
Animation Support in a User Interface Toolkit:
Flexible, Robust, and Reusable Abstractions

Scott E. Hudson
John T. Stasko

Graphics Visualization and Usability Center
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

E-mail: hudson@cc.gatech.edu, stasko@cc.gatech.edu

ABSTRACT

Animation can be a very effective mechanism to
convey information in visualization and user
interface settings. However, integrating animated
presentations into user interfaces has typically
been a difficult task since, to date, there has been
little or no explicit support for animation in
window systems or user interface toolkits. This
paper describes how the Artkit user interface
toolkit has been extended with new animation
support abstractions designed to overcome this
problem. These abstractions provide a powerful
but convenient base for building a range of
animations, supporting techniques such as simple
motion-blur, "squash and stretch", use of arcing
trajectories, anticipation and follow through, and
"slow-in / slow-out" transitions. Because these
abstractions are provided by the toolkit they are
reusable and may be freely mixed with more
conventional user interface techniques. In
addition, the Artkit implementation of these
abstractions is robust in the face of systems (such
as the X Window System and Unix) which can be
ill-behaved with respect to timing considerations.

Keywords: object-oriented user interface
toolkits, window systems, animation techniques,
dynamic interfaces, motion blur, real-time
scheduling.

1 INTRODUCTION

Human perceptual capabilities provide a
substantial ability to quickly form and understand
models of the world from moving images. As a
result, in a well designed display, information can

 This work was supported in part by the National Science
Foundation under grants IRI-9015407, DCA-9214947,
CCR-9121607 and CCR-9109399.

often be much more easily comprehended in a
moving scene than in a single static image or even
a sequence of static images. For example, the
"cone tree" display described in [Robe93]
provides a clear illustration that the use of
continuous motion can allow much more
information to be presented and understood more
easily.

However, even though the potential benefits of
animation in user interfaces have been recognized
for some time ([Baec90] for example, surveys a
number of uses for animation in the interface and
cites their benefits and [Stask93] reviews
principles for using animation in interfaces and
describes a number of systems that make extensive
use of animation in an interface), explicit support
for animation is rarely, if ever, found in user
interface support environments. The work
described in this paper is designed to overcome
this problem by showing how flexible, robust,
and reusable support for animation can be
incorporated into a full scale object-oriented user
interface toolkit. Specifically, this paper describes
how the extension mechanisms of Artkit Ñ the
Advanced Reusable Toolkit (supporting interfaces
in C++) [Henr90] Ñ have been employed to
smoothly integrate animation support with other
user interface capabilities.

The animation abstractions provided by the Artkit
system are designed to be powerful and flexible Ñ
providing basic support that can be used to build a
range of sophisticated techniques such as: simple
motion-blur, "squash and stretch", use of arcing
trajectories, anticipation and follow through, and
"slow-in / slow-out" transitions [Lass87].
Examples of several of these techniques will be
given in the next section.

2

 a. b.

 c. d.

Figure 1. In this animation, two icon objects (each implementing a simple form of motion blur)
move from left to right across an arcing trajectory. The lower icon employs a non-uniform ("slow-
in / slow-out") pacing function Ñ starting slowly, moving more quickly in the center of the
trajectory, and finally ending its movement slowly.

In addition to providing power and flexibility,
another central challenge has been to support these
facilities under conventional window and
operating systems such as the X window system
and Unix. These systems were not designed with
this sort of work in mind, and hence provide only
the most limited support for time dependent
activities. For example, these systems normally

do not provide explicit control of scheduling, nor
provide any timing guarantees, or even facilities to
express timing goals. Further, in order to improve
overall performance, client-server based window
systems such as X, typically operate
asynchronously resulting in even more
unpredictable timing behavior. As a result, an
animation system must cope with the possibility of
arbitrary, irregular, and unpredictable delays in the

3

delivery of display and other services. While
these problems must inevitably affect the
appearance of the final result, the abstractions
described here are designed to be robust and
degrade gracefully in the presence of these
problems Ñ providing good behavior when
possible and reasonable behavior in all cases.

Finally, by providing a strong set of base facilities
inside a toolkit it is possible both to integrate
animated presentation with more conventional user
interface techniques, and reuse the facilities for a
wide range of applications that otherwise could not
justify the expense and difficulty involved with
starting from scratch.

The remainder of this paper is organized as
follows. The next section will provide several
examples that illustrate the animation techniques
that can be supported by the Artkit animation
abstractions. Section 3 will consider these
abstractions from the interface designer's point of
view, while Section 4 will consider how they are
implemented. Finally, Section 5 will describe
more implementation details and some experience,
while Section 6 will provide a conclusion.

2. EXAMPLES

In [Lass87], Lassiter describes 11 fundamental
principles of traditional animation along with some
specific techniques that go with them. Some of
these such as staging, exaggeration, and character
appeal are artistic design issues that do not lend
themselves well to specific toolkit support.
However, the work described here attempts to
support many of the others Ñ either directly or
through important enabling capabilities. These
include: robust support for controlled timing of
actions, support for "slow-in / slow-out"
transitions, use of arcs in movement trajectories,
the ability to support "squash and stretch" during
animation sequences (as well as the more
sophisticated technique of simple motion blur),
and support for anticipation and follow through in
movements. (Although partially supported, we
leave specific facilities for the remaining
techniques of overlapping action and use of
secondary action , as well as complete support for
keyframe (pose-to-pose) interpolation for future

work). This section illustrates how many of these
techniques can be supported by the Artkit system.

Timing: Careful timing can be critical for
conveying properties of a moving object as well as
properly pacing actions so that significant events
are not missed by the user. Although it cannot be
illustrated in static images, a central goal of the
work presented here is to provide controlled
timing. If an object is to move from point A to
point B in 3 seconds, the interface implementor
can easily state this. In addition, the system will
deliver a metered set of animation steps to the
object which cause it to arrive at point B as close
to 3 seconds after leaving point A as possible,
with as smooth a transition as the actual OS and
window system performance and timing allow.

Slow-in / slow-out transitions: A slow-in / slow-
out transition involves non-uniform pacing of
movements. If an animated sequence is thought of
as a series of poses (e.g., important points where
action occurs or meaning is conveyed), then
spending more time entering the pose and leaving
it (and less time moving from one pose to another)
can be a very effective way to get a point across.
Figure 1 illustrates a slow-in / slow-out transition.
Here, the top object maintains a uniform velocity
while the bottom starts is trajectory slowly, moves
quickly in the center, and ends slowly. This non-
uniform pace is implemented using a reusable
slow-in/slow-out pacing function taken from the
toolkit library.

Arcs: Figure 1 also illustrates the use of an arced
trajectory for movement. The animation
abstractions described here support the use of any
trajectory that can be described as a parameteric
curve of one variable. This allows considerable
flexibility and provides a uniform framework for
trajectories such as splines, circular arcs, and
straight lines.

Motion blur: Finally, Figure 1 also illustrates a
very simple motion blur technique. Here the
objects leave behind a blurred trail which varies in
length depending on velocity. This technique
helps prevent strobing effects for fast motions.

4

 a. b.

 c. d.

Figure 2. In this animation, two large bouncing boxes each containing two smaller bouncing
"balls" illustrate squash and stretch as they impact the sides of the animation window. Trajectories
for the smaller balls are applied within the local coordinate system of the box and are used to
compute a position relative to the current height and width of the enclosing box.

5

Squash and stretch: Very few real world objects
are completely rigid. More natural looking and
appealing movements can be created when objects
are allowed to deform somewhat as they start and
stop. Figure 2 illustrates this technique. As the
boxes containing the "bouncing balls" impact the
sides of the window they "squash" Ñ reducing
their height or width but increasing their other
dimension in order to maintain constant volume or
area Ñ then they stretch back to their normal
proportions and begin movement again.

Anticipation and follow through: In traditional
animation, a three part formula is often used for
portraying actions. Before the action proper
begins an anticipation action is taken to set the
stage and prepare the viewer for the action that is
to about to take place (for example, an exaggerated
spinning of the character's feet indicating that they
are about to exit the scene at high speed).
Similarly, after the action proper, there is typically
a termination or follow through movement so that
the motion does not stop abruptly. This simulates
or exaggerates the natural effects of inertia that we
implicitly expect to see. The squash and stretch
actions shown in Figure 2, are a simple example
of this. Each wall to wall movement of a box has
been implemented as three separate movements
using the toolkit facilities: a stretch at the
beginning, the linear movement from wall to wall,
and a squash at the end. To support this and other
effects, the toolkit provides a capability for
scheduling movements relative to each other (e.g.,
one after the other, or with delays and/or
overlaps).

The next section will consider the toolkit
abstractions that each of the techniques illustrated
here are built upon.

3. ABSTRACTIONS FOR ANIMATION

The central animation abstraction provided by the
toolkit is the transition . A transition is a
movement or transformation of an object from one
state to another over a period of time. Typically
transitions are made in space Ñ from one position
to another Ñ but the system can also support other
kinds of transitions such as from one shape to
another (as shown in the squash and stretch
transitions used to implement Figure 2). In

 This abstraction is an extension and generalization of
transition concept developed in [Stas90] which in turn was
partially inspired by the P-Curves described in [Baec69].

general an animated presentation will be built up of
a series of transitions of various objects over time.
These transitions can be individually created and
scheduled by the user interface, or can be created
relative to each other so that the start of one
transition can be automatically triggered by the
start or end of another.

The notion of a transition is directly modeled in the
system with a transition object. As illustrated in
Figure 3, each transition object is defined using
three components: a reference to the interface
object moving over the transition, the trajectory
that the object is to take, and the time interval over
which the transition is to occur. A trajectory is
further decomposed into two components: a curve
and an optional pacing function which determines
how quickly various portions of the curve are
traversed.

Transition
Interface Object
Time Interval
Trajectory

Curve
Pacing Function

Figure 3. Parts of a Transition Object

The curve of a trajectory is implemented as a
parameteric function returning a point. This point
is typically in the coordinate system of the object
being moved, but can also be interpreted in other
ways (such as the relative trajectory of the smaller
"balls" in Figure 2.). The parameter to the curve
function ranges from zero to one and will be
related to the passage of time. This framework
allows a wide variety of curves, such as lines,
arcs, splines, etc. to be expressed in a simple and
compact form.

As described in Section 4, the system provides a
series of parameter values that uniformly track the
passage of time. If a transition with a non-
uniform rate of traversal is desired, a pacing
function for the trajectory can be supplied. This
function non-uniformly transforms parameter
values in the range zero to one back into the range
zero to one. This can be used for example to
implement a "slow-in / slow-out" pacing which
begins slowly, runs quickly in the middle, and
ends slowly, as illustrated by Figure 4. By
default, the system provides a uniform pacing
function which traverses the whole curve at the

6

same rate. By separating the pacing function from
the curve of the trajectory, more complex effects
are easier to manage [Lass87], and it is possible to
provide a library of reusable paces which can be
employed with many different actual curves or
curve types.

Input Value

O
ut

pu
t V

al
ue Uniform Pace

Non-Uniform Pace
(Slow-in / Slow-out)

0.0

0.0 1.0

1.0

Figure 4. Two Example Pacing Functions

The next major component of a transition is the
interval of time over which the transition is to
occur. In its simplest form, an interval can be
expressed as two specific (wall clock) times.
However, this form is not typically convenient to
use and a number of more flexible forms of
interval expressed in relative terms can be
employed as well. These include:

Interval Start Specifications
at <time> Start at given absolute

time
in <delay> Start <delay> from

now
after-start-of <t> + Start after

transition <t> starts
after-end-of <t> + Start after

transition <t> ends

Interval End Specifications
at <time> End at given absolute

time
in <delay> End <delay> from

now
duration <dur> End <dur> after start

The "in" and "at" specifications each indicate
relative and absolute times that can be immediately
resolved by the system into a specific time for
scheduling purposes. However, the "duration",

"after-start-of" and "after-end-of" specifications
may not be immediately resolvable into a specific
time. For transitions specified with these types of
intervals, the system maintains an internal system
of dependencies and schedules the transition only
once its full interval is resolved.

The final component of a transition is the animated
object itself. This object is an Artkit interactor
object which is placed in the normal hierarchical
structure that the toolkit uses to control screen
update and dispatch of translated high-level events
(as a result, it can be freely intermixed with all
other user interface components). If groups of
objects are to be animated as a unit, they can be
grouped together using normal Artkit interactor
composition objects (e.g. with a simple_group
object).

Using the built in extension mechanisms of the
toolkit, a new high level event dispatch protocol
for animation has been added to the system. Each
object which wishes to respond to animation
requests simply implements the following three
methods:

start_transition
transition_step
end_transition

The start_transition message informs the object
that it is about to begin a new transition. A series
of transition_step messages then indicate how the
object is to advance along the transition over time.
Finally, an end_transition message is passed at the
final step indicating that the transition has
completed.

Each transition_step and end_transition message
contains parameters that indicate both the start and
end positions of the animation step being taken.
In addition, the transition and trajectory objects, as
well as starting and ending parameter values for
the step, are provided in order to support more
complex effects. Both start and end values are
passed because each step corresponds not to a
single point in time, but instead to a finite interval
of time. The object is responsible for modifying
its position and other attributes in order to create a
depiction of itself suitable for that interval. Once
the object has been reconfigured, the normal
toolkit redraw process takes over the task of
actually updating the screen.

7

The decomposition of animation control into the
transition abstraction, and then further into a
trajectory (containing a curve and pacing
function), a time interval, and the animated object
itself, allows the system to easily support a range
of animation effects with minimal programming
effort. For example, the animation illustrated in
Figure 1 can be created with the following code:

top_trans = new transition(
icn_obj1,
new arc_traj(250,303, 293, 3.8,5.0),
start_in, MSec(500), duration, Sec(4));

bottom_trans = new transition(
icn_obj2,
new arc_traj(250,453,293,3.8,5.0,&slowinout),
start_after_start_of, top_trans, MSec(0),
duration, Sec(4));

transition_agent->schedule_transition(top_trans);

The first statement creates a new transition object.
This object controls the object pointed to by
icn_obj1 (in this case a blur_anim_icon object
which draws itself blurred over its current
interval). The second parameter to this transition
is a pointer to a newly created trajectory object, in
this case a circular arc (centered at 250, 303, with
radius 293, operating from 3.8 to 5.0 radians).
Since no explicit pacing function is provided, the
trajectory uses the default (uniform) pacing
function. The final four parameters to the
transition establish its time interval. This
transition is set to operate over a time interval
beginning in 500 milliseconds and lasting for 4
seconds.

In general, any C++ expression can be used to
compute parameter values, so more complex
effects such as making transitions relative to the
position of other objects are typically relatively
easy to express.

The second statement sets up a similar transition
for icn_obj2, this time operating on a parallel
trajectory. In this case, the final parameter to the
trajectory indicates an explicit (non-uniform)
pacing function. This transition is scheduled to
begin at the same time as the first transition and
also last for 4 seconds. The final statement

 The blur_anim_icon object implements its motion blur
by drawing a fixed number of copies of itself in a speckled
pattern along its trajectory at evenly spaced parameter
values covering its current animation step.

actually places the first transition in the scheduling
queue. The second transition will be scheduled
automatically when the first one starts.

The toolkit provides a library of different interactor
object classes which can be animated, as well as a
reusable set of trajectory and pacing function
types. By mixing and matching these
parameterized reusable components it is possible
to support a very wide range of animation effects
with a minimal amount of programming effort.

In addition, because each of the different
components of the animation abstraction is isolated
and performs a small well defined task, it is also
easy to extend the standard library using normal
object-oriented techniques.

4. ROBUST IMPLEMENTATION

The window and operating systems currently
employed for user interface development (e.g., the
X Window System and Unix) offer, at best, little
support for applications such as animation that are
time dependent. In addition, even if better support
becomes available or "low-level" systems that
provide more direct access to the machine are
employed, there will always be cases where real-
time goals cannot be met simply because too much
total work needs to be done at a given point in
time. As a result, a central goal of the Artkit
animation support implementation has been to be
robust and degrade gracefully in the presence of
unexpected or variable delays.

In order to clearly demonstrate this robustness, the
Artkit animation abstractions have been
implemented assuming only a bare minimum of
support from the underlying window and
operating systems. In particular, only two
capabilities are assumed (although others could be
employed for better performance). First, it is
assumed that the toolkit can ask what the current
time is, and second, that the window system is
willing to pass control back to the toolkit
periodically (at least, for example, when it is idle
waiting for the next input event).

This second capability is modeled inside the
system by generating a series of internal idle
events which are processed by the normal Artkit
event processing framework. No specific
assumption is made about how often these events
occur (although clearly to produce pleasing
results, they should occur at a fairly regular and

8

rapid pace most of the time). Instead, the system
is responsible for doing the best that it can under
the performance situation in which it operates.

Artkit, like many other toolkits, maintains a tree
structure that describes the position and
appearance of all objects in the user interface.
Changes to the appearance of the interface are
made by modifying the interactor objects that
appear in this tree. The system is then responsible
for updating the actual screen appearance to
correspond to these changes.

In a normal user interface, the toolkit operates in a
cyclic fashion. It receives an input event, then
translates and dispatches that event to one or more
interactor objects in the form of messages. These
interactor objects then respond to the (higher-level)
messages by modifying their position, appearance,
or state as well as invoking any application
callback routines. Finally, the system updates the
screen display as needed and returns to waiting for
the next event. We call this the update or redraw
cycle of the toolkit.

In order to work smoothly with other user
interface components, the animation support
abstraction must work within the redraw cycle. In
particular, low-level idle events are received from
the windowing layer of the system and translated
into the start_transition, transition_step, and
end_transition messages that form the protocol for
the animation abstraction. In this framework we
can think of animation steps as covering adjacent
intervals of time roughly corresponding to redraw
cycles. The goal of the system then, is to deliver
animation steps with parameters that match the
actually occurring intervals of time as closely as
possible (this approach is conceptually similar to
the governor used in the central animation loop of
the Information Visualizer System [Robe89]).
Individual objects can then respond to the intervals
they are given appropriately, for example by
drawing a blurred rendition of themselves spread
over the interval or even by reducing their
rendering detail when the interval becomes too
long as described in [Robe89].

To do this, the system works as follows.
Transitions are managed by the animation dispatch
agent within the toolkit. This agent has the same
form as other input handling agents in the system
(such as the drag focus or the snap focus agents
described in [Henr90]). As transitions are
scheduled, those that have determined starting and

ending times are placed in a scheduling queue
(sorted by start time). As illustrated in Figure 5,
when the animation agent receives control (i.e.
when it receives an idle event to translate and
dispatch) it asks for the current time. It then tries
to make an estimate of when drawing that is
started now will actually appear on the screen.
This is done based on a measure of past update
times as described in Section 5. Based on this
estimated redraw end time the set of active
transitions for the step is selected (i.e. the set of
still active transitions that have starting times at or
before the estimated end time).

Time

Schedule Que}

Time
Now

Estimated
Redraw

End
Figure 5. Active Transition Selection

For each selected transition, three sets of
operations are performed (always in scheduled
time order). For each transition that has not been
started in a past step, the transition is marked as
started, a start message is delivered to the object
on the transition, and any other transitions which
have requested notification through after-start-of
scheduling are notified (these transitions in turn
schedule themselves and may possibly be placed
in the selected set and started). For each transition
that intersects the estimated end time, an animation
step is given as described below. Finally, all
transitions that end before the estimated end time
are given an end step, marked as stopped, and
removed from the scheduling list. In addition each
transition that has requested notification because of
after-end-of scheduling is notified.

Each transition acts on animation or end steps as
illustrated in Figure 6. A transition uses its start
time and duration to map from the estimated end
time into the corresponding position in its local
parameter space (which varies from zero to one).
It also maintains a record of the ending point of its
previous step. These two values define the
interval in local parameter space that is to be
covered by this step. (The transition also insures
at this point that the new estimated end is in fact
after the previous step end and skips the step if it
is not).

9

Pacing Transform

Time
Estimated
Redraw
End

Local Parameter Space
0.0 1.0

Previous
End

Step Delivered
to Object

Curve

Figure 6. Translation from Time to Space

Next the parameter values are passed through the
optional pacing function and mapped to screen
positions using the trajectory object. Finally, if
the ending screen position has changed since the
last step (or this is an end step), this information is
used to deliver a step message to the object.

Notice that this framework is robust with respect
to unexpected or varying delays. If the animation
agent receives control on a timely and regular
basis, animation steps will be delivered as a set of
timely and regular intervals. If delays occur,
however, animation steps will still be delivered
correctly, but with larger intervals. Further, even
if extremely large delays occur such that whole
transitions come and go during the delay, the
system will still act reasonably by delivering the
start_transition and end_transition messages for
each of the transitions in the proper order (but
without intervening transition_step messages).
This will allow the semantic actions associated
with these events to be carried out properly even
without a graphical rendition of the transition.

Finally, note that this framework provides a form
of weak synchronization guarantee. In particular,
transitions which are scheduled to start (or end) at
the same time will be guaranteed to start (or end)
in the same redraw cycle. Again, this is consistent
with the overall approach of graceful degradation
and the actual accuracy will depend on the
performance and timing characteristics of the
underlying window and operating systems.

5. IMPLEMENTATION EXPERIENCE

In the process of implementing the system, several
different forms of redraw end estimators were
experimented with. The system currently
measures the real-time response of the drawing
portion of the redraw cycle. The current time is
recorded just before the interactor tree is traversed
to produce drawing updates, then, when all
drawing has been completed, we force the
window system to synchronize (i.e. wait until the
window system server responds with a message
indicating that all drawing has actually been
completed) and record the time again. Although
this does not capture all the delay involved (i.e.
additional time is spent computing and dispatching
animation steps), it seems to cover the primary
source of delay that occurs when using a client-
server based window system.

Several alternatives exist for using the measured
drawing response time as an estimator. Which is
best can depend on the particular timing goals of
an application. In particular, there is a tradeoff
between estimators that try to keep drawing
response as close to the requested times as
possible, and those that endeavor to keep the
animation step sizes at an absolute minimum.

If the smallest possible step sizes are desired
without regard to the timing accuracy of the step, it
is possible to use a redraw end time estimator that
always returns zero. This ensures that the system
never over estimates redraw time, but also causes
the system to deliver steps that are always one
redraw cycle behind the actual time.

As a compromise solution, the system currently
employs a capped exponentially decaying average.
A simple exponentially decaying average gives
reasonably good tracking of actual redraw times in
the recent past. However, the distribution of
actual delays encountered tends to include large
spikes Ñ a single delay or period of delays that is
much larger than normal. To avoid having this
anomalous behavior corrupt the estimator for
several steps and cause a large overshoot, the
system places a limit on the estimator. This
approach allows the system to have a bimodal
response. Under normal circumstances when
redraw times are relatively small and tend to be
less variable, the system uses the average
estimator. However, if a single large delay
occurs, the system will not overshoot and increase

10

the next animation step too much, and if the
system response consistently falls below an
acceptable threshold, this approach causes the
estimator to be biased towards shorter steps rather
than accurate timing.

The Artkit toolkit was originally designed to stress
extensibility in its design. Our experience with
this extension to the system confirmed that even
large, completely unplanned for extensions like the
one described here could be handled relatively
easily.

Initially the toolkit had no notion of time built into
it and so some modifications to the toolkit
framework that went outside the normal extension
mechanisms were required. In the window
system interface layer of the X window version of
the toolkit, 1 line of existing C++ code was
changed (to force synchronization after redraw
with XSync) and 129 lines were added (to
produce idle events). In the toolkit proper, 23
lines of code had to be added to the system outside
the normal extension mechanism (to measure
redraw times and fix a bug that surfaced in
connection with idle events). The remaining
changes to the toolkit framework were done via
the normal extension mechanisms. 1485 lines of
code were employed in the framework proper (for
the animation dispatch agent) and another 863
lines were used for a small interactor, trajectory,
and pacing function class library. Finally, the
"squash box" interactors used for Figure 2 were
developed as subclasses of the standard library
using 356 additional lines of code.

6. CONCLUSION

This paper has described how flexible, robust, and
reusable animation abstractions can be smoothly
integrated with the facilities of an object-oriented
toolkit. The animation abstractions described are
powerful and flexible, supporting techniques such
as: simple motion-blur, "squash and stretch", use
of arcing trajectories, anticipation and follow
through, and "slow-in / slow-out" transitions. In
addition, their implementation is robust Ñ
degrading gracefully in the presence of unexpected
and variable delays. Finally, since these facilities
are provided in the context of a full scale user
interface toolkit, they are widely reusable and can
be easily employed in conjunction with more
conventional user interface objects.

REFERENCES

[Baec69] Baecker, R., "Picture-driven
Animation", Proceedings of the
Spring Joint Computer Conference,
Vol 34, 1969, AFIPS Press, pp. 273-
288.

[Baec90] Baecker, R., Small, I., "Animation at
the Interface" in The Art of Human-
Computer Interface Design, B. Laurel
(ed), Addison-Wesley, 1990, pp.
251-267.

[Henr90] Henry, T.R., Hudson, S.E., Newell
G.L., "Integrating Gesture and
Snapping into a User Interface
Toolkit", Proceedings of the ACM
Symposium on User Interface
Software and Technology, Oct. 1990,
pp. 112-121.

[Lass87] Lassiter, J., "Principles of Traditional
Animation Applied to 3D Computer
Animation", Proceedings of
SIGGRAPH '87, July 1987, pp. 35-
44.

[Robe89] Robertson, G.G., Card, S.K.,
Mackinlay, J., "The Cognitive
Coprocessor Architecture for
Interactive User Interfaces",
Proceedings of the ACM Symposium
on User Interface Software and
Technology, Nov. 1989, pp. 10-18.

[Robe93] Robertson, G.G., Card, S.K.,
Mackinlay, J. , "Information
Visualization Using 3D Interactive
Animation", Communications of the
ACM, Vol 36, No 4, April 1993, pp.
57-71.

[Stas90] Stasko, J.T., "The Path-Transition
Paradigm: A Practical Methodology
for Adding Animation to Program
Interfaces", Journal of Visual
Languages and Computing, Vol 1, No
3, Sept. 1990, pp. 213-236.

[Stas93] Stasko, J.T., "Animation in User
Interfaces: Principles and Techniques"
to appear in Trends in Computing
(special issue on User Interface
Software), L. Bass and P. Dewan
(eds), 1993, John Wiley.

