ(1) + ŝ(0) = n+ 2 + ŝ(1),

since ŝ(0) = 0. Now make the inductive assumption that for some m ≥ 2, ŝ(n) = n+ 2 +

ŝ(n−1) for all n = 2, . . . ,m, and consider ŝ(m+1) = m+3+maxi=0,..,m {ŝ(i) + ŝ(m− i)}.

The case that i = 0 (and i = m) in the max term gives ŝ(0)+ ŝ(m) = ŝ(m) since ŝ(0) = 0.

The case that i = 1 (and i = m−1) in the max term gives ŝ(1) + ŝ(m−1) = 1 + ŝ(m−1)

since ŝ(1) = 1. But, by the inductive assumption ŝ(m) = m+2+ ŝ(m−1) > 1+ ŝ(m−1),

since m ≥ 2. So the case i = 1 (and i = m − 1) cannot achieve the maximum. Finally,

again by the inductive assumption,

max
i=2,...,m−2

{ŝ(i) + ŝ(m− i)} = max
i=2,...,m−2

{i+ 2 + ŝ(i− 1) +m− i+ 2 + ŝ(m− i− 1)}

= m+ 4 + max
i=1,...,m−3

{ŝ(i) + ŝ(m− 2− i)}

≤ m+ 4 + max
i=0,1,...,m−3,m−2

{ŝ(i) + ŝ(m− 2− i)}

= m+ 4 + ŝ(m− 1)− (m− 1 + 2)

= 3 + ŝ(m− 1).

But ŝ(m) = m + 2 + ŝ(m − 1) > 3 + ŝ(m − 1) since m ≥ 2, so none of the cases i =
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2, . . . ,m−2 can achieve the maximum. We conclude that maxi=0,..,m {ŝ(i) + ŝ(m− i)} =

ŝ(m) and so ŝ(m+ 1) = m+ 3 + ŝ(m), as required.

Theorem 1. For all n ≥ 1, ŝ(n) = n(n+1)
2

+ 2(n− 1).

Proof of Theorem 1. We use induction. The case n = 1 follows since ŝ(1) = 1 = 1(1+1)
2

+

2(1 − 1). Now assume that, for some n ≥ 1, ŝ(n) = n(n+1)
2

+ 2(n − 1), and consider

ŝ(n+ 1). By Lemma 2 and the inductive assumption,

ŝ(n+ 1) = n+ 3 + ŝ(n) = n+ 3 +
n(n+ 1)

2
+ 2(n− 1) =

1

2
n2 +

7

2
n+ 1

=
1

2
n2 +

3

2
n+ 1 + 2n =

(n+ 1)(n+ 2)

2
+ 2n,

as required.

2.3 Recursive Method

There is a natural way to make the BLM a recursive method, which has substantially better

worst-case complexity. The fundamental concept is to transform the inner loop into a

recursive procedure that either confirms that a line segment is nondominated or identifies a

ND image that dominates a portion of it. Whenever such a ND image is found, the inner

loop is called recursively to find an NDLS containing it. In addition to modifying the inner

loop, we must introduce a line segment trimming subroutine and modify the outer loop to

fit the recursive paradigm. The recursive method is summarized in Figure 2.12.

The initialization stage remains the same, and the outer loop follows the same procedure

as the basic method before calling the inner loop, i.e. it selects boxes from the queue,

chooses a split line z2 = µ, solves lexicographic minimization (2.2), and follows the BBM

procedure when the ND image found is below the split line. When the outer loop has

chosen box B(zL, zR) from the queue and finds ND image z∗ on the split line, i.e. z∗2 = µ,

the outer loop then calls the recursive inner loop for the first time, which we call depth level

0.
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f1(x)

f2(x)

z∗

z1

z2

z̄∗

(a) Level 0: The original ND image is z∗,
and line generation returns L0 = L(z1, z2),
which is not trimmed. Solving a scalarized
IP over the white region identifies ND image
z̄∗.

f1(x)

f2(x)

z̄∗

z̄2
¯̄z∗

(b) Level 1: The line generated for z̄∗ is
trimmed by its intersection with L0, result-
ing in L1 = L(z̄∗, z̄2) with z̄2 closed. ND
image ¯̄z∗ solves the next scalarized IP.
Level 2: Returns isolated ND image ¯̄z∗.

f1(x)

f2(x)

z̄∗ z̄2

¯̄z∗

(c) Level 1: Update endpoint z̄2, which is
now open. One more scalarization over the
white region identifies that L(z̄∗, z̄2) is non-
dominated.

f1(x)

f2(x)

z∗
z1

z2

z̄∗

¯̄z∗

(d) Level 0: Update endpoint z1 with respect
to p = ¯̄z∗, so z1 is now open. Solving one
final scalarized IP confirms that L(z1, z2) is
nondominated.

Figure 2.12: The recursive inner loop applied to ND image z̄∗ returns NDLSs L(z1, z2) and
L(z̄∗, z̄2) and the isolated ND image ¯̄z∗.

2.3.1 Recursive Inner Loop

The recursive inner loop takes as input: a box bounded by two ND images, B(zL, zR); the

ND image z∗ whose NDLS it seeks to generate; and the set of all line segments “inherited”

from its parent calls, which we call L. On the first call of the inner loop (depth level 0),

the set L is empty; for greater depth levels, this set will be nonempty and will be used for
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the line segment trimming subroutine. The output from the recursive function is a set of

NDLSs,M, including the one that contains z∗.

We now describe the steps of the recursive function. It first calls the line segment

generation subroutine, as in the basic method. If z∗ is an isolated ND image, then the

recursive function terminates and returns the isolated ND image. Otherwise, the subroutine

provides the line segment L(z1, z2) and its gradient vector ~w.

The second step is to call the line segment trimming subroutine, which “trims” the

current line segment so that its endpoints do not exceed any of the previously-found line

segments. This step prevents cycling. We postpone further discussion of this feature to

Section 2.3.2. For now, we note that there is no trimming to be done at depth level 0 since

L(z1, z2) is the first line segment that has been generated in the box B(zL, zR). Once

trimming is complete, the same checks as in the basic method’s inner loop are made, i.e., to

see if either endpoint is dominated by zL or zR (and, if so, to update the endpoint as open,

accordingly). The resulting line segment is then added to the set of line segments, L, for

future line trimming.

The next step in the recursive inner loop is to solve the same scalarized IP with respect

to ~w as in the basic method, i.e., (2.5), including the conditionally strict inequalities. Say

the optimal solution is y∗. There are two cases. (1) If L(z1, z2) is nondominated, then

f(y∗) lies on the line segment, i.e. ~wTf(y∗) = ~wT z∗. This is the stopping criterion for the

while loop. When it is satisfied, the recursive function terminates and returns the NDLS,

together with all others it found, stored in M. (2) The more interesting case is when

~wTf(y∗) < ~wT z∗, i.e., when a point from L(z1, z2) is dominated by f(y∗). In this case,

the function recurses and calls itself, at the next depth level. Assume f(y∗) is to the left of

z∗; the case of f(y∗) to the right can be handled similarly. Then the following is the input

to the recursive call:

• B(χ, z∗), the new box, where χ is the ND image fromM∪{zL} closest to f(y∗) on

the left (note that z∗ is the closest known ND image to the right of f(y∗));
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• f(y∗), the new ND image (it is the NDLS containing it that the function seeks); and

• L, the set of line segments, used for line segment trimming.

The choice of B(χ, z∗) as the new box prevents re-discovery of line segments already

found, and ensures that only the portion of the line segment containing f(y∗) currently

not known to be dominated is explored in the recursive call. Note that whenM is empty,

χ = zL.

After all deeper levels of recursive processing are complete, a set of NDLSs, M, is

returned to the current depth level call of the recursive inner loop. Then the recursive

function updates the line segment L(z1, z2). In doing so, it follows the same rules as in the

basic method’s inner loop. However, instead of v found from the LP (2.6), it chooses the

ND image fromM that is the nearest to and strictly to the left of z∗. That is, it chooses

σ = argmin{z2 : z ∈M, z1 < z∗1}. (2.15)

The coordinate σ2 gives the updated z1
2 ; the updated z1

1 value is calculated to ensure z1

remains on its original line segment. Whether it is closed or open is determined by whether

or not σ lies on the line segment. Since σ is guaranteed to be a ND image, there is no need

to solve a separate LP to discover the ND image that dominates z1 when it is open.

Once the endpoint z1 (or z2, if exploring to the right of z∗) is updated, the while loop

again solves the scalarized IP (2.5). If the updated line segment is nondominated, then the

stopping criterion is met and the line segment L(z1, z2) is returned, along with any others

collected inM. Otherwise, the while loop continues.

The recursive inner loop accumulates all NDLSs identified throughout all depths of

recursion. This accumulated set,M, is returned to the outer loop, which updates Ñ andQ

accordingly (details are in Section 2.3.3).
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f1(x)

f2(x)

z0

z1

(a) Without the line segment trim-
ming, the recursive method would
cycle between finding z0 and z1.

f1(x)

f2(x)

z0

z1

z2

z3

(b) The recursive method first finds ND image z0 and its
line segment (dashed). By recursing, it finds z1, z2, and z3

in that order, where the line segments after trimming are
darkened.

Figure 2.13: The line segment trimming subroutine prevents the recursive method from
cycling.

2.3.2 Line Segment Trimming Subroutine

To motivate this subroutine, we give an example of how – without it – cycling can occur.

Consider two intersecting slices from distinct integer solutions, as in Figure 2.13a. Suppose

z0 were first found by the split line and lexicographic minimization. Then line generation

would generate its full line segment, L0, and scalarization by its gradient ~w0 would result

in finding z1 (recall that the scalarized IP (2.5) is constrained by its endpoints). For the

next level of recursion, line generation would generate the full line segment containing z1,

L1, and its gradient ~w1. Note, however, that L1 intersects L0, and in fact the lower right

endpoint of L1 is dominated by z0. Thus scalarization by ~w1 would yield z0 again, and the

algorithm would cycle.

In general, there is a risk of cycling whenever a call to the recursive inner loop generates

a line segment that intersects the line segment of a parent call. We developed a simple

routine to detect such intersections and update the child’s line segment so as to prevent

cycling. This is done by solving a linear system and updating one endpoint of the child’s

line segment, as necessary; see Appendix Section A.1 for details.
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Figure 2.14: The recursive variant may return more than one continuous portion of the ND
frontier (e.g., the NDLS containing z∗ and 3 isolated ND images in the example above), in
which case the algorithm adds more than two boxes to the queue (in white).

The line trimming process must be repeated for all line segments in L that have been

inherited by the current call. For instance, observe that in Figure 2.13b, if all subsequent

line segments were not trimmed by the line segment containing z0 then a cycle would occur.

2.3.3 Outer Loop Modification

The only major modification in the outer loop is the handling of the output from the recur-

sive inner loop, which may return more than one continuous portion of the ND frontier (see

Figure 2.14). Therefore, we must allow the outer loop to add more than one NDLS to the

ND frontier and more than two boxes to the queue, as necessary.

The latter requires a simple check of neighboring NDLSs. Consider checking L1 :=

(z1, z2) which is immediately to the left of L2 := (z3, z4). When z2
1 < z3

1 and z2
2 > z3

2 , the

outer loop should add the box B(z2, z3) to the queue. Note that we must also consider the

boundary ND images, zL and zR, while doing this check. In Figure 2.14, four boxes are

added to the queue because four pairs of adjacent NDLSs satisfy the criteria. One pair of

NDLSs does not satisfy the criteria: the isolated ND image z3 and the NDLS containing

z∗.
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2.3.4 Complexity of the Recursive Method

Let ˆ̀
R(n) be the worst case number of lexicographic IPs solved by the recursive method in

completely processing an arbitrary box B(zL, zR) with n NDLSs (and an arbitrary number

of vertical gaps), and let ŝR(n) be the same but for scalarized IPs. Recall that the outer loop

only solves lexicographic IPs, and the recursive inner loop only solves scalarized IPs.

The initialization stage and most of the functionality of the outer loop is unchanged,

i.e., in every iteration the outer loop solves one lexicographic IP to identify a NDLS, or it

solves two lexicographic IPs to identify a vertical gap. What has changed is the updating

procedure for the ND frontier and queue after the recursive inner loop has terminated.

Regardless, the upper bound for the basic method’s number of lexicographic IP solves is

valid for the recursive method, i.e. ˆ̀
R(n) = ˆ̀(n) = 3n + 2. However, we must reconsider

an upper bound for the number of scalarized IP solves.

Proposition 2. For all n ≥ 1, ŝR(n) = 2n− 1.

Proof of Proposition 2. Let zL, zR be the corner points for a box with n ≥ 1 NDLSs.

Assume that the ND frontier in the box contains no vertical gaps. This assumption can be

made without loss of generality, since vertical gaps in the ND frontier are only discovered

in the outer loop, by a lexicographic IP solve that yields a ND image not on the split line;

they do not change the number of scalarized IPs that need to be solved.

Since there are no vertical gaps, any split line intersects an NDLS, containing the ND

image z∗ found by the lexicographic IP. Then the line segment in a slice containing z∗ is

determined (using LPs) and the recursive inner loop is initiated.

In the recursive inner loop, there are two roles for scalarized IPs. Type I confirms

that the current line segment is nondominated, and every nontrivial line segment requires

exactly one of these IPs to be solved. Isolated ND images require none, so in the worst

case, all NDLSs have dimension 1, and one Type I scarized IP is solved per NDLS in the

ND frontier. Type II identifies an NDLS for the first time: it shows that a portion of the
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current line segment is dominated, by returning a new ND image, and the recursive call

returns the NDLS containing the new ND image. Within the recursive call, it is impossible

to rediscover the same NDLS. Therefore, no more than n − 1 Type II scalarized IPs will

be required to discover all of the NDLSs (the first NDLS must be found by a lexicographic

IP). Since all n NDLSs require solving a Type I scalarized IP to confirm nondominance, a

total of ŝR(n) = n+ (n− 1) = 2n− 1 scalarized IPs will be solved, in the worst case.

2.4 Same Integer Solution Enhancement

We propose an enhancement to the basic method (given in Section 2.2) that has the potential

to improve its computational performance. The enhancement exploits the observation that

when both corner points of a box have the same integer part of their solution, (they belong

to the same slice), there is a good chance that the ND frontier within the box is precisely

the part of the slice within the box. We call this the Same Integer Solution (SIS) variant.

This enhancement was motivated by a common structure encountered in the ND fron-

tiers of benchmark instances used in previous work on BOMIP algorithms [31, 26]. These

instances have ND frontiers consisting of a relatively small number of continuous sections,

generated by relatively few slices, each having many small NDLSs. Figure 2.15 gives plots

of two such instances. In one, only 5 slices contribute to the ND frontier, which consists

of only 4 continuous sections. In the other, 15 slices yield the ND frontier consisting of

10 continuous sections. Each continuous section has several NDLSs from the same slice.

These two instances are typical of the benchmark instances used in prior work.

During the BLM’s processing of these instances, when both corner points of a box have

the same integer solution, i.e., when zL = f(xL) and zR = f(xR) where xLI = xRI =: x∗I ,

it is very likely that the ND frontier between zL and zR is a subset of the slice for x∗I . The

SIS variant exploits this observation. In the case that the slice problem does yield the ND

frontier in the current box, the SIS variant may need to solve only one scalarized IP, having

one no-good (sometimes called “tabu”) constraint, instead of one scalarized IP for each
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Figure 2.15: The ND frontiers for two benchmark instances. The keys indicate the integer
vector associated with each ND image. Notice the similar structure in both: each integer
vector contributes several small and continuous NDLSs to the ND frontier.

NDLS; once it is determined that the slice problem yields the ND frontier, LPs, rather than

IPs, may be used to find all NDLSs.

When the corner points of a box are generated by a single integer solution, x∗I , the slice

must be entirely on or below the line segment L(zL, zR). This follows from convexity of

the image of the LP feasible set (integer part of the solution is fixed) in criterion space.

Let ~w denote the gradient vector of L(zL, zR). The following scalarized IP with respect

to ~w includes a no-good constraint, xI 6= x∗I , which makes all points from the slice for x∗I

infeasible:

min{~wTf(x) : f1(x) ≤ zR1 , f2(x) ≤ zL2 , xI 6= x∗I , x ∈ X}. (2.16)

We assume that the no-good constraint is implemented linearly in the usual way. Let y∗ be

an optimal solution to (2.16). Because of the no-good constraint, f(y∗) is not necessarily

nondominated. However, we make a simple observation: if the point f(y∗) is on or above

the line segment L(zL, zR), i.e. ~wT zL ≤ ~wTf(y∗), then f(y∗) must be dominated by a

point from the slice for x∗I , as shown in Figure 2.16a. Furthermore, the entire ND frontier

within B(zL, zR) is given by the slice for x∗I . In this case, we solve the slice problem for
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x∗I using dichotomic search [21, 22], which solves a series of LPs4. Therefore, if f(y∗)

is on or above the line segment L(zL, zR), the SIS variant will generate the entire ND

frontier within B(zL, zR) by solving just one scalarized IP (with one no-good constraint)

and a sequence of LPs. Contrast this with the basic BLM: in the same scenario with n such

NDLSs in the ND frontier (all from the same slice), it would solve n lexicographic IPs and

n scalarized IPs. Thus the SIS variant has the potential to provide significant savings in the

number of IPs solved.

Now consider the other case, that f(y∗) is below the line segment L(zL, zR), i.e., that

~wTf(y∗) < ~wT zL. There are two sub-cases: either f(y∗) is a ND image, or f(y∗) is domi-

nated by some point on the (so far unknown) slice for x∗I . These subcases are illustrated in

Figures 2.16b and 2.16c, respectively.

When f(y∗) is below L(zL, zR), the SIS variant solves the LP

min{~wTf(x) : f1(x) ≤ f1(y∗), f2(x) ≤ f2(y∗), xI = x∗I , x ∈ X}. (2.17)

If (2.17) is infeasible, then f(y∗) is a ND image. This follows since zi(x) ≤ zi(y
∗) for

i = 1, 2 and x ∈ X implies, by the definition of y∗, that either f(x) = f(y∗) or xI = x∗I .

The latter would imply xI is feasible for (2.17), which is impossible. Hence f(x) = f(y∗);

f(y∗) must be a ND image. Otherwise, for similar reasons, any feasible solution of (2.17),

x̂ say, generates a ND image f(x̂). In either case, a new ND image has been found, and

then the inner loop is called with the box B(zL, zR) and this new ND image as z∗.

In this case, the SIS variant solves one scalarized IP with a no-good constraint and

one LP before calling the inner loop, where the output will be a single NDLS (and some

number of boxes added to the queue). On the other hand, the basic BLM would solve

one lexicographic IP before calling the inner loop, with similar output. Therefore, the

computational effort (and return) is comparable, and so there is not much benefit from the

SIS variant in this case.
4An alternative method for solving the slice problem is parametric simplex [17].
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f1(x)

f2(x)
zL

zR

f(y∗)

(a) If f(y∗) is found
on or above L(zL, zR)
(dashed), then the ND
frontier is generated en-
tirely by x∗I . The slice
(solid) is determined by
solving LPs.

f1(x)

f2(x)
zL

zRf(y∗)

(b) If f(y∗) is found below
L(zL, zR), an LP over the
hatched region is solved. Here
it determines that the slice for
x∗I does not dominate f(y∗),
and the inner loop is called with
ND image z∗ = f(y∗).

f1(x)

f2(x)
zL

zR

f(y∗)

f(x̂)

(c) In this case, the LP over the
hatched region finds the point
f(x̂) on the slice for x∗I , which
dominates f(y∗), so the inner
loop is called with ND image
z∗ = f(x̂).

Figure 2.16: The SIS variant applied when zL and zR are both generated by integer solu-
tion x∗I . The scalarization (2.16) with no-good constraint xI 6= x∗I will find a point f(y∗)
either above or below the line segment L(zL, zR), proceeding with one of the three cases
illustrated in (a), (b) and (c) above.

Computational experiments with the SIS variant show enough improvement to indi-

cate that the first case is much more likely than the second case, and so, on balance, the

enhancement is useful.

2.5 Implementation Issues

Because computers use finite precision arithmetic, it is necessary to introduce numerical

tolerances. We use a value ε > 0 to indicate the accuracy at which we expect the BLM to

provide output (defined more precisely in Section 2.5.1). Note that because the choice of

ε impacts (the accuracy of) the ND frontier generated by an algorithm, it also impacts the

time required by the algorithm to find the ND frontier. In Section 2.5.2, we show that the

ND frontiers generated for the same instance for different values of ε can vary drastically.

Single-objective IP solvers use tolerances as well, e.g., feasibility and optimality toler-

ances, and their choice also impacts the performance. In fact, certain choices of IP solver

tolerances may lead to unexpected behavior in the algorithm. An illustration is provided
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(a) In B(zL, zR), the first
lexicographic IP finds ND
image z∗ below the split
line z2 = µ.

f1(x)

f2(x)
zL

zR

z∗1 − ε

z∗
ẑ

(b) In B(zL, zR), the second
lexicographic IP finds ND im-
age ẑ with ẑ1 ≤ z∗1 , but also
with ẑ2 ≤ z∗2 < µ, i.e., ẑ
dominates z∗.

f1(x)

f2(x)
zL

zR

z∗1 − ε

z∗
ẑ

(c) The two boxes in white would
be added to the queue. However, a
cornerpoint being dominated vio-
lates one of the most basic assump-
tions of our algorithms.

Figure 2.17: If IP solver tolerances are not set appropriately, i.e., strictly less than the
algorithm’s ε, then IPs (especially lexicographic IPs) may return points that are not non-
dominated.

in Figure 2.17. This is just one example of the numerical issues that we encountered dur-

ing the implementation of our proposed algorithms. We found that it is critical that the IP

solver tolerances are set to values strictly smaller than ε.

The black box nature of (commercial) IP solvers also makes it difficult to intuit how

redundant criterion space constraints impact its performance. For instance, each box,

B(z1, z2), can be represented by four constraints, i.e., z1
1 ≤ f1(x) ≤ z2

1 and z2
2 ≤ f2(x) ≤

z1
2 , or by just two constraints, i.e., f1(x) ≤ z2

1 and f2(x) ≤ z1
2 (the fact that z1 and z2 are

ND implies the remaining constraints). Our computational experiments with CPLEX indi-

cated that the former performs better. However, this behavior may be different with other

solvers.

2.5.1 Epsilon Frontier

Recognizing that computers use finite precision arithmetic, we define an approximation of

the ND frontier N , or simply an ε-frontier, Nε, to be a set of points in criteria space such

that, for fixed ε > 0, (1) for all z ∈ N , there exists z̄ ∈ Nε with ||z − z̄||2 ≤ ε, and (2) for
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all z̄ ∈ Nε, there exists z ∈ N with ||z − z̄||2 ≤ ε.5 Note that there may be many distinct

sets that satisfy the conditions for being an ε-frontier. The BLM (when run to completion)

produces an ε-frontier for any given BOMIP having nonempty and bounded feasible set.

To see how ε is used in the method to produce the ε-frontier, see the algorithms given in the

Appendix.

This definition of an ε-frontier motivated specific design choices in our implementation.

For example, when the inner loop solves scalarization IPs, e.g. (2.5), to find ND images

that dominate a line segment, our definition implies that we are only interested in ND

images whose distance from the line segment are greater than ε. Therefore, we designed

the criterion for entering the inner loop’s while loop to be ~wTf(y∗) < ~wT z∗ − ε||~wT ||2

where y∗ is the optimal solution to the scalarized IP. By normalizing the gradient vector ~w

with respect to the 2-norm at the end of the line generation subroutine, i.e., by requiring

||~wT ||2 = 1, we can simplify the criterion to ~wTf(y∗) < ~wT z∗ − ε.

2.5.2 Epsilon Sensitivity of Historical Instances

The benchmark instances used in previous computational studies on algorithms for BOMIPs

[31, 26] are based on the scheme proposed by [12]. The ND frontiers for the 20 instances,

ranging in size from 20 to 320 decision variables, have a structure that was described in

Section 2.4: much of the ND frontier consists of continuous line segments from the same

slice (Figure 2.15). This structure not only poses numerical challenges when the line seg-

ments are extremely small, i.e., when their lengths are smaller than ε, it also means that

changes in the value of ε result in drastically different ND frontiers being generated by our

algorithms, as shown in Table 2.1.

The fact that the ND frontier output by an algorithm for solving BOMIPs can be consid-

erably different when a different tolerance value is used makes it very difficult to compare

the performance of such algorithms. The issue is compounded by the fact that an algo-

5The concept of an ε-frontier is not new; however, as opposed to the definitions in papers such as [54] and
[55], which rely on the notion of relative error, our definition uses the notion of absolute error.
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Table 2.1: Number of NDLSs found for different values ε. All five instances are from the
C160 class of instances and are solved by the basic method.

Instance 10−3 10−4 10−5 10−6

1 2570 2752 2783 2786
2 2643 2916 2958 2970
3 2578 2723 2750 2753
4 5608 6121 6164 6174
5 2824 3054 3096 3096

rithm, such as TSA, for example, may output several small line segments whose union is

equivalent to a single line segment output by another algorithm, such as εTCM. This has

motivated us to generate new instances for which the exact ND frontier is known and the

line segments in the frontier all have length greater than a pre-specified value, e.g., 10−4.

2.6 Instance Generation

We now provide a method for generating a BOMIP having a ND frontier controlled by

parameters and known, a priori. In doing so, we provide an approach to “reverse engineer”

a BOMIP from the slices6.

Each instance’s ND frontier includes some sections of the line segmentLk = {(x1, x2) ∈

R2 : x1 + x2 = 0,−k ≤ xi ≤ k for i = 1, 2} where k ∈ (0,∞) is a parameter. This line

segment will be one slice in the instance. The instance has π other slices, where π is a

parameter, all of which have their image in criterion space given by a pointed cone. The

vertices of each cone lie on a line segment parallel to Lk but shifted vertically down. The

width of the cone is randomly chosen in a controlled manner. Figure A.1 in the Appendix

illustrates this structure, showing the image of the feasible set in criterion space for 4 slices:

Lk and three pointed cones. All instances are constructed to have the property that no two

cones overlap on or below Lk. This means that Lk alternates between a section that is part

of the ND frontier and a section dominated by one cone.

Details of a method to generate two different classes of instances having the structure

6The generated instances are publicly available at https://github.com/t-perini/BOMIPresearch.
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Figure 2.18: An example of a generated randomized cone-width instance with four slices,
including Lk and the boundary of three cones.

described above are provided in the Appendix. One class, the fixed cone-width instances, is

preferred for assessment of the accuracy of BOMILP algorithms because the ND frontier

is known exactly, a priori. The other class, the randomized cone-width instances, do not

have known ND frontiers, and this class of instances is more difficult to solve, in practice,

because of the high frequency of intersecting slices in the ND frontier. All instances are

carefully designed to ensure that each NDLS has length at least ε. We also force a propor-

tion of the cones in a randomized cone-width instance to be orthogonal7; this induces open

endpoints.

Given π, the resulting BOMIP has a number of variables and a number of constraints

that is linear in π. The ND frontiers associated with the BOMIP will have no more than

3π + 1 line segments (π + 1 from Lk and at most 2 per cone), including open endpoints

induced by any orthogonal cones and closed endpoints induced by intersecting slices.

These structured sets of instances provide a useful way to study the accuracy and ro-

bustness of a BOMIP algorithm.

7A cone is chosen to be orthogonal with probability φ, a parameter. In all our instances, we used φ = 0.05.
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2.7 Computational Study

This section provides computational results obtained by the BLM (BLM) on the following

sets of instances:

• the ten largest instances from the benchmark instances for BOMIPs proposed by [12],

which we refer to as the historical instances, and

• ten new randomized cone-width instances, five obtained by setting π = 5000 and five

obtained by setting π = 7500, which we refer to as the new instances.

All variations of BLM are coded in C++ and solve the linear and integer programs

using IBM CPLEX Optimizer 12.6. All experiments were conducted in a single thread of

a dedicated Intel Xeon ES-2630 2.3GHz with 50GB RAM, running Red Hat Enterprise

Linux Server 7.4.

All variations of BLM use tolerances ε = 10−5 and CPLEX tolerances 10−7 for historic

instances and tolerances ε = 10−4 and CPLEX tolerances 10−6 for the new instances. The

reason for using greater accuracy for the historical instances is that many of the ND fron-

tiers have very small line segments as well as nearly horizontal or vertical line segments,

which makes the accurate calculation of the gradients critical.

We structure the discussion of the computational experiments as follows. In Sec-

tion 2.7.1 we present a comparison of the variants of BLM, i.e., basic, SIS, and recursive,

and in Section 2.7.2, we compare (variants of) BLM with TSA and εTCM.

2.7.1 Comparison between BLM variants

Table 2.2 shows the results for the largest historical instances, i.e., the class C320 instances

(results for the next largest instances, i.e., the class C160 instances, can be found in the

online supplement). Table 2.3 summarizes the results for the new instances by presenting

the mean of the performance metrics (individual results can be found in the online supple-

ment). For each combination of algorithm variant and instance, we provide the following
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statistics: nNDP, the number of points output by the algorithm (described in more detail

below); nIPF, the number of different integer part solutions (i.e., the number of different

slices appearing in the ND frontier); TT, the total time in seconds to discover the ND fron-

tier; IPT, the total time in seconds spent in IP solves; LPT, the total time in seconds spent

in LP solves; nIP, the total number of IPs solved; nLex, the total number of lexicographic

IPs; nMin, the total number of single-objective IPs solved to find the ND image that dom-

inates an open endpoint, i.e. (2.8) and (2.9); nScal, the total number of scalarized IPs, e.g.,

(2.5); nGood, the total number of IPs with the no-good constraint; nLP, the total number

of LPs solved; nRec, the total number of boxes processed; nSIS, the total number of boxes

processed where the corner points are generated by the same integer solution; and, finally,

nZL, the number of boxes with z∗ on the horizontal split line. When not applicable, an

entry in the tables is marked with “-”.

Note that when we report the number of ND images (nNDP), we report the number of

distinct endpoints of line segments in the ND frontier. (Note that each non-degenerate line

segment in the ND frontier, regardless of whether it is closed, half-open, or open, results in

two points being output by the algorithm, and that each isolated ND image, results in one

point being output by the algorithm.) We use nNDP to denote the number of points output

by the algorithm, and in the remainder of this section, refer to these points as ND images,

even though in some cases, e.g., the open endpoints of line segments, they are not.

The value reported in the column nNDP for a given instance should ideally be the same

regardless of the algorithm used. However, because of the different numerical issues that a

particular algorithm may encounter, they rarely produce exactly the same number, at least

for the historical instances.

Note too that the total number of IPs solved (nIP) satisfies nIP = 2×nLex+nMin+

nScal + nGood.

First, we discuss the results from Table 2.2, starting with the basic variant. As shown in

Figure 2.15, the ND frontier of a historical instance is characterized by continuous portions
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of many small NDLSs from the same slice. In fact, the basic variant of BLM reports an

average ratio of 47.5 ND images per integer solution (i.e., nNDP/nIPF). The total time to

solve a historical instance reported for the basic variant is approximately the sum of the

time for solving IPs and LPs (i.e., TT ≈ IPT + LPT). The average percentage of the total

time spent solving IPs is 88.2% We note that the number of lexicographic IPs is quite close

to the number of ND images. This is to be expected since in the basic variant of BLM each

line segment of the ND frontier is discovered by first solving a lexicographic IP to obtain

a ND image on this line segment. The number of scalarized IPs does not differ much

from the number of ND images as the majority of the line segments produced by the line

generation subroutine can usually be proven to be part of the ND frontier by solving a single

scalarized IP; the line segments produced by the line generation subroutine are proven to be

nondominated 98.1% of the time (on average). The number of boxes processed is also quite

close to the number of ND images as each line segment of the ND frontier is discovered

by processing exactly one box. The number of boxes with corner points with the same

integer solution (nSIS) is large: 87.8% of the boxes (on average) Finally, note that the vast

majority of the ND images found by solving a lexicographic IP in the outer loop fall on the

horizontal split line: 99.9% of the ND images (on average). The high likelihood that the

split line intersects some line segment of the ND frontier is a result of the fact that these

instances have ND frontiers that contain few vertical gaps.

The SIS variant, as expected, greatly improves upon the basic variant. Given a box

with corner points having the same integer solution, the SIS variant is able to prove that the

slice for the integer solution inside the box is part of the ND frontier by solving a single IP

with a no-good constraint most of the time. In that case, the ND frontier inside the box is

generated by solving LPs only. The improvement of the SIS variant over the basic variant

is 81.2% for total time (on average) and 85.6% for number of IP solved (on average). This

is the best variant of BLM for the historical instances.

We want to draw attention to the fact that the SIS variant produces fewer ND images
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for the historical instances than the other variants. We have observed that this is due to

inaccuracies that can occur in the calculation of the gradients of a line segment in the line

generation subroutine. If the calculated gradient for a line segment is not very accurate,

then the LPs solved to find the endpoints z1 and z2 of the line segment can find incorrect

endpoints. As a consequence, rather than finding the entire line segment, only a portion

may be found, effectively splitting the line segment into smaller line segments. The SIS

variant relies less on the line generation subroutine. When the SIS variant establishes that

the ND frontier inside the box belongs to a single slice, the ND images of that slice problem

are found by solving LPs without the need to calculate the individual gradient of each line

segment.

The recursive variant does not improve upon the basic variant because it does not re-

curse very often (the maximum recorded depth was 3 for all instances), because most of

the time the full line segment obtained from the line generation subroutine is part of the

ND frontier. Since the recursive variant rarely recurses, it proceeds similarly to the basic

variant for these historical instances.

Next, we focus on the results for the new instances. The basic variant reports an average

ratio of 3 ND images per integer solution for both sets (n = 5000 and n = 7500). This is

expected due to their structure. The percentage of time spent solving IPs is 44.9% for set

n = 5000 and 46.3% for set n = 7500. This is comparable to the time spent solving LPs.

As expected, for the basic variant, the number of lexicographic IPs is close to the number of

ND images because there is a one-to-one correspondence between a lexicographic IP and

a NDLS. The number of scalarized IPs is approximately 3 per 2 ND images. This shows

that more scalarized IPs per ND image are solved in the new instances compared to the

historical instances. This is due to the characterization of the ND frontier, where the while-

loop within the inner loop must usually iterate more than once in a significant portion of the

calls. Indeed, the inner loop solves a single scalarized IP 50.3% of the time (on average) for

set n = 5000 and 59.3% of the time (on average) for set n = 7500. A reasonable number
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of the boxes processed have corner points with the same integer solution, on average of

21.8% for set n = 5000 and 37.4% for set n = 7500. This is not surprising given the

way the new instances are constructed, i.e., with line segment Lk extending across the ND

frontier and contributing many distinct NDLSs. However, unlike the historical instances,

the ND frontier within these boxes is less likely to be generated entirely by that single

integer solution.

As expected, the SIS variant does not improve upon the basic variant for the new in-

stances; in fact, it is a bit slower. First, in the new instances, by design, the solution of the

slice problem is not as helpful (in terms of finding multiple ND images of the ND frontier

associated with the integer solution of the corner points) because (1) the corner points of

the box have the same integer solution of the line segment Lk, which is partially dominated

by the pointed cones or (2) the corner points of the box have the integer solution associated

to some cone (and each cone produces at most 3 ND images). Second, we found that solv-

ing scalarized IPs in which the objective function has the same gradient as the line segment

Lk can require excessive amounts of time, most likely because there are multiple optimal

solutions to the scalarized IP (due to the way the corner points of the cones are generated).

The very first scalarized IP solved can take up to 35% of the total time to find the entire

ND frontier for an instance!

Finally, the recursive variant is very efficient for the new instances. Compared to the

basic variant, the recursive variant takes, on average, only 71.9% of the total time and

solves, on average, 57.2% of the number of IPs for set the n = 5000 and 71.5% of the total

time and 55.6% of the number of IPs for set the n = 7500. It is more efficient because it

recurses frequently with the new instances; the maximum depth level ranges from 13 to 17

for instances in the set n = 5000 and from 15 to 20 for instances in the set n = 7500. As

the algorithm recurses, the number of lexicographic IPs drops significantly because many

of the line segments of the ND frontier can be discovered and proved optimal by solving

only two scalarized IPs throughout the recursion. Furthermore, since the recursive inner
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loop does not solve as many LPs, e.g., it does not solve (2.6) to find v, the total number of

LPs drops noticeably compared to the basic variant.
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Algorithm Ins nNDP nIPF TT IPT LPT nIP nLex nMin nScal nGood nLP nBox nSIS nZL
Basic 21 16850 294 37665.5 33307.6 4339.7 53514 17790 40 17894 - 171370 17803 15926 17766

22 19778 410 42045.3 36927.4 5095.7 61766 20540 23 20663 - 191611 20510 18074 20476
23 17319 343 38995.1 34570.3 4409.4 53859 17895 26 18043 - 171514 17884 15776 17871
24 19898 460 46967.1 41632.8 5312.7 62338 20706 34 20892 - 200619 20696 17867 20682
25 13682 337 24450.1 21268.9 3171.0 42196 14024 27 14121 - 130934 13994 12130 13964

Avg. 17505.4 368.8 38024.6 33541.4 4465.7 54734.6 18191 30 18322.6 - 173209.6 18177.4 15954.6 18151.8
SIS 21 15699 294 6106.2 4890.5 1211.5 6598 1741 40 1849 1227 43443 2956 1227 1722

22 18840 410 7788.7 6297.5 1485.3 8613 2287 23 2421 1595 52662 3850 1595 2233
23 16449 343 6977.4 5607.1 1366.8 7459 1982 26 2131 1338 46627 3309 1338 1961
24 18546 460 9535.6 7899.2 1630.3 10070 2672 34 2884 1808 56219 4468 1808 2679
25 13239 337 5329.1 4296.6 1029.2 6578 1753 26 1853 1193 37911 2916 1193 1700

Avg. 16554.6 368.8 7147.4 5798.2 1344.6 7863.6 2087 29.8 2227.6 1432.2 47372.4 3499.8 1432.2 2059
Recursive 21 16831 294 37201.4 32767.3 4417.0 52297 16979 - 18339 - 170040 16971 15611 16955

22 19763 410 41650 36417.7 5210.1 60312 19600 - 21112 - 189879 19568 17830 19536
23 17315 343 38684.6 34149.4 4521.7 52585 17042 - 18501 - 170082 17030 15546 17018
24 19890 460 46196.8 40725.8 5449.5 60571 19576 - 21419 - 198351 19566 17509 19552
25 13667 337 24635 21314.5 3310.4 40899 13143 - 14613 - 129295 13113 11834 13083

Avg. 17493.2 368.8 37673.6 33074.9 4581.7 53332.8 17268 - 18796.8 - 171529.4 17249.6 15666 17228.8

Table 2.2: Comparison between the different algorithms for historical instances, class C320. Times are reported in seconds.

Algorithm n nNDP nIPF TT IPT LPT nIP nLex nMin nScal nGood nLP nBox nSIS nZL
Basic 5000 15002.0 5001 3924.3 1761.6 1846.8 51786.4 14586.6 466.4 22146.8 - 104131 14546.4 3175.0 14502.6
SIS 5000 15002.0 5001 4522.0 2245.0 1954.0 53575.4 16191.2 379.6 20732.6 80.8 112810.4 16251.4 80.8 16073.2
Recursive 5000 15002.4 5001 2823.6 1341.8 1187.8 29628.2 3633.6 - 22361 - 72896.4 3612.0 1.0 3590.4
Basic 7500 22502.0 7501 8881.4 4109.9 3914.8 81398.0 21846.8 706.4 36998 - 157289.4 21795.4 8148 21740.0
SIS 7500 22502.0 7501 12060.1 7146.5 4017.5 79738.8 24021.0 606.0 30979.8 111.0 168228.0 24098.8 111.0 23888.8
Recursive 7500 22502.6 7501 6346.7 3002.0 2538.4 44452.4 5272.8 - 33906.8 - 109628.6 5240.4 1.2 5208.0

Table 2.3: Comparison between the different algorithms for generated instances with n = 5000 and n = 75000. All metrics are averaged
over five instances. Times are reported in seconds.
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2.7.2 Comparison with existing algorithms

Comparing the performance of different algorithms is always challenging, but it is espe-

cially difficult for algorithms solving multiobjective mixed integer programs, given that it

is non-trivial, in practice, to characterize an optimal solution, i.e., the ND frontier. A ND

frontier can contain isolated points as well as open, half-open, and closed segments, and

because computers employ finite-precision arithmetic, algorithms have to use tolerances

to decide whether two values are equal or different. Changing the tolerance(s) used in an

algorithm for finding the ND frontier of a multiobjectiove integer program, as we have seen

in Section 2.5, can have a noticeable effect on the resulting ND frontier.

Unfortunately, the use of tolerances in algorithms for finding the ND frontier of a mul-

tiobjectiove integer program also makes it more likely that the execution of an algorithm

on a different hardware platform exhibits a different behavior, even to the point where it

finds the ND frontier for an instance on one hardware platform but fails to do so for the

same instance on another hardware platform.

In addition, to compare the performance of algorithms, it is preferable to run the algo-

rithms on the same hardware platform, and, if at all possible, for an algorithm to be the

only computationally intensive process running on the platform when computing times are

recorded.

We were fortunate in that the developers of the Triangle Splitting Algorithm (TSA) and

the ε,Tabu-Constraint Method (εTCM) both made the source code of the implementation

of their algorithms available to us. Thus, a comparison of the performance of our proposed

algorithms to the performance of these two algorithms could be conducted on the same

hardware platform and therefore be fair.

This worked well (mostly) for the instances used in previous computational studies on

algorithms for biobjective mixed integer programming, i.e., the historical instances gener-

ated according to the scheme proposed by [12], but not so well for the new instances we

created. The implementation of the TSA uses an “instance reader” that was customized to
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the historical instances, and it was not obvious how to adapt it to the new instances. The

implementation of εTCM reads the instances correctly, but terminates after the first integer

program is solved.

Furthermore, the implementation of TSA that we had access to uses a relative tolerance

and as a result only finds an approximation of the ND frontier. More specifically, aver-

aged over the instances in the set C160 and C320, TSA finds 1,519 and 3,140 ND images,

respectively, whereas the SIS variant of our proposed algorithms finds, averaged over the

instances in the sets C160 and C320, 3,548 and 16,555 ND images, respectively. Therefore,

TSA finds 42.8% of the ND images found by the SIS variant of our proposed algorithm for

the instances in the set C160 and only 19.0% for the instances in set C320. As a result, it is

not meaningful to compare solution times8.

The implementation of εTCM that we had access to produced almost identical ND

frontiers, differing by only a few ND images, but for a few historical instances, it failed

to produce a ND frontier (it cycled). We expect that this is due to the use of a different

version of CPLEX and the use of a different hardware platform. However, because we

felt it was important to perform a thorough and fair comparison on all instances, new as

well as historic, we implemented our own version of εTCM, using, whenever possible, data

structures and subroutines common to BLM. We validated our implementation of εTCM

by confirming that it produced a nearly identical ND frontier to that produced by the orig-

inal implementation, in very similar computing time, on all instances for which this was

possible, i.e, for which the original implementation ran on our platform.

Our overall comparison of algorithms can be found in Table 2.4, which reports on

the performance of the SIS variant of BLM and εTCM on the historic instances, and the

recursive variant of BLM and εTCM on the new instances.

We observe that the SIS variant of BLM solves fewer IPs than εTCM on the historic

instances, which results in faster solution times, 297.9 vs. 345.6, respectively, averaged

8For the C160 instances, the total run time of BLM was 7% longer, on average, than the published results
for TSA, and for the C320 instances, BLM’s run time is 85% longer.
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over the C160 instances, and 7,147.4 vs. 10,354.8, respectively, averaged over the C320

instances.

Even though the recursive variant of BLM solves more IPs than εTCM, and far more

LPs than εTCM, on the new instances, it still ends up having significantly faster solu-

tion times, 2,823.6 vs. 12,156.3, respectively, averaged over the n = 5000 instances, and

6,346.7 vs. 37,922.2, respectively, averaged over the n = 7500 instances.

In summary, variants of the BLM not only have desirable theoretical properties (in

terms of the number of IPs that need to be solved to generate the ND frontier), but are fast

in practice and outperform existing algorithms for solving BOMIPs.
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Instance εTCM BLM
nNDP nIPF TT IPT LPT nIP nLP nNDP nIPF TT IPT LPT nIP nLP

16 2762 115 216.6 145.8 70.3 2870 10520 2764 115 206.0 148.6 57.1 1934 8287
17 2949 110 324.9 194.1 130.2 3054 16205 2952 110 257.7 185.6 71.7 1960 8915
18 2739 101 239.3 156.4 82.4 2834 11257 2738 101 232.8 170.5 61.9 1909 8172
19 6151 181 674.1 494.9 177.1 6319 23086 6166 181 577.1 433.1 143.1 3805 18212
20 3125 100 273.0 202.4 69.9 3216 9080 3122 100 216.1 148.8 66.9 1748 8698
Avg. 3545.2 121.4 345.6 238.7 106.0 3658.6 14029.6 3548.4 121.4 297.9 217.3 80.2 2271.2 10456.8
21 15636 295 8836.8 6659.8 2165.8 15923 86957 15699 294 6106.2 4890.5 1211.5 6598 43443
22 18825 410 11671.6 9055.6 2598.7 19205 98134 18840 410 7788.7 6297.5 1485.3 8613 52662
23 16420 343 10437.3 7743.2 2682.4 16752 102411 16449 343 6977.4 5607.1 1366.8 7459 46627
24 18471 457 13028.6 10187.5 2825.8 18968 101218 18546 460 9535.6 7899.2 1630.3 10070 56219
25 13216 337 7799.5 5698.3 2092.7 13518 79133 13239 337 5329.1 4296.6 1029.2 6578 37911
Avg. 16513.6 368.4 10354.8 7868.9 2473.1 16873.2 93570.6 16554.6 368.8 7147.4 5798.2 1344.6 7863.6 47372.4
5000.A 15002 5001 12152.0 11513.9 337.8 25229 24345 15002 5001 2861.8 1383.9 1184.6 29711 72937
5000.B 15002 5001 12185.2 11565.4 337.3 25281 24201 15002 5001 2788.4 1301.3 1192.8 29587 72826
5000.C 15002 5001 12218.9 11586.8 338.4 25292 24156 15004 5001 2827.3 1350.4 1184.6 29538 72824
5000.D 15002 5001 12196.0 11563.4 338.2 25256 24272 15002 5001 2788.5 1306.2 1187.8 29664 72986
5000.E 15002 5001 12029.3 11415.1 334.1 25263 24243 15002 5001 2851.8 1367.3 1189.4 29641 72909
Avg. 15002 5001 12156.3 11528.9 337.2 25264.2 24243.4 15002.4 5001 2823.6 1341.8 1187.8 29628.2 72896.4
7500.A 22502 7501 38542.3 37022.1 701.1 37875 36407 22502 7501 6544.4 3209.7 2535.2 44466 109695
7500.B 22502 7501 38528.6 37024.5 700.7 37889 36369 22502 7501 6329.9 3016.2 2517.2 44485 109677
7500.C 22502 7501 38532.5 37004.0 701.5 37890 36374 22502 7501 6341.6 2964.6 2562.0 44445 109532
7500.D 22502 7501 36466.7 34998.8 671.7 37907 36311 22502 7501 6172.0 2822.3 2538.8 44415 109698
7500.E 22502 7501 37540.8 36076.9 671.3 37893 36369 22505 7501 6345.6 2997.1 2538.9 44451 109541
Avg. 22502 7501 37922.2 36425.3 689.3 37890.8 36366.0 22502.6 7501 6346.7 3002.0 2538.4 44452.4 109628.6

Table 2.4: Comparison between εTCM and BLM (SIS variant for historic and recursive variant for new instances). Times are reported
in seconds.
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Comments on recently published algorithms for solving BOMIPs

The growing interest in solving BOMIPs is illustrated by two very recent papers (both

published while this paper was under review): [33] introduce an algorithm, called One Di-

rection Search (ODS), based on ideas similar to εTCM, and [34] introduces an algorithm,

called Search-and-Remove (SaR), which cleverly combines dichotomic search, solving

slice problems, and no-good constraints. For the sake of completeness, we provide some

comments on the computational results reported in these papers.

[33] and [34] provide a comparison with published results for TSA on historic instances,

classes C160 and C320, acknowledging the challenges associated with such a comparison

as the their results were obtained on different hardware platforms and using with different

versions of CPLEX.

The results for ODS with relative error ξ = 10e−5 [33] show that ODS takes more time

to produce the ND frontier for class C160 instances and about the same time or slightly

less time for class C320 instances. The main contribution, however, and the authors’ pri-

mary objective, was demonstrating that more accurate ND frontier approximations can be

achieved (compared to TSA).

The results for SaR with 10 subregions [34] show substantial improvement over TSA.

On average, SaR produced the ND frontier 32% faster than TSA for C160 instances, and

7% faster than TSA for C320 instances, where SaR was faster in 9 out of 10 instances,

by 37% on average, but struggled with one problematic instance. We note that SaR is

especially well-suited for the historic instances, because their ND frontiers consist of a

relatively small number of continuous sections, generated by relatively few slices, each

having many (small) line segments.
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CHAPTER 3

TCHEBYCHEV WEIGHT SPACE DECOMPOSITION: GEOMETRY

Abstract. Scalarization is a common technique to transform a multiobjective

programming problem into a scalar-valued optimization problem. This article

deals with the weighted Tchebychev scalarization applied to multiobjective dis-

crete optimization problems. It consists of minimizing a weighted distance of

the image of a feasible solution to some desirable reference point. By choosing

a suitable weight, any Pareto optimal image can be obtained. In this article,

we provide a comprehensive theory of this set of eligible weights. In particular,

we analyze the polyhedral and combinatorial structure of the set of all weights

yielding the same (Pareto) optimal solution as well as the decomposition of

the weight set as a whole. The structural insights are linked to properties of

the set of (Pareto) optimal solutions, thus providing a profound insight into the

weighted Tchebychev scalarization method and, as a consequence, also into

all methods for multiobjective programming problems using this scalarization

as a building block.1

The basic idea of a weight set decomposition for a multiobjective discrete optimization

problems (MODOs) is quite intuitive and has been explored extensively for the weighted

sum scalarization [49, 56, 50, 57, 58]. Each nondominated (ND) image has an associated

weight set component: the set of weight vectors for which the weighted sum scalarization

yields the ND image. The weight set decomposition is usually taken to be a (minimal)

collection of weight set components that cover the set of eligible parameters. Figure 3.1

illustrates the triangular weight set, Λ = {λ ∈ R3
≥ :

∑
i λi = 1}, and (a) represents the

well-studied weight set decomposition by weighted sum scalarization.

Weight set components offer decision-makers additional insight into the ND frontier,

and can be especially useful for three or more objectives, when visualization of the frontier

itself is more difficult. For example, a weight set component with a comparatively large
1This work was submitted to Journal on Global Optimization (January 2021), coauthored with Stephan

Helfrich, Pascal Halffmann, Natashia Boland, and Stefan Ruzika, with Tyler Perini as second author.
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Figure 3.1: An example with image set y1 = (1, 3, 4)>, y2 = (8, 2, 4)>, y3 = (4, 8, 2)>,
y4 = (6, 4, 6)>, y5 = (7, 7, 5) and their weight set components Λ(yr), r = 1, . . . , 5, for
both weighted sum scalarization (b) and weighted Tchebychev scalarization (c). Note that,
for both scalarization, the restriction to weights contained in Λ = {λ ∈ RP

≥ :
∑p

i=1 λi = 1}
is without loss of generality. Thus, λ3 = 1 − λ1 − λ2. The image y4 is not extreme
supported. The image y5 is not supported. The images y1 and y2 are adjacent with respect
to the weighted sum weight set decomposition though their weighted Tchebychev weight
set components do not intersect.

volume is obtained from a ND image that is in some sense more “robust”: there are com-

paratively many weight vectors which yield this image. The intersections of weight set

components also embody the adjacency structure of the ND frontier: the higher the dimen-

sion of the intersection of two weight set components, the “closer” in the ND frontier are

the images they are obtained from. In addition to their value to decision-makers, construc-

tion of weight set components may also form an integral part of algorithms for generating

ND frontiers or approximations to them. The adjacency structure can be especially helpful

in the design of interactive methods.

However, one may have unsupported ND images, which are attributed empty sets of

weights by this weighted scalarization. Even more, it is not difficult to construct nonconvex

image sets in which almost the entire ND frontier is unsupported. This motivates the use

of a different scalarization:

Recall the weighted Tchebychev scalarization, which with a reference point s ∈ Rp and
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given weight vector λ ∈ Rp
≥, can be stated as

min {‖f(x)− s‖λ∞ : x ∈ X}, (ΠTS(λ))

where ‖y‖λ∞ := maxi=1,...,p{|λi yi|}. Although the weighted Tchebychev scalarization is

well-known, there has been no effort to investigate its weight set decomposition prior to this

work. We provide a first rigorous and comprehensive theory on the weighted Tchebychev

weight set components, and we analyze the polyhedral and combinatorial structure of the

sets and provide an adjacency concept of ND images.

3.1 Related Work

To the best of our knowledge, the Tchebychev norm was introduced for biobjective opti-

mization problems by Geoffrion in 1967 [59]. Bowman [60] and Wierzbicki [61], among

others, suggest using the (weighted) Tchebychev norm to generate all ND images of MOPs,

even for nonlinear objective functions. To avoid weakly ND images, modifications are in-

troduced: the lexicographic weighted Tchebychev scalarization[20] chooses among all im-

ages that are optimal the image with minimal sum-norm. The augmented weighted Tcheby-

chev norm [20] adds the sum-norm scaled with a small parameter. The modified augmented

weighted Tchebychev norm [62] also uses weights in the augmentation term.

Since the distance measure to the reference point gives useful information during the

optimization process, many applications of these Tchebychev scalarization techniques can

be found in the context of interactive approaches; see [63] for an overview. For example,

Steuer and Choo [20] utilize the (augmented) weighted Tchebychev scalarization, while

Luque et al. [64] develop such an approach for solving convex multiobjective programs us-

ing the lexicographic weighted Tchebychev scalarization. For multiobjective mixed integer

linear programming, Alves and Clı́maco [65] combine a branch-and-bound approach with

iterative adjustments of the reference point, employing the augmented weighted Tcheby-
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chev scalarization. Bozkurt et al. [66] use the weighted Tchebychev scalarization to evalu-

ate the quality of solutions.

Weight set decomposition methods for the weighted sum scalarization date back to

the work of Yu and Zeleny in 1975 [67], who introduce a generalized simplex method

and link basic efficient solutions with the set of weights in the polyhedral cone defined

by the corresponding basis matrix. For biobjective problems, the well-known dichotomic

search [22, 21] in fact calculates all extreme supported ND (ESND) images based on the

general idea of weight set decomposition: for two known ESND images, it calculates the

unique weight such that the 1-norm of both coincide. Solving the related weighted sum

scalarization problem leads either to a new ESND image, or justifies that one cannot find

other ESND images ‘between’ the two. Benson and Sun [47, 48] extend this idea and

establish a link between ESND images of a multiobjective linear optimization problem and

a partitioning of the weight set.

Przybylski et al. [58] adapt this technique to MODOs. They state fundamental proper-

ties concerning the weight set components: Each weight set component, denoted ΛWS(y)

for ND image y, is a (convex) polytope, and knowing all ESND images is sufficient for

its calculation. A weight set component is full-dimensional if and only if the correspond-

ing image is an ESND one, which implies that the set of ESND images is sufficient and

necessary to cover the whole weight set. Further, two weight set components intersect in

common faces, only. That is, there exists a face F of ΛWS(y) and a face F ′ of ΛWS(y′)

such that F = F ′ = ΛWS(y) ∩ ΛWS(y′). Based on this symmetry, two ESND images

are defined to be adjacent if and only if the dimension of their intersection is one less than

the dimension of the weight set. Finally, they also present an algorithm for computing

all ESND images for three objectives using the derived properties by iteratively shrinking

supersets of the actual weight set components (a.k.a., outer approximations).

The weight set decomposition is implicitly calculated by the procedures of Özpeynirci

and Köksalan [57] and Bökler and Mutzel [56]. The algorithms of Alves and Costa [68]
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and Halffmann et al. [50] iteratively augment subsets of the weight set components (a.k.a.,

inner approximations). Recently, Schulze et al. [69] use a weight set decomposition linked

with so-called arrangements of hyperplanes in the objective space to show that the number

of ESND images of unconstrained MODOs is polynomially bounded.

For the weighted Tchebychev scalarization, Eswaran et al. [70] explicitly consider

weight set components for biobjective problems. Based on this approach, Ralphs et al.

[71] adapt the dichotomic search method to calculate all ND images of biobjective discrete

optimization problems.

3.1.1 Contributions

We apply the weight set decomposition approach to the weighted Tchebychev scalarization

of MODOs, which has not been done before for more than two objectives. As shown in

Figure 3.1(b), the weighted Tchebychev scalarization implies a more sophisticated and rich

structure in comparison to the weighted sum scalarization. The primary contribution of this

work is a theoretical study of this structure and its properties, which provides a theoretical

foundation for the development of new algorithms to compute the weighted Tchebychev

weight set decomposition, which in particular includes the enumeration of all ND images

of a MODOs.

We provide foundational properties of the weighted Tchebychev weight set decompo-

sition in Section 3.2. We show that it is necessary and sufficient to consider only the weight

set components for ND images and establish that weight set components are nonconvex but

have convexity related properties: they are star-shaped as well as convex along rays ema-

nating from a vertex of the weight set. We study the intersection of weight set components

in Section 3.3. Such intersections coincide with weight set components of special weakly

ND images, and hence all convexity-related properties also apply, even though intersec-

tions of star-shaped sets are, in general, not star-shaped. In Section 3.4, we describe weight

set components as unions of finitely many polytopes. This lays a well-defined foundation
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of the dimensional analysis presented in Section 3.5 including an adjacency structure for

weight set components to reveal the “organization” of the ND frontier. We close with some

concluding remarks in Section 3.6.

3.2 Foundations

In this section, we introduce fundamental concepts for analyzing the weight set decom-

position according to the weighted Tchebychev scalarization. We also derive properties

connecting the weight set with the ND set YN and investigate convexity properties. The

following two definitions, which are rarely seen in multiobjective optimization, are funda-

mental for the remainder of this work.

Definition 1 (Preparata and Shamos [72]). A set S ⊆ Rp is star-shaped, if there exists a

y ∈ S such that θy + (1 − θ)ȳ ∈ S for all ȳ ∈ S and all θ ∈ (0, 1). The set of all such

images y is called kernel of S and is denoted by ker(S).

Definition 2 (Ziegler [73]). A polytopal complex C is a finite collection of polytopes in Rd

such that

• the empty polytope is in C,

• if P ∈ C, then all the faces of P are also in C,

• the intersection P ∩Q of two polytopes P , Q ∈ C is a face of both P and Q.

The dimension dim(C) is the largest dimension of a polytope in C. The underlying set

of C is the point set
⋃
P∈C P . A subcomplex of a polytopal complex is a subset C ′ ⊆ C

that itself is a polytopal complex. A polytopal subdivision of a set S ⊆ Rd is a polytopal

complex C with the underlying set
⋃
P∈C P = S. For example, it is easy to see that the

collection of all faces of polytope P defines a polytopal subdivision of P itself.

In the remainder of this paper, we consider MODOs. That is, X is a finite set. Further,

we make the following assumption on the reference point used in the weighted Tchebychev

scalarization.

72



Assumption 1. The reference point s is a utopia point. Thus, s < y for all y ∈ Y , and

without loss of generality, we can also assume that Y ⊆ Rp
> (by shifting) and the reference

point s used in the weighted Tchebychev scalarization is the zero vector (s = 0).

As a consequence of Assumption 1, ΠTS(λ) simplifies to min{‖f(x)‖λ∞ : x ∈ X} =

min{‖y‖λ∞ : y ∈ Y}. Furthermore, ‖y‖λ∞ > 0 for all y ∈ Y and λ ∈ Λ, since λ ≥ 0 with

λ 6= 0, for all λ ∈ Λ.

The latter part of the following proposition is given as Theorem 4.5 in [20]; here we

extend it to the case of weakly ND images.

Proposition 3. For all y ∈ YwN there exists a weight λ ∈ Rp
> such that y minimizes

ΠTS(λ). Moreover, if y ∈ YN , there exists a weight such that y uniquely minimizes ΠTS(λ).

Proof. For y ∈ YwN choose the weight λ defined by λi = 1/yi > 0 for i = 1, . . . , p.

Suppose there exists a ȳ such that ‖y‖λ∞ > ‖ȳ‖λ∞. Then maxi=1,...,p λiyi > maxj=1,...,p λj ȳj

which implies for all j = 1, . . . , p, λjyj = 1 > λj ȳj and thus yj = 1/λj > ȳj . This

contradicts y ∈ YwN . To prove the second statement, choose again the weight λ defined

by λi = 1/yi for i = 1, . . . , p. Then similar calculations imply that for an image y 6=

ȳ ∈ Y with ‖y‖λ∞ ≥ ‖ȳ‖λ∞, it must be that yj ≥ ȳj holds for all j = 1, . . . , p. This is a

contradiction to y ∈ YN .

Since α‖y‖λ∞ = ‖y‖αλ∞ holds for all scalars α > 0, normalization of the weight λ does

not change the optimal solution set of ΠTS(λ). Hence, analogously to the weighted sum

method, we restrict the set of eligible parameters to the (normalized) weight set

Λ :=

{
λ ∈ Rp

= :

p∑
k=1

λk = 1

}
. (3.1)

Observe that Λ does not contain the zero vector. Further, Λ is a (p − 1) dimensional

polytope, and the projection/bijection φ : Λ→ {λ ∈ Rp−1
= :

∑p−1
i=1 λi ≤ 1}, (λ1, . . . , λp) 7→

(λ1, . . . , λp−1) gives a particularly useful tool for the visualization of the weight sets of
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MODOs with three objectives. We introduce its decomposition implied by the weighted

Tchebychev scalarization:

Definition 3. For y ∈ Y , the weight set component of y with respect to the weighted

Tchebychev scalarization is defined by

Λ(y) :=
{
λ ∈ Λ : ‖y‖λ∞ ≤ ‖ȳ‖λ∞ for all ȳ ∈ Y

}
.

It is helpful to note that λ ∈ Λ(y) if and only if y is optimal for (ΠTS(λ)), meaning that

y = f(x) for some optimal solution x of (ΠTS(λ)). Obviously, if an image is not weakly

ND, then its weight set component is empty.

We introduce a notation for the normalization of the weight used in the proof of Propo-

sition 3.

Definition 4. For y ∈ YwN we denote the kernel weight or kernel vertex (also known as

T-vertex [64]) of y by λ(y) and define it by

λi(y) :=
1

yi

1∑p
j=1

1/yj
for i = 1, . . . , p.

Proposition 3 implies that if y is weakly ND then its weight set component is nonempty.

Hence, an image is weakly ND if and only if its weight set component is nonempty. More-

over, if y is ND, we get the following as a corollary.

Corollary 1. Let Bε(λ) := {λ′ ∈ Λ :
∑p

i=1 λi − λ′i ≤ ε}. For y ∈ YN , there exists an

ε > 0 such that Bε(λ(y)) ⊆ Λ(y). If ε is chosen small enough, then Bε(λ(y)) ∩ Λ(y′) = ∅

for each y′ ∈ YwN \ {y}.

Proof. This follows by Proposition 3, the definition of the kernel vertex, finiteness of the

feasible set, and the continuity of the function λ → ‖ȳ‖λ∞ in all components of λ for any

given ȳ ∈ YwN .
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The next propositions show that YN is sufficient to define the weight set components of

all images.

Proposition 4. Let y ∈ Y . Then

Λ(y) = {λ ∈ Λ : ‖y‖λ∞ ≤ ‖ȳ‖λ∞ for all ȳ ∈ YN}.

Proof. Let ȳ ∈ Y \ YN . Then, since Y is finite, there exists an image y′ ∈ YN such that

y′ ≤ ȳ. This yields ‖y′‖λ∞ ≤ ‖ȳ‖λ∞ for all λ ∈ Λ. Then we have ‖y‖λ∞ ≤ ‖y′‖λ∞ ≤ ‖ȳ‖λ∞

for λ ∈ Λ(y). That is, the inequality ‖y‖λ∞ ≤ ‖ȳ‖λ∞ is redundant.

The following proposition shows that all weights λ ∈ Λ map to a ND image in YN by

optimizing ΠTS(λ).

Proposition 5. Λ =
⋃
y∈YN Λ(y).

Proof. For a weight λ ∈ Λ there exists an image y ∈ Y that is optimal for ΠTS(λ), and

hence λ ∈ Λ(y). If y 6∈ YN , then (by finiteness of Y) there exists ȳ ∈ YN such that

ȳi ≤ yi for all i = 1, . . . , p. Since λ ≥ 0 this gives ‖ȳ‖λ∞ ≤ ‖y‖λ∞, and so ȳ must also be

optimal for ΠTS(λ). Thus λ ∈ Λ(ȳ), too. Hence Λ ⊆
⋃
ȳ∈YN Λ(ȳ). The reverse inclusion

holds trivially.

Proposition 3 implies another fact about the weight set components: weight set com-

ponents of ND images cannot be a subset of one another. In particular, if y ∈ YN , we

have Λ(y) \
(⋃

ȳ∈YN ,ȳ 6=y Λ(ȳ)
)
6= ∅. Thus, Proposition 5 states a sufficient and necessary

condition to decompose the weight set.

We begin with a crucial geometric property of the weight set components: in contrast

to the weighted sum weight set components, the sets Λ(y) are not necessarily convex.

Example 6. Consider the set of ND images

Y =
{
y1 = (3, 1, 2)>, y2 = (2, 1, 3)>, y3 = (2, 2, 2)>, y4 = (1, 2, 3)>

}
.
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λ1

λ2
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×

(a) Λ(y1)

λ1

λ2

(b) Λ(y2)

λ1

λ2

(c) Λ(y3)

λ1

λ2

(d) Λ(y4)

Figure 3.2: The weight set components (a) - (d) of Example 6. For r = 1, 2, 3, 4, the col-
ored regions represent Λ(yr), the dots represents the kernel vertex λ(yr), and the red line in
(a) represents the convex combination of weights λ1 and λ2 investigated in Example 6. The
dashed lines indicate the decomposition of the weight set components into its dimensional
weight set components. Notice that the “lower dimensional parts” along these dashed lines
belong to both adjacent dimensional weight set components. Indeed, such “lower dimen-
sional parts” can only occur in the intersection of dimensional weigt set components (see
Proposition 12).

Figure 3.2 shows the weight set components for Example 6. Let λ1 = (0.24, 0.72, 0.04)>

and λ2 = (0.24, 0.46, 0.3)>. Then, simple calculations yield λ1, λ2 ∈ Λ(y1) (see Fig-

ure 3.2(a)). However, for λ3 := 1/2λ1 + 1/2λ2 = (0.24, 0.59, 0.17)> we have ‖y1‖λ3

∞ =

0.72 > 0.59 = ‖y2‖λ3

∞ and therefore λ3 /∈ Λ(y1). Consequently, Λ(y1) is not convex.

To gain more insights about the structure of weight set components, we divide compo-

nents into smaller subsets according to which index maximizes the corresponding scalar

product (i.e., defining the weighted Tchebychev norm value).

Definition 5. Let y ∈ YwN . We define for i = 1, . . . , p the ith dimensional weight set
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component by

Λ(y, i) := {λ ∈ Λ(y) : λiyi ≥ λkyk for all k = 1, . . . , p}.

Clearly, Λ(y, i) = {λ ∈ Λ(y) : ‖y‖λ∞ = λiyi} and
⋃p
i=1 Λ(y, i) = Λ(y). Figure 3.2

presents these sets for Example 6.

With the image set of Example 6, one can also show that both λ1 and λ2 are contained

in Λ(y1, 1) and thus the dimensional weight set components are not necessarily convex.

However, we can derive a “convexity-related” property.

Proposition 6. Let y ∈ YwN . Then the following holds.

1.
p⋂
i=1

Λ(y, i) = {λ(y)}.

2. For i = 1, . . . , p, Λ(y, i) is a star-shaped set with λ(y) ∈ ker(Λ(y, i)).

Proof. Since λi(y)yi = 1/
∑p

j=1
1/yj for all i = 1, . . . , p, we have λ(y) ∈ Λ(y, i) for all

i = 1, . . . , p. Furthermore, if a weight λ ∈
⋂p
i=1 Λ(y, i), we have λjyj ≥ λkyk for all j, k =

1, . . . , p. This yields λ1y1 = λ2y2 = · · · = λpyp = M if and only if λi = M/yi for all i =

1, . . . , p for a constant M ∈ R. Since
∑p

i=1 λi = 1, we get M = (
∑p

i=1
1/yi)

−1 and

therefore λ is the kernel weight. This shows statement (i).

To prove (ii), fix i and let λ′ ∈ Λ(y, i). We first show that for θ ∈ (0, 1), the con-

vex combination (θλ(y) + (1 − θ)λ′) ∈ Λ(y). To do so we prove for all ȳ ∈ Y that

‖y‖θλ(y)+(1−θ)λ′
∞ ≤ ‖ȳ‖θλ(y)+(1−θ)λ′

∞ . To begin, observe that since λ(y), λ′ ∈ Λ(y, i), it fol-

lows that ‖y‖λ(y)
∞ = λi(y)yi ≥ λk(y)yk and ‖y‖λ′∞ = λ′iyi ≥ λ′kyk for all k = 1, . . . , p. Fix

θ ∈ (0, 1). It is now straightforward to show that for all k = 1, . . . , p,

(θλi(y) + (1− θ)λ′i)yi = θλi(y)yi + (1− θ)λ′iyi

≥ θλk(y)yk + (1− θ)λ′kyk = (θλk(y) + (1− θ)λ′k)yk,
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and so

‖y‖θλ(y)+(1−θ)λ′
∞ = (θλi(y) + (1− θ)λ′i)yi. (3.2)

Fix ȳ ∈ Y . Now for some j, it must be that λ′j ȳj = ‖ȳ‖λ′∞. By Assumption 1, ‖ȳ‖λ′∞ > 0

so λ′j > 0. Since λ′ ∈ Λ(y), we have that ‖y‖λ′∞ ≤ ‖ȳ‖λ
′
∞. So, λ′iyi = ‖y‖λ′∞ ≤ λ′j ȳj .

Furthermore, λ′jyj ≤ λ′iyi by the definition of ‖y‖λ′∞. Thus, λ′jyj ≤ λ′j ȳj , which implies

yj ≤ ȳj , since λ′j > 0. Hence, λj(y)yj ≤ λj(y)ȳj . But λj(y)yj = 1/
∑p

k=1
1/yk = λi(y)yi so

it is also the case that λi(y)yi ≤ λj(y)ȳj . Altogether, we find

‖y‖θλ(y)+(1−θ)λ′
∞ = θλi(y)yi + (1− θ)λ′iyi ≤ θλj(y)ȳj + (1− θ)λ′j ȳj

= (θλj(y) + (1− θ)λ′j)ȳj ≤ ‖ȳ‖θλ(y)+(1−θ)λ′
∞

and thus (θλ(y) + (1 − θ)λ′) ∈ Λ(y). From (3.2) we immediately get that (θλ(y) + (1 −

θ)λ′) ∈ Λ(y, i) which completes the proof.

The first property states that the kernel weight is the only possible weight that is con-

tained in all dimensional weight set components. The second property justifies the name

kernel weight. The most interesting statement is Proposition 6.2, which combined with

Proposition 6.1 gives the following.

Corollary 2. Let y ∈ YwN . Then, Λ(y) is a star-shaped set and λ(y) ∈ ker(Λ(y)).

In the one dimensional weight set (i.e. for two objectives) star-shapedness is equivalent

to convexity of the weight set components. This explains why the straightforward adaption

of the dichotomic search approach to the weighted Tchebychev scalarization proposed in

[70, 71] works in the biobjective case.

A second convexity-related property can be derived with the help of the following

lemma. Notice that we fix p − 1 components of a weight λ ∈ Rp
> and do not restrict

ourselves to normalized weights.
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Lemma 3. For a given index k, λ ∈ Rp
≥ and a scalar t > 0, if y ∈ Y is optimal for both

ΠTS(λ) and ΠTS(λ+ tek), where ek is the kth unit vector in Rp, then y is also optimal for

ΠTS(λ+ θtek) for all θ ∈ (0, 1).

Proof. First observe that for any y ∈ Y , θ ∈ [0, 1], and k, λ and t as given,

‖y‖λ+θtek
∞ = max{λiyi, (λk + θt)yk}

where i is an index such that ‖y‖λ∞ = λiyi. Consider y ∈ Y optimal for both ΠTS(λ) and

ΠTS(λ + tek), fix i∗ such that ‖y‖λ∞ = λi∗yi∗ and fix θ ∈ (0, 1). Let ȳ ∈ Y and fix i such

that ‖ȳ‖λ∞ = λiȳi. Thus,

‖y‖λ+θtek
∞ = max{λi∗yi∗ , (λk + θt)yk} and ‖ȳ‖λ+θtek

∞ = max{λiȳi, (λk + θt)ȳk}.

We consider two cases for ‖ȳ‖λ+tek
∞ . In each we show that ‖y‖λ+θtek

∞ ≤ ‖ȳ‖λ+θtek
∞ . In both

cases, we use the observation that λi∗yi∗ ≤ λiȳi since y is optimal for ΠTS(λ).

(i) Suppose ‖ȳ‖λ+tek
∞ = λiȳi. Since θ < 1, t > 0 and ȳk > 0, we can conclude that

(λk + θt)ȳk < (λk + t)ȳk ≤ ‖ȳ‖λ+tek
∞ = λiȳi

and therefore ‖ȳ‖λ+θtek
∞ = λiȳi = ‖ȳ‖λ+tek

∞ . Likewise,

(λk + θt)yk < (λk + t)yk ≤ ‖y‖λ+tek
∞ ≤ ‖ȳ‖λ+tek

∞ = ‖ȳ‖λ+θtek
∞ ,

where the last inequality follows by optimality of y for ΠTS(λ+ tek). Recall that λi∗yi∗ ≤

λiȳi = ‖ȳ‖λ+θtek
∞ . Thus

‖y‖λ+θtek
∞ = max{λi∗yi∗ , (λk + θt)yk} ≤ ‖ȳ‖λ+θtek

∞ .

(ii) Suppose ‖ȳ‖λ+tek
∞ = (λk + t)ȳk. Now ‖y‖λ+tek

∞ ≤ ‖ȳ‖λ+tek
∞ since y is optimal for
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ΠTS(λ + tek). So (λk + t)yk ≤ (λk + t)ȳk. Since t > 0 and λk ≥ 0, it must be that

yk ≤ ȳk, and hence (λk + θt)yk ≤ (λk + θt)ȳk ≤ ‖ȳ‖λ+θtek
∞ . Furthermore, recall that

λi∗yi∗ ≤ λiȳi ≤ ‖ȳ‖λ+θtek
∞ . Hence we again have

‖y‖λ+θtek
∞ = max{λi∗yi∗ , (λk + θt)yk} ≤ ‖ȳ‖λ+θtek

∞ .

The above lemma shows that given λ1 and λ2 with λ2 − λ1 equal to a positive multiple

of a unit vector: if y is optimal for both ΠTS(λ1) and ΠTS(λ2), then y is also optimal for

ΠTS(λ) where λ is any convex combination of λ1 and λ2.

In order to transfer this result to the weight set, for a given index k ∈ {1, . . . , p} and a

vector a ∈ Rp such that ai > 0 for i 6= k, we define the following lines:

Hk,a := {λ ∈ Rp : aiλi = ajλj for all i, j ∈ {1, . . . , p} \ {k}} ∩ Λ. (3.3)

Figure 3.3 shows a selection of these lines. Visually, the lines Hk,a ∩ Λ emanate from one

of the vertices of Λ. This can be seen by rewriting

Hk,a = {λ ∈ Rp : λ = ek + (a′ − ek)t for some t ∈ [0, 1]},

where ek denotes the kth unit vector and a′ is defined by a′k := 0 and a′i := 1
ai

1∑
j 6=k

1/aj
for

i 6= k. It is precisely along these lines that we find a new convexity-related property.

Proposition 7. For any k ∈ {1, . . . , p} and a ∈ Rp such that ai > 0 for i 6= k, the

intersection set Λ(y) ∩Hk,a is convex for all y ∈ YwN .

Proof. We prove that Λ(y)∩Λ> ∩Hk,a is convex for all y ∈ Y . Without loss of generality,

let k = p. Dividing all entries by a1 does not change the validity of any equality in (3.3).
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λ1

λ2 Λ(y1)
Λ(y2)
Λ(y3)
Λ(y4)

Figure 3.3: The convexity property of Proposition 7. The intersection of the planes of the
form Hk,a (dashed lines) in (3.3) and the weight set components are always convex sets.
The green-gray and violet-gray checkerboard areas represent the intersection of weight set
components Λ(y1)∩Λ(y2) and Λ(y1)∩Λ(y3), respectively. See Figure 3.2 for a represen-
tation of the individual weight set components.

Thus, we can also assume that the entries of a are chosen such that

λ1 = aiλi, i = 2, . . . , p− 1, (3.4)

holds for all λ ∈ Hp,a. Let λ1, λ2 ∈ Λ(y) ∩ Λ> ∩Hp,a and λ = θλ1 + (1− θ)λ2 for some

θ ∈ (0, 1). Easy calculations yield λ ∈ Λ> ∩Hp,a. Without loss of generality, let λ1
1 ≤ λ2

1.

By (3.4) we then get λ1
i ≤ λ2

i for i = 2, . . . , p− 1, and therefore
∑p

i=1 λ
1
i =

∑p
i=1 λ

2
i = 1

implies λ1
p ≥ λ2

p. Since λ is a convex combination of λ1 and λ2, we summarize as follows:

λ1
i ≤ λi ≤ λ2

i for i = 1, . . . , p− 1, (3.5a)

λ1
p ≥ λp ≥ λ2

p. (3.5b)

Now we define scalars ε2, ε by ε2 := λ2
1/λ1

1 and ε := λ1/λ1
1. By (3.5a) we have

1 ≤ ε ≤ ε2. (3.6)

Set λ̄2 := 1/ε2λ2 and λ̄ := 1/ελ. Then, it follows λ̄2
1 = λ̄1 = λ1

1 and consequently λ̄2
i = λ1

i
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and λ̄i = λ1
i holds for i = 2, . . . , p− 1. Combining (3.5a) and (3.6) results in

λ̄2
p =

1

ε2

λ2
p ≤

1

ε
λ2
p ≤

1

ε
λp = λ̄p and λ̄p =

1

ε
λp ≤

1

1
λp ≤ λ1

p.

We get λ̄ ∈ conv{λ1, λ̄2}. Recall that α‖y‖λ∞ = ‖y‖αλ∞ holds for all y ∈ Y and all

scalars α > 0. Hence, as λ2 ∈ Λ(y), we know that y is also optimal for ΠTS(λ̄2). Since

λ̄ ∈ conv{λ1, λ̄2}, y is optimal for ΠTS(λ̄) by Lemma 3, and therefore y is optimal for

ΠTS(λ). The claim follows by continuity of ‖y‖λ∞ in λ for all y ∈ Y .

3.3 The Intersection of Weight Set Components

In this section, we state results about the intersection of two weight set components. In

general, the intersection of two star-shaped sets is not guaranteed to be star-shaped. How-

ever, the intersection of two weight set components is indeed star-shaped. To prove this,

we first define a (possibly artificial) image.

Definition 6. Given a subset of weakly ND images, Ȳ = {y1, . . . , yR̄} ⊆ YwN , we define

the local nadir point yN(Ȳ ) by

yNi (Ȳ ) = max
r=1,...,R̄

yri for i = 1, . . . , p.

We say an image yr for r ∈ {1, . . . , R̄} contributes to the local nadir image if yri = yNi (Ȳ )

for some i ∈ {1, . . . , p}.

In the following, we avoid trivial cases by requiring |Ȳ | ≥ 2. Further, for ease of

exposition we assume that the local nadir point exists in Y . It is easy to see then that the

local nadir point yN(Ȳ ) is dominated. Consequently, Λ(yN(Ȳ )) 6= ∅ implies yN(Ȳ ) ∈

YwN \ YN .

Definition 7. We call the kernel weight of yN(Ȳ ), λN(Ȳ ) := λ(yN(Ȳ )), the local nadir

weight.
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Clearly, λN(Ȳ ) ∈ Λ. Observe that ‖y‖λ
N (Ȳ )
∞ = maxi=1,...,p

yi
maxr=1,...,R̄ y

r
i
M ≤ M , with

M =
(∑p

j=1
1

maxr=1,...,R̄ y
r
j

)−1

for all y ∈ Ȳ . Thus, if y contributes to the local nadir image,

we have ‖y‖λ
N (Ȳ )
∞ = M . In particular, the weighted Tchebychev norm of λN(Ȳ ) coincides

for all images contributing to yN(Ȳ ).

The local nadir point is closely related to the intersection of weight set components, as

shown in the following proposition.

Proposition 8. Let Ȳ ⊆ YwN . Then,
⋂
y∈Ȳ Λ(y) = Λ(yN(Ȳ )).

Proof. Let Ȳ ⊆ YwN be enumerated as Ȳ = {y1, . . . , yR̄}. We abbreviate yN := yN(Ȳ ).

If
⋂
y∈Ȳ Λ(y) = ∅, the inclusion ‘⊆’ holds trivially. Let λ ∈

⋂
y∈Ȳ Λ(y). Then, there

exists a constant c > 0 such that ‖yr‖λ∞ = c for all r = 1, . . . , R̄ and c ≤ ‖y′‖λ∞ for all

y′ ∈ Y . We show ‖yN‖λ∞ = c. Since maxi=1,...,p λiy
r
i = c for all r = 1, . . . R̄, we have

λiy
r
i ≤ c for all i = 1, . . . , p and for all r = 1, . . . , R̄. Thus, maxr=1,...,R̄ λiy

r
i ≤ c and

therefore λiyNi = λi ·maxr=1,...,R̄ y
r
i ≤ c for all i = 1, . . . , p. Consequently, ‖yN‖λ∞ = c,

and so λ ∈ Λ(yN).

The other direction follows by yr 5 yN for all r = 1, . . . , R̄ due to the definition of the

local nadir weight.

We can elaborate on the basic result of Proposition 8 in order to prove more insightful

characteristics of the intersection.

Corollary 3. Let Ȳ ⊆ YwN . Then,

1. If λN(Ȳ ) /∈
⋂
y∈Ȳ Λ(y), then

⋂
y∈Ȳ Λ(y) = ∅.

2. The intersection
⋂
y∈Ȳ Λ(y) is a star-shaped set with λN(Ȳ ) in its kernel.

3. For k ∈ {1, . . . , p} and ai > 0, i 6= k, the intersection
⋂
y∈Ȳ Λ(y) ∩Hk,a is convex.

Proof. If λN(Ȳ ) /∈
⋂
y∈Ȳ Λ(y), we have λN(Ȳ ) /∈ Λ(yN) by Proposition 8. Then, by the

proof of Proposition 3, we have yN /∈ YwN and therefore the weight set component of the
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λ2
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λ2 Λ(y1)
Λ(y2)
Λ(y3)
Λ(y4)

(c)

Figure 3.4: The local nadir weights (a) λN({y1, y2}), (b) λN({y2, y3}) = λN({y3, y4}) =
λN({y2, y3, y4}) and (c) λN({y1, y2, y3}) for Example 6. The intersection sets of weight
set components are always star-shaped sets. In particular, the corresponding local nadir
weight is contained in the kernel.

local nadir point has to be empty. Thus we get again by Proposition 8 that
⋂
y∈Ȳ Λ(y) = ∅.

This gives (i). If
⋂
y∈Ȳ Λ(y) = ∅, there is nothing left to prove. Otherwise, statements

(ii) and (iii) follow by Corollary 2 and Proposition 7, respectively, as well as Proposition 8

since Λ(yN) 6= ∅ and thus yN ∈ YwN .

3.4 A Polytopal Subdivision of the Weight Set Components

In the following, we construct a representation of the weight set components as the union

of polytopes. For this purpose, let the ND set YN be enumerated as YN = {y1, . . . , yR}.

Considering only the image y1, recall its ith dimensional weight set component for i ∈

{1, . . . , p} (see Definition 5):

Λ(y1, i) = {λ ∈ Λ(y1) : λiy
1
i ≥ λky

1
k for all k = 1, . . . , p}.

That is, the inequalities λiy1
i ≥ λky

1
k, k 6= i, subdivide the weight set Λ into polytopes

such that we can compute the weights yielding ‖y1‖λ∞ = λiy
1
i (see Figure 3.6a). For all

other images in YN , similar inequalities can be defined: Given an R-tuple (i1, . . . , iR) ∈
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{1, . . . , p}R, we define

P(i1,...,iR) :=


λ ∈ Λ :

λi1y
1
i1
≥ λky

1
k for k 6= i1,

λi2y
2
i2
≥ λky

2
k for k 6= i2,

...

λiRy
R
iR
≥ λky

R
k for k 6= iR,


. (3.7)

Obviously, each set P(i1,...,iR) is a polytope and the family of all polytopes subdivides the

weight set. Moreover, we get

Λ(y1) ∩ P(i1,...,iR) = {λ ∈ Λ : λi1y
1
i1
≤ λiry

r
ir for all r = 2, . . . , R} ∩ P(i1,...,iR). (3.8)

with Proposition 4. Thus, Λ(y1) ∩ P(i1,...,iR) is again a polytope. We collect the polytopes

defined analogously to (3.8) for all yr ∈ YN in

C̃(yr) :=
{

Λ(yr) ∩ P(i1,...,iR) : (i1, . . . , iR) ∈ {1, . . . , p}R
}
. (3.9)

Observe that many of these polytopes in
⋃
r=1,...,R C̃(yr) are empty: If yri < ysi holds for

two images yr, ys ∈ YN and an index i, all polytopes Λ(ys)∩P(i1,...,iR) with ir = is = i are

empty. Indeed, we can find an upper bound on the number of nonempty polytopes which

is polynomial in |YN |.

Lemma 4. For fixed p, the number of full-dimensional polytopes in
⋃
y∈YN C(y) is asymp-

totically bounded by a polynomial in |YN |.

Proof. Let R = |YN |. Clearly, the number of full-dimensional polytopes P(i1,...,iR) is

bounded by the number of full-dimensional polytopes induced by the affine subspaces

G(yr, i, j) = {λ ∈ Λ : λiy
r
i = λjy

r
j}, see Figure 3.5. This number is bounded by (R+ 1)p.

Furthermore, Λ(y)∩P(i1,...,iR) is nonempty if and only if we have λiyi ≤ λiy
′
i for all images

y′ such that λiy′i ≥ λky
′
k for all λ ∈ P(i1,...,iR). Therefore, a polytope P(i1,...,iR) will be split
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λ1

λ2

Figure 3.5: The grid for p = 3 which induced by affine subspaces of the form G(yr, i, j).

in at most R · p further full-dimensional polytopes. In summary, we get an upper bound of

R · p · (R + 1)p = O(Rp+1) polytopes.

Note that for p = 3, the number of full-dimensional polytopes coincides with the num-

ber of facets of the plain graph induced by the grid. By induction over R, one can count

the nodes and the implied edges. Then, Euler’s formula for planar graphs implies a better

upper bound of 3 · (2R + 1/2(R + 1)R + 1) = O(R2). We state some properties of the

families in (3.9).

Proposition 9. Let YN = {y1, . . . , yR}. For a ND image yr ∈ YN . Then the following

hold:

1. The intersection set Λ(yr) ∩ P(i1,...,iR) is a polytope for all R-tuples

(i1, . . . , iR) ∈ {1, . . . , p}R.

2. We have
⋃
P∈C̃(yr) P = Λ(yr).

3. Let yr, ys ∈ YN be two ND images and P(i1,...,iR), P(j1,...,jR) be two polytopes. Then,(
P(i1,...,iR) ∩ Λ(yr)

)
∩
(
P(j1,...,jR) ∩ Λ(ys)

)
is a face of both P(i1,...,iR) ∩ Λ(yr) and

P(j1,...,jR) ∩ Λ(ys). In particular, it’s inclusion-wise maximal.

Proof. The statements (i) and (ii) are already proven. Without loss of generality, let YN be
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enumerated such that yr = y1 and ys = y2. We define

H := {λ ∈ Rp
≥ : λi1y

1
i1

= λj1y
1
j1
, . . . , λiRy

R
iR

= λjRy
R
jR
, λi1y

1
i1

= λj2y
2
j2
}

= {λ ∈ Rp
≥ : λ1

i1
y1
i1

= λj2y
2
j2
} ∩

(
R⋂
r=1

{λ ∈ Rp
≥ : λiry

r
ir = λjry

r
jr}

)
.

On the one hand,

{λ ∈ Rp
≥ : λ1

i1
y1
i1
≤ λj2y

2
j2
} ∩

(
R⋂
r=1

{λ ∈ Rp
≥ : λiry

r
ir ≥ λjry

r
jr}

)

is an intersection of valid inequalities for P(i1,...,iR)∩Λ(y1), as shown in (3.8). That is, these

inequalities define a face F 1 = P(i1,...,iR)∩Λ(y1)∩H , if it is nonempty. On the other hand,

{λ ∈ Rp
≥ : λ1

i1
y1
i1
≥ λj2y

2
j2
} ∩

(
R⋂
r=1

{λ ∈ Rp
≥ : λiry

r
ir ≤ λjry

r
jr}

)

is an intersection of valid inequalities for P(j1,...,jR) ∩ Λ(y2). Analogously,

F 2 = P(j1,...,jR) ∩ Λ(y2) ∩ H is a face of P(j1,...,jR) ∩ Λ(y2). By definition,

λ ∈
(
P(i1,...,iR) ∩ Λ(y1)

)
∩
(
P(j1,...,jR) ∩ Λ(y2)

)
satisfies for r = 1, . . . , R:

λiry
r
ir ≥ λky

r
k for k 6= ir,

λjry
r
jr ≥ λky

r
k for k 6= jr.

This implies λiryrir = λjry
r
jr . Since also λi1y

1
i1
≤ λi2y

2
i2

and λj2y
2
j2
≤ λj1y

1
j1

hold, we get

λi1y
1
i1
≤ λi2y

2
i2

= λj2y
1
j2
≤ λj1y

2
j1

= λi1y
1
i1

. Thus, we have equality λi1y
1
i1

= λj2y
2
j2

. It

follows that

λ ∈ F 1 ⇔ λ ∈
(
P(i1,...,iR) ∩ Λ(y1)

)
∩
(
P(j1,...,jR) ∩ Λ(y2)

)
⇔ λ ∈ F 2

holds. Consequently, F 1 = F 2 =
(
P(i1,...,iR) ∩ Λ(y1)

)
∩
(
P(j1,...,jR) ∩ Λ(y2)

)
. Maximality
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λ1

λ2

(a)

λ1

λ2

(b)

λ1

λ2 Λ(y1)
Λ(y2)
Λ(y3)
Λ(y4)

(c)

Figure 3.6: The construction of the polytopal subdivision of the weight set Λ ((a) and (b))
according to (3.7) and the polytopal subdivision of the weight sets components of Example
6 (c). See Figure 3.2 for a representation of the individual weight set components.

follow also by the latter equalities.

Since the statement of Proposition 93 remains true if yr is chosen to be equal ys, we

can conclude that the polytopes in C̃(yr) themselves always intersect in a common face. By

adding all faces of the polytopes in C̃(yr), Proposition 92 implies that we get a polytopal

subdivision of the weight set component. Thus, we define:

Definition 8. For y ∈ YN , the weight set complex of y with respect to the weighted Tcheby-

chev scalarization is defined by

C(y) := {F : there exists a polytope P ∈ C̃(y) such that F is a face of P}.

C(y) collects all faces of the polytopes in C̃(y), including the polytopes themselves and

the empty set, which are the trivial faces.

Corollary 4. Let y ∈ YN . Then, C(y) is a polytopal complex such that
⋃
P∈C(y) P = Λ(y)

holds.

Figure 3.6c shows the subdivision for Example 6. Proposition 5 can directly be adapted

such that Λ =
⋃
y∈YN

⋃
P∈C(y) P is a sufficient and necessary condition.

Remark 1. Analogously to the construction of the weight set complex, we get a polytopal

subdivision of the dimensional weight set components if we collect all faces of the polytopes
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induced by the collection

C̃(yr, i) := {Λ(yr) ∩ P(i1,...,ir−1,i,ir+1,...,iR) :

(i1, . . . , ir−1, ir+1, . . . , iR) ∈ {1, . . . , p}R−1}.

We thus define:

Definition 9. For y ∈ YwN , i ∈ {1, . . . , p}, we call

C(y, i) := {F : there exists a polytope P ∈ C̃(y, i) such that F is a face of P}.

the ith dimensional weight set complex.

By construction, C(y, i) is indeed a subcomplex of C(y).

Taking images in YwN \YN into account, we need to refine the construction of the polytopal

subdivision. This can be done by defining (3.7) and (3.8) based on an enumeration of YwN .

Then, the following holds analogously.

Corollary 5. For y ∈ YwN , there exists a polytopal subdivision of Λ(y).

Remark 2. Due to the construction of these polytopal subdivisions, the intersection of

weight set components induces a polytopal subdivision that uses polytopes of both subdi-

visions only. That is Λ(y1) ∩ Λ(y2) =
⋃
P∈C(y1)∩C(y2) P . In particular, C(y1) ∩ C(y2) itself

is also a polytopal complex. Thus, we can compare weight set components based on the

polytopes in the polytopal subdivision.

Similarly, the union of two weight set complexes is a polytopal subdivision of the union of

the corresponding weight set components.

We conclude this chapter with a link of the polytopal subdivision to the line convexity

in Proposition 7.

89



Remark 3. Consider a polytope

P = Λ(y1) ∩ P(i1,...,iR) = {λ ∈ Λ : λi1y
1
i1
≤ λiry

r
ir for all r = 2, . . . , R} ∩ P(i1,...,iR)

(see equation (3.8)). Observe that the inequalities defining P are all of the form λiy
r1
i ≤

λjy
r2
j or λiyr1i ≥ λjy

r2
j for some i, j ∈ {1, . . . , p}, r1, r2 ∈ {1, . . . , R}. In particular, in

each set of such inequalities at most one is non-redundant. Conversely, in set of inequali-

ties, one inequality is face-defining. This implies two further properties: First, the number

of facets of P is bounded by 2
(
p
2

)
, since for each combination of objectives i, j at most

two can define a facet. Second, all proper faces of P are embedded in hyperplanes de-

fined by a set of equalities of the form λiy
r1
i = λjy

r2
j , where the images yr1 and yr2 for

some i, j ∈ {1, . . . , p}, r1, r2 ∈ {1, . . . , R}. That is, they are contained in a hyperplane

intersection with an extreme point of the weight set Λ itself. In other words, for some

fixed k ∈ {1, . . . , p}, we find a set of vectors A ⊆ Rp
> such that a face F of P satisfies

F ⊆
⋃
a∈AHk,a ∩ Λ ⊆ aff(F ), see (3.3) for the definition of the planes Hk,a.

In particular, for p = 3, edges of P are embedded in exactly one line of the form Hk,a∩

Λ. Therefore, the boundary of a weight set component can be described by a sequence of

Q > 2 line segments [λ1, λ2], [λ2, λ3], . . . , [λQ, λ1] such that [λq, λq+1 mod Q] ⊆ Hkq ,aq for

some kq ∈ {1, 2, 3} and aq ∈ R3
>, q = 1, . . . , Q.

3.5 The Dimension of the Weight Set Components

In this section, we analyze the dimension of the weight set components. First, we define

the dimension with respect to the associated polytopal complex. Recall that a polytopal

complex is defined via a finite set of polytopes, and for all weight set components there

exists a polytopal subdivision, see Corollary 4.

Definition 10. For y ∈ Y , we define the dimension of its weight set component by dim(Λ(y)) :=

dim(C(y)).
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(Note that the dimension of the dimensional weight set components as well as the in-

tersections or unions of weight set components can be defined analogously by Remarks 1

and 2.) In the following, we distinguish between images of YN and YwN \ YN .

We first deal with ND images. Due to the finite number of polytopes in C(y), Corollary

1 immediately implies that the dimension of the corresponding weight set complexes C(y)

must be equal to p− 1. This gives:

Corollary 6. Let y ∈ YN . Then, dim(Λ(y)) = p− 1.

We refine the analysis to the dimensional weight set components. In particular, we also

take a look at the intersection of these components. The proof of the following lemma is

rather technical and can be found in the appendix.

Lemma 5. Let y ∈ YwN and I ⊆ {1, . . . , p}. If λ ∈
⋂
i∈I

Λ(y, i) and λ /∈
⋃
j /∈I

Λ(y, j) holds,

there exists a polytope P such that

1. λ ∈ P ,

2. P ⊆
⋂
i∈I

Λ(y, i),

3. dim(P ) = p− |I|.

From Lemma 5, we can deduce the dimension of the dimensional weight set complexes.

The proof is mainly based on Corollary 1 and the fact that the dimensional components

evenly decompose the ε-ball.

Proposition 10. Let y ∈ YN and ∅ 6= I ⊆ {1, . . . , p}. Then it holds

dim
(⋂

i∈I Λ(y, i)
)

= p− |I|. In particular, we have dim (Λ(y, i)) = p− 1.

Proof. If I = {1, . . . , p} holds, the claim follows from Proposition 61. Thus, let ∅ 6= I (

{1, . . . , p}.
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By Corollary 1, there exists an ε > 0 such that Bε(λ(y)) ⊆ Λ(y). Set

λi :=


(1 + ε

2
)λi(y), if i ∈ I,

λi(y)− ε
2

1
p−|I|

∑
j∈I λj(y), if i /∈ I.

We show that λ fulfills the requirements of Lemma 5. It is easy to see that λ ∈ Λ and in

particular λ ∈ Bε(λ(y)) ⊆ Λ(y) with

λiyi = (1 +
ε

2
)λi(y)yi = (1 +

ε

2
)λk(y)yk = λkyk for all k ∈ I,

λiyi = (1 +
ε

2
)λi(y)yi = (1 +

ε

2
)λk(y)yk > λk(y)yk > λkyk for all k /∈ I.

By Lemma 5, we have dim
(⋂

i∈I Λ(y, i)
)
≥ p − |I|. On the other hand,⋂

i∈I Λ(y, i) ⊆ {λ ∈ Λ : λiyi = λjyj for i, j ∈ I} =: P. Consequently, we have

dim
(⋂

i∈I C(y, i)
)
≤ dim(P ) ≤ p − |I|. Thus, equality holds and the proof is com-

plete.

Since a weakly ND image yw ∈ YwN \ YN is optimal for the scalarized problem

ΠTS(λ(yw)) with the central weight of yw, the corresponding weight set component Λ(yw)

is not empty. We have already seen that these sets also have a polytopal subdivision and

fulfill the convexity properties stated in Proposition 7 and Corollary 2. Regarding their

dimension, Proposition 10 does not hold due to the fact that there is no ε > 0 such that

Bε(λ(yw)) ⊆ Λ(yw) holds. The next example shows this for two objectives.

Example 7. Set Ỹ = {ỹ1 = (4, 4)>, ỹ2 = (4, 2)>}, only. Clearly, ỹ2 ∈ YN and ỹ1 ∈

ỸwN \ ỸN . For the kernel vertex λ(ỹ1) = (1/2, 1/2)>, we have ‖ỹ1‖λ(ỹ1)
∞ = 2 = ‖ỹ2‖λ(ỹ1)

∞ .

However, for any scalar ε > 0 and λ = (λ1(ỹ1)+ε, λ2(ỹ1)−ε)>, we get ‖ỹ1‖λ∞ = 2+4ε >

1 + 2ε = λ1ỹ
2
1 as well as ‖ỹ1‖λ∞ = 2 + 4ε > 2 − 4ε = λ2ỹ

2
2. Hence, ‖ỹ1‖λ∞ > ‖ỹ2‖λ∞.

Nevertheless, we can conclude Λ(ỹ1) = Λ(ỹ2)∩{λ ∈ Λ : λ1 ≤ λ1(ỹ1)}, since the weighted

Tchebychev norm values are attained in the second objective for both ȳ1 and ȳ2 and thus
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coincide. Consequently, both weight set components have dimension p− 1 = 1.

This raises the question whether the claim of Proposition 10 holds for weakly ND but

not ND images, too. This is not the case.

Example 8 (Example 7 cont.). We add another image to the image set:

Ỹ ∗ = Ỹ ∪ {ỹ3 = (2, 4)>}.

Analogously we get ‖ỹ1‖λ∞ > ‖ỹ3‖λ∞, λ = (λ1(ỹ1)− ε, λ2(ỹ1) + ε)>, for any ε > 0. Thus,

Λ(ỹ1) = {λ(ỹ1)} and it is dim(Λ(ỹ1)) = 0.

How can we characterize the dimension of the weight set components of images yw ∈

YwN \ YN? We will conclude that this depends on the images dominating yw. If yw ∈

YwN \ YN , then there exists a y ∈ YN such that yi ≤ ywi for all i = 1, . . . , p. That is,

Λ(yw, i) ⊆ Λ(y, i) for all i satisfying ywi = yi.

Lemma 6. Let yw ∈ YwN \ YN and y ∈ YN such that y ≤ yw and

yi1 < ywi1 , . . . , yil < ywil for indices {i1, . . . , il} ⊆ {1, . . . , p}. Then,

Λ(yw) \
(⋃

i/∈{i1,...,il} Λ(yw, i)
)

= ∅.

Proof. Without loss of generality, let i1 = 1, . . . , il = l. Assume, there is a weight λ ∈

Λ(yw) \
(⋃p

i=l+1 Λ(yw, i)
)
. Then,

λ ∈

(
l⋃

i=1

Λ(yw, i)

)
\

(
p⋃

i=l+1

Λ(yw, i)

)

and, therefore, we get with y ∈ YN ∩ ({yw} − Rp
=)

λiyi < λiy
w
i i = 1, . . . , l, (3.10)

λkyk ≤ λky
w
k k = l + 1, . . . , p, (3.11)

there is some i ∈ {1, . . . , l} such that λkywk < λiy
w
i k = l + 1, . . . , p. (3.12)

93



If ‖y‖λ∞ = λiyi for an i ∈ {1, . . . , p}, we have with (3.10) λiyi < λiy
w
i ≤ ‖yw‖λ∞. If

‖y‖λ∞ = λkyk for a k ∈ {l + 1, . . . , p}, we have with (3.11) and (3.12) λkyk ≤ λky
w
k <

λiy
w
i ≤ ‖yw‖λ∞ for an i ∈ {1, . . . , l}. Both are contradictions to λ ∈ Λ(yw).

Thus, the dimension of the weight set components of weakly ND but dominated images

highly depends on the number of images that dominate yw and on which components those

images are strictly better.

Proposition 11. Let yw ∈ YwN\YN . If for all I ⊆ {1, . . . , p}, |I| = l, there exists an image

y ∈ YN∩
(
{yw} − Rp

=

)
such that yi < ywi holds for all i ∈ I , then dim(Λ(yw)) ≤ p−1−l.

Proof. This follows from Lemma 6.

That is, the dimension of the weight set components of images in YwN \ YN is de-

termined by the maximal cardinality of a set that satisfies the assumptions of Proposition

11.

Example 9 (Example 6 cont.). We augment the set Y to

Y ′ = Y ∪ {y5 = (3, 2, 2)>, y6 = (2, 3, 3)>, y7 = (3, 2, 3)>}.

Then, y5, y6 and y7 are weakly ND, but dominated images. For y5 we have y5
3 ≤ y3 for all

y ∈ Y . Thus, Proposition 11 gives dim(Λ(y5)) > 3− 1− 1 = 1 and, therefore, this weight

set component is full-dimensional.

The ND images dominating y6 are y2 = (2, 1, 3)>, y3 = (2, 2, 2)> and y4 = (1, 2, 3)>.

Thus, for all indices i there exists an image y ∈ YN ∩
(
{y6} − Rp

=

)
such that yi < y6

i .

Proposition 11 gives dim(Λ(y6)) ≤ 3− 1− 1 = 1. However, for the index pair (1, 3) there

does not exist an image satisfying the assumptions of Proposition 11. Thus, dim(Λ(y6)) >

3− 1− 2 = 0 and we get dim(Λ(y6)) = 1.

For the image y7, there exists for all pairs of indices an image in YN ∩
(
{y7} − Rp

=

)
satisfying the assumptions of Proposition 11. Thus, dim(Λ(y7)) ≤ 3 − 1 − 2 = 0 and,
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λ1

λ2

(a) Λ(y5)

λ1

λ2

(b) Λ(y6)

λ1

λ2

(c) Λ(y7)

Figure 3.7: The weight set components Λ(yr), r = 5, 6, 7, of Example 9. Remark that
yr ∈ YwN \ YN for r = 5, 6, 7, and thus the interior of at least one dimensional weight set
component is empty.

therefore, the weight set component consists of the kernel vertex only.

As a further consequence, we get a characterization of ND images.

Corollary 7. Let
∫

(Λ(y, i)) denotes the set of all weights λ ∈ Λ(y, i) such that there exists

a scalar ε > 0 with Bε(λ) ⊆ Λ(y, i)}. An image y ∈ Y is ND if and only if
∫

(Λ(y, i)) 6= ∅

for all i = 1, . . . , p.

The Intersection of Weight Set Components We have seen in section 3.3 that the in-

tersection of weight set components
⋂
y∈Ȳ Λ(y) for Ȳ ⊆ YN is exactly determined by the

weight set component of the (dominated) local nadir point yN(Ȳ ). Thus, the dimension of

the intersection sets is characterized by Proposition 11. Remark that a nonempty intersec-

tion implies that all images in Ȳ contribute to yN(Ȳ ), and Ȳ = YN ∩{yN(Ȳ )}−Rp
=. Thus,

if all images in Ȳ coincide in at least one component i, we have dim(
⋂
y∈Ȳ Λ(y)) = p− 1,

that is, they share at least one full-dimensional polytope in their weight set complexes (in

particular in their ith dimensional weight set component). Notice also that this cannot hap-

pen between different dimensional weight set components as Λ(y1, i) ∩ Λ(y2, j) ⊆ {λ ∈

Λ : λiy
1
i = λjy

2
j} and the dimension of the latter polytope is p− 2.

Considering only two ND images, we can therefore define a concept of (proper) adja-

cency regarding the weighted Tchebychev scalarization. (Note that proper adjacency aligns

with the concept in [23] for the weighted sum scalarization.)
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(b)

Figure 3.8: Two weight set complexes can share a full-dimensional polytope P (a). Thus
the images are adjacent, but not proper adjacent. The adjacency of the images in the image
space is visualized in (b). The bold lines indicate an overlapping of the corresponding
weight set components.

Definition 11. Let two images y, ȳ ∈ Y be given.

1. The (dimensional) weight set components of y and ȳ ∈ Y overlap if dim(Λ(y, i) ∩

Λ(ȳ, i)) = p− 1 for some i ∈ {1, . . . , p}.

2. The images are adjacent with respect to the weighted Tchebychev scalarization if

Λ(y) ∩ Λ(ȳ) 6= ∅.

3. The images are properly adjacent if dim(Λ(y) ∩ Λ(ȳ)) = p− 2.

The Local Dimension of Weight Set Components We have seen that the weight set

components are star-shaped sets and that a polytopal subdivision with at least one full-

dimensional polytope exists. Nevertheless, this does not exclude that there may exist poly-

topes in C(y) of dimension less than p − 2 that are necessary to describe Λ(y). This can

be seen for example in Figure 3.2. To formalize this, we introduce an adapted notion of

dimension.

Definition 12. Let a weight λ and a set S be given such that λ ∈ S ⊆ Λ. Further, we

denote with P the set of all polytopes in Rp. Then, the local dimension of λ with respect to
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S is given by

dim(λ, S) := max
P∈P,λ∈P⊆S

dim(P ).

From Lemma 5, we can directly deduce:

Corollary 8. Let y ∈ YwN .

1. Let λ ∈
∫

(Λ(y, i)). Then, dim (λ,Λ(y)) = p− 1.

2. Let ∅ 6= I ⊆ {1, . . . , p} and λ ∈
⋂
i∈I Λ(y, i), λ /∈

⋃
i∈{1,...,p}\I Λ(y, i).

Then, dim (λ,Λ(y)) ≥ p− |I|.

We analyse the local dimension in a more detailed fashion in the following propositions.

Proposition 12. Let λ ∈ Λ(y) ∩ Λ> for y ∈ YwN . If dim(λ,Λ(y)) = p − ` for some

` ∈ {2, . . . , p}, then there exists an index set I ⊆ {1, . . . , p} with |I| ≥ ` and a set of ND

images Ȳ ⊆ YN \ {y} such that

1. λ ∈
⋂
i∈I Λ(y, i) and

2. For all index sets I ′ $ I with |I ′| < ` there exists an image ȳ ∈ Ȳ such that ȳi < yi

for all i ∈ I ′.

Proof. Let λ ∈ Λ(y) ∩ Λ> such that dim(λ,Λ(y)) = p − `, ` ≥ 2. Choose I such that

λ ∈
⋂
i∈I Λ(y, i) and λ /∈

⋃
j /∈I Λ(y, j). If |I| < `, Corollary 82 gives

dim(λ,Λ(y)) ≥ p− |I| > p− `,

which is a contradiction. Thus, |I| ≥ ` and item (i) holds.

Since the local dimension is strictly less than p − 1, we have λ ∈ (Λ(y)). Let Ȳ =

{y1, . . . , yR̄} ⊆ YN \ {y} be all the ND images such that λ ∈
⋂R̄
r=1 Λ(yr) ∩ Λ(y).
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Denote by yN := yN(Ȳ ∪ {y}) the associated local nadir point. Then λ ∈ Λ(yN).

Since ‖yN‖λ∞ = ‖y‖λ∞ = λiyi ≤ λiy
N
i ≤ ‖yN‖λ∞ for all i ∈ I , we have equality and thus

λ ∈
⋂
i∈I Λ(yN , i). In particular we get yi = yNi for all i ∈ I .

By the choice of Ȳ , we have ‖yN‖λ∞ < ‖y′‖λ∞ for all y′ ∈ Y \
(
Ȳ ∪ {y}

)
. Thus, there

exists an ε′ > 0 such that Bε′(λ) ⊆
⋃
ȳ∈Ȳ Λ(ȳ) ∪ Λ(y) and Bε′(λ) ∩ Λ(y′) = ∅ for any

y′ ∈ Y\
(
Ȳ ∪ {y}

)
. For Ī ⊆ {1, . . . , p}, define λĪ by λĪi (ε) = λi if i ∈ Ī and λĪi (ε) = λi−ε

else. Suppose there is a positive ε < min{ ε′
2p
, 1

2p
} and an index set ∅ 6= I ′ $ I , |I ′| < `

such that λI′(ε) fulfills ‖yN‖λ
I′ (ε)
∞ ≤ ‖y′‖λ

I′ (ε)
∞ for all y′ ∈ Y .

Take Ī ⊆ {1, . . . , p} such that I ′ ⊆ Ī holds. Clearly, λ ≥ λĪ(ε) ≥ λI
′
(ε). This gives

‖y′‖λI
′
(ε)

∞ ≤ ‖y′‖λĪ(ε)
∞ for all y′ ∈ Y . (3.13)

On the other hand I ′ 6= ∅ and therefore we have for an arbitrary i′ ∈ I ′:

λĪi′(ε)y
N
i′ = λi′y

N
i′ = ‖yN‖λ∞ ≥ λky

N
k ≥ λĪky

N
k .

This gives λi′yNi′ = ‖yN‖λ
Ī(ε)
∞ = ‖yN‖λ

I′ (ε)
∞ = ‖yN‖λ∞. With (3.13) we get ‖yN‖λ

Ī(ε)
∞ =

‖yN‖λ
I′ (ε)
∞ ≤ ‖y′‖λ

I′∪Ī(ε)
∞ for all y′ ∈ Y . By construction, λĪ and λĪ∪{k} for an index k /∈ Ī

satisfy the conditions of Lemma 3. Thus, applying the convexity property of Lemma 3

multiple times in a recursive manner and normalizing all weights yields

conv

{
λĪ(ε)

‖λĪ(ε)‖1

, I ′ ⊆ Ī ⊆ {1, . . . , p}

}
⊆ Λ(yN), (3.14)

see also Figure 3.9 for a visualization of this argument. Clearly, λ = λ{1,...,p}(ε), and

the weights λ and
{
λ{1,...,p}\{k} : k ∈ {1, . . . , p} \ I ′

}
are affinely independent (compare

the proof of Lemma 5 in the appendix). Affine independence is invariant with respect to

normalization, and thus dim
(

conv
{

λĪ(ε)

‖λĪ(ε)‖1
, I ′ ⊆ Ī ⊆ {1, . . . , p}

})
= p − |I ′| > p −

`. With Λ(yN) ⊆ Λ(y) we get dim(λ,Λ(y)) ≥ dim(λ,Λ(yN)) ≥ p − |I ′|, which is a
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(b)
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Figure 3.9: Visualization of the argument implying (3.14) for p = 3 and I ′ = {1}.
The normalized weights λĪ ∈ Λ(yN) for all I ′ ⊆ Ī ⊆ {1, . . . , p} are visual-
ized in (a). The application of the convexity along lines Hk,a (dashed lines) yields
[λ, λ{1,2}], [λ, λ{1,3}], [λ{1}, λ{1,2}], [λ{1}, λ{1,3}] ⊆ Λ(yN) (b). The application of the con-
vexity along (infinitely many) lines Hk,a again yields conv({λ, λ{1}, λ{1,2}, λ{1,3}}) ⊆
Λ(yN) (c).

contradiction.

Therefore, there exists an image y′ ∈ Y for all 0 < ε < min{ ε′
2p
, 1

2p
} and an index

set ∅ 6= I ′ $ I such that ‖y′‖λ
I′ (ε)
∞ < ‖yN‖λ

I′ (ε)
∞ . Straight forward calculations show

λI
′
(ε)/‖λI′ (ε)‖1 ∈ Bε′(λ). Thus, ‖yN‖λ

I′ (ε)
∞ < ‖y′‖λ

I′ (ε)
∞ for any y′ ∈ YN \

(
Ȳ ∪ {y}

)
. Since

also ‖yN‖λ
I′ (ε)
∞ = ‖y‖λ

I′ (ε)
∞ , there exists a ȳ ∈ Ȳ such that ‖ȳ‖λ

I′ (ε)
∞ < ‖yN‖λ

I′ (ε)
∞ . In

particular, we get for all i ∈ I ′ that

λI
′

i (ε)ȳi ≤ ‖ȳ‖λ
I′ (ε)
∞ < ‖yN‖λI

′
(ε)

∞ = λI
′

i (ε)yNi = λI
′

i (ε)yi,

which implies ȳi < yi.

Proposition 13. Let y ∈ YwN and λ ∈
⋂
i∈I Λ(y, i) for an index set I ⊆ {1, . . . , p} with

2 ≤ |I| ≤ p− 2. If there exists a set of ND images Ȳ ⊆ YN \ {y} such that

1. λ ∈ Λ(yN) and λ /∈
⋃
j /∈I Λ(yN , j), where yN := yN(Ȳ ∪ {y}) and

2. for all I ′ $ I there exists an image ȳ ∈ Ȳ with ȳi < yi for all i ∈ I ′,

then dim(λ,Λ(y)) = p− |I|.

Proof. Since λ ∈ Λ(yN) ∩ Λ>, we get by Proposition 8 that ‖yN‖λ∞ = ‖y‖λ∞ = ‖ȳ‖λ∞ for

all ȳ ∈ Ȳ . Since λ /∈
⋃
j /∈I Λ(yN , j), we have ‖yN‖λ∞ > λjy

N
j for all j /∈ I and therefore
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‖y′‖λ∞ = ‖yN‖λ∞ > λjy
N
j ≥ λjy

′
j for all y′ ∈ Ȳ ∪ {y}. Thus,

λ /∈
⋃
j /∈I

Λ(y′, j) for all y′ ∈ Ȳ ∪ {y}. (3.15)

Since λ ∈
⋂
i∈I Λ(y, i), we have λiyi = ‖y‖λ∞ = ‖yN‖λ∞ ≥ λiy

N
i for all i ∈ I . By

definition of yN we get yi = yNi for all i ∈ I and thus for all ȳ ∈ Ȳ :

yi ≥ ȳi for all i ∈ I. (3.16)

We show Bε(λ) ∩ Λ(y) ⊆ {λ ∈ Λ : λiyi = λkyk, i, k ∈ I}P . This gives

dim(λ,Λ(y)) ≤ dim(P ) = p− |I|.

Suppose there exists a λ′ ∈ Bε(λ) ∩ Λ(y) with λ′ /∈ P . Then, there is a subset ∅ 6=

I ′ ( I such that ‖y‖λ′∞ = λ′i′yi′ for all i′ ∈ I ′ and ‖y‖λ′∞ > λ′iyi for all i ∈ I \ I ′.

By (ii) there exists a ȳ ∈ Ȳ with ȳi′ < yi′ for all i′ ∈ I ′. We get with (3.16) both

‖y‖λ′∞ = λ′i′yi′ > λ′i′ ȳi′ for all i′ ∈ I ′ and ‖y‖λ′∞ > λ′iyi ≥ λ′iȳi for all i ∈ I \ I ′. By (3.15),

we can assume without loss of generality that ε is small enough such that λ′ /∈
⋃
j /∈I Λ(y′, j)

for all y′ ∈ Ȳ ∪ {y}, and thus ‖ȳ‖λ′∞ = λ′iȳi for an i ∈ I , which gives ‖ȳ‖λ′∞ < ‖y‖λ∞, a

contradiction to λ′ ∈ Λ(y).

Since λ ∈
⋂
i∈I Λ(y, i) and λ /∈

⋃
j /∈I Λ(y, j) we have dim(λ,Λ(yN)) ≥ p − |I| by

Corollary 82.

Note the similarity between Proposition 11 and item (ii) of the above propositions.

3.6 Conclusion

Together with the weighted sum and the ε-constraint method, the weighted

Tchebychev method ranks highly with the most frequently applied scalarization techniques

in multiobjective optimization. Moreover, the weighted Tchebychev scalarization problem

is closely linked to many other single-objective optimization disciplines, including robust
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optimization, goal programming, and location theory. It is a building block of many exact

and heuristic algorithms, which systematically vary the choice of the weight to get a subset

or even all ND images. In other words, these algorithms utilize elements of the weight set

while the set itself has not yet been the focus of research.

In this article, we provide the first rigorous and comprehensive theory of the weight

set decomposition by this weighted Tchebychev scalarization. We analyze the polyhedral

and combinatorial structure of the weight set components as well as the composition of

the weight set as a whole. To date, analogous research has only been published for the

weighted sum method. However, there are substantial differences: The weighted Tcheby-

chev scalarization is able to yield all efficient solutions (i.e., not only the supported ones as

in the weighted sum method). Additionally, without “true” convexity, the structure of the

weight set of the weighted Tchebychev method is more complex and the analysis is more

technical. Through this analysis, convexity-related properties and bounds on dimension of

the weight set components have been proven.

Contrasting the structures of the weight set decomposition of the weighted sum and

the weighted Tchebychev scalarization provides some broader insights. For the weighted

sum scalarization, the decomposition describes the gradients of the ND part of the convex

hull of the set of images as well as information about adjacent ND facets. However, it

neither provides information about the positioning nor the size of the convex hull in the

image space. In fact, ND frontiers (of some multiobjective optimization problems) may

vary substantially but still share the same weight set decomposition of the weighted sum

scalarization (cf. Figure 3.10(a)).

In contrast, the weight set decomposition of the weighted Tchebychev norm yields

more information about the positioning of the ND images. For an image y, the kernel

vertex λ(y) is defined by y = tλ(y) for some t > 0, i.e. y is located on the ray D(y) :=

{λ(y)t : t > 0}. Recall that the weight set decomposition includes the kernel vertices

for each ND image as well as the local Nadir weight vertices. Then, for each ND image
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Figure 3.10: Biobjective example of distinct sets of ND images (indicated by color), each of
which have the same weight set decomposition with respect to weighted sum scalarization
(a) or weighted Tchebychev norm (b). (a) The gradient vectors describing the convex hull
are equivalent (parallel lines are indicated by line type, e.g., solid, dashed, and dotted) even
though the frontiers vary widely in overall shape. (b) With the kernel vertices for weight set
components known, then the ND images must exist within the associated rays (indicated
by dashed lines). With the local nadir weights known as well, then the local nadir images
must also exist within associated rays (indicated by dotted lines).

yr ∈ YN = {y1, y2, . . . , yR}, there is an associated ray, D(yr), with yr ∈ D(yr) for

r = 1, . . . , R. A similar observation holds true for the local nadir images. Hence, the

positioning of the ND images relative to each other can be narrowed down. In addition,

knowing one ND image allows to restrict the locations of the remaining ND images such

that nondominance is guaranteed and the local nadir images are not in conflict (see Figure

3.10(b)). An analogous deduction is not possible for the weight set decomposition of the

weighted sum scalarization.

Future research must investigate the algorithmic applications of the derived proper-

ties. Star-shapedness and line convexity may be utilized to derive outer approximation

[58] or inner approximation [49, 50] schemes that iteratively shrink or augment weight set

components, respectively. The properties may be also utilized for interactive approaches

with focus on a graphical exploration and presentation of solutions. Other directions in-

clude a thorough analysis of “duality” between the weight set decomposition and the image

space illustrated in Figure 3.10 and the parameter sets of other scalarizations. For example,
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weighted p-norm scalarizations or the augmented modified weighted Tchebychev scalar-

ization yield ND images, only, and theoretically connect the already studied weight set

decompositions. This may provide methods to deal algorithmically with overlapping com-

ponents of weighted Tchebychev weight set components, and reveal additional insights on

the images space and ND frontier of multiobjective optimization problems.
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CHAPTER 4

TCHEBYCHEV WEIGHT SPACE DECOMPOSITION: APPLICATIONS

Abstract. Multiobjective discrete optimization (MODO) techniques, such as

weight space decomposition, have received great attention in the last decade.

The primary weight space decomposition technique in the literature is defined

for the weighted sum scalarization, through which sets of weights are assigned

to a subset of the nondominated set. Recent work has added a new weight

space decomposition defined for weighted Tchebychev scalarization, which

provides the benefit of including all nondominated images but at the cost of

“nice” convexity geometric properties. The current work applies the novel

weight set decomposition as a dual perspective on existing MODO algorithms

and includes strategies to improve algorithm measurement and design. This

work includes a thorough evaluation of the added value of the new weight

set decomposition by weighted Tchebychev in contrast to weighted sum. Ex-

isting algorithms are proven to return insufficient information to compute the

weight set decomposition, then the necessary modifications to the algorithm

are proven. Applications to existing algorithms include (inner and outer) ap-

proximations of the weight set components to measure and improve algorithm

performance from perspective of the weight space. Additionally, a subset of the

weight set can be used a priori to restrict an algorithm to return a targeted sub-

set of the nondominated set. This work contributes an essential 2-dimensional

visualization technique for MODOs with three objectives, which is inclusive of

the entire nondominated set, by projecting the surface of the upper envelope of

the nondominated set. 1

4.1 Introduction

Multiobjective discrete optimization problems (MODOs) have gained substantial and in-

creasing attention in the optimization literature over recent years. This is motivated by

the prevalence of multiple, conflicting objectives in applications as well as other fields of

1This work is intended to be submitted to Mathematical Programming (June 2021), coauthored with
Stephan Helfrich, Pascal Halffmann, Natashia Boland, and Stefan Ruzika, with Tyler Perini as first author.
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optimization, see e.g. [74, 75, 76, 77]. For such problems, there usually does not exist a

solution that optimizes all objectives simultaneously. Hence, a decision maker is interested

in the efficient set: the set of solutions for which one objective cannot be improved without

depriving another. The vector of objective values associated with an efficient solution is

referred to as a nondominated (ND) image. As a consequence, there exist multiple ND

images. The solution to a multiobjective optimization problem is the set of all ND images,

which is called the ND frontier.

Scalarization is a common approach to calculating single ND images. Scalarization

transforms a multiobjective problem into a single-objective problem with the help of ad-

ditional parameters such as reference points and weights on the objectives. Beyond dis-

covering new ND images, the scalarizations can be used as a lens to analyze the structure

of the ND images in relation to one another. Such analysis has already been done for the

weighted sum scalarization [23, 78]. It is well known that this scalarization can solve mul-

tiobjective linear programs. For MODOs, the weighted sum scalarization is analogously

used as a lens for analyzing the images that are extreme points of the convex hull of the

ND frontier. While this analysis is limited in scope by the number of ND images belong-

ing to this subset, the resulting geometric understanding of the ND frontier is valuable for

decision makers and algorithmic development.

The outcomes of a weight-based scalarization resulting in an ND image, such as weighted

sum, can generally be summarized by the set of nonnegative weights with unit sum, called

the weight set. The technique of weight space decomposition utilizes a given weighted

scalarization to assign subsets of the weight set to the associated ND images that are op-

timal for those weights. See Figure 4.1 as an example of two weight set decompositions.

This technique satisfies the need for visualization in triobjective decision making, which

has largely been satisfied for biobjective problems. Often, 3-dimensional visualizations

of ND frontiers are difficult to intuitively make decisions from. Since the weights in the

weight set have unit sum, then the weight set’s dimension is one less than the dimension
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of the problem, and so we have a 2-dimensional visualization for triobjective ND frontiers.

Weight set decomposition views the weight set as a puzzle, and each ND image contributes

a puzzle piece to the bigger picture. The area of each piece, which we call a weight set

component, communicates a robustness to changes in the weight, and each component’s

neighbors are immediately clear. Visualization of the images, alone, is akin to presenting

only a centroid for each of the puzzle pieces.

Here, we extend the work of Chapter 3, maintaining focus on the weighted Tchebychev

scalarization. In contrast to weighted sum, this scalarization is capable of representing all

images in the ND frontier. This lens provides a richer and more sophisticated view of the

ND frontier structure, yielding better insights on adjacency and relative robustness of ND

images. In addition, there is a tight relationship between the hyperrectangular level set of

the weighted Tchebychev scalarization and the “boxes” used by algorithms to decompose

the image space for MODOs (see [46] for a detailed list of such algorithms). As a result,

this scalarization can directly improve this class of algorithms. We tailor insights from this

weight space decomposition technique to modify classic MODO algorithmic approaches.

By doing so, inner and outer approximations of the weight set components can be produced

during run time. Additionally, computation can be reduced by solving for ND images

associated with a subset of the weight set which represents the compromise between a set

of weights.

4.1.1 Outline

Section 4.2 provides fundamental definitions, notation, and related literature. Section 4.3

restates the most important results on the geometry of the weighted Tchebychev weight

set decomposition and includes new results. In Section 4.4, we characterize the link be-

tween primal and dual approaches, including how to modify a primal algorithm in order to

compute information sufficient to represent the weighted Tchebychev weight set decom-

position. The proof for covering the weight set as well as the procedure for plotting the
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Figure 4.1: Weight space decomposition, according to two different scalarizations, of the
same instance with 25 variables and |YN | = 69. When using weighted sum scalarization
(left), only 20 ESND images are included in the decomposition. When using weighted
Tchebychev scalarization (right), all ND images are included in the decomposition. The
numbered labels and color fill identify images and are consistent between figures.

weight set components, given this information, are presented in Section 4.5. Section 4.6

provides multiple direct applications of this weight set decomposition to primal algorithms.

First, the weighted Tchebychev weight set decomposition is compared to the well-studied

decomposition for weighted sum (Section 4.6.1). Second, we present procedures for com-

puting the outer and inner approximations for the weight set components (Section 4.6.3).

Lastly, we introduce a novel method for solving for a subset of the ND frontier associated

with a subset of the weight set (Section 4.6.4).

4.2 Preliminaries

Recall the weighted sum scalarization, defined using nonnegative weights, λi for i =

1, . . . , p, is given by minx∈X{λTf(x)} [18]. The image of every optimal solution is a

(weakly) ND image of (MOP) if λ ∈ Rp
> (λ ∈ Rp

≥) [19]. By varying the weights, alter-

native ND images can be found. Weighted sum scalarizations only yield supported ND

images. These are located on the convex hull of the set of images. Supported ND im-
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ages that are also extreme points of the convex hull of Y are called extreme supported ND

(ESND) images.

With a reference point s ∈ Rp, a given weight vector λ ∈ Rp
≥ and ‖y‖λ∞ := maxi=1,...,p{|λi yi|},

the weighted Tchebychev scalarization [60] can be stated as

min {‖f(x)− s‖λ∞ : x ∈ X}. (ΠTS(λ))

In practice, the scalarized single-objective in (ΠTS(λ)) is modeled by the introduction of

an auxiliary variable. Usually, the reference point is chosen to be the ideal point, defined

as yIi := minx∈X{fi(x)} for i = 1, . . . , p, or to be a utopia point yU < yI .

For weights λ ∈ Rp
> and reference points s 5 yI , every optimal solution to ΠTS(λ)

is at least weakly efficient for (MOP). If the optimal solution is unique, its image is ND.

Conversely, there exists a positive weight vector for each ND image y′ such that an optimal

solution x′ for the weighted Tchebychev scalarization problem satisfies y′ = f(x′) [20].

Observe for both weighted sum and weighted Tchebychev scalarizations that the set of

optimal solutions does not change when the weight vector is multiplied by a positive scalar.

Hence, the set of all weight vectors for which the scalarizations return (weakly) ND images

(Rp
≥ and Rp

>, respectively) can be projected to the (p− 1)-dimensional weight set, defined

as

Λ := {λ ∈ Rp
≥ :

p∑
i=1

λi = 1},

i.e., the set of weights normalized to have unit sum. This set includes the boundaries at

which one or more component of the weight vector is equal to zero. Some properties only

apply to the interior of Λ, which we denote by int(Λ) := {λ ∈ Rp
> :

∑p
i=1 λi = 1}. For

each ND image, there exists a set of weights (possibly empty) such that the image is optimal

for the weighted sum scalarization, and analogously there exists a set of weights such that

the image is optimal for the weighted Tchebychev scalarization. Hence, for y ∈ Y , we

define weight set components as ΛWS(y) :=
{
λ ∈ Λ : λ>y ≤ λ>ȳ for all ȳ ∈ Y

}
for the
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weighted sum scalarization and Λ(y) :=
{
λ ∈ Λ : ‖y‖λ∞ ≤ ‖ȳ‖λ∞ for all ȳ ∈ Y

}
for the

weighted Tchebychev scalarization. The weight set decomposition refers to a collection of

weight set components.

4.2.1 Related Literature

A growing library of algorithms for solving MODOs work directly in the image space [52,

41, 42, 43, 29, 44, 46]. We refer to [79] to a recent survey on solutions methods. Here, we

focus on two different algorithm design approaches. Similar to [80], we call methods that

work in the image space primal approaches and methods that operate in the weight set of

scalarizations dual approaches.

Primal Approaches.

Primal algorithms are characterized by two predominant features: First, how the unex-

plored subset of the image space which may contain new ND images, called the search

region, is represented. Second, how the mathematical optimization subproblem is defined

to return a new ND image from (a subset of) the search region, if one exists. Solving the

subproblem is generally the more expensive procedure; however, updating the representa-

tion of the search region determines the number of future subproblems to solve.

Given a set S of ND images, other ND images can only by contained in the search

region C = Rp\
⋃
y∈S y+Rp

=. In Klamroth et al. [41], a representation of this search region

for multiobjective problems is established by a so-called upper bound set, which is defined

as a point-set U(S) ⊆ Rp such that
⋃
u∈U(S)(u − Rp

>) = C and is of minimum cardinality

with this property. Each u ∈ U(S) is referred to as an upper bound point. The proposed

algorithmic procedure to generate all ND images of MODO iteratively picks a local upper

bound u and explores the associated search zone u−Rp
> with an appropriate mathematical

subproblem to discover a new ND image, if one exists. There is no new ND image if and

only if the subproblem is infeasible, which can be computationally inefficient to determine.
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If a ND image is found, it is guaranteed to not belong to S, and so the procedure updates

the upper bound set U(S). If no new image is found, u is removed from the upper bound

set. Two methods are established to update the upper bound sets when a new ND image is

found. One calculates candidate local upper bounds and filters redundant ones afterwards.

It slightly improves the update procedure of [78]. The other stores for each upper bound

an associated image set to establish an update procedure avoiding the filtering step. By

the results of [81], the cardinality of the upper bound set is asymptotically bounded by

O(|S|)b p2 c.

Dächert and Klamroth [42] presented an algorithm tailored to three objectives that also

decomposes the search region into boxes. When a new ND image y is found, a so-called

p-split of all boxes containing y is performed, which yields a feasible decomposition of

the remaining search region based on the updated set of ND images. A straight-forward

application of p-split induces redundant boxes. Thus, a neighbourhood concept of the

boxes is defined, and the split method is adapted, based on this concept, to maintain a

nonredundant decomposition of the search region. It is proved that for three objectives, this

method requires at most 3|YN | − 2 subproblems to be solved to calculate the entire ND

frontier.

Dächert et al. [44] extend the results of Dächert and Klamroth [42] and Klamroth et al.

[41] to derive a neighbourhood relation of local upper bounds. Using the neighbourhood

concept to update the local upper bound does not improve the asymptotic (worst case)

running time. However, their computational results show a significant improvement in

running time in practice, especially for instances with a high number of ND images.

Recent work by Tamby and Vanderpooten [46] has also added to the set of primal ap-

proaches. Their algorithm differs in the formulation of the subproblems. Rather than using

p constraints (one for each objective), p− 1 constraints are used and one objective remains

unconstrained. In doing so, the algorithm avoids costly infeasible subproblems, and in-

cludes additional procedures, e.g., for selecting the unconstrained objective and handling
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the rediscovery of images.

Dual Approaches.

Dual approaches primarily appear in the form of weight set decomposition methods (for

the weighted sum scalarization) and dates back to the work by [67] who introduce a gen-

eralized simplex method for multiobjective linear programs. The work links basic efficient

solutions with the set of weights in the polyhedral cone defined by the corresponding basis

matrix. For biobjective problems, the well-known dichotomic search approach [22, 21] in

fact calculates all ESND images based on the general idea of weight set decomposition:

for two known ESND images, it calculates the unique weight such that the weighted sum

scalarized value of both images coincide. Solving the weighted sum scalarization problem

with this weight results in either a new ESND image or certification that no other ESND

images exist ‘between’ the two. This idea was extended to establish a link between ESND

images of a multiobjective linear optimization problem and a partitioning of the weight set

[47, 82].

Przybylski et al. [23] adapt weight space decomposition by weighted sum scalarization

to MODOs. They state fundamental properties concerning the weight set components, in-

cluding convexity of weight space components, the weight set components for the set of

ESND images covers the weight set, and a symmetric adjacency structure. Additionally,

they present an algorithm for computing all ESND images for three objectives by investigat-

ing (one-dimensional) facets of weight set components with a dichotomic search approach.

The weighted sum weight set decomposition is implicitly calculated by the procedures of

[57] and [56]. The algorithms of [49] and [50] (improved in [51]) iteratively augment

subsets of the weighted sum weight set components based on the convexity property.

For the weighted Tchebychev scalarization, [70] explicitly consider weight set com-

ponents for biobjective problems. Based on this approach, [71] adapts the dichotomic

search method to calculate all ND images of biobjective discrete optimization problems.
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Chapter 3 gives a detailed study on the geometry of the weighted Tchebychev weight set

decomposition for an arbitrary number of objectives.

4.3 Geometry of Weight Space Decomposition

We give an overview of the most relevant results from Chapter 3, which presents in-depth

the geometry of the weight set decomposition for weighted Tchebychev scalarization. In

the remainder of this work, we assume the following.

Assumption 2. Without loss of generality, assume the image set is shifted such that Y ⊂

Rp
>. Then the origin is a utopia point, and we fix this as the reference point, i.e., s = ~0.

Assumption 2 allows s to be dropped from the objective of (ΠTS(λ)) and all equations

moving forward. In Chapter 3, some useful properties of the weight set components are

stated. We restate the results here.

Theorem 2. Let Bε(µ) := {µ′ ∈ Λ :
∑p

i=1(µi − µ′i)2 ≤ ε}.

1. An image is weakly ND if and only if its weight set component is nonempty.

2. Λ =
⋃

y∈YN
Λ(y).

3. For y ∈ YN , there exists ε > 0 such that Bε(λ(y)) ⊆ Λ(y).

4. Let y ∈ YwN . Then

Λ(y) = {λ ∈ Λ : ‖y‖λ∞ ≤ ‖ȳ‖λ∞ for all ȳ ∈ YN}.

Note that many of these results are analogous to the results of Przybylski et al. [23]

but for the weighted Tchebychev scalarization instead of the weighted sum scalarization.

Result 1 indicates that only weakly ND images may contribute to the decomposition. How-

ever, results 2 and 4 indicate that ND images alone are sufficient to compute the decompo-

sition. It follows that there may be multiple distinct decompositions (for instance, whether
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weakly ND images are included in Ȳ ); however, the decomposition for Ȳ = YN is unique

for every (MODO) instance.

For a given (weakly) ND image, a particular weight, called the kernel weight, is central

to the geometric analysis of its weight set component.

Definition 13. For y ∈ YwN , we denote the kernel weight or kernel vertex2 of y by λ(y)

and define it by

λi(y) :=
1

yi

1∑p
j=1

1
yj

for i = 1, . . . , p.

Observe that the level set for the objective function of (ΠTS(λ)) is the surface of a hy-

perrectangle that is centered at the origin with proportions determined by λ. Geometrically,

the kernel weight λ(y) is the unique weight in Λ such that image y exists on the (positive)

vertex of such a hyperrectangle.

As seen in Figure 4.1, the weight set components with respect to weighted sum scalar-

ization (left) are convex, while the weight set components with respect to weighted Tcheby-

chev sclarization (right) are nonconvex. However, the nonconvex polygons do share a re-

lated structure, which is a weaker form of convexity called star-shapedness. We present a

definition that is simplified from [72].3

Definition 14. A set S ⊆ Rp is star-shaped if there exists ȳ ∈ S such that θȳ+(1−θ)y ∈ S

for all y ∈ S and all θ ∈ (0, 1). Such a point ȳ is called a kernel.

A fundamental result from Chapter 3 is that the kernel weight of y ∈ YwN , λ(y), is

a kernel of the weight set component Λ(y), as the name implies. In Figure 4.1, each of

the numbered circles indicates the location of a kernel weight. Figure 4.2 also aids in

demonstrating the star-shaped structure. The theorem is restated here.

Theorem 3. Let y ∈ YwN . Then, Λ(y) is a star-shaped set with λ(y) as a kernel.
2Also known as T-vertex [64].
3The original definition allows for a kernel set, however we have simplified this set to always be a single-

ton.

113



Figure 4.2: Star-shaped weight set components Λ(y7) (left) and Λ(y15) (right) from Figure
4.1.

4.3.1 Running Example

Example 10. Consider the following (MOP):

min{f(x) = x : x1 + x2 + x3 = 6, 1 ≤ xi ≤ 3 ∀i = 1, 2, 3, x ∈ Z3}.

The following sets coincide: X = Y = YN . There are seven ND images, labeled: y1 =

(1, 2, 3), y2 = (1, 3, 2), y3 = (2, 2, 2), y4 = (2, 1, 3), y5 = (2, 3, 1), y6 = (3, 1, 2), and y7 =

(3, 2, 1). The complete weighted Tchebychev decomposition is illustrated in Figure 4.3(a)

as well as a single weight set component, Λ(y1), in Figure 4.3(b). The remaining weight

set components are illustrated in Figure B.1 of the Appendix.

This example exhibits common complications observed when computing and represent-

ing the weight set decomposition. First, many of the weight set components overlap, mean-

ing the intersection is full-dimensional. This is made visible by choosing to plot each

component with partially-transparent colors so that the overlap of components stands out.

Observe in Figure 4.3 that each corner of Λ is an intersection between components, e.g.,

Λ(y1) ∩ Λ(y2) in orange. Second, lower-dimensional regions occur. For three objectives,
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Figure 4.3: The weighted Tchebychev weight set decomposition for the running example
(Example 10, left) as well as the individual weight set component Λ(y1) (right). On the left,
the following intersections between weight set components can be observed: Λ(y1)∩Λ(y2)
in orange, Λ(y4) ∩ Λ(y6) in navy, and Λ(y5) ∩ Λ(y7) in violet. On the right, each unique
local nadir weight is labeled.

this appears as a 1-dimensional line segment protruding from a weight set, which we call

whiskers. The weight set component Λ(y1) contains one whisker, i.e., the line segment

[F,G], where [a, b] := {µa + (1 − µ)b : 0 ≤ µ ≤ 1}. Each weight set component in this

example, Λ(y1), . . . ,Λ(y7) (illustrated in Figure B.1 of the Appendix) include at least one

whisker.

4.3.2 Intersection Sets

The intersections of weight set components can be used to define an adjacency structure

among ND images. The following definition of adjacency aligns with the definition by

weighted sum.

Definition 15. Two ND images, y1, y2 ∈ YN , are adjacent if dim(Λ(y1) ∩ Λ(y2)) ≥ p− 2.

Recall dim(Λ) = p − 1. In the weighted sum weight set decomposition, intersec-

tions between weight set components have several nice properties, including that they are

convex and (p − 2)-dimensional [23]. However, in the weighted Tchebychev weight set
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decomposition, the intersection set can be very complex and full-dimensional, which here

means that it contains a (p− 1)-dimensional ball with small, positive radius ε. For a proper

proof of dimension of these nonconvex sets, characterized by polytopal decomposition, see

Chapter 3.

In the most common case of weighted Tchebychev weight set components, we observe

a simple structure for the intersection sets between adjacent ND images. For p = 3, an

intersection set between two adjacent ND images with distinct components is a union of

two line segments of the form [λ1, λ2]∪ [λ2, λ3] where {λ1, λ2, λ3} ⊂ Λ.4 This is illustrated

in Example 11. Upon closer observation, all intersection sets in Figure 4.1(b) are of this

simple form.

Example 11. Let Y ′ = {y1, y5} = {(1, 2, 3), (2, 3, 1)} (selected from Example 10 such that

images are distinct in every component). The weighted Tchebychev weight set decomposi-

tion for Y ′ is illustrated in Figure 4.4(a). A minimal description of the intersection set is

given by the interior weight λ2 = (0.375, 0.375, 0.25) and two weights on the boundary of

Λ, λ1 = (0.0, 0.6, 0.4) and λ3 = (0.6, 0.0, 0.4). Hence, Λ(y1)∩Λ(y2) = [λ1, λ2]∪ [λ2, λ3].

More complex intersections, including full-dimensional sets or “overlapping” weight

set components, often occur when adjacent ND images share a component. This is illus-

trated in Example 12.

Example 12. Let Y ′′ = {y1, y2} = {(1, 2, 3), (1, 3, 2)} (selected from Example 10 such

that images are equal in the first component). The weighted Tchebychev weight set de-

composition for Y ′′ is illustrated in Figure 4.4(b). Now, the intersection contains a full-

dimensional set (orange). We have Λ(y1) ∩ Λ(y2) = [λ1, λ2] ∪ conv({λ2, λ3, λ4, λ5}),

where

• λ1 = (0.00, 0.50, 0.50),

4The weights do not necessarily have to be distinct, for example in the case where LNPs coincide, which
is discussed later.
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Figure 4.4: Weighted Tchebychev weight set decompositions for Y ′ (Example 11, left)
and Y ′′ (Example 12, right). On left, the two images are distinct in all components, and
both images are optimal for λ ∈ [λ1, λ2] ∪ [λ2, λ3]. On right, images are equal in the
first component, and both images are optimal for λ ∈ [λ1, λ2]∪conv(λ2, λ3, λ4, λ5). The
orange polytope illustrates the overlap of the red and yellow weight set components, i.e.,
Λ(y1) ∩ Λ(y2) =conv(λ2, λ3, λ4, λ5).

• λ2 = (0.50, 0.25, 0.25),

• λ3 = (0.66, 0.00, 0.33),

• λ4 = (1.00, 0.00, 0.00), and

• λ5 = (0.66, 0.33, 0.00).

Extra complications for primal algorithms when ND images are equal in one (or more)

components are discussed in [42]. Related complications are also apparent from the per-

spective of the dual.

To deconstruct and describe the intersection sets, we use local nadir points. Note that

this oft-used concept goes by many different names, e.g., our definition generalizes the

definition for “upper bound points” in [41], [42], and [44].

Definition 16. Given a set of weakly ND images, Ȳ = {y1, . . . , yR̄} ⊆ YwN , we define the
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local nadir point (LNP) with respect to Ȳ , yN(Ȳ ), by

yNi (Ȳ ) = max
r=1,...,R̄

yri for i = 1, . . . , p.

We often make explicit how many images are included in Ȳ , e.g., if R̄ = 2, 3, or 4, then we

call yN(Ȳ ) a 2-way, 3-way, or 4-way LNP, respectively.

Definition 17. We say an image y ∈ Ȳ contributes (in component i) to the LNP n := yN(Ȳ )

if yi = ni for some i ∈ {1, . . . , p}. For i ∈ {1, . . . , p}, the ith dimensional contributing set

of n, denoted Ci(n), is the subset of Ȳ that contributes to LNP n in component i. An image

y uniquely contributes to yN(Ȳ ) in component i, if Ci(n) = {y}.

Due to ND images with shared components, it can be observed that a 2-way (k-way)

LNP coincides with a 3-way (k + 1-way) LNP. Therefore, there is not an immediate, one-

to-one relationship between contribution sets and LNPs, which motivates the following

definition for describing a particular contributing set of interest for a fixed LNP.

Definition 18. For a given LNP, its contributing set Ȳ is complete with respect to YN if for

all y′ ∈ YN \ Ȳ , yN(Ȳ ) 6= yN(Ȳ ∪ {y′}).

It can be trivially proven that for a fixed LNP and image set, there is a unique contribut-

ing set which is complete. As ND images are added to a contributing set, the coordinates

of the LNP may or may not change, and the resulting LNP may or may not be weakly

ND. Definition 18 is concerned with the former condition, and the following definition is

concerned with the latter.

Definition 19. A given LNP with contributing set Ȳ is maximal with respect toYN if yN(Ȳ )

is not strictly dominated by any y′ ∈ YN , but yN(Ȳ ∪ {y′}) is strictly dominated by some

y′ ∈ YN .

When a LNP is not strictly dominated by any y′ ∈ Y , we say it is weakly ND with

respect to Y. A maximal LNP is weakly ND with respect to YN unless any new image is
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added to its contributing set. Note that Definition 19 is not concerned with the coordi-

nates of LNP changing by adding a new image to its contributing set but only its status as

weakly ND. In general, we will aim to compute all maximal LNPs, each with its complete

contributing set.

Example 13. Consider the following list of LNPs defined with images from Example 10:

1. yN({y1, y2}) = (1, 3, 3),

2. yN({y1, y2, y3}) = (2, 3, 3),

3. yN({y1, y2, y3, y4}) = (2, 3, 3),

4. yN({y1, y2, y3, y4, y5}) = (2, 3, 3),

5. yN({y1, y2, y3, y4, y5, y6}) = (3, 3, 3), and

6. yN({y1, y2, y3, y4, y5, y6, y7}) = (3, 3, 3).

Since LNPs 2-4 coincide, we say that the contributing set {y1, y2, y3, y4, y5} is complete

for LNP (2, 3, 3). Furthermore, note that LNPs 1-4 are weakly ND with respect to Y ,

while LNPs 5 and 6 are strictly dominated by y2 = (2, 2, 2). Since adding y6 or y7 to the

contributing set results in a strictly dominated LNP, we say (2, 3, 3) is a maximal LNP. This

LNP corresponds to H in Figure 4.3.

We note some subtle distinctions between our definitions and definitions in the liter-

ature. First, our definition of maximal LNPs fundamentally align with the definition for

upper bounds in Klamroth et al. [41]. However, the definition for upper bound point only

includes k-way LNPs where k ≥ p. Hence, for three objectives, 2-way LNPs are excluded

simply by definition. Our later results make clear why this exclusion makes practical sense

for the primal approach without loss of accuracy; regardless, 2-way LNPs are essential in

the weight space decomposition. In general, primal approaches do not afford much atten-

tion to the specific number of ND images R, e.g., whether R = p, R = p + 1, etc. Since
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that distinction is more consequential in the weight space, we emphasize it more in this

work. Second, note that in Klamroth et al. [41], Dächert and Klamroth [42], and Dächert

et al. [44], upper bound points are described as either redundant or nonredundant. By our

terminology, we refer to LNPs as either strictly dominated (say, by an image or another

LNP) or weakly ND, respectively. For sake of consistency, hereon we use our terminology,

and only where appropriate we relate to alternative definitions.

In general, (p + 1)-way (and higher-order) LNPs are prevalent where adjacent ND im-

ages coincide in components. For instance, Example 13 illustrates a 5-way, maximal LNP.

Therefore, an algorithm that is designed to only consider p-way LNPs but not higher-order

points will miss adjacency information.

Analogous to kernel weights, we now define the weights that correspond to the LNPs.

Definition 20. We call the kernel weight of a LNP the local nadir weight and denote it as

λN(Ȳ ) := λ(yN(Ȳ )).5 Two LNPs, or their corresponding local nadir weights, are said to

coincide if they are equal in all p components.

It can easily be shown that the weighted Tchebychev norm has equal value for all im-

ages contributing to the LNP, i.e., ‖y‖λ
N (Ȳ )
∞ = ‖y′‖λ

N (Ȳ )
∞ for all y, y′ ∈ Ȳ .

The properties of star-shapedness apply to all (nonempty) intersections of weight set

components. Furthermore, the kernel of an intersection set, say ∩y∈Ȳ Λ(y) for some Ȳ ⊆

YN is given by the local nadir weight, λN(Ȳ ). This geometric property is proven in detail

in Chapter 3 and given succinctly as the following theorem which fundamentally proves

that an intersection set has the same properties as a weight set component.

Theorem 4. Let Ȳ ⊆ YwN . Then,

⋂
y∈Ȳ

Λ(y) = Λ(yN(Ȳ )).

5The definition for yN : YwN → Rp requires an input set of images from YwN . For ease of exposition,
we assume in the definition that the LNP exists in YwN .
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Figure 4.5: Examples of overlapping weight set components from an instance with 50
variables and |YN | = 507. For clarity, the non-overlapping weight set components are
unfilled. The numbers indicate the location of the kernel weight for the labeled weight set
component. Black points indicate 4-way local nadir weights. (a) The intersection Λ(y215)∩
Λ(y353) is in dark blue. (b) Weight set component Λ(y224) has two disconnected, full-
dimensional intersections: Λ(y224) ∩ Λ(y163) (small, neon green rectangle) and Λ(y224) ∩
Λ(y264) (thin, teal rectangle).

Example 14. In Example 11, the kernel point of the intersection set is the local nadir

weight for the 2-way LNP: λ2 = λN({y1, y5}). In Example 12, the kernel point of the

intersection set is similarly λ2 = λN({y1, y2}). See Figures 4.4(a) and (b), respectively.

For more complex intersection sets, see Figure 4.5. These examples illustrate that star-

shapedness of the intersection set is satisfied as well as star-shapedness of the individual

weight set components to which they belong. The result of intersecting star-shaped sets

being star-shaped, when the kernel weights are not included in the intersection, is nontrivial.

Theorem 4 asserts that an intersection of weight set components is fundamentally the

same as a weight set component. This implies the following corollaries.

Corollary 9. Let Ȳ ⊆ YwN . Then,

1. The intersection
⋂
y∈Ȳ Λ(y) is a star-shaped set with λN(Ȳ ) in its kernel.

2. If λN(Ȳ ) /∈
⋂
y∈Ȳ Λ(y), then

⋂
y∈Ȳ Λ(y) = ∅.
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3. A LNP yN(Ȳ ) is weakly ND if and only if
⋂
y∈Ȳ Λ(y) is nonempty.

Result 3 from Corollary 9 provides a test for determining whether an intersection is

empty or nonempty.

4.3.3 Boundary weights

Given subset Ȳ ⊆ YN , the local nadir weight λN(Ȳ ) exists in int(Λ). However, as we have

seen in Examples 11 and 12, weight set components (and their intersections) also include

weights on the boundaries of Λ. It is equivalent to introduce dummy images, each with

a large component, such that each boundary weight is also the kernel weight of a LNP.

Define the p dummy images, yb(1), . . . , yb(p) by yb(i)i = M for some large M > yN(YN)

and yb(i)j = yUj for all j 6= i. Let YB := {yb(1), . . . , yb(p)} be the set of dummy weights for

representing boundary weights.

First, observe that a local nadir weight λN(Ȳ ) is not defined for any Ȳ ⊂ YB due to

zero in the denominator (but Ȳ = YB is defined). That said, it is implied from now on that

YB is included in YN and that local nadir weights, yN(Ȳ ), are defined such that Ȳ 6⊂ YB.

Second, observe that if yb(i) ∈ Ȳ ⊆ YN , then for finite M the local nadir weight

λN(Ȳ ) will have small, positive ith component and hence lie in int(Λ); however, by limit

we have limM→∞ λ
N
i (Ȳ ) = 0 and so limM→∞ λ

N(Ȳ ) yields a weight on bound(Λ).6

Also, note that more than one dummy image can be used to define a LNP or local nadir

weight, which is how the vertices of Λ are represented. For example, in Figure 4.4(a),

the vertex (0, 1, 0) is equivalent to limM→∞ λ
N({y2, yb(1), yb(3)}), and in Figure 4.4(b),

limM→∞ λ
N({y1, y2, yb(1), yb(3)}) = (0, 1, 0). The definitions for weakly ND local nadir

weights are still well-defined for such weights.

Assumption 3. We assume that the set of dummy images is included in the set of ND

images, i.e., YB ⊂ YN .
6An alternative way to compute boundary weights is to set the ith component to zero and compute the

remaining components by computing the (p − 1)-dimensional local nadir weight while dropping the ith
dimension.
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Example 15. Image y1 contributes to four maximal LNPs. These LNPs and each of the

complete (dimensional) contributing sets are given in Table 4.1 with labels corresponding

to Figure 4.3. Note that C and E are 4-way LNPs but G and H are 7-way LNPs.

Table 4.1: The maximal LNPs to which y1 contributes with complete contributing sets in
Example 10. For each LNP, the label used in Figure 4.3 is given as well as the images in
each dimensional contributing set, C1, C2, C3. Images yb(2), and yb(3) refer to the dummy
images.

LNP (1,M,M) (2, 2,M) (3, 2, 3) (2, 3, 3)
Label C E G H
C1(n) y1, y2 y3, y4 y6, y7 y3, y4, y5

C2(n) yb(2) y1, y3 y1, y3, y7 y2, y5

C3(n) yb(3) yb(3) y1, y4 y1, y4

4.4 Computing Maximal LNPs with Complete Contributing Sets

We are interested in an algorithm which computes for each ND image its complete weight

set component. As for primal algorithms, maximal LNPs are key to this procedure. Max-

imal LNPs have been studied for primal algorithms, as they are useful for decomposing

the search region. Unlike the primal approach, the dual approach requires the complete

contributing sets for each maximal LNP. In Section 4.5.1, we prove that the set of maximal

LNPs with each complete contributing set is sufficient to cover the weight set. For now,

we present how to modify a primal approach to compute the maximal LNPs along with

complete contributing sets, simultaneously.

An existing primal algorithm, presented in Klamroth et al. [41], updates a set of max-

imal LNPs when given a new ND image. Algorithm 1 is adapted from [41] such that the

output contributing sets are complete. Input is denoted by horizontal bars, e.g., the input

set of maximal LNPs as N̄ and the input image as ȳ. The algorithm takes as input the con-

tributing set of images for each component j ∈ {1, . . . , p} of each LNP n ∈ N , denoted

by C̄k(n). The output includes a set of LNPs, N , and contributing sets {Dj(n)}j=1..p,n∈N

and {Cj(n)}j=1..p,n∈N . The former set, Dj(n), represents the contributing sets as defined
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Algorithm 1 Extended update procedure: maximal LNPs and complete contributing sets
Input: Set of maximal LNPs N̄ ⊂ Rp, Contributing Sets {C̄j(n)}j=1..p,n∈N̄ , and ND image ȳ.
Output: Updated set of maximal LNPs N , contributing sets {Dj(n)}j=1..p,n∈N , and complete contributing

sets {Cj(n)}j=1..p,n∈N .
1: Dj(n), Cj(n)← C̄j(n) ∀j = 1..p, n ∈ N̄
2: A← {n ∈ N̄ : ȳ < n}
3: P ← ∅
4: for n ∈ N̄ and j ∈ {1, . . . , p} such that ȳj = nj do
5: if (ȳ−j < n−j) then Dj(n)← Dj(n) ∪ {ȳ}
6: if (ȳ−j ≤ n−j) then Cj(n)← Cj(n) ∪ {ȳ}
7: end for
8: for n ∈ A do
9: for j = 1, . . . , p do

10: mj(n)← maxk 6=j min{yj : y ∈ C̄k(n)}
11: if ȳj > mj(n) then
12: n′ ← yN ({C̄k(n)}k 6=j ∪ {ȳ}) = (ȳj , n−j)
13: P ← P ∪ {n′}
14: Dj(n′)← {ȳ}
15: Cj(n′)← {ȳ} ∪ {y ∈ Ck(n) : y ≤ n′, yj = ȳj , k = 1, . . . , p}
16: for k ∈ {1, . . . , p} \ {j} do
17: Dk(n′)← {y ∈ Dk(n) : yj < ȳj}
18: Ck(n′)← {y ∈ Ck(n) : yj ≤ ȳj}
19: end for
20: end if
21: end for
22: end for
23: N ← (N̄ \A) ∪ P
24: return N , {Dj(n)}j=1..p,n∈N , {Cj(n)}j=1..p,n∈N

in [41]’s algorithm. The latter set, Cj(n), represents where we modify the procedure to

capture the complete contributing sets. Remark that, in practice, only one of these sets is of

interest, so either the lines with Dj(n) or the lines with Cj(n) will be omitted. Throughout

the algorithm, we use as shorthand (y1
j , y

2
−j) to represent the vector where the jth compo-

nent is given by y1 and all other components are given by y2.

The extended update method begins with new contribution sets are initialized as equal

to input contribution steps (step 1). The set A represents the LNPs that are strictly dom-

inated by the new ND image and must therefore be replaced (defined in step 2). The set

P is initialized as empty (step 3) and will contain the new maximal LNPs as they are con-

structed. The extended update method will conclude by removing A from the input set of

LNPs and adding the new LNPs in P (step 3), followed by returning the maximal LNPs

along with contributing sets (step 24).
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Details and proofs for the primal algorithm are given in Klamroth et al. [41]. Here, we

highlight the rationale for the modifications to define complete contribution sets (steps 6,

15, and 18).

The for loop over n ∈ N̄ (steps 4-7) of the primal algorithm is intended to add to

contributing sets Dj(n) only for the particular case that for some n ∈ N̄ , ȳj = nj for

exactly one index j. However, if this is true for two indices (or more for p > 3), then step

6 in the modified approach accounts for this image’s contribution to the LNP n by adding

to Cj(n).

The for loop over n ∈ Ā (steps 8-22) of the primal algorithm generates the new LNPs

that replace the removed LNPs. A straight-forward p-split approach would replace n with

p new LNPs each iteration, some of which may not be maximal. However, the condition

in step 11 reduces the overall effort required by determining which of the p LNPs are

necessary to add; see [41] for details. The new LNPs are defined in step 12 and added

to P in step 13. The primal approach for defining the new contributing set is to give a

minimal set of contributing images per component. Therefore, the new ND image alone is

sufficient for defining Dj(n′) (step 14). However, for complete contributing sets Cj(n′), it

is necessary to consider all other images that contribute to the LNP that are also equal in

the jth component (step 15). Lastly, the modification in step 18 follows the same rationale

as for step 6.

The following example illustrates how the modifications return complete contributing

sets that are otherwise incomplete in the original primal approach.

Example 16. Since Algorithm 1 is sensitive to the order of images used to update, let

Ȳ represent the set of images used to update before y1 = (1, 2, 3) is input to update.

Let Ȳ = {y3, y4, yb(1), yb(2), yb(3)}, N̄ contain all maximal LNPs with respect to Ȳ , and

contributing sets C̄j(n) be complete with respect to Ȳ for all j = 1, . . . , p and n ∈ N̄ .

Consider n := yN(yb(1), y3, y4) = (M, 2, 3) ∈ N̄ with C̄1(n) = {yb(1)}, C̄2(n) = {y3},

and C3(n) = {y4}. Now with y1 as the input ND image, it satisfies y1
j = nj for both
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j = 2, 3, but it does not satisfy y1
−j < n−j for either j = 2, 3. Hence, the condition of line 5

is not satisfied, and so y1 is not added to Dj(n) for j = 2, 3. On the other hand, y1
−j ≤ n−j

is satisfied for j = 2, 3, so y1 is added to Cj(n) for j = 2, 3. The LNP n belongs to the

output set N , regardless, however the contributing sets D2(n), D3(n) will be missing y1

whereas the complete contributing sets C2(n′), C3(n′) will include y1.

Next, let Ȳ = {y1, y3, y4, yb(1), yb(2), yb(3)} and now consider incomplete contributing

sets are input from the previous step, i.e., C̄j(n) = Dj(n), and so D2(n) = {y3} and

D3(n) = {y4}. Let y6 = (3, 1, 2) be input next. Note that y6 < n, and so n ∈ A by step

2. For j = 1, the condition in step 11 is satisfied, so n′ := yN(C̄2(n) ∪ C̄3(n) ∪ {y6}) =

(3, 2, 3) is defined. By step 14, D1(n′) = {y6}, and by steps 16-17, D2(n′) = D2(n)

and D3(n′) = D3(n). Note that the local nadir weight for n′ is equivalent to G (recall

Table 4.1), which is the endpoint of whisker [F,G] in Figure 4.3. Therefore, the basic

Klamroth2015 algorithm’s output would not indicate that G belongs to Λ(y1) and misses

the whisker [F,G].

However, if input contributing sets, C̄j(n), are complete, then output contributing sets

Cj(n) will be complete and thus will include this whisker [F,G] ⊆ Λ(y1).

As Algorithm 1 is an update procedure, we must clarify the initialized state. The fol-

lowing assumption applies to the application of the algorithm and all subsequent proofs.

Assumption 4. We assume the initial set of ND images is Ȳ 0 := {y0, yb(1), . . . , yb(p)},

i.e., all dummy images with one additional image; the initial set of maximal LNPs is

N̄ = {n1, . . . , np} where nj := {yN(Y 0 \ {yb(j)})}; and for all j = 1..p, the complete,

dimensional contributing sets for nj are C̄j(nj) := {y0} and C̄k(nj) := {yb(k)} for all

k 6= j.

Note that by this initialization, each local nadir weight associated with ni corresponds

to a vertex of Λ, so essentially the weight set decomposition is initialized as Λ(y0) = Λ.

For the following claims, let Ȳ := {y1, . . . , yn} ⊂ YN \YB be the set of first n ≥ 1 ND
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images input into Algorithm 1, which provides maximal LNPs N̄ and complete contribut-

ing sets {C̄j(n)}j=1..p,n∈N̄ such that C̄j(n) ⊆ Ȳ for all j, n. (For sake of readability, we do

not explicitly denote the dependence on the image set Ȳ .) For update number n+ 1, image

ȳ ∈ YN \ Ȳ is input along with N̄ and {C̄j(n)}j=1..p,n∈N̄ .

Theorem 5. If input set N̄ is maximal, C̄j are nonempty, and ȳ is ND, then the output set

N is maximal.

Proof. Proof given in Klamroth et al. [41].

It remains to be proven that the output contributing sets Cj are complete. Given image

ȳ and LNP n, it is impossible to simultaneously satisfy ȳ < n (in step 2) and ȳj = nj (in

step 4). Hence, during one call of the update algorithm, at most one of the following two

operations will occur per n ∈ N̄ . First, when ȳ is added to a contributing set of n (steps

5-6), the components of n remain unchanged. Second, when n ∈ A, there exists some

n′ ∈ P (i.e., n is removed from N̄ and new n′ is added) such that n′ ≤ n and for some j,

ȳj = n′j < nj and Dj(n′) = {ȳ}. The following theorem shows that the relaxed conditions

used for including images in Cj(n) results in complete contributing sets.

Theorem 6. Let ȳ, N̄ , and {C̄j(n)}j=1..p,n∈N̄ denote the input to Algorithm 1, and let

N and {Cj(n)}j=1..p,n∈N denote the output. If N̄ contains all maximal LNPs and the

contributing sets {C̄j(n)}j=1..p,n∈N̄ are complete, then the output contributing sets, Cj(n),

are complete for all j = 1, . . . , p and n ∈ N .

Proof. By definition of output set N in step 23, we have three cases for each n ∈ N : (1)

n ∈ N̄ and ȳ does not dominate n, (2) n ∈ N̄ and ȳ ≤ n, or (3) n 6∈ N̄ . Case (1) is

trivial: Steps 4-5 are irrelevant since the condition in step 4 does not hold for any j ∈

{1, . . . , p}, and steps 7-19 are irrelevant since n 6∈ A. Since n is not dominated by ȳ, the

image cannot contribute to any of the LNP’s components. Hence if the input contributing

sets {C̄j(n)}j=1..p are complete, then the output contributing sets {Cj(n)}j=1..p are also

complete.
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Observe that conditions in steps 4 and 8 are mutually exclusive. Therefore, the re-

maining cases essentially refer to either steps 4-6 or steps 8-22. Case (2) occurs when ȳ

dominates but not strictly dominates n ∈ N̄ , and therefore the contributing sets are updated

without removing n. However, case (3) occurs when ȳ strictly dominates some n ∈ N̄ , and

thus new n′ ∈ P is defined with its contributing sets.

Case (2): Suppose n ∈ N̄ and ȳ ≤ n with at least one equal component. Let J := {j =

1, . . . , p : ȳj = nj}, which is nonempty. By definition in step 2, J 6= ∅ implies n 6∈ A, so n

is included in the output set N . Given the inequality in step 6, all j ∈ J satisfy ȳ−j ≤ n−j ,

so ȳ is added to Cj(n) for all j. Steps 8-22 are irrelevant. We must only guarantee that the

image ȳ is added to all necessary contributing sets. This follows from the for loop in step 4

iterating over all j = 1, . . . , p. The result therefore holds.

Case (3): Suppose ȳ < n. By definition in step 2, n ∈ A. If P = ∅, then there is nothing

to show (although this case never happens). Otherwise, for at least one j ∈ {1, . . . , p},

ȳj > mj(n). Consider one such index j, and let n′ be the corresponding LNP defined in

step 12. Note that n′ ≤ n and ȳj = n′j < nj . It remains to prove that the contributing sets,

{Ck(n′)}k=1..p, are maximal.

First, observe that Cj(n′) = {ȳ} ∪ {y ∈ Ck(n) : y ≤ n′, yj = ȳj, k = 1, . . . , p} (by

step 15) is incomplete only if the initialization of Ck(n) for some k is incomplete. Since

Ck(n) are initialized to be C̄k(n) for all k = 1, . . . , p, this leads to a contradiction.

Second, suppose for k 6= j that Ck(n′) is not complete. By definition, ȳ ∈ Ck(n′).

Then, there exists some y′ ∈ Ȳ such that y′k ≤ n′ and y′k = n̄′k. Since n′k = nk, then y′ ≤ n

and y′k = nk, so y′ contributes to n in the kth component. By assumption of completeness,

y′ ∈ C̄k(n), and so we have a contradiction since Ck(n) is initialized by C̄k(n).

By exhausting all possibilities, we have that all contributing sets {Ck(n′)}k=1..p are

complete for all n′ ∈ P . Thus, the claim is proven in all cases.

Assumption 5. Since we have now proven how to compute complete contributing sets,

hereon we let Cj(n) represent the complete, jth-dimensional contributing set for LNP n.
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4.5 Covering and Triangularization of Weight Set Components

We introduce a novel property which explicitly provides convex subsets of the weight set

component. The following inductive argument relies on the star-shapedness of all intersec-

tion sets between weight set components.

Lemma 7. For Ȳ ⊂ YN where q := |Ȳ | ≥ p, let yN(Ȳ ) be weakly ND where all images

contribute. Then,

conv({λN(y1), λN(y1, y2) . . . , λN(y1, y2, . . . , yq)}) ⊆ Λ(y1),

where λN(y1) = λ(y1).

Proof. Let λ =
∑q

r=1 αrλ
N(y1, . . . , yr) with α ∈ [0, 1]q and

∑q
r=1 αr = 1. We show

λ ∈ Λ(y1). Without loss of generality, we can assume that αi > 0 for all i. If λ is equal

to a local nadir weight, λ ∈ Λ(y1) is trivially satisfied; otherwise, with zero coefficients,

the following procedure can be adapted to the subset of nadir weights with strictly positive

coefficients.

First, consider

αqλ
N(y1, . . . , yq) + αq−1λ

N(y1, . . . , yq−1)

= (αq + αq−1)

[
αq

αq + αq−1

λN(y1, . . . , yq) +
αq−1

αq + αq−1

λN(y1, . . . , yq−1)

]
=: (αq + αq−1)λ̃q−1

for λ̃q−1 defined as the convex combination of the q-way and (q − 1)-way local nadir

weights. By star-shapedness of
⋂q−1
r=1 Λ(yr), which includes both the local nadir weights,
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we have λ̃q−1 ∈
⋂q−1
r=1 Λ(yr). This implies

αqλ
N(y1, . . . , yq) + αq−1λ

N(y1, . . . , yq−1) + αq−2λ
N(y1, . . . , yq−2)

= (αq + αq−1)λ̃q−1 + αq−2λ
N(y1, . . . , yq−2)

= (αq + αq−1 + αq−2)

[
αq + αq−1

αq + αq−1 + αq−2

λ̃q−1 +
αq−2

αq + αq−1 + αq−2

λN(y1, . . . , yq−2)

]
=: (αq + αq−1 + αq−2)λ̃q−2

for λ̃q−2 defined as the convex combination of the (q− 1)-way and (q− 2)-way local nadir

weights. Again, by star-shapedness we have λ̃q−2 ∈
⋂q−2
r=1 Λ(yr). Inductively applying this

procedure yields

λ =

q∑
r=1

αrλ
N(y1, . . . , yr) = (

q∑
r=2

αr)λ̃
2 + α1λ

N(y1)

=(

q∑
r=1

αr)

[
(
∑q

r=2 αr)

(
∑q

r=1 αr)
λ̃2 +

α1

(
∑q

r=1 αr)
λN(y1)

]
=

(
∑q

r=2 αr)

(
∑q

r=1 αr)
λ̃2 +

α1

(
∑q

r=1 αr)
λN(y1) ∈ Λ(y1).

We define the family of polytopes presented in Lemma 7.

Definition 21. For LNP n = yN(Ȳ ) with Ȳ ⊂ YN , with dimensional contributing sets

Cj(n), j = 1, . . . , p, let P(n) denote the family of simplices

P(n) = {conv({λN(yσ(1), . . . , yσ(p−1), yσ(p)), λn(yσ(1), . . . , yσ(p−1)), . . . , λN(yσ(1))}) :

yj ∈ Cj(n), j = 1, . . . , p, for some permutation σ : {1, . . . , p} → {1, . . . , p}}.

Example 17. For Example 10, consider maximal LNP n := yN({y1, y2, yb(2), yb(3)}) =

(1,M,M). From Table 4.1 (label C), we have C1(n) = {y1, y2}, C2(n) = {yb(2)}, and

C3(n) = {yb(3)}. Only one contributing set is not a singleton, i.e., |C1(n)| = 2. Consider
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permutations σ1 = (1, 2, 3) and σ2 = (1, 3, 2). The corresponding two polytopes belong to

P(n):

P 1 := conv
(
λN({y1, yb(2), yb(3)}), λN({y1, yb(2)}), λN({y1})

)
P 2 := conv

(
λN({y1, yb(2), yb(3)}), λN({y1, yb(3)}), λN({y1})

)
Using the labeled local nadir weights given in Figure 4.3(b), these polytopes are equivalent

to triangles: P 1 = conv({C,B, λ(y1)}) and P 2 = conv({C,D, λ(y1)})

Polytopes P 1 and P 2 are contained in Λ(y1) since σ1(1) = σ2(1) = 1. The remaining

polytopes in P(n) are defined with the singleton local nadir weight of a boundary weight,

i.e., σ(1) = b(2) or σ(1) = b(3). Such polytopes are generally ignored.

Subsets of weight set components can be constructed by the union of simplices given

by P . Theorem 7 states that the maximal LNPs are indeed sufficient to cover weight set

components. The following Lemma is essential for the proof of Theorem 7.

Lemma 8. Let λ ∈ Λ(y) for some y ∈ YwN and I := {1, . . . , p : ‖y‖λ∞ = λiyi} with

|I| < p. Then there exists ȳ ∈ YN , weight λ̄ ∈ Λ, and index set J ⊆ {1, . . . , p} with

I ∩ J = ∅ such that the 1-6 below hold:

1. λ̄ ∈ Λ(y) ∩ Λ(ȳ),

2. λ ∈ conv({λN(y), λ̄}),

3. ‖y‖λ̄∞ = λ̄iyi for i ∈ I and ‖y‖λ̄∞ > λ̄kyk for k /∈ I ,

4. ‖ȳ‖λ̄∞ = λ̄j ȳj for j ∈ J and ‖ȳ‖λ̄∞ > λ̄kȳk for k /∈ J ,

5. yi > ȳi for all i ∈ I , and

6. yj < ȳj for all j ∈ J .
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Proof. Since |I| < p, λ 6= λN(y). Set I must be nonempty, so let

H(I) := {λ′ ∈ Λ : λ′iyi = ‖y‖λ′∞ ∀i ∈ I, λ′kyk < ‖y‖λ
′

∞ ∀k /∈ I}.

By assumption, λ ∈ H(I) and λN(y) + θ(λ− λN(y)) ∈ H(I) for all θ > 0. Since Λ(y) is

compact and star-shaped, there exists θ′ ≥ 1 such that

λ̄ := λN(y) + θ′(λ− λN(y)) ∈ Λ(y),

λ̄ε := λN(y) + (θ′ + ε)(λ− λN(y)) /∈ Λ(y)

for all ε > 0. For small ε > 0, let ȳ ∈ YN such that λ̄ε ∈ Λ(ȳ) (ȳ may be in YB).

Thus, by continuity of the weighted Tchebychev norm in λ, we have ‖y‖λ̄∞ = ‖ȳ‖λ̄∞ and

‖y‖λ̄ε∞ > ‖ȳ‖λ̄ε∞ . This satisfies results 1 and 2.

For i ∈ I , ‖y‖λ̄∞ = λ̄iyi by definition. Suppose for contradiction that i also maximizes

‖ȳ‖λ̄∞, i.e., ‖ȳ‖λ̄∞ = λiȳi. Since λ̄ ∈ H(I), this implies

λ̄iȳi = ‖ȳ‖λ̄∞ = ‖y‖λ̄∞ = λ̄iyi

and thus ȳi = yi. However, λ̄ε ∈ H(I) also holds and so ‖ȳ‖λ̄ε∞ ≥ λ̄εi ȳi = λ̄εiyi = ‖y‖λ̄ε∞ ,

which is a contradiction to λε ∈ Λ(ȳ) \ Λ(y). Therefore, ‖ȳ‖λ̄∞ > λiȳi and yi > ȳi for all

i ∈ I . Let J ⊆ {1, . . . , p} \ I such that ‖ȳ‖λ̄∞ = λ̄j ȳj for j ∈ J and ‖ȳ‖λ̄∞ > λ̄kȳk for

k /∈ J . Then, yj < ȳj for all j ∈ J follows by λ̄j ȳj = ‖ȳ‖λ̄∞ = ‖y‖λ̄∞ > λ̄jyj for all j ∈ J .

Index sets I and J satisfies results 3-6.

In summary, results 1 and 2 of Lemma 8 prove that the line segment [λ(y), λ] may be

extended linearly to an intersection of weight set components, i.e., [λ(y), λ] ⊆ [λ(y), λ̄]

where λ̄ ∈ Λ(y) ∩ Λ(ȳ) for some ȳ ∈ YN . The index sets I and J indicate which com-

ponents maximize ‖y‖λ̄∞ and ‖ȳ‖λ̄∞, respectively, and satisfy results 4-6. Note that the

statement of the Lemma intentionally uses the set of weakly ND images, YwN , so that the
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lemma can be applied to LNPs in the following theorem.

Theorem 7. For λ ∈ Λ, there exists a maximal LNP, n = yN(Ȳ ) for some Ȳ ⊆ YN , such

that there are p contributing images y1 ∈ C1(n), . . . , yp ∈ Cp(n) with

λ ∈ conv({λN(yσ(1)), λN(yσ(1), yσ(2)), . . . , λN(y1, y2, . . . , yp)}) ∈ P(n)

for some permutation σ : {1, . . . , p} → {1, . . . , p}.

Proof. Let λ ∈ Λ and y1 ∈ YN such that λ ∈ Λ(y1). By iteratively applying Lemma 8, one

can construct a (not necessarily maximal) local nadir weight which is defined by R ≤ p

ND images y1, . . . , yR, each with respective index set I1, . . . , IR satisfying the following

four properties:

1. λN({y1, . . . , yR}) ∈
⋂R
r=1 Λ(yr).

2. λ ∈ conv({λN(y1), λN({y1, y2}), . . . , λN({y1, y2, . . . , yR})}).

3. Ir ∩ Is = ∅ for all r, s ∈ {1, . . . , R} where r 6= s, and ∪Rr=1I
r = {1, . . . , p}.

4. For all r it holds yri > ysi for all i ∈ Ir and r 6= s.

The properties can follow as a corollary to Lemma 8, but for completeness it is proven

in the construction section below. Here, assume we have constructed such a local nadir

weight.

Note if there existed some ȳ ∈ YN such that ȳ < yN(y1, . . . , yr), this would contradict

property (1). Also, there exists a maximal LNP n such that yN(y1, . . . , yr) 5 n. For an

image yr, suppose for contradiction yri < ni for all i ∈ Ir. Since yrk < ysk ≤ nk for k /∈ Ir

and s chosen such that s ∈ Is, it follows that yr < n, which is a contradiction. Therefore,

for each image yr there exists an index i such that yri = ni and thus yr ∈ Ci(n).

Without loss of generality, we have yr ∈ Cr(n) for r = 1, . . . , R. If R < p, we can
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choose images ỹR+1 ∈ CR+1(n), . . . , ỹp ∈ Cp(n) arbitrarily. Then, property (2) yields

λ ∈ conv({λN(y1), . . . , λN(y1, y2, . . . , yR)})

⊆ conv({λN(y1), . . . , λN(y1, y2, . . . , yR),

λN(y1, y2, . . . , yR, ỹR+1), . . . , λN(y1, y2, . . . , yR, , ỹR+1, . . . , ỹp)}) ∈ P(n).

Construction: It remains to construct the local nadir weight and its defining images

satisfying properties (1)-(4). Let I1 ⊆ {1, . . . , p} with ‖y1‖λ∞ = λiy
1
i for all i ∈ I1 and

‖y1‖λ∞ > λky
1
k for k 6∈ I1. If I1 = {1, . . . , p}, the construction terminates. Otherwise, we

obtain by Lemma 8 an image y2 ∈ YN , a weight λ2 ∈ Λ(y1) ∩ Λ(y2), and an index set

I2 ⊆ {1, . . . , p} with

• I1 ∩ I2 = ∅,

• λ ∈ conv({λN(y1), λ2}),

• ‖y2‖λ2

∞ = λ2
jy

2
i for i ∈ I2 and ‖y2‖λ2

∞ > λ2
ky

2
k for k /∈ I2,

• ‖y1‖λ2

∞ = λ2
i y

1
i for i ∈ I1 and ‖y1‖λ2

∞ > λ2
kyk for k /∈ I1,

• y1
i > y2

i for all i ∈ I1,

• y1
j < y2

j for all j ∈ I2.

If I1∪I2 = {1, . . . , p}, the construction terminates. Otherwise, we can apply Lemma 8

with yN(y1, y2), I = I1 ∪ I2, and λ2 to obtain an image y3 ∈ YN , a weight λ3 ∈

Λ(yN(y1, y2)) ∩ Λ(y3) and an index set I3 ⊆ {1, . . . , p} such that

• I2 ∩ (I1 ∪ I2) = ∅,

• λ2 ∈ conv({λN(y1, y2), λ3}),

• ‖y3‖λ3

∞ = λ3
jy

3
i for i ∈ I3 and ‖y3‖λ3

∞ > λ3
ky

3
k for k /∈ I3,
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• ‖yN(y1, y2)‖λ3

∞ = λ3
i y
N
i (y1, y2) for i ∈ I1 ∪ I2 and ‖yN(y1, y2)‖λ3

∞ > λ3
ky

N
k (y1, y2)

for k /∈ I1 ∪ I2,

• yNi (y1, y2) > y3
i for all i ∈ I1 ∪ I2,

• yNj (y1, y2) < y3
j for all j ∈ I3.

This implies

• Ir ∩ Is = ∅ for r, s ∈ {1, 2, 3},

• For all r ∈ {1, 2, 3} it holds yri > ysi for all i ∈ Ir and s ∈ {1, 2, 3} \ {r},

• λN(y1, y2, y3) ∈ Λ(y2) ∩ Λ(y2) ∩ Λ(y3),

• λ ∈ conv({λN(y1), λN(y1, y2), λN(y1, y2, y3)}).

If I1 ∪ I2 ∪ I3 = {1, . . . , p}, the construction terminates. Otherwise, we can, again, apply

Lemma 8 with yN(y1, y2, y3), I = I1 ∪ I2 ∪ I3 and λ3.

This construction step can be repeated at most p − 1 times until we obtain the desired

set of images y1, . . . , yR and index sets I1, . . . , IR.

4.5.1 Triangularization and Plotting

For plotting weight set components, we now restrict ourselves to p = 3, and so we aim to

plot a 2-dimensional representation of weight set components and compute their area.

Let N represent the set of maximal LNPs. We have proven so far that the union of

families of simplices, P ∗ := {P(n) : n ∈ N} covers Λ. However, for a given weight set

component, say Λ(y) for y ∈ YN , P ∗ will contain many duplicate simplices, and there-

fore it does not give a minimal representation of Λ(y). In terms of computing the area of

the weight set component, this is a computational hindrance. More critically, if the com-

plete contributing sets were not known for the maximal LNPs, then Λ(y) may not be fully
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covered by P ∗, even if Λ is. This section develops tailored procedure for computing a min-

imal representation of the weight set components by triangularization when given the set

of maximal LNPs and complete contributing sets.

While there exist common subroutines to determine the convex hull of an input set of

points, to our knowledge, there are no analogous routines for a “star-shaped hull.” How-

ever, the highly structured geometry of the weight space components enables them to be

triangulated in a very reasonable way. This partially employs Lemma 7, which shows

that a q-way LNP implies lower-order LNPs. Therefore, the set of maximal LNPs and

their complete contributing sets imply all other LNPs. In this section, we suppose this

set of LNPs and maximal contributing sets are given. For ND set Y ′ ⊆ YN , the set of

maximal LNPs is denoted by N , and the dimensional contributing sets are denoted by

{C1(n), C2(n), C3(n)}n∈N . These sets may be computed by Algorithm 1.

The pseudocode for the following algorithm is given in Algorithm 2. For each y ∈

Y ′ ⊆ YN , the perimeter of Λ(y) is composed of maximal LNPs and lower-order LNPs.

Therefore, the set of maximal LNPs to which y contributes (M in step 2) is used to gen-

erate all the “implied” lower-order LNPs to which y also contributes; this set of LNPs is

generated in a recursive-style function and is denoted by L (step 3).

The perimeter of Λ(y) is then computed counter-clockwise as three subsets defined by

the dimensional contributing sets C1, C2, and C3. The fundamental approach for each of

these contributing sets follows the same three steps. Let i ∈ {1, 2, 3}. First, the subset

of L for which y belongs to Ci is determined (e.g., step 5). Since all LNPs in this set

are equal in the ith component, then we can reduce dimension to a biobjective perspective

for the two subsequent steps. Second, for LNPs n, n′ ∈ L, if n < n′ in the biobjective

view, then the dominating LNP, i.e., n, is removed. This function, denoted by Remove-

Dominating(set, dimensions), e.g., in step 6. Finally, the LNPs are ordered in the natural

ordering for biobjective problems: decreasing in one objective and increasing in the other

(e.g., step 7). Taken together, these steps return the upper envelope of the LNPs and, in
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Algorithm 2 Plot weight set decomposition
Input: Subset of ND frontier Y ′ ⊆ YN , maximal LNPs N ⊂ R3 with associated contributing sets
{C1(n), C2(n), C3(n)}n∈N .

Output: For all weight set components, a set of triangles used to plot and cumulative computed area.
1: for y ∈ Y ′ do
2: M ← {n ∈ N : y ∈ C1(n) ∪ C2(n) ∪ C3(n)} (set of maximal LNPs to which y contributes)
3: L←ImpliedLNPs(M,y)
4: # Perimeter defined by C1:
5: L1 ← {n ∈ L : y ∈ C1(n)}
6: L1 ←RemoveDominating(L1, (y2, y3))
7: L1 ←Order(L1, (−y2, y3))
8: # Perimeter defined by C2:
9: L2 ← {n ∈ L : y ∈ C2(n)}

10: L2 ←RemoveDominating(L2, (y3, y1))
11: L2 ←Order(L2, (−y3, y1))
12: # Perimeter defined by C3:
13: L3 ← {n ∈ L : y ∈ C3(n)}
14: L3 ←RemoveDominating(L3, (y1, y2))
15: L3 ←Order(L3, (−y1, y2))
16: # Join perimeters and triangulate:
17: P ← join(L1, L2, L3)
18: for (ni, ni+1) ∈ P do
19: T ← conv{λ(ni), λ(ni+1), λ(y)}
20: if(T duplicated) continue
21: Λ(y)← Λ(y) ∪ T
22: area(y)←area(y)+area(T )
23: end for
24: end for
25: Return {Λ(y)}y∈Y ′ and {area(y)}y∈Y ′

effect, provides the outer-most description for triangulation of the weight set component.

The resulting ordered set of LNPs is denoted as Li. Figure 4.6 illustrates the procedure and

results from the biobjective perspective.

Once L1, L2, and L3 are computed, they are joined and denoted as P (step 17) which

is sufficient to describe the full perimeter. The remaining loop (steps 18-22) uses every

neighboring pair of LNPs in P to define a triangle (with the kernel weight as the third

vertex). Step 19 checks if this triangle is a duplicate (i.e., already been added to this weight

set component): if so, then this triangle is discarded. Otherwise, the triangle is added to the

description of Λ(y), and its area is added to the estimated area for the component (steps 21

and 22, respectively). Note that when ni = ni+1, the triangle is trivially small with area

equal to zero. Furthermore, the loop in step 18 should include the triangle between P.last
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Figure 4.6: Computing the perimeter of weight set components using biobjective projec-
tions of L1, L2, L3 sets.
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and P.first. Once all loops are complete, the algorithm returns the weight set components

and estimated area for each (step 24).

Example 18. Consider computing the weight set component Λ(y1) in Example 10. We use

the labels for the LNPs and local nadir weights interchangeably. Table 4.1 gives the four

maximal LNPs, labeled C, E, G, and H. In Algorithm 2 step 2, M = {C,E,G,H}. Step 3

generates the set of implied LNPs L = {A,B,C, . . . , G,H}, as labeled in Figure 4.3.

The projection and ordering of L1, L2, L3 sets are illustrated in Figure 4.6. First, con-

sider L1 = {A,B,C,D,E} since these LNPs share the first component with y1. These

LNPs projected onto the (f2, f3) biobjective space in Figure 4.6(a). LNP A strictly dom-

inates LNP C, so it will not be included in this section of the perimeter. After removing

C from L1, the LNPs (and local nadir weights) are ordered B,C,D,E. Figure 4.6(b)

highlights the resulting portion of the perimeter of Λ(y1).

Figure 4.6(c)-(e) illustrates the procedure for L2 and L3. We note some additional

observations:

• The next sequence of LNPs, L2, includes D and E again, which means that when

joined, the sequence (D,E,D,E) occurs. Extra triangles are detected by step 19 to

prevent from “double counting” these areas.

• The whisker [F,G] is captured by the terminal sequence (F,G) ∈ L2 followed by the

initial sequence (G,F ) ∈ L3.

• While LNP A is removed from L1, it remains in L3 and therefore contributes to the

final perimeter.

We have implemented a plotting tool in R using basic functions and the ggplot2 pack-

age. The triangles are plotted as transparent (“alpha” parameter set to 0.5) so that full-

dimensional intersections between weight set components are shown visibly as overlap-

ping regions, e.g., Figure 4.4(b). In addition to computing each triangle, the outline of the
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weight set component is represented as line segments of the form [λ(ni), λ(ni+1)] for each

ni, ni+1 ∈ P .

4.6 Application to Primal Algorithms

Section 4.4 presented how to modify a primal algorithm used to update maximal LNPs.

Now, motivated by the geometry of the weighted Tchebychev weight set decomposition,

we illustrate applications of the dual perspective for primal algorithms used to find ND im-

ages. We begin with a proper comparison between weight set decompositions for the two

scalarizations, weighted sum and weighted Tchebychev , in order to motivate the strengths

of the latter (Section 4.6.1). Then, Section 4.6.3 presents how outer and inner approxima-

tions of weighted Tchebychev weight set components can be computed during run time of a

primal algorithm. Finally, Section 4.6.4 presents how to restrict computation of the primal

algorithm to return a subset of the ND frontier associated with a subset of the weight set.

Two instances of ND sets are used, each defined as a (MOP) instances with 25 variables.

Weight set decompositions for the first instance have already been presented in Figure 4.1.

Weight set decompositions for the second instance are illustrated in Figure 4.7; this instance

is the focus of the remaining sections due to its small number of ND images.

4.6.1 Comparison to Weighted Sum Decomposition

In addition to the instances in Figures 4.1 and 4.7, three additional instances are used to

compare weight set decompositions; the additional weight set decompositions are illus-

trated in Figure B.2 of the Appendix. For each instance and each ND image, the area

assigned to the corresponding weight set component are compared between the two de-

compositions in Figure 4.8 with paired bar graphs. Note the proportion of ND images that

are ESND: on average, only 28% of the ND images are extreme supported (range 23%-

36%). From these graphs, we make two observations.

First, while the weight set component with maximum area in each decomposition cor-
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Figure 4.7: Comparing weight set decompositions with respect to weighted sum scalariza-
tion (left) and weighted Tchebychev scalarization (right) for a sample ND set with 22 ND
images, including 8 ESND images. Color key is consistent between pairs. Continued in
Figure B.2 in the Appendix.

responds to the same image, the magnitude of the difference between the largest weight

set component and other components is significantly larger for the weighted sum scalar-

ization. That is, the weighted sum decomposition inflates the area or the relative value

of its top image compared to the weighted Tchebychev decomposition. This observation

can be partially explained by simply having fewer ND images included in the decomposi-

tion; however, the following observation indicates that this alone does not fully explain this

difference.

Second, beyond the top image, the ranked orders of the area per weight set component

do not match between decompositions, and there are notable, extreme differences. Fig-

ure 4.8(a) and (e) include at least one image in the right tail that (1) comprises a small

portion of the weight space in the weighted Tchebychev decomposition while (2) occupy-

ing a much larger space in the weighted sum decomposition. We argue this is a second

major weakness of decomposing the weight set with respect to a subset of the ND set:

as ND images are omitted, the crucial adjacency structure is significantly altered. This

leads to disproportionate gains in some of the remaining images. With the weight set de-
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(a) Instance in Figure 4.1. (b) Instance in Figure 4.7.

(c) Instance in Figure B.2(a). (d) Instance in Figure B.2(b).

(e) Instance in Figure B.2(c).

Figure 4.8: Paired bar graphs compare weight set component area for decompositions with
respect to weighted sum scalarization (red) and weighted Tchebychev scalarization (blue)
for sample ND sets. The y-axis represents area, and the (pairs of) bars are ordered in
descending order of area for the weighted Tchebychev decomposition.

composition for weighted Tchebychev now available, which includes all ND images, this

disproportionate reallocation becomes clear.
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Algorithm 3 Primal Algorithm, modified from [42].
Input: Image set Y ∈ R3

>.
Output: Nondominated set YN ⊆ Y .
1: YN ← ∅
2: B1 ←{InitStartingBox(Y)}
3: Step s← 1
4: while Bs 6= ∅ do
5: Choose B ∈ Bs
6: Solve for ys := opt(Y, u(B))
7: if ys = ∅ then
8: Bs+1 ← Bs \B
9: else

10: YN ← YN ∪ {ys}
11: Bs+1 ← UpdateBoxes(Bs, B, ys)
12: end if
13: s← s+ 1
14: end while
15: Return YN

4.6.2 Primal Algorithm for Finding ND Set

In Section 4.2.1, we introduced the algorithms following the primal approach to solving

for all ND images in image space [42, 41, 44, 46]. The general structure of these primal

algorithms is the same, which is summarized by the pseudocode given in Algorithm 3.

The primal algorithm takes an image set Y and returns the ND set YN (it is understood

that Y is not known explicitly but can be represented implicitly by a MODO formulation).

Initialization includes defining an empty ND set (step 1) and the initial search region as a

box (step 2), which requires minimizing each of the individual objectives so that the ideal

point is available. Boxes are contained within a queue, called Bs for step s, from which a

new box is pulled from to process (step 5) and new boxes are added for future processing

(steps 11-13). The algorithm continues until an empty queue is reached.

For every step s, the algorithm proceeds as follows: First, given a box B from queue

Bs, an integer program (IP)7 is solved with a black box solver (represented by opt in step

6) for a new ND image, if one exists. If no ND image is found (equivalently, the interior of

7The precise form of the integer program differs depending on the primal algorithm used. An example
is a weighted sum scalarization with additional constraints given by the objectives bounded above by the
maximum LNP.
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the box is empty, the IP is infeasible, and the LNP is weakly ND), then the box is removed

from the queue (steps 7-8). Otherwise, if a new ND image is found, denoted by ys, then ys

is added to YN (step 10), and the queue is updated to compute the next queue, Bs+1 (step

11). Computing the next queue often involves splitting B, and any other B′ ∈ Bs such that

ys ∈ B′, into new boxes that eliminate the region dominated by ys but contain the necessary

regions to be searched in the future; previous primal algorithms use different approaches

to this [41, 42, 44]. In particular, the boxes can be defined by the maximal LNPs defined

by the update method presented in Algorithm 1 or its extension discussed in Section 4.4.

Before terminating, the primal algorithm deletes all boxes that are removed from the queue

and only returns the set of all ND images (step 15).

The elimination of an empty box in step 8, along with its maximal LNP, is the notable

difference between the primal and dual paradigms. While the primal algorithm is designed

only to return the ND images, the dual approach also seeks the maximal LNPs defining

these boxes, especially “empty” ones. When no new ND image is found in a box, then its

associated maximal LNP is weakly ND with respect to YN and should therefore be returned

for use in the weight set decomposition. The queue of boxes should then be understood as

the current list of maximal LNPs. Each LNP has a flag to represent whether it has been

certified as weakly ND or not; for new LNPs, this flag is set to false. In step 5, a LNP

is only chosen from the queue if it is flagged as false. In step 8, instead of removing a

maximal LNP, it is flagged as true. Therefore, most primal algorithms can be modified to

return a set of weakly ND, maximal LNPs with the only additional effort being memory

storage.

In summary, at each step of the primal algorithm, either a new ND image is discovered

or a maximal LNP is certified as weakly ND. In general, the most costly procedure at every

step is solving the IP optimization problem (step 6).

Example 19. The progression of Algorithm 3 on the ND set from Example 10 is illustrated

in Table 4.2. We let the boxes in the primal algorithm be chosen in step 5 by naive, first-
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in-first-out order. Algorithm 1 is used in step 11 to update maximal LNPs and complete

contributing sets. The algorithm requires 16 steps before the queue is empty, which termi-

nates the procedure.

Table 4.2: Progression of primal algorithm (Algorithm 3) on Example 10.

Step ND Image found LNP certified weakly ND
1 y1

2 (1,M,M)
3 y4

4 y2

5 (2, 2,M)
6 (M, 1,M)
7 y3

8 y5

9 (2, 3, 3)
10 y6

11 (2,M, 2)
12 y7

13 (M,M, 1)
14 (3, 2, 3)
15 (3, 3, 2)
16 (M, 2, 2)

4.6.3 Approximation of the Weight Space Decomposition

Before the Algorithm 3 terminates, which provides sufficient and necessary information for

the weighted Tchebychev weight set decomposition, the partial information can be used for

an approximation of the ND set and associated weight set components. Approximations of

the weight set components during run time offer two valuable applications. First, the order

of boxes chosen (step 5 in Algorithm 3) can be informed by the approximate area of the

weight set components, e.g., choosing the box defined by the LNP whose contributing im-

ages have largest summed area of weight set components. Second, primal algorithms can

be evaluated against each other by metrics that evaluate the approximation of the weight

space components. For evaluating the quality of an approximate weight space decomposi-

tion, [51] suggests to use the Hausdorff distance.
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To approximate weight set components, we provide both an outer and an inner approx-

imation scheme, analogous to the approaches of [23] and [49], respectively, for weighted

sum weight set decomposition. An outer approximation, {Λ+(y)}y∈Y ′ for Y ′ ⊂ YN , for a

weight set decomposition {Λ(y)}y∈YN is an approximation for a proper subset of the im-

ages where the approximated weight set components are supersets of the true components,

i.e., Λ(y) ⊆ Λ+(y) for all y ∈ Y ′. On the other hand, an inner approximation, {Λ−(y)}y∈Y ′

is such that the approximated weight set components are subsets of the true components,

i.e., Λ−(y) ⊆ Λ(y) for all y ∈ Y ′.

Outer approximation.

In general, an outer approximation can be achieved trivially by following the standard

steps for computing the weighted Tchebychev weight set decomposition but for a proper

subset of the ND set. For instance, given Y ′ ⊂ YN from the primal algorithm (Algo-

rithm 3) and the updated set of maximal LNPs with complete contributing sets, computed

by Algorithm 1, then the plotting algorithm (Algorithm 2) will triangularize and plot the

outer approximation. When integrated into the primal algorithm, the outer approximation

is computed with all the maximal LNPs available at the current step, regardless if they are

maximal or weakly ND with respect to the complete ND set. At each step of the primal

algorithm, when a new ND image is found, then the set of maximal LNPs and complete

contributing sets are updated, and the outer approximation of each component either re-

duces or stays the same.

Example 20. Figure 4.9 illustrates the outer approximation of weight set components for

the instance illustrated in Figure 4.7.

Inner approximation

The inner approximation is less straightforward to compute. Given Y ′ ⊂ YN from Algo-

rithm 3 and the updated set of maximal LNPs computed by Algorithm 1, then at least one
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Figure 4.9: Outer approximations are illustrated for the example in Figure 4.7(b). On the
left, the weight set decomposition is computed at step 10 of Algorithm 3, which includes
5 ND images. On the right, the weight set decomposition is computed at step 20, which
includes 10 ND images. The colors assigned to each image’s weight set component are
consistent with Figure 4.7.

maximal LNP must be certified as weakly ND. When integrated into the primal algorithm,

the inner approximation is computed with only these weakly ND, maximal LNPs certified

at the current step. Note that these LNPs will be weakly ND with respect to the full ND set

even if their contributing sets are not complete with respect to the full ND set.

With the subset of maximal LNPs that are certified as weakly ND, the plotting algorithm

(Algorithm 2) must be modified. Often, an inner approximation will not contain the full

perimeter of the component but rather disconnected subsets of the perimeter. Therefore, tri-

angularization must occur independently for each dimensional contribution set,C1, C2, C3;

hence, in Algorithm 2, the sets L1, L2, L3 are not joined (step 17), and the for loop (steps

18-23) is performed over each Li set, independently.

At each step of the primal algorithm, when an empty box is found, then the set of cer-

tified LNPs is increased by one, and the inner approximation of the contributing images’

weight set components may increase (or stay the same). Furthermore, since the primal al-

gorithm using Algorithm 1 computes maximal LNPs with complete contributing sets, then

it is possible to check when a single image’s weight set component can be fully computed:
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Figure 4.10: Inner approximations are illustrated for the example in Figure 4.7(a). On the
left, the weight set decomposition is computed at step 10 of the primal algorithm, which
includes 5 ND images and only 4 certified weakly ND LNPs. One LNP implies lower-order
LNPs that define all three visible triangles. The other three LNPs are near the vertices of Λ,
so the resulting triangles are miniscule and therefore not visible. On the right, the weight
set decomposition is computed at step 20 of the primal algorithm, which includes 10 ND
images and 9 certified weakly ND LNPs. The colors assigned to each image’s weight set
component are consistent.

if all maximal LNPs to which image y′ contributes are certified as weakly ND, then Λ(y′)

can be computed in full. Otherwise, if y′ contributes to some LNPs that are yet to be

certified, then Λ(y′) cannot be computed in full.

Example 21. Figure 4.10 illustrates the inner approximation of weight set components for

the instance illustrated in Figure 4.7. Note that at step 20, the inner approximation Λ−(y8)

(in green) is nearly equal to the outer approximation Λ+(y8) in Figure 4.9. However, since

y8 contributes to one of the remaining uncertified LNPs, then Λ−(y8) is not yet complete.

Approximation time series.

At each step of Algorithm 3, the inner and outer approximation for each image’s weight

set component can be computed along with its area. This area can be plotted for each step

of the algorithm as a time series. An example is given in Figure 4.11 for the algorithm
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Figure 4.11: Area of the approximated weight set components for each image are plotted as
a time series. The x-axis represents the step of the primal algorithm. Outer approximated
areas are indicated by dashed lines and are monotonically decreasing. Inner approximated
areas are indicated by solid lines and are monotonically increasing.

run on the instance in Figure 4.7. The outer approximated and inner approximated areas

are indicated by lines (dashed and solid, respectively), and the x-axis represents the step s

in Algorithm 3. The outer approximated area is monotonically decreasing and acts as an

upper bound for the true area of the weight set component. The inner approximated area

is the opposite: monotonically increasing and acts as a lower bound. When Algorithm 3

terminates, the gap is zero for all weight set components. Figure 4.11 motivates additional

insights.

First, this time series analysis can be used as a simulated computational study, which

is conducted with a known ND set and without solving IPs. It has been observed that in-

feasible subproblems require longer solve times than feasible subproblems [46]. However,

the variety of black box IP solvers implies varied performance for solving the same sub-

problems. This justifies the proposed analysis of primal algorithms which is independent

of differing performances between black box IP solvers.

Second, valuable data are easily accessible by this time series analysis: the ranked order

of weight set components based on outer- or inner-approximated area as well as the gap
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between these two estimates. Performance metrics may be designed around these data in

order to evaluate approximations of primal algorithms. For instance, the gap between outer

and inner approximations would ideally be minimized for high-performing algorithms.

Lastly, this analysis highlights the critical ordering of boxes from the queue chosen

by step 5 of Algorithm 3. Note that for analyzing the terminal performance of a primal

algorithm, the choice of the box does not effect the accuracy of the algorithm; however, the

choice is critical to the quality of the approximation prior to termination. For example, it is

common to use the hypervolume measure to choose the box based on largest hypervolume.

Notably, the algorithm by [46] includes a heuristic of this type which is designed to improve

the selection of the subproblem. Now with the approximated areas of the weight space

components available, either or both approximations can be used to objectively improve

this choice.

4.6.4 Compromise Region

Consider there are N ≥ 3 decision makers, each with their own individual weight vectors

for the three objectives, λ1, . . . , λN ∈ Λ. Solving ΠTS(λi) for each weight λi identifies im-

ages y1, . . . , yN ∈ YN such that λi ∈ Λ(yi). However, the union of these weight set com-

ponents does not necessarily cover the set conv(λ1, . . . , λN), which we call the compromise

region. Let ΛCR :=conv(λ1, . . . , λN), and assume dim(ΛCR) = 2. Determining the set of

ND images whose weight set components cover ΛCR requires finding all the weight set

components that intersect with ΛCR. Once YN is known, this is trivial via postprocessing;

however, Algorithm 3 may be modified to use ΛCR a prior to reduce the computation while

still achieving coverage.

Note that the set-up of this problem aligns with the problem definition for the McRow

method [30]. However, the McRow method is defined for continuous feasible sets, and

even when applied to MODO, it returns a single solution which minimizes the worst-case

outcome for a single decision maker. Our approach returns all of the ND images in the
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region of interest from the image set frontier.

The initialization (step 2) of Algorithm 3 must be extended to solve for each i =

1, . . . , N , ΠTS(λi) augmented with small ε times sum of the objectives in order to return a

ND image. The update algorithm, Algorithm 1, is called with each of the resulting (unique)

images y1, . . . , yN to compute an updated set of maximal LNPs with complete contributing

sets. This gives the initial queue with boxes defined by the maximal LNPs.

Subsequently, boxes are chosen from the queue to be processed; however, a box can be

discarded instead if it is known that, for its maximal LNP n, P(n)∩ΛCR = ∅. Testing this

requires both checking if the “vertices” (i.e., local nadir weights) of the polytopes belong

to ΛCR as well as testing if an “edge” between vertices intersects with ΛCR. This can be

checked with a recursive-style boolean function. If the maximal LNP leads to intersection

with ΛCR, then the box is processed as normal. Otherwise, the LNP may be flagged as

certified weakly ND so that the algorithm does not process it any further.

Example 22. A simple compromise region is given by

Λ0.5 = {λ ∈ Λ : λi ≤ 0.5 ∀i = 1, 2, 3} = conv ({(0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0)}) .

Figure 4.12(a) illustrates Λ0.5 in weight space: observe that this inverted triangle has a

quarter of the area of Λ, and it represents the ND images that are most “balanced” with

respect to the three objectives.

Algorithm 3 restricted to compromise region Λ0.5 for the example instance in Figure 4.7

is shown in Figure 4.12(b). Clearly from this example, each of the weight set components

that intersect with Λ0.5 are discovered; compared to the full decomposition, the perimeters

of these components are correct within Λ0.5. During processing, some ND images whose

weight set components do not intersect with Λ0.5 are also found, e.g., the yellow compo-

nent labeled 4 in Figure 4.12(b). This occurs due to long edges extending outside of the

compromise region, so these images should be removed via postprocessing.
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λ1

λ2
Λ0.5

Figure 4.12: A sample compromise region is illustrated (left), and the output of the primal
algorithm when restricted to this compromise region (right).

The reduction in computational effort is proportionally larger than the reduction in

output size. Out of the 22 total ND images in this instance, only 12 are returned (54.5%).

Whereas the full primal algorithm requires 68 optimization subproblems, this restriction

only requires 28 (41.2%). This reduction is achieved because 7 maximal LNPs are essen-

tially “skipped” without solving an optimization subproblem.

Note that compromise regions Λ0.4,Λ0.45, and Λ1.0 can be defined analagously to Λ0.5,

where Λ0.4 is the smallest in area and Λ1.0 = Λ. The computational results of these different

compromise regions are given in Table 4.3.

Observe that this approach is distinct from using constraints in the image space. Con-

sider simple constraints of the form fi(x) ≤ bi for i = 1, . . . , p, which is equivalent to

intersecting YN with a hyperrectangle. However, this is often times a superset of the set of

Table 4.3: Results from simulated computational study for restricting primal algorithm to
various compromise regions. Base case is represented by Λ1.

Compromise Region Λ1 Λ0.5 Λ0.45 Λ0.4

ND Images Returned 22 12 10 6
Optimization Subproblems 68 28 21 12
Skipped LNPs 0 7 8 8
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Figure 4.13: A set of compromise images is represented for a set of three preference
weights. (Left) The compromise region is shown as the convex hull of the preference
weights (black triangle). The colored weight set components intersect with this region.
(Right) The image set is shown in image space (looking “upward” from the perspective of
the utopia point): the compromise images (black); the images that satisfy the upper bounds
only (red) but are not compromise images; and the remaining images (green).

compromise solutions, including many additional images. Computing tighter constraints

is more computationally costly and ultimately changes the structure of the optimization

subproblem. These are illustrated by the following example.

Example 23. Consider the example in Figure 4.1, which includes 25 variables and 69 ND

images, restricted to Y ′ = {y ∈ YN : Λ(y) ∩ Λ0.5 6= ∅}. Figure 4.13(a) illustrates the

weight set decomposition for YN and Λ0.5; out of 69 ND images, |Y ′| = 20.

Simple constraints may be defined from the first images found, i.e., images found by

minimizing (ΠTS(λ)) with λ1, λ2, . . . , λn. Consider constraints of the form

fi(x) ≤ yNi ({y1, y2, . . . , yn})

for all i = 1, 2, 3. For this instance, the constraints are f1(x) ≤ 7398, f2(x) ≤ 6364, and

f3(x) ≤ 8314. However, 38 images in YN satisfy these constraints, which is nearly double

the size of Y ′. The images in YN are illustrated in Figure 4.13(b), colored to indicate
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whether they are the target compromise solutions (black), the non-compromise images that

satisfy the upper bound constraints only (red), or neither (green).

Alternatively, the convex upper envelope of this set of images includes 5 linear con-

straints. Indeed, only the desired 20 ND images satisfy these constraints. However, it is

unclear how to identify the images defining these constraints during run time. Furthermore,

the added constraints could interfere with desirable structures in class-specific algorithms

or negatively affect solve time for IP solvers.

4.7 Conclusions

Until recently, the technique of weight set decompositions has only been thoroughly studied

for weighted sum scalarization. This work applied geometric properties to compute the

weighted Tchebychev weight set decomposition for three objectives.

The weighted sum weight set decomposition projects a well-studied 3-dimensional sur-

face to the 2-dimensional weight set: the surface defined as the ND portion of the convex

hull of the image set, represented by ND(conv(Y)). Points from this surface are projected

to weights in the weight space, which are then assigned to ESND images.

Maybe surprisingly, the weighted Tchebychev weight set decomposition also projects a

3-dimensional surface, one that has also received a fair amount of attention in the multiob-

jective literature: the surface defined as the weakly ND portion of the upper envelope of the

image set, represented by weaklyND(Y + Rp
≥). See this surface illustrated in Figure 4.14.

Points from this surface are projected to weights in the weight space and then assigned

to all ND images. In fact, the perspective of this surface from the utopia point, shown

in Figure 4.14(b), illustrates the striking similarity to the weighted Tchebychev weight set

decomposition, shown in Figure 4.3, with some minor transformations.
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(a) View from the side.

(b) View from the perspective of the utopia point looking up
at the weakly ND surface.

Figure 4.14: The boxed regions of Y +R3
≥ where Y is the set of images from Example 10.

Images in Y are indicated by black points, and each nonnegative cone is uniquely colored.
The coplanar surfaces correspond to: y1 + R3

≥ (red) and y2 + R3
≥ (yellow), y4 + R3

≥ (teal)
and y6 +R3

≥ (violet), and y5 +R3
≥ (aqua) and y7 +R3

≥ (fuschia). An interactive web version
of this image is available at www.geogebra.org/m/cngecnvq.
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CHAPTER 5

CONCLUSION

We conclude with special computational considerations and motivations for future work.

Triobjective Mixed Integer Programs

It is well-known that increasing the number of objectives from p = 2 to p = 3 exception-

ally increases the challenge of MOP algorithms [23, 43]. In particular, triobjective mixed

integer programs (TOMIPs) illustrate the limitations of both the Boxed Line Method and

the weighted Tchebychev weight set decomposition. Consider the following example.

Example 24 (TOMIP). A recent doctoral thesis [83] studies European electricity markets.

A triobjective formulation of the “day-ahead electricity market clearing problem” aims to

maximize market surplus and minimize market loss and missed surplus. This work applies

the weighted sum weight space decomposition [23] to this TOMIP.

The Boxed Line Method cannot be extended to include a third objective in a straight-

forward way. This is mainly due to the structural properties of the TOMIP ND frontier. In

the ND frontier of a BOMIP, the basic building block is the ND line segment. However,

in triobjective image space, one polytope can dominate some portion of another polytope,

so the basic building block of the ND frontiers of a TOMIP can be described as polytopes

with polytopal holes. To the best of our knowledge, there is only one published algorithm

for TOMIPs to date [84].

A strength of the weight set decomposition for weighted sum is that the structural prop-

erties of the convex hull are consistent whether the decision variables are continuous, in-

teger, or mixed [49, 50]. This, however, is not true for the weighted Tchebychev weight

set decomposition. In fact, just as the structure of the ND frontier for TOMIPs become
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increasingly more complicated in the image space, this complexity is also observed in the

weight space. Indeed, this complexity deserves further rigorous study from the perspective

of the weight space, as it may offer some simplification.

Approximation of the Nondominated Set

A theme throughout Chapters 2-4 is the value of approximating a ND set in partial run-

time of an algorithm. By using exact multiobjective methods, which are guaranteed to

return ND images, a decision maker gains valuable insights into the ND set long before the

algorithm terminates. Unlike some other BOMIP algorithms, which construct the ND set

from left-to-right or vice versa [26, 33], the Boxed Line Method (Chapter 2) constructs ND

line segments sparsely among the ND frontier.

Approximation and “representation” of the ND frontier of MOPs have been well-

studied. See [85] for a survey of more than 50 articles about approximation published since

1975, and see [86] for an early paper on representation. In most applications, decision

makers must choose a single efficient solution to implement, regardless of how many are

presented to them. Hence, in abbreviated run-time, multiobjective algorithms should be

designed to produce a minimal set of valuable efficient solutions, where minimal means

the set contains the final solution and as few other solutions as necessary to make this

conclusion. If the decision maker’s function for selection can be described explicitly, then

this motivates optimization over the efficient set [87]. Otherwise, the weight space allows

to systematically prioritize regions of image space to be explored. Algorithms may also be

restricted to a desirable subset of the weight set (Chapter 4).

Parallelization

An additional benefit to the criterion space search algorithms discussed in this thesis is the

ability for them to be parallelized efficiently. When the image space is decomposed into

multiple boxes to be explored, these boxes can often be explored independently so that the
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ND frontier and queue of boxes are updated in parallel. A parallel implementation of the

Boxed Line Method was studied [88].

Increasing Efficiency of Black Box Solvers

The success of commercial and open-source IP solvers, including CPLEX, GUROBI,

XPRESS, and SCIP, are the precursors to the success of criterion space search and weight

space algorithms. In particular, the speed of these solvers enables the feasibility of imple-

menting multiobjective techniques in real-world settings with large instances. As adver-

tised by GUROBI:

“An optimization business problem that can be solved today in one second

would have taken 55 years in 1991.”1

Here, we cite the steady progress of some of these solvers, which is seen as promising

for the further integration of multiobjective techniques into the “mainstream” of operations

research methods.

Commercial solvers have historically competed against one another and tend to out-

compete open-source solvers, by far. Estimates from 2012 [89] evaluated the speed-up of

solving mixed integer programs (MIPs). Depending on the source and the instances, the

speed-up factor of CPLEX from version 6.5 to 11 ranged from 7.47 to 30. On one set of

instances, the percentage of instances solved to optimality increased from 46.5% to 67.1%.

From 2003 to 2010, the versions of XPRESS were observed to show a speed-up factor of

about 7.5 [89]. In 2018, Gurobi reported 53 times improvement over the previous 8 years.2

While not the fastest option, open-source software are crucial for non-industrial appli-

cations, especially non-profit organizations. The three most recent updates to the open-

source solver SCIP presented the speed-ups for solving MIPs. In 2017, SCIP version 5.0

was about 41% faster than version 4.0 [90]. In 2018, version 6.0 was about 8% faster than
1https://www.gurobi.com/resource/mathematical-optimization-what-you-need-to-know/
2https://www.gurobi.com/wp-content/uploads/2018/12/benchmarks.pdf
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version 5.0.3 In 2020, version 7.0 was about 14% faster than version 6.0 [91]. To illus-

trate this progress, a MIP that would have required 1 hour in 2017 would be solved in: 35

minutes in 2018, 33 minutes in 2019, and 28 minutes in 2020.

Equity as an Imperative Multiobjective Problem

The absence of equity measures has led to highly consequential, oppressive algorithms in

the public sector. Books like Cathy O’Neil’s Weapons of Math Destruction and Safiya

Noble’s Algorithms of Oppression document inequities such as courtroom sentences, bank

loans, and Google’s search results. In the last decade, operations research has been used

to study equity in many domains, including influenza vaccination [92], kidney exchange

[93], and other health applications [94]; emergency response [95] and other humanitarian

logistics [96]; and public transportation [97] and other transportation networks [98]. A mul-

tiobjective paradigm allows decision makers to accurately quantify the trade-offs between

equity and other objectives in a more sophisticated manner than an “equity constraint”

permits. This understanding of trade-offs contributes to the decision maker’s holistic un-

derstanding of the problem, which is sometimes as valuable as the final decision, itself.

Successful optimization for fairness relies on a library of exact and efficient MOP algo-

rithms that covers key classes of problems. For instance, before 2015, the library of exact

algorithms had zero support for adding an equity objective to a single-objective mixed in-

teger program. This was solved by the publication of the Triangle Splitting Algorithm for

BOMIP [31], which was then further improved upon by the work in this thesis. To date,

the current library hardly supports the addition of equity as the third objective to a BOMIP

(which results in a TOMIP and can be solved by a single existing algorithm [84]); fur-

thermore, the library does not at all support the addition of equity as a fourth objective to a

TOMIP. This thesis presented a valuable contribution to the class of BOMIP algorithms and

a more inclusive weight space decomposition for MODOs with three objectives. However,

3http://www.optimization-online.org/DB HTML/2018/07/6692.html
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many more classes of problems require improved algorithmic support.

Many fairness metrics have been proposed [99], but the two most commonly used no-

tions of group fairness are proportional fairness and max-min fairness [100]. These metrics

may be modeled as multiple objectives, one for each member of the group. The weighted

variant of the max-min fairness metric can be understood as the weighted Tchebychev

scalarization that we studied. The proportional fairness metric can be understood as the

Nash social welfare scalarization, which has also received great attention [101, 102, 103].

The weighted variant of this scalarization is prone to similar analysis via weight space

decomposition, and therefore deserves rigorous study.

Behind us are the days in which industries can simply minimize cost or maximize effi-

ciency; the pressure to contribute locally to their communities and globally to social good

causes is more intense than ever. Airlines must satisfy crew preferences and reduce carbon

emissions; grocery chains must consider locally sourced food suppliers and the increasing

food deserts across America; and natural resource companies must strategize around sus-

taining their local ecosystems. Furthermore, the widespread need for equity and fairness in

the algorithms used for decision making is only becoming more dire. The future of indus-

try requires multiobjective optimization tools and experts to face these growing challenges.

The progress of operations research has been made possible by many fields, including

faster computer processors, highly effective pre-solving techniques, and theory-based im-

provements to algorithm design. Each of these improvements makes solving multiobjective

optimization problems ever more practical. It is time that the field of operations research

be prepared for the imminent paradigm shift towards multiobjective optimization.
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APPENDIX A
BOXED LINE METHOD: RELEVANT ALGORITHMS

Here we provide a formal proof of the claim (Section 2.2.3) that L(z1, z2) is nondominated
if and only if (2.5) yields an optimal solution, y∗, with ~wT z(y∗) = ~wT z∗. We assume that
L(z1, z2) is nontrivial, i.e., z1 6= z2. Note that the gradient vector ~w is given by (2.4), and
its components are positive since z1 and z2 are from the same slice (i.e., they are NDPs
with respect to the same slice problem).

Proof. (⇒) Assume line segment L(z1, z2) is nondominated and ~w is its gradient vector.
Let x̃ be feasible for (2.5) such that for z̃ := z(x), ~wT z̃ < ~wT z∗. Then z̃1 ≤ z2

1 and
z̃2 ≤ z1

2 . Note that if z̃ dominated z1 (or z2) when the endpoint is closed, we would have an
obvious contradiction with L(z1, z2) being nondominated. Even when z1 (or z2) is open,
then the conditionally strict inequality in (2.5) requires that z̃2 < z1

2 . Therefore, for small
enough ε > 0, the point zε = (1− ε)z1 + εz2 belonging to L(z1, z2) and close to z1 satisfies
z̃2 < zε2 < z1

2 and z1
1 < zε1. Since zε is nondominated by assumption, this implies zε1 < z̃1.

In both cases, we have z1
1 < z̃1 and z2

2 < z̃2. Therefore, the orthogonal projection of z̃ onto
L(z1, z2) must be given by z̃+ k ~w for some k > 0. Thus, z̃ dominates z̃+ k ~w ∈ L(z1, z2),
which again is a contradiction.

(⇐) Let y∗ be an optimal solution as given, and suppose that L(z1, z2) contains a domi-
nated point, z̆. Since z̆ ∈ L(z1, z2), then ~wT z̆ = ~wT z∗ = ~wT z(y∗). Then z̆ is dominated by
some NDP, say zN = z(xN) where xN is feasible for (2.5). Since ~w is positive and z̆−zN is
nonzero and nonnegative, then ~wT (z̆−zN) > 0⇔ ~wT z̆ > ~wT zN ⇔ ~wT z(y∗) > ~wT z(yN).
Then y∗ is not optimal, which is a contradiction.

Next, we provide pseudo-code for the basic variant of BLM, for the recursive variant of
BLM, and for the generation of the new instances.
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Algorithm 4 BasicOuterLoop
Input: Objective functions z1(x), z2(x) and feasible set X are fixed and global
Output: N the entire nondominated frontier as a set of line segments, Q any unexplored regions

of the frontier space (for partial run-time)
1: zL ← lexmin{(z1, z2), IP} is the UL nondominated point
2: zR ← lexmin{(z2, z1), IP, ifs = zL.solution} is the BR nondominated point
3: N ← point(zL) ∪ point(zR)
4: if mini=1,2{|zLi − zRi |} < ε then
5: Q← ∅ no region to explore
6: return (N,Q)
7: else
8: Q← B(zL, zR) the unexplored region defined by box with corner points zL, zR

9: end if
10: while Q 6= ∅ do
11: B(zL, zR)← element(Q)
12: Q← setminus(Q,B(zL, zR))
13: µ ∈ (zR2 , z

L
2 ) arbitrary horizontal dividing line between zL, zR

14: z∗ ← lexmin{(z1, z2) : z2(x) ≤ µ, IP, ifs = zR.solution} find NDP in lower half
15: if µ− z∗2 > ε then
16: if mini=1,2{|z∗i − zRi |} < ε then
17: N ← N ∪ point(z∗) if epsilon-close, add to ND frontier, do not add region to queue
18: else
19: Q← Q ∪B(z∗, zR) otherwise, add a new unexplored region to the queue
20: end if
21: ẑ ← lexmin{(z2, z1) : z1(x) ≤ z∗1 − ε, IP, ifs = zL.solution}
22: if mini=1,2{|ẑi − zLi |} < ε then
23: N ← N ∪ point(ẑ)
24: else
25: Q← Q ∪B(zL, ẑ)
26: end if
27: else {|z∗2 − µ| < ε}
28: (z1, z2, z1 open, z2 open,M)← BasicInnerLoop(z∗, zL, zR)
29: if mini=1,2{|z1

i − z2
i |} < ε then

30: N ← N ∪M ∪ point(z1) ∪ point(z2) M only includes NDPs that dominate z1 or z2

31: else
32: N ← N ∪M ∪ line(z1, z2)
33: end if

(continued on next page)
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34: (BasicOuterLoop continued)
35: if z1 open then
36: ẑ1 ← argmin{m2 : m ∈M∪zL,m2 ≥ z1

2}NDP found from Inner Loop that dominates
z1

37: else {z1 is closed}
38: ẑ1 ← z1 closed endpoint as LR boundary of unexplored region
39: end if
40: if mini=1,2{|zLi − ẑ1

i |} < ε then
41: N ← N ∪ point(zL) ∪ point(ẑ1) add to frontier
42: else
43: Q← Q ∪B

(
zL, ẑ1

)
add to queue

44: end if
45: if z2 open then
46: ẑ2 ← argmin{m1 : m ∈ M ∪ zR,m1 ≥ z2

1} NDP found from Inner Loop that domi-
nates z2

47: else {z2 is closed}
48: ẑ2 ← z2 closed endpoint as UL boundary of unexplored region
49: end if
50: if mini=1,2{|ẑ2

i − zRi |} < ε then
51: N ← N ∪ point(ẑ2) ∪ point(zR) add to frontier
52: else
53: Q← Q ∪B

(
ẑ2, zR

)
add to queue

54: end if
55: end if
56: end while
57: return (N, Q)
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Algorithm 5 BasicInnerLoop
Input: nondominated point z∗ = lexmin{(z1, z2) : z2(x) ≤ µ} such that z∗ on the split, i.e.

z∗2 = µ
Input: zL, zR upper-left and lower-right boundaries of the rectangle to explore
Output: (z1, z2, z1 open, z2 open,M) the UL and BR nondominated points endpoints defining

the line segment of the nondominated frontier containing z∗; markers to tell whether each end-
point is open (TRUE) or closed (FALSE); and the nondominated points that dominate open
endpoints in M

1: (z1, z2, ~w,w known)← LineGen(z∗, zL, zR) generate line segment of frontier that contains
z∗ for integer vector x∗I via Line Generation subroutine (line segment defined by two endpoints)
and return slope of the line segment to be used for scalarization

2: if |z1
2 − zL2 | < ε and |z1

1 − zL1 | > ε then
3: z1 open← TRUE because zL dominates z1

4: else
5: z1 open← FALSE temporary status with best of known information
6: end if
7: if |z2

1 − zR1 | < ε and |z2
2 − zR2 | > ε then

8: z2 open← TRUE
9: else

10: z2 open← FALSE
11: end if
12: M ← ∅
13: if mini=1,2

{
|z1
i − z2

i |
}
< ε or ¬w known then

14: return (z∗, z∗, z1 open, z2 open,M) ND segment is just the isolated nondominated point
z∗

15: end if
16: y∗ ← solution

(
min{~wT z(x) : z1(x) ≤ z2

1 − ε(z2 open), z2(x) ≤ z1
2 − ε(z1 open), IP, ifs = z∗.solution}

)
(epsilon adjustments only for open endpoints)

17: while ~wT z(y∗) < ~wT z∗ − ε (z∗ is suboptimal to z(y∗) w.r.t. ~w) do
18: if mini=1,2 {|z∗i − zi(y∗)|} < ε and maxi=1,2 {|z∗i − zi(y∗)|} > ε then
19: ERROR message
20: end if

(continued on next page)
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21: (BasicInnerLoop continued)
22: if z1(y∗) ≤ z∗1 − ε then
23: v̂.solution ← min{z2(x) : ~wT z(x) ≤ ~wT z∗, xI = y∗I , LP, ifs = y∗I} explore the

slice of y∗I
24: v̂ ← z(v̂.solution)
25: if v̂ ∈ line(z1, z2) then
26: v̂.solution← min{z1(x) : z2(x) ≤ v̂2 + ε, xI = y∗I , LP, ifs = y∗I} correct v̂
27: v̂ ← z(v̂.solution)
28: end if
29: if v̂ ∈ line(z1, z2) then
30: z1 ← v̂
31: z1 open← FALSE
32: else {v̂ 6∈ line(z1, z2)}
33: v1 ← v̂ keep track of most recent v̂ that dominates z1

34: z1 ← point(line(z1, z2), z2 = v̂2)
35: z1 open← TRUE
36: end if
37: end if
38: if z1(y∗) ≥ z∗1 + ε then
39: v̂.solution ← min{z1(x) : ~wT z(x) ≤ ~wT z∗, xI = y∗I , LP, ifs = y∗I} explore the

slice of y∗I
40: v̂ ← z(v̂.solution)
41: if v̂ ∈ line(z1, z2) then
42: z2 ← v̂
43: z2 open← FALSE
44: else {v̂ 6∈ line(z1, z2)}
45: v2 ← v̂ keep track of most recent v̂ that dominates z2

46: z2 ← point(line(z1, z2), z1 = v̂1)
47: z2 open← TRUE
48: end if
49: end if
50: y∗ ← solution

(
min{~wT z(x) : z1(x) ≤ z2

1 − ε(z2 open), z2(x) ≤ z1
2 − ε(z1 open), IP, ifs = z∗}

)
51: end while
52: if z1 open and |z1

2 − zL2 | > ε then
53: ẑ1 ← point(min{z1(x) : z2(x) ≤ z1

2 , IP, ifs = v1.solution}, z1
2) NDP that dominates z1

54: M ←M ∪ ẑ1

55: end if
56: if z2 open and |z2

1 − zR1 | > ε then
57: ẑ2 ← point(z2

1 ,min{z2(x) : z1(x) ≤ z2
1 , IP, ifs = v2.solution}) NDP that dominates z2

58: M ←M ∪ ẑ2

59: end if
60: return (z1, z2, z1 closed, z2 closed,M)
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Algorithm 6 RecursiveOuterLoop
Input: Objective functions z1(x), z2(x) and feasible set X are fixed and global
Output: N the entire nondominated frontier as a set of line segments, Q any unexplored regions

of the frontier space (for partial run-time)
1: zL ← lexmin{(z1, z2), IP} is the UL nondominated point
2: zR ← lexmin{(z2, z1), IP, ifs = zL.solution} is the BR nondominated point
3: N ← point(zL) ∪ point(zR)
4: if mini=1,2{|zLi − zRi |} < ε then
5: Q← ∅ no region to explore
6: return (N,Q)
7: else
8: Q← B(zL, zR) the unexplored region defined by box with corner points zL, zR

9: end if
10: while Q 6= ∅ do
11: B(zL, zR)← element(Q)
12: Q← setminus(Q,B(zL, zR))
13: µ ∈ (zR2 , z

L
2 ) arbitrary horizontal dividing line between zL, zR

14: z∗ ← lexmin{(z1, z2) : z2(x) ≤ µ, IP, ifs = zR.solution} find NDP in lower half
15: if µ− z∗2 > ε then
16: if mini=1,2{|z∗i − zRi |} < ε then
17: N ← N ∪ point(z∗) if epsilon-close, add to ND frontier, do not add region to queue
18: else
19: Q← Q ∪B(z∗, zR) otherwise, add a new unexplored region to the queue
20: end if
21: ẑ ← lexmin{(z2, z1) : z1(x) ≤ z∗1 − ε, IP, ifs = zL.solution}
22: if mini=1,2{|ẑi − zLi |} < ε then
23: N ← N ∪ point(ẑ)
24: else
25: Q← Q ∪B(zL, ẑ)
26: end if
27: else {|z∗2 − µ| < ε}
28: L← ∅ no known line segments so far
29: M ← RecursiveInnerLoop(z∗, zL, zR, L) M includes all found ND points and line seg-

ments
(continued on next page)
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30: (RecursiveOuterLoop continued)
31: M< ← Orderbyz1({zL, zR} ∪M) giving ordered set (zL,m1, ...,mk, zR)
32: for ∀ consecutive pairs (a, b) ⊂M< do
33: if line(a, b) ∈M then
34: N ← N ∪ line(a, b) add line segment to frontier
35: else
36: N ← N ∪ point(a) ∪ point(b) add individual points to frontier
37: if mini=1,2{|ai − bi|} > ε then
38: Q← Q ∪B (a, b) add unexplored region to queue
39: end if
40: end if
41: end for
42: end if
43: end while
44: return (N,Q)
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Algorithm 7 Inner Loop: Recursive
Input: nondominated point z∗

Input: zL, zR known NDPs providing the upper-left and lower-right corner points of the box
Input: L the set of all inherited line segments so far (for line trimming); note that L = ∅ on first

call
Output: M all found nondominated points/line segments

1: (z1, z2, ~w,w known)← LineGen(z∗, zL, zR)
2: if w known then
3: (z1, z2)← LineTrim(z∗, z1, z2, ~w, L)
4: end if
5: if |z1

2 − zL2 | < ε and |z1
1 − zL1 | > ε then

6: z1 open← TRUE because zL dominates z1

7: else
8: z1 open← FALSE temporary status with best of known information
9: end if

10: if |z2
1 − zR1 | < ε and |z2

2 − zR2 | > ε then
11: z2 open← TRUE
12: else
13: z2 open← FALSE
14: end if
15: M ← ∅
16: if mini=1,2

{
|z1
i − z2

i |
}
< ε or ¬w known then

17: M ←M ∪ point(z∗) frontier is just the isolated nondominated point z∗

18: return M
19: else
20: L← L ∪ line(z1, z2)
21: end if
22: y∗ ← solution

(
min{~wT z(x) : z1(x) ≤ z2

1 − ε(z2 open), z2(x) ≤ z1
2 − ε(z1 open), IP, ifs = z∗.solution}

)
(epsilon adjustment only for open endpoints)

23: while ~wT z(y∗) < ~wT z∗ − ε (z∗ is suboptimal to z(y∗) w.r.t. ~w) do
24: if mini=1,2 {|z∗i − zi(y∗)|} < ε and maxi=1,2 {|z∗i − zi(y∗)|} > ε then
25: ERROR message
26: end if
27: M ←M ∪ z(y∗)

(continued on next page)
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28: (RecursiveInnerLoop continued)
29: if z1(y∗) ≤ z∗1 − ε then
30: α← argmin{p2 : p ∈ zL ∪M,p1 < z∗1} bound by the nearest (on left) found NDP to z∗

31: M ′ ← InnerLoop(z(y∗), α, z∗, L) recurse within B(α, z∗) with inherited line segments
in L

32: M ←M ∪M ′
33: L← L \ line(z1, z2) remove “old” line segment
34: p̂← argmin{p2 : p ∈M,p1 < z∗1} choose the nearest (on left) found NDP to z∗

35: if p̂ ∈ line(z1, z2) then
36: z1 ← p̂
37: z1 open← FALSE
38: else {p̂ 6∈ line(z1, z2)}
39: z1 ← point(line(z1, z2), z2 = p̂2)
40: z1 open← TRUE
41: end if
42: end if
43: if z1(y∗) ≥ z∗1 + ε then
44: β ← argmin{p1 : p ∈ zR ∪M,p2 < z∗2}
45: M ′ ← InnerLoop(z(y∗), z∗, β, L) recurse within B(z∗, β)
46: M ←M ∪M ′
47: p̂← argmin{p1 : p ∈M,p2 < z∗2} choose the nearest (on right) found NDP to z∗

48: if p̂ ∈ line(z1, z2) then
49: z2 ← p̂
50: z2 open← FALSE
51: else {p̂ 6∈ line(z1, z2)}
52: z2 ← point(line(z1, z2), z1 = p̂1)
53: z2 open← TRUE
54: end if
55: end if
56: L← L ∪ line(z1, z2) add updated line segment
57: y∗ ← solution

(
min{~wT z : z1(x) ≤ z2

1 − ε(z2 open), z2(x) ≤ z1
2 − ε(z1 open), IP, ifs = z∗.solution}

)
(epsilon adjustment only for open endpoints)

58: end while
59: M ←M ∪ line(z1, z2)
60: return M
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Algorithm 8 Line Segment Generation
Input: z∗ nondominated point whose integer vector is fixed
Input: zL, zR upper-left and lower-right boundaries of the rectangle to explore
Output: (z1, z2, ~w,w known) the UL and BR endpoints for the line segment of frontier including

z∗ and the slope of the line segment (if found)
1: z1 known, z2 known← FALSE
2: w known← FALSE weight vector for which z∗ is optimal (if found, can be used to directly

compute z1, z2)
3: δ1, δ2 ← 100ε starting horizontal/vertical distance
4: (Explore for z2 in lower-right:)
5: i← 0
6: ti ← lexmin{(z2, z1) : z1(x) ≤ z∗1 + δ1, LP, ifs = z∗.solution} is the BR nondominated

point
7: while w known = FALSE and z2 known = FALSE do
8: if min

(
|z∗1 − ti1|, |z∗2 − ti2|

)
< ε then

9: z2 ← z∗

10: z2 known← TRUE
11: BREAK
12: end if
13: ~wi ← slope(z∗, ti)
14: ti+1 ← min{(~wi)T z(x), LP, ifs = z∗.solution} (scalarized by ~wi)
15: if (~wi)T ti+1 = (~wi)T z∗ and |z∗1 − ti1| > ε and |z∗2 − ti2| > ε then
16: ~w ← ~wi

17: w known← TRUE
18: if i ≥ 1 and ti ∈ B(zL, zR) then
19: z2 ← ti

20: z2 known← TRUE
21: end if
22: BREAK
23: end if
24: i← i+ 1
25: end while

(continued on next page)
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26: (Line Generation)
27: if w known = FALSE then
28: (Explore for z1 in upper-left:)
29: i← 0
30: ti ← lexmin{(z1, z2) : z2(x) ≤ z∗2 + δ2, LP, ifs = z∗.solution} is the UL nondominated

point
31: end if
32: while w known = FALSE and z1 known = FALSE do
33: if min

(
|z∗1 − ti1|, |z∗2 − ti2|

)
< ε then

34: z1 ← z∗

35: z1 known← TRUE
36: BREAK
37: end if
38: ~wi ← slope(z∗, ti)
39: ti+1 ← min{(~wi)T z(x), LP, ifs = z∗.solution}
40: if (~wi)T ti+1 = (~wi)T z∗ then
41: ~w ← ~wi

42: w known← TRUE
43: if i ≥ 1 then
44: z1 ← ti

45: z1 known← TRUE
46: end if
47: BREAK
48: end if
49: i← i+ 1
50: end while
51: (By the time the code has reached this point, either ~w is known OR both z1 and z2 are known)
52: if z1 known = FALSE then
53: z1 ← min{z1(x) : ~wT z(x) ≤ ~wz∗ + ε, z2(x) ≤ zL2 , LP, ifs = z∗.solution}
54: end if
55: if z2 known = FALSE then
56: z2 ← min{z2(x) : ~wT z(x) ≤ ~wz∗ + ε, z1(x) ≤ zR1 , LP, ifs = z∗.solution}
57: end if
58: if w known = FALSE then
59: ~w ← [−1,−1] clearly impossible gradient vector
60: end if
61: ~w ← ~w/||~w||1
62: return (z1, z2, ~w,w known)
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A.1 Line Segment Trimming Subroutine

Let Lα := L(α1, α2), where α1
1 < α2

1 and α1
2 > α2

2, denote the current (or “child”) line
segment, which contains NDP zα, and has gradient vector ~wα. Suppose that a line segment
from a parent call, Lβ := L(β1, β2), where β1

1 < β2
1 and β1

2 > β2
2 , contains the NDP zβ and

has gradient ~wβ . The two line segments Lα and Lβ can be extended to lines that intersect
provided ~wα 6= ~wβ (recall the gradient vectors are normalized). Their point of intersection,
γ ∈ R2, is easily computed: it is the solution of the system of two linear equations given
by ~wαγ = ~wαzα and ~wβγ = ~wβzβ .

The resulting intersection point is contained in both line segments if and only if

γ1 ∈ [α1
1, α

2
1] ∩ [β1

1 , β
2
1 ] and γ2 ∈ [α2

2, α
1
2] ∩ [β2

2 , β
1
2 ]. (A.1)

If γ satisfies (A.1), then the current line segment, Lα, is trimmed. Exactly one of the two
subsets of Lα, L(α1, γ) or L(γ, α2), must be dominated by points from Lβ . Since zα ∈ Lα
is an NDP, Lα is trimmed so as to retain the portion of it that contains zα: if γ1 < zα1 ,
then update α1 = γ and flag α1 to be closed; otherwise, if γ1 > zα1 , then update α2 = γ
and flag α2 to be closed. In the unlikely case that γ1 = zα1 , Lα is trimmed as follows: if
γ1 < zβ1 , then update α2 = γ and flag α2 to be closed; otherwise, if γ1 > zβ1 , then update
α1 = γ and flag α1 to be closed. Note that updating the appropriate endpoint of Lα to be
the intersection point γ and flagging it as closed prevents rediscovery of any point in Lβ
that dominates any part of Lα.

A.2 Instance Generation

The generated instances have the objective functions z1(x) := x1 and z2(x) := x2, where
x ∈ R2 is a vector of two continuous decision variables. Each instance’s NDF includes
some sections of the line segment Lk = {(x1, x2) ∈ R2 : x1 + x2 = 0,−k ≤ xi ≤
k for i = 1, 2} where k ∈ (0,∞) is a parameter. This line segment will be one slice in the
instance. The instance has π other slices, where π is a parameter, all of which have their
image in criterion space given by a pointed cone. The vertices of each cone lie on a line
segment parallel to Lk but shifted vertically down by d ∈ (0, 2k

π
) units: they lie on

Ld = {(x1, x2) : x1 + x2 = −d,−k ≤ xi ≤ k − d for i = 1, 2},

where d is a parameter. The slice with vertex (a, b) ∈ Ld is generated by the slice problem
with feasible set

P(a,b)(θ1, θ2) = {x ∈ R2 : θ1x1 + (1− θ1)x2 ≥ θ1a+ (1− θ1)b (A.2)
θ2x1 + (1− θ2)x2 ≥ θ2a+ (1− θ2)b}, (A.3)

where θ1 ∈ [1
2
, 1] and θ2 ∈ [0, 1

2
] are parameters that control the width of the cone. These

ranges for θ1 and θ2 ensure that the resulting cone contains (a, b) + R2
+ and is contained

in the half-space that contains Ld + R2
+. Figure A.1 illustrates this structure, showing

the image of the feasible set in criterion space for 4 slices: Lk and three pointed cones
with vertices lying on Ld. Note that θ1 = 1 and θ2 = 0 imply that the cone is precisely
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x1

x2

Lk

x1 ≥ a
x2 ≥ b

θ2x1 + (1− θ2)x2 ≥ θ2a+ (1− θ2)b

θ1x1 + (1− θ1)x2 ≥ θ1a+ (1− θ1)b

(a, b)

x1

x2

k

−k

k−k

Lk

Ld

Figure A.1: (Left) The orthogonal pointed cone with vertex (a, b) is shaded. The gener-
alized pointed cone is defined between the dotted and dashed lines. Different slices in an
instance may have different values of θ1 and θ2. (Right) An example with 4 slices, including
Lk and the boundary of three cones.

(a, b) + R2
+, and hence that (a, b) is an isolated NDP. Otherwise, if θ1 < 1, the left-hand

boundary of the cone, from (a, b) to its intersection with L, is an NLS, while if θ2 > 0,
the right-hand boundary of the cone, from (a, b) to its intersection with Lk, is an NLS. All
instances are constructed to have the property that no two cones overlap within the band
between Lk and Ld. This means that Lk alternates between a section that is part of the NDF
and a section dominated by one cone.

Given any set of π polyhedra, say P i = {x ∈ Rm : Aix ≥ ci}, for i = 1, . . . , π, the
MIP feasible set {(x, y) ∈ Rm×{0, 1}π : Aix ≥ ci−Mi(1−yi), ∀i = 1, . . . , π,

∑π
i=1 yi =

1} has (for appropriately chosen big-M values, (Mi)
π
i=1) slice problems with feasible sets

{P i}πi=1. We take the objective function vector to be z(x) = (x1, ...xm) so that any polye-
hdron in criterion space is easily reverse-engineered to give a polyhedron in decision space
(they have precisely the same description).

For the π + 1 polyhedra consisting of Lk and π pointed cones P(ai,bi)(θ
i
1, θ

i
2), for i =

1, . . . , π, where (ai, bi) denotes the vertex of the ith cone, this gives the following BOMIP:

minimize (x1, x2) (A.4)
s.t. x1 + x2 ≥ −2k(1− y0) (A.5)

θi1x1 + (1− θi1)x2 ≥ θi1ai + (1− θi1)bi − 2k(1− yi) ∀i = 1, 2, ..., π (A.6)

θi2x1 + (1− θi2)x2 ≥ θi2ai + (1− θi2)bi − 2k(1− yi) ∀i = 1, 2, ..., π (A.7)
π∑
i=0

yi = 1 (A.8)

−k ≤ xi ≤ k ∀i = 1, 2 (A.9)
y ∈ {0, 1}π+1. (A.10)

This BOMIP has a number of variables and a number of constraints that is linear in π: it
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x1
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Figure A.2: NDPs and associated cones generated by the fixed cone-width class of in-
stances. (Left) If the pointed cones from NDPs overlap on Lk, then there are fewer than
π + 1 nondominated segments of Lk. (Right) Choosing the NDPs such that −bi < ai+1

prevents such overlapping, thus guaranteeing exactly π + 1 line segments of Lk are non-
dominated. All instances we generate are of the latter form.

has π + 3 variables and 4 + 2π constraints.
We generate two different classes of instances having the structure described above.

One class has the π cone points distributed randomly along Ld, but has θ1 = 1 and θ2 = 0
for all cones. Since this means that all cones are orthogonal pointed cones, we refer to these
as fixed cone-width instances. An illustration of these instances is given in Figure A.2. The
other class has the cone points equally spaced along Ld, but has randomized values of θ1

and θ2; we call these randomized cone-width instances. These are illustrated by the right-
hand side of Figure A.1.

All instances are carefully designed to ensure that each NLS, which is not a point, has
length at least ε. In the case of the fixed cone-width instances, the only such NLSs are
sections of Lk, and these can be guaranteed to have length at least ε by a careful choice
of the randomized spacing between cone points, as a function of d. For fixed cone-width
instances we take d = k/4, and we expect the choice of k to ensure that d ≥ ε. The latter
condition also ensures that the horizontal and vertical gaps in the NDF are of length at least
ε. In the case of random cone-width instances, an NLS may be either a section of Lk or a
section of a cone boundary. The length of an NLS from Lk is ensured to be at least ε by
restricting the values of θ1 and θ2 to lie within [3

4
, 1] and [0, 1

2
], respectively, and choosing

d = k/(π + 1) − 1
2
. The length of an NLS generated by a cone boundary is ensured to be

at least ε by requiring d ≥ ε. Again, we expect the choice of k to guarantee that d ≥ ε,
ensuring that the horizontal and vertical gaps in the NDF are also of length at least ε. We
force a proportion of the cones in a randomized cone-width instance to be orthogonal1.

Specifics of our procedure for generating fixed cone-width instances are given in Algo-
rithm 9. By construction, the NDF associated with such an instance has exactly π isolated
NDPs and π + 1 line segments (2 half-open at the ends of Lk and π − 1 open segments

1A cone is chosen to be orthogonal with probability φ, a parameter. In all our instances, we used φ = 0.05.
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in between isolated NDPs). Even large instances of this class of BOMIPs are solved quite
quickly by most methods, so they are not ideal for testing computational efficiency. How-
ever, since their NDFs are known exactly, these instances are useful for validating the
correctness of an algorithm.

Specifics of our procedure for generating random cone-width instances are given in Al-
gorithm 10 and Algorithm 11, which generate the cone width parameters {(θi1, θi2)}πi=1 and
cone vertices, {(ai, bi)}πi=1, respectively. The NDFs associated with the resulting BOMIP
will have no more than 3π + 1 line segments (π + 1 from Lk and at most 2 per cone),
including open endpoints induced by any orthogonal cones and closed endpoints induced
by intersecting slices. The random cone-width class of instances is more difficult to solve,
in practice, than the fixed cone-width, because of the high frequency of intersecting slices
in the NDF.

Together, these two structured sets of instances provide a useful way to study the accu-
racy and robustness of a BOMIP algorithm.

Algorithm 9 Fixed Cone-Width NDP Generation
1: d = k/4 (distance by which Ld is shifted down)
2: w = (2k − d)/n (the width of subintervals)
3: a1 = U(−k,−k + w)
4: b1 = −a1 − d
5: for i = 2, 3, ..., n do
6: ai = U(max{−k + (i− 1)w,−bi−1 + ε},−k + iw)
7: bi = −ai − d
8: end for

Algorithm 10 Randomized Theta Generation
1: thetalist= ∅
2: for i = 1, 2, ..., n do
3: if U(0, 1) ≤ π then
4: θ1 = 1
5: θ2 = 0
6: else
7: θ1 = U(3

4 , 1)
8: θ2 = U(0, 1

4)
9: end if

10: thetalist.append((θ1, θ2))
11: end for
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Algorithm 11 Randomized Cone-Width NDP Generation
1: d = k/(n+ 1)− 0.5
2: a1 = −k + 0.5d
3: b1 = −a1 − d
4: for i = 2, ..., n do
5: ai = ai−1 + 2d+ 1
6: bi = −ai − d
7: end for

A.3 Comparison between BLM variants

177



Algorithm Ins nNDP nIPF TT IPT LPT nIP nLex nMin nScal nGood nLP nBox nSIS nZL
Basic 16 2810 115 680.0 522.1 157.0 8591 2848 14 2881 - 22687 2839 2302 2830

17 2986 110 865.4 668.1 196.4 9058 3003 7 3045 - 24920 2995 2442 2987
18 2775 101 739.1 571.8 166.7 8399 2787 12 2813 - 22478 2778 2253 2769
19 6204 181 2060.2 1650.6 407.2 18721 6217 18 6269 - 53756 6205 5145 6193
20 3145 100 849.7 646.1 202.6 9596 3182 34 3198 - 26839 3168 2704 3154

Avg. 3584 121.4 1038.9 811.7 226.0 10873 3607.4 17 3641.2 - 30136 3597 2969.2 3586.6
SIS 16 2764 115 206.0 148.6 57.1 1934 517 14 551 335 8287 843 335 500

17 2952 110 257.7 185.6 71.7 1960 521 7 562 349 8915 862 349 507
18 2738 101 232.8 170.5 61.9 1909 506 12 535 350 8172 847 350 492
19 6166 181 577.1 433.1 143.1 3805 1018 16 1080 673 18212 1681 673 1000
20 3122 100 216.1 148.8 66.9 1748 454 33 471 336 8698 777 336 427

Avg. 3548.4 121.4 297.9 217.3 80.1 2271.2 603.2 16.4 639.8 408.6 10456.8 1002 408.6 585.2
Recursive 16 2810 115 639.7 485.7 153.2 8212 2586 - 3040 - 22340 2577 2220 2568

17 2987 110 835.3 639.2 195.3 8757 2799 - 3159 - 24674 2791 2416 2783
18 2775 101 691.6 527.2 163.6 8015 2512 - 2991 - 22161 2503 2138 2494
19 6198 181 2006.9 1594.1 410.4 18023 5718 - 6587 - 53148 5706 4964 5694
20 3144 100 824.9 618.7 205.2 9113 2828 - 3457 - 26537 2814 2458 2800

Avg. 3582.8 121.4 999.7 773 225.5 10424 3288.6 - 3846.8 - 29772 3278.2 2839.2 3267.8

Table A.1: Comparison between the different algorithms for historical instances, class C160. Times are reported in seconds.
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Algorithm Ins nNDP nIPF TT IPT LPT nIP nLex nMin nScal nGood nLP nBox nSIS nZL
Basic 21 16850 294 37665.5 33307.6 4339.7 53514 17790 40 17894 - 171370 17803 15926 17766

22 19778 410 42045.3 36927.4 5095.7 61766 20540 23 20663 - 191611 20510 18074 20476
23 17319 343 38995.1 34570.3 4409.4 53859 17895 26 18043 - 171514 17884 15776 17871
24 19898 460 46967.1 41632.8 5312.7 62338 20706 34 20892 - 200619 20696 17867 20682
25 13682 337 24450.1 21268.9 3171.0 42196 14024 27 14121 - 130934 13994 12130 13964

Avg. 17505.4 368.8 38024.6 33541.4 4465.7 54734.6 18191 30 18322.6 - 173209.6 18177.4 15954.6 18151.8
SIS 21 15699 294 6106.2 4890.5 1211.5 6598 1741 40 1849 1227 43443 2956 1227 1722

22 18840 410 7788.7 6297.5 1485.3 8613 2287 23 2421 1595 52662 3850 1595 2233
23 16449 343 6977.4 5607.1 1366.8 7459 1982 26 2131 1338 46627 3309 1338 1961
24 18546 460 9535.6 7899.2 1630.3 10070 2672 34 2884 1808 56219 4468 1808 2679
25 13239 337 5329.1 4296.6 1029.2 6578 1753 26 1853 1193 37911 2916 1193 1700

Avg. 16554.6 368.8 7147.4 5798.2 1344.6 7863.6 2087 29.8 2227.6 1432.2 47372.4 3499.8 1432.2 2059
Recursive 21 16831 294 37201.4 32767.3 4417.0 52297 16979 - 18339 - 170040 16971 15611 16955

22 19763 410 41650 36417.7 5210.1 60312 19600 - 21112 - 189879 19568 17830 19536
23 17315 343 38684.6 34149.4 4521.7 52585 17042 - 18501 - 170082 17030 15546 17018
24 19890 460 46196.8 40725.8 5449.5 60571 19576 - 21419 - 198351 19566 17509 19552
25 13667 337 24635 21314.5 3310.4 40899 13143 - 14613 - 129295 13113 11834 13083

Avg. 17493.2 368.8 37673.6 33074.9 4581.7 53332.8 17268 - 18796.8 - 171529.4 17249.6 15666 17228.8

Table A.2: Comparison between the different algorithms for historical instances, class C320. Times are reported in seconds.
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Algorithm Ins nNDP nIPF TT IPT LPT nIP nLex nMin nScal nGood nLP nBox nSIS nZL
Basic A 15002 5001 3996.1 1803.6 1875.2 52010 14653 398 22306 - 104487 14613 3259 14567

B 15002 5001 3853.1 1687.7 1849.7 51738 14561 493 22123 - 103984 14519 3154 14475
C 15002 5001 3981.6 1850.5 1819.9 51695 14544 518 22089 - 103755 14495 3193 14446
D 15002 5001 3842.0 1699.0 1824.9 51744 14601 449 22093 - 104201 14563 3153 14521
E 15002 5001 3948.9 1767.4 1864.2 51745 14574 474 22123 - 104228 14542 3116 14504

Avg. 15002 5001 3924.3 1761.6 1846.8 51786.4 14586.6 466.4 22146.8 - 104131 14546.4 3175 14502.6
SIS A 15002 5001 4454.9 2278.3 1852.4 53523 16157 326 20820 63 113195 16218 63 16064

B 15002 5001 4909.8 2623.9 1976.3 53881 16322 386 20749 102 113185 16397 102 16191
C 15002 5001 4267.5 1969.3 1973.5 53239 16081 422 20592 63 112113 16126 63 15954
D 15002 5001 4334.7 2025.1 1985.4 53682 16209 373 20798 93 113018 16277 93 16092
E 15002 5001 4642.9 2328.5 1982.3 53552 16187 391 20704 83 112541 16239 83 16065

Avg. 15002 5001 4522.0 2245.0 1954.0 53575.4 16191.2 379.6 20732.6 80.8 112810.4 16251.4 80.8 16073.2
Recursive A 15002 5001 2861.8 1383.9 1184.6 29711 3638 - 22435 - 72937 3616 1 3594

B 15002 5001 2788.4 1301.3 1192.8 29587 3614 - 22359 - 72826 3594 1 3574
C 15004 5001 2827.3 1350.4 1184.6 29538 3597 - 22344 - 72824 3578 1 3559
D 15002 5001 2788.5 1306.2 1187.8 29664 3630 - 22404 - 72986 3608 1 3586
E 15002 5001 2851.8 1367.3 1189.4 29641 3689 - 22263 - 72909 3664 1 3639

Avg. 15002.4 5001 2823.6 1341.8 1187.8 29628.2 3633.6 - 22361 - 72896.4 3612 1 3590.4

Table A.3: Comparison between the different algorithms for generated instances, n = 5000. Times are reported in seconds.
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Algorithm Ins nNDP nIPF TT IPT LPT nIP nLex nMin nScal nGood nLP nBox nSIS nZL
Basic A 22502 7501 9268.1 4379.1 4008.0 81466 21893 669 37011 - 157416 21833 8149 21765

B 22502 7501 9093.0 4228.6 3981.7 81333 21847 705 36934 - 157264 21796 8101 21741
C 22502 7501 8912.3 4065.1 3984.0 81446 21847 704 37048 - 157339 21797 8192 21747
D 22502 7501 8460.9 3818.5 3814.2 81301 21807 746 36941 - 157198 21757 8058 21705
E 22502 7501 8672.5 4058.3 3786.0 81444 21840 708 37056 - 157230 21794 8240 21742

Avg. 22502 7501 8881.4 4109.9 3914.8 81398 21846.8 706.4 36998 - 157289.4 21795.4 8148 21740
SIS A 22502 7501 11346.9 6662.2 3791.6 79742 24039 595 30955 114 168338 24123 114 23916

B 22502 7501 12163.8 7132.0 4131.0 79662 23994 591 30960 123 167968 24073 123 23854
C 22501 7501 12520.1 7754.7 3879.3 79925 24106 595 31013 105 168628 24178 105 23968
D 22502 7501 12395.5 7320.7 4155.7 79593 23959 628 30944 103 168028 24034 103 23817
E 22503 7501 11874.0 6862.9 4129.8 79772 24007 621 31027 110 168178 24086 110 23889

Avg. 22502 7501 12060.1 7146.5 4017.5 79738.8 24021 606 30979.8 111 168228 24098.8 111 23888.8
Recursive A 22502 7501 6544.4 3209.7 2535.2 44466 5305 - 33856 - 109695 5278 1 5251

B 22502 7501 6329.9 3016.2 2517.2 44485 5382 - 33721 - 109677 5345 1 5308
C 22502 7501 6341.6 2964.6 2562.0 44445 5257 - 33931 - 109532 5228 1 5199
D 22502 7501 6172.0 2822.3 2538.8 44415 5136 - 34143 - 109698 5099 1 5062
E 22505 7501 6345.6 2997.1 2538.9 44451 5284 - 33883 - 109541 5252 2 5220

Avg. 22502.6 7501 6346.7 3002.0 2538.4 44452.4 5272.8 - 33906.8 - 109628.6 5240.4 1.2 5208

Table A.4: Comparison between the different algorithms for generated instances, n = 7500. Times are reported in seconds.
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APPENDIX B
WEIGHT SPACE DECOMPOSITION

B.1 Running Example

Figure B.1: All weight set components for Example 10. Labeled local nadir weights corre-
spond to Table B.1, which gives the contributing set for each.
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Table B.1: Each element indicates the labels (e.g., i, j, b(k) for yi, yj, yb(k), respectively)
for the complete contributing set per local nadir weight. Each column is associated with
one weight set component, and each row corresponds to labels given in Figure B.1.

Label y1 y2 y3 y4 y5 y6

A 1,2 2,3,5,b(2) 2,3,5,6,7 1,3,4,6,7 5,b(1),b(2) 3,6,7,b(1)
B 1,2,b(2) 1,2,b(2) 2,3,5 1,3,4 5,7,B(2) 3,6,7
C 1,2,b(2),b(3) 1,2,b(2),b(3) 2,3,5,b(2) 1,2,3,4,5 2,5,b(2) 2,5,6,7
D 1,2,b(3) 1,2,b(3) 1,2,3,4,5 1,3,4,b(3) 2,3,5 1,3,4,6,7
E 1,3,4,b(3) 1,2 1,3,4 4,6,b(3) 1,3,4,5 4,6
F 1,3,4 1,2,4,5 1,3,4,b(3) 4,b(1),b(3) 2,3,5,6,7 4,6,b(3)
G 1,3,4,6,7 2,3,5 1,3,4,6,7 4,6,b(1) 5,7 6,b(1),b(3)
H 1,2,4,5 2,3,5,6,7 3,6,7 4,6 5,7,b(1) 4,6,b(1)
I 3,6,7,b(1)

B.2 Comparing Decompositions
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(a) Sample set with 88 ND images, including 21 ESND images.

(b) Sample set with 43 ND images, including 11 ESND images.

(c) Sample set with 71 ND images, including 18 ESND images.

Figure B.2: Comparing weight set decompositions with respect to weighted sum scalariza-
tion (left) and weighted Tchebychev scalarization (right) for sample ND sets. Color key is
consistent between pairs. Continued from Figure 4.7.
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GLOSSARY

ε-frontier Define an ε-approximation of the ND frontier N , or simply an ε-frontier,Nε, to

be a set of points in criteria space such that, for fixed ε > 0, (1) for all z ∈ N , there

exists z̄ ∈ Nε with ||z − z̄||2 ≤ ε, and (2) for all z̄ ∈ Nε, there exists z ∈ N with

||z − z̄||2 ≤ ε. 51

ith dimensional contributing set Given LNP n := yN(Ȳ ) and i ∈ {1, . . . , p}, the ith

dimensional contributing set of n, denoted Ci(n), is the subset of Ȳ that contributes

to LNP n in component i. 118

biobjective mixed integer linear program (MOP) with the added restriction that p = 2

and X ⊆ ZnI × RnC for finite nI and nC . 4, 15

complete For a given LNP, its contributing set Ȳ is complete with respect to YN if for all

y′ ∈ YN \ Ȳ , yN(Ȳ ) 6= yN(Ȳ ∪ {y′}). 118

component-wise orderings For y, ȳ ∈ Rp, y 5 ȳ is defined by yi ≤ ȳi for all i = 1; . . . , p;

y ≤ ȳ is defined by y 5 ȳ and y 6= ȳ; and y < ȳ is defined by yi < ȳi for all

i = 1, . . . , p. 4

compromise region For λ1, . . . , λN ∈ Λ, N ≥ 3 conv(λ1, . . . , λN) is called the compro-

mise region. 150

decision space Rn where n is the number of variables. 3

dichotomic search Given a biobjective (MOP) (p = 2), dichotomic search iteratively

solves the weighted sum scalarization (1.4) to discover all ESND images. At each
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step of the procedure, ESND images are compared as a pair, and they are either cer-

tified as adjacent on the convex hull of Y , or a new ESND image is found which

proves them to be nonadjacent. 7

dimensional weight set component Let y ∈ YwN . We define for i = 1, . . . , p the ith

dimensional weight set component by

Λ(y, i) := {λ ∈ Λ(y) : λiyi ≥ λkyk for all k = 1, . . . , p}

. 76

dominates (strictly dominates) For minimization, a feasible solution x (strictly) domi-

nates another solution x′ if f(x) ≤ f(x′) (f(x) < f(x′)). 4

efficient (weakly efficient) For minimization, a feasible solution x∗ ∈ X is (weakly) effi-

cient if there does not exist another feasible solution x ∈ X such that f(x) ≤ f(x∗)

(f(x) < f(x∗)). 4

extreme supported Supported ND images that are also extreme points of the convex hull

of Y are called extreme supported nondominated (ESND) images. 6, 15, 70, 108

image space Rp where p is the number of objectives, also known as the criterion or objec-

tive space. 3

inner approximation An inner approximation, {Λ−(y)}y∈Y ′ is such that the approxi-

mated weight set components are subsets of the true components, i.e., Λ−(y) ⊆ Λ(y)

for all y ∈ Y ′. 146

kernel weight For y ∈ YwN we denote the kernel weight or kernel vertex (also known as
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T-vertex [64]) of y by λ(y) and define it by

λi(y) :=
1

yi

1∑p
j=1

1/yj
for i = 1, . . . , p

. 74, 113

lexicographic scalarization The lexicographic scalarization hierarchically minimizes the

objectives in turn. We define only the biobjective case: the case of minimizing f1(x)

and then f2(x) is denoted by

η = lexmin{(f1(x), f2(x)) : x ∈ X}

. 5, 20

local dimension Let a weight λ and a set S be given such that λ ∈ S ⊆ Λ. Further, we

denote with P the set of all polytopes in Rp. Then, the local dimension of λ with

respect to S is given by

dim(λ, S) := max
P∈P,λ∈P⊆S

dim(P )

. 96

local nadir point Given a subset of weakly ND images, Ȳ = {y1, . . . , yR̄} ⊆ YwN , we

define the local nadir point yN(Ȳ ) by

yNi (Ȳ ) = max
r=1,...,R̄

yri for i = 1, . . . , p

. 82, 118

local nadir weight We call the kernel weight of yN(Ȳ ), λN(Ȳ ) := λ(yN(Ȳ )), the local

nadir weight . 82, 120
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maximal A given LNP with contributing set Ȳ is maximal with respect to YN if yN(Ȳ )

is not strictly dominated by any y′ ∈ YN , but yN(Ȳ ∪ {y′}) is strictly dominated by

some y′ ∈ YN . 118

multiobjective discrete optimization problem (MOP) with the added restriction thatX ⊆

Zn for finite n. 4, 67

multiobjective optimization problem A multiobjective optimization problem, with p ∈

N, p ≥ 2 objectives can be stated as

min f(x) = min (f1(x), . . . , fp(x))>

s.t. x ∈ X ,

where X ⊆ Rn, for n ∈ N, is called the feasible set, and f = (f1, . . . , fp)
> : Rn →

Rp is the (vector-valued) objective function. 3

nondominated An image y = f(x) is nondominated (ND) if x is efficient and denote by

YN the set of ND images. 4, 15, 67

nondominated frontier The set of ND images, denoted YN . 4

nondominated line segment Define S to be the index set of all feasible integer solutions

in XI . For a slice problem with index s ∈ S, we denote its slice by N s. If a slice

problem with index s ∈ S contributes to the ND frontier of the BOMIP, so N s ∩ N

is nonempty, then we write N s ∩N = {Ls1, Ls2, ..., Lsn(s)}, where n(s) is the number

of line segments contributed to the ND frontier by the slice problem. (If N s ∩ N

is empty, then n(s) = 0.) Each of the line segments, Lsi for some s ∈ S and i =

1, . . . , n(s), is a nondominated line segment. 19

nonnegative orthant Rp
= := {t ∈ Rp : t = 0}. The sets Rp

≥ and Rp
> are defined analo-

gously. 4
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outer approximation An outer approximation, {Λ+(y)}y∈Y ′ for Y ′ ⊂ YN , for a weight

set decomposition {Λ(y)}y∈YN is an approximation for a proper subset of the images

where the approximated weight set components are supersets of the true components,

i.e., Λ(y) ⊆ Λ+(y) for all y ∈ Y ′. 146

polytopal complex A polytopal complex C is a finite collection of polytopes in Rd such

that (1) the empty polytope is in C, (2) if P ∈ C, then all the faces of P are also in C,

and (3) the intersection P ∩Q of two polytopes P , Q ∈ C is a face of both P and Q

. 72

polytopal subdivision A polytopal subdivision of a set S ⊆ Rd is a polytopal complex C

with the underlying set
⋃
P∈C P = S . 72

slice The ND frontier of a BOLP slice problem consists of a (connected) set of (closed)

line segments; we call this a slice. 19

slice problem Given xI ∈ XI , the biobjective linear program obtained from fixing the

integer variables to xI is called the slice problem for xI [53]. 19

star-shaped A set S ⊆ Rp is star-shaped, if there exists a y ∈ S such that θy+(1−θ)ȳ ∈ S

for all ȳ ∈ S and all θ ∈ (0, 1). The set of all such images y is called kernel of S and

is denoted by ker(S). 72, 113

supported Weighted sum scalarizations yield supported ND images, which are located on

the convex hull of the set of images. 6

vertical gap We define a vertical gap as an interval (y−, y+) ⊂ R such that no ND image

p exists with p2 ∈ (y−, y+) but where there does exist a ND image p− with p−2 = y−

and either a ND image p+ with p+
2 = y+ or a sequence of ND images {p0, p1, ...}

with limn→∞ p
n
2 = y+ (or both). A horizontal gap can be defined similarly. 19
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weakly nondominated An image y = f(x) is weakly nondominated if x is weakly effi-

cient and denote by YwN the set of weakly ND images. 4

weight set Defined as Λ :=
{
λ ∈ Rp

= :
∑p

k=1 λk = 1
}

. 73, 108

weight set component for y ∈ Y , we define weight set components as ΛWS(y) :=
{
λ ∈ Λ : λ>y ≤ λ>ȳ for all ȳ ∈ Y

}
for the weighted sum scalarization and Λ(y) :=

{
λ ∈ Λ : ‖y‖λ∞ ≤ ‖ȳ‖λ∞ for all ȳ ∈ Y

}
for the weighted Tchebychev scalarization . 74, 108, 190

weighted Tchebychev scalarization Let ‖y‖λ∞ := maxi=1,...,p{|λi yi|}. With a reference

point s ∈ Rp and a given weight vector λ ∈ Rp
≥, the weighted Tchebychev scalariza-

tion with respect to λ can be stated as

min {‖f(x)− s‖λ∞ : x ∈ X}

. 6, 68, 108

weighted sum scalarization For vector λ ∈ Rp
≥, we refer to

min{λTf(x) : x ∈ X}

as the weighted sum scalarization with respect to λ. 6, 107
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ACRONYMS

εTCM ε,Tabu-Constraint Method. 16

BBM Balanced Box Method. 16

BLM Boxed Line Method. 16

BOLP Biobjective Linear Program. 19

BOMIP Biobjective Mixed Integer Linear Program. 4, 15

ESND Extreme Supported Nondominated. 6, 15, 70, 108

IP Integer Program, including mixed integer linear programs. 5

LNP Local Nadir Point. 118

LP Linear Program. 15

MODO Multiobjective Discrete Optimization Problem. 4, 16, 67

MOP Multiobjective Optimization Problem. 3, 156

ND Nondominated. 4, 67

NDLS Nondominated Line Segment. 19

TOMIP Triobjective Mixed Integer Linear Program. 156

TSA Triangle Splitting Algorithm. 15
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