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SUMMARY 
 

In this research, controlled Waspaloy microstructures are produced with the 

objective of studying microstructural evolution in this alloy via non-destructive electrical 

measurements. Waspaloy is a precipitation-hardenable γ-γ′ nickel-base superalloy that is 

used in turbine blade applications demanding superior strength retention capabilities at 

elevated temperatures. Overall, three different sets of microstructures were produced that 

varied systematically as a function of the matrix (γ) grain size and γ′ precipitate size 

distribution or just the latter. Initial solutionizing treatments conducted at 1045°C, 

1090°C and 1145°C resulted in average γ grain size of 13, 52 and 89 µm respectively. A 

vacancy stabilization treatment at 1045°C followed the solutionizing treatments in Set I 

experiments, after which the specimens were aged at 800°C for durations ranging from 

0.1 hrs to 100 hrs. In Sets II and III, the matrix grain size was kept unchanged by an 

initial solution-treatment at 1145°C. The stabilization treatment at 1045°C was only 

conducted in Set II after the solution-treatment. Aging experiments were then conducted 

at 700°C (or 725°C in Set III), 800°C and 875°C to study the growth kinetics of γ′ 

precipitate distribution. The specimens with controlled microstructures were investigated 

using scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray 

diffraction (XRD), ultra small-angle x-ray scattering (USAXS) and dc four-point probe 

resistivity. The applicability of two and four-probe ac impedance techniques was also 

investigated. 
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Characterization of Heat-treated Specimens  

 Solution-treated SEM microstructures showed the presence of polygonal etch-pit 

shapes, which was proposed to be due to the condensation of excess quenched-in 

vacancies along crystallographically soft-directions in the γ phase. The etch-pits evolved 

upon subsequent aging into progressively irregular shapes, concurrent with γ′ growth 

inside the pits. SEM and USAXS observations clearly supported the progressive 

coarsening of the γ′ distribution with increasing aging time at 800°C. Complementary 

evidence from dc resistivity measurements confirmed that γ′ nucleation was complete by 

0.1 hrs of aging at 800°C. Coarsening studies indicated an LSW type volume diffusion 

mechanism of coarsening in Waspaloy, with an average coarsening rate constant of 

3.25x10-29 [m3/sec] for Set I specimens aged at 800°C. This is an order of magnitude 

smaller compared to values quoted in the literature for binary Ni-Al systems. The 

resistivity decrease during initial stages of γ′ coarsening was attributed to the progressive 

decrease in the ‘scattering power’ of the γ′ distribution. The variations in the later stages 

were related to compositional changes during coarsening. Resistivity variations as a 

function of the aging time at 800°C did not show any dependence on the prior solution-

treatment temperature in Set I specimens. Resistivity measurements also showed a drastic 

shortening in the first-stage coarsening with increase in the aging temperature from 

725°C to 800°C, while this stage was completely absent at 875°C. In Set III specimens, 

the γ-γ′ lattice misfit was found to increase with increasing aging duration at the same 

temperature or with increasing kinetics. 
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Modeling Electrical Measurements 

 Closed-form analytical derivation of the electric field distribution inside a metallic 

cylindrical disk specimen was conducted for an ideal two-probe impedance measurement. 

The closed-form solutions for the axial and radial electric fields accounted for both skin-

effect and constriction effect and were expressed in terms of Bessel functions. A finite-

element solution to the same problem was obtained using FEMLAB 3.1 to validate the 

closed-form solution and the solutions showed excellent match with each other. The 

constriction effect was dominant near the electrode contacts and decayed with distance 

away from the contacts both in terms of r and z. The skin-effect was predominant at high 

frequencies (104 Hz to 106 Hz) near the end regions of the disk (large r). The frequency 

dependent resistance and inductance of a typical Waspaloy disk specimen computed 

using the closed-form electric field solution, remained invariant up to 100 kHz. With 

further rise in frequency, the inductance decreased progressively due to a in the magnetic 

energy storage. The resistance however increased progressively due to an increase in the 

overall Joule heat-loss. 

 Geometrical correction factors for dc four-point probe resistivity measurements 

on cylindrical specimens using a collinear probe array were computed based on an 

analytical derivation of the potential distribution inside the specimen. The correction 

factors computed using the derived closed-form solution were in good agreement with 

those determined from COMSOL finite element simulations. Additionally, the factors 

from the closed-form and COMSOL solutions lied within the bounds predicted by 

approximate analytical correction factors available in the literature. 

  

 xvii



Micro Electrical Characterization 

AFM-based localized electrical examination of sub-grain Waspaloy microstructures was 

successfully conducted using electrostatic force microscopy (EFM), scanning Kelvin 

probe microscopy (SKPM) and current-AFM (I-AFM) electrical modes. I-AFM 

experiments revealed that the conductivity of the γ′ phase was lower than that of the γ 

phase. γ-γ′ contrast and etch-pit contrast were clearly observed in EFM and SKPM 

experiments using two different etchants that led to opposite γ-γ′ topographic contrasts. 

However, the tip-surface interaction in both EFM and SKPM is non-linear owing to the 

inhomogeneous surface topography and the surface potential distribution. 

 xviii



 

CHAPTER 1 

INTRODUCTION 

 

Nickel-base superalloys are an important class of high-temperature materials and 

find their use in land and air-based turbine engine components1. The important properties 

of superalloys that make them suitable for such applications are good strength-retention 

at high temperatures, creep-resistance, hot-corrosion resistance, low-temperature ductility 

etc. The strength-retention ability of superalloys is primarily attributed to the presence of 

nanometer-sized γ′ precipitates that reinforce the matrix phase via precipitation 

hardening2. The matrix is a nickel-rich austenitic phase that contributes to solid-solution 

hardening in combination with elements like Cr, Co, Mo etc1. The addition of carbon to 

the alloy composition is to promote the formation of carbides along grain boundaries, 

which enhance the creep resistance of the alloy. In addition to these phases, topologically 

close-packed phases such as σ, δ and Laves may form during processing, all of which are 

considered undesirable1. 

The microstructure of these alloys is known to change in service after several 

thousand hours at high homologous temperatures. As an example, coarsening of γ′ 

precipitates can result in Waspaloy that can impair the strength-retention properties of the 

alloy3. In the case of directionally-solidified alloys, coarsening of γ′ precipitates renders 

the blade material vulnerable to creep damage4. It is therefore important to make the 

connection between microstructural variations and related changes in mechanical 

properties. Conventional microscopy techniques are indispensable in furnishing detailed 

structure and composition-related information at different length scales. However, they 
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are destructive and in addition, a time-consuming means of arriving at the average 

statistical representation of the microstructure and not ideal for fast characterization.  

Non-destructive evaluation (NDE) techniques provide an alternative and a 

complementary approach to microscopy for carrying out fast-throughput routine 

characterization of materials. The majority of NDE techniques may be classified into one 

of the following categories- (a) scattering methods, (b) acoustic methods and (c) 

electrical-based techniques. Applications of specific techniques from each of these 

categories, which are relevant to superalloys are discussed in the literature survey 

chapter. At a general level, NDE techniques may be sensitive to different attributes of the 

microstructure such as impurities, second phase particles, grain boundaries, as well as 

defects such as vacancies and dislocations, surface roughness, etc. The application of two 

or more NDE techniques may yield complementary information as one technique tends to 

be more sensitive to a particular microstructural heterogeneity than others. The sensitivity 

of a given technique to a defect or heterogeneity is primarily dependent on the 

wavelength of the probing signal in relation to the size of the features. Additionally, the 

information depth or volume of the specimen that is sampled by the probing signal may 

also vary from one technique to another. It is therefore desirable to use more than one 

technique for the study of a given material system to obtain a comprehensive 

understanding of the structure of the specimen. Once the groundwork is conducted, where 

correlations between the NDE parameter(s) and the microstructure are developed, the 

technique may then be used for a routine analysis. 

In this research, Waspaloy, a precipitation-hardenable nickel-base superalloy, was 

chosen as the baseline material to produce systematically varying controlled 
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microstructures via suitably designed heat-treatments. The microstructures were 

controlled in terms of the matrix (γ) grain size and the precipitate size distribution. In all, 

three different sets of microstructures were produced according to the following scheme- 

Set I with three different grain sizes of the matrix, but identical γ′ distributions (at a 

specific aging time) obtained by aging at 800°C for times up to 100 hrs and Sets II and III 

with a fixed matrix grain size, but different γ′ distributions (at a specific aging time) 

obtained by aging at 700°C (or 725°C in Set III), 800°C and 875°C. A detailed 

description of the heat-treatments pertinent to the different sets is given in section 3.1. 

The motivation for this research was to be able to develop correlations between 

microstructural studies and non-destructive electrical measurements of the systematically 

varying specimens for reasons explained in the preceding paragraphs. Structural analysis 

of the specimens was conducted at different length scales using light microscopy, 

scanning electron microscopy (SEM) and atomic force microcopy (AFM). The four-point 

dc resistivity technique was the primary macro electrical characterization tool used for 

analyzing the resistivity variations among the specimens. Besides, the dc resistivity 

technique, the feasibility of two-probe and four-probe ac impedance techniques was also 

investigated. In addition to electrically based techniques, scattering techniques such as 

Ultra Small Angle X-ray Scattering (USAXS) and X-ray diffraction (XRD) were used for 

statistical quantification of microstructure and lattice parameter studies respectively. The 

results of characterization experiments of heat-treated specimens are described in detail 

in Chapter 4. 

Analytical and finite-element models (FEM) of both dc and ac macro electrical 

measurements (Chapter 5) were developed to gain a better understanding of the measured 
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electrical response from the specimens. A closed-form (CF) analytical solution for the 

electric field distribution inside a cylindrical metallic specimen was derived for the case 

of an ideal two-probe impedance measurement. This was subsequently used for 

computing the overall specimen complex impedance. The dc model deals with the 

derivation for a CF geometric correction factor for a dc four-point probe resistivity 

measurement of a finitely thick cylindrical conducting specimen. A brief procedure is 

also given for computing the four-probe ac impedance of a cylindrical disk metallic 

specimen using a closed-form analytical solution available in the literature. 

The results from investigations of two-probe and four-probe ac impedance 

measurements and associated comparison with computed spectra are given in Chapter 6. 

Finally, electrical characterization of heat-treated Waspaloy microstructures on a 

microscale (Chapter 7) was conducted using AFM-based techniques, with the objective 

of studying the electrical properties of the constituent phases at least qualitatively. 

Specifically, γ-γ′ electrical contrast was investigated using electrostatic force microscopy 

(EFM), surface potential microscopy (SPM) and current-atomic force microscopy (I-

AFM). 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 NDE techniques for probing the microstructure of metallic systems 
 

The majority of the non-destructive probing techniques can be categorized into 

one of the following classes – (1) electrical techniques, (2) acoustic techniques and (3) 

scattering techniques. In this subsection, examples of these techniques used by various 

researchers for conducting microstructural investigations or understanding material 

related properties in metallic alloys will be reported. This review is not intended to be a 

comprehensive survey of the broad spectrum of NDE techniques available, but rather 

provides a short summary of the available NDE techniques used to characterize metallic 

materials. 

2.1.1 NDE using electrical methods 

The use of electrical methods for non-destructive characterization relies on the 

ability of the defects or a dispersed phase to impede the propagation of the probing 

signal. Electrical resistivity measurements have been widely used for studying 

microstructural evolution in precipitation-hardenable systems over several decades. 

Frequency-based techniques such as eddy current method have the potential for mapping 

sub-surface residual stress in metallic materials. Some examples of the application of 

these techniques are given below. 

Pre-aging studies of Al-Zn-Mg-Cu based alloy systems were conducted by 

Ferragut et al5. using electrical resistivity and synchrotron-radiation small angle x-ray 

scattering (SR-SAXS), to investigate the decomposition kinetics and mechanisms of 

 5



solute migration in the formation of pre-precipitates. The resistivty changes during pre-

aging were mainly related to the volume fraction growth of GP zones or pre-precipitate 

solute clusters, which were described using the Johnson-Mehl-Avrami (JMA) type 

equation6. A good correlation between the changes tracked via resistiviy and SR-SAXS 

measurements was found to exist for one specific case5.  

 Panseri et al.7 conducted extensive investigations of the effect of quenching and 

aging temperatures on the pre-precipitation in Al-10%Zn by resistivity measurements. 

They report significant amounts of clustering of solute atoms during quenching itself and 

the rate of pre-precipitation during aging to increase with the quenching temperature. The 

rate of pre-precipitation was found to depend on the excess number of quenched-in 

vacancies, which stopped when all the vacancies were eliminated. The variation of the 

maximum increase in resistivity as a function of aging temperature was attributed to the 

number of solute cluster-zones that formed. An equilibrium number of zones was 

indicated to exist for each aging temperature and the lower the aging temperature, the 

higher the number of zones that formed7. 

 White et al.8 conducted kinetic studies of γ′ nucleation-growth and coarsening in 

Nimonic PE16 alloy in the temperature range of 580°C to 780°C using electrical 

resistivity and electron microscopy studies. The experimentally observed resistivity was 

found to increase upon progressive aging to a maximum and then decrease 

monotonically, characteristic of sequential nucleation-growth and coarsening stages 

respectively. The overall resistivity was modeled as the sum of the following individual 

resistivity components using Matthiesen’s rule9- matrix- , impurities in solution- mρ
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nρ  and impurities present as large 
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nρ . The quantities- ni, ns, nl and no were designated as the fraction of 

impurity atoms present in solution, small clusters, large clusters and the total number of 

atoms respectively. The parameters- ni, ns and nl were obtained as solutions to first-order 

kinetic differential equations which described the nucleation-growth and growth-

coarsening reactions. The values of  and  determined from the model were found to 

go through a maximum as a function of the temperature. This behavior was reasoned as 

due to the variation in the fraction of (Ni+Al+Ti) atoms that are able to form the 

precipitate phase due to changes in solubility with temperature. The activation energies 

for the nucleation-growth and coarsening regimes were reported to be 1.11 eV and 1.83 

eV respectively

sρ lρ

8. 

 Dorward10 studied the over aging kinetics in Al-Zn-Mg-Cu alloy 7050 at 157-

182°C for times up to 3000 hrs using electrical resistivity as one of the characterization 

techniques. The measured resistivity was found to show a linear behavior with 3
1−

t  with 

increasing aging time- t, analogous to the solute concentration in the matrix (as derived 

by Ardell11). The changes in the solute concentration of the matrix phase arise due to 

particle curvature effects, that is described by the Gibbs-Thomson equation6, 12. This is 

detailed in the next section (2.2) on the literature survey of coarsening kinetics. The 

important conclusion of this study was that in the overaged state, the changes in 

resistivity were no longer due to scattering of conduction electrons by the precipitate 
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distribution, but were in fact due to changes in the solute concentration as a consequence 

of coarsening10. 

 Noble et al13. studied the coarsening kinetics of δ′ precipitates in Al-Li alloys 

upon aging at 130-150°C using electrical resistivity measurements. The basic nature of 

this study is similar to that by Dorward10, in that the resistivity changes during coarsening 

were linked to changes in solute concentration in the matrix phase. In this case however, 

the authors separate the matrix component of resistivity from the overall measured 

resistivity by isolating contributions from δ′ precipitates and thermal vibrations13. The 

matrix component of resistivity which is a measure of the solute concentration in the 

matrix showed a linear behavior with 
tr
1 , a direct consequence of the Gibbs-Thomson 

solubility effect13. Here tr  is the mean precipitate radius at a time t.  

An apparent increase in the electrical conductivity of shot-peened nickel-base 

superalloys was found by Blodgett et al., in contrast to other materials via eddy current 

measurements14. This phenomenon, found at higher probing frequencies, was attributed 

to residual stress effects, as the presence of surface roughness, increased dislocation 

density or increased permeability generally decreases the apparent electrical conductivity. 

The excess conductivity in shot-peened specimens was found to scale with the peening 

intensity. The measured conductivity difference was reported to be approximately 

proportional to the remaining subsurface residual stress in partially relaxed shot-peened 

Waspaloy specimens and vanished completely in the case of fully relaxed specimens14. 

The authors indicate a close correlation between residual stress measurements made via 

the eddy current technique and x-ray diffraction15. The authors also report the sensitivity 
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of the technique to surface roughness or the presence of near-surface microcracks, which 

force the eddy current to propagate along a more tortuous path than it normally would, 

without any artifacts. This apparent reduction in electrical conductivity due to the 

presence of surface roughness, is indicated to play a significant role in the evaluation of 

engine components after long-term service. This is due to the reduction in the primary 

material effects due to thermomechanical relaxation, while, the surface roughness 

contribution is unaltered or may even increase due to corrosion or fretting15.  

2.1.2 NDE using acoustic techniques 

Near-surface material properties in shot peened Waspaloy were investigated by 

Lavrentyev et al.16 using ultrasonic wave velocity measurements. Rayleigh wave velocity 

measurements were made on smooth and shot-peened Waspaloy samples with the 

objective of isolating the effects of surface roughness, residual stress and near-surface 

grain reorientation. Their results indicated that neither of the above factors dominated the 

experimentally observed Rayleigh wave velocity change all by itself. They suggested that 

the increase in dislocation density induced by shot peening was responsible for the 

observed changes in velocity16. 

 Haldipur et al.17 conducted localized ultrasonic measurements within jet-engine 

nickel alloy billets to correlate the measured parameters to the corresponding grain 

structure of the alloy. Ultrasonic attenuation and backscattered noise were found to be 

independent of the inspection direction at any given position within the billet. However, 

significant variations were noted with change in position within the billet. Metallographic 

examination revealed an equiaxed and untextured microstructure with variations in 

average grain diameter with position, which was consistent with observations drawn from 
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acoustic measurements. The attenuation and the figure-of-merit, a measure of the 

backscattered noise, were reported to increase with increasing grain diameter, which also 

agreed with predicted model results for equiaxed microstructures17. 

 Kang et al18. report the use of non-linear ultrasound technique for assessing the 

remnant creep life of a directionally solidified nickel-base superalloy. Specimens were 

subjected to creep loading at 871°C at three different stress levels as follows: 358 MPa, 

289 MPa and 227 MPa. The specimens were tested using transmission ultrasound 

technique at periodically interrupted intervals that correspond to different creep life 

fractions of the alloy. A strong correlation was reported between the third order harmonic 

of the transmitted wave and the exhausted creep life fraction. In addition, the second 

order harmonic showed a good correlation with the extent of plastic deformation. The 

latter result was reported based on separate tensile tests on the same specimen. The 

authors thus, indicate the significance of the ultrasound technique as a potential non-

destructive method for assessing creep damage in superalloys18. 

2.1.3 NDE using scattering techniques 

Nathal et al.19 conducted in situ X-ray diffraction experiments on Alloy H to 

monitor the lattice parameter variations during aging at 1000°C for times up to 975 hrs. 

Measurements were conducted on [001] oriented single crystals using Cu Kα radiation. 

The lattice parameter of the γ′ phase was found to be constant throughout the aging 

experiment. The γ peak could not be resolved prior to 215 hrs of aging, indicative of a 

relatively small misfit. It is reported that the γ′ morphology changed from cubic to 

irregular plate shapes after longer aging durations, indicative of a semi-coherent γ-γ′ 

interface. The loss of coherency was confirmed by measuring the γ′ lattice parameter 
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from a bulk specimen and γ′ extracted from the bulk specimen that resulted in identical 

values. The increase in the lattice mismatch with aging was reasoned to be due to changes 

in the γ lattice parameter, which is initially constrained to a large degree owing to the 

large volume fraction of the γ′ phase19. 

Wang et al.20 conducted insitu characterization of the changes occurring in 

equilibrium and non-equilibrium microstructures of CM247CC nickel-base superalloy 

during aging at 1000°C using neutron diffraction. The non-equilibrium microstructure 

obtained after a solutionizing treatment, when aged for 5 hours at 1000°C, showed no 

apparent change in the (110) γ′ peak intensity, while, the lattice mismatch increased non-

linearly as a function of the aging time. In a second experiment, a near-equilibrium 

microstructure was obtained by slow cooling from 1190°C to 1000°C. In this case, the 

(110) γ′ peak intensity continued to rise when cooling from 1100°C to 1000°C and 1.5 

hours into the aging schedule and showed no change on further aging. The lattice 

mismatch more or less reflected the same trend. The authors were able to make 

conclusions about the growth and dissolution phenomena based on the above results20. 

 Royer et al.21 report the use of high-resolution synchrotron diffraction for non-

destructive microstructural investigations of AM1 single crystal nickel-base superalloy. 

Specimens subjected to creep tests at different stress states at 1000°C, were measured in 

directions parallel and perpendicular to the loading direction. Specifically, the mosaicity 

of (002) and (200) planes, and the lattice parameter distribution were mapped both 

parallel and perpendicular to the rafts. The mosaicity was found to depend strongly on the 

localized volume of material that contributes to diffraction. The lattice mismatch of the 

(002) reflections was reported positive, while, that for (200) reflections was negative, and  
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Figure 2.1 Anomalous-USAXS spectra at different energies near Ni-K edge for Waspaloy 
aged at 649°C for 50 hours22. 
 
 
 
the mismatch was indicated to be a strong function of the applied stress and the resultant 

deformation21. 

Jemian et al.22 conducted anomalous USAXS (A-USAXS) measurements for 

investigating the changes occurring in the precipitate population in thermally exposed 

Waspaloy. Long-term thermal exposure was conducted at 649°C for 12623 hours. A 

series of measurements with different energies near the Ni-K edge (8.34 keV) were made 

to enhance the scattering from γ′ precipitates. The measurements spanned a q range of 

0.001 nm-1 to 1 nm-1, where q = (4π/λ)sinθ, λ is the incident wavelength and 2θ is the 

scattering angle. The experimentally measured intensity as a function of q, displayed 

three distinct Güinier regions (see Figure 2.1), corresponding to scattering from primary 
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and secondary γ′ precipitates and contributions from coarser features such as 

intragranular and grain-boundary carbides. Their work clearly demonstrates the ability of 

the present technique in rapid acquisition of statistically significant microstrucrural 

information22. 

2.2 Literature Survey on Coarsening 
 
 In this section of the literature survey, the general theory of Ostwald ripening that 

governs the microstructural changes during coarsening will be described first. Then 

specific examples of applications of the coarsening theory by several researchers in 

studies of binary Ni-Al, Ni-Ti or commercial Ni-base superalloy systems will be 

discussed. 

2.2.1 Coarsening Theory 
 

The precipitation of a second phase from a supersaturated solid solution is known 

to proceed in the succession of (a) nucleation, (b) growth and (c) coarsening of second 

phase precipitates. In real systems, it is possible for (a) and (b) as well as (b) and (c) to 

proceed simultaneously23. In a system consisting of a dispersion of fine second phase 

precipitates in a parent phase, a reduction in the global free energy of the system is 

brought about by a decrease in the interfacial energy of the system23. The physical 

mechanism by which a reduction in the interfacial energy is achieved is based on the 

increased solute solubility in matrix regions in equilibrium with small particles, known as 

the ‘Gibbs-Thomson’ solubility effect6. The increased solubility of smaller precipitates is 

associated with the larger ratio of surface area to volume. As the curvature increases, 

there are fewer perfect bonds associated with surface atoms. This ultimately leads to a  
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Figure 2.2 Binary phase diagram (temperature vs composition) of a precipitation 
hardening system, showing the shift in composition from equilibrium values of  and 

 to  and , for a system consisting of a fine dispersion of β phase 
precipitates. 
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Figure 2.3 Free energy versus composition diagram to illustrate the chemical potential 
difference between an equilibrium dispersion of precipitates ( ) and a fine dispersion 
( ) that exists during the initial stages of coarsening. 
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( )rNα  and  due to the presence of a fine dispersion of precipitates is shown in the 

phase diagram in Figure 2.2. The corresponding increase in the chemical potential may 

be seen in the free energy vs composition diagram in Figure 2.3.  

( )rN β

The change in the chemical potential- µ∆  (associated with the curved interface) 

upon transfer of  moles of atomic fraction  from a precipitate with a planar 

interface (  to a precipitate of radius 

dn

)

βN

∞=r r  is given as6: 

dn
dAσµ =∆           (1) 

where  is the area of the precipitate and σ  is the isotropic matrix-precipitate interfacial 

energy. This equation may be rewritten in terms of the molar volume of the precipitate- 

 as follows

A

mV 6: 

r
V2σµ m=∆           (2) 

The chemical potential difference- µ∆  may be expressed in terms of the free energies- 

 and G  and the compositions-   and  using Figure 2.2 as follows( )rGB ( )∞B αN βN 6: 

( ) ( )
α

BB

αβ N1
GrG

NN
µ

−
∞−

=
−

∆         (3) 

The above equation may be further modified by writing the free energies in terms of the 

composition and activity terms. Skipping this for brevity, the final result by combining 

equations (2) and (3) is as follows6: 

( )
RTr

Vσ2
N

rNln m

α

α =







         (4) 
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where, R is the universal gas constant. This is the commonly quoted form of the Gibbs-

Thomson equation6, 12 and is derived based on the assumption of the two phases being 

almost pure, i.e.  and . With , the activity coefficient-  may 

be assumed to be a constant in the dilute limit. If the precipitate size is larger than a few 

nanometers, then the above equation may be simplified as

0Nα → 1N β → 0Nα → αγ

6: 

( ) 



 +=

RTr
Vσ21NrN m

αα         (5) 

However, if the two phases- α and β are not terminal solid solutions, then the complete 

Gibbs-Thomson equation is given as6: 

( ) ( )
( ) 



















−

−
+=

rεRT
Vσ2

NN
N11NrN

α

m

αβ

α
αα       (6) 

In the above equation, 
α

α
α Nln

γln1ε
∂
∂

+=  is the Darken factor, which is significant for 

precipitates that form as an intermediate phase. The composition term- 









−
−

αβ

α
NN

N1

  is of 

a greater significance in the case of non-terminal solid solutions, where the effect of this 

term is to increase the solute solubility of the matrix in equilibrium with a precipitate of 

finite radius- r6.  

 The Gibbs-Thomson solubility effect described in the previous section is the 

starting point for explaining the coarsening mechanism and the associated kinetics. In the 

treatment of coarsening, it is generally assumed that the rate-controlling step is that of 

lattice diffusion and that there is no barrier to atom transfer across the precipitate-matrix 

interface. Consider the illustration (Figure 2.4) showing atom transfer between two 

precipitates of radii  and  1r 2r ( )21 rr >  of equilibrium solute concentrations- ( )1α rN  and  
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Figure 2.4 Schematic illustrating the transfer of flux from a smaller precipitate of radius, 
r1 to a larger one of radius r2 due to a composition gradient, ( ) ( 2α1α rNrN > ) . 
 
 
 
precipitate of smaller radius- r  should be greater than 1 ( )2α rN  that corresponds to the 

larger particle. In this scenario, the diffusive flux of atoms will be from 1 to 2, resulting 

in the growth of the larger precipitate at the expense of the smaller one. The smaller 

precipitate continues to shrink at a growing rate during the process, as a consequence of 

the Gibbs-Thomson equation, until it disappears eventually6. In a system consisting of a 

distribution of spherical precipitates of different sizes, the expression for the expected 

growth rate is given as follows6: 











−






=








r
1

r
1

RTr
VNσD2

dt
dr mα        (7) 

where D is the diffusion coefficient of solute in the matrix,  is the solute concentration 

in the matrix in equilibrium with a particle of infinite radius and 

αN

r  is the mean radius of 

the precipitate distribution. A few inferences may be drawn based on the above equation 

for the growth rate as follows6: 
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(a) Precipitates smaller than r  shrink at an accelerating rate with progressively 

decreasing r. 

(b) Precipitates larger than r  grow continuously with the growth rate- 







dt
dr  

increasing from zero at rr =  to a maximum at r2r =  and then decreases 

beyond r2 . 

(c) The growth rate of precipitates larger than r  falls as r  increases. 

The growth rate equation may be used to find an approximate variation of r  with t by 

assuming that 
maxdt

dr
dt

rd






≈








 at r2=r . The final result is the well-known 3

1

t  law 

that describes the coarsening kinetics which is expressed as follows6: 

tkt
RT2

VNσD3rr 1
mα3

o
3

t ==−        (8) 

where tr  is the radius at a time t , or  is the radius at t 0=  and  is the coarsening 

rate constant. This result is obtained from Greenwood’s treatment of Ostwald ripening 

and the distribution in this case has a cut-off value of 

1k

2max =
r

r . A similar result for the 

coarsening kinetics is obtained by a more rigorous LSW treatment, with a factor of 
9
8  

instead of 
2
3  on the RHS of equation (8)6. The equation however needs to be modified if 

the phases involved are not terminal solid solutions. Specifically, the composition 

correction term in the Gibbs-Thomson equation- ( )
( )α

α
Nβα Nε

N1
−

−  and the amount of solute 
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needed for precipitate growth- ( )αβ NN −  needs to be included to describe the kinetics 

correctly. The modified version of equation (8) is given as follows6: 

( )
) t
εN

N

α
2

α

α

(N
1

RT9
VNσD8rr

β

mα3
o

3
t −

−
=−       (9) 

So far, in the above equations for coarsening, a near zero volume fraction of the 

precipitates was assumed, so that there is no overlap between the diffusion fields of two 

precipitates. A final modification to the coarsening equation arises from the effect of 

finite volume fraction of the precipitates. In this case, the ratio of the radius to the 

interparticle spacing between precipitates- 






λ
r  is non-negligible, resulting in the overlap 

of diffusion fields between precipitates. This effect of volume fraction of precipitates was 

incorporated into the coarsening equation first by Ardell24 via the volume fraction 

parameter- . It may generally be stated that the coarsening kinetics is accelerated 

upon increasing the volume fraction of the precipitates

( vfk )

24. The minimum value for ( )vfk  

is therefore equal to 1, which corresponds to the ideal LSW treatment of a zero volume 

fraction situation. Results from further investigations on the effect of volume fraction on 

the coarsening behavior by different researchers will be given later. 

2.2.2 Temporal change of other microstructural parameters during coarsening 

 It is assumed in the ideal LSW treatment that the coarsening reaction proceeds at 

a constant volume fraction of the precipitates6. At the onset of the true stage coarsening, 

the average solute concentration of the alloy- αN  is nearly equal to the solute 

concentration in the matrix in equilibrium with a particle of mean radius- r , i.e. 
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( rNα )6. However, the solute solubility associated with a fine dispersion of precipitates 

can be significantly greater than larger ones due to the Gibbs-Thomson solubility effect, 

as explained earlier. This effect was accounted for by Ardell11, who showed that the 

volume fraction during coarsening is not a constant, but in fact increases with time. The 

volume fraction of precipitates- ( )tfv , according to the lever rule may be written as11: 

( )

3
1

3
t

−

( )
( )rNN

rNN
tf

αβ

αo
v −

−
=          (10) 

By using the Gibbs-Thomson equation to substitute for ( )rNα , the above equation is 

modified as11: 

( ) ( )
( ) r

1
NNRT

VNσf12ftf
αβ

mαe
ev −

−
−=        (11) 

The above equation may be written in terms of t by assuming that ( ) 3
1

1tkr ≈  as 

follows11: 

( ) ( )
( ) 1

1αβ

mαe
ev

k

1
NNRT

VNσf12ftf
−

−
−=       (12) 

Thus the volume fraction of precipitates- ( )tfv  follows a linear increase with 3
1−

t  until 

the equilibrium volume fraction, 
α

α
N
Nf

−β

o
e N

N −
=  is reached as ∞→r . If 

supersaturation driven growth persists for a time t  before the onset of the true 

coarsening reaction, then the linear behavior of 

1

( )tfv  will be in terms of ( ) 3
1

1tt −−  

instead of 3
1

t
−

. 

 20



 The variation of the precipitate density- ( )tW  with t may be obtained by defining 

the following relationship between ( )tW  and ( )tfv
11: 

( ) ( )tWrπ
3
4tf 3

v =          (13) 

Using this relation, the temporal variation of the particle density may be expressed as 

follows11: 

( ) ( ) ( )
( )

( ) 3
4

1
3

4
1αβ

mαe1
1

1

e tt
kNNRTπ2

VNσf13tt
kπ4
f3tW −− −

−

−
−−=     (14) 

Equivalently, W  follows a linear behavior as a function of (( )( )1ttt − ) 3
1

1tt −− . 

 Finally, the time variation of the solute concentration in the matrix- ( )tNα  vs t 

can be obtained by substituting for the mean radius- tr  in equation (5) from the 

coarsening equation (see equation (8)), as follows11: 

( ) ( ) 3
1

1
3

1
1

m
ααα tt

RTk

Vσ2NNtN −−=−        (15) 

2.2.3 Specific applications of coarsening theory to nickel-base alloys 

Reports of coarsening studies in simple binary nickel-base alloys and commercial 

superalloys and the subsequent use of coarsening data for computation of thermodynamic 

or material-related parameters such as D, Q or σ  will be the prime focus of this section.  

 Rao et al.25 reported the effects of long-term exposure in the range of 700°C to 

850°C on the coarsening behavior of a Ni-Fe base Nimonic PE16 superalloy. The 

coarsening kinetics of γ′ investigated up to 1500 hrs was reported to follow the 3
1

t  law, 

suggestive of volume diffusion of the solute(s)- Al and Ti in the matrix. The activation 
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energy for solute diffusion obtained from the slope of a plot of ln(  vs )Tk1 T
1  was 

computed to be 280 kJ mol-1. Here k  is the coarsening rate constant introduced in 

equation (8). The reported value of 280 kJ mol

1

-1 compared favorably with the activation 

energy values of 270 kJ mol-1 and 257 kJ mol-1 for diffusion of Al and Ti in Ni 

respectively25.  

 In another investigation by Stevens et al.26, the results of γ′ coarsening kinetics in 

IN-738 superalloy in the temperature range of 750°C to 850°C were reported. The alloy 

consisted of a bimodal γ′ distribution- spheroids (0.05 µm radius) and cuboids (0.5 µm 

radius) after initial heat-treatment. Upon aging, both classes of precipitates were 

indicated to obey volume-diffusion controlled coarsening kinetics; however, the cuboids 

were reported to coarsen at the expense of the spheroids, until the latter disappeared. The 

activation energy for coarsening of γ′ spheroids in this alloy was reported to be 269 kJ 

mol-1. The volume fraction of γ′ cuboids increased upon aging to a maximum value of 

0.45 and remained constant thereafter with a simultaneous decrease in the volume 

fraction of γ′ spheroids26. 

 Ges et al.27 reported coarsening studies in IN-713C for times up to 20000 hrs at 

950°C. Their results indicated that γ′ coarsening described by linear volumetric growth 

was only valid for aging times shorter than 2500 hrs. The coarsening rate of γ′ was 

reported to slow down and eventually reach saturation for aging times greater than 2500 

hrs. Therefore, the following exponential relationship was suggested for the coarsening 

kinetics beyond 2500 hrs instead of the LSW linear law27: 

( ) tα3
o

3
t erVVr −−−=         (16) 
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In the above equation, .constVr 3
t =+  and was interpreted as the molar volume that 

contributes to precipitate coarsening and α is the volumetric growth velocity. It was 

suggested that after longer aging periods, the precipitates would grow to be of volume V, 

disregarding the morphological changes27. 

 Xiao et al.28 conducted HREM investigations of both pre-coarsening and true 

coarsening stages in a Ni-12 at% Al alloy in response to aging at 500°C for times up to 

264 hrs. Nucleation and coarsening regimes were distinctly identified as separated by a 

critical radius- *r  of 1.22 nm. The nucleation period was characterized by an increase in 

the precipitate density- ( )tW  and a slight increase in the mean radius- r . The 

coarsening phase governed by volume-diffusion controlled kinetics showed a monotonic 

decrease in the precipitate density and an increase in r . Correspondingly, the volume 

fraction of the precipitates was reported to increase from 0 to 0.07 up to 264 hrs of 

coarsening. The diffusion coefficient- D and the precipitate-matrix interfacial energy- σ 

were computed in two separate ways using the coarsening data- (i) slopes of 3
tr  vs t 

and  vs ( )tfv
3

1−
t plots and (ii) slope and intercept of ( )tW  vs t plot. The parameters 

involved in the slopes and intercepts of these plots may be noted from equations (8), (12) 

and (14) presented earlier. The computed values of D, σ are reported to be 1.65x10-21 

m2s-1, 0.014 Jm-2 and 1.55x10-21 m2s-1, 0.021 Jm-2 using (i) and (ii) respectively. Thus 

independent measurements of tr  and ( )tfv  or tr  and W  during precipitate 

coarsening facilitate the estimation of both D and σ instead of the product Dσ just from a 

plot of 

( )t

3
tr  vs t28. 
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 Lastly, the effects of volume fraction of the precipitates on the coarsening kinetics 

are addressed. The LSW theory of diffusion controlled particle coarsening was modified 

by Ardell24 to account for the effect of volume fraction-  on particle coarsening, 

usually referred to as the MLSW theory. The modification was carried out under the 

assumption that the solute diffusion distance to or from a precipitate will in general 

depend on a characteristic distance that is a function of the spatial distribution of the 

precipitates. The MLSW theory preserves the basic 

vf

3
1

t  kinetics predicted by the LSW 

theory; however an increased coarsening rate is predicted by the MLSW theory even for 

small values of vf
24. Additionally, the theory predicts a rapid broadening of the 

precipitate size distribution (PSD) with increasing , approaching the PSD for interface 

controlled coarsening in the limit of 

vf

1fv = . The predictions of the MLSW theory are 

however inconsistent with the experimental observations of coarsening behavior in Ni-

base γ-γ′ alloys, in that neither the coarsening rate nor the PSD’s are significantly affected 

by vf
24. Ardell29 compared the normalized coarsening rate constants- ( )

( )0k
fk

1

v1  as a 

function of the volume fraction of γ′ precipitates from ten different investigations on 

binary Ni-Al alloys by different research groups. Ardell29 concluded that there was no 

dependence of either the true coarsening kinetics or the PSD’s on  over a wide range 

of volume fractions (1% to nearly 60%) investigated. The absence of the volume fraction 

effect on the coarsening kinetics was attributed by Ardell to elastic interaction effects 

between precipitates. It was suggested that the retardation of coarsening kinetics was 

vf
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through the co-operative effects of the shear moduli difference between the γ and γ′ 

phases and the role played by elastic anisotropy29. 

In the present research, a combination of electrical and scattering NDE techniques 

is used in conjunction with microscopy and USAXS techniques for studying 

microstructural evolution in controlled Waspaloy microstructures. Specifically, 

correlations are developed among dc electrical resistivity measurements, SEM 

microstructures, USAXS data and x-ray lattice parameter measurements with the 

objective of understanding the mechanisms responsible for microstructural evolution. In 

addition, the feasibility of using ac impedance techniques for non-destructive 

examination purposes is also investigated. Coarsening data obtained from USAXS 

experiments are analyzed using methods proposed by Ardell6, 11 for binary Ni-X systems. 

The coarsening rate constants and the diffusion coefficients computed from the USAXS 

data are compared to those from binary Ni-Al systems and the observed differences are 

discussed. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURE 

 

This section describes in detail, the heat-treatment procedure used for obtaining the 

controlled Waspaloy microstructures with varying grain size and precipitate size 

distributions. Subsequently, the different characterization techniques used for 

microstructural examination as well as macro electrical characterization are detailed. 

3.1 Heat-treatments 

 As stated before, heat-treatments were conducted with the objective of varying the 

microstructural parameters systematically, viz. the grain size and γ′ precipitate size 

distribution. Industrial grade Waspaloy obtained from Fry Steel was the starting material 

for the heat-treatment experiments. The nominal composition of the alloy is given in 

Table 3.1. Heat-treatments were conducted in a Carbolite model CTF 12/65/500 

horizontal tube furnace under flowing argon conditions. Specimens were seated on a 

ceramic tray that was positioned at the furnace center, with radiation shields placed on 

either sides of the tray inside the tube. The radiation shields prevented the heat from 

escaping to the ends of the tube. A uniform heat-zone of 21 cm was quoted by the 

manufacturer for this arrangement. The tube was then sealed at both ends via end-caps 

that had provisions for gas inlet, outlet and thermocouple insertion. A type N 

thermocouple was used for external temperature monitoring, which was approximately 

positioned at the furnace center and below the specimen tray. All the heat-treatments 

conducted in this work were programmed to be of three steps- ramp-up, dwell and ramp-

down sequentially. At the conclusion of the dwell duration, the specimen was manually 
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Table 3.1 Composition (atomic %) of primary constituents in as-received Waspaloy  
 

Element Atomic % 
Ni 56.1 
Cr 21.2 
Co 12.3 
Mo 2.5 
Ti 3.6 
Fe 1.3 
Al 2.7 

 
 
 
removed from the furnace and subjected to a rapid quench in a 5 wt% brine solution at 

50°C.  

Overall, three different sets of heat-treatment experiments were conducted in this 

research, which will hereafter be referred to using roman numerals. A heating rate of 

5.5°C/min was used for all the heat-treatments in Sets I and II, while a rate of 3.3°C/min 

was used in Set III of experiments. The first set (I) of heat-treatments was conducted with 

the objective of investigating the electrical properties of microstructures with varying 

grain size but similar precipitate size distributions. Solution-treatments were conducted 

initially at 1045°C, 1090°C and 1145°C for 4 hours to vary the matrix (γ) grain size and 

to homogenize the microstructure of the alloy in the as-received condition. The solution-

treatments at temperatures of 1045°C, 1090°C and 1145°C will be denoted by capital 

letters- ‘E’, ‘B’ and ‘D’ respectively. This scheme will be used to reflect the order in 

which the heat-treatment experiments were conducted to vary the grain size. The 

solution-treated specimen bars were next subjected to a vacancy-stabilization treatment 

for 3 hours, which was intended to homogenize the discrepancies in the quenched-in 

vacancy concentration after the solution-treatments. The letter ‘S’ will be concatenated to 

the solution-treatment code to indicate the stabilization treatment. The vacancy 
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stabilization temperature was chosen to be at 1045°C corresponding to the lowest 

solution-treatment temperature. This is in comparison to the γ′ solvus temperature of 

~1020°C, as quoted by the manufacturer. The solution-treated and stabilized specimen 

bars were subsequently aged at 800°C for the following aging times- 0., 0.5, 1, 2, 5, 10, 

20, 50, 75 and 100 hours. Slices were sampled from the original specimen bar at each 

specific aging interval and the bar was then replaced in the furnace for further aging. As 

an example, the microstructure resulting from the sequence of heat-treatments- 1090°C 

solution-treatment, 1045°C vacancy stabilization treatment and 800°C aging treatment 

for 75 hours is identified as IBS-800-75.  

 The second (II) and the third (III) sets of heat-treatments were conducted with the 

objective of studying the coarsening kinetics of this alloy at different aging temperatures. 

The initial step that was common to both sets of experiments was a solutionizing 

treatment at 1145°C (code ‘D’). This was in order to keep the matrix (γ) grain size 

invariant for subsequent coarsening experiments in both cases. The vacancy stabilization 

treatment at 1045°C was conducted as an intermediate step before aging in the second set 

of experiments only. This serves to minimize vacancy cluster formation and associated 

effects on γ′ nucleation during subsequent aging. Subsequently, the specimen bars were 

aged at 700°C, 800°C and 875°C in the second set of experiments for aging times ranging 

from 0.5 to 100 hrs. In the third set of experiments, specimens were aged directly after 

the solution-treatment, at temperatures of 725°C, 800°C and 875°C. Additionally, in the 

third set of experiments, aging experiments were carried out at 600°C for much shorter 

aging durations, viz. 2, 4, 6 and 9 min to investigate the kinetics during the early stages of 

 28



precipitation. The summary of specimens produced in Sets I, II and III experiments are 

listed in Tables 3.2, 3.3 and 3.4 respectively. 

3.2 Metallography 
 
 A Buehler ISOMET 1000 Low Speed Saw was used for sampling slices from 

heat-treated specimen bars. The as-cut slices were then mounted inside a bakelite mold 

using a Buehler SIMPLEMET molding press. The mounted specimens were then rough 

ground using a 400 grit SiC abrasive paper on a Buehler Phoenix Beta Grinder/Polisher. 

Subsequently, the specimens were polished sequentially using 9 µm and 3 µm diamond 

suspensions on ULTRAPOL SILK and TEXMET 1000 polishing cloths respectively. 

Finally, the specimens were fine polished in a suspension of four parts colloidal silica to 

one part 30% H2O2 for 6 min and colloidal alumina suspension for 30 sec. A 

CHEMOMET Microcloth was used for the fine polishing step. 

  An etchant consisting of a mix of 3:2:2 ratio by volumes of HCl, HNO3 

and CH3COOH was used for delineating the grain structure30. Highlighting the γ′ phase 

for microscopic examination was accomplished in two ways viz. preferential etching of 

the γ′ phase and preferential dissolution of the matrix (γ) phase surrounding the γ′ 

precipitates. An etchant comprising a mix of 10 ml each of HCl, HNO3, H2O and 0.3g of 

molybdic acid reagent (A-etchant) was used for preferential etching of the γ′ phase. 

Preferential dissolution of the γ phase was achieved using an electrolytic polishing 

procedure30 in a solution of 66% methanol and 33% HNO3 (B-etchant). The 

electropolishing was conducted at room temperature with voltage and current density 

settings of 50V and 0.46 A/cm2 respectively. 
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Table 3.2 List of specimens categorized under Set I heat-treatments 

Specimen ID Solution-treatment Stabilization-
treatment Aging treatment 

IE 1045°C, 4 hrs - - 
IES 1045°C, 4 hrs 1045°C, 3 hrs - 
IB 1090°C, 4 hrs - - 

IBS 1090°C, 4 hrs 1045°C, 3 hrs - 
ID 1145°C, 4 hrs - - 

IDS 1145°C, 4 hrs 1045°C, 3 hrs - 
IES-800-0.5 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 0.5 hrs 
IES-800-1 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 1 hrs 
IES-800-2 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 2 hrs 
IES-800-5 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 5 hrs 
IES-800-10 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 10 hrs 
IES-800-20 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 20 hrs 
IES-800-50 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 50 hrs 
IES-800-75 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 75 hrs 

IES-800-100 1045°C, 4 hrs 1045°C, 3 hrs 800°C, 100 hrs 
IBS-800-0.1 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 0.1 hrs 
IBS-800-0.5 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 0.5 hrs 
IBS-800-1 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 1 hrs 
IBS-800-2 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 2 hrs 
IBS-800-5 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 5 hrs 
IBS-800-10 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 10 hrs 
IBS-800-20 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 20 hrs 
IBS-800-50 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 50 hrs 
IBS-800-75 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 75 hrs 

IBS-800-100 1090°C, 4 hrs 1045°C, 3 hrs 800°C, 100 hrs 
IDS-800-0.5 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 0.5 hrs 
IDS-800-1 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 1 hrs 
IDS-800-2 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 2 hrs 
IDS-800-5 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 5 hrs 
IDS-800-10 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 10 hrs 
IDS-800-20 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 20 hrs 
IDS-800-50 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 50 hrs 
IDS-800-75 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 75 hrs 
IDS-800-100 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 100 hrs 
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Table 3.3 List of specimens categorized under Set II heat-treatments 

Specimen ID Solution-treatment Stabilization-
treatment Aging treatment 

IID 1145°C, 4 hrs - - 
IIDS 1145°C, 4 hrs 1045°C, 3 hrs - 

IIDS-700-0.5 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 0.5 hrs 
IIDS-700-1 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 1 hr 
IIDS-700-2 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 2 hrs 
IIDS-700-5 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 5 hrs 
IIDS-700-10 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 10 hrs 
IIDS-700-20 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 20 hrs 
IIDS-700-50 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 50 hrs 
IIDS-700-75 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 75 hrs 
IIDS-700-100 1145°C, 4 hrs 1045°C, 3 hrs 700°C, 100 hrs 
IIDS-800-0.5 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 0.5 hrs 
IIDS-800-1 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 1 hrs 
IIDS-800-2 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 2 hrs 
IIDS-800-5 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 5 hrs 
IIDS-800-10 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 10 hrs 
IIDS-800-20 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 20 hrs 
IIDS-800-50 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 50 hrs 
IIDS-800-75 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 75 hrs 
IIDS-800-100 1145°C, 4 hrs 1045°C, 3 hrs 800°C, 100 hrs 
IIDS-875-0.5 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 0.5 hrs 
IIDS-875-1 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 1 hr 
IIDS-875-2 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 2 hrs 
IIDS-875-5 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 5 hrs 
IIDS-875-10 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 10 hrs 
IIDS-875-20 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 20 hrs 
IIDS-875-50 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 50 hrs 
IIDS-875-75 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 75 hrs 
IIDS-875-100 1145°C, 4 hrs 1045°C, 3 hrs 875°C, 100 hrs 
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Table 3.4 List of specimens categorized under Set III heat-treatments 

Specimen ID Solution-treatment Stabilization-
treatment Aging treatment 

IIID 1145°C, 4 hrs - - 
IIID-725-0.5 1145°C, 4 hrs - 725°C, 0.5 hrs 
IIID-725-1 1145°C, 4 hrs - 725°C, 1 hr 
IIID-725-2 1145°C, 4 hrs - 725°C, 2 hrs 
IIID-725-5 1145°C, 4 hrs - 725°C, 5 hrs 
IIID-725-10 1145°C, 4 hrs - 725°C, 10 hrs 
IIID-725-20 1145°C, 4 hrs - 725°C, 20 hrs 
IIID-725-50 1145°C, 4 hrs - 725°C, 50 hrs 
IIID-725-75 1145°C, 4 hrs - 725°C, 75 hrs 
IIID-725-100 1145°C, 4 hrs - 725°C, 100 hrs 
IIID-800-0.5 1145°C, 4 hrs - 800, 0.5 hrs 
IIID-800-1 1145°C, 4 hrs - 800°C, 1 hrs 
IIID-800-2 1145°C, 4 hrs - 800°C, 2 hrs 
IIID-800-5 1145°C, 4 hrs - 800°C, 5 hrs 
IIID-800-10 1145°C, 4 hrs - 800°C, 10 hrs 
IIID-800-20 1145°C, 4 hrs - 800°C, 20 hrs 
IIID-800-50 1145°C, 4 hrs - 800°C, 50 hrs 
IIID-800-75 1145°C, 4 hrs - 800°C, 75 hrs 
IIID-800-100 1145°C, 4 hrs - 800°C, 100 hrs 
IIID-875-0.5 1145°C, 4 hrs - 875°C, 0.5 hrs 
IIID-875-1 1145°C, 4 hrs - 875°C, 1 hr 
IIID-875-2 1145°C, 4 hrs - 875°C, 2 hrs 
IIID-875-5 1145°C, 4 hrs - 875°C, 5 hrs 
IIID-875-10 1145°C, 4 hrs - 875°C, 10 hrs 
IIID-875-20 1145°C, 4 hrs - 875°C, 20 hrs 
IIID-875-50 1145°C, 4 hrs - 875°C, 50 hrs 
IIID-875-75 1145°C, 4 hrs - 875°C, 75 hrs 
IIID-875-100 1145°C, 4 hrs - 875°C, 100 hrs 
IIID-600-2m 1145°C, 4 hrs - 600°C, 2 min 
IIID-600-4m 1145°C, 4 hrs - 600°C, 4 min 
IIID-600-6m 1145°C, 4 hrs - 600°C, 6 min 
IIID-600-9m 1145°C, 4 hrs - 600°C, 9 min 
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3.3 Microscopy and X-ray Diffraction 
 
 Optical micrographs of specimens for observing grain contrast were acquired on a 

LEICA DM IRM digital light microscope. Sub-grain microstructures were examined in a 

LEO 1530 and a LEO 1550 scanning electron microscope (SEM) at magnifications 

ranging from 500X to 200,000X. Images were acquired using both secondary electron 

and INLENS detectors. Chemical composition analysis was conducted on the LEO 1530 

SEM using an oxygen-sensitive Oxford 7246 energy dispersive spectrometer. 

 Topographic examination of sub-grain microstructures was also conducted via 

scanning probe microscopy (SPM) besides high-magnification SEM. The setup consisted 

of an XE-100 PSIA advanced scanning probe microscope supplemented by a TS 150 

Herzan active vibration isolation system. Images were acquired using both contact and 

non-contact scan modes. Cantilever types NSC36 and NCHR supplied by PSIA were 

used for contact and non-contact modes respectively. The scanner set-up in the XE-100 

SPM is separated into an XY scanner for horizontal motion and a Z scanner for vertical 

motion respectively. The XY and the Z scanners move in response to the applied voltage; 

the higher the applied voltage, the larger the range of motion. Depending on the 

resolution needed, the SPM may be operated either in a High Voltage or a Low Voltage 

mode. In both the High and the Low Voltage modes, it is further possible to control the 

resolution of the z-scanner by adjusting the Z-scanner range. The vertical resolution in 

the High and the Low voltage modes for a Z-scanner range of 1.0 are 0.18 nm and 0.025 

nm respectively. The High Voltage mode was generally used for scan sizes larger than 

1µm x 1µm. However, the Low Voltage mode was used when a higher resolution was 

needed for typical scan sizes below 1µm x 1µm. 
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 X-ray diffraction (XRD) was primarily used for determining the lattice parameter 

of the γ and γ′ phases. High-resolution diffraction experiments were conducted on a 

Philips PW 1800 θ/2θ automated powder diffractometer (APD) with a Bragg Brentano 

geometry and Cu-Kα radiation. Scans were conducted in the range of 22° to 155° with a 

step size of ∆2θ = 0.02°, allowing 5 seconds per step. 

3.4 Ultra Small Angle X-ray Scattering 
 
 Ultra Small Angle X-ray Scattering (USAXS) experiments were conducted on the 

first set (I) of heat-treated specimens, viz. E, B and D solution-treatments followed by 

stabilization treatment at 1045°C and finally aging at 800°C. The objective was primarily 

to obtain the size distribution and the volume fraction of γ′ precipitates. Specimen 

preparation for USAXS analysis consisted of rough grinding in the sequence of 240, 400, 

800 and 1200 grit abrasive papers of the as-cut slices (~1 to 1.5mm thick) to the point 

where the slice peeled off the mount easily. Subsequently, small pieces (~5mm x 5mm) 

were cut from the original slice using a metal cutting tool. The reverse side of these 

pieces was then thinned by the same sequential procedure using a Gatan disc grinder. The 

final thicknesses of the specimens for USAXS experiments were approximately around 

10µm. 

 USAXS experiments in slit-smeared configuration were performed using the 

synchrotron source installed at the 32 ID beam line at the Advanced Photon Source, 

Argonne National Laboratories. The thinned specimens were mounted on a sample pallet 

that could accommodate up to thirty specimens in a single experiment. The energy of the 

x-rays used in the USAXS experiments was 11 keV, corresponding to a wavelength of 

1.1271 angstroms. Each specimen was measured multiple times to verify the 
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homogeneity of the specimen. Sample transmission obtained from USAXS measurements 

were used to compute the correct thicknesses of the specimens by using the calculated 

absorption length for Waspaloy for 11 keV x-rays. The data were then calibrated to 

absolute intensity using the correct thicknesses. The slit-smeared data obtained from the 

USAXS experiments were analyzed using the Igor Pro (Wavemetrics Inc.) graphing and 

analysis package. Data reduction was accomplished using the Indra package and the 

reduced data were modeled using the Irena package. Modeling the scatter population, viz. 

the γ′ distribution, was conducted under the assumption of a dilute limit, but interparticle 

interferences were accounted for whenever necessary. A built-in least squares fitting tool 

in the Igor Pro package was used for fitting the parameters of the model distribution, viz. 

the mean size of the scatterers- r  and the volume fraction of the scatterers- . 

Additionally, the number or the volume distribution of the scatterers could also be 

obtained directly from the modeling results.  

vf

3.5 DC Four-point Probe Resistivity 
  

DC four-point probe resistivity was one of the macro electrical characterization 

techniques used for investigating the electrical response of heat-treated Waspaloy 

specimens. The probe system consisted of a Signatone model SP4-40045TFS probe head 

mounted on a Signatone model S301-6 probe station. The probe head was comprised of 

four equally spaced spring-loaded collinear tungsten probes at ~1mm spacing, which 

contacted the specimen directly. The probe tips (in brand new condition) had a contact 

radius of 127µm. The leads from the probes were connected to a Keithley 2182A 

nanovoltmeter and a Keithley 6221 AC/DC current source meter, the combination 

referred to as a Delta Mode System. Current was made to flow in and out of the specimen 
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through the outer probes, while voltage was measured across the inner probes connected 

to a high impedance circuit. A schematic illustrating the set-up for a four-probe 

measurement is shown in Figure 3.1. 

Specimens for measurement were in the form of cylindrical slices of 13 mm 

diameter and thickness in the range of 1.5 to 3 mm. The circular face on which the 

measurement was conducted was polished to 0.05 µm roughness. The opposite face 

rested on an insulating supporting block during the measurement. Measurements were 

made by centering the probe array on the polished circular face of the specimen. Up to 

eight measurements per specimen were made along four different diametric orientations 

and two at each orientation using currents of 40 and 50 mA.  

Low-resistance measurements are affected by thermoelectric EMF’s, which 

originate from dissimilar metal contacts in the measurement circuit31. These can lead to 

serious errors in the measured voltage of the actual device under test (DUT). Moreover, 

thermoelectric EMF’s may also vary with time, which entails an involved measurement 

technique to obtain an error free reading. Keithley Instruments Inc., have devised a new 

measurement technique known as the Delta method31 to eliminate thermoelectric EMF’s 

in low-resistance measurements. In the following, a description of this method is 

provided.  

The underlying principle of the Delta method31 is that voltage measurements are 

acquired successively by alternating the polarity of the source current. Each resistance 

calculation of the DUT is derived from three consecutive voltage measurements. The 

resistance calculation is explained with reference to the voltage and current profiles 

shown in Figure 3.2. In the voltage profile, V , V  and V1M 2M 3M  are the measured voltages 
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Figure 3.1 Schematic showing the basic principle of a four-point probe measurement31. A 
test current-  sourced by Keithley 6221 Current Source Meter flows through the 
specimen of resistance .  refers to lead resistance of the wires. The magnitude of 
the sensing current-  is negligible compared to  due to the high impedance 
associated with 2182A and therefore, the measured voltage- V  by 2182A nanovoltmeter 
is primarily across the specimen. 
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across the DUT upon alternating the source current. It may be assumed that each voltage 

measurement is offset by a constant thermal EMF (V ) and a linearly varying voltage 

offset (δ ). The linear drift approximation is only valid for short measurement cycle 

times that are small in comparison with the thermal time constant of the DUT. Therefore 

it is essential that the current source and nanovoltmeter be fast enough to yield a short 

measurement cycle time. The first three measured voltage readings may be expressed 

as

EMF

EMFV

31: 

EMF11M VVV +=          (1a) 

EMFEMF22M VδVVV ++=         (1b) 
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Figure 3.2 Illustration showing the underlying principle of a delta measurement31. , 
 and V  refer to three successive delta measurements obtained by reversing the 

polarity of the current as shown in the second schematic. V  is the constant thermal 
EMF offset affecting every delta measurement and  is the linearly varying voltage 
offset.  
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EMFEMF33M Vδ2VVV ++=         (1c)  

where ,  and V  are the voltage drops across the DUT due to the applied current; 

 is the measured voltage at zero time and V  is the constant thermoelectric voltage 

offset at the same time. The constant thermoelectric EMF and the linearly varying drift 

are eliminated by the following procedure
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The measured resistance is then obtained as the ratio of V to the amplitude of the 

sourced current, : 

finalR final

sourceI

source

final
final I

V
R =           (4) 

 

3.5.1 Calculation of specimen resistivity 

Resistivity values were computed from the measured resistance by incorporating 

appropriate correction factors to account for finite specimen geometry. A general 

expression relating the specimen resistivity ρ  to the experimentally measured resistance 

 in a four-probe measurement is as followsfinalR 32:  

finalGRρ =           (5) 

where, G is referred to as the geometric correction factor. Generally speaking, G is a 

function of both the probe arrangement as well as the dimensions of the specimen. For a 

specimen of cylindrical geometry of radius  and thickness , the expression for the 

geometric correction factor may be written as follows

or d

32: 















=

s
dT

s
rsCπ2G o           (6) 

where, 







s
rC o  is the correction factor associated with a finite contour33 and 








s
dT  is the 

thickness correction factor34. The pre-factor (  is the probe spacing) is the geometric 

correction factor corresponding to an infinite slab of the same material

sπ2 s

35. A detailed 

treatment of correction factors for four-point resistivity measurements on cylindrical 

specimens may be found in a later chapter. 
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3.5.2 Calculation of standard deviation in ρ 

 The standard deviation in the specimen resistivity was computed by the following 

procedure. Considering differentials of physical quantities on both sides of equation (5): 

( ) 













+=+=

s
ddT

s
rCRsπ2dRdGRdGGdRρd o     (7) 

where,  and  are the respective standard deviations in the measured resistance and 

the thickness correction factor.  is the overall geometric correction factor of the 

specimen corresponding to the mean thickness 

dR dT

G

d  and R  is the average resistance. 

 was obtained as the standard deviation in dT 







s
dT  corresponding to each specific 

thickness measurement. 

3.6 AC Impedance Measurements 

The underlying objective of conducting AC impedance measurements on 

Waspaloy was to investigate the frequency response behavior due to the presence of 

inhomogeneities in the matrix, viz. γ′ precipitates, carbides etc. Impedance measurements 

were initially conducted using a two-probe method on HP 4192A Impedance Analyzer 

with an Agilent 16034E test fixture.  

AC four-point probe impedance measurements were conducted on a SR830 

Stanford Research Systems DSP Lock-In Amplifier. A lock-in amplifier is basically a 

sensitive ac nanovoltmeter that enables accurate measurement of small signals that may 

possibly be obscured by noise signals of much larger magnitude. This is made possible 

by phase sensitive detection, wherein the signal of interest is isolated by choosing a 

specific reference frequency and a phase. Noise signals that are not in the vicinity of the 
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reference frequency are discarded and therefore do not affect the measurement. The 

internal oscillator of the lock-in amplifier is capable of sourcing a sine signal (available at 

the SINE OUT BNC) up to 102 kHz with an amplitude range of 4mV to 5V. Complex 

voltage measurements (Vx,Vy) were conducted using the differential (A-B) input of the 

lock-in. In this case, the measured voltage is the difference between the center conductors 

of the A and B inputs. 

 AC four-point probe measurements were initially performed on wire specimens 

and the set-up was subsequently replicated for measuring actual cylindrical slice 

specimens. The experimental set-up for wire specimens, shown in Figure 3.3, was 

developed along similar lines as that used by Gosselin et al.36 for skin-effect 

measurements. The set-up for wire measurements consisted of a 12 AWG copper wire 

specimen of ~30 cm length onto which four 32 AWG copper lead wires were soldered for 

current and voltage connections. The lead wires for voltage were soldered equidistantly 

on either side from the center of the specimen wire. The voltage lead wires were cut 

sufficiently long and were twisted together from the solder connections along the entire 

length of the wires (see Figure 3.3). This was in order to minimize any loops in the 

circuitry, which can lead to spurious voltage pick-up due to the presence of alternating 

magnetic fields. The current lead wires were soldered on either ends of the specimen 

wire. The specimen wire with the soldered lead wires was then carefully led into a copper 

tube (2.54 cm diameter, 20 cm length) through insulating plugs at the ends of the tube 

(see Figure 3.3). The arrangement was such that the voltage connections remained inside 

the copper tube while, the ends of the specimen wire bearing the current contacts were 

outside the shield. The co-axial arrangement of the specimen surrounded by the copper  
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Figure 3.3 Schematic illustrating a four-point probe ac measurement on a wire specimen. 
he specimen (denoted by ‘2’) is placed inside a hollow copper shield tube (denoted by 

be enables shielding the AC measurement from electromagnetic radiation. 

 in the above 

 

T
‘1’) in the form of a coaxial cell arrangement. Points ‘A’ and ‘D’ represent the current 
injection and extraction points, while ‘B’ and ‘C’ refer to the voltage pick-up points. The 
voltage pick-up wires are braided to minimize effects of induced voltage from the 
magnetic field (after Gosselin et al.36). 
 
 
 
tu

Additionally, the copper shield acts as a common ground point for the LOW current lead 

wire from the specimen and the outer conductor of the SINE OUT BNC of the lock-in 

amplifier. The HIGH current lead wire from the specimen was connected in series to a 

fixed resistor, which was then connected to the center conductor of the SINE OUT BNC. 

The braided voltage lead wires extending from inside the shield were connected to the 

differential (A-B) input of the lock-in for voltage measurement. The amplitude of 

complex current through the specimen wire was obtained by measuring the voltage across 

the resistor independently by a Keithley 2000 Digital Multimeter (DMM). 

 Four-point probe AC measurements on wire specimens conducted

described fashion need to be corrected for voltage contributions arising from the 

circuitry, referred to as short compensation. To enable this, a new wire specimen was 

prepared by shorting the voltage lead wires on the specimen by a single solder 
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connection. The current lead wires were soldered at either ends of the specimen as before. 

This will be referred to as the ‘short specimen’ hereafter. Short compensation was 

achieved by subtracting the voltage measured from the short specimen from the original 

wire specimen at all the frequencies investigated. The resulting voltages will be referred 

to as the short-corrected voltages. 

Short-corrected voltage measurements from the specimen were taken at two 

different values of source voltage and the corresponding source currents were measured 

using the DMM. The real and imaginary components of the specimen impedance were 

then obtained by the following procedure36: 

( )ωRIVV 1oins1x +=          (8a) 

)

In the above set of equation
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( ))ωL+         (9a) 

         (8b) 

(LωIVV ins1oins1y +=

        (9b) ( )( ωLLωIVV ins2oins2y ++=

s, V  and V  refer to the real and imaginary components of xj yj

thethe measured voltage corresponding to  flow of a source current I  (j = 1 and 2). The 

quantities- V , L , ( )ωR  and 

oj

ins ins ( )ωL  denote the residual voltage and inductance due to 

the instrum ati  th quenc pendent resistance and inductance of the specimen 

respectively. The resistance- 

ent on, e fre y de

( )ωR  and the inductance- ( )ωL  of the specimen were 

obtained from the above set of equations as follows: 

( ) 1x2x VVωR −
=  and         (10) 

1o2o II −

( ) 







−

−
=

1o2o

1y2y

II
VV

ω
1ωL          (11) 

 43



 As stated before, the experimental set-up for AC four-point probe measurements 

on cylindrical slice specimens was developed based on that used for wire measurements. 

The set-up, shown in Figures 3.4 (a) and (b), consisted of a probe head that was mounted 

on an aluminum support, which was attached to a thick aluminum base. An XYZ stage 

with an insulating platform attachment on the Z stage was also affixed to the aluminum 

base. The specimen seated on the platform was moved closer to the probe head for 

measurement using the motion controls on the stage. The aluminum base with the XYZ 

stage and the probe head mount was enclosed inside a copper box (cuboid-shaped), 

analogous to the copper tube used in wire specimen measurements. The box was 

designed so that the front face was left open for manipulating stage motion, which could 

later be sealed after connection between the specimen and the probes was established. 

The probe head for AC four-point probe measurements was the same as that used for 

making DC four-point measurements as described earlier. However, the manner in which 

the lead wires from the probes were drawn outside the probe head was modified 

significantly (see Figure 3.4 (b)). The current lead wires from the two end probes were 

led out from either side of the probe head. The voltage wires were twisted together as in 

the wire specimen measurements and drawn out from the center of the probe head. The 

two current lead wires and the pair of voltage wires were drawn out from three separate 

holes on the back face of the box. Connections between the different lead wires and the 

lock-in were identical to that used in wire measurements. Short compensation in case of 

slice specimens was conducted by using a sheet of copper (1cm x 1cm) as the short 

specimen. 
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Figure 3.4 Schematic illustrating a four-point probe ac measurement on a cylindrical disk 
Waspaloy specimen is shown in (a). The numerals denote the following: (1) Copper 
shield box, (2) aluminum base, (3) xyz stage, (4) four-point probe and (5) a Waspaloy 
specimen, A magnified view of the four-point probe is shown in (b), where the current 
wires are drawn from opposite sides of the probe head and the twisted voltage pick-up 
wires are drawn from the center. 
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Four probe impedance measurements were conducted on the specimen of interest 

in the frequency range of 200 Hz to 100 kHz. At each frequency, two separate voltage 

measurements were made by switching the ‘A’ and ‘B’ voltage inputs i.e. (A-B) and (B-

A) differential measurements. The average of the difference between these measurements 

was taken as the final measured reading. This procedure referred to as the ‘Common 

Mode Reversal’ or CMR technique helps in minimizing voltage errors due to common 

mode signals37, 38. Common mode signals are those signals that arise equally on both A 

and B inputs i.e. common mode noise or common mode signal38. If the signal source and 

the lock-in amplifier are connected to different ground points, they may not be at the 

same potential. This residual voltage due to ground loops results in imperfect cancellation 

of the signal appearing on the A and B inputs, leading to a common mode error38. The 

CMR measurement was performed at two different source voltages for an actual 

specimen and a copper sheet specimen. 

Next, a computed response for the four-probe impedance of the copper sheet 

specimen was obtained by making use of a closed-form analytical solution for the electric 

field distribution inside the specimen, developed by Bowler39. Details of this computation 

are described in section 5.3.2. The residual impedance was then obtained as the 

difference between the measured and the computed impedances for the copper sheet 

specimen respectively. The actual specimen impedance was finally obtained as the 

difference between the measured specimen response and the residual impedance 

determined previously from the copper sheet specimen. 
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CHAPTER 4 

RESULTS AND DISCUSSION OF HEAT-TREATMENT 

EXPERIMENTS 

 

In this chapter, the characterization results from the different sets of heat-treated 

specimens, described in the experimental procedure chapter, are presented and discussed.  

The first part of the chapter deals with Set I specimens, where aging experiments are 

conducted at 800°C after different prior solution-treatments at 1045°C, 1090°C and 

1145°C. In the second part of the chapter, the microstructural evolution in Set III 

specimens, which are aged at 725°C, 800°C and 875°C after initial solution-treatment at 

1145°C, is discussed. 

4.1 Microstructural evolution in Set I experiments 

4.1.1 Characterization Results 

The grain structures resulting from solution-treatments at 1045°C, 1090°C and 

1145°C (denoted as E, B and D respectively) are presented in Figure 4.1. As expected, 

the grain size shows progressive increase with increase in the solution-treatment 

temperature with average values of 13, 52 and 89µm. The average grain size post 

vacancy stabilization (denoted by the letter ‘S’) at 1045°C increased by not more than 

15% of the as-solution-treated grain sizes. Representative scanning electron micrographs 

of specimens in the different solution-treated and stabilized conditions are shown in  
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Figure 4.1 Representative optical micrographs of grain structures solution-treated at 
1045°C-(a) and 1090°C-(b). 
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Figure 4.1 (c) Representative optical micrograph of grain structure solution-treated at 
1145°C. 
 
 
 
Figure 4.2. The presence of polygonal etch-pits, usually seen as square or hexagon shapes 

inside the grains, is common to all the microstructures. It is postulated that the formation 

of these polygonal etch pits is related to the condensation of excess quenched in 

vacancies onto preferential elastically soft directions. Further details on the formation and 

evolution of etch-pits are treated in sections 4.2.1 and 4.2.2 of this chapter. No evidence 

of γ′ precipitation was noted from high-resolution SEM micrographs of solution-treated 

or stabilized specimens. 

A plot of the lattice parameter of the γ phase as a function of the solution-

treatment temperature is shown in Figure 4.3. Each data point represents an average 

obtained from multiple specimens that are different solution-treatment iterations at the  
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Figure 4.2 SEM micrographs of as-solution-treated and subsequently stabilized 
microstructures corresponding to initial solution-treatment temperatures of 1145°C- (a) & 
(b), 1090°C- (c) and (d), 1045°C- (e) and (f) respectively. 
 
 
 

A plot of the lattice parameter of the γ phase as a function of the solution-

treatment temperature is shown in Figure 4.3. Each data point represents an average 

obtained from multiple specimens that are different solution-treatment iterations at the 

same temperature. In spite of the large standard deviations, it is clear that the average 

lattice parameter shows an increase with increasing solution-treatment temperature.  

 The lattice parameter values of solution-treated and vacancy stabilized specimens 

that are specifically used for later aging treatments at 800°C are listed in Table 4.1. The 

vacancy stabilization treatment, as mentioned earlier, is intended to eliminate the 

discrepancies in the quenched-in excess vacancy concentration after the solution-

treatments. The increasing trend in the lattice parameter with solution-treatment 

temperature is consistent with the plot presented in the previous paragraph in Figure 4.3. 

The post-vacancy stabilization treatment (at 1045°C) of the solution-treated specimens (at 
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Figure 4.3 Plot showing the variation of the lattice parameter of the matrix (γ) phase with 
solution-treatment temperature. 
 
 
 
1145°C and 1090°C) resulted in a slight decrease of the lattice parameter as seen from 

Table 4.1. The match between the lattice parameters of the stabilized (at 1045°C) 

specimens, with B (1090°C) and D (1145°C) pre-solution-treatments is very good. The 

notably higher lattice parameter (after stabilization) in case of the specimen pre-solution-

treated at 1045°C, is not clearly understood. For this particular treatment, there was a 

temperature differential inside the furnace causing the treatment temperature to lie in 

proximity to the γ′ solvus. Any compositional changes in the matrix associated with the 

possible precipitation of γ′ during the stabilization treatment could potentially lead to a 

change in the lattice parameter. 

A plot of the resistivity versus temperature is shown in Figure 4.4 for multiple 

iterations of different solutionizing and subsequent stabilization treatments. The as-  
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Table 4.1 Four-probe resistivity of solution-treated and vacancy stabilized specimens 
 

Solutionizing 
temperature 

[°C] 

 ρ [µΩ−cm] 
(solution-
treated)  

  ρ [µΩ−cm] 
(stabilized) 

ao (nm) 
(solution-
treated) 

ao (nm) 
(stabilized)

1145 124.41 126.20 0.3587 0.3584 
1090 125.78 125.44 0.3585 0.3584 
1045 127.65 129.86 0.3583 0.3586 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.4 Plot showing the DC four-point probe resistivity as a function of treatment 
temperature in case of as-solution-treated and solution-treated + stabilized specimens. 
Multiple specimens were measured for each treatment. Closed symbols denote as-
solution-treated specimens and open symbols denote the solution-treatment with the post 
vacancy-stabilization treatment. 
 
 
 
solution-treated specimens are represented using closed symbols, while the solution-

treated and subsequently stabilized specimens are denoted with open symbols. It is clear 

from the plot that there is no noticeable trend in the resistivity as a function of the 

solution-treatment temperature. Almost all the resistivity values of solution-treated and 
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stabilized specimens lie in a range between 124.41 [µΩ.m] and 127.652 [µΩ.m], with the 

exception of one specimen. The large scatter observed here is attributed to slightly 

dissimilar quenching conditions from one specimen to another. The dissimilarity in the 

quench is because the time taken to remove a specimen from the furnace at the 

conclusion of the heat-treatment and subject it to a quench is variable. Therefore, 

uncontrolled events such as association of vacancies and formation of cooling γ′ are 

possible during this time interval, which can affect the measured resistivity. The 

markedly higher resistivity for one of the (1045°C solutionized + 1045°C stabilized) 

specimens is thought to be due to the presence of fine γ′ upon precipitation during the 

stabilization treatment. This is a consequence of temperature differential inside the 

furnace causing the treatment temperature to lie in proximity to the γ′ solvus. 

The resistivity values of solution-treated and stabilized specimens that are later 

subjected to aging at 800°C are reported in Table. 4.1. These values were used previously 

in the resistivity plot reported in Figure 4.4. 

Subsequent to the vacancy stabilization treatment, the specimens were aged at 

800°C for times ranging from 0.1 to 100 hours in order to study the aging kinetics. The 

micrographs showing the microstructural evolution in response to aging at 800°C for the 

three pre-solution treatment cases (E: 1045°C, B: 1090°C and D: 1145°C) are presented 

in Figures 4.5 through 4.7. No observable γ′ (via SEM) was noted in specimens sampled 

at 0.1 hrs or 0.5 hrs into the aging treatment in any of the three pre-solution-treatment 

cases. The rather large microstructural features observed in the SEM at these early aging 

durations are etch-pits, which transformed from perfect polygonal shapes (seen after 

solutionizing or stabilization treatments in Figure 4.2) into more rounded shapes upon 
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aging. γ′ precipitates were present abundantly in case of specimens solution-treated 

initially at 1145°C after 1 hr of aging at 800°C (see Figure 4.7 (b)). The amount of γ′ that 

could be observed using the SEM diminished drastically with decreasing pre-solution-

treatment temperature. After 2 hours of aging at 800°C, γ′ was clearly observable in all 

three pre-solution-treatment cases- B, D and E (see Figures 4.5(c), 4.6(d) and 4.7(c)). The 

larger features in the microstructures at 1 hr and 2 hrs are etch-pits that have evolved 

from rounded shapes into more irregular shapes and should not be confused with γ′. 

Aging for longer times led to the eventual disappearance of the etch-pits. A detailed 

treatment of the etch-pit evolution is dealt with in the next section, as stated earlier. 

Progressive growth of γ′ was noted upon aging at 800°C for longer aging times viz., 5, 

10, 20, 50, 75 and 100 hours in all three pre-solution treatment cases. This is clearly seen 

from the series of micrographs- 4.5 (d)-(i), 4.6 (e)-(j) and 4.7 (d)-(i) for pre-solution 

treatment cases of 1045°C, 1090°C and 1145°C respectively. The nominal size of γ′ as 

perceived visually was the largest in case of specimens pre-solution-treated at 1145°C at 

all the aging sampling times. Precipitate sizes corresponding to pre-solution-treatments of 

1090°C and 1045°C were comparable. These observations based on SEM micrographs 

will be justified in the following using precipitate size distribution data, obtained using 

ultra small angle x-ray scattering (USAXS). The present observations however, signify 

that the aging kinetics is faster in case of specimens that were solution-treated at 1145°C, 

in spite of the vacancy-stabilization treatment. This conclusion seems to suggest that the 

faster aging kinetics in set D (1145°C pre-solution-treatment) as compared to B (1090°C 

pre-solution-treatment) or E (1045°C pre-solution-treatment) may be influenced by 

residual vacancy contributions even after the stabilization treatment. 
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Figure 4.5 SEM micrographs showing microstructural evolution upon aging at 800°C for 
aging times of (a) 0.5, (b) 1, (c) 2, (d) 5, (e) 10 and (f) 20 hrs respectively. The specimens 
were solution-treatment at 1045°C and stabilized at 1045°C prior to aging at 800°C. 
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Figure 4.5 SEM micrographs showing microstructural evolution upon aging at 800°C for 
aging times of (g) 50, (h) 75 and (i) 100 hrs respectively. The specimens were solution-
treatment at 1045°C and stabilized at 1045°C prior to aging at 800°C. 
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Figure 4.6 SEM micrographs showing microstructural evolution upon aging at 800°C for 
aging times of (a) 0.1 and (b) 0.5 hrs respectively. The specimens were solution-treatment 
at 1090°C and stabilized at 1045°C prior to aging at 800°C. 
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Figure. 4.6 SEM micrographs showing microstructural evolution upon aging at 800°C for 
aging times of (c) 1, (d) 2, (e) 5, (f) 10, (g) 20 and (h) 50 hrs respectively. The specimens 
were solution-treatment at 1090°C and stabilized at 1045°C prior to aging at 800°C. 
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Figure 4.6 SEM micrographs showing microstructural evolution upon aging at 800°C for 
aging times of (i) 75 and (j) 100 hrs respectively. The specimens were solution-treatment 
at 1090°C and stabilized at 1045°C prior to aging at 800°C. 
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Figure 4.7 SEM micrographs showing microstructural evolution upon aging at 800°C for 
aging times of (a) 0.5, (b) 1, (c) 2 and (d) 5 hrs respectively. The specimens were 
solution-treatment at 1145°C and stabilized at 1045°C prior to aging at 800°C. 
 
 

 58



 

500nm 500nm 

( (f)

500nm 500nm 

500nm 

( )

( (g) h)

i  

e)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7 SEM micrographs showing microstructural evolution upon aging at 800°C for 
aging times of (e) 10, (f) 20, (g) 50, (h) 75 and (i) 100 hrs respectively. The specimens 
were solution-treatment at 1145°C and stabilized at 1045°C prior to aging at 800°C. 
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Figure 4.8 shows a plot of the DC four-point probe resistivity values of specimens 

aged at 800°C for all the three pre-solution-treatment cases as a function of the aging 

time. The first set of data points at 0.01 hrs correspond to specimens in the vacancy 

stabilized condition. As mentioned earlier, the resistivity of the IES (1045°C solution-

treated + 1045°C stabilized) specimen is possibly influenced by γ′ precipitation during 

the stabilization treatment due to a temperature differential inside the furnace. With the  

 
 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.8 Plot of the DC four-point probe resistivity versus logarithm of the aging time 
for specimens pre-solution-treated at 1045°C, 1090°C and 1145°C and aged at 800°C. 
 
 
 
exception of this specimen, a rise in resistivity from the stabilized condition is noted upon 

aging, with a maximum increase of 4.95 [nΩ.m] in case of the IBS-800-0.1 specimen. 

Upon further aging up to 1 hr, the resistivity is noted to decrease monotonically for the B 

(1090°C pre-solution-treatment) series, at which point it is nearly equal to the as-
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stabilized resistivity. The same is also true of E (1045°C) and D (1145°C) series 

specimens, in which cases, the earliest aging sampling time is 0.5 hrs instead of 0.1 hrs. 

Further decrease in resistivity beyond 1 hr all the way up to 100 hrs is noted for the three 

pre-solution-treatment cases, the reasons for which are discussed later. 

Slit-smeared data obtained from USAXS measurements are shown as plots of the 

intensity- I versus the wave vector-  in Figure 4.9 through 4.11 for specimens at the 

different aging intervals corresponding to the three pre-solution treatment cases. It should 

be mentioned that the wave vector is inversely related to the real space dimension of the 

scattering particles. A typical I versus  plot shows two or three linear regions (with 

finite slopes) separated by plateau(s) in between. Each linear region is referred to as a 

Guinier region that corresponds to scattering from a distinct size distribution of particles. 

Guinier region(s) in the high  region correspond to scattering from the γ′ distribution(s) 

because of their relatively small real space dimensions. The linear region in the low  

regime may be attributed to scattering from relatively larger microstructural features such 

as the grain structure and carbides. The clear presence of a Guinier region in the high q  

regime was noted in all the aged specimens for times ranging from 0.1 hrs to 100 hrs for 

the three pre-solution-treatment cases. This is a clear indication of the existence of γ′ 

precipitates even at the smallest aging times, which could not be seen in the SEM. Plots 

of I vs  were data-fitted using a least squares fitting tool in the Igor Pro package for 

obtaining the γ′ size distribution, the mean size- 

q

q

q

q

q

r  and the volume fraction- , by 

assuming a lognormal size distribution. 

vf

 

 

 61



 

 

 

 

 

 

 

 
 
 
 
 
Figure 4.9 Plot of normalized USAXS intensity versus the wave vector for specimens 
solution-treated at 1045°C (denoted by ‘E’), stabilized at 1045°C and subsequently aged 
at 800°C for times up to 100 hrs. 
 
 
 

 

 

 

 

 

 

 

 
 
 
Figure 4.10 Plot of normalized USAXS intensity versus the wave vector for specimens 
solution-treated at 1090°C (denoted by ‘B’), stabilized at 1045°C and subsequently aged 
at 800°C for times up to 100 hrs. 
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Figure 4.11 Plot of normalized USAXS intensity versus the wave vector for specimens 
solution-treated at 1145°C (denoted by ‘D’), stabilized at 1045°C and subsequently aged 
at 800°C for times up to 100 hrs. 
 
 
 
scattering particles. A typical I versus  plot shows two or three linear regions (with 

finite slopes) separated by plateau(s) in between. Each linear region is referred to as a 

Guinier region that corresponds to scattering from a distinct size distribution of particles. 

Guinier region(s) in the high  region correspond to scattering from the γ′ distribution(s). 

The linear region in the low  regime may be attributed to scattering from relatively 

larger microstructural features such as the grain structure and carbides. The clear 

presence of a Guinier region in the high  regime was noted in all the aged specimens 

for times ranging from 0.1 hrs to 100 hrs for the three pre-solution-treatment cases. This 

is a clear indication of the existence of γ′ precipitates even at the smallest aging times, 

which could not be seen in the SEM. Plots of I vs  were data-fitted using a least squares 
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fitting tool in the Igor Pro package for obtaining the γ′ size distribution, the mean size- 

r  and the volume fraction- , by assuming a lognormal size distribution. vf






exp

E≈

4.1.2 Analysis and Discussion 

The increase in the lattice parameter with solution-treatment temperature shown 

in Figure 4.3 is because of the thermal dilatation of the lattice and lattice relaxation 

around vacancies that form at the solution-treatment temperature12. It is however not 

possible to obtain the vacancy concentration just from x-ray lattice parameter 

measurements. A measure of the quenched-in vacancy concentration can only be 

obtained if simultaneous dilatometric measurements are conducted along with the lattice 

parameter measurements12. There is no doubt however, that the quenched-in vacancy 

concentration should increase with increasing solution-treatment temperature. The 

quenched-in vacancy concentrations corresponding to the three solution-treatment 

temperatures were computed by making the following assumptions- (a) matrix is pure Ni 

and (b) vacancy formation enthalpy ( ) of 1.72 eV for Ni obtained from positron 

annihilation spectroscopy

v
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where,  and  are the formation energy and entropy associated with a monovacancy. 

However,  and , where P, V  and  

refer to the pressure, volume of a monovacancy and the free energy associated with the 

formation of a monovacancy respectively. It is assumed that the entropy contribution is 
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negligible as compared to the formation enthalpy term. Incorporating these assumptions, 

the expression for C  may be rewritten as: v




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−≈
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expC
v
f

v

∆
         (2) 

Based on this expression, the quenched-in vacancy concentration at solution-treatment 

temperatures of 1045°C, 1090°C and 1145°C were computed to be 2.65x10-7, 4.37x10-7 

and 7.72x10-7 respectively. 

The as-stabilized lattice parameters of specimens previously solution-treated at 

1090°C and 1145°C show a good match as seen from Table 4.1. It is however possible 

that the formation of vacancy clusters may impact the measured values. Quenched-in 

vacancies from higher temperatures (1090°C and 1145°C) after the solution-treatments 

may aggregate to form divacancies during the stabilization treatment. The lattice around a 

divacancy is more relaxed than around a single vacancy12. Therefore, the increase in the 

lattice parameter brought about by a divacancy is lower than that due to two single 

vacancies. For this reason, the presence of divacancies can result in a lower value of the 

measured parameter than if all the vacancies were to exist as single ones. 

Next, the resistivity plot of solution-treated and stabilized specimens shown in 

Figure 4.4 is discussed. The contributions to solution-treated resistivity can arise from the 

solid solution elements in the Ni-rich matrix phase (γ), excess quenched-in vacancies, 

carbide distribution and grain boundaries. The effect of carbides and grain boundaries on 

the overall resistivity is presumed to be a minor one, considering the rather large scale of 

dispersion of these features. The concentration of quenched-in vacancies (in pure Ni 

matrix) as discussed in a previous paragraph is in the range of 10-7 to 10-6 for the above 
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solution temperatures. The concentration of solid solution impurity elements is several 

orders of magnitude higher than the excess vacancy concentration (see Table 3.1 for 

concentration of solid-solution elements). Therefore, it is proposed that the measured 

resistivity in the solution-treated condition is primarily influenced by the presence of 

solid-solution alloying elements. The observed differences in resistivity among the 

different solution-treatments may be due to slight variations in the quench or in the alloy 

composition from one bar to another. 

Since the stabilization treatment is also conducted above the γ′ solvus, the 

arguments presented for explaining the resistivity of solution-treated specimens are 

equally valid here.  

Next, the results from USAXS analysis, SEM observations and four-point probe 

resistivity are discussed. The mean γ′ precipitate radius- r  plotted as a function of the 

aging time is shown in Figure 4.12 for the three pre-solution-treatment cases E (1045°C), 

B (1090°C) and D (1145°C) upon aging at 800°C. A clear increase in r  with 

progressive aging is seen from the figure for the three pre-solution-treatment cases. It is 

also evident that the specimens pre-solution-treated at 1145°C have the largest r  of the 

three cases for most of the aging sampling times. These observations are in good 

agreement with the conclusions drawn earlier based on visual comparison of the SEM 

micrographs presented in Figures 4.5 through 4.7. 

Lattice parameter analysis was not conducted for the present set of aged 

specimens with the three different pre-solution-treatments. However, lattice parameter 

variations in response to aging at 800°C for a different set of specimens with a pre- 
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Figure 4.12 Plot of the mean γ′ precipitate radius as a function of the aging time for 
specimens pre-solution-treated at 1045°C, 1090°C and 1145°C and aged at 800°C. 

 
 
 

solution-treatment of 1145°C and without the stabilization treatment are presented in 

sections 4.2.1 and 4.2.2. The stabilization treatment (at 1045°C) results only in a slight 

decrease of the lattice parameter from the as-solution-treated condition (for 1145°C and 

1090°C) as discussed earlier based on the data in Table 4.1. It is expected that the lattice 

parameter changes that will ensue upon aging at 800°C in the present sets of specimens 

will be very similar to that presented later. 

The increase in the DC four-point probe resistivity upon initial aging from the as-

stabilized condition (with the exception of the IES (1045°C solution-treated + 1045°C 

stabilized) specimen) was mentioned in the results section, with reference to Figure 4.8. 

The only plausible explanation for this rise is due to the presence of very fine γ′ 
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precipitates that form upon aging. Their presence is clearly confirmed via USAXS 

experiments as mentioned in an earlier paragraph, although they were not sighted in the 

SEM. The increase in resistivity seen in the early stages of aging is dependent on two 

factors, viz. the interparticle spacing- λ between the γ′ precipitates and the mean free 

path- Λ of the conduction electrons in the material. The γ′ interparticle spacing is directly 

related to the mean γ′ precipitate radius- r . The closer the value of r  to Λ, the more 

effective the γ′ size distribution is in scattering the conduction electrons and therefore the 

greater the resistivity. The classical estimate of Λ in pure nickel using Drude’s free 

electron model9 is computed to be 0.3 nm, which compares to an r  of 3 nm for the aged 

specimen at 0.1 hrs with the 1090°C pre-solution-treatment from USAXS analysis. The 

exact position of the resistivity maximum-  that would correspond to a critical γ′ 

radius- 

maxρ

cr  leading to the maximum scattering of conduction electrons8, is unknown 

from the present data. This is due to the lack of data for sampling times below 0.1 hrs. 

The increase in resistivity up to  if observed, may be attributed to the nucleation and 

growth phase of γ′ precipitates, beyond which the resistivity decreases due to γ′ 

coarsening. From the present data it can only be concluded that γ′ nucleation should have 

been completed by 0.1 hrs because the resistivity decreases monotonically upon further 

aging. Therefore, the measured resistivity data of specimens from 0.1 hrs and beyond are 

related to microstructural changes during γ′ coarsening. This argument is supported by 

the progressive increase of the mean precipitate radius- 

maxρ

r  with aging time shown in 

Figure 4.12 and the SEM micrographs reported in Figures 4.5-4.7 for the three pre-
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solution-treatment cases. Further discussion on the resistivity changes in the coarsening 

regime is presented later. 

It is seen from Figure 4.12 that the growth rate- 
dt

rd
 decreases as the mean 

precipitate radius- r  increases. This may be understood by examining the simplified 

expression for the maximum growth rate- 
maxdt

dr






  from Greenwood’s treatment of 

Ostwald ripening6:        

2
B

mα

max rTR2
VNσD

dt
dr

dt
rd

=





≈








       (3) 

In the above equation, D is the diffusion coefficient of the solute, σ is the specific 

interfacial energy between the matrix (γ) and the precipitate (γ′) phases, Nα is the solute 

content in equilibrium with a particle of infinite radius, Vm is the molar volume of the 

precipitate, RB is the gas constant and T is the aging temperature. The decrease in the 

growth rate with increasing precipitate radius- r , is featured in the above equation as an 

inverse proportionality with 2r . As the precipitate becomes larger, more of the solute 

needs to diffuse up to the precipitate for further growth and therefore a slower growth 

rate is expected for larger precipitates6.  

A plot of the precipitate density or the total no. of precipitates per cm3-  obtained 

from analysis of USAXS data vs logarithm of the aging time is shown in Figure 4.13 for 

the three pre-solution-treatment cases. The precipitate density was obtained by 

integrating the number distribution of precipitates (obtained upon data fitting the USAXS 

spectra) over the observed range of precipitate sizes. A clear decrease in W  is noted as 

( )tW

( )t
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coarsening proceeds with minor exceptions. This is a direct consequence of Ostwald 

ripening6, where larger precipitates continue to grow at the expense of smaller ones due 

to a concentration gradient in solute in the matrix regions surrounding the precipitates. At 

any given instant during coarsening, precipitates that are smaller than the mean radius- 

r  are shrinking and eventually disappear, leading to a reduction in the precipitate 

density. An expression for the temporal variation of the precipitate density- ( )tW  during 

coarsening was given in an earlier chapter on literature survey of coarsening. The 

reduction in the no. of precipitates per unit area for aging times beyond 5 hrs may be 

observed qualitatively from the series of SEM micrographs in Figures 4.5 through 4.7 for 

the three pre-solution-treatment cases. 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.13 Plot of the γ′ precipitate density as a function of the aging time for specimens 
pre-solution-treated at 1045°C, 1090°C and 1145°C and aged at 800°C. 
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Figure 4.14 Plot of the fraction of precipitates below the mean radius as a function of the 
aging time for specimens pre-solution-treated at 1045°C, 1090°C and 1145°C and aged at 
800°C. 

 
 
 
Next, a plot of the number fraction of particles with radii below r  vs the aging 

time is shown in Figure 4.14. It is noted that the number fraction increases with 

progressive aging starting from 5 hrs in the D (1145°C) set of specimens. The fraction 

levels off at the higher aging times in B (1090°C) and E (1045°C) sets of specimens. It is 

speculated that the random behavior during the early aging times (below 5 hrs) may be 

due to non-negligible pre-coarsening time or the incubation period before the onset of the 

‘true coarsening reaction’. As per Greenwood’s treatment of Ostwald ripening6, particles 

whose radii are larger than the mean radius- r  grow at the expense of those smaller 

than r . Generally speaking, the range- [ ]maxr,r  over which coarsening takes place also 
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increases with increasing r  upon coarsening. However, the growth rate of particles 

larger than r  falls as r  increases, as expressed by equation (3), which is also 

experimentally observed as reported in Figure 4.11. As a consequence of this, the 

probability of finding a particle that is significantly larger than r  decreases with 

increase in r  due to coarsening. This is probably why the number fraction of particles 

with radii below r  increases with the aging time (for times from 5 hrs) in Figure 4.14.  

Figure 4.15 shows a plot of 3r  vs t which is indicative of the coarsening kinetics 

in the three different pre-solution treatments cases upon aging at 800°C. The 3r  vs t 

coarsening kinetics results from volume-diffusion of solute through the matrix during 

coarsening and is generally described using the LSW equation as follows6: 

( )
( ) tkt

εNN
N1

RT9
VNσD8rr 1

α
2

αβ

αmα3
o

3
t =

−

−
=−      (4) 

Details on the derivation of the coarsening equation originally by Greenwood, the LSW 

modification and corrections to the LSW equation in cases of non-terminal solid solutions 

are discussed in section 2.2.1 of the literature survey chapter. It is seen that the data 

points for the E (1045°C) and D (1145°C) sets of specimens yield good linear fits. The 

straight line fit for the B (1090°C) set of specimens is only fair. However, there is no 

reason to expect a departure from the 3r  vs t kinetics in this case because the aging 

treatments are conducted in an identical fashion to those of E and D pre-solution-

treatment cases. Additionally, the coarsening sequence shown in the series of 

micrographs in Figures 4.5 and 4.6 for the E and B cases are very similar. The slope of 
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the straight line fits yields the coarsening rate constant- , which is primarily dependent 

on the diffusion coefficient of the solute in the matrix- D, the specific interfacial energy- 

σ and the solute content- N

1k

α. 

r/

It is clear from Figure 4.15 that the coarsening rate constant-  is larger for the D 

set of specimens pre-solution treated at 1145°C compared to sets B (1090°C) and E 

(1045°C). It is believed that this discrepancy in the coarsening kinetics originates from 

differences in the precipitate size distributions (PSD’s) during the initial stages of 

coarsening. The evolution of the PSD’s at the different aging sampling times is shown in 

Figure 4.16 as plots of the frequency of occurrence- 

1k

( )rg  of a particle in terms of the 

reduced radius- ( r/r ) for the three pre-solution-treatment cases. 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.15 Plot of the cube of mean γ′ precipitate radius as a function of the aging time 
for specimens pre-solution-treated at 1045°C, 1090°C and 1145°C and aged at 800°C. 
The slope is indicative of the coarsening kinetics. 
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Figure 4.16 Comparison between the size distribution of γ′ precipitates for the three 
different pre-solution-treatment cases (1045°C, 1090°C  and 1145°C) shown as plots of 
the frequency of occurrence of a particle in terms of the reduced radius. The respective 
aging durations are indicated on individual plots. PSD plots at 2 and 100 hrs show 
distributions for 1045°C and 1090°C pre-solution treated specimens only and the plot at 
75 hrs shows data for 1045°C and 1145°C pre-solution treated specimens only. 

 
 
 
The PSD plots are derived directly from volume distribution of precipitates 

obtained from fitting the USAXS spectra by assuming a lognormal distribution of 

precipitates. It is noted from Figure 4.16 that the D (1145°C) specimens have a much 

tighter distribution at aging times of 1 and 5 hrs compared to the B (1090°C) and E 

(1045°C) cases. The reason for the cut-off values- 
r

rmax  exceeding 2.0 in B and E cases 

(at 1 hr) is possibly because of widespread γ′ nucleation times. Besides, a combined 

precipitation and coarsening stage is also possible prior to a true stage coarsening 
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reaction, if supersaturation driven growth ( ( )rNN αα >  persists6. Here αN  is the 

average solute content of the alloy and ( )rNα  is the solute content of the matrix in 

equilibrium with a precipitate size of r . In addition to having a significantly tighter 

distribution, the frequency of occurrence of particles just above and below r  is much 

higher in D set of specimens compared to B or E at aging times of 1 and 5 hrs (see Figrue 

4.16 (a) and (c)). A third difference is that the specimens with the D (1145°C) pre-

solution-treatment also have a lower particle density- ( )tW  compared to the B (1090°C) 

and E (1045°C) cases as seen from Figure 4.13. These differences facilitate faster 

evolution upon coarsening in case of D specimens as compared to B or E specimens, 

even though they all have a similar value of r  at the early aging times- 1 and 5 hrs (see 

Figure 4.12). It is suggested that these differences owe themselves to the nucleation stage 

of γ′, which can potentially be affected by residual excess vacancy contributions from 

initial solution-treatments even after the post vacancy stabilization treatment. The 

nucleation stage can also be influenced by non-idealities in quenching that can result in 

clustering of vacancies and precipitation of cooling γ′. 

Beyond 5 hrs, the distributions become wider (see Figure 4.16) with cut-off 

values ranging between 1.6 and 2.75 typically, although the IDS-800-75 specimen 

(1145°C pre-solution-treatment and aged at 800°C for 75 hrs) presents a rather large cut-

off value of ~3.6. It is also seen that the distributions beyond 5 hrs are skewed towards 

larger precipitate sizes as a result of the widening. With the exception of 50 hrs, the 

PSD’s are always wider in D (1145°C) set of specimens as compared to B (1090°C) or E 

(1045°C). This in addition to the lower precipitate density- ( )tW  in case D (see Figure 
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4.13) is indicative of the faster coarsening kinetics. In cases B (1090°C) and E (1045°C), 

although the parameters- r , ( )tW  and the PSD’s are similar for most aging intervals 

(see Figures 4.11, 4.13 and 4.16), some differences do exist which contribute to slightly 

different coarsening kinetics. The notable differences between B (1090°C) and E 

(1045°C) sets of specimens exist at 20 hrs and 50 hrs in the particle density- W  and the 

PSD as seen from Figures 4.13 and 4.16 (e) and (f) respectively. The retarded growth 

kinetics in case B (1090°C) from 50 to 100 hrs is not well understood given that both 

( )t

r  

and  are very similar (to E) in both cases and it also has a significantly tighter 

distribution as compared to E at 50 hrs (see Figure 4.16 (f)). The lack of data at 75 hrs for 

B (1090°C) also makes the above interpretation difficult. 

( )tW

The particle size distributions for all the aging durations that belong to a specific 

series are summarized in Figures 4.17 (a)-(c) for the 1045°C, 1090°C and 1145°C sets of 

specimens respectively. In general, the PSD’s show widening at longer aging times, 

which is evident from Figure 4.17 (a)-(c). One of the reasons for the widening of the 

PSD’s is inherent to the nature of the coarsening process, where the range of precipitate 

sizes composing the distribution continues to increase with progressive coarsening. Based 

on the plots, it may be inferred that the PSD’s reach a steady state only for the 1045°C set 

of specimens. This may be seen from Figure 4.17 (a), where the PSD’s at 50, 75 and 100 

hrs clearly overlap with each other. In case of the 1090°C and 1145°C sets of specimens, 

the aging experiments may need to be prolonged to attain a steady state, based on the 

present data (Figure 4.17 (b) and (c)). 
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Figure 4.17 Evolution of the particle size distributions with aging time for sets of 

specimens pre-solution-treated at 1045°C and 1090°C in (a) and (b) respectively. 

 

 77
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Figure 4.17 Evolution of the particle size distributions with aging time for the set of 

specimens pre-solution-treated at 1145°C. 

 
 

A plot of the volume fraction of the γ′-  vs vf r
1  is shown in Figure 4.18 for the 

three different pre-solution-treatment cases. The general trend that is common to all three  

cases is that  shows a plateau behavior initially followed by a steep rise for longer 

aging durations. It should be mentioned that data points at longer aging times presented a 

larger degree of scatter (not shown here), which may be an indication of some level of 

non-homogeneity in the γ′ dispersion or the need for more extensive sampling. The 

plateau behavior extends up to 5 hrs in specimens with the B (1090°C) pre-solution-

treatment and even longer (up to 20 hrs) in D (1145°C) and E (1045°C) cases. The reason 

for this initial plateau behavior is not clearly understood. The increase in  noted for  

vf

vf
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Figure 4.18 Plot of the volume fraction of the γ′ precipitates as a function of 
r
1  in (a) 

and linear fits to data at higher aging times in (b), for specimens pre-solution-treated at 
1045°C, 1090°C and 1145°C and aged at 800°C. 
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longer aging times after the plateau is expected during coarsening as a result of the 

change of Gibbs-Thomson solubility6. For a finely dispersed system of precipitates, the 

solubility ( rNα ) can be significantly larger than  (for a particle of infinite radius) 

because of the curvature associated with the small precipitates

αN

6, 12. As the mean radius- 

r  increases, the solubility ( )rNα

ef

αN

 decreases with a corresponding rise in . The 

theoretical limit of  occurs at , at which stage, the particle is of an infinite radius 

with a corresponding solubility of 

vf

vf

6, 11. The temporal change of the precipitate volume 

fraction due to Ardell11 may be written as follows: 

( ) ( ) ( )
( ) r

1
NNεRT

VN1Nσf12ftf
2

αβα

mααe
ev

−

−−
−=       (5) 

Figure 4.18 (b) shows linear fits for the volume fraction data at longer aging times for the 

three pre-solution-treatment cases, as expressed by the above equation. 

Table 4.2 shows a compilation of the coarsening rate constant- k , the diffusion 

coefficient- D and the equilibrium volume fraction-  of the three different aging series 

with prior solution-treatments at 1045°C, 1090°C and 1145°C. The values of  were 

obtained from the intercepts of the linear fits of volume fraction data in Figure 4.18 (b). 

The diffusion coefficients for each case were computed from the coarsening rate 

constant-  and the slope of  plot (see equations (4) and (5)). The computed diffusion 

coefficients do not scale in the same order as the coarsening rate constants for the sets of 

specimens with 1045°C and 1090°C pre-solution-treatments, as seen clearly from Table 

4.2. This lack of correlation between  and D values could possibly be related to the 

large degree of scatter in  data at longer aging times, which was ignored for this 

1

ef

ef

1k vf

v

1k

f
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analysis. Additionally, the volume fraction effect on coarsening, which is not accounted 

for in the present calculations, may also have an impact. 

 
 
Table 4.2 List of k , D and  values obtained for the specimens aged at 800°C with the 
three different pre-solution-treatments. 

1 ef

 
Series/Pre-solution-
treatment temp. (°C) 1k  [m3/sec]  D [m2/sec]  ef  

IES/ 1045 3.01 x10-29 1.74 x10-20 0.33 
IBS/ 1090 2.39 x10-29 2.80 x10-20 0.28 
IDS/ 1145 4.36 x10-29 3.21 x10-20 0.27 

 
 
 

The effect of γ′ volume fraction on the acceleration of coarsening kinetics and the 

broadening of the PSD’s has been a much debated issue over the years in coarsening 

studies of binary Ni-Al alloys. However, there was no evidence of the effect of volume 

fraction in enhancing the coarsening kinetics or widening the PSD’s in a conclusive study 

conducted by Ardell29. 

Consider the following calculation of D based on Ardell’s analysis of binary Ni-

Al data at 800°C6. The values of ,  and  taken directly from Ardell’s analysis are 

5.85x10

1k ef αN

-28 [m3s-1], 0.014 and 0.131 respectively. A typical interfacial energy- σ of 0.014 

[Jm-2] for Ni-Al and  of 0.25 were also assumedβN 6. The value of D at 800°C was then 

computed to be 1.88x10-18 [m2s-1] by substituting the known parameters in the expression 

for the coarsening rate constant (see equation (4)). It is seen that this value is roughly two 

orders of magnitude higher than the diffusion coefficients obtained from the present data 

(see Table 4.2). One possible explanation for this discrepancy is because of the presence 

of multiple solute elements in Waspaloy, viz. Al, Ti, Mo and Cr as opposed to a single 
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solute in Ardell’s case. The overall diffusion coefficient in a system with multiple solutes 

is determined by the slowest diffusing element (probably Mo), which essentially controls 

the coarsening rate kinetics. 

The resistivity changes occurring during coarsening will be discussed finally 

based on the data presented already in Figure 4.8. As argued before, the observed 

changes in resistivity with progressive aging, 0.1 to 100 hrs for case B (1090°C) and 0.5 

to 100 hrs for D (1145°C) and E (1045°C) are related to γ′ coarsening. The initial 

decrease in resistivity in set B (1090°C), i.e. from 0.1 hrs to 1 hr is due to progressive 

coarsening of γ′ precipitates, corresponding to an increase in r  from 3 nm to 6.2 nm 

(see Figure 4.12). During this stage of coarsening, the measured resistivity-  may be 

argued to depend inversely on the average interparticle spacing-  of the precipitate 

distribution. Assuming a direct proportionality between  and 

tρ

tλ

tλ tr , the following 

relationship may be written between  and tρ tr : 

r
Aρt =           (6) 

where, A is a proportionality constant. Combining the above equation with the LSW 

coarsening equation (2), the following is obtained: 

tk
ρ
1

ρ
1

23
o

3
t

=−           (7) 

Here  refers to the resistivity at the beginning of coarsening, which is taken to be at 

. Equations (6) and (7) essentially imply that the decrease in the measured resistivity 

during initial stages of coarsening is because of a decrease in the scattering efficiency of 

conduction electrons resulting from γ′ coarsening. 

oρ

0t =
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This explanation is satisfactory only for the early aging durations because the 

scattering of the conduction electrons due to the precipitates becomes less significant as 

the distribution coarsens, i.e. when Λ>r 10, 13. This condition seems to have been 

achieved after 1 hr of aging, where the resistivity becomes comparable to the initial 

resistivity in the as-stabilized condition, as seen from Figure 4.8. From this point and 

beyond, the measured resistivity of the alloy is primarily influenced by the solid solution 

impurities as the scattering due to γ′ has only a minor effect on the overall resistivity10, 13. 

However, as γ′ coarsening proceeds the solute content of the matrix- ( rNα ) decreases 

progressively till the theoretical limit  is reached, with a corresponding increase in the 

volume fraction from  to 

αN

vf ef
6, 11. This is discussed in the literature survey section on 

coarsening. Therefore the decrease in resistivity noted beyond 1 hr may be associated 

with the changes in the solute concentration of the matrix. The same argument is also true 

of aged specimens that were pre-solution-treated at 1045°C and 1145°C, for which the 

resistivity data are shown in Figure 4.8. 

The changes in the resistivity of the matrix- ( )tργ  if separated from the overall 

measured resistivity-  may be related to the changes in the solute concentration ( )tρtot

( rNα ) by the following argument. The as-stabilized resistivity-  is primarily 

influenced by the solid solution impurities- both γ′ and non γ′ forming elements. For the 

present analysis, contributions arising from quenched-in excess vacancies are assumed to 

be negligible for reasons stated previously. The resistivity of the matrix-  should be 

influenced by solid solution impurities consisting of non γ′ formers and remainder of γ′ 

stabρ

ργ ( )t

 83



forming elements. Therefore, the difference- ( )tρρ γstab −  should then yield a measure of 

the loss of γ′ forming elements. For the sake of simplicity, it is desirable to treat all of the 

γ′ forming elements in terms of an ‘average solute’. The difference-  is then 

linearly related to the loss of solute concentration as follows: 

( )tρρ γstab −

( )tα

( )tγ

(tρρ γstab −

)

( ) ( )( )tNNPtρρ αoγstab −=−         (8) 

where  is the average solute content of the alloy initially and oN N  is the average 

solute content after time t. The change of the mean solute concentration in the matrix- 

( )tNα  as a function of time during coarsening is given by Ardell6, 11 as: 

( ) ( ) 3
1

14αα ttkNtN −−=−         (9) 

Incorporating this relation into equation (8), the difference- ρρstab −  may be written 

as: 

( ) ( ) ( ) 3
1

14αoγstab ttPkNNPtρρ −−−−=−       (10) 

The above equation suggests that a plot of ) vs 3
1

−
t  should yield a linear 

behavior. 

 The resistivity contribution arising only from the matrix-  is separated from 

the overall measured resistivity- 

(tργ

( )tρtot  by using the equation given by Böttcher41 as 

follows: 

( )
tot'γ

tot'γ
v

totγ

totγ
v σ2σ

σσ
f

σ2σ
σσ

f1
+

−
=

+

−
−        (11) 
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In the above equation,  is the volume fraction of the γ′ phase, ,  and σ  refer to 

the overall measured conductivity, conductivity of the γ and γ′ phases respectively. The 

conductivity of the γ′ phase-  is computed from Wiedemann-Franz relation using a 

thermal conductivity of 28.2 [Wm

vf totσ γσ 'γ

'γσ

-1K-1] for Ni3Al quoted by Terada et al42. The value of 

 is computed to be 3.76 [MSm'γσ
-1]. The computed values of ( )tργ  are then used to plot 

 vs ( )tργ−ρstab
3
1

t
−

 as shown in Figure 4.19. It is evident from the plot that the points 

yield a reasonable fit to a straight line, according to equation (10). 

 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.19 Plot of the residual resistivity- ( )tρρ γstab −  versus 3
1

−
t  for specimens pre-

solution-treated at 1090°C and aged at 800°C. The linear fit indicates that the variations 
in the residual resistivity bear a good correlation to concentration loss of γ′ forming 
elements. 
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4.1.3 Conclusions 

The DC four-point probe resistivity of specimens in the solution-treated and as-

stabilized condition is primarily affected by the presence of solid-solution alloying 

elements. The scatter observed in the data is attributed to slight variations in the quench 

from specimen to specimen, that can lead to uncontrolled events such as precipitation of 

cooling γ′ and association or loss of vacancies. 

SEM micrographs of solution-treated and as-stabilized specimens showed clear 

presence of faceted etch-pits mostly in square and non-regular hexagon shapes. This 

phenomenon is believed to be related to the condensation of quenched-in excess 

vacancies, which is covered in a greater depth in the next chapter. 

SEM and USAXS observations indicated progressive growth of γ′ precipitates 

upon aging at 800°C in case of all three pre-solution-treatments. It was confirmed based 

on resistivity measurements that the nucleation of γ′ was complete within 0.1 hrs of aging 

at 800°C. The primary mechanism of microstructural evolution beyond 0.1 hrs was γ′ 

coarsening. 

γ′ coarsening kinetics was fastest in the case of IDS-800 series as compared to 

IBS-800 or IES-800 series. This conclusion was supported by USAXS data in the form of 

3r  vs t and also qualitatively by SEM micrographs. Concurrently, the IDS-800 series 

showed a lower particle density- ( )tZ  compared to the other series at all the aging times. 

The explanation for the faster kinetics in the IDS-800 series was based on the PSD plots- 

( )r/rg  vs r/r . The γ′ size distribution during initial stages of aging was found to be 

significantly tighter in case of the IDS-800 series, which also had a lower particle density 
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compared to the IBS-800 or the IES-800 series. The faster evolution in the IDS-800 

series is attributed primarily to these reasons. The above mentioned differences in the 

PSD’s are thought to arise during the nucleation stage itself, which could be affected by 

residual vacancy concentrations from the pre-solution-treatments.  

The volume fraction of γ′- ( )tfv  also derived from USAXS experiments showed a 

linear behavior with 
r
1  for longer aging durations as a consequence of the Gibbs-

Thomson solubility relation. 

The coarsening rate constants for the present data at 800°C are at least an order of 

magnitude lower than that reported for binary Ni-Al alloys in the literature. A plausible 

explanation for this is because of the presence of multiple solutes in Waspaloy, in which 

case, the slowest diffusing element controls the overall coarsening kinetics. The diffusion 

coefficients computed from the coarsening data did not correlate with the kinetic 

behavior predicted by the coarsening rate constants for the sets of specimens with 1045°C 

and 1090°C prior solution-treatments. The reason for this is speculated to be due to the 

effect of volume fraction of precipitates on coarsening, which is not taken into account in 

the calculations. 

The resistivity decrease during initial stages of coarsening (up to 2 hrs) is attributed to 

the decrease in the scattering power of the γ′ precipitate distribution. The resistivity 

variations beyond this stage are attributed to changes in the ‘average solute’ 

concentration in the matrix, as the scattering contribution from the precipitates becomes 

less significant. Beyond 2 hrs, the difference- ( )tρρ γstab −  is related to the loss of 

‘average solute’ concentration- ( )tNN αo − . A linear relationship between ( )tρρ γstab −  
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and 3
1

t
−

 is obtained by expressing the concentration loss in terms of t using Ardell’s 

relationship. 

4.2 Microstructural evolution in Set III experiments 

4.2.1 Characterization Results 

In this section, the results from microstructural evolution in specimens aged at 

725°C, 800°C and 875°C will be presented in the form of SEM micrographs and data 

from lattice parameter and DC four-point probe resistivity measurements. The underlying 

objective is to correlate the resistivity changes to the variations in the microstructure 

upon evolution due to progressive aging. 

Figures 4.20 (a) and (b) show the sub-grain microstructures of two different 

solution-treated specimens in the etched condition. These microstructures were 

highlighted using an etchant comprising 10 ml each of HCl, HNO3, H2O and 0.3g of 

molybdic acid reagent (will be referred to as ‘A-etchant’). The microstructures in the 

solution-treated condition show the presence of etch pits with polygon shapes, 

predominantly as a square or a non-regular hexagon. It is observed that the shape of the 

etch-pits within a single grain is always a constant, which is demonstrated in Figure 4.20 

(c) in two grains across a grain boundary. The micrograph in Figure 4.20 (c) was 

acquired from a different specimen also quenched directly from the super-solvus regime. 

Moreover, the etch-pits are clearly aligned along a specific direction within the grain. The 

occurrence of the etch-pits as squares or hexagons varied only from one grain to another, 

possibly depending on the grain orientation. No presence of γ′ was to be seen even in the 

high resolution micrographs.  
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Figure 4.20 Solution-treated microstructures (at 1145°C) showing polygonal etch-pits 
primarily as square and non-regular hexagon shapes in (a) and (b) respectively. The 
micrograph in (c) shows etch-pits of different shapes in two neighboring grains. 
 
 
 

SEM micrographs representing microstructural evolution upon aging at 725°C are 

reported in the series of micrographs in Figure 4.21. All the microstructures shown here  

were highlighted using the A-etchant, which was used previously in the case of solution-

treated specimens (Figure 4.20). The polygonal etch-pit shapes evidenced in the solution-

treated microstructures are also seen here for the early aging durations of 0.5 hrs and 1 hr 

in Figures 4.21 (a) and (b) respectively. Upon further aging, the polygonal shapes 

transform progressively into rounded pit-shapes at 2 hrs (Figure 4.21 (c)) and into more 

irregular shapes at 5 and 10 hrs (Figures 4.21 (d) and (e)). There is no clear evidence of γ′  
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Figure 4.21 SEM micrographs showing microstructural evolution upon aging at 725°C 
for aging times of (a) 0.5, (b) 1, (c) 2, (d) 5, (e) 10 and (f) 20 hrs respectively. Initial 
solution-treatment was conducted at 1145°C prior to aging at 725°C. 
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Figure 4.21 SEM micrographs showing microstructural evolution upon aging at 725°C 
for aging times of (g) 50, (h) 75 and (i) 100 hrs respectively. Initial solution-treatment 
was conducted at 1145°C prior to aging at 725°C. 
 
 
 
that is noted from the above set of microstructures up to 10 hrs highlighted using the A-

etchant. Micrographs corresponding to longer aging times- 20 to 100 hrs, show the 

presence of γ′ clearly as seen from Figures 4.21 (f) through (i) respectively. The 

microstructural evolution for these longer aging times consists of progressive γ′ growth 

alongside the gradual annihilation of the irregular etch-pit features.  

SEM and AFM micrographs of specimens corresponding to aging durations of 1, 

2 and 10 hrs highlighted using the B-etchant are shown in Figure 4.22. The B-etchant 

caused the preferential removal of the γ phase retaining the  γ′ phase, creating the  
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Figure 4.22 SEM and AFM micrographs of specimen after 1 hr of aging at 725°C shown 
in (a) and (b) respectively. 
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Figure 4.22 SEM and AFM micrographs of specimen after 2 hrs of aging at 725°C shown 
in (c) and (d) respectively. 
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Figure 4.22 SEM and AFM micrographs of specimen after 2 hrs of aging at 725°C shown 
in (e) and (f) respectively. 
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opposite effect of the A-etchant. Besides, the B-etchant did not produce any etch-pit 

contrast that was observed using the A-etchant. The presence of γ′ precipitates at 1, 2 and 

10 hrs is seen from Figures 4.22 (a) & (b), (c) & (d) and (e) and (f) respectively. This 

clearly confirms the existence of the γ′ precipitates at shorter aging times, despite the fact  

The set of micrographs demonstrating microstructural evolution in response to 

aging at 800°C and 875°C is shown in Figures 4.23 and 4.24 respectively. The sequence 

of events described in case of the evolution at 725°C is also true of the higher 

temperatures. However, the snapshots of all the events cannot be captured at the same 

aging intervals because of the faster kinetics. In the case of the 800°C series for instance, 

the evolution begins with the etch-pits mostly in rounded or irregular shapes after 0.5 hrs 

of aging (see Figure 4.23 (a)). Here, the irregular shaped etch-pit features are annihilated 

much faster than that was seen for the 725°C series (see Figure 4.21). The clear presence 

of γ′ was noted after 2 hrs of aging and further aging up to 100 hrs led to progressive γ′ 

growth as may be seen from Figures 4.23 (c) through (i). The faster kinetics at 800°C 

relative to 725°C is obvious from the faster etch-pit evolution and additionally, the larger 

γ′ precipitate sizes resulting from aging at the different sampling times (see Figures 4.21 

and 4.23).  

The microstructures resulting from aging at 875°C is shown in the set of 

micrographs in Figures 4.24 (a) through (i). The kinetics of microstructural evolution is 

evidently the fastest here of all the aging temperatures investigated, both in terms of the 

etch-pit evolution and γ′ growth. For the 875°C series, the etch-pit evolution seemed to be 

complete within 2 hrs of aging (see Figures 4.24 (a) through (c)). The precipitate sizes at 

the different aging sampling times are also the largest here of the three aging  
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Figure 4.23 SEM micrographs showing microstructural evolution upon aging at 800°C 
for aging times of (a) 0.5, (b) 1, (c) 2, (d) 5, (e) 10 and (f) 20 hrs respectively. Initial 
solution-treatment was conducted at 1145°C prior to aging at 800°C. 
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Figure 4.23 SEM micrographs showing microstructural evolution upon aging at 800°C 
for aging times of (g) 50, (h) 75 and (i) 100 hrs respectively. Initial solution-treatment 
was conducted at 1145°C prior to aging at 800°C. 
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Figure 4.24 SEM micrographs showing microstructural evolution upon aging at 875°C 
for aging times of (a) 0.5 and (b) 1hr respectively. Initial solution-treatment was 
conducted at 1145°C prior to aging at 875°C. 
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Figure. 4.24 SEM micrographs showing microstructural evolution upon aging at 875°C 
for aging times of (c) 2, (d) 5, (e) 10, (f) 20, (g) 50 and (h) 75 hrs respectively. Initial 
solution-treatment was conducted at 1145°C prior to aging at 875°C. 
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Figure. 4.24 SEM micrographs showing microstructural evolution upon aging at 875°C 
for aging times of (i) 100 hrs respectively. Initial solution-treatment was conducted at 
1145°C prior to aging at 875°C. 
 
 
 
temperatures (see Figures 4.21, 4.23 and 4.24). Microstructures aged for durations 

beyond 20 hrs at 875°C revealed some γ′ precipitates that were incompletely round and 

resembled corner-rounded cubic shapes. Very minor faceting if any was noted at 800°C 

in the case of the specimen aged for 100 hrs.  

A plot of the variations in the lattice parameter of the matrix (γ) phase- ( )γao  in 

response to progressive aging at 725°C, 800°C and 875°C is shown in Figure 4.25. The 

data points at 0.01 hrs correspond to the specimens in the as-solution-treated condition. It 

is seen from the plot that the general trend that is common to all the aging sets is that the 

lattice parameter shows a decrease from the as-solution-treated value with progressive 

aging. The factors that play a role in the observed lattice parameter changes are discussed 

later.  

Table 4.3 shows the lattice misfit for selected cases from the three sets of aged 

specimens that were computed based on the lattice parameter obtained from (331) 

reflections of the γ and γ′ phases. Lattice misfit values are only given for these cases, as 
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Figure 4.25 Plot showing the variations in the lattice parameter of the matrix (γ) phase as 
a function of the aging time (0 to 100 hrs) for the three aging temperatures- 725°C, 800°C 
and 875°C. The data points at 0.01 hrs refer to specimens in the as-solution-treated 
condition. 
 
 
 
Table 4.3 Computations of γ-γ′ lattice misfit for selected specimens in the three aging sets 

Aging 
temperature (°C) 

Aging time 
(hrs) 

Lattice misfit 
(%δ) 

725 50 0.1033 
725 100 0.1648 
800 100 0.2654 
875 10 0.2093 
875 20 0.2177 
875 50 0.2428 
875 75 0.2345 
875 100 0.2373 

 
 
 
unambiguous identification of high angle γ′ reflections was not possible for all the 

specimens. It is seen that the lattice mismatch values are the lowest in the case of the 

IIID-725 specimens as compared to those aged at 800°C and 875°C. In both IIID-725 and 
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IIID-875 sets of specimens, the mismatch is noted to increase with increasing aging time. 

The table also shows a relatively high mismatch of 0.265% in the case of IIID-800-100 

specimen, which is the only computation for the IIID-800 series. 

Figure 4.26 shows a plot of the DC four-point probe resistivity of specimens for 

the three different aging series as a function of the aging time. As before, the time at 0.01 

hrs is indicative of specimens in the solution-treated condition. Upon aging from the 

solution-treated condition, a maximum increase in resistivity of 12.41 [nΩ.m] is noted in 

the case of the 725°C series specimen at 0.5 hrs. The amount of initial increase in 

resistivity upon aging decreases drastically with increasing aging temperature, as is 

evident from the plot. In fact, the 875°C series does not show an increase in resistivity 

upon aging from the solution-treated condition. Next, the resistivity is noted to decrease 

monotonically from 0.5 hrs up to 50 hrs for the 725°C series at which point it is nearly 

equal to the initial solution-treated value. This condition is achieved at a much shorter 

aging time (even below 1hr) in the case of specimens aged at 800°C. For the 875°C set of 

specimens, this condition is well past even before the first sampling time of 0.5 hrs due to 

the rapid kinetics. After this stage has been reached, the resistivity shows a slight 

decrease culminating more or less in a plateau behavior, seen for the 800°C and the 

875°C series of specimens. The specific reasons for resistivity changes during aging with 

due reference to the microstructures are discussed later. 

The data set for the 600°C aging experiments is only partial and was collected in 

order to observe resistivity changes during very early aging times (see Figure 4.26). A 

rise in resistivity upon initial aging is observed here similar to the 725°C data set; 

however, the amount of increase is much smaller compared to that in the latter. 
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Figure 4.26 Plot of the DC four-point probe resistivity as a function of the aging time (0 
to 100 hrs) for the three different aging series- 725°C, 800°C and 875°C. The data points 
at 0.01 hrs refer to specimens in the as-solution-treated condition. 
 
 
 

The clear difference between the 600°C data set and the other sets is that the 

resistivity increases monotonically with progressive aging in the former for the durations 

sampled. The reasons for the observed difference are also discussed later. 

4.2.2 Discussion 

The formation of polygonal etch-pits in the shapes of square and hexagon in the 

solution-treated microstructures, shown in Figure 4.20 is discussed first. It is believed 

that upon quenching, the excess vacancies are condensed onto specific soft-directions of 

the matrix (γ) phase, which is highlighted as an etch-pit by the A-etchant. During 

quenching, it is possible for the vacancies to aggregate into dislocation loops, which 

might have a bearing on the formation of etch-pits. However, the formation of dislocation 
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loops can only be verified if detailed transmission electron microscopy studies are 

conducted. In a cubic material, soft directions such as 〈100〉 have relatively lower elastic 

moduli compared to other directions. It is therefore easier to accommodate any lattice 

strains arising due to the creation of vacancies preferentially along the soft directions. 

Table 4.4 shows calculations of elastic moduli for directions that can be accommodated 

in either in the {200} or {111} planes- 〈100〉, 〈110〉, 〈211〉, and 〈321〉 directions for pure 

nickel using the following formula43: 

( ) ( 222222
44121111 lnnmmls

2
1ss2s

E
1

++



 −−−= )     (8) 

where ,  and  refer to components of elastic compliances; l, m and n are the 

components of the unit vector along the direction of interest.  

11s 12s 44s

 It is suggested that square-shaped etch-pits are formed in 〈200〉 oriented grains, 

with the soft directions being 〈100〉, that run along the sides of the etch-pit. A schematic 

of this description is shown in Figure 4.27. The formation of a regular hexagonal etch-pit 

bounded by 〈110〉 soft directions on a 〈111〉 oriented grain is also shown in Figure 4.27. It 

is however evident from the micrographs that the etch-pits are observed to be non-regular 

hexagons instead of perfect regular ones as shown in the schematic. One possible 

explanation for this may be advanced based on the nature of image formation in the SEM. 

It is known that undistorted representation of real objects in an image is only true for 

those features that lie in a plane perpendicular to the optic axis. Features that are present 

on planes that are tilted with reference to the optic axis appear to be shortened in the 

image, unless a correction factor for the predetermined degree of tilt is applied44. The 

occurrence of etch-pits as non-regular hexagons could be as a result of this phenomenon, 

 103



Table 4.4 Calculations of elastic moduli for directions in 〈200〉or 〈111〉 oriented grains 

Direction ( )222222 lnnmml ++  E (GPa) 

100  0 134 
110  0.25 231 
211  0.25 231 
321  0.25 231 
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Figure 4.27 Illustrations showing (a) square shaped etch-pits in [200] oriented grains and 
(b) hexagon shaped pits in [111] oriented grains, with the respective soft directions being 
〈100〉 and 〈 011 〉. 
 
 
 
if the respective grains are oriented at large tilt angles from the optic axis. The alternate 

reasoning is that non-regular hexagons are formed by bounding directions that are not all 

〈110〉 type, that however have the same elastic modulus. For instance, in a 〈111〉 oriented 

grain, 〈211〉 and 〈321〉 directions have the same elastic modulus as 〈110〉. In this case, the 

interior angles of the hexagon are not equal due to dissimilar bounding directions. 

 104



Finally, the formation of etch-pits is also possible in grains with other orientations, and 

the etch-pit shapes will be governed by the corresponding soft directions that can be 

accommodated within the grain. 

The high values of ( )γao  noted in the solution-treated specimens (see Figure 

4.25), is primarily because of the increased thermal dilatation of the lattice due to the 

high treatment temperature12. Contributions arising from the quenched-in excess 

vacancies in the form of lattice relaxation effects also affect the measured lattice 

parameter12. 

Contributions to the as-solution-treated resistivity (see Figure 4.26) can arise from 

three factors- viz. solid solution impurities alloyed with nickel, queched-in excess 

vacancies from the solution-treatment temperature, carbide distribution and grain 

boundaries. The influence of the carbides and grain boundaries can be taken to be 

negligible considering the large scale of dispersion of these features, as mentioned 

previously. The quenched-in vacancy concentration corresponding to the solution-

treatment temperature of 1145°C is calculated to be ~10-6 (see 4.1.2), assuming a vacancy 

formation enthalpy ( ) of 1.72 eV for pure nickelv
fH 40. Considering that this fraction of 

vacancies is negligible compared to the atomic fractions of solid solution impurities, the 

latter should have the dominant influence on the solution-treated resistivity.  

Upon aging from the solution-treated condition, the resistivity is noted to increase 

for the 725°C and 800°C sets of specimens (see Figure 4.26) as mentioned previously in 

the results section. This initial increase in resistivity that is noted upon aging can only be 

explained by the presence of fine γ′ precipitates that form upon aging. Even though no 

evidence of this is presented for the earliest aging time of 0.5 hrs, SEM and AFM 
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micrographs show the clear presence of γ′ precipitates after 1 and 2 hrs of aging at 725°C 

(see Figure 4.22). The fine γ′ distribution that is present during the initial stages of aging 

is effective at scattering the conduction electrons, causing an increase in the measured 

resistivity. The ‘scattering power’ of the precipitates depends on the γ′ interparticle 

spacing relative to the mean free path- Λ of conduction electrons in the material, as 

mentioned in section 4.1.2. The interparticle spacing is directly related to the mean 

precipitate radius- r  of the γ′ distribution. The closer the value of r  to Λ, the more 

effective the γ′ size distribution is in scattering the conduction electrons and therefore 

greater the resistivity. The subsequent decrease in resistivity beyond 0.5 hrs for the 725°C 

and 800°C series of specimens (see Figure 4.26) suggests that nucleation of γ′ must have 

been completed by 0.5 hrs. A nucleation phase is generally characterized by an increasing 

resistivity, which may be described using Johnson-Mehl-Avrami (JMA) kinetics6. 

Ideally, the maximum in resistivity coincides with the completion of the nucleation stage, 

which also corresponds to the critical radius- *r  of the precipitates that contributes to the 

maximum scattering8. From the present data, the position of the resistivity maximum that 

corresponds to *r  is unknown because aging times under 0.5 hrs were not sampled. 

Based on the argument in the previous paragraph, it is then clear that the drop in 

resistivity with increasing aging time should be related to γ′ coarsening. Microstructural 

evidence for this is presented in the series of SEM micrographs in Figures 4.23 and 4.24 

for the 800°C and 875°C set of specimens respectively. For the 725°C specimens, the 

microstructural evolution seen up to 10 hrs is predominantly that of the etch-pits, while γ′ 

coarsening is clear only after 20 hrs of aging. The presence of γ′ at 1, 2 and 10 hrs of 

aging was however confirmed using the B-etchant (see Figure 4.22), as stated previously. 

 106



It is also seen upon a closer examination of the micrograph in Figure 4.21 (e), highlighted 

using the A-etchant, that the irregular etch-pit features show small protrusions. These 

small protrusions seen inside the pit regions are in fact the γ′ precipitates. 

Based on the above evidence, it is theorized that the evolution of etch-pits occurs 

in response to the gradual coarsening of γ′ precipitates inside the pit regions during aging. 

During γ′ coarsening, there is diffusion of solute within the matrix, changes in the 

coherency strains and elastic interaction between the precipitates that lead to the observed 

changes in the etch-pit shapes. The etch-pit shapes finally lose their identity after 

significant γ′ coarsening has occurred at which point they are visible in the SEM. 

The drop in the lattice parameter noted upon initial aging from the solution-

treated condition (see Figure 4.25) can potentially be affected by three factors- viz. 

reduced thermal dilatation of the lattice, reduction in the excess vacancy concentration 

and changes in the matrix composition due to γ′ precipitation. It is reasonable to expect 

that the combination of thermal dilatation and changes in the matrix composition would 

be the predominant factors causing the observed decrease at this stage. 

 The changes in the lattice parameter noted upon further aging (see Figure 4.25) 

may arise from two contributions- viz. changes in the matrix composition during 

coarsening and changes in the coherency strains between the matrix and the γ′ 

precipitates. The changes in the solute concentration of the matrix during coarsening, is a 

consequence of the Gibbs-Thomson solubility effect6, 12 that was mentioned in an earlier 

chapter. The Gibbs-Thomson solubility effect essentially describes the increased solute 

solubility of a system of very fine particles arising from the curvature effect6, 12. Due to 

this effect, as the γ′ precipitates coarsen, the solute concentration in the matrix in 
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equilibrium with a γ′ precipitate of an average size decreases with time. Accompanying 

this effect is the increase in the volume fraction of the γ′ phase, until an equilibrium is 

reached, at which point the average γ′ radius approaches infinity. 

 The other factor that contributes to the observed changes in the lattice parameter 

upon aging is the changes in the coherency strains between the matrix and the precipitate 

phases19. It is known that γ′ coarsening is driven by a reduction in the interfacial energy 

of the system because of the large interfacial energy of a fine dispersion of precipitates 

initially6. However, as the precipitates coarsen, the lattice structure around the γ′ is 

distorted, resulting in an increase in the lattice misfit between the matrix and the 

precipitate phases, which contributes to the coherency strains45. Evidence for the increase 

in lattice misfit with increasing aging time as well as enhanced kinetics may be seen from 

Table 4.3. The relatively high mismatch values at the longest aging times for the IIID-875 

series is in agreement with the earlier SEM observations of rounded cubic γ′ shapes in 

these microstructures (see Figure 4.24). 

 The monotonic decrease in resistivity with progressive aging up to 50 hrs for the 

725°C specimens (see Figure 4.26) is attributed to the decrease in the scattering power of 

the γ′ distribution (see equations (6) and (7) in 4.1.2) as a result of the coarsening process. 

This is consistent with the microstructures discussed earlier, presented in Figures 4.21 

and 4.22. The resistivity after 50 hrs of aging at 725°C, is nearly equal to the solution-

treated resistivity, as mentioned earlier. The contribution to the overall resistivity due to 

scattering from the γ′ distribution becomes less significant beyond 50 hrs of aging. This is 

because, the mean radius- r  of the γ′ precipitates at this stage becomes much larger 

than the mean free path of the conduction electrons- Λ as a result of the coarsening. The 
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primary contribution to the measured resistivity past this stage comes from the solid 

solution impurities in the matrix phase10, 13. The changes in the measured resistivity after 

50 hrs of aging at 725°C may be related to the changes in the solute concentration in the 

matrix as a result of the coarsening process46. This is as a result of the Gibbs-Thomson 

solubility effect6, 12, which is explained in a previous paragraph. 

 The amount of initial increase in resistivity for the 800°C set is much smaller as 

compared to the previous case at 725°C. This is because of the faster kinetics at 800°C 

that results in a coarser γ′ distribution with a much less scattering power than the 

corresponding specimen at 725°C. Secondly, the measured resistivity after 1 hr of aging 

falls below the solution-treated resistivity, indicating that the scattering due to the γ′ 

distribution is less significant past this stage. As explained for the 725°C case, the 

resistivity changes due to coarsening beyond this stage may be attributed to the changes 

in the solute concentration in the matrix. The corresponding coarsening sequence for the 

800°C set of specimens is shown in Figure 4.23.  

The third aging set at 875°C which has the fastest kinetics, does not show any 

increase in resistivity upon initial aging from the solution-treated condition, as is evident 

from Figure 4.26. This is because the starting γ′ distribution is coarse enough so as not to 

impede the propagation of conduction electrons to any significant extent. Subsequent 

microstructures are progressively coarser than the initial one as may be seen from Figure 

4.24. In this case, the kinetics is so fast that all the resistivity changes associated with γ′ 

coarsening may be attributed to changes in the solute concentration in the matrix. 

 The final set of aging treatments is conducted at 600°C to demonstrate that the 

nucleation stage of γ′ is in fact seen if the kinetics is slowed down significantly. In all, 
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only five data points (under 0.5 hrs) including the solution-treated specimen, were 

collected for this set. The initial rise in resistivity upon aging is noted here similar to the 

725°C set (see Figure 4.26); however, the magnitude of rise is significantly smaller than 

that noted in the 725°C set. Moreover, a gradual increase is noted in the average 

resistivity with further aging at 600°C. This is clearly suggestive of a nucleation and 

growth regime, where the measured resistivity is expected to increase until a maximum is 

reached, corresponding to the completion of this reaction. This is also the stage at which 

the mean γ′ radius approaches the critical, i.e. *rr = , which leads to the maximum 

scattering of the conduction electrons8.  

4.2.3 Conclusions 
 
 The microstructures of solution-treated specimens observed using an SEM, 

showed the presence of polygonal etch-pits mostly in the shapes of squares or non-

regular hexagons. The etch-pits within a single grain were all the same shape and were 

aligned along a specific direction within the grain, suggesting a dependence of the pit 

formation on the grain orientation. The formation mechanism of the etch-pits was 

attributed to the condensation of excess quenched-in vacancies along crystallographically 

soft directions, eg. 〈100〉. The softer directions have relatively lower elastic moduli and 

can therefore accommodate lattice distortions much easily than other directions. The 

formation of specific etch-pit shapes is explained based on the accommodation of a 

certain soft direction in a grain of a given orientation. Based on this explanation, square 

and hexagonal etch-pits were argued to form in 〈200〉 and 〈111〉 oriented grains 

respectively. 
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Microstructural evolution in response to aging at 725°C, showed progressive 

transformation of the etch-pit shapes from perfectly faceted polygons to corner-rounded 

polygons and to more irregular shapes. The transformation is attributed to the progressive 

growth of the γ′ precipitates inside the pits and the concomitant effects of solute-

diffusion, lattice distortion due to coherency strains and elastic interaction effects 

between γ′ precipitates. The same phenomenon is also true of aging at 800°C and 875°C; 

however, the slow progression of events seen at the lower aging temperature is masked 

effectively by the faster kinetics prevailing at these higher temperatures.  

The changes in the lattice parameter of the γ phase was attributed to two factors- 

changes occurring in the solute concentration of the matrix and coherency strains arising 

due to lattice misfit between the γ and γ′ phases. It was observed in a few selected cases 

that the lattice misfit increased from shorter aging times at 725°C to longer aging times at 

800°C or 875°C.  

The four-probe resistivity showed a marked increase from the solution-treated 

value upon aging at 725°C, which was attributed to the presence of fine γ′ precipitates 

that serve as scattering sites of conduction electrons. The extent of the increase in 

resistivity deceased drastically with increasing aging temperature, which is a result of the 

faster γ′ growth kinetics. The absence of a nucleation regime in the IIID-725, IIID-800 

and IIID-875 data sets was clearly indicated by a decrease in resistivity noted upon 

further aging (after 0.5 hrs). The decrease in resistivity affected by a reduction in the 

scattering power of the γ′ precipitates is a valid explanation only for the IIID-725 series 

up to 50 hrs of aging and during early stages of aging for the IIID-800 series. The 

resistivity variations that occur outside these range of times and in the case of the IIID-
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875 series are associated with the changes in the ‘average solute’ concentration in the 

matrix. Finally, aging experiments at 600°C for durations shorter than 0.5 hrs do reveal 

the existence of a nucleation regime, characterized by an increasing resistivity.  
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CHAPTER 5 

MODELING AC AND DC ELECTRICAL MEASUREMENTS 

 

This chapter pertains to the development of analytical and finite-element models 

for gaining an understanding of two-probe, four-probe AC impedance measurements and 

four-point probe DC measurements. In the first part of the chapter an analytical 

derivation is presented for the electric field distribution in a cylindrical metallic specimen 

for a two-probe impedance measurement. A validation for the analytical solution is also 

provided by a finite element solution obtained by using FEMLAB 3.1, a commercially 

available finite element package. The effect of varying the specimen geometry on the 

electric field behavior is also discussed. Subsequently, the analytical expressions for the 

electric and magnetic fields are used to compute the complex impedance of the specimen 

via energy methods.  

The second part of the chapter deals with the computation of geometric correction 

factors for cylindrical specimens of finite shape subject to a four point probe DC 

resistivity measurement. A derivation of the closed-form analytical solution as a solution 

to Laplace’s equation for the potential difference between the voltage probes is presented 

first. The potential difference obtained from the closed-form solution is subsequently 

used for computing the geometric correction factors. Next, a comparison among the 

correction factors computed via the closed-form solution, COMSOL finite-element 

solution and analytical approximation factors (available in the literature) is presented. 

Lastly, the effect of varying the specimen geometry and probe arrangement on the 

correction factor is also considered. 
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In the final part of the chapter, impedance calculations are presented for four-

probe AC measurements on wire specimens and cylindrical disk specimens. The 

impedance of wire specimens is computed based on a solution for the ‘skin-effect’ in 

wires, developed by Giacoletto47. The impedance of disk specimens is evaluated using a 

closed-form analytical solution developed by Bowler39. The closed-form solution 

describes the electric field distribution inside a semi-infinite metal plate (of finite 

thickness) upon injection of alternating current at the surface. The calculations are 

intended for understanding the frequency response of a metallic specimen to the flow of 

alternating current in a four-probe configuration. 

5.1 Analytical treatment of two-probe impedance measurement 

5.1.1 Introduction 

A two-probe impedance measurement relies on the application of an ac signal 

across a specimen placed in between source and sink electrodes. The measurement in 

essence can be treated as current injection into the specimen at the source electrode and 

current extraction at the sink electrode. The objective of this treatment is to develop a 

continuum solution for the electric field distribution inside a cylindrical disk metallic 

specimen, which is relevant to understanding the impedance response from two-probe 

impedance measurements. The treatment is valid only for the specific case wherein, the 

electrodes are placed on opposite circular faces of the specimen and sharing the same axis 

of symmetry. An analytical formulation of this problem is developed by using Maxwell’s 

equations for conductors48, 49 and closed form analytical expressions for the resultant field 

distribution are derived in terms of Bessel series50-54. 
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One instance from the literature may be cited, where a closed-form solution in the 

frequency domain is available for a problem that parallels the current one. Ney55, 56 

proposed a closed-form solution for the electric field distribution in a solid non-perfectly 

conducting flat ground plane arising from electromagnetic interference. The 

electromagnetic interference effect is assumed to be due to external currents entering and 

exiting the ground plane at contacts on opposite sides. The contacts are modeled to be 

symmetric with respect to the ground plane and the contact width is assumed to be much 

smaller compared to the width of the ground plane. The solution accounted for skin-effect 

due to finite conductivity of the ground plane, as well as constriction effect as a result of 

confinement of current lines near the contact points55, 56.  

5.1.2 Problem description 

The problem may simply be described as the injection of an alternating current 

( tjexpIo )ω−

or co rr >>

 of angular frequency- ω, into a cylindrical metallic disk specimen via a 

source electrode and extraction by means of a sink electrode. The electrodes are modeled 

as perfect contacts of radius cr  and negligible thickness contacting the specimen of radius 

 ( ) and thickness to  ( < ) as illustrated in Figure 5.1 (a). The contact 

electrodes and the specimen share the same axis of symmetry. The impressed current at 

the source electrode, is assumed to be along the z direction. Due to a difference in the 

electrode contact radius and that of the specimen, there will be spreading of the current 

flow lines in the r direction within the specimen. This phenomenon is referred to as 

striction effect or constriction

ot or

55, 56, wherein confinement or expansion of current flow 

lines occurs due to a discrepancy in the section width between the two conductors. An 

alternate effect is that of current crowding near the surface of a conductor at high  
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Figure 5.1 (a). Schematic illustrating the measurement geometry comprising of the 
specimen with coaxially placed electrodes (dotted line) in a cylindrical co-ordinate 
system. The illustration in (b) shows the current flow contour incorporating both skin and 
constriction effects inside the specimen (r-z cross-section). 
 
 
 
frequencies, an effect generally known as the skin-effect47, 57. The skin-effect is pertinent 

only for current flow along the z direction. Therefore, electric fields along both axial (z) 

and radial (r) directions ( zE  and rE ) will be present within the specimen. However, 

there is no apparent electric field in the tangential (φ) direction. Hence due to φ-

symmetry, modeling can be confined to the r-z plane. A cross-section of the problem 

configuration contained in the r-z plane illustrating the skin and the constriction effects is 

shown in Figure 5.1 (b). Since symmetry also prevails about the z axis, the modeling 

space can be reduced further to one half of the r-z plane from 0r =  to . orr =
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5.1.3 Analytical approach 

5.1.3.1. Formulation and generic solution 

The analytical solution for the electric field distribution inside the specimen (of uniform 

conductivity-σ and magnetic permeability-µ) is obtained by solving the following two-

dimensional diffusion equation47, 55: 

Ej
t
EE

2
ωµσµσ =








∂
∂

=∇                (1) 

Two independent partial differential equations (PDE’s) in zE  and rE  result upon 

expanding the vector Laplacian54 in the above equation using cylindrical co-ordinates. 
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∂
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∂

∂               (3) 

Equations (2) and (3) can each be separated into two independent PDE’s in r and z using 

the product method50, 53, 55 as follows: 

)z(G)r(F)z,r(E 11r =                (4) 

)z(G)r(F)z,r(E 22z =                (5)  

Substituting these expressions into equations (2) and (3), the following ordinary 

differential equations (ODE’s) are obtained in terms of the new radial and axial functions 

viz., F1(r), F2(r), G1(z) and G2(z): 

2
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2
1

2

1

z
''

1 k
G

G
−= γ][                 (8) 

2
2

2

2

z
''

2 k
G

G
−= γ][                 (9) 

where k1 and k2 are arbitrary constants and . ωµσγ j2 =

Equations (6) and (7) are Bessel’s ODE’s of order one and zero respectively, for which 

the standard solutions50, 53 can be expressed as: 

)r(YC)r(JC)r(F 1121111 λλ +=             (10) 

)r(YC)r(JC)r(F 2o42032 λλ +=             (11) 

where  and  are Bessel functions of the first and the second kind of order ν 

respectively; 

νJ νY

1 = 1jkλ , 22 jk=λ  and Ci (i = 1,2,3 and 4) are the corresponding 

coefficients. Yν  solutions are singular6,9 at the origin and can be excluded right away as 

the final solution must be continuous at the origin. 

The solutions for ODE’s (8) and (9) involving z can be expressed as follows6,9,12: 

zξ
6

zξ
51

11 eCeC)z(G += −

8
z

72
2 eCeC)z(G ξξ += −

           (12) 

            (13) z2

where  (i = 1,2) and C2
i

22
i k−= γξ l (l = 5,6,7 and 8) are the various coefficients. 

 Grouping the radial (r) and axial (z) solutions, the complete solutions for )z,r(Er  

and )z,r(Ez can be written as follows: 

( ) )r(JeCeC)z,r(E 11
z'

6
z'

5r
11 λξξ += −           (14) 

( ) )r(JeCeC)z,r(E 2o
z'

8
z'

7z
22 λξξ += −          (15) 

 118



where  (l = 5,6,7 and 8) are the modified coefficients resulting from grouping the 

radial and axial solutions together. 

'
lC

5.1.3.2. Boundary conditions 

 In order to determine the electric field distribution uniquely at a given point 

within the specimen, it is essential to determine all the constants in the above field 

expressions. The constants can be solved for by examining the boundary conditions 

governing the problem, which are listed as follows: 

(a) Source and sink specifications: 
 

                                (16) ( )
σπ 2

c

o
t,0zz

r
I

E
o

== ( )crr0 ≤≤

 
                                   0= ( )oc rrr ≤<    
 

           )rr(
r
I

r
E

c2
c

o

t,0z

z

o

−−=







∂
∂

=
δ

σπ
           (17) 

 
(b) Limiting normal current on curved surface: 

 
                       (18) ( ) 0E

orrr == z∀

 
(c) Constancy of current via Ampere’s law48, 49: 
 
            ∫ ==c oorr Idr)r(H

o
φφ            (19) 

In the above equations,  is the total current injected into the specimen and  is the 

magnetic field in the azimuthal (φ) direction. The magnetic field 

oI φH

H  is governed by the 

following Maxwell curl equation48, 49: 






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
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t
HE µx            (20) 

 119



The final expression for  in terms of the electric field components (φH rE  and zE ) is 

then obtained as: 









∂
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∂
=

z
E

r
E

j
1z),(rH rz
ωµφ            (21) 

5.1.3.3. Determination of coefficients and constants 

 First, the limiting current boundary condition imposed on )z,r(Er , listed in 

equation (18) is examined. A non-trivial solution for this condition is obtained  by 

setting: 

0)r(J
orr11 ==λ , which has infinite roots50, 53, given by - ( )...3,2,1i

ro

i1
i1 ==

βλ , where 

β1i is a root of J1(x). Therefore, via the principle of superposition, the expressions for 

)z,r(Er  and )z,r(Ez  in equations (14) and (15) can be rewritten as: 

( )∑ += −

m
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z
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z
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( )∑ += −

m
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z
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z
m7z )r(JeC'eC')z,r(E m2m2 λξξ           (23) 

Next, the total current condition given by Ampere’s law (equation (19)) yields: 

orro I)z,r(Hr2
o
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Substituting for  from equation (21), we have: )z,r(Hφ
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Since 0(r,z)E )z,r(r o
= , the above expression reduces to: 
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The right hand side (RHS) term in equation (26) being a constant, )z,r(Ez  must contain 

at least one term that is just a function of r and independent of z. Therefore, the 

expression for Ez(r,z) is modified as follows: 

( )∑ ++= −

m
m2o

z
m8

z
m7z )r(JeC'eC')r(f)z,r(E m2m2 λξξ          (27) 

Inserting this expression back into equation (25), it is seen that only f(r) contributes to 

total current and therefore, 0
r

)r(J m2o =



 ∂
∂ λ


 . A non-trivial solution to this equation (see 

Appendix) is given by ( )m2 ...3,2,1m
ro

m1 ==
βλ , where m1β  is a root of J1(x). Thus iλ ’s 

and iξ ’s appearing in the field expressions - Er(r,z) and Ez(r,z) given by equations (22) 

and (27) are determined as 
o

m1
m2m1 r

β
λλ ==  and . 2

m1
22

m
2

m1 λγξ +=2ξ=

5.1.3.3.1 Symmetry and anti-symmetry conditions 

 The remaining unknowns that need to be determined in the field expressions are 

the pre-exponential coefficients - Ci’s. The number of unknown coefficients that need to 

be determined can be reduced by exploiting the symmetry of the problem. The problem 

geometry is symmetric about 





=

2
tz o  because the source and sink electrodes are 

positioned on opposite circular faces of the specimen, centered about the axis of 

symmetry. A schematic illustrating the symmetric current flow contour incorporating 

constriction and skin effects is depicted in Figure 5.1 (b). Based on the schematic, it is 
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evident that )z,r(Ez  should be symmetric about 





=

2
tz o , whereas, )z,r(Er  should be 

anti-symmetric. Thus, we can write the following conditions: 
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These symmetry expressions yield the following relations between the coefficients for the 

axial and radial fields: 

m7m8 C'C' =           (30) 

5m6 C'C' −=           (31) 

Incorporating these relationships, the field expressions are now modified to be: 

)−−−= m11
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( )−−− += o
)zt(z
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5.1.3.3.2 Validation of 1-D solution for f(r)  

 Let us consider the case of an alternating current tj(expo ω− , flowing through 

an infinitely long thin cylindrical wire in the z direction. In this case, the distribution of 

current is governed entirely by skin-effect and the solution for the electric field is given 

by17: 

J)r(E oz α= ,           (34) 
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 Let us for the moment assume that this solution adequately describes f(r) in the 

expression for )z,r(Ez . This assumption will be validated by testing for the total current 

condition specified in equation (26). The expression for Ez(r,z) now becomes: 

( )∑ −−− ++=
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m7oz )r(JeeC')r(J)z,r(E om1m1 λκα ξξ         (35) 

Substituting this expression for )z,r(Ez  on the left hand side (LHS) of equation (26) 

(see Appendix for derivative of ), )x(Jo
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This is identical to the RHS of equation (26). The first term in the expression for 

)z,r(Ez  as given in equation (35) accounts for skin-effect and the summation signifies 

the contribution from current constriction at the contacts. The expression for )z,r(Ez  in 

equation (35) can also be verified alternately. Consider )z,r(Ez  at 
2
tz o= : 

∑ −+=
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Since the constriction effect diminishes away from the contacts, it is to be expected that 

the summation term contributes less and less at 



 2
to

  as the cylinder grows longer. As  

increases to very large values ( t >> ), the second term in the above equation tends to 

ot

o or
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zero, rendering the solution to be identical to the case of an infinitely long cylindrical 

wire described earlier. This completes the validation of the expression for )z,r(Ez .  

r(J) op12 λ

 The constants that are left to be determined are the pre-exponential coefficients in 

equations (32) and (35). Now we make use of the source condition listed in equation (17).  
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The derivative of +=0zz )z,r(E  from equation (35) is (see Appendix): 
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The evaluation of the integral expression via equation (38) is possible by making use of 

orthogonality relations for Bessel functions50, 51, 53 (see Appendix). The final result is 

given as: 
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Comparing the RHS terms in equations (39) and (40), the pre-exponential coefficient, 

, corresponding to p7C' )z,r(Ez  is evaluated as: 

3

21
p7 X

XXC' −
=           (41)   

The final unknown to be determined is the coefficient, C' , in the expression for m5

)z,r(Er . Faraday’s law48 will be made use of in evaluating this constant: 
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Comparing the r component on both sides of the equation:  
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Substituting the expressions for Er(r,z) and Ez(r,z) from equations (32) and (35), the 

above equation becomes: 
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By comparing the coefficients on both sides of the equation, C'  is obtained as: m5

ωµσξ
ξλ

j
C'C' 2

m1

m1m1m7
m5

−
=           (45) 

 125



This completes the determination of the electric field distribution (equations (32) and 

(35)) inside a metallic cylindrical disk specimen caused by current injection and 

extraction via source and sink electrodes. 

5.1.3.4 Semi-infinite solution 

 Let us consider the case when the cylinder is infinitely long in the thickness ( ) 

direction. The solution for the electric field distribution in this case can be developed as a 

corollary to the derivation for the disk case. All the boundary conditions listed for the 

disk problem are equally valid here. Therefore, the approach for obtaining the final 

solution is similar to that used for the disk problem. However, the only major difference 

between the solutions is that, terms involving are excluded from z-solutions 

(equations (12) and (13)) for the present case. This essentially means that the probability 

of a return wave originating from the opposite boundary is negligible, which is a good 

approximation for large values of . 

z

zie ξ+

ot

 The solutions for field expressions, viz. )z,r(Er  and )z,r(Ez  for this problem 

can then be written as follows: 
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The coefficients C'  and C'  may be solved for in a similar manner as treated in the 

disk solution. The expressions listed above are valid only from  to 

m8 m9

0z = 
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to
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solution for other half of the cylinder is readily obtained by using the symmetry 
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conditions listed in equations (27) and (28). Therefore, this problem will hereafter be 

referred to as the ‘semi-infinite’ case. 

5.1.4 Finite element approach 

 As mentioned earlier, a finite element solution obtained using the 

Electromagnetics Module of FEMLAB package58 is presented in order to validate the 

analytical field expressions. The Meridional Currents/Potentials mode is chosen for 

modeling, which ensures symmetry about the φ direction. Additionally, symmetry about 

the z-axis is also preserved by enforcing the condition that there is no non-zero radial 

current density or a gradient in the axial current density on the z axis, i.e. 0J 0rr ==  and 
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11. The finite element model is formulated as a time-harmonic quasistatic 

application in terms of magnetic and electric potentials. The modeling space consists of 

one-half of r-z cross-section of the specimen (boundary 1 shows axial symmetry), which 

has been subdivided into two sub-domains as shown in Figure 5.2. The edges of sub-

domain I at z=0 (boundary 3) and z=to (boundary 2) correspond to the source and sink 

electrode contacts respectively. Continuity of electric and magnetic fields is specified 

across the vertical boundary (boundary 4) at r=rc. Electric and magnetic insulation is 

specified at all boundaries (boundaries- 5,6,7) excepting the electrode contacts, where, a 

constant current density, is specified. A Direct UMFPACK linear stationary linear solver 

capable of handling time-harmonic problems is employed for obtaining the solution of 

the dependent variables, viz. the vector magnetic potential ( A ) and the electric potential 

(V), for the following PDE: 
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ro

2 xxvxx σ
µµ

εεωωσ  

          ( ) 0JVj
e

ro =−∇++ εωεσ           (48)  

In the above equation, εo and εr refer to the absolute and the relative permittivity 

respectively. Subsequently, the electric and magnetic fields are obtained as: 

t
AVE

∂
∂

−−∇=  and           (49) 

AB x∇=           (50) 

 
 
 

4 71

2

3

5

6

I II

r=0 r=ro

z=0

z=to

r=rc

4 71

2

3

5

6

I II

r=0 r=ro

z=0

z=to

r=rc
r

z
4 71

2

3

5

6

I II

r=0 r=ro

z=0

z=to

r=rc

4 71

2

3

5

6

I II

r=0 r=ro

z=0

z=to

r=rc
rr

zz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2. Illustration of the problem geometry (r-z cross-section) detailing the various 
sub-domains and boundaries as modeled in FEMLAB. Sub-domains I and II are parts of 
the complete specimen and are differentiated in order to indicate the electrode contacts on 
boundaries (z=0 and z=to) of sub-domain I. Sub-domain boundaries are numbered using 
Arabic numerals.  
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5.1.5 Simulation results and discussion 

 First, the electric field profiles (Ez and Er) obtained via analytical and finite 

element approaches are presented and compared at various frequencies. Next, the effects 

of varying one or more geometric parameters on the field profiles are studied 

systematically. Finally, the notion of a limiting thickness, t , is introduced, which is 

useful in assessing the applicability of the disk and semi-infinite analytical solutions for a 

given geometric configuration. 

o,lim

5.1.5.1 Electric field profiles  

 The following set of material properties and geometric parameters is used for 

computing of the profiles: σ  = 8.34 x 105 [S/m], µr = 1.004, ro = 5 [mm], rc = 0.5 [mm] 

and to = 2 [mm]. A current of constant amplitude, = 50 [mA] is also assumed. A total 

of 53288 elements and 3126 boundary elements corresponding to a simulation space of 5 

x 2 [sq.mm] were used for finite element computations. Figure 5.3 shows the comparison 

between the analytical and the FEMLAB solutions in terms of axial field profiles (

oI

zE vs 

r) at frequencies of 104, 2x105 and 106 Hz. Plots showing the radial field profiles ( rE  vs 

r) are shown in Figure 5.4. For frequencies below 104 Hz, the profiles are approximately 

the same as the one at 104 Hz. It is clear from these figures that the analytical and 

FEMLAB solutions are in excellent agreement with one another. 

 As discussed earlier, due to symmetry about 
2
tz o= , field profiles will be the 

same on either half of the disk. For this reason, field profiles are only shown from 0z =  

to 



 2
to

  at intervals of 



 6
to

  in z. At any given frequency, the impressed field is always a 
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step function at . With increase in z, it is seen that 0z = 0rz )z,r(E =  decreases 

progressively from  to 0z = 







2
to . This is due to progressive attenuation of the signal as 

it propagates within the medium. With increasing r, it is noted that there is a declining 

gradient in Ez(r,z) with respect to r, at all frequencies, initially. This initial gradient is due 

to constriction of current flow lines near the contacts. The gradient diminishes in 

magnitude as z increases from 0  to 



 2
to

crr


 , because the effect of constriction progressively 

decreases away from the contacts. The constriction effect in essence signifies the extent 

of radial spreading of the current. That this is the case, can be seen from Figure 5.4, 

where the radial field, Er(r,z), is plotted versus r. It is clear from the plots that the 

constriction effect is a maximum at = , where the contacts terminate. The diminishing 

effect of constriction with increase in z or r is manifested again as a reduction in Er(r,z).  

 The constriction drop-off is modified to a significant extent upon changing the 

frequency as is noted from Figure 5.3. Increasing the frequency has the effect of lowering 

the fields in the constriction region and enhancing the rate of drop-off. The effect of 

frequency is also noted in the tail regions of the profiles (higher values of r), as is evident 

from Figures 5.3 and 5.4. At 104 Hz, the profile for Ez(r,z) remains fairly flat beyond the 

initial drop off. However as frequency increases, the profile rises near the tail region. The 

extent of rise is greater, the higher the frequency. This behavior is due to the skin-effect, 

which forces the current to propagate closer to the surface, resulting in higher fields near 

the surface47, 57. Thus at high frequencies, the interplay between constriction and skin 
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effects determines the overall field distribution, whereas constriction is the only 

predominant effect at low frequencies. 

 
 

Figure 5.3. Plots showing the axial field profiles- )z,r(Ez  obtained via analytical (cases-
(a), (b) and (c)) and FEMLAB (cases-(d), (e) and (f)) solutions at frequencies of 104, 
2x105 and 106 Hz respectively. 
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Figure 5.4. Plots showing the radial field profiles- )z,r(Er  obtained via analytical 
calculations ((a), (b) and (c)) and FEMLAB simulations (d), (e) and (f)) at frequencies of 
104, 2x105 and 106 Hz respectively. In this set of plots, the peak position for  case is 
at . 

0z =
crr =
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5.1.5.2 Geometric effects on field distribution 

 The effects of systematically varying the different geometrical parameters on the 

field profiles are presented next. For this study, the material parameters (σ,µ) and the 

total injected current (Io) are unaltered from earlier values. 

 Simulations for studying the skin-effect behavior (at large r) were conducted by 

fixing  and systematically varying  and . The field on the boundary, viz. cr or ot

)
2
t,rz o

o
z,r(E

(
) , was chosen as the representative parameter for studying the skin-effect 

behavior. This is because, the constriction effect is minimal at the center (
2
tz o= ), 

whereas the field due to skin-effect is a maximum on the boundary ( ). Therefore, 

the field parameter, 

orr =

)
2
t,r(z o

o

)z,r(E , will hereafter be referred to as the skin-effect field. 

Figure 5.5 (a) shows the skin-effect field at 1 MHz plotted versus ot  at three different 

values of ro. The electrode contact radius-  is fixed at 0.1 [mm] for these simulations. It 

is evident from the plot that the skin-effect field is primarily influenced by a change of 

. Next, a maximum in the skin-effect field at 

cr

or cri,oo tt =  is  noted upon progressively 

increasing to which ultimately reaches a steady value. These inferences may be 

understood by examining the expression for the skin-effect field, which is given as: 

∑ −+=
m

om1o2
t

m7oo
o

oz )r(JeC'2)r(J)
2
t,r(E

om1

λκα
ξ

          (51) 

In general both the terms in this expression are complex quantities. The first term actually 

describes the skin-effect, which for the most part is dependent on α. Therefore, the 
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magnitude of this term scales inversely with , which is evident from the expression for 

α, given earlier. The magnitude of the second term that arises due to the constriction 

effect, is mostly influenced by . The contribution from the constriction term is 

significant only for small values of . Therefore, the magnitude of the field is governed 

by both terms at small values of t . The maximum occurs when the phase difference 

between the two complex phasors is minimal. As t  assumes larger values, the

or

ot

ot

o

o  

contribution from the constriction term becomes increasingly less significant, which is 

the reason for the asymptotic behavior. Physically, this implies that at large values of t , 

the constriction effect is insignificant and the situation is therefore identical to 1D skin-

effect. 

o

 
 

 

 

 

 

 

 
 
 
 
 

Figure 5.5. Plots showing the skin-effect field 
)

2
t,r(z o

oc

)z,r(E

or

as a function of specimen 

thickness-  by varying the specimen radius-  at a fixed frequency of  1 MHz in (a) 
and by varying the frequency at a fixed  of 2 [mm] in (b). The electrode contact radius- 

 was fixed at 0.1 [mm] for both (a) and (b). 

ot

or

cr
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From the plot in Figure 5.5 (a), it is noted that the value of  remains almost 

unaltered for the three values of  investigated. The skin-effect field is found to remain 

invariant with changes in  and therefore, the position of t  also remains the same 

irrespective of changes in r . However, the position of the maximum is found to shift 

upon varying the frequency as shown in Figure 5.5 (b). The value of t  shifts to larger 

values with a corresponding decrease in the skin-effect field as the frequency is lowered. 

The scaling of the field with frequency is because the parameter  is proportional to the 

square-root of the frequency. Additionally the contribution from the second term is also 

frequency dependent and therefore the maximum is displaced further along the t  axis 

upon lowering the frequency. A good analogy to this situation is that of 1D skin-effect, 

where the field spreads more into the conductor from the surface as the frequency is 

lowered. In essence, frequency behaves like a kinetic parameter in controlling the 

dispersion of the electric field. 

cri,ot

cri,o

or

cr

c

cri,o

α

o

 Next, the results from studies on constriction behavior are discussed. The value of 

the field-
)

6
t

,r(
z o

c
)z,r(E

cr=

, is chosen as the representative parameter for studying the 

constriction behavior. The constriction effect from previous discussion is clearly the 

largest at r , while the choice of the z co-ordinate is arbitrary. This field parameter 

will be referred to as the constriction field, hereon. . It is intuitive that  should have a 

major impact on the constriction field, because the constriction field is a consequence of 

the impressed field, which is dictated by . Next, the effect of systematically varying r  

and on the constriction field is investigated for a fixed value of . Figure 5.6 shows 

cr

cr o

ot cr
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the constriction field plotted as a function of t  for three different values of . It is clear 

from the plot that for a given , a monotonous decrease in the constriction field is noted 

until it reaches an asymptote. Additionally, the asymptote occurs at a higher value of 

o or

or

ot  

as  increases. This may be understood by looking at the following expression that 

governs the constriction field, 

or

)
6
t

,r(
z o

c
)z,r(E : 

t

J
o





cr ,( e





ot

ot

ot

( ) ( cm1o
m

6
ξ5

6
tξ

m7co
o

z rλeC'rκJα
6
tE

m1om1

∑ ++= −−)     (52) )

The contribution from the summation term decays exponentially with increasing . 

Therefore, at small values of , the magnitude of the field is entirely determined by the  

 
 

 

 

 

 

 

 

 
 
 
 

Figure 5.6. Plot showing the constriction field 
)

6
t

,r(
z o

c
)z,r(E  versus  for three 

different values of the specimen radius- r . The electrode contact radius  is fixed at 0.1 
[mm] for these simulations.  

o cr
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summation term, irrespective of the value of . For large values of , the summationor ot  

term becomes negligible and therefore the expression is independent of t , which 

explains the asymptotic behavior. In the intermediate regime, contributions from both 

terms are comparable and the extent of this regime is dependent on the parameter α , 

which varies inversely with . Therefore, a specimen with a larger radius has an 

extended intermediate regime and also a smaller asymptotic field directly attributable to 

the contribution from the first term. Physically this means that the constriction behavior 

equilibrates at a much smaller thickness in a specimen of smaller radius compared to a 

larger one. The reason is because the field has to spread out over a larger distance in a

o

or

 

specimen of larger radius and consequently equilibrates at a lower asymptote.  

5.1.5.3 Limiting thickness analysis 

 The notion of a limiting thickness, t , is introduced so as to investigate the 

applicability of the analytical solutions to a particular geometric configuration. The 

limiting thickness, , is defined as the minimum thickness of the disk for which a 

limiting field profile, 

o,lim

o,limt

2
t

zz,lim lim,o=
E , is reached at the center of the disk. This essentially 

means that increasing the thickness of the disk beyond , (say to t ) will yield 

the same profile, 

o,limt o,lim1 t>

2
t

zz,lim o,limE
=

, for all values of z between 







2

to,lim  and 



2
t1

 . It is 

intuitive that the limiting thickness as well as the limiting field profile should be 

frequency dependent, because the constriction drop off varies with frequency as 

explained previously. 


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Since there is no straight forward analytical means for determining t , an 

optimization procedure was developed for this purpose. The field at the center of the 

specimen-

o,lim

)
2
t,0(z o

)z,r(E (for any arbitrary ), hereafter referred to as the center field, 

was chosen as the optimization parameter. This is because the field at 

ot





 2
t,0 o

  was found 

to be the last to equilibrate of the electric field profile at 
2
tz o= . The center field is given 

by the following expression: 

∑ −+=
m

2
tξ

m7
o

z

om1

eC'2α)
2
t,0(E       (53) 

The procedure begins by initializing lower and upper bounds for t , such that 

. The center fields, viz. ,  and  are then 

determined at corresponding thickness values of ,  and 

o

middle

,ot

lower,oo,upper tt >> lower,zE upper,zE ,zE

lower,ot upper




+

2
t upper,o

] middle,ot





=

t
t lower,o

middle,o

middle,olower,o t,t

. Next, a determination of the correct thickness interval 

([  or [ ) to search for , is made by examining the 

relative differences between the corresponding center fields i.e. 

]upper,ot, o,limt

middle,zEz,upper −E  and 

z,lowerz,middle EE − . The interval corresponding to the smallest difference in the fields is 

the obvious choice. The values of the bounds are updated upon choosing the new interval. 

The procedure is repeated until a good convergence is obtained simultaneously in both 

the field and thickness values. This uniquely determines the value of t  and the o,lim
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associated limiting field profile, 
2

t
zz,lim o,limE
=

, for a given geometric configuration and a 

frequency. The results for calculations of the limiting thickness, t , and the limiting 

center field 

o,lim

)
2

t
,0(z,lim o,limE

ot

 are shown in Table 5.1 for several frequencies. These 

calculations are performed for the same set of material parameters and for values of r  

and  of 0.5 [mm] and 5 [mm] respectively. It is clear from the table that both the 

limiting thickness and the limiting center field increase progressively to an asymptotic 

quantity with a drop in the frequency. 

c

or

o,lim

 The limiting thickness parameter thus determined was then used as a reference for 

comparing the analytical solutions for the disk and the semi-infinite cases with the  

 
 
 
 

 
Figure 5.7. Plots showing the axial field at 1MHz as a function of r to show the relative 
match between the semi-infinite, disk analytical solutions and the FEMLAB solution for 
the following cases – (a) , (b) to,limt<< o,limo t≅  and (c) . o tt ≥
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FEMLAB solution. The finite element solution proved indispensable in verifying the 

assessment of t . Figure 5.7 shows the electric field profiles (o,lim )z,r(Ez  at 1 MHz) 

from all three solutions at 
2
tz o=  for the following cases: t o,limto <<

ot

,  and 

. The cross-section at the center of the disk was chosen because, the 

discrepancies if present, were always a maximum at the center. For t , there is a 

clear mismatch between the profiles yielded by the two analytical solutions. As  

increases, the mismatch becomes progressively smaller and the solutions yield a perfect 

match at . The match between the profiles remains intact for . 

o,limt≅ot

o,limo t<<

o,limt>

o,limo tt >

t

ot

o,lim

 The total number of elements used in the finite element models for the cases - 

, o,limo tt << o,limo tt ≅  and  were 20824, 67880 and 72017 respectively. The 

maximum element size ( ) on vertical boundaries of the model (spanning a length of 

) was adjusted so as to enhance the match with the analytical solution(s). The same 

value of ∆  could not be used for all three cases because of excessive memory 

demands imposed by the solver. FEMLAB solution yields a nearly identical profile to 

that of the analytical disk solution for 

o,limo tt >

max∆

ot

max

o,limo tt < . For t , the FEMLAB solution 

deviates marginally from the two analytical solutions, which match perfectly. The match 

could be even better provided the amount of memory required by the solver upon 

lowering  could be met. However, for practical purposes, the analytical disk 

solution and the FEMLAB solution concur with each other for all values of t , while, the 

semi-infinite analytical solution is clearly a crude approximation for t . 

o,limo t≥

max∆

o

o,limo t<<
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5.1.6 Calculation of specimen impedance for a two-probe measurement 

 In this section, the procedure for computing the complex impedance of the 

specimen in the shape of a cylindrical disk is described based on the expressions for the 

electric field distribution that was presented in section 5.1.3. As before, computation of 

impedance from the analytical model is validated using the FEMLAB model at a number 

of frequencies. These will then be compared to the experimentally measured impedance 

response of a metallic cylindrical disk specimen obtained from a two-probe impedance 

measurement. 

 The complex impedance (Z) of a specimen for an alternating current flow 

situation consists of real (  and imaginary )'Z ( )"Z  components, viz. a resistance (R) and a 

reactance (X).  

jXR"jZ'ZZ +=+=          (54) 

In the case of a metallic specimen, the reactance is primarily due to the contribution from 

the internal inductance (Li) of the specimen. While the resistance is related directly to the 

loss of energy due to ohmic heating, the inductance describes the ability of a conductor to 

store magnetic energy49. The expression for the complex impedance in terms of the 

inductance is written as follows: 

iLωjRZ +=           (55) 

The computation of R and Li of a metallic cylindrical disk specimen using the analytical 

electric field expressions is carried out via energy methods. The resistance and the 

inductance are obtained by calculating the Joule heat-loss and the total internal magnetic 

energy respectively49. This is restated in the expression formalism as follows49: 
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∫=
V

c
rms

2 dVE.Eσ
I

1R  and        (56) 

dVH.Hµ
I

1dVH.B
I

1L
V

c
rms

2V
c

rms
2i ∫∫ ==       (57) 

In the above expressions, E  and H  are the total complex electric and magnetic fields 

respectively, while the subscript c denotes the complex conjugate. The total 

magnetization- B is related to the magnetic field H  by a magnetic permeability- µ . The 

root mean square value of the current of amplitude Io is given by 
2

II o
rms = . The total 

electric field- E  and the magnetic field- H  are given in terms of the electric field 

components- rE  and zE  as follows: 

ẑEr̂EE zr +=  and         (58) 









∂
∂

−
∂

∂
=

z
E

r
E

ωµj
1H rz         (59) 

The expressions for rE  and zE  as a solution to the analytical derivation are given earlier. 

The reader is referred to the appendix for further details on evaluation of the volume 

integrals. 

 In the case of FEMLAB model, the overall Joule heat loss and the magnetic 

energy are obtained by integration of the time average resistive heating per unit volume 

(Qav) and the magnetic energy density (Wmav) over the specimen volume respectively58. 

The expressions for the time average quantities, viz. the Joule heat loss per unit volume 

and the magnetic energy density are given as follows58: 

( cav E.JRe
2
1Q = )  and         (60) 
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( cmav B.HRe
4
1W = )

)

         (61) 

The resistance- R and the inductance- Li are subsequently obtained by dividing out the 

time average quantities by I2
rms. 

 Plots of R and Li as a function of the frequency are shown in Figures 5.8 and 5.9 

respectively. The perfect match between the quantities computed via the closed-form 

analytical solution and the finite element FEMLAB solution is evident from both the 

plots. The resistance behavior as a function of frequency may be understood by 

examining the plots of ( z,rEz  and ( )z,rEr  versus r at different frequencies in Figures 

5.3 and 5.4. It is clear from these set of plots that as the frequency increases (from 10 kHz 

to 1 MHz), the field- ( )z,rEz  near the constriction region drops quickly to zero with 

increasing r and reappears at larger values of r (near the surface). The field- ( )z,rEr  on 

the other hand remains finite beyond the constriction region and is extended for large 

values of r with increase in the frequency. The variation in the fields for frequencies 

below 10 kHz is negligible. This redistribution in the axial and radial fields with 

frequency has the effect of decreasing the Joule loss contribution from ( )z,rEz  and 

increasing that from ( )z,rEr . The overall Joule heat loss however, increases drastically 

with frequency (10 kHz and above) as the predominant effect is that of ( )z,rEr . 

Consequently, the resistance- R remains relatively constant for frequencies up to 10kHz 

and increases progressively upon further increase in the frequency. 
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Figure 5.8 Plot of the frequency dependent resistance computed from both analytical 
(open symbols) and finite element models (solid line). 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
Figure 5.9. Plot of the frequency dependent inductance from both analytical (open 
symbols) and finite element models (solid line). 
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The inductance behavior as a function of the frequency is dependent on the 

distribution of the magnetic field inside the specimen49. Figure 5.10 shows plots of the 

magnetic field-  versus r at different z cross-sections starting from the boundary 

( ) to the center of the disk (

φH

0z =
2
tz o= ). It is evident from the plots that  is a 

maximum at r

φH

cr= , (where the constriction effect is maximum) and reaches a constant 

value on the curved boundary ( orr = ). As the frequency increases, it is noted that  

decreases in magnitude significantly near the constriction region as z increases from 0 to 

φH

2
to . Thus the internal magnetic field weakens as the field penetrates less and less with 

increasing frequency. This results in a lower overall magnetic energy for the specimen 

and consequently a lower internal inductance with a rise in the frequency. In fact, the 

internal inductance decreases as the inverse of the square root of the angular frequency49. 

The reactance- X on the other hand is a product of the internal inductance and the angular 

frequency and therefore increases with increasing frequency49. 

The magnitude of the overall impedance ( 22 XRZ += ) as a function of the 

frequency, is shown in Figure 5.11, for the closed-form analytical and the finite-element 

solutions respectively. The excellent match between the two solutions is again obvious.  
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Figure 5.10 Plot showing the magnetic field-  versus  at different z cross-

sections from the surface to the center of the conductor in steps of 

)z,r(H φ or

10
to . The frequency 

was set to be 1 MHz for these computations. 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
Figure 5.11. Plot of the complex impedance magnitude versus frequency from both 
analytical (open symbols) and finite element models (solid line). 
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5.1.7 Conclusions 

 Closed-form analytical expressions for the electric field distribution inside a 

cylindrical metallic disk specimen were derived for the problem of a two-probe 

impedance measurement. The specimen was treated to be a homogeneous material 

medium with average electrical and magnetic properties. As a corollary to the disk 

solution, the case of an infinitely long cylinder is also treated. A finite element solution 

obtained using a commercially available finite element package is also presented for 

comparison with the analytical solutions. 

 The field expressions consist of terms that incorporate both the skin effect and the 

constriction effect. In an expected manner, the skin effect term becomes prominent at 

high frequencies (104 Hz to 106 Hz) near the end regions of the disk (large r), while the 

constriction term dominates in regions near the contacts (small r). The magnitude of the 

field due to constriction decreases away from the electrode contacts in both the r and the 

z directions.  

 The effects of varying the electrode contact radius, , the disk radius , and the 

disk thickness, , were also investigated in a systematic fashion. The skin effect 

behavior at high frequencies is found to be dependent only on the dimensions of the disk 

( r  and t ) and remains unaffected by a variation in . The skin effect field reaches a 

maximum in t , before decreasing to an asymptotic value with increasing t . The 

constriction behavior is generally dependent on the geometry of the disk; however, the 

dominant effect is that of the contact radius, . The dependency on  can be ruled out 

only for small values of t . 

cr or

ot

o o cr

o o

cr or

o
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 The concept of a limiting thickness, t , for the disk and the associated limiting 

field profile, 

o,lim

2
t

zz,lim o,limE
=

, is proposed in order to assess the range of validity of the disk 

and semi-infinite analytical solutions. Simulations indicate that the disk solution is a good 

match for the FEMLAB solution for all values of t . The semi-infinite solution also 

converges very well with the other solutions for . However, for , the 

semi-infinite solution diverges considerably from the actual profile yielded by the disk 

solution. 

o

o,limto ≥t o,limo tt <<

 The real and imaginary parts of the complex impedance for an ideal two-probe 

impedance measurement were computed using the closed-form analytical and finite-

element solutions via energy-based methods. The frequency dependent resistance of a 

Waspaloy disk specimen was found to remain unchanged up to 100 kHz and increased 

monotonically with further increase in the frequency. The internal inductance on the 

other hand showed a monotonic decrease after 100 kHz. These effects were explained as 

due to the increase in the overall Joule heat-loss and a decrease in the magnetic energy 

storage with rise in the frequency. 

5.2 Determination of correction factors for a DC four-point probe measurement 

5.2.1 Introduction 

 A four-point resistivity measurement may be described as the measurement of 

voltage drop between a pair of probes contacting the specimen by making the current to 

flow through a second set of probes, namely the source and sink contacts respectively. 

This scheme essentially allows for measuring the true specimen resistance without 
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including the contact resistance between the probes and the specimen. This is made 

possible by making the voltage probes part of a high impedance circuit, thus allowing 

only negligible current to flow through this circuit59. As the name implies, the current and 

the voltage probe contacts are assumed to be point contacts. Additionally, the point-

contacts are assumed to be ohmic to facilitate the injected current to flow uninterrupted34. 

Four-point resistivity measurements have traditionally been used to characterize the 

uniformity of silicon wafers in the semiconductor industry35, 60. Researchers have also 

used four-point measurements for conducting resistivity studies in precipitation-

hardening metallic systems7, 8. In these alloys, the microstructural variations induced by 

heat-treatments as a function of time and temperature are related to the measured changes 

in resistivity. More recently, the four-point technique is made applicable on a much finer 

scale by the use of micro-probes that have spacings in the range of a few microns to tens 

of microns61, 62. The fabrication of these micro-probes enables the characterization of 

microstructural features such as whiskers, bulk nanostructures etc. that is not possible 

using the traditional four-point probe. The measured resistance in a four-point probe 

measurement is related to the specimen resistivity by a geometric correction factor that 

accounts for the finite geometry of the specimen32. It is therefore important to apply 

accurate correction factors to be able to trust the observed changes in resistivity with 

enough confidence. 

 The present analytical derivation deals with the evaluation of correction factors 

for cylindrical specimens for a random placement of the four probes on a circular face of 

the specimen. A closed-form analytical expression is obtained for the potential difference 

between the voltage probes via the solution of Laplace’s equation48 using the variable-
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separation technique50, 53. The potential difference thus obtained is subsequently used to 

compute the geometric correction factor. The solution presented here is valid for any 

given cylindrical geometry and for any random placement of the four probes. It is similar 

to the well known van der Pauw method63, which enables the determination of the 

resistivity of a specimen of arbitrary shape and uniform thickness using four point 

contacts. The point contacts in the van der Pauw method63 can also be randomly located. 

However, they should all lie on the circumference of the specimen. 

Golubev et al.64 presented closed-form solutions for four-point probe 

measurements on a tubular cylinder applicable for collinear and square probe arrays. The 

derivation is based on obtaining a solution for Laplace’s equation by integrating the 

boundary value problem using Green’s function. The factors are expressed in terms of 

modified Bessel functions and their derivatives. Correction factor curves are given in this 

reference64 for different arrangements of collinear and square probe arrays for cylinders 

of semi-infinite length. However, correction factors that were computed for the present 

research using the equations listed by Golubev et al., yielded incorrect values for solid 

cylinders of finite thickness. Additionally, small thicknesses resulted in large arguments 

for the modified Bessel terms in the series solution. Asymptotic expansion51 of modified 

Bessel terms for large arguments shot up rapidly to infinity for a relatively small number 

of series of terms. Yamashita65 obtained a closed-form solution for the potential 

distribution as a solution to Poisson’s equation for a four-probe measurement on a thick 

cylinder, which is the same problem dealt with in the present research. Expressions for 

correction factors were presented separately for regions of the specimen enclosed by the 

probe array and those outside. Correction factor behavior was studied systematically by 
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varying the specimen thickness, specimen radius, probe spacing and probe displacement. 

Additionally, the author also accounted for variations introduced by the probe tip 

radius65. In a second publication66, the author presented the correction factor for the same 

problem using the ‘method of images’. The correction factor derived using the ‘method 

of images’ was reported to yield faster convergence in case of thicker specimens66. 

 In addition, several researchers have computed geometric correction factors for 

different circular cylindrical geometries using the ‘method of images’34, which will be 

referred to as analytical approximation factors. These will be detailed in a later section. 

However, the specific case of a four-point probe measurement on a cylindrical specimen 

of finite thickness has not been dealt with using the method of images. 

 The applicability of the present derivation is illustrated for two specific cases 

using a collinear probe-array viz.- probes arranged along a radius and perpendicular to a 

radius. Simulations are conducted by systematically varying the specimen radius- , the 

thickness-  and the probe-array displacement-  for the above probe arrangements. 

Correction factors obtained from the closed-form solution are validated in each case by a 

finite-element simulation solution obtained using COMSOL Multiphysics 3.2. 

Additionally, the correction factors from the two methods are compared to analytical 

approximation factors, the expressions for which are available in the literature. A range 

for the analytical approximation factors defined by a lower and an upper bound 

approximation, is computed for each specific case. Correction factors from the closed-

form solution and the COMSOL solution show an excellent match with each other and lie 

within the analytical approximation bounds in all cases. 

or

d L
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5.2.2 Problem Formulation 

 The specimen is assumed to be a uniform solid cylinder of radius ro and thickness 

 and of conductivity σ . A cylindrical co-ordinate system-d ( )z,θ,r  with the origin 

located at the center of one of the circular faces (‘A’), as shown in Figure 5.12 is used. 

The opposite circular face (‘B’) is assumed to be resting on an insulating support block. 

The curved surface of the cylinder is also assumed to be insulating. A random placement 

of probes is considered on the circular face ‘A’, with probe locations denoted by 

for i=1, 2, 3 and 4. The subscripts ‘1’ and ‘2’ refer to the source and the sink 

contacts respectively, transporting a current , while ‘3’ and ‘4’ refer to the voltage 

pick-up points. 

( 0,θ, i )

( )0,θ,r r d

ri

oI

 
 
 

 

 

 

 

 

 
 
 
 
Figure 5.12 Schematic showing the placement of four probes at random locations-

 on the circular face-A of a specimen of radius-  and thickness-  in a 
cylindrical co-ordinate system. The opposite circular face-B is assumed to be resting on 
an insulating support. 
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The potential distribution  inside the specimen is obtained by a solution of 

Laplace’s equation48, written as: 

( )z,θ,rφ

( ) 0z,θ,rφ2 =∇          (62) 

Laplace’s equation is essentially a restatement of the continuity equation48 as given 

below. 

0
t
ρJ. =








∂
∂

+∇          (63) 

Here J  is the current density and ρ  is the volume charge density within the specimen. 

If a steady current flow is assumed through the specimen, then there is no macroscopic 

charge residing inside the specimen at any given instant. Therefore, the term describing 

the time rate of change of charge density in the continuity equation may be set to zero.  

The source condition and the boundary conditions governing the problem may now be 

listed as follows: 
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5.2.3 Analytical Approach 

5.2.3.1 Closed-form solution 

 The solution for the potential distribution ( )z,θ,rφ  governing the above problem 

is sought using the variable-separation technique50, 53. The preliminary solution for 

 may be expressed as the composite of the component solutions as follows: ( z,θ,rφ )

( ) ( ) )z(Gθ,rψz,θ,rφ =         (67) 

Substituting this in equation (62) and expanding the Laplacian, we obtain two 

independent differential equations as follows: 

2
2

2

22
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r
1

r
ψ

r
1

r
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
∂
∂

+
∂
∂
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∂
∂        (68) 

2
2

2

k
dz

Gd
G
1

−=−          (69) 

In this equation, '  is introduced as a separation constant. 'k 2−

The solution for G  may readily be written as: )z(

kz
2

kz
1 eCeC)z(G += −          (70) 

The second partial solution ( )θ,rψ  is further split into two component solutions in r  and 

θ  as follows: 

( ) ( ) (θrRθ,rψ Θ= )          (71) 

Substituting this in equation (68), the partial differential equation (PDE) in ( )θψ ,r  

reduces into two independent ordinary differential equations (ODE’s) by the use of a 

second separation constant, ' : 'm2−
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2
2

2
m
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−=
Θ

Θ
 and         (72) 

222
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Rd

R
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=++         (73) 

The standard solutions for equations (72) and (73) may be written down as: 

( ) ( ) ( θmcosCθmsinCθ 43 +=Θ )  and       (74) 

( ) ( ) ( )krYCkrJCrR m6m5 +=         (75) 

Here  and  are m( )xJ m ( )xYm
th order Bessel functions of the first and second kind 

respectively. Since the function ( )xmY  poses a singularity at the origin53, it may be 

neglected right away from the radial solution.  

The general solution for ( )z,θ,rφ  may now be written by collecting the 

component solutions listed in equations (70), (74) and (75) as: 

( ) ( ) ( ) ( )[ ][ ]kz
2

kz
143m eCeCθmcos'Cθmsin'CkrJz,θ,rφ ++= −    (76) 

A particular solution for ( )z,θ,rφ  may be obtained upon determination of the 

various separation constants and coefficients in equation (76). The unknowns are solved 

for by making use of the problem constraints listed in equations (64), (65) and (66). 

Applying the condition imposed on the radial field expressed in equation (66), we 

obtain: 

( ) 0
dr

krdJ
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
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This equation is essentially the criterion for determining the maxima or minima of ( )xJ m . 

The above equation has an infinite set of roots given by 
o

mn
mn r

βk =

(xJ m

, where  

(n=1,2,3….) is a node corresponding to a maximum or a minimum of . 

mnβ

)

 The azimuthal solution- ( )θΘ  in equation (74) must be a periodic function in θ  

with a period of π2  in order for it to be single-valued50. Therefore –  

( ) ( )πθθ 2+Θ=Θ          (78) 

This condition allows only integer values for m. 

 From these arguments, a particular solution for ( )z,θ,rφ  is written as: 

( ) ( ) ( ) ( )[ ][ ]∑∑ ++= −

m n

zk
mn2

zk
mn1mn4mn3mnm

mnmn eCeCθmcos'Cθmsin'CrkJz,θ,rφ  (79) 

 Next, applying the constraint listed in equation (65) on the axial field, a relation 

between the coefficients-  and  is obtained as follows: mn1C mn2C

dk2
mn2mn1

mneCC −=          (80) 

Incorporating this relationship into equation (79), ( )z,θ,rφ  is rewritten as: 

( ) ( ) ( ) ( )[ ] ( )[ ]∑∑ ++= +−

m n

zkzd2k
mn4mn3mnm

mnmn eeθmcos"Cθmsin"CrkJz,θ,rφ   (81) 

 In the above particular solution for ( )z,θ,rφ , all integer values are allowed for m, 

while n can only assume positive values. The summation may therefore be split as 

follows: 
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The first double summation in ( )z,θ,rφ  can be reduced to a positive index by the 

following property of Bessel functions50: 

( ) ( ) ( )xJ1xJ m
m

m −=− ; therefore, the nodes that correspond to the maxima or the 

minima of ( )xJ m−  are the same as that of ( )xJ m , ie., mnpn kk = , where mp −= . The first 

double summation may hence be rewritten as: 
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In this equation, mn3"C  and mn4"C  refer to coefficients computed with a value of –m. The 

first and the third double summations may now be combined as follows: 
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Here  and  are introduced to replace the composite coefficients without any 

loss of generality. The final expression for the particular solution of  is given as: 
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The coefficients in the above equation are to be found by making use of the source 

condition expressed in equation (64). The axial field on the surface of the specimen 

( ) may be found from equation (85) as: 0z =

( )[ ]+−=






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∂ −
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==
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The constants C ,  and C  resemble coefficients of a Fourier serieson4" mn3*C mn4* 13 and 

may be found by evaluating the following integrals using equations (64) and (86): 

(See appendix for details) 
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The constant  is indeterminate due to the absence of a Dirichlet condition1o4"C 50 for 

. This however is not of much concern because it is the potential difference 

between the voltage probes that is used in the calculation of the geometric correction 

factor and not the absolute value of the potential. 

( z,θ,rφ )

For a four-probe measurement, the specimen conductivity σ  is related to the 

measured resistance R  by a geometric correction factor (GCF) as follows32: 

 [ ]
φσ

I
σR

1GCF o
∆

==         (90) 
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where  is the potential difference between the pair of voltage probes and  is the 

source current. The geometric correction factor accounts for the finite specimen geometry 

as well as the arrangement (collinear or square) and the placement of the four-probe 

array. For a specific placement of the four-probe array upon the circular face of a 

cylindrical specimen, the geometric correction factor may now be obtained by computing 

the potential difference from the closed-form analytical solution (equation (85)) and 

inserting it into the above equation. It should be mentioned that the GCF in equation (90) 

has dimensions of length. All the physical quantities for computing GCF are converted to 

SI units and therefore, GCF is expressed in meters. 

φ∆ oI

 The application of the closed-form analytical solution for computing the exact 

geometric factor derived in this paper is only applicable for conducting or semi-

conducting materials. In the case of dielectrics or insulators, which impede the free flow 

of charge, the charge density term in the continuity equation (given in equation 63) 

cannot be set to zero. Therefore, the problem equations presented here do not adequately 

describe the physics of charge flow in materials with limited or minimal conductivity. 

5.2.3.2 Determination of a convergent solution 

 The application of the closed-form solution to specific cases of probe arrangement 

is discussed in a later section. Herein, the procedure for arriving at the final value of φ∆  

computed using equation (85) is outlined. The infinite series in equation (85) are 

truncated at 601 orders for  (including zero) and 10000 roots for , corresponding to 

each order . The roots 

m n

m
o

mn
r
βk =mn  are determined by finding the maxima and minima 

of  for each order m  as stated in equation (77). Subsequently, the value of ( )xJm φ∆  is 
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computed separately for each successive additional n  from 1, 2, … up to 10,000. A plot 

of  vs n  is generally oscillatory, with the amplitude of oscillations falling with 

increasing . The decrease in amplitude of the oscillations though, is not monotonic. 

However, it may be shown that the oscillatory series is bounded by an envelope in which 

the series terms are monotonically decreasing and hence convergent. Therefore, the 

original series must also converge for this reason. 

( )nφ∆

n

 The centerline or the mean of the oscillations is taken to be the convergence value 

of the series. In order to determine the centerline, the maxima and minima of the 

oscillatory series are first identified. Then a new series with smaller oscillations is 

constructed by joining the mid-points of consecutive maxima and minima of the original 

series. This procedure is repeated until the oscillations are completely damped out 

resulting in a convergent solution. Alternately, the convergent value in some cases is 

approximated by calculating the mean of the maxima and the minima of the oscillations 

in the original series. 

 The value of  is also computed by reversing the order of the indices in the 

double summation in equation (85) for a few cases of a collinear probe array. The 

deviation in the computed values of 

φ∆

φ∆  upon interchanging the summation is less than 

3%.  

5.2.4 Finite Element Approach 

 The task of computing the geometric correction factors for four-point 

measurement on a finite cylindrical specimen has also been conducted using the finite 

element method to serve as a validation for the analytical derivation. COMSOL 

Multiphysics 3.2, a commercially available finite element package was used to obtain a 
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finite element solution to the problem of finding the potential distribution inside a 

cylindrical specimen induced by source and sink current contacts. The Conductive media 

DC mode of the Electromagnetics module was used to formulate and obtain a solution for 

the present problem in three dimensions (3D). 

The problem geometry as described before consists of a cylindrical specimen with 

the source and sink contacts placed on the top circular face. The specimen was treated as 

a single sub-domain, while the contacts were embedded in the sub-domain as boundaries. 

In the finite element treatment, the contacts were modeled with a finite radius of 50µm 

instead of idealized point contacts. All the specimen boundaries were specified to be 

insulating excepting the source and sink contacts, where a constant current density 

corresponding to the total current was specified. 

 The maximum mesh element size and the element growth rate factor on the 

boundaries and the edges of the electrode contacts were fixed at 10µm and 1.005 

respectively for all the simulations. Mesh sizes smaller than 10µm for the contacts 

resulted in incomplete meshing of the sub-domain for a number of different cases of r  

and (see more details below). The maximum mesh element size and the element 

growth rate factor for the sub-domain itself (global parameters) were not forced to be a 

constant across all the simulation cases. Instead, the global parameters were adjusted to 

limit the total number of elements below 300,000 in each simulation case. This procedure 

was followed to allow for dealing with the memory limitations of the solver. 

o

d

 The Conductive Media DC mode obtains a solution for the electric potential (V ) 

by solving for the Poisson’s equation: 

 ( ) j
e QJVσ =−∇∇− .         (91) 
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Here  is the external current density and Q  is the current density which, are both set 

to zero in the model. Instead, the total current is specified as an average normal current 

density at the contacts. A Stationary Linear solver based on the Conjugate Gradients 

algorithm

eJ j

67 was used to obtain a solution for the 3D Conductive Media DC problem. The 

Conjugate Gradients solver obtains a solution for the linear system of equations bAx =  

via iteration as opposed to Direct solvers67. Iterative solvers are particularly useful and 

more memory efficient in case of 3D systems with a large number of degrees of freedom. 

The Conjugate Gradients solver can handle linear systems where the matrix  is positive 

definite and Hermitian

A

67. Iterative solvers by themselves are less stable and require the 

use of a preconditioner algorithm67 to enable faster convergence. The preconditioner 

generates a second matrix- M , which is an approximation to  and performs all 

subsequent element operations on 

A

M . In this case, the Incomplete Cholesky (TAUCS) 

algorithm67 with a drop tolerance of 0.03 was used as the preconditioner for the 

Conjugate Gradients algorithm. 

5.2.5 Analytical Approximations to Geometric Correction Factors 

Analytical approximations of geometric correction factors for measurements 

using a collinear four-probe unit on cylindrical specimens are listed by Topsoe32. Most of 

the analytical approximation factors were derived based on the ‘method of images’34. The 

method of images is an elegant technique for obtaining solutions of problems in potential 

theory based on symmetry considerations. Typically, the technique consists of mapping 

current injection or extraction points by a scheme of point or line sources on the problem 

domain. Subsequently, the potential at the point of interest is evaluated by the principle of 

superposition34, 48.  
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The two cases that are pertinent to measurement on a cylindrical specimen using a 

collinear probe unit are (a) a probe unit centered and perpendicular to a radius and (b) a 

probe unit along a radius as shown in Figures 5.2.2 and 5.2.3 respectively. In general, for 

a cylindrical specimen of radius-  and finite thickness- , the correction factor-GCF is 

defined to lie within a range bounded by a lower and an upper bound analytical 

approximation factor as follows

or d

32:  
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The lower bound is a combination of the contour factor33-C  for a thin specimen L







 <

2
sd  and the thickness factor34-T  defined for a specimen of thickness-  that 

extends to infinity in-plane. In the lower bound factor,  is the probe spacing and 

L d

s ∆  is 

the displacement of the center of the probe array from the specimen center. The upper 

bound34 is defined for a semi-infinite specimen of thickness- , where the probe unit or 

the nearest probe is at a distance 

d

x  from the edge of the specimen.  

The expressions for the different thickness and contour factors listed in the table are 

given as follows: 
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2. Upper bound Thickness factor- 
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Figure 5.13 Schematic showing the top view of a cylindrical specimen of radius- , on 
which a collinear probe array displaced by L from the specimen center, is positioned 
normal to a radius. This arrangement of probes is referred to as the PNR (probes normal 
to a radius) type. Also shown are the position vectors to the current probes- 1 and 2 and 
the voltage probes- 3 and 4 respectively. 

or

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.14 Schematic showing the top view of a cylindrical specimen of radius- , on 
which a collinear probe array displaced by L from the specimen center, is positioned 
along a radius. This arrangement of probes is referred to as the PAR (probes along a 
radius) type. Probes 1 and 2 are used as current contacts, while voltage drop is measured 
between 3 and 4. 

or
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where α , ,  and are given as β γ δ
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 and where, 
d
sζ =  and 

s
xη = . 

In equations (93), (95) and (97), the function ( )λM  is a dimensionless function of the 

parameter 
d
sλ =  that corresponds to a scheme of two parallel infinite line charges of 

opposite nature. Based on the principle of superposition, it has been defined by Uhlir as 

follows34: 

( ) ∑
∞

=









+
−=

1n
22 λn

1
n
12λM        (98) 

4. Contour factor- 
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6. Contour factor- 





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oo

2
L r

,
r
sC  -the contour correction factor for this case is a 

lengthy expression and is listed in the article by Swartzendruber33. 

 
Table 5.1 List of notations of analytical approximation correction factors for different  
measurement cases using a collinear probe unit and the corresponding references. 
 

 

Case Factor type and notation Reference 
Probe array centered on an 
infinite plane specimen of finite 
thickness,-d 

Thickness, 







d
s

LT  Uhlir34 

Probe array perpendicular to the 
edge at a distance x of a semi-
infinite specimen of thickness-d 

Thickness, 







∆+






=








d
s,

d
xT

d
sT

d
s,

d
xT 1LU  Uhlir34 

Probe array parallel to the edge 
at a distance x of a semi-infinite 
specimen of thickness-d 

Thickness, 







∆+






=








d
s,

s
xT

d
sT

d
s,

s
xT 2LU  Uhlir34 

Probe array centered on a thin 
cylindrical slice of radius-  and 

thickness-

or

2
sd <  

Contour, 








o

o
L r

sC  Smits60 

Probe array on the radius and 
displaced by ∆ from the center 
of a thin cylindrical slice  

Contour, 






 ∆

oo

1
L r

,
r
sC  Swartzendruber33

Probe array normal to the radius 
and displaced by ∆ from the 
center of a thin cylindrical slice 

Contour, 






 ∆

oo

2
L r

,
r
sC  Swartzendruber33

 
 

Table 5.1 shows a listing of the correction factor notation and the corresponding 

reference for several cases of thickness and contour factor derivations relevant to 

cylindrical geometry. The expressions for the contour and thickness correction factors 

listed above were used for computing approximate analytical correction factors. 
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5.2.6 Results and Discussion 

 In this section, the geometric correction factors computed using the closed-form 

(CF) analytical solution, the COMSOL finite element solution and the approximate 

analytical (AA) solution, will be compared first for specific probe arrangements and 

specimen geometry. Next, the effect of probe displacement along a radius and 

perpendicular to a radius will be treated for different specimen geometries. A current-  

of 50 [mA], a conductivity-  of 8.34x10

oI

σ 5 [Ω-cm]-1 and a probe spacing-s of 1 [mm] 

were used in the CF and the COMSOL models for computing the correction factors. In 

the COMSOL model, this current translates to a current density-  of 636.62 [A/cmnJ 2] 

for the assumed electrode contact radius of 50 [µm].  

A comparison between the CF, the COMSOL and the AA solutions is presented 

in Figure 5.15 (a) and (b) via plots of GCF versus the specimen thickness-  for probes 

aligned normal to a radius (PNR) and along a radius (PAR) respectively (see Figures 5.13 

and 5.14). The specimen radius-  was fixed at 8 [mm] and the probe displacement-  

was set to 

d

or L





 5
r3 o

  for these computations. It is seen for both the PNR and the PAR 

arrangements that the correction factor increases drastically as the specimen thickness is 

increased from 1 to 2 mm before it levels off to a constant value. This is a direct 

consequence of the potential distribution inside the specimen that results upon injection 

of current for specimens of different thicknesses. The measured potential drop between 

the voltage probes is higher for specimens with a smaller thickness, because the current 

now spreads over a smaller volume of the material medium. As the thickness increases, 

the volume for current spreading increases, resulting in progressively lower potentials at 
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the probes. However, a critical thickness is reached after which the potential distribution 

on the surface of the specimen remains invariant for all thickness values exceeding the 

critical thickness (~ 10 mm in both cases). Consequently, the measured voltage difference  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.15 Plots showing the comparison between geometric correction factors obtained 
via the closed-form, COMSOL and analytical approximation solutions as a function of 
specimen thickness-d for (a) PNR type and (b) PAR type arrangements respectively. The 
specimen radius- r  and the probe-displacement-L are fixed at 8 [mm] and 4.8 [mm] 
respectively. 

o
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between the voltage probes also remains unchanged and therefore the correction factor 

levels off after the critical thickness. 

It is clear from the two plots that the correction factors obtained from the CF and 

the COMSOL solutions show an excellent match with each other. Additionally, the 

correction factors predicted by the CF and the COMSOL solutions lie between the upper 

and lower analytical bounds in both cases. For the PNR arrangement (shown in Figure 

5.15 (a)), it is seen that the lower analytical bound is a better match with the CF and the 

COMSOL solutions at low thickness values. The lower analytical bound is a combination 

of the contour and the thickness correction factors, which are evaluated separately. The 

contour factor derived by Swartzendruber33, listed in the previous section, was derived 

based on the assumption that the specimen thickness was 
2
s

<d . Therefore, it is not a 

surprising result that the lower analytical bound deviates considerably at larger d  values. 

The upper analytical bound was derived (by Uhlir34) for a semi-infinite specimen of finite 

thickness, where the probes are at a fixed distance from a chosen boundary. Therefore, 

the upper bound is a good approximation for specimens with large radii irrespective of 

the specimen thickness. The disparity between the upper bound approximation and the 

CF solution is larger at small values of d , for the specific choice of  displayed in 

Figure 5.15 (8mm in this case). This is probably due to the fact that the specimen radius-

 is not large enough for a semi-infinite treatment. The match however improves as d  

increases, suggesting that the effect of having a finite contour is pronounced at lower 

specimen thicknesses. 

or

or

For the PAR arrangement (plot in Figure 5.15 (b)), it is rather surprising to find 

that the lower analytical bound shows a good match with the factors obtained from the 
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CF and the COMSOL solutions for all thickness values. In this case, since the probes are 

aligned along a radius, the outermost probe is closer to the specimen boundary as 

compared to a PNR scenario, assuming the same probe displacement from the center of 

the specimen. Due to this reason, the effect of a finite specimen contour should be more 

pronounced for a PAR arrangement. It is possible that the contour factor (derived by 

Logan68) in this case is more sensitive for larger probe displacements, i.e. as the 

outermost probe lies closer to the specimen boundary. This is one possible explanation 

for the good match of the lower analytical bound with the other solutions. 

Comparative simulation results from the CF, the COMSOL and the AA models 

for radius variations at a fixed thickness of 2 [mm] are shown as plots of GCF vs  for 

the PNR and the PAR arrangements in Figures 5.16 (a) and (b) respectively. For this set 

of plots, the probe displacement-  was set to 

or

L 







5
ro . The behavior that is common to 

both plots is that the correction factor shows a parabolic increase with increasing , 

however, with a progressively decreasing gradient. This trend may be explained using a 

similar argument that was used previously to explain the GCF variations as a function of 

thickness. The effective volume available for current spreading increases upon increasing 

the specimen radius. In fact, the geometric volume increases much faster with an increase 

in the radius as compared to an increase in thickness by the same amount. Therefore, the 

increase in the correction factor with  is due to a progressively lower potential 

difference at voltage probes, associated with an increased volume for current spreading. 

An added consequence of increasing the radius is that the specimen boundary is moved 

further from a fixed reference point, say the specimen center. However, the point of 

or

or
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reference that is of interest is defined by the probe displacement- , which in this case is 

a function of . With increasing , the probes are also displaced further along the   

L

or or or

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 
 
 
Figure 5.16 Plots showing the comparison between geometric correction factors obtained 
from the closed-form, COMSOL and analytical approximation solutions as a function of 
specimen radius-  for (a) PNR type and (b) PAR type arrangements respectively. The 
specimen thickness-d is fixed at 2 [mm] and the probe-displacement-L is specified to be 

or









5
ro . 

 171



axis. This is the reason why the leveling off of the correction factor occurs over an 

extended radius range as compared to the thickness variations presented before. 

The excellent match between the CF and the COMSOL correction factors is again 

evident from both Figures 5.16 (a) and (b). At small , both the lower and the upper 

analytical bounds are poor approximations of the exact correction factor. This means that 

treating the specimen to be semi-infinite for the upper bound and the combination of the 

contour and the thickness correction factors for the lower bound are both inexact for 

small r . With increasing , it is seen that both the upper and the lower analytical bound 

solutions converge closer to the exact solution. As the specimen approaches a semi-

infinite situation (in-plane only) upon increasing r , the treatment used for the 

computation of the upper bound is more realistic. The contour factor in the case of the 

lower bound decreases to a steady asymptote as the effect of the specimen boundary on 

the voltage drop becomes increasingly less significant upon increasing . 

or

o

o or

or

Next, the effects of systematically displacing the probe unit along the specimen 

radius, is considered for both the PNR and the PAR arrangements. The correction factors 

in simulations involving probe-displacement were computed using the CF analytical 

solution only. In the first set of simulations, the effect of probe displacement was studied 

for specimens of varying thickness, keeping the radius fixed at 8 [mm]. The source 

current-  and the conductivity-  are the same as before. Figures 5.17 (a) and 5.17 (b) 

show the geometric correction factor-GCF as a function of the specimen thickness-  at 

probe displacements of 

oI σ

d





 5
ro

 , 

o




5
r2  and 








5
r3 o  for the PNR and PAR arrangements 

respectively. It is clear from both the plots that the general behavior of the GCF vs  d
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remains identical to that described in Figure 5.15 (thickness comparison plots). In the 

case of the PNR arrangement (plot in Figure 5.17 (a)), as the probe displacement 

increases, the probe unit lies in close proximity to the specimen boundary. As a result, the  
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Figure 5.17 Plots showing the geometric factor (CF solution) variations as a function of 

specimen thickness-d at probe displacements of 



 5
ro

 , 







5
r2 o  and 




 5
r3 o

o


  for (a) PNR 

type and (b) PAR type arrangements respectively. The specimen radius- r  is fixed at 8 
[mm] for this set of plots. 
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volume available for current spreading is limited toward the closest boundary. This 

results in an increased voltage drop between the potential probes. The voltage drop 

increases progressively with an associated decrease in the correction factor as the probe 

displacement increases from 







5
ro  to 




 5
r3 o

 . However, the differences are relatively 

small here. For the PAR arrangement, where the probes lie along the specimen radius, the 

outer probe lies much closer to the specimen boundary for the same displacement of the 

probe unit from the specimen center. Due to this reason, the proximity effect is even 

more pronounced here. This is evident from Figure 5.17 (b), where a large drop in the 

GCF is noted upon increasing the probe displacement from 







5
ro  to 




 5
r3 o

 .  

It is seen from Figure 5.17 (a) for the PNR arrangement that the correction factors 

at the different probe displacements are spread out (although only by a small amount) at 

small thicknesses and start closing in at larger thicknesses. This suggests that the effect of 

a finite contour is greater the smaller the thickness, for a PNR arrangement. Interestingly, 

for the PAR arrangement (plot in Figure 5.17 (b)), the correction factors corresponding to 

the different probe displacements are spaced out further at larger thicknesses than at 

smaller values. In this case, the effect of the finite contour is maximum at larger 

thicknesses in contrast to the PNR arrangement. This suggests that the relative 

differences in the voltage drop at the different probe displacements affected by increasing 

the thickness are larger for the PAR arrangement as compared to a PNR arrangement. 

The plots shown in Figure 5.18 (a) and (b) are results from simulations at different probe 

displacements in conjunction with radius variations. The specimen thickness was fixed at 

2 [mm] in this set of computations. The correction factor behavior as a function of 
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increasing  is the same as that described earlier for Figures 5.16 (a) and 5.16 (b). The 

effect of displacing the probe unit by 0 , 

or





 5
r2 o

  and 







5
r3 o  is nearly the same for both  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.18 Plots showing the geometric factor (CF solution) variations as a function of 

specimen radius- r  at probe displacements of o 



 5
ro

 , 







5
r2 o  and 




 5
r3 o

  for (a) PNR type 

and (b) PAR type arrangements respectively. The specimen radius-d is fixed at 2 [mm] 
for this set of plots. 
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the PNR and the PAR type arrangements. The discrepancies among the correction factors 

at the three displacements are greater at smaller radii and decrease progressively with 

increasing radius. The effect of displacing the probe unit (as a fraction of r ) in terms of o

the voltage drop is obviously greater at small r  because of the proximity to the 

boundary. The effect due to proximity decreases in significance as the specimen radius 

increases and as a result, the disparity among the voltage drops at the three displacements 

decreases progressively. Therefore, the geometric correction factors corresponding to the 

three displacements converge together as the radius increases. This was the only 

dominant effect observed as the thickness of the cylinders is held a constant. 

o

5.2.7 Conclusions 

A closed-form analytical expression for the potential difference at the voltage 

probes was derived for a four-point probe measurement on a cylindrical specimen. The 

closed-form expression was obtained as a solution to Laplace’s equation using the 

variable-separation technique. The solution is generally valid for a random placement of 

the four probes on a circular face of the cylinder. The geometric correction factor, which 

is dependent on the specific specimen geometry and the probe arrangement, was then 

evaluated using the computed potential difference. 

 The general closed-form solution was then applied to two specific arrangements 

of a collinear probe array- (a) a probe unit lying on a radius and (b) a probe unit centered 

and perpendicular to a radius. Simulations were conducted by varying the specimen 

radius, specimen thickness and the displacement of the probe unit from the specimen 

center in a systematic fashion. Correction factors computed using the closed-form 

solution are in excellent agreement with those obtained via finite-element method 
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calculation using COMSOL Multiphysics 3.2. The factors from the closed-form and the 

COMSOL solutions lie within the bounds predicted by the approximate analytical 

correction factors in all cases. 

 For fixed values of  and , the correction factor rises initially as a function of 

 until a critical thickness is reached and remains constant thereafter. In a second set of 

simulations with fixed , the correction factor shows a parabolic increase with 

increasing , with a progressively decreasing slope. In this set of simulations,  was 

specified to be a constant fraction of . The correction factor behavior in both sets of 

simulations is due to progressively lower values of potential difference at the voltage 

probes as a consequence of increasing specimen volume. The increase in specimen 

volume affected by increasing r  or  facilitates easier current spreading, thereby 

leading to a lower potential drop. Simulations conducted by increasing the probe 

displacement- , specified as a fraction of r , resulted in progressively lower values of 

the correction factors. As the probe unit is displaced closer to the specimen boundary, the 

potential difference increases because of a reduction in the volume for current spreading 

near the boundary. Thus the increased potential difference directly leads to a lower 

geometric correction factor. 

or L

o

d

d

or L

or

d

L o

It is useful to remember that the closed-form correction factor presented here 

assumes that four point measurements are being made on homogeneous extended 

microstructures (i.e. with features much larger than the spacing between the measuring 

probes) so that a measurement of a bulk feature may be made; or with features much 

smaller than the spacing between the measuring probes so that the measurement will be a 

representative average of the heterogeneous microstructure. The latter scenario is 
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particularly true of controlled Waspaloy microstructures, where the nanometer sized 

precipitate distribution is representative of an average microstructure for the 

measurement. In case of bulk microstructural features such as whiskers or nanobelts, 

even if one uses micron-sized probe sizes and/or spacings, the measurements will be 

affected by several factors.   These may be: (a) depth dimension and homogeneity of the 

feature, (b) conductivity of the material medium surrounding the feature, (c) proximity of 

the probes to the surrounding medium and (d) size of the probe contacts in relation to the 

probe spacing and the feature size. Lastly, the orientation of the feature relative to the 

direction of probe approach will also need to be accounted for in the computation of 

accurate geometric correction factors. 

5.3 Calculation of specimen impedance for AC four-point probe measurements 

5.3.1 Measurements on Wire Specimens 

 The method for computing the complex impedance of a specimen wire of radius- 

 and length-  will be described briefly based on a closed-form analytical solution for 

the electric field distribution developed by Giacoletto

or ol

47. The electric field distribution for 

alternating current ( ) flow (of angular frequency ω) through the wire was derived as a 

solution to Maxwell’s electrodynamic equations

oI

48, 49. In this specific case, the electric 

field is present only along the axial direction, for which the solution was given as47: 

( )rκJαE oz =           (101) 
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where, r is the radial co-ordinate,  and ωµσjκ 2 −= ( )o1o

o

rκJrπσ2
Iκα = . Here µ and σ refer 

to the magnetic permeability and the electrical conductivity of the wire and ( )xJ ν  is a 

Bessel function50 in x of order ν.  

 From the above equation, it may be inferred that the axial field distribution is not 

homogeneous across the wire cross-section and is dependent on the radial distance. 

Additionally the degree of non-homogeneity is also dictated by the parameter κ, which 

depends on the frequency ω of the alternating current. 

 The solution for the complex impedance of a wire specimen of length-  and 

radius-  is obtained by an integration of the electric field given in equation (101) over 

the length of the wire as follows: 

ol

or

( ) ( ) ( )
( )o1

ooo
l

0
dcooooz

o rκJ2
rκJrκRlrκJαdzrE

I
1Z

o

∫ ===       (102) 

In the above equation for the complex impedance,  is the dc resistance of the wire, 

given by 

dcR

σrπ
lR 2
o

o
dc = . The frequency dependent resistance and inductance of the 

specimen wire are then obtained as follows: 

( )ZrealR =  and         (103) 

)Z(imag
ω
1Li =          (104) 

5.3.2 Measurements on Cylindrical Disk Specimens 

The objective of a four-probe AC measurement, as explained in an earlier chapter, 

is to measure the impedance of the specimen by isolating the effects of electrode contact 

 179



resistance and induced voltage due to the magnetic field. In this section, a procedure is 

described for computing the impedance from a four-probe AC measurement via a closed-

form analytical solution.  

Analytical computation of the specimen impedance in a four-probe AC 

measurement requires a knowledge of the electromagnetic field distribution inside the 

specimen induced by current flow through source and sink current contacts. The problem 

of calculating the electromagnetic field distribution in a conducting half space due to a 

point current injection at the surface has been treated by Bowler69 and Mitrofanov70 

separately. Mitrofanov’s approach70 is based on obtaining a solution for Maxwell’s 

second order diffusion equation for the electric field by using Fourier transforms. 

Bowler69 formulated the original second order differential equation in terms of a single 

transverse magnetic potential. The solution for the transverse magnetic potential was 

derived first by using the Hankel transform and the electric field distribution was 

obtained subsequently from the potential. The solutions discussed thus far are only 

applicable for infinite specimens i.e. the specimen dimensions both in-plane and 

perpendicular to the plane of probe placement are much larger compared to the probe 

spacing. 

In a different publication, Bowler39 presented a closed-form analytical solution for 

the electric field distribution inside a metal plate of finite thickness, induced by current 

injection at the surface through a wire. The problem is treated in a cylindrical co-ordinate 

system- (  by assuming rotational symmetry about the wire through which the 

current is injected and the specimen, both sharing the same axis of symmetry. A similar 

procedure, as described for an infinite specimen, was followed for obtaining the solution 

)z,θ,r
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for the electric field distribution in this case. The final closed-form expression for the 

radial electric field derived by Bowler39 is given as follows: 

( )
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  (105) 

In the above expression valid for 0 dz ≤≤ , ( )22
n nd2zrp ++=  and 

( )( )22
n d1n2zr'p +−+= . 

This expression for the radial electric field for a semi-infinite metal plate is made 

use of in the present research for computing the potential difference between the voltage 

probes in a four probe AC measurement. Even though the specimens used for 

measurement were of a finite size (laterally), the above expression for the electric field 

yielded a good approximation of the voltage difference. This is because the distance 

between the specimen edge and the outer probe was large enough (typically greater than 

4s, s = probe spacing) to discount effects of having a finite contour. Consider the centered 

arrangement of a linear probe array on the circular face of a cylindrical specimen as 

shown in Figure 5.19. The procedure for computing the voltage difference between 

probes at 




± 0,0,

2
s


 , upon current injection and extraction at ( )0,0,s±  respectively, will 

now be described. The expression for the total electric field at any point (  lying on 

the same diameter as the probe unit is placed, is given by the principle of superposition

)0,0,xo

48 

as: 
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2rr
T
r EEE 1

−=           (106) 

where,  are the radial distances from the source and sink electrodes to the 

point . The distances  and  in equation (105) are defined as 

sxr o2,1 ±=

( )0,0,xo

( )

np 'pn

22 nd2r +np =  and (( ) )22
n d1nr'p += 2+  for each value of r  as the probes lie on 

the  plane. 0z =
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Figure 5.19 Schematic showing the arrangement of current probes (at ±s) and voltage 
probes (at ±s/2) on the circular face of a cylindrical specimen. The point (xo,0,0) is 
arbitrarily chosen for computing the total superimposed field due to sources at (s,0,0) and 
(-s,0,0). 
 
 
 
The voltage difference between probes 3 and 4 can now be obtained as follows: 

∫−=
−

2
s

2
s

T
r4,3 drEV∆          (107) 
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where  is obtained from equations (105) and (106). Description on the computation of 

the integral for obtaining  is provided in the appendix. 

ETρ

4,3V∆

 The resistance and the inductance of the specimen from a four probe impedance 

measurement can now be obtained as follows: 








 ∆
=

o

4,3

I
V

ReR  and         (108) 









=

o

4,3
i I

V
Im

ω
1L

∆
.         (109) 

 183



CHAPTER 6 

AC ELECTRICAL MEASUREMENTS ON CONDUCTING 

SPECIMENS 

 

In this chapter, the results from ac measurements on cylindrical disk-shaped 

Waspaloy specimens using two-probe and four-probe approaches are described. 

Additionally, the four-probe measurements on wire specimens, which were conducted as 

a precursor to four-probe measurements on disk specimens, are also discussed. The 

experimentally measured impedance response for each measurement/specimen type is 

compared to a computed response obtained from closed-form analytical solutions or 

finite-element based solutions. 

6.1 AC Two Probe Impedance on Cylindrical Disk Specimens 

The results from two-probe impedance measurement of a typical Waspaloy disk 

specimen are shown in Figures 6.1 (a) and (b) as plots of R vs log(f) and X vs log(f), 

where R and X refer to the real and imaginary components of the measured impedance. 

The frequency-dependent real resistance R is more or less invariant up to 100 kHz and 

then shows a drastic rise for higher frequencies. A similar behavior is noted in terms of 

the frequency for X for frequencies above 50 Hz. The computed responses for R and X 

are shown in Figures 6.2 (a) and (b) respectively, which were obtained based on the 

closed-form analytical solution for the two-probe measurement as detailed in the previous 

chapter. The computed response for R shows the same trend with frequency as the  
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Figure 6.1 Plots of experimentally measured resistance- (a) and reactance- (b) as a 
function of the frequency of a cylindrical Waspaloy disk specimen in a two-probe 
impedance measurement. 
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Figure 6.2 Plots of computed resistance- (a) and reactance- (b) as a function of the 
frequency of a cylindrical Waspaloy disk specimen, obtained from the analytical 
treatment of an ideal two-probe impedance measurement. 
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measured response (see Figure 6.1(a)); but, the actual resistance values are markedly 

different in both cases. Figure 6.2 (b) shows the computed reactance (X) as a function of 

the frequency. Upon comparison with the measured reactance in Figure 6.1 (b), it is seen 

that there is a huge discrepancy in the reactance values, especially at high frequencies, 

even though the trends are similar. 

The increasing behavior in R and X after the initial flat regime is related to the 

rearrangement of the electromagnetic field distribution with rising frequency. The 

specific reasons pertinent to the frequency behavior in R and L are discussed in section 

5.1.6. The reactance- X is the internal inductance- L multiplied by the angular frequency- 

ω, which is related to the weakening of the internal magnetic field49. 

 The causes for the above mentioned discrepancy between the computed and 

measured values in the frequency spectra of both R and X will be discussed now. In a 

two-probe measurement, the measured response includes the contact resistance between 

the electrodes and the specimen. Although, this may be safely ignored for dielectric 

specimens, the contact resistance may completely dominate the signal of interest in the 

case of conducting specimens. This is precisely the reason why the measured resistance is 

much higher than the computed value over the entire frequency range. 

 Secondly, the flow of alternating current generates a time-varying magnetic field, 

as a consequence of Faraday’s law48, 49. This magnetic field is responsible for an induced 

voltage besides that from the specimen, if any loops are present in the circuitry. While the 

contact resistance offsets the specimen resistance, the induced voltage from the magnetic 

field primarily affects the reactance. In the measurement scheme used, the reactance 

measurement is dominated by the induced voltage due to the magnetic field, which is 
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orders of magnitude higher than the voltage drop from the specimen, especially at high 

frequencies.  

6.2 AC Four-point Probe Impedance on Wire Specimens 

 AC four-point probe measurements were conducted on copper wire specimens as 

a precursor to extending this measurement scheme for actual cylindrical disk specimens. 

The measurements were conducted on two different 12 AWG wires of lengths 12.2 cm 

and 6.9 cm. The computed responses were based on the analytical treatment of 1-D skin-

effect developed by Giacoletto47 that was presented in the previous chapter. The 

measured resistance at 200 Hz which was the lowest measured frequency was taken to be 

the dc resistance of the wire for the model. Additionally, a wire diameter of 2 mm and a 

resistivity of 1.663x10-8 [Ω-m] for copper were also used as model inputs. 

 The measured and computed responses for resistance and inductance of the two 

wires are shown in Figures 6.3 and 6.4 respectively. It is seen from Figure 6.3 that the 

measured resistance for both the wires remains flat for frequencies up to 8 kHz and then 

starts to increase monotonically for higher frequencies. The match between the measured 

and the computed profiles is remarkably good considering the wide range of frequencies 

(200 Hz to 100 kHz) measured. The measurement set-up used in this research (shown in 

Figure 3.3) was replicated from that used by Gosselin et al.36, who reported similar 

measurements only up to 10 kHz. It is also seen from Figure 6.3 that the ratio of the 

measured resistances of the two wires at any given frequency is nearly equal to the ratio 

of their lengths. This is in agreement with the predicted values from the analytical model 

(see equations (102) and (103) in Chapter 5.3.1). The reason for the rise in the resistance 

for frequencies higher than 8 kHz is because of the redistribution in the electric field,  
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Figure 6.3 Plot of the resistance versus frequency showing the measured (open symbols) 
and the computed profiles (solid line) for wires of two different lengths in a four-probe 
AC measurement. Wires 1 and 2 measured 12.2 cm and 6.9 cm in length respectively. 
 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 6.4 Plot of the inductance versus frequency showing the measured (open symbols) 
and the computed profiles (solid line) for wires of two different lengths in a four-probe 
AC measurement. Wires 1 and 2 measured 12.2 cm and 6.9 cm in length respectively. 
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which occurs in response to the increasing frequency. Specifically, the axial electric field 

starts to become non-uniform across the cross-section of the wire, in that the field starts 

to diminish near center regions of the wire at modestly high frequencies of 10 kHz. For 

higher frequencies, the field is pushed further away from the center until the point where 

the field is prevalent only near regions very close to the surface of the wire. This may be 

seen from Figure 6.5 (a)-(c) where surface plots of the axial electric field distribution 

across the wire cross-section are shown at progressively increasing frequencies of 0.1 

MHz, 0.5 MHz and 1MHz. This phenomenon is generally referred to as the ‘skin-effect’ 

in the literature47, 57. The magnitude of the axial electric field also increases progressively 

with rising frequency as a consequence of redistribution in smaller and smaller cross-

sectional area of the wire. This is expressed analytically by equation (101) in Chapter 

5.3.1. 
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Figure 6.5 Surface plots of the axial electric field- Ez at frequencies of 0.1 MHz-(a), 0.5 
MHz-(b) and 1 MHz-(c) respectively. The range for Ez in the above plots is from Ez,min = -
1.4x10-4 [V/m] to Ez,max = 2.8x10-3 [V/m]. 
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Figure 6.6 Surface plots of the axial normalized magnetic field- Hnorm at frequencies of 
0.1 MHz-(a), 0.5 MHz-(b) and 1 MHz-(c) respectively. The range for Hnorm in the above 
plots is from Hnorm ,min = 2.18x10-6 [A/m] to Hnorm, max = 10.3 [A/m]. 
 
 
 
Figure 6.4 shows a plot of the internal inductance of the wires as a function of the 

frequency for both measured and computed cases. The general inductance behavior may 

be described as being invariant up to 8 kHz and then decreases monotonically with 

frequency. The scatter observed in the measured data points at low frequencies may be 

related to interference arising from multiples of line signal frequency and any other noise 

signals prevailing at the measurement frequencies. The deviations in the measured 

response from the computed response at higher frequencies are related to imperfect 

cancellation of inductance contributions from the circuitry. The scaling of the inductance 

with the length of the wires is also evident here (see Figure 6.4). 

 The reason for the decrease in the internal inductance of the wires with rising 

frequency is associated with the skin-effect47, 57, which was explained earlier. The lines of 

internal magnetic flux which encircle the wire axis tend to counteract the axial electric 
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field around the center regions of the wire cross-section49. With rising frequency, the 

internal magnetic field weakens which is responsible for the decreasing inductance49. The 

decrease in the magnetic field in the interior regions of the conductor with rising 

frequency is shown in Figures 6.6 (a)-(c) as surface plots of the normalized magnetic 

field.  

6.3 AC Four-point Probe Impedance on Cylindrical Disk Specimens 

AC four-point probe measurements on Waspaloy specimens in the shape of a 

cylindrical disk were conducted by a suitable modification of the experimental set-up 

used for wire measurements. The specifics of the set-up are described in the experimental 

chapter (see Figure 3.4 in section 3.6). In here, the experimentally measured impedance 

response using the lock-in amplifier will be compared to the computed response using the 

closed-form analytical solution developed by Bowler39, described in the previous chapter. 

A nominal conductivity- σ of 8.34x105 [S/m] for Waspaloy, was used as an input for the 

analytical model. 

Figure 6.7 shows a plot of the resistance- R as a function of the frequency for the 

as-measured, short-corrected and computed cases. It is seen that R shows a flat behavior 

with frequency up to ~25 kHz and then continues to increase for higher frequencies up to 

100 kHz. The reason for the increasing behavior beyond 25 kHz is because of the 

redistribution of the electromagnetic fields with increasing frequency. The as-measured 

experimental resistance shows a rather large deviation from the computed response for 

higher frequencies (25 kHz to 100 kHz). This is presumably due to contributions to the 

measured voltage from the instrumentation in addition to the actual specimen voltage. 
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The short-corrected profile is the difference between the as-measured resistance and the 

  

 

 

residual resistance associated with the instrumentation. The latter component was

 

 

 

Figure 6.7 Plot of the resistance versus frequency showing the as-measured, short-
corrected and computed profiles of a cylindrical Waspaloy disk specimen in a four-probe 
AC measurement. 
 
 
 
determ arate short measurement on a copper sheet specimen, which is 

describ  detail in the experimental procedure chapter. The short-corrected specimen 

omputed response. Nevertheless, discrepancies still exist between the 

ort-corrected and the computed resistances because of the imperfect cancellation of the 
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resistance overall shows an increasing behavior with frequency and is a more reasonable 

comparison to the c

sh

residual resistance. 

The as-measured, short-corrected and computed reactances- X as a function of 

frequency are shown in Figure 6.8. The reactance also shows a similar increasing 
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behavior with frequency as the resistance associated with the redistribution of the 

electromagnetic fields. It is seen from Figure 6.8 that the short-correction scheme is of  

 

 

 

 

 

 

 

 

 

 

 

 

 

igure 6.8 Plot of the reactance versus frequency showing the as-measured, short-
corrected and computed profiles of a cylindrical Waspaloy disk specimen in a four-probe 

C measurement. The inset is a magnified view of the data at low frequencies. 
 

 
tmost importance in this case to disregard the reactance associated with the 

strumentation. Even after the short-correction, the measurements do not confirm
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theoretically predicted values at any of the measured frequencies. The mismatch at lower 

frequencies is shown in the inset in Figure 6.8. 
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Figure 6.9 Plot of the absolute value of the impedance as a function of the frequency 
showing the effect of thickness variations for four-point probe m

al Waspaloy specimens. 

fect of varying the thickness is shown in Figure 6.9 as a plot of the m

ic

1.47 [mm] and 8.16 [mm] respectively. The measured response is only presented up to 25 

kHz because the response at high

o

frequency shows an increasing trend. It is seen that the effect of decreasing the thickness 

results in an increased impedance for all the frequencies shown.  
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This is to be expected because decreasing the thickness results in a decreased 

volume for current spreading inside the specimen, thereby resulting in a higher value of 

the measured voltage. Consequently, the measured impedance is higher for the thinner 

specimen as compared to the thicker one for the same value of the source current. Thus 

the eff

6.4 Conclusions 

 The experimentally measured two-probe impedance response and the computed 

response for an ideal two-probe impedance measurement show similar trends as a 

function of the measured frequency. The experimentally measured resistance is 

dominated by the contact resistan ecimen and the electrodes at all 

easur

ect of the specimen thickness is demonstrated for a very limited range of 

frequencies. 

ce between the sp

m ement frequencies. The measured reactance behavior is dominated by induced 

voltage contributions from the magnetic field due to the presence of loops in the circuitry. 

 For AC four-point probe measurements on wire specimens, the experimentally 

measured and the computed profiles of the frequency dependent resistance and the 

inductance show a good agreement with each other. The resistance remained flat for 

frequencies below 10 kHz and increased monotonically with further rise in the frequency, 

whereas, the inductance decreased correspondingly. These effects are due to the skin-

effect, which forces the electric field near regions close to the surface and also causes a 

decrease in the internal magnetic field of the conductor. Upon changing the length of the 

conductor, both the resistance and the inductance scaled by nearly the same amount as 

the fractional change in length at all frequencies. 
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 AC four-point probe measurements on cylindrical disk specimens showed an 

increasing behavior in the resistance for higher frequencies (>20 kHz approximately) 

after an initial flat regime at lower frequencies. The resistance measurements conformed 

 the to theoretically predicted values only at relatively low frequencies (up to 25 kHz). 

The reactance measurements deviated largely from the theoretically predicted values over 

the entire frequency regime, which is due to the imperfect cancellation of induced voltage 

contributions arising from the circuitry, after the short-measurement. The effect of 

decreasing the specimen thickness resulted in a higher value of the measured impedance 

because of the lower volume available for current flow. 
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CHAPTER 7 

AFM-BASED LOCALIZED ELECTRICAL CHARACTERIZATION 

 

Sub-grain level localized electrical characterization using the AFM was 

conducted in order to investigate the electrical contrast between the different 

microstructural constituents in heat-treated Waspaloy microstructures. The underlying 

principle in AFM-based electrical measurements is based on mapping the electrical 

variations in the specimen in response to an applied bias between a conductive AFM tip 

and the specimen71. The electrical variations arise from the differences in the interaction 

between the AFM tip and the features on the surface of the specimen71. Localized AFM 

characterization of heat-treated Waspaloy microstructures on the XE 100 SPM were 

conducted in three different electrical modes, viz. Electrostatic Force Microscopy (EFM), 

Scanning Kelvin Probe Microscopy (SKPM) and Current-Atomic Force Microscopy (I-

AFM). 

7.1 Description of Measurement Techniques 

 In EFM, as the name implies, the electrostatic force between the biased AFM tip 

and the specimen surface is sensed as the AFM cantilever scans the surface topography in 

non-contact mode71, 72. The key to successful EFM imaging lies in the separation of the 

topography and the electrical signals arising from the interaction between the AFM tip 

and the specimen71, 72. In non-contact mode, the topographic signal is due to the attractive 

van der Waals force between the atoms on the AFM tip and the surface atoms, that varies 

as 6r
1 72, 73. The electrostatic force on the other hand is a Coulombic interaction, that 

 198



varies as 
2r

1 71, 73. Thus at small separation distances, the topographic signal dominates 

the overall response, where as at larger distances, the van der Waals force decreases 

rapidly with the electrostatic force becoming more significant. Usually a two-pass 

technique is used to separate the contributions arising from topographic and electrical 

signals71, 72. In the first pass, the AFM tip scans at a relatively small separation distance, 

rendering the topographic signal to be dominant. In the second pass, the AFM tip is lifted 

up to a predetermined height, where the electrostatic force is dominant and the scan is 

repeated by retracing the stored topographic profile from the first pass. Thus, the two-

pass technique allows effective separation of the topographic and electrostatic signals71, 

72.  
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Figure 7.1 Schematic showing the experimental set-up of an EFM/SKPM measurement72. 
The numerals denote the following: (1) laser diode, (2) position sensitive photo diode 
detectors, (3) internal lock-in amplifier, (4) feedback loop for amplitude/phase, (5) ‘Z’ 
piezoelectric actuator, (6) oscillator, (7) external lock-in amplifier and (8) feedback loop 
for dc bias. 
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PSIA Inc. has developed a new technique known as the Enhanced EFM71, 72 that 

allows separation of the topographic and the electrostatic signals in a single pass. The 

experimental set-up of Enhanced EFM measurement technique is shown in Figure 7.1. In 

the Enhanced EFM mode, an external lock-in amplifier is connected to the XE 100 

controller for isolating the electrostatic signal from the topographic signal71, 72. The lock-

in amplifier is used to apply an alternating bias of frequency ω, in addition to any dc bias 

applied from the XE 100 controller to the conductive AFM tip. The overall bias between 

the AFM tip and the specimen may then be written as follows73: 

( ) ( )tωsinVVVtV acSdc +−=         (1) 

where, VS is the potential on the surface of the specimen, Vdc and Vac are the applied DC 

and AC potentials respectively. The above equation for the voltage is under the 

assumption that the tip and the sample can be treated as two parallel plates. The 

electrostatic force- F(z) between the tip and the sample by assuming a tip-surface 

capacitance C(z) and a separation distance- z, can then be written as73: 
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Thus the overall electrostatic force between the AFM tip and the specimen consists of a 

dc component and components at the first and second harmonic frequencies. The dc 

component of the force can be obtained directly from the signal channels accessible using 

the data acquisition software. The ω and the 2ω components of the electrostatic force can 

 200



be monitored using the lock-in amplifier.  In the Enhanced EFM mode, an electrical 

image representing the amplitude and the phase of either the ω and 2ω components of the 

force may be generated71, 72. 

 The operating principle of surface potential microscopy (SKPM) is similar to the 

Enhanced EFM. The measurement set-up used for SKPM72 is the same as that for an 

EFM measurement (see Figure 7.1). In SKPM, the ω component of the force is made use 

of to obtain a potential map of the surface of the specimen72. The first harmonic of the 

force will be identically zero when VDC and VS are equal to each other72, 73. In the SKPM 

mode, a feedback loop is enabled during the scan to vary the DC offset voltage (see 

Figure 7.1), VDC, so as to set the ω component of the force to zero, also referred to as the 

null force approach72. This approach allows for obtaining the true potential distribution 

on the surface of the specimen. 

 Localized electrical examination of heat-treated Waspaloy microstructures in the 

Enhanced EFM and SKPM modes were conducted at frequencies of 17.5 kHz and 54.65 

kHz and at amplitudes of AC voltage ranging from 1V to 4V. The choice of the 

experimental parameters is based on obtaining the best response in terms of the EFM 

amplitude, EFM phase or the potential in relation to the observed topographic signal. 

Besides the frequency and the voltage amplitude, other parameters that were adjusted on 

the lock-in amplifier include the time-constant and the slope of the filter. The time-

constant and the slope determine the variability in the measured signal and were typically 

set at 1-3 msec and 12 dB roll-off respectively. In the SKPM mode, the phase of the 

applied signal was also optimized prior to image collection.  
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 In the I-AFM mode74, 75, a conductive AFM tip scans the surface of the specimen 

in contact mode to map the topography, while also sensing the current flow from the 

specimen simultaneously. The measurement set-up of an I-AFM experiment is shown in 

Figure 7.2. A bias is applied to the specimen in the I-AFM mode, while the tip is left 

unbiased and only acts as a sensor. The current map produced upon imaging correlates 

directly to the variations in resistivity of features on the surface74, 75. Regions 

corresponding a higher current flow are indicative of a lower resistivity compared to 

regions yielding lower currents. 
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Figure 7.2 Schematic showing the experimental set-up of an I-AFM measurement74. The 
numerals denote the following: (1) laser diode, (2) position sensitive photo diode 
detectors, (3) external current gain amplifier, (4) feedback loop for height and (5) ‘Z’ 
piezoelectric actuator. 
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The magnitude of current flow from the specimen to the tip is generally very low 

and is magnified by a current amplifier before representing the current data in the form of 

an image. I-AFM experiments on the XE 100 SPM were conducted using an external 

DLCPA-200 variable gain low noise current amplifier74, 75. This mode of electrical 

imaging is also referred to as the External I-AFM for this reason. The gain setting on the 

current amplifier determines the measurable range of current values in an I-AFM 

experiment75. By modulating the gain suitably, current values ranging from 1pA to 10mA 

are measurable in External I-AFM experiments. Generally speaking, the gain setting 

varies from one specimen to another and is sensitive to the surface condition of the 

specimen. I-AFM experiments on Waspaloy specimens were conducted at values of 

sample bias ranging from 0.34 V to 2 V and gain settings of 104 to 109. 

7.2 Results and Discussion 

 In this section, the results of AFM-based localized investigations of the electrical 

characteristics of the γ and γ′ phases and that of the etch-pit features will be discussed. 

The microstructures are highlighted differently using two different etchants as follows- 

‘A-etchant’ that preferentially etches the γ′ phase and ‘B-etchant’ that preferentially 

etches the γ phase, leaving out the γ′ phase. The compositions of these etchants are 

specified in an earlier chapter. Additionally, imaging was also conducted on as-polished 

specimens, where the contrast was given rise due to the mild etching effect caused by 

colloidal silica that was used in the final polishing step. 

 Figures 7.3 through 7.5 show the topographic and EFM amplitude micrographs of 

Waspaloy under different etching conditions, in order to demonstrate the electrical 

contrast between the γ and γ′ phases. The specimens in the different etched conditions 
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and the corresponding experimental parameters that were used for acquiring the EFM 

micrographs are listed in Table 7.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c)(a) (b) (c)

 
Figure 7.3 AFM micrographs of IIIDS-875-75 specimen with a preferential γ′ etch 
showing γ-γ′ contrast in terms of (a) surface topography, (b) EFM amplitude at Vdc = -1V 
and (c) EFM amplitude at Vdc = 1V respectively. An oscillating bias of Vac = 2V was also 
applied at a frequency of 52.65 kHz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c)(a) (b) (c)

 
Figure 7.4 AFM micrographs of IBS-800-100 specimen with a preferential γ etch 
showing γ-γ′ contrast in terms of (a) surface topography, (b) EFM amplitude at Vdc = 1V 
and (c) EFM amplitude at Vdc = -1V respectively. An oscillating bias of Vac = 1.5V was 
also applied at a frequency of 52.65 kHz. 
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 (a) (b)(a) (b)
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5 AFM micrographs of IID-875-100 specimen in the as-polished condition 
showing γ-γ′ contrast in terms of (a) surface topography and (b) EFM amplitude response 
at Vdc = 0V and Vac = 3V at a frequency of 52.65 kHz. 
 
 
 
Table 7.1 List of specimens with the specific surface finish and the corresponding 
measurement parameters for EFM experiments 
 

Specimen Figure(s) Preferential etch Vac (V) Frequency 
(kHz) Vdc (V) 

IIDS-875-75 6.1 (a)-(c) γ′ etch 2 52.65 ±1.0 
IIID-875-100 6.3 (a)&(b) As-polished 3 52.65 0 
IBS-800-100 6.2 (a)-(c) γ etch 1.5 52.65 ±1.0 
IIID-725-5 6.4 (a)-(c) γ′ etch 2 52.65 ±1.0 

 
 
 
An EFM image in general contains information regarding the potential or the charge 

distribution on the surface of the specimen72. The EFM amplitude micrographs shown 

here represent the amplitude of the first harmonic (ω) component-  of the total 

electrostatic force interaction between the tip and the surface or equivalently the total 

cantilever deflection

ω1F

72. As may be noted from equation (2),  contains contributions 

from the applied AC and DC voltages- V

ω1F

ac and Vdc, the voltage on the surface of the 

specimen- Vs and the gradient in the capacitance- 







∂
∂

z
C . Therefore, the measured signal 

 205



is a convoluted response of these different terms and there is no straight forward 

interpretation of an EFM amplitude image72, 73. 

Figure 7.3 shows the topographic and EFM amplitude micrographs of the IIIDS-

875-75 specimen which is highlighted using a preferential γ′ etch (A-etchant). It is clear 

from the topographic image (Figure 7.3 (a)) that the precipitates are etched much deeper 

than the surrounding γ regions. The polarity of the dc voltage was reversed for EFM 

amplitude images in Figures 7.3 (b) and 7.3 (c), keeping the other parameters fixed as 

indicated in the table. It is seen that the EFM voltage amplitude near the γ′ regions is 

higher than the surrounding γ regions in both cases. As seen from the micrographs, this 

reversal in polarity causes only a slight shift in the voltage scale but importantly, the γ-γ′ 

amplitude contrast is unaffected. It is experimentally observed that the reversal of 

polarity of the dc bias caused a phase shift of ~180°, leaving the sign of the EFM 

amplitude unaffected.  

The set of micrographs in Figure 7.4 show the topographic scan and the 

corresponding EFM amplitude response of IBS-800-100 specimen with a preferential γ 

etch. The topographic image (Figure 7.4 (a)) clearly shows the precipitates to be at a 

greater height relative to the surrounding γ matrix. The γ-γ′ amplitude contrast is notably 

reversed from the earlier case upon inverting the etch effect. This clearly confirms that 

the presence of γ′ in this case is responsible for a different EFM interaction compared to 

the IIIDS-875-100 specimen where most of the γ′ is etched out. It is also possible that the 

presence of opposite topographies might contribute to different EFM interactions. Even 

though the topographic interaction resulting from van der Waals forces is effectively 

separated by using a lock-in amplifier71, 72, the EFM response is indirectly affected by the 
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topography introduced by the etch. This is because the electrical interaction between the 

tip and the surface is dependent on both the geometric and the electric properties of the 

tip and the surface and can be non-linear73, as explained later. Next, the relative 

difference in the voltage scales of EFM amplitude micrographs in Figures 7.4 (b) and 7.4 

(c) is clearly due to the reversal of the dc bias. As before, the γ-γ′ contrast remained, but a 

phase shift of 180° was noted when the polarity was reversed.  

Topographic and EFM amplitude images of IID-875-100 specimen in the as-

polished condition are shown in Figure 7.5. Even though the topographic contrast (Figure 

7.5 (a)) is poor, the EFM amplitude image in Figure 7.5 (b) shows a clear γ-γ′ contrast. It 

is also noted that the γ-γ′ amplitude contrast is represented in terms of smaller variations 

in the voltage compared to the etched specimens. This is again an indication that the 

interaction is dependent on the preferential presence of one phase versus another and 

additionally the indirect effect of topography, as mentioned previously. 

 
 

 

 

 

 
 
 
 
 

(a) (b) (c)(a) (b) (c)

Figure 7.6 AFM micrographs of IID-725-5 specimen with a preferential γ′ etch showing 
etch-pit contrast in terms of (a) surface topography, (b) EFM amplitude at Vdc = -1V and 
(c) amplitude at Vdc = 1V respectively. An oscillating bias of Vac = 2V was also applied at 
a frequency of 52.65 kHz. 
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Figure 7.6 shows the topographic scan and the corresponding EFM amplitude 

images of the IID-725-5 specimen highlighted using the B-etchant in order to 

demonstrate the etch-pit contrast. The polarity of the applied dc bias is reversed from 

Figures 7.6 (b) to 7.6 (c) as indicated in Table 7.1. The EFM amplitude contrast between 

the etch-pit regions and the surrounding regions is clear from both Figures 7.6 (b) and (c). 

In an earlier chapter, it was argued that the etch-pits in fact consisted of γ′ precipitates, 

which upon gradual coarsening, contributed to the evolution of the etch-pits from 

polygonal to more irregular shapes and eventual annihilation. Therefore, the contrast 

observed in the etch-pit regions both in terms of the topography and EFM amplitude is 

because of complete or partial removal of γ′ material within the pits. It is not to say that 

the surrounding regions are devoid of γ′ precipitates, however, the contrast is unclear 

using this specific etchant, considering the fine scale of the precipitates. As in the 

previous sets of specimens, reversal of the dc bias resulted in the phase shift of 180°, 

without any changes in the γ-γ′ contrast (see Figures 7.6 (b) and (c)). 

 Next, the micrographs representing γ-γ′ electrical contrast obtained using SKPM 

are discussed. The specimens used for SKPM experiments in different etch contrasts and 

the experimental parameters are given in Table 7.2. 

 
 
Table 7.2 List of specimens with the specific surface finish and the corresponding 
measurement parameters for SKPM experiments 
 

Specimen Figure(s) Preferential etch Vac (V) Frequency 
(kHz) 

Phase 
(°) 

IIDS-875-75 6.6 (a)-(c) γ′ etch 3 52.65 -2.92 
IIDS-875-100 6.7 (a)-(b) As-polished 2.5 52.65 -0.86 
IBS-800-100 6.8 (a)-(d) γ etch 3 52.65 -3.24 
IIID-725-5 6.9 (a)-(b) γ′ etch 2.86 17.5 4.62 
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As explained before, SKPM is a null force technique71, 73 that is based on modulating the 

dc bias applied to the tip to equal the surface voltage of the specimen, so as to render the 

ω component of the total force to zero. Therefore, the voltage map produced in an SKPM 

scan is a direct representation of the absolute voltage on the surface of the specimen71, 72. 

In this simple treatment, the surface potential signal is independent of the geometric 

properties of the tip-surface system and the ac measurement parameters. However, for a 

more realistic system, the surface potential distribution as well as the topography can be 

non-uniform. In this scenario, the tip-surface interaction becomes complex and non-

linear, as not only the region directly under the tip but also the surrounding regions 

impact the overall interaction73. This is schematically shown in Figure 7.7. In fact, the 

region that is directly under the tip interacts with a smaller tip area than do the  

 

 

 

 

 

 

 
 
 
 
Figure 7.7 Schematic illustrating the topography dependent non-linear tip-surface 
interaction73 during EFM/SKPM measurement. The voltage distribution is non-
homogeneous because of the inhomogeneous surface topography and due to the presence 
of different phases. 
 
 

 

 209



surrounding regions73. The ω component of the total force-  is now expressed as the ω1F

sum of several capacitive interactions between the tip and the different regions of the 

surface as follows73: 

( i,Sdc
n
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acω1 VV

z
C

VF −
∂

∂
= ∑
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)       (3) 

The effective surface potential that is measured is therefore73: 
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where-  is the partial capacitance between the tip and the ii,effC

i

th region on the surface 

and V  is the local potential of the i,S
th region. 

 Figure 7.8 shows the topographic image and the associated surface potential and 

phase images of the IBS-800-100 specimen with a preferential γ etch to demonstrate the 

γ-γ′ contrast in the SKPM mode. The surface potential scan (Figure 7.8 (b)) indicates a 

higher voltage near γ′ relative to the surrounding γ regions. It is also interesting to note 

the γ-γ′ contrast in terms of the EFM phase here (Figure 7.8 (c)). The as-polished IIIDS-

875-100 specimen shows a good γ-γ′ contrast in terms of the surface potential (Figure 7.9 

(b)) despite the weak topographic contrast (Figure 7.9(a)). The relative γ-γ′ surface 

potential contrast is the same here as for the IBS-800-100 specimen (see Figure 7.9 (b)). 

In the case of the IIIDS-875-75 specimen with a preferential γ′ etch (Figure 7.10), surface 

potential scans were acquired from two different regions of the specimen. It is seen from 

Figure 7.10 (b) and 7.10 (e) that the surface potential responses from the two different 

regions show opposite γ-γ′ contrasts for the same experimental parameters. γ-γ′ contrast  
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(a) (b) (c)(a) (b) (c)

 
Figure 7.8 AFM micrographs of IBS-800-100 specimen with a preferential γ etch 
showing γ-γ′ contrast in terms of (a) surface topography, (b) surface potential and (c) 
EFM phase. The scan was acquired using a sinusoidal input signal of Vac = 3V, frequency 
= 52.65 kHz and phase = -3.24°. 
 
 
 
 (a) (b)(a) (b)
 

 

 

 

 

 

 
Figure 7.9 AFM micrographs of IIIDS-875-100specimen in the as-polished condition 
showing γ-γ′ contrast in terms of (a) surface topography and (b) surface potential. The 
scan was acquired using a sinusoidal input signal of Vac = 2.5V, frequency = 52.65 kHz 
and phase = -0.86°. 
 
 
 
in terms of the EFM phase is also observed here (see Figure 7.10 (c)) by using a 

preferential γ′ etch.  
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It should be noted that the relative γ-γ′ topography introduced by the different 

etching conditions are markedly different among the specimens. Based on the preceding 

paragraph, it is clear that the non-uniform surface topography in addition to the non-

uniform voltage distribution, result in a complex and non-linear tip-surface interaction.  

 
 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c)

(d) (e)

(a) (b) (c)(a) (b) (c)

(d) (e)

Figure 7.10 AFM micrographs of IIIDS-875-75specimen with a preferential γ′ etch 
showing γ-γ′ contrast in terms of (a) surface topography (region 1), (b) surface potential 
(region 1), (c) EFM phase (region1), (d) surface topography (region 2) and (e) potential 
(region 2). The scan was acquired using a sinusoidal input signal of Vac = 3V, frequency = 
52.65 kHz and phase = -2.92°. 
 
 
 

The non-uniform surface potential distribution here, is attributed to the presence 

of multiple phases and additionally, the preferential removal of one phase versus another 

based on the etchant used. Besides this, the surface potential distribution may also be 
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affected by the specific grounding configuration that varies from one specimen to 

another. 

The EFM phase images shown in Figures 7.8 (c) and 7.10 (c) represent the 

changes in the phase of the ω component of the force (see equation (2) measured by the 

lock-in amplifier. In the SKPM mode, the phase changes are with reference to the 

optimized phase of the input signal, which is listed in Table 7.2. 

The electrical contrast of the etch-pits observed in the SKPM mode is presented in 

Figure 7.11. As mentioned previously for the EFM images, the observed voltage contrast 

is due to the inhomogeneous surface potential distribution arising from the preferential 

loss of γ′ within the pits and the indirect effect of topography. 

  
 

 
(a) (b)(a) (b)

 

 

 

 

 
 
 
 
 
 
Figure 7.11 AFM micrographs of IID-725-5 specimen with a preferential γ′ etch showing 
etch-pit contrast in terms of (a) surface topography and (b) surface potential. The scan 
was acquired using a sinusoidal input signal of Vac = 2.86V, frequency = 17.5 kHz and 
phase = 4.62°. 
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Table 7.3 List of specimens with the specific surface finish and the corresponding 
measurement parameters for I-AFM experiments 

 

Specimen Figure(s) Preferential etch Sample bias 
(V) 

Amplifier 
gain 

IIID-725-5 6.10 (a)-(b) γ′ 0.34 109 
IIDS-875-75 6.11 (a)-(b) γ′ 0.22 105 
IIID-875-100 6.12 (a)-(b) γ 0.57 104 
IIID-875-100 6.13 (a)-(b) As-polished 2 107 

 
 
 
The final AFM-based electrical imaging mode that was investigated for studying the 

electrical contrast between the different microstructural features in Waspaloy was 

current-AFM or I-AFM. The I-AFM mode allows for mapping the resistivity variations 

of the surface features, by sensing the current through a conductive AFM tip 

simultaneously during a contact mode topographic scan74, 75. As stated previously, a dc 

bias is applied to the specimen in an I-AFM scan and the tip only acts as a sensor. The 

specimens investigated using the I-AFM mode in the different etched conditions are 

given in Table 7.3. 

Figures 7.12 and 7.13 show the topographic and current-AFM scans of the IID-

725-5 and the IIIDS-875-75 specimens with a preferential γ′ etch demonstrating the etch-

pit contrast and γ-γ′ contrast respectively. Firstly, it is clear from the set of micrographs in 

Figure. 7.12 and 7.13 that the current contrast is definitely seen at locations of the etch-

pits and the γ′ precipitates. It should however be noted that the contrast indicated by the 

higher current regions is not uniform throughout the feature, but is predominant around 

the edges of the γ′ precipitates and the etch-pits. Secondly, the magnitude of the current 

scale differs by four orders of magnitude between the current image representations of 

the etch-pits and γ′ precipitates. This is clearly a consequence of using different amplifier 
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gains- 109 and 105 in the case of the etch-pits and γ′ precipitates respectively. Accounting 

for this factor of the amplifier gain, it is also seen from the current images of the etch-pits 

and the γ′ precipitates that the current scale is more or less proportional to the applied dc 

bias (see Table 7.3). 

 
 

 

  

(a) (b)(a) (b)

 

 

 

 
 
Figure 7.12 AFM micrographs of IID-725-5 specimen with a preferential γ′ etch showing 
etch-pit contrast in terms of (a) surface topography and (b) tip-current. The scan was 
acquired at a sample bias of 0.34V and an amplifier gain of 109. 
 

 

(a) (b)(a) (b) 

 

 

 

 

 

 
Figure 7.13 AFM micrographs of IIIDS-875-75 specimen with a preferential γ′ etch 
showing γ-γ′ contrast in terms of (a) surface topography and (b) tip-current. The scan was 
acquired at a sample bias of 0.22V and an amplifier gain of 105. 
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Topography and current images showing γ-γ′ contrast highlighted using the B-etchant are 

shown in Figure 7.14. As noted in the case for the A-etchant, the high current regions are 

pronounced around the γ′ precipitates. Given that higher current regions are always 

observed in the immediate vicinity of the features delineated by the etch, it is suggested 

that this is a geometric effect rather than due to resistivity variations. If the current 

variations were in fact due to resistivity differences between the γ and γ′ phases, then it 

would be expected that regions of higher current would be uniform throughout either the 

γ or the γ′ phase. However, this is clearly not the case as is evident from the micrographs 

presented for the two cases with opposite γ-γ′ etch contrasts. 

 
 
 

 

 

 

 

 
 
 
 

(a) (b)(a) (b)

Figure 7.14 AFM micrographs of IID-875-100 specimen with a preferential γ etch 
showing γ-γ′ contrast in terms of (a) surface topography and (b) tip-current. The scan was 
acquired at a sample bias of 0.57V and an amplifier gain of 104. 
 
 
 
Another observation that may be made is that the topography introduced by a specific 

etchant seems to affect the measured current, as may be noted from Figures 7.13 and 

7.14. Accounting for the discrepancy in the amplifier gain and the applied dc bias, the  
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Figure 7.15 AFM micrographs of IID-875-100 specimen in the as-polished condition 
showing γ-γ′ contrast in terms of (a) surface topography and (b) tip-current. The scan was 
acquired at a sample bias of 2V and an amplifier gain of 107. 
 
 
 
measured current is still disparate between these two specific cases. Therefore, it is clear 

that the disparity is due to the differences in the topography- the absence of γ′ in the 

IIIDS-875-75 specimen (Figure 7.13 (b)) and the presence of γ′ in the IID-875-100 

specimen respectively (Figure 7.14 (b)). 

Finally, the last set of topographic and current micrographs corresponding to the 

IID-875-100 specimen in the as-polished condition is shown in Figure 7.15. The final 

polishing step using colloidal silica causes a mild etching effect, resulting in the observed 

topographic contrast of up to 12.5 nm (see Figure 7.15 (a)). The corresponding current 

AFM image shows a clear contrast between the γ′ precipitates and the surrounding matrix 

regions. Unlike previous cases, where the current contrast was primarily due to geometric 

effects arising from the topography introduced by the specific etchants, the contrast here 

is mostly due to the resistivity differences between the γ and γ′ phases. Based on the 
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current image of the as-polished specimen, it may be concluded that the γ′ precipitates 

should have relatively lower conductivity than the γ phase, indicated by lower current 

regions in the image. As a final remark, resistivity mapping of microstructures consisting 

of phases with similar resistivities, should preferably be performed on specimens with 

minimal surface topography as indicated by the present results. 

7.3 Conclusions 

 AFM-based electrical characterization of heat-treated Waspaloy microstructures 

was conducted using EFM, SKPM and I-AFM operating modes. Specifically, γ-γ′ 

electrical contrast was observed in all the modes in three different surface conditions- 

preferential γ′ etch, preferential γ etch and in the as-polished condition. The electrical 

contrast of the etch-pits was observed primarily by using a preferential γ′ etch.  

In both EFM and SKPM modes, the tip-surface interaction is non-linear due to the 

presence of inhomogeneous topography and surface potential distribution. As a 

consequence, the presence of topography indirectly affects the final interaction, even 

though the van der Waals forces that correspond to topographic interaction are separated 

from the electrostatic forces. In EFM imaging, the effect of using a preferential γ′ etch 

versus a γ etch resulted in opposite γ-γ′ electrical contrasts. Additionally, the effect of 

reversing the polarity of the applied dc bias resulted in a phase shift of the amplitude 

signal by ~180°, leaving the γ-γ′ amplitude contrast unchanged. The same behavior was 

also noted in case of specimens showing etch-pit contrast. 

I-AFM response of as-polished specimens clearly showed lower current regions 

near γ′ precipitates indicative of a relatively lower conductivity compared to the 
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surrounding γ phase. However, specimens that were preferentially etched to remove the γ 

or the γ′ phase showed higher currents in the immediate vicinity of the precipitates as 

delineated by the etch. The same phenomenon was also noted in case of etch-pits. This 

was attributed to a geometric tip-surface interaction effect rather than detection of 

resistivity differences. 
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CHAPTER VIII 
 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

Controlled Waspaloy microstructures with systematically varying matrix (γ) grain 

size and γ′ precipitate size distributions were successfully synthesized with the objective 

of studying/developing microstructure-electrical property correlations in this alloy. A 

combination of non-destructive (NDE) ac/dc electrical testing methods, ultra small angle 

x-ray scattering and conventional microscopy techniques was used to obtain a 

quantitative understanding of microstructural transformations and the associated kinetics, 

induced by systematic heat-treatments. Using the combination of these techniques, it was 

possible to distinguish the transition from nucleation-growth to coarsening and between 

different stages of coarsening. Coarsening in Waspaloy proceeded at a rate smaller than 

that evidenced in binary Ni-Al alloys, probably related to the presence of multiple solute 

elements.  

DC four-point probe resistivity technique was the most sensitive of all the 

electrically based techniques investigated in tracking the resistivity variations caused by 

microstructural transformations. The microstructural features which impacted the 

measured DC four-probe resistivity were primarily the γ′ precipitate distribution and γ′ 

forming solute elements present in the matrix during initial and later stages of coarsening 

respectively. The effect of carbides, grain/twin boundaries and quenched-in vacancies on 

the measured resistivity was deemed to be minimal because of the large scale of 

dispersion of the former and the insignificantly small concentration of the latter. In 
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general, the closer the size scale of dispersion of an impurity type to the mean free path of 

conduction electrons, the greater is the contribution towards the overall resistivity from 

that impurity. 

 The applicability of two-probe and four-probe ac impedance techniques as 

potential non-destructive means of microstructural examination in Waspaloy was also 

investigated. The measured impedance of a representative Waspaloy specimen showed a 

rising behavior with frequency after an initial flat regime. It was shown via analytical and 

finite-element simulations that the same frequency dependent impedance response in a 

two-probe measurement was true of any metallic material treated as a continuum. The 

frequency response was therefore caused by an electrodynamic effect and not unique to 

the microstructure of Waspaloy, consisting of interfaces at multiple size scales due to the 

presence of grain boundaries, carbides and γ′ precipitates. Two-probe measurements were 

found unsuitable for NDE studies of controlled Waspaloy microstructures because of 

dominating effects of electrode contact resistance and induced voltage contributions. 

Even though contact resistance effects were eliminated in a four-probe impedance 

measurement, induced voltage effects still prevailed, which drastically affected the 

imaginary impedance component. 

 It was demonstrated qualitatively using I-AFM experiments on unetched 

specimens that the conductivity of the γ′ phase was lower than the surrounding γ phase. 
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8.2 Future Work 

1. In this research, it was demonstrated that DC four-point probe electrical resistivity 

measurements were adequately sensitive to microstructural transformations that occured 

during γ′ nucleation-growth and coarsening regimes respectively. The aging temperatures 

used here were significantly higher than service temperatures which the alloy would 

normally encounter, in order to study the kinetics of microstructural transformations in a 

reasonable period of time. The present research lays the ground work for studying more 

complicated real-world serviced microstructures, in that the primary microstructural 

attributes impacting the measured resistivity have been discussed in detail.  

The initial microstructure of an alloy to be used as a service component usually 

consists of a unimodal or a bimodal distribution of γ′ precipitates. Upon thermal exposure 

during service at lower temperatures, the formation of a tertiary γ′ distribution will result 

in addition to the evolution of the existing distributions. Prolonged thermal exposure may 

possibly result in the evolution of all three distributions to the point where only a single 

distribution might be present finally. Developing microstructure-resistivity correlations in 

such a series of microstructures will be interesting and more challenging than the 

controlled microstrucures dealt with in the present research. However, the general 

procedure that may be adopted for such a study will be very similar to that used in the 

present research, viz. combining information from multiple non-destructive and 

conventional techniques. It may also be useful to develop simple models which account 

for the scattering efficiency of each class of impurities and their contribution to overall 

measured resistivity, along similar lines of White et al. This is essential for establishing a 

general framework and understanding of how the resistivity changes are linked to the 
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microstructural transformations. Upon completing such a study, electrical resistivity 

measurements may be used on a routine basis for a non-destructive examination of 

service components. 

2. The nucleation stage of γ′ needs a more thorough study by completing the set of heat-

treatments at 600°C and possibly extending the studies to additional temperatures. 

Conducting the nucleation studies at several temperatures enables the determination of 

the activation energy of migration of vacancies in Waspaloy via electrical resistivity 

measurements. 

3. USAXS analysis of specimens fabricated in set III, viz. 725°C, 800°C and 875°C sets 

of specimens with 1145°C pre-solution-treatment, needs to be completed. The activation 

energy of coarsening in Waspaloy may then be determined from an Arrhenius plot of the 

coarsening rate-constants at each of these temperatures. This may be compared to the 

activation energy values quoted in the literature for diffusion of Al and Ti in Ni to resolve 

the lower diffusion coefficients seen from the present data compared to Ardell’s analysis. 

Extended long-term thermal exposure experiments of an alloy with an initial unimodal 

distribution of γ′ obtained upon aging at temperatures used in this research is definitely 

worth investigating. The thermal exposure experiments should be carried out at relatively 

lower temperatures in relation to the aging temperatures used.  

4. TEM investigations could be carried out on microstructures that show the etch-pit 

evolution in response to γ′ coarsening, in order to determine the chemical composition of 

γ′ inside the etch-pits versus that in the surrounding matrix. 
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APPENDIX A 

INTEGRALS AND IDENTITIES 

 

I. Derivative of Bessel functions 
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IV. Sifting property of the delta function 
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V. Complex identities 
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If u and v are any two complex numbers, then the following identities hold true 

for operations on their complex conjugates- u  and v . 

      (a) ( ) vuvu ±=±  

      (b) ( ) vuuv =  

      (c) ( ) ( )uJuJ µµ = , where ( )xJ µ  is a Bessel function in x of order µ. 

VI. Variable substitution and separation of the integrand into partial fractions- 

computation of voltage in a four-probe AC measurement. 
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VII. Definite and indefinite integrals for computing the integrals in VI: 
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VIII. Evaluation of Fourier coefficients 

If  is a periodic function with a period 2 , a Fourier series representation for 

 may be written as follows: 
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APPENDIX B 

NOMENCLATURE USED IN MODELING CHAPTER 

 

or :   Specimen radius 

cr :   Electrode contact radius 

ot  or d:  Specimen thickness 

r:   Radial coordinate 

z:   Axial coordinate 

s:   Probe spacing 

∆:   Displacement of center of probe array from specimen center 

L:  Distance from the specimen center to the nearest probe when the probe 

unit is displaced. 

x:  Distance from the specimen edge to the nearest probe when the probe unit 

is displaced. 

p:   Position vector 

φ or θ:   Tangential coordinate 

ω :   Angular frequency 

t:   Time  

µo:   Absolute magnetic permeability 

µr:   Relative magnetic permeability 

εo:   Absolute permittivity 

εr:   Relative permittivity 
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σ:   Specimen conductivity 

ρ:   Charge density 

R:   Resistance 

X:   Reactance 

Z:   Impedance 

Li:   Internal inductance 

v :   Velocity of conductor 

oI :   Current 

Irms:   Root mean square value of current 

rE :   Radial electric field 

zE :   Axial electric field 

rJ :   Radial current density 

zJ :   Axial current density 

nJ :   Normal current density 

eJ :   External current density 

Qj:   Current density 

φH :   Tangential magnetic field  

B :   Magnetization vector 

A :   Vector magnetic potential 

V or ϕ :  Electric potential 

Qav:   Joule heat loss per unit volume 

Wmav:   Magnetic energy density 
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APPENDIX C 

MATLAB CODE IMPLEMENTATION IN ANALYTICAL MODELS 

 

C.1 Two-probe Impedance Spectroscopy 
 
* Routine for computing the electric fields (Ez and Er) in a two-probe impedance 
measurement * 
 
Ro = 5e-3; % Specimen radius % 
Rc = 5e-4; % Electrode contact radius % 
Lo = 2e-3; % Specimen thickness % 
delr = Ro/250; 
rSteps = transpose([0:delr:Ro]); 
zSteps = [0:(Lo/6):(Lo/2)]; 
  
sigmao = 8.34e5; % Electrical conductivity of Waspaloy% 
muo = 4*pi*1e-7; % Magnetic permeability of free space % 
muWaspaloy = 1.004*muo; %Magnetic permeability of Waspaloy % 
Io = 50e-3; 
  
nRoots = 2000; % Total no. of roots of J1(x) % 
roots_J1 = besselRootsII(nRoots); % Links to function- besselRoots % 
lambda = roots_J1/Ro; 
f = 1e4; % Frequency % 
omega = 2*pi*f; % Angular frequency % 
alphaSquared = complex(0,omega*muWaspaloy*sigmao); 
beta = sqrt(-alphaSquared); 
A = (beta*Io)/(2*pi*sigmao*Ro*besselVal(1,beta*Ro)); 
% Links to function- besselVal % 
 
C = coefficientsOfE(A,beta,lambda,Io,sigmao,Rc,Ro,Lo,nRoots);  
% Links to function- coefficientsOfE % 
 
EzCoeff = C(1,:); % Coefficients in Ez summation % 
Zeta = C(2,:); 
ErCoeff = C(3,:); % Coefficients in Er summation % 
  
zIndex = 1; 
while (zIndex<=4) 
    rIndex = 1; 
    while (rIndex<=251) 
        skinEffectTerm = A*besselVal(0,beta*rSteps(rIndex,1)); 
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        constrictionZterm = 0; 
        constrictionRterm = 0; 
        p=1; 
        for (p=1:nRoots) 
            fzz = exp(-Zeta(1,p)*zSteps(1,zIndex)) + exp(-Zeta(1,p)*(Lo-zSteps(1,zIndex))); 
            fzr = exp(-Zeta(1,p)*zSteps(1,zIndex)) - exp(-Zeta(1,p)*(Lo-zSteps(1,zIndex))); 
            constrictionZterm = constrictionZterm + 
EzCoeff(1,p)*fzz*besselVal(0,lambda(1,p)*rSteps(rIndex,1)); 
            constrictionRterm = constrictionRterm + 
ErCoeff(1,p)*fzr*besselVal(1,lambda(1,p)*rSteps(rIndex,1)); 
        end 
        Ez(rIndex,zIndex) = abs(skinEffectTerm + constrictionZterm); 
        Er(rIndex,zIndex) = abs(constrictionRterm); 
        rIndex = rIndex + 1; 
    end 
    zIndex = zIndex + 1; 
end 
 
 
* Function to compute the roots of J1(x) * 
 
function Y = besselRootsII(nRoots) 
m = 4; 
poly3 = [7 -38 31];   
% Coefficients of a second-order polynomial of the form p(x) = a1x2 + a1x + ao % 
 
poly4 = [83 -982 3779]; 
poly5 = [6949 -153855 1585743 -6277237]; 
p2 = (m-1); 
p3 = polyval(poly3,m); 
 
% polyval is an inbuilt MATLAB function, which computes the value of a polynomial at 
a specified value % 
 
p4 = (m-1)*polyval(poly4,m); 
p5 = (m-1)*polyval(poly5,m); 
  
rootCount = 1; 
while (rootCount <= nRoots) 
    beta = (pi/4)*(2 + 4*rootCount -1); 
    Y(1,rootCount) = beta - p2/(8*beta) - (4*p3)/(3*((8*beta)^3)) - 
(32*p4)/(15*((8*beta)^5)) - (64*p5)/(105*((8*beta)^7)); 
    rootCount = rootCount + 1; 
end 
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* Function to compute the Bessel function value of a given argument * 
 
function out = besselVal(nu,z) 
    if (abs(z) < 80) % Complex z with abs(z) < 80 % 
        out = besselj(nu,z); 
    else 
        out = besselLarge(nu,z); 
    end    
 
 
* Function to compute the coefficients of Ez(r,z)  and Er(r,z) * 
 
function C = coefficientsOfE(A,beta,lambda,Io,sigmao,Rc,Ro,Lo,nRoots) 
  
    p = 1; 
    for (p = 1:nRoots) 
        J1_lambdaRc = besselVal(1,lambda(1,p)*Rc); 
        J2_lambdaRo = besselVal(2,lambda(1,p)*Ro); 
        zeta = sqrt(-(beta^2) + (lambda(1,p)^2)); 
 
        LHS = (-Io/(pi*Rc*sigmao)) * J1_lambdaRc; % LHS term % 
        RHS_I = (-beta*A)*integralOfJJ(1,1,beta,lambda(1,p),Ro); % First term on RHS % 
        RHS_II_Coefficient = lambda(1,p)*(1 + exp(-
zeta*Lo))*0.5*((Ro*J2_lambdaRo)^2);         
        % Coefficient of second term on RHS % 
 
        % Coefficient of Ez and Er% 
        C(1,p) = (RHS_I - LHS)/RHS_II_Coefficient; % Coefficients in Ez summation % 
        C(2,p) = zeta; 
        C(3,p) = (C(1,p)*lambda(1,p)*zeta) / ((zeta^2) + (beta^2)); % Coefficients in Er 
summation % 
    end 
 
 
* Function to compute the integral of product of two Bessel functions * 
 
function Z = integralOfJJ(mu,nu,k,l,zmax) 
Jmuo = besselVal(mu,k*zmax); 
Jmu1 = besselVal(mu+1,k*zmax); 
Jnuo = besselVal(nu,l*zmax); 
Jnu1 = besselVal(nu+1,l*zmax); 
  
if (mu==0 & nu==0 & k==l) 
    Z = 0.5*(zmax^2)*(Jmuo^2 + Jmu1^2); 
elseif (mu==1 & nu==1 & k==l) 
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    Z = 0.5*(zmax^2)*(Jmu1^2); 
else 
    Iom = zmax*((k*Jmu1*Jnuo)-(l*Jmuo*Jnu1)) - (mu-nu)*Jmuo*Jnuo; 
    Z = Iom/(k^2 - l^2); 
end 
 
 
* Routine for computing the magnetic field (Hφ) for a two-probe measurement * 
 
Ro = 6.35e-3; 
Rc = 5e-4; 
Lo = 2e-3; 
rZero = 0; 
lZero = 0; 
rSteps = [rZero:(Ro-rZero)/125:Ro]; 
zSteps = [lZero:Lo/10:Lo]; 
  
sigmao = 8.34e5; 
muo = 4*pi*1e-7; 
muWaspaloy = 1.004*muo; 
Io = 50e-3; 
  
nRoots = 2000; 
roots_J1 = besselRootsII(nRoots); 
lambda = roots_J1/Ro; 
f = 1e6; 
omega = 2*pi*f; 
alphaSquared = complex(0,omega*muWaspaloy*sigmao); 
beta = sqrt(-alphaSquared); 
A = (beta*Io)/(2*pi*sigmao*Ro*besselVal(1,beta*Ro)); 
  
C = coefficientsOfEz(A,beta,lambda,Io,sigmao,Rc,Ro,Lo,nRoots); 
EzCoeff = C(1,:); 
Zeta = C(2,:); 
ErCoeff = C(3,:); 
  
for (q=1:nRoots) 
    sTermCoeff(1,q) = (-lambda(1,q)*EzCoeff(1,q)) + (Zeta(1,q)*ErCoeff(1,q)); 
end 
  
zIndex = 1; 
while (zIndex<=6) 
    rIndex = 1; 
    while (rIndex<=126) 
        fTerm = -A*beta*besselVal(1,beta*rSteps(1,rIndex)); 
        sTerm = 0; 
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        p=1; 
        for (p=1:nRoots) 
            fz = exp(-Zeta(1,p)*zSteps(1,zIndex)) + exp(-Zeta(1,p)*(Lo-zSteps(1,zIndex))); 
            sTerm = sTerm + 
sTermCoeff(1,p)*fz*besselVal(1,lambda(1,p)*rSteps(1,rIndex)); 
        end 
        Hphi(zIndex,rIndex) = complex(0,-1)*(fTerm + sTerm)/(omega*muWaspaloy); 
        rIndex = rIndex + 1; 
    end 
    zIndex = zIndex + 1; 
end 
 
  
* Routine for computing the limiting thickness value * 
 
Ro = 5e-3; 
Rc = 5e-4; 
loLower = 1e-3; % Lower limit of specimen thickness % 
loUpper = 100e-3; % Upper limit of specimen thickness % 
 
loMiddle = (loLower+loUpper)/2; 
  
sigmao = 8.34e5; 
muo = 4*pi*1e-7; 
muWaspaloy = 1.004*muo; 
Io = 50e-3; 
EzImpressed = Io/(sigmao*pi*(Rc^2)); 
  
nRoots = 2000; 
roots_J1 = besselRootsII(nRoots); 
lambda = roots_J1/Ro; 
f = 1e6; 
omega = 2*pi*f; 
alphaSquared = complex(0,omega*muWaspaloy*sigmao); 
beta = sqrt(-alphaSquared); 
A = (beta*Io)/(2*pi*sigmao*Ro*besselVal(1,beta*Ro)); 
  
cDiskLower = coefficientsOfEz(A,beta,lambda,Io,sigmao,Rc,Ro,loLower,nRoots); 
cDiskUpper = coefficientsOfEz(A,beta,lambda,Io,sigmao,Rc,Ro,loUpper,nRoots); 
cDiskMiddle = coefficientsOfEz(A,beta,lambda,Io,sigmao,Rc,Ro,loMiddle,nRoots); 
  
EzCoeffDiskLower = cDiskLower(1,:); 
EzCoeffDiskUpper = cDiskUpper(1,:); 
EzCoeffDiskMiddle = cDiskMiddle(1,:); 
zeta = cDiskLower(2,:); 
  

 233



ifIndex = 0; 
elseIndex = 0; 
delta = 1e-3; 
rLim = 0; 
  
EzSkin = A*besselVal(0,beta*rLim); 
EzConstrDiskLower = 
ConstrictionComponentofEz(EzCoeffDiskLower,lambda,zeta,loLower,rLim,nRoots); 
% Links to the function ConstrictionComponentofEz() % 
EzConstrDiskUpper = 
ConstrictionComponentofEz(EzCoeffDiskUpper,lambda,zeta,loUpper,rLim,nRoots); 
EzConstrDiskMiddle = 
ConstrictionComponentofEz(EzCoeffDiskMiddle,lambda,zeta,loMiddle,rLim,nRoots); 
  
EzDiskLower = EzSkin + EzConstrDiskLower; 
EzDiskUpper = EzSkin + EzConstrDiskUpper; 
EzDiskMiddle = EzSkin + EzConstrDiskMiddle; 
  
while (abs(EzDiskMiddle-EzDiskUpper)>delta*abs(EzDiskMiddle) | (loUpper-
loLower)>0.001e-3) 
    if (abs(EzDiskUpper-EzDiskMiddle)>delta*abs(EzDiskMiddle)) 
        ifIndex = ifIndex + 1; 
        loLower = loMiddle; 
        EzDiskLower = EzDiskMiddle; 
        loMiddle = (loLower + loUpper)/2; 
        cDiskMiddle = coefficientsOfEz(A,beta,lambda,Io,sigmao,Rc,Ro,loMiddle,nRoots); 
        EzCoeffDiskMiddle = cDiskMiddle(1,:); 
        EzConstrDiskMiddle = 
ConstrictionComponentofEz(EzCoeffDiskMiddle,lambda,zeta,loMiddle,rLim,nRoots); 
        EzDiskMiddle = EzSkin + EzConstrDiskMiddle; 
    else 
        elseIndex = elseIndex + 1; 
        loUpper = loMiddle; 
        EzDiskUpper = EzDiskMiddle; 
        loMiddle = (loLower + loUpper)/2; 
        cDiskMiddle = coefficientsOfEz(A,beta,lambda,Io,sigmao,Rc,Ro,loMiddle,nRoots); 
        EzCoeffDiskMiddle = cDiskMiddle(1,:); 
        EzConstrDiskMiddle = 
ConstrictionComponentofEz(EzCoeffDiskMiddle,lambda,zeta,loMiddle,rLim,nRoots); 
        EzDiskMiddle = EzSkin + EzConstrDiskMiddle; 
    end 
end 
  
EzLimiting = abs(EzDiskMiddle) 
loLimiting = loMiddle 
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* Function to compute the constriction term (summation) of Ez(r,z* 
 
function Z = ConstrictionComponentofEz(EzCoeffDisk,lambda,zeta,Lo,rLim,nRoots) 
p = 1; 
Z = 0; 
for (p=1:nRoots) 
    fzzDisk = 2*exp(-zeta(1,p)*(Lo/2)); 
    Z = Z + EzCoeffDisk(1,p)*fzzDisk*besselVal(0,lambda(1,p)*rLim); 
end 
 
 
* Routine for computing the real impedance of a metallic cylindrical specimen in a two-
probe impedance measurement- based on computing the overall Joule heat loss * 
 
Ro = 6.35e-3; 
Rc = 5e-4; 
Lo = 2e-3; 
sigmao = 8.34e5; 
muo = 4*pi*1e-7; 
muWaspaloy = 1.004*muo; 
Io = 50e-3; 
  
nRoots = 1000; 
roots_J1 = besselRootsII(nRoots); 
lambda = roots_J1/Ro; 
f = 5*1e1; 
omega = 2*pi*f; 
alphaSquared = complex(0,omega*muWaspaloy*sigmao); 
beta = sqrt(-alphaSquared); 
A = (beta*Io)/(2*pi*sigmao*Ro*besselVal(1,beta*Ro)); 
conjbeta = conj(beta); % conj(z) yields the complex conjugate of a complex number z % 
conjA = conj(A); 
  
C = coefficientsOfEz(A,beta,lambda,Io,sigmao,Rc,Ro,Lo,nRoots); 
conjC = conj(C); 
EzCoeff = C(1,:); 
Zeta = C(2,:); 
ErCoeff = C(3,:); 
conjEzCoeff = conjC(1,:); 
conjZeta = conjC(2,:); 
conjErCoeff = conjC(3,:); 
  
% Term I – from Ez % 
term1 = 2*pi*Lo*(abs(A)^2)*integralOfJJ(0,0,beta,conjbeta,Ro); 
 % Links to function integralOfJJ() % 
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% Term II – from Ez % 
m = 1; 
sum1 = 0; 
for (m=1:nRoots) 
    rIntegral = integralOfJJ(0,0,beta,lambda(1,m),Ro); 
    zIntegral = integralOfFz(conjZeta(1,m),Lo); 
    % Links to function integralOfFz() % 
 
    sum1 = sum1 + conjEzCoeff(1,m)*rIntegral*zIntegral; 
end 
term2 = 2*pi*A*sum1; 
  
% Term III – from Ez % 
n = 1; 
sum2 = 0; 
for (n=1:nRoots) 
    rIntegral = integralOfJJ(0,0,conjbeta,lambda(1,n),Ro); 
    zIntegral = integralOfFz(Zeta(1,n),Lo); 
    sum2 = sum2 + EzCoeff(1,n)*rIntegral*zIntegral; 
end 
term3 = 2*pi*conjA*sum2; 
  
% Term IV – from Ez % 
outerSum = 0; 
for (p=1:nRoots) 
    q = 1; 
    innerSum = 0; 
    for (q=1:nRoots) 
        rIntegral = integralOfJJ(0,0,lambda(1,p),lambda(1,q),Ro); 
        zIntegral = integralOfFzFz(Zeta(1,p),conjZeta(1,q),Lo); 
       % Links to function integralOfFzFz() % 
 
        innerSum = innerSum + conjEzCoeff(1,q)*rIntegral*zIntegral; 
    end 
    outerSum = outerSum + EzCoeff(1,p)*innerSum; 
end 
term4 = 2*pi*outerSum; 
  
% Term V – from Er % 
outerSum = 0; 
for (p=1:nRoots) 
    q = 1; 
    innerSum = 0; 
    for (q=1:nRoots) 
        rIntegral = integralOfJJ(1,1,lambda(1,p),lambda(1,q),Ro); 
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        zIntegral_1 = integralOfFz3((Zeta(1,p)+conjZeta(1,q)),Lo); 
        % Links to function integralOfFz3() % 
 
        zIntegral_2 = exp(-conjZeta(1,q)*Lo)*integralOfFz3((Zeta(1,p)-conjZeta(1,q)),Lo); 
        zIntegral_3 = exp(-Zeta(1,p)*Lo)*integralOfFz3((conjZeta(1,q)-Zeta(1,p)),Lo); 
        zIntegral_4 = exp(-(Zeta(1,p)+conjZeta(1,q))*Lo)*integralOfFz3(-
(conjZeta(1,q)+Zeta(1,p)),Lo); 
        zIntegralSum = zIntegral_1 - zIntegral_2 - zIntegral_3 + zIntegral_4; 
        innerSum = innerSum + conjErCoeff(1,q)*rIntegral*zIntegralSum; 
    end 
    outerSum = outerSum + ErCoeff(1,p)*innerSum; 
end 
term5 = 2*pi*outerSum; 
  
volumeIntegral = (1/(sqrt(2)^2))*sigmao*(term1 + term2 + term3 + term4 + term5) 
Resistance = 2*volumeIntegral/(Io^2) % The factor of '2' accounts for Irms=Io/sqrt(2) % 
 
 
* Routine for computing the imaginary impedance of a metallic cylindrical specimen in a 
two-probe impedance measurement- based on computing the overall internal magnetic 
energy of the conductor * 
 
Ro = 6.35e-3; 
Rc = 5e-4; 
Lo = 2e-3; 
  
sigmao = 8.34e5; 
muo = 4*pi*1e-7; 
muWaspaloy = 1.004*muo; 
Io = 50e-3; 
  
nRoots = 1000; 
roots_J1 = besselRootsII(nRoots); 
lambda = roots_J1/Ro; 
f = 1e7; 
omega = 2*pi*f; 
alphaSquared = complex(0,omega*muWaspaloy*sigmao); 
beta = sqrt(-alphaSquared); 
A = (beta*Io)/(2*pi*sigmao*Ro*besselVal(1,beta*Ro)); 
conjbeta = conj(beta); 
conjA = conj(A); 
  
C = coefficientsOfEz(A,beta,lambda,Io,sigmao,Rc,Ro,Lo,nRoots); 
conjC = conj(C); 
EzCoeff = C(1,:); 
Zeta = C(2,:); 

 237



ErCoeff = C(3,:); 
conjEzCoeff = conj(EzCoeff); 
conjZeta = conj(Zeta); 
conjErCoeff = conj(ErCoeff); 
  
% Term I % 
term1 = 2*pi*Lo*(abs(A)^2)*(abs(beta)^2)*integralOfJJ(1,1,beta,conjbeta,Ro); 
  
% Term II% 
m = 1; 
sum1 = 0; 
for (m=1:nRoots) 
    rIntegral = integralOfJJ(1,1,beta,lambda(1,m),Ro); 
    zIntegral = integralOfFz(conjZeta(1,m),Lo); 
    t2_Coeff = (-lambda(1,m)*conjEzCoeff(1,m)) + (conjZeta(1,m)*conjErCoeff(1,m)); 
    sum1 = sum1 + t2_Coeff*rIntegral*zIntegral; 
end 
term2 = -2*pi*A*beta*sum1; 
  
  
% Term III% 
n = 1; 
sum2 = 0; 
for (n=1:nRoots) 
    rIntegral = integralOfJJ(1,1,conjbeta,lambda(1,n),Ro); 
    zIntegral = integralOfFz(Zeta(1,n),Lo); 
    t3_Coeff = (-lambda(1,n)*EzCoeff(1,n)) + (Zeta(1,n)*ErCoeff(1,n)); 
    sum2 = sum2 + t3_Coeff*rIntegral*zIntegral; 
end 
term3 = -2*pi*conjA*conjbeta*sum2; 
  
% Term IV % 
outerSum = 0; 
for (p=1:nRoots) 
    q = 1; 
    innerSum = 0; 
    t4_outerCoeff = (-lambda(1,p)*EzCoeff(1,p)) + (Zeta(1,p)*ErCoeff(1,p)); 
    for (q=1:nRoots) 
        rIntegral = integralOfJJ(1,1,lambda(1,p),lambda(1,q),Ro); 
        zIntegral = integralOfFzFz(Zeta(1,p),conjZeta(1,q),Lo); 
        t4_innerCoeff = (-lambda(1,q)*conjEzCoeff(1,q)) + 
(conjZeta(1,q)*conjErCoeff(1,q)); 
        innerSum = innerSum + t4_innerCoeff*rIntegral*zIntegral; 
    end 
    outerSum = outerSum + t4_outerCoeff*innerSum; 
end 
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term4 = 2*pi*outerSum; 
  
volumeIntegral = (term1 + term2 + term3 + 
term4)/(2*(sqrt(2)^2)*(omega^2)*muWaspaloy) 
Inductance = volumeIntegral/(Io^2) 
Reactance = omega*Inductance 
 
 
* Function to compute the definite integral of f(z) = (e-ξz + e-ξ(L-z)) from 0 to zmax * 
 
function Y = integralOfFz(zetao,zmax) 
Y = 2*(1 - exp(-zetao*zmax))/(zetao); 
 
 
* Function to compute the definite integral of f(z) = (e-ξ1z + e-ξ1(L-z))(e-ξ2z + e-ξ2(L-z)) from 0 
to zmax * 
 
function X = integralOfFzFz(zeta1,zeta2,zmax) 
fTerm = (1 - exp(-(zeta1+zeta2)*zmax))/(zeta1+zeta2); 
sTerm = (exp(-zeta1*zmax) - exp(-zeta2*zmax))/(zeta2-zeta1); 
X = 2*(fTerm + sTerm); 
 
 
* Function to compute the definite integral of f(z) = e-ξ1z  from 0 to zmax * 
 
function Y = integralOfFz3(zetao,zmax) 
if (isnan(1/zetao)==1) 
    Y=zmax; 
else 
    Y = (1 - exp(-zetao*zmax))/(zetao); 
end 

 

C.2 Impedance of a Wire Specimen 

* Routine for computing the impedance of a wire * 
 
Rdc = 3.639e-04; % DC resistance of the specimen wire % 
rho = 120e-8; % Electrical resistivity % 
ro = 1e-3; % Specimen radius % 
  
mu_o = 4*pi*1e-7; % Magnetic permeability of free space % 
mu = mu_o*1; % Magnetic permeability of the conductor % 
  
frequency = 1e6; 
angular_frequency = 2*pi*frequency; 
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alpha_squared = complex(0,angular_frequency*mu/rho); 
beta = sqrt(-alpha_squared); 
     
Jof = besselj(0,beta*ro); 
J1f = besselj(1,beta*ro); 
mfactor = (ro*beta*Jof)/(2*J1f); 
     
Z = Rdc*mfactor; 
resistance = real(Z); 
reactance = imag(Z)/angular_frequency; 
inductance = imag(Z)/angular_frequency; 
 
 

C.3 Four-probe Impedance Measurement 
 

* Routine for computing the potential difference between the pair of voltage probes in a 
four-probe impedance measurement * 
 
T = 8.16e-3; % Specimen thickness % 
xSp = 1e-3; % Probe spacing % 
s = 1.5*xSp; % Source/sink location % 
sigma = 8.34e5; % Electrical conductivity % 
mu = 4*pi*1e-7; % Magnetic permeability % 
 F = load('FrequencyFile.txt'); 
Io = load('CurrentFile.txt'); 
  
fIndex = 1; 
for (fIndex=1:26) 
    f = F(fIndex,1); 
    I = Io(fIndex,1); 
    omega = 2*pi*f; 
    k = sqrt(complex(0,omega*mu*sigma)); 
    kp = complex(0,1)*k; 
  
    N = 85; 
    nIndex = 0; 
    zerothTerm = 0; 
    firstTerm = 0; 
    secondTerm = 0; 
    thirdTerm = 0; 
    fourthTerm = 0; 
    fifthTerm = 0; 
    sixthTerm = 0; 
    seventhTerm = 0; 
  
    % First summation with N terms % 
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    for (nIndex=0:N) 
        pSquared = (2*nIndex*T)^2; 
        yMin1 = sqrt((2*s/3)^2 + pSquared); 
        yMax1 = sqrt((4*s/3)^2 + pSquared); 
        yMin2 = sqrt((4*s/3)^2 + pSquared); 
        yMax2 = sqrt((2*s/3)^2 + pSquared); 
     
        zerothTerm = zerothTerm + exp(2*kp*nIndex*T)*(log(2)-log(0.5)); 
                               firstTerm = firstTerm + 
(integralOfFirstTerm(kp,yMin1,yMax1,pSquared) -              
                               integralOfFirstTerm(kp,yMin2,yMax2,pSquared)); 
        % Links to the function integralOfFirstTerm() % 
 
        secondTerm=secondTerm + (kp^2*pSquared)* 
                               (integralOfSecondTerm(kp,yMin1,yMax1,pSquared) -           
                                integralOfSecondTerm(kp,yMin2,yMax2,pSquared)); 
 
        % Links to the function integralOfSecondTerm() % 
 
        thirdTerm = thirdTerm + (kp^2*pSquared)*  
                            (integralOfThirdTerm(kp,yMin1,yMax1,pSquared) -    
                             integralOfThirdTerm(kp,yMin2,yMax2,pSquared)); 
             
        % Links to the function integralOfThirdTerm() % 
                                   
        mIndex = nIndex - 1; 
 
    % Second summation with (N-1) terms % 
        if (mIndex>=0) 
            qSquared = (2*(mIndex+1)*T)^2; 
            yMin3 = sqrt((2*s/3)^2 + qSquared); 
            yMax3 = sqrt((4*s/3)^2 + qSquared); 
            yMin4 = sqrt((4*s/3)^2 + qSquared); 
            yMax4 = sqrt((2*s/3)^2 + qSquared);         
         
            fourthTerm = fourthTerm + exp(2*kp*(mIndex+1)*T)*(log(2)-log(0.5)); 
            fifthTerm = fifthTerm + (integralOfFirstTerm(kp,yMin3,yMax3,qSquared) -     
                               integralOfFirstTerm(kp,yMin4,yMax4,qSquared)); 
            sixthTerm = sixthTerm + (kp^2*qSquared)*   
                                 (integralOfSecondTerm(kp,yMin3,yMax3,qSquared) -   
                                 integralOfSecondTerm(kp,yMin4,yMax4,qSquared)); 
            seventhTerm = seventhTerm + (kp^2*qSquared)*  
                                      (integralOfThirdTerm(kp,yMin3,yMax3,qSquared) -   
                                       integralOfThirdTerm(kp,yMin4,yMax4,qSquared)); 
        end 
    end 
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    V = ((-kp*I)/(2*pi*sigma))*(zerothTerm - firstTerm - secondTerm + thirdTerm + 
fourthTerm -   
           fifthTerm - sixthTerm + seventhTerm); 
    realV(fIndex,1) = 1e-3*real(V)/1e-6; % Answer in microV % 
    imagV(fIndex,1) = 1e-3*imag(V)/1e-6; % Answer in microV % 
end 
 
 
* Function to compute the definite integral of * 
 
function X = integralOfFirstTerm(kp,yMin,yMax,pSquared) 
a = sqrt(kp^2*pSquared); 
xMax1 = -a-(kp*yMax); 
xMax2 = a-(kp*yMax); 
xMin1 = -a-(kp*yMin); 
xMin2 = a-(kp*yMin); 
  
if (a==0) 
    firstTerm = (1/kp)*(-(exp(kp*yMax)/yMax) + (exp(kp*yMin)/yMin)); 
    secondTerm = integralOfFourthTermB(kp,yMin,yMax,0); 
    X = firstTerm+secondTerm; 
else 
    firstTerm = exp(-a)*(expint(xMax1) - expint(xMin1)); 
    secondTerm = exp(a)*(expint(xMax2) - expint(xMin2)); 
    X = (1/(2*a))*(firstTerm - secondTerm); 
end 
 
 
* Function to compute the definite integral of * 
 
function X = integralOfSecondTerm(kp,yMin,yMax,pSquared) 
a = sqrt(kp^2*pSquared); 
xMax1 = -a-(kp*yMax); 
xMax2 = a-(kp*yMax); 
xMin1 = -a-(kp*yMin); 
xMin2 = a-(kp*yMin); 
xMax3 = -(kp*yMax); 
xMin3 = -(kp*yMin); 
  
if (a==0) 
    firstTerm = (-1/(2*(kp^2)))*((exp(kp*yMax)/(yMax^2)) - (exp(kp*yMin)/(yMin^2))); 
    secondTerm = (-1/(2*kp))*((exp(kp*yMax)/yMax) - (exp(kp*yMin)/yMin)); 
    thirdTerm = (1/2)*integralOfFourthTermB(kp,yMin,yMax,0); 
    X = firstTerm + secondTerm + thirdTerm; 
else 
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    firstTerm = expint(xMax3) - expint(xMin3); 
    secondTerm = exp(-a)*(expint(xMax1) - expint(xMin1)); 
    thirdTerm = exp(a)*(expint(xMax2) - expint(xMin2)); 
    X = (1/(a^2))*(firstTerm - (1/2)*(secondTerm + thirdTerm)); 
end 
* Function to compute the definite integral of * 
 
function X = integralOfThirdTermC(kp,yMin,yMax,pSquared) 
if (pSquared==0) 
    firstTerm = (-1/(3*(kp^3)))*((exp(kp*yMax)/(yMax^3)) - (exp(kp*yMin)/(yMin^3))); 
    secondTerm = (-1/(6*(kp^2)))*((exp(kp*yMax)/(yMax^2)) - 
(exp(kp*yMin)/(yMin^2))); 
    thirdTerm = (-1/(6*kp))*((exp(kp*yMax)/yMax) - (exp(kp*yMin)/yMin)); 
    fourthTerm = (1/6)*integralOfFourthTermB(kp,yMin,yMax,0); 
    X = firstTerm + secondTerm + thirdTerm + fourthTerm; 
else 
    firstTerm = (-1/kp)*((exp(kp*yMax)/yMax) - (exp(kp*yMin)/yMin)); 
    secondTerm = integralOfFourthTermB(kp,yMin,yMax,0); 
    thirdTerm = integralOfFirstTermB(kp,yMin,yMax,pSquared); 
    X = (-1/((kp^2)*pSquared))*(firstTerm + secondTerm - thirdTerm); 
end 
 
 
* Function to compute the definite integral of * 
 
function X = integralOfFourthTermB(kp,yMin,yMax,pSquared) 
a = sqrt(kp^2*pSquared); 
xMax1 = -a-(kp*yMax); 
xMax2 = a-(kp*yMax); 
xMin1 = -a-(kp*yMin); 
xMin2 = a-(kp*yMin); 
  
firstTerm = exp(-a)*(expint(xMax1) - expint(xMin1)); 
secondTerm = exp(a)*(expint(xMax2) - expint(xMin2)); 
X = (-1/2)*(firstTerm + secondTerm); 
 
 

C.4 Geometric Correction Factors for a DC Four-point Probe Measurement 
 
* Routine for computing the potential difference between the pair of voltage probes for 
four-point probe measurement on a cylindrical specimen, PNR arrangement * 
 
Ro = 8e-3; % Specimen radius % 
d = 2e-3; % Specimen thickness % 
s = 1e-3; % Probe spacing % 
sigma = 8.34e5; % Electrical conductivity % 
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Io = 50e-3; % Source Current % 
L = 0; % Probe Displacement % 
  
r1 = sqrt((L^2)+((1.5*s)^2)); % Distance from origin to current-probe (1) % 
r3 = sqrt((L^2)+((0.5*s)^2)); % Distance from origin to voltage-probe (3) % 
r2 = r1; % Distance from origin to current-probe (2) % 
r4 = r3; % Distance from origin to voltage-probe (4) % 
  
theta1 = acos(L/r1); 
theta3 = acos(L/r3); 
theta2 = -theta1; 
theta4 = -theta3; 
  
mOrders = 600; % No. of orders of Bessel functions % 
nRoots = 10000; % No. of roots for each order % 
  
flag = 0 
beta = load('nodesJmn'); % 600 x 10000 roots of Bessel functions- Jµ(x), for µ = 1 to 600 
% 
  
for (p=1:mOrders) 
    Wm(1,p) = 0; 
    Sm(1,p) = 0; 
    for (q=1:nRoots) 
        Vmn(p,q) = 0; 
    end 
end 
  
flag = 1 
A=FcoeffOfPotential_Fc(Io,sigma,Ro,d,r1,r2,theta1,theta2,beta,mOrders,nRoots); 
% Links to the function FcoeffOfPotential_Fc() % 
 
flag = 2 
  
% Double summation for potential difference % 
  
for (mIndex=1:mOrders) 
    for (nIndex=1:nRoots) 
         zTerm = (1 + exp(-2*beta(mIndex,nIndex)*d/Ro)); 
         rTerm = besselj(mIndex,beta(mIndex,nIndex)*r3/Ro);  
         thetaTerm = 2*(A(mIndex,nIndex)*sin(mIndex*theta3)); 
         Vmn(mIndex,nIndex) = (zTerm*rTerm*thetaTerm); 
         Wm(1,mIndex) = Wm(1,mIndex) + Vmn(mIndex,nIndex); 
    end 
end 
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for (pIndex=1:mOrders) 
    for (ppIndex=1:pIndex) 
         Sm(1,pIndex) = Sm(1,pIndex) + Wm(1,ppIndex); % Progressive outer sum % 
    end 
end 
 
save('Amn_ro5mm_d2mm_L3mm_M600_N10000','A','-ASCII'); 
save('Smn_ro5mm_d2mm_L3mm_M600_N10000','Sm','-ASCII'); 
save('Vmn_ro5mm_d2mm_L3mm_M600_N10000','Vmn','-ASCII'); 
save('Wm_ro5mm_d2mm_L3mm_M600_N10000','Wm','-ASCII'); 
 
 
* Function to compute Amn coefficients * 
 
function A = 
FcoeffOfPotential_Fc(Io,sigma,Ro,d,r1,r2,theta1,theta2,beta,mOrders,nRoots) 
alpha = (2*Io)/(pi*sigma*(Ro^2)); 
  
for (m=1:mOrders) 
    for (n=1:nRoots) 
         A(m,n) = 0; 
    end 
end 
  
% Amn and Bmn coefficients % 
% Bmn are all zero % 
  
for (mIndex=1:mOrders) % mIndex corresponds to p in beta(p,q) % 
     for (nIndex=1:nRoots) 
          kpFactor = (beta(mIndex,nIndex)/Ro)*(1-exp(-2*beta(mIndex,nIndex)*d/Ro)); 
             
          LHS1 = (besselj(mIndex,beta(mIndex,nIndex)*r1/Ro)*sin(mIndex*theta1)) -     
                        (besselj(mIndex,beta(mIndex,nIndex)*r2/Ro)*sin(mIndex*theta2)); 
          RHS1 = ((beta(mIndex,nIndex)^2) – 
(mIndex^2))*(besselj(mIndex,beta(mIndex,nIndex))^2)* 
                         kpFactor/(beta(mIndex,nIndex)^2);            
          A(mIndex,nIndex) = alpha*LHS1/RHS1; 
     end 
end 
 
 
* Routine for computing the potential difference between the pair of voltage probes for 
four-point probe measurement on a cylindrical specimen, PAR arrangement- Double 
summation only * 
  
Ro = 8e-3; 
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d = 2e-3; 
s = 1e-3; 
sigma = 8.34e5; 
Io = 50e-3; 
L = (3*Ro/5); 
  
r2 = L; 
r4 = r2 + s; 
r3 = r4 + s; 
r1 = r3 + s; 
  
theta1 = 0; 
theta2 = 0; 
theta3 = 0; 
theta4 = 0; 
  
mOrders = 600; 
nRoots = 10000; 
  
flag = 0 
beta = load('nodesJmn');  
% 600 x 10000 roots of Bessel functions- Jµ(x), for µ = 1 to 600 % 
  
for (p=1:mOrders) 
    for (q=1:nRoots) 
        Umn(p,q) = 0; 
        Xm(1,q) = 0; 
        SSmn(p,q) = 0; 
    end 
end 
  
flag = 1 
B = FcoeffOfPotential_Fe(Io,sigma,Ro,d,r1,r2,theta1,theta2,beta,mOrders,nRoots); 
% Links to the function FcoeffOfPotential_Fe() % 
 
flag = 2 
  
% Double summation for potential difference % 
 
for (mIndex=1:mOrders) 
    for (nIndex=1:nRoots) 
         zTerm = (1 + exp(-2*beta(mIndex,nIndex)*d/Ro)); 
         rTerm1 = besselj(mIndex,beta(mIndex,nIndex)*r3/Ro);  
         rTerm2 = besselj(mIndex,beta(mIndex,nIndex)*r4/Ro); 
         thetaTerm1 = B(mIndex,nIndex)*cos(mIndex*theta3); 
         thetaTerm2 = B(mIndex,nIndex)*cos(mIndex*theta4); 
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         Umn(mIndex,nIndex) = (zTerm*((rTerm1*thetaTerm1) - (rTerm2*thetaTerm2))); 
         Xm(1,mIndex) = Xm(1,mIndex) + Umn(mIndex,nIndex); 
    end 
end 
  
for (pIndex=1:mOrders) 
    for (ppIndex=1:pIndex) 
         SSmn(1,pIndex) = SSmn(1,pIndex) + Xm(1,ppIndex); % Progressive outer sum % 
    end 
end 
  
save('SSmn_ro8mm_s1mm_d2mm_L1.6mm_M600_N10000_PAR','SSmn','-ASCII'); 
save('Bmn_ro8mm_s1mm_d2mm_L1.6mm_M600_N10000_122106','B','-ASCII'); 
save('Umn_ro8mm_s1mm_d2mm_L1.6mm_M600_N10000_PAR','Umn','-ASCII'); 
save('Xm_ro8mm_s1mm_d2mm_L1.6mm_M600_N10000_PAR','Xm','-ASCII'); 
 
 
* Routine for computing the potential difference between the pair of voltage probes for 
four-point probe measurement on a cylindrical specimen, PAR arrangement- Single 
summation only * 
  
Ro = 8e-3; 
d = 2e-3; 
s = 1e-3; 
sigma = 8.34e5; 
Io = 50e-3; 
L = (3*Ro/5); 
  
r2 = L; 
r4 = r2 + s; 
r3 = r4 + s; 
r1 = r3 + s; 
  
theta1 = 0; 
theta2 = 0; 
theta3 = 0; 
theta4 = 0; 
  
nRoots = 10000; 
  
flag = 0 
gamma = load('nodesJon');  % 1 x 10000 roots of Jo(x) % 
 
 for (q=1:nRoots) 
     Vn(1,q) = 0; 
     Sn(1,q) = 0; 
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end 
  
flag = 1 
C = FcoeffOfPotential_Fd(Io,sigma,Ro,d,r1,r2,theta1,theta2,gamma,nRoots); 
% Links to the function FcoeffOfPotential_Fe() % 
 
flag = 2 
  
for (nIndex=2:nRoots) 
    zTerm = (1 + exp(-2*gamma(1,nIndex)*d/Ro)); 
    rTerm = besselj(0,gamma(1,nIndex)*r3/Ro) - besselj(0,gamma(1,nIndex)*r4/Ro); 
    Vn(1,nIndex) = (C(1,nIndex)*rTerm*zTerm); 
    for (npIndex=2:nIndex) 
        Sn(1,nIndex) = Sn(1,nIndex) + Vn(1,npIndex); % Progressive sum % 
    end 
end 
  
save('Sn_ro8mm_d2mm_L4.8mm_N10000','Sn','-ASCII'); 
save('Vn_ro8mm_d2mm_L4.8mm_M600_N10000','Vn','-ASCII'); 
 
 
* Function to compute Bmn coefficients * 
  
function B = 
FcoeffOfPotential_Fe(Io,sigma,Ro,d,r1,r2,theta1,theta2,beta,mOrders,nRoots) 
alpha = (2*Io)/(pi*sigma*(Ro^2)); 
  
for (m=1:mOrders) 
    for (n=1:nRoots) 
         B(m,n) = 0; 
    end 
end 
  
% Bmn coefficients % 
  
for (mIndex=1:mOrders) % mIndex is an index for beta(p,q) % 
     for (nIndex=1:nRoots) 
          kpFactor = (beta(mIndex,nIndex)/Ro)*(1-exp(-2*beta(mIndex,nIndex)*d/Ro)); 
             
          LHS2 = (besselj(mIndex,beta(mIndex,nIndex)*r1/Ro)*cos(mIndex*theta1)) –  
                        (besselj(mIndex,beta(mIndex,nIndex)*r2/Ro)*cos(mIndex*theta2)); 
          RHS1 = ((beta(mIndex,nIndex)^2) - –
(mIndex^2))*(besselj(mIndex,beta(mIndex,nIndex))^2)* 
                         kpFactor/(beta(mIndex,nIndex)^2);             
          B(mIndex,nIndex) = alpha*LHS2/RHS1; 
      end 
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end 
 
 
* Function to compute Con coefficients * 
  
function C = FcoeffOfPotential_Fd(Io,sigma,Ro,d,r1,r2,theta1,theta2,gamma,nRoots) 
alpha = (2*Io)/(pi*sigma*(Ro^2)); 
  
for (n=1:nRoots) 
     C(1,n) = 0; 
end 
  
% Con coefficients  % 
for (nIndex=2:nRoots) 
    kpFactor = (gamma(1,nIndex)/Ro)*(1-exp(-2*gamma(1,nIndex)*d/Ro)); 
    LHSo = besselj(0,gamma(1,nIndex)*r1/Ro) - besselj(0,gamma(1,nIndex)*r2/Ro); 
    RHSo = 2*(besselj(0,gamma(1,nIndex))^2)*kpFactor; 
    C(1,nIndex) = alpha*LHSo/RHSo; 
end 
 
 
* Routine for finding the first 2000 roots of Jµ(x), for µ = 1 to 601 * 
 
mOrders = 601; % 0 to 600 orders % 
nRoots = 2000; % 1 to 2000 roots % 
  
for (mIndex=1:mOrders) 
    nuIndex = mIndex-1; % 0 to 600 % 
    if (nuIndex==0) 
        for (nIndex=1:nRoots) 
            zeta(1,nIndex)=0; % 1x2000 array % 
        end 
    else 
        for (nIndex=1:nRoots) 
             kappa(nuIndex,nIndex) = 0; % 600x2000 array % 
        end 
    end 
end 
  
for (mIndex=1:mOrders) 
    nuIndex = mIndex-1; 
    if (nuIndex==0) 
        zeta(1,:) = besselMaxMin(nuIndex,nRoots); 
 
        nuIndex 
    else 
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        kappa(nuIndex,:) = besselMaxMin(nuIndex,nRoots); 
        nuIndex 
    end 
end 
  
save('besselMaxMin_xo','zeta','-ASCII') 
save('besselMaxMin_xmn','kappa','-ASCII') 
 
 
* Routine for finding the maxima and minima of Jm(x) * 
 
function Y=besselMaxMin(m,nRoots) 
delta = 0.005; 
epsilon = 0.001; 
X = [0:delta:100000]; 
nLim = (100000-lowerBound)/delta; 
rootCount = 0; 
xIndex = 1; 
  
while ((rootCount<nRoots) & (xIndex<=(nLim-2)))     
    deltaY1 = besselj(m,X(1,xIndex+1)) - besselj(m,X(1,xIndex)); 
    deltaY2 = besselj(m,X(1,xIndex+2)) - besselj(m,X(1,xIndex+1)); 
    deltaY3 = besselj(m,X(1,xIndex+3)) - besselj(m,X(1,xIndex+2)); 
     
    if ((deltaY1*deltaY3<0) & (abs(deltaY2)<=epsilon)) 
        rootCount = rootCount+1; 
        Y(1,rootCount) = (X(1,xIndex+3) + X(1,xIndex+1))/2; 
        xIndex = xIndex+1; 
    end 
 
    xIndex = xIndex + 1; 
end 
 
 
* Routine to find the convergence value from a series summation * 
 
S = load('Sm_SP_ro10mm_d2mm_L4mm_M600_N10000'); 
x = [1:1:600]; 
xIndex = 1; 
mmIndex = 1; 
Mx(1,mmIndex) = 1; 
My(1,mmIndex) = S(1,1); 
  
% Finding maxima and minima of Smn % 
while (xIndex<=598) 
    deltaY1 = S(1,xIndex+1) - S(1,xIndex); 
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    deltaY2 = S(1,xIndex+2) - S(1,xIndex+1); 
    if ((deltaY1*deltaY2)<0) 
        mmIndex = mmIndex+1; 
        Mx(1,mmIndex) = xIndex+1; 
        My(1,mmIndex) = S(1,xIndex+1); 
        xIndex = xIndex+1; 
    else 
        xIndex = xIndex+1; 
    end 
end 
  
% Finding mid-points of My % 
sizeOfMy = size(My,2); 
for (yIndex=1:(sizeOfMy-1)) 
    midMy(1,yIndex) = (My(1,yIndex)+My(1,yIndex+1))/2; 
    midMx(1,yIndex) = (Mx(1,yIndex)+Mx(1,yIndex+1))/2; 
end 
  
% Finding maxima and minima of midMy % 
zIndex = 1; 
nnIndex = 1; 
Nx(1,nnIndex) = midMx(1,1); 
Ny(1,nnIndex) = midMy(1,1); 
midLength = size(midMy,2); 
  
while(zIndex<=(midLength-2)) 
    deltaY3 = midMy(1,zIndex+1)-midMy(1,zIndex); 
    deltaY4 = midMy(1,zIndex+2)-midMy(1,zIndex+1); 
    if ((deltaY3*deltaY4)<0) 
        nnIndex = nnIndex+1; 
        Nx(1,nnIndex) = midMx(1,zIndex+1); 
        Ny(1,nnIndex) = midMy(1,zIndex+1); 
        zIndex = zIndex+1; 
    else 
        zIndex = zIndex+1; 
    end 
end 
  
% Finding mid-points of Ny % 
sizeOfNy = size(Ny,2); 
for (yIndex=1:(sizeOfNy-1)) 
    midNy(1,yIndex) = (Ny(1,yIndex)+Ny(1,yIndex+1))/2; 
    midNx(1,yIndex) = (Nx(1,yIndex)+Nx(1,yIndex+1))/2; 
end 
  
% Finding maxima and minima of midNy % 
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zIndex = 1; 
ppIndex = 1; 
Px(1,ppIndex) = midNx(1,1); 
Py(1,ppIndex) = midNy(1,1); 
midLengthb = size(midNy,2); 
  
while(zIndex<=(midLengthb-2)) 
    deltaY3 = midNy(1,zIndex+1)-midNy(1,zIndex); 
    deltaY4 = midNy(1,zIndex+2)-midNy(1,zIndex+1); 
    if ((deltaY3*deltaY4)<0) 
        ppIndex = ppIndex+1; 
        Px(1,ppIndex) = midNx(1,zIndex+1); 
        Py(1,ppIndex) = midNy(1,zIndex+1); 
        zIndex = zIndex+1; 
    else 
        zIndex = zIndex+1; 
    end 
end 
  
% Finding mid-points of Py % 
sizeOfPy = size(Py,2); 
for (yIndex=1:(sizeOfPy-1)) 
    midPy(1,yIndex) = (Py(1,yIndex)+Py(1,yIndex+1))/2; 
    midPx(1,yIndex) = (Px(1,yIndex)+Px(1,yIndex+1))/2; 
end 
  
% Finding maxima and minima of midPy % 
zIndex = 1; 
ooIndex = 1; 
Ox(1,ooIndex) = midPx(1,1); 
Oy(1,ooIndex) = midPy(1,1); 
midLengthc = size(midPy,2); 
  
while(zIndex<=(midLengthc-2)) 
    deltaY3 = midPy(1,zIndex+1)-midPy(1,zIndex); 
    deltaY4 = midPy(1,zIndex+2)-midPy(1,zIndex+1); 
    if ((deltaY3*deltaY4)<0) 
        ooIndex = ooIndex+1; 
        Ox(1,ooIndex) = midPx(1,zIndex+1); 
        Oy(1,ooIndex) = midPy(1,zIndex+1); 
        zIndex = zIndex+1; 
    else 
        zIndex = zIndex+1; 
    end 
end 
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% Finding mid-points of Oy % 
sizeOfOy = size(Oy,2); 
for (yIndex=1:(sizeOfOy-1)) 
    midOy(1,yIndex) = (Oy(1,yIndex)+Oy(1,yIndex+1))/2; 
    midOx(1,yIndex) = (Ox(1,yIndex)+Ox(1,yIndex+1))/2; 
end 
 
% Plotting % 
plot(x,S) 
hold on 
plot(Mx,My,'or') 
plot(midMx,midMy,'-k') 
plot(Nx,Ny,'db') 
plot(midNx,midNy,'-g') 
plot(Px,Py,'sk') 
plot(midPx,midPy,'-m') 
plot(Ox,Oy,'ok') 
plot(midOx,midOy,'-r') 
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